1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "gc_implementation/shared/vmGCOperations.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/allocation.inline.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "prims/jvm.h"
  37 #include "prims/jvm_misc.hpp"
  38 #include "prims/privilegedStack.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/interfaceSupport.hpp"
  42 #include "runtime/java.hpp"
  43 #include "runtime/javaCalls.hpp"
  44 #include "runtime/mutexLocker.hpp"
  45 #include "runtime/os.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "services/attachListener.hpp"
  48 #include "services/memTracker.hpp"
  49 #include "services/threadService.hpp"
  50 #include "utilities/defaultStream.hpp"
  51 #include "utilities/events.hpp"
  52 #ifdef TARGET_OS_FAMILY_linux
  53 # include "os_linux.inline.hpp"
  54 # include "thread_linux.inline.hpp"
  55 #endif
  56 #ifdef TARGET_OS_FAMILY_solaris
  57 # include "os_solaris.inline.hpp"
  58 # include "thread_solaris.inline.hpp"
  59 #endif
  60 #ifdef TARGET_OS_FAMILY_windows
  61 # include "os_windows.inline.hpp"
  62 # include "thread_windows.inline.hpp"
  63 #endif
  64 #ifdef TARGET_OS_FAMILY_bsd
  65 # include "os_bsd.inline.hpp"
  66 # include "thread_bsd.inline.hpp"
  67 #endif
  68 
  69 # include <signal.h>
  70 
  71 OSThread*         os::_starting_thread    = NULL;
  72 address           os::_polling_page       = NULL;
  73 volatile int32_t* os::_mem_serialize_page = NULL;
  74 uintptr_t         os::_serialize_page_mask = 0;
  75 long              os::_rand_seed          = 1;
  76 int               os::_processor_count    = 0;
  77 size_t            os::_page_sizes[os::page_sizes_max];
  78 
  79 #ifndef PRODUCT
  80 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
  81 julong os::alloc_bytes = 0;         // # of bytes allocated
  82 julong os::num_frees = 0;           // # of calls to free
  83 julong os::free_bytes = 0;          // # of bytes freed
  84 #endif
  85 
  86 void os_init_globals() {
  87   // Called from init_globals().
  88   // See Threads::create_vm() in thread.cpp, and init.cpp.
  89   os::init_globals();
  90 }
  91 
  92 // Fill in buffer with current local time as an ISO-8601 string.
  93 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
  94 // Returns buffer, or NULL if it failed.
  95 // This would mostly be a call to
  96 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
  97 // except that on Windows the %z behaves badly, so we do it ourselves.
  98 // Also, people wanted milliseconds on there,
  99 // and strftime doesn't do milliseconds.
 100 char* os::iso8601_time(char* buffer, size_t buffer_length) {
 101   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
 102   //                                      1         2
 103   //                             12345678901234567890123456789
 104   static const char* iso8601_format =
 105     "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
 106   static const size_t needed_buffer = 29;
 107 
 108   // Sanity check the arguments
 109   if (buffer == NULL) {
 110     assert(false, "NULL buffer");
 111     return NULL;
 112   }
 113   if (buffer_length < needed_buffer) {
 114     assert(false, "buffer_length too small");
 115     return NULL;
 116   }
 117   // Get the current time
 118   jlong milliseconds_since_19700101 = javaTimeMillis();
 119   const int milliseconds_per_microsecond = 1000;
 120   const time_t seconds_since_19700101 =
 121     milliseconds_since_19700101 / milliseconds_per_microsecond;
 122   const int milliseconds_after_second =
 123     milliseconds_since_19700101 % milliseconds_per_microsecond;
 124   // Convert the time value to a tm and timezone variable
 125   struct tm time_struct;
 126   if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 127     assert(false, "Failed localtime_pd");
 128     return NULL;
 129   }
 130 #if defined(_ALLBSD_SOURCE)
 131   const time_t zone = (time_t) time_struct.tm_gmtoff;
 132 #else
 133   const time_t zone = timezone;
 134 #endif
 135 
 136   // If daylight savings time is in effect,
 137   // we are 1 hour East of our time zone
 138   const time_t seconds_per_minute = 60;
 139   const time_t minutes_per_hour = 60;
 140   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
 141   time_t UTC_to_local = zone;
 142   if (time_struct.tm_isdst > 0) {
 143     UTC_to_local = UTC_to_local - seconds_per_hour;
 144   }
 145   // Compute the time zone offset.
 146   //    localtime_pd() sets timezone to the difference (in seconds)
 147   //    between UTC and and local time.
 148   //    ISO 8601 says we need the difference between local time and UTC,
 149   //    we change the sign of the localtime_pd() result.
 150   const time_t local_to_UTC = -(UTC_to_local);
 151   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
 152   char sign_local_to_UTC = '+';
 153   time_t abs_local_to_UTC = local_to_UTC;
 154   if (local_to_UTC < 0) {
 155     sign_local_to_UTC = '-';
 156     abs_local_to_UTC = -(abs_local_to_UTC);
 157   }
 158   // Convert time zone offset seconds to hours and minutes.
 159   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
 160   const time_t zone_min =
 161     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
 162 
 163   // Print an ISO 8601 date and time stamp into the buffer
 164   const int year = 1900 + time_struct.tm_year;
 165   const int month = 1 + time_struct.tm_mon;
 166   const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
 167                                    year,
 168                                    month,
 169                                    time_struct.tm_mday,
 170                                    time_struct.tm_hour,
 171                                    time_struct.tm_min,
 172                                    time_struct.tm_sec,
 173                                    milliseconds_after_second,
 174                                    sign_local_to_UTC,
 175                                    zone_hours,
 176                                    zone_min);
 177   if (printed == 0) {
 178     assert(false, "Failed jio_printf");
 179     return NULL;
 180   }
 181   return buffer;
 182 }
 183 
 184 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
 185 #ifdef ASSERT
 186   if (!(!thread->is_Java_thread() ||
 187          Thread::current() == thread  ||
 188          Threads_lock->owned_by_self()
 189          || thread->is_Compiler_thread()
 190         )) {
 191     assert(false, "possibility of dangling Thread pointer");
 192   }
 193 #endif
 194 
 195   if (p >= MinPriority && p <= MaxPriority) {
 196     int priority = java_to_os_priority[p];
 197     return set_native_priority(thread, priority);
 198   } else {
 199     assert(false, "Should not happen");
 200     return OS_ERR;
 201   }
 202 }
 203 
 204 
 205 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
 206   int p;
 207   int os_prio;
 208   OSReturn ret = get_native_priority(thread, &os_prio);
 209   if (ret != OS_OK) return ret;
 210 
 211   for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
 212   priority = (ThreadPriority)p;
 213   return OS_OK;
 214 }
 215 
 216 
 217 // --------------------- sun.misc.Signal (optional) ---------------------
 218 
 219 
 220 // SIGBREAK is sent by the keyboard to query the VM state
 221 #ifndef SIGBREAK
 222 #define SIGBREAK SIGQUIT
 223 #endif
 224 
 225 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
 226 
 227 
 228 static void signal_thread_entry(JavaThread* thread, TRAPS) {
 229   os::set_priority(thread, NearMaxPriority);
 230   while (true) {
 231     int sig;
 232     {
 233       // FIXME : Currently we have not decieded what should be the status
 234       //         for this java thread blocked here. Once we decide about
 235       //         that we should fix this.
 236       sig = os::signal_wait();
 237     }
 238     if (sig == os::sigexitnum_pd()) {
 239        // Terminate the signal thread
 240        return;
 241     }
 242 
 243     switch (sig) {
 244       case SIGBREAK: {
 245         // Check if the signal is a trigger to start the Attach Listener - in that
 246         // case don't print stack traces.
 247         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
 248           continue;
 249         }
 250         // Print stack traces
 251         // Any SIGBREAK operations added here should make sure to flush
 252         // the output stream (e.g. tty->flush()) after output.  See 4803766.
 253         // Each module also prints an extra carriage return after its output.
 254         VM_PrintThreads op;
 255         VMThread::execute(&op);
 256         VM_PrintJNI jni_op;
 257         VMThread::execute(&jni_op);
 258         VM_FindDeadlocks op1(tty);
 259         VMThread::execute(&op1);
 260         Universe::print_heap_at_SIGBREAK();
 261         if (PrintClassHistogram) {
 262           VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */,
 263                                    true /* need_prologue */);
 264           VMThread::execute(&op1);
 265         }
 266         if (JvmtiExport::should_post_data_dump()) {
 267           JvmtiExport::post_data_dump();
 268         }
 269         break;
 270       }
 271       default: {
 272         // Dispatch the signal to java
 273         HandleMark hm(THREAD);
 274         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
 275         KlassHandle klass (THREAD, k);
 276         if (klass.not_null()) {
 277           JavaValue result(T_VOID);
 278           JavaCallArguments args;
 279           args.push_int(sig);
 280           JavaCalls::call_static(
 281             &result,
 282             klass,
 283             vmSymbols::dispatch_name(),
 284             vmSymbols::int_void_signature(),
 285             &args,
 286             THREAD
 287           );
 288         }
 289         if (HAS_PENDING_EXCEPTION) {
 290           // tty is initialized early so we don't expect it to be null, but
 291           // if it is we can't risk doing an initialization that might
 292           // trigger additional out-of-memory conditions
 293           if (tty != NULL) {
 294             char klass_name[256];
 295             char tmp_sig_name[16];
 296             const char* sig_name = "UNKNOWN";
 297             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
 298               name()->as_klass_external_name(klass_name, 256);
 299             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
 300               sig_name = tmp_sig_name;
 301             warning("Exception %s occurred dispatching signal %s to handler"
 302                     "- the VM may need to be forcibly terminated",
 303                     klass_name, sig_name );
 304           }
 305           CLEAR_PENDING_EXCEPTION;
 306         }
 307       }
 308     }
 309   }
 310 }
 311 
 312 
 313 void os::signal_init() {
 314   if (!ReduceSignalUsage) {
 315     // Setup JavaThread for processing signals
 316     EXCEPTION_MARK;
 317     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
 318     instanceKlassHandle klass (THREAD, k);
 319     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
 320 
 321     const char thread_name[] = "Signal Dispatcher";
 322     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
 323 
 324     // Initialize thread_oop to put it into the system threadGroup
 325     Handle thread_group (THREAD, Universe::system_thread_group());
 326     JavaValue result(T_VOID);
 327     JavaCalls::call_special(&result, thread_oop,
 328                            klass,
 329                            vmSymbols::object_initializer_name(),
 330                            vmSymbols::threadgroup_string_void_signature(),
 331                            thread_group,
 332                            string,
 333                            CHECK);
 334 
 335     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
 336     JavaCalls::call_special(&result,
 337                             thread_group,
 338                             group,
 339                             vmSymbols::add_method_name(),
 340                             vmSymbols::thread_void_signature(),
 341                             thread_oop,         // ARG 1
 342                             CHECK);
 343 
 344     os::signal_init_pd();
 345 
 346     { MutexLocker mu(Threads_lock);
 347       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
 348 
 349       // At this point it may be possible that no osthread was created for the
 350       // JavaThread due to lack of memory. We would have to throw an exception
 351       // in that case. However, since this must work and we do not allow
 352       // exceptions anyway, check and abort if this fails.
 353       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
 354         vm_exit_during_initialization("java.lang.OutOfMemoryError",
 355                                       "unable to create new native thread");
 356       }
 357 
 358       java_lang_Thread::set_thread(thread_oop(), signal_thread);
 359       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
 360       java_lang_Thread::set_daemon(thread_oop());
 361 
 362       signal_thread->set_threadObj(thread_oop());
 363       Threads::add(signal_thread);
 364       Thread::start(signal_thread);
 365     }
 366     // Handle ^BREAK
 367     os::signal(SIGBREAK, os::user_handler());
 368   }
 369 }
 370 
 371 
 372 void os::terminate_signal_thread() {
 373   if (!ReduceSignalUsage)
 374     signal_notify(sigexitnum_pd());
 375 }
 376 
 377 
 378 // --------------------- loading libraries ---------------------
 379 
 380 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
 381 extern struct JavaVM_ main_vm;
 382 
 383 static void* _native_java_library = NULL;
 384 
 385 void* os::native_java_library() {
 386   if (_native_java_library == NULL) {
 387     char buffer[JVM_MAXPATHLEN];
 388     char ebuf[1024];
 389 
 390     // Try to load verify dll first. In 1.3 java dll depends on it and is not
 391     // always able to find it when the loading executable is outside the JDK.
 392     // In order to keep working with 1.2 we ignore any loading errors.
 393     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "verify");
 394     dll_load(buffer, ebuf, sizeof(ebuf));
 395 
 396     // Load java dll
 397     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "java");
 398     _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
 399     if (_native_java_library == NULL) {
 400       vm_exit_during_initialization("Unable to load native library", ebuf);
 401     }
 402 
 403 #if defined(__OpenBSD__)
 404     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
 405     // ignore errors
 406     dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), "net");
 407     dll_load(buffer, ebuf, sizeof(ebuf));
 408 #endif
 409   }
 410   static jboolean onLoaded = JNI_FALSE;
 411   if (onLoaded) {
 412     // We may have to wait to fire OnLoad until TLS is initialized.
 413     if (ThreadLocalStorage::is_initialized()) {
 414       // The JNI_OnLoad handling is normally done by method load in
 415       // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
 416       // explicitly so we have to check for JNI_OnLoad as well
 417       const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
 418       JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
 419           JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
 420       if (JNI_OnLoad != NULL) {
 421         JavaThread* thread = JavaThread::current();
 422         ThreadToNativeFromVM ttn(thread);
 423         HandleMark hm(thread);
 424         jint ver = (*JNI_OnLoad)(&main_vm, NULL);
 425         onLoaded = JNI_TRUE;
 426         if (!Threads::is_supported_jni_version_including_1_1(ver)) {
 427           vm_exit_during_initialization("Unsupported JNI version");
 428         }
 429       }
 430     }
 431   }
 432   return _native_java_library;
 433 }
 434 
 435 // --------------------- heap allocation utilities ---------------------
 436 
 437 char *os::strdup(const char *str, MEMFLAGS flags) {
 438   size_t size = strlen(str);
 439   char *dup_str = (char *)malloc(size + 1, flags);
 440   if (dup_str == NULL) return NULL;
 441   strcpy(dup_str, str);
 442   return dup_str;
 443 }
 444 
 445 
 446 
 447 #ifdef ASSERT
 448 #define space_before             (MallocCushion + sizeof(double))
 449 #define space_after              MallocCushion
 450 #define size_addr_from_base(p)   (size_t*)(p + space_before - sizeof(size_t))
 451 #define size_addr_from_obj(p)    ((size_t*)p - 1)
 452 // MallocCushion: size of extra cushion allocated around objects with +UseMallocOnly
 453 // NB: cannot be debug variable, because these aren't set from the command line until
 454 // *after* the first few allocs already happened
 455 #define MallocCushion            16
 456 #else
 457 #define space_before             0
 458 #define space_after              0
 459 #define size_addr_from_base(p)   should not use w/o ASSERT
 460 #define size_addr_from_obj(p)    should not use w/o ASSERT
 461 #define MallocCushion            0
 462 #endif
 463 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
 464 
 465 #ifdef ASSERT
 466 inline size_t get_size(void* obj) {
 467   size_t size = *size_addr_from_obj(obj);
 468   if (size < 0) {
 469     fatal(err_msg("free: size field of object #" PTR_FORMAT " was overwritten ("
 470                   SIZE_FORMAT ")", obj, size));
 471   }
 472   return size;
 473 }
 474 
 475 u_char* find_cushion_backwards(u_char* start) {
 476   u_char* p = start;
 477   while (p[ 0] != badResourceValue || p[-1] != badResourceValue ||
 478          p[-2] != badResourceValue || p[-3] != badResourceValue) p--;
 479   // ok, we have four consecutive marker bytes; find start
 480   u_char* q = p - 4;
 481   while (*q == badResourceValue) q--;
 482   return q + 1;
 483 }
 484 
 485 u_char* find_cushion_forwards(u_char* start) {
 486   u_char* p = start;
 487   while (p[0] != badResourceValue || p[1] != badResourceValue ||
 488          p[2] != badResourceValue || p[3] != badResourceValue) p++;
 489   // ok, we have four consecutive marker bytes; find end of cushion
 490   u_char* q = p + 4;
 491   while (*q == badResourceValue) q++;
 492   return q - MallocCushion;
 493 }
 494 
 495 void print_neighbor_blocks(void* ptr) {
 496   // find block allocated before ptr (not entirely crash-proof)
 497   if (MallocCushion < 4) {
 498     tty->print_cr("### cannot find previous block (MallocCushion < 4)");
 499     return;
 500   }
 501   u_char* start_of_this_block = (u_char*)ptr - space_before;
 502   u_char* end_of_prev_block_data = start_of_this_block - space_after -1;
 503   // look for cushion in front of prev. block
 504   u_char* start_of_prev_block = find_cushion_backwards(end_of_prev_block_data);
 505   ptrdiff_t size = *size_addr_from_base(start_of_prev_block);
 506   u_char* obj = start_of_prev_block + space_before;
 507   if (size <= 0 ) {
 508     // start is bad; mayhave been confused by OS data inbetween objects
 509     // search one more backwards
 510     start_of_prev_block = find_cushion_backwards(start_of_prev_block);
 511     size = *size_addr_from_base(start_of_prev_block);
 512     obj = start_of_prev_block + space_before;
 513   }
 514 
 515   if (start_of_prev_block + space_before + size + space_after == start_of_this_block) {
 516     tty->print_cr("### previous object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
 517   } else {
 518     tty->print_cr("### previous object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", obj, size);
 519   }
 520 
 521   // now find successor block
 522   u_char* start_of_next_block = (u_char*)ptr + *size_addr_from_obj(ptr) + space_after;
 523   start_of_next_block = find_cushion_forwards(start_of_next_block);
 524   u_char* next_obj = start_of_next_block + space_before;
 525   ptrdiff_t next_size = *size_addr_from_base(start_of_next_block);
 526   if (start_of_next_block[0] == badResourceValue &&
 527       start_of_next_block[1] == badResourceValue &&
 528       start_of_next_block[2] == badResourceValue &&
 529       start_of_next_block[3] == badResourceValue) {
 530     tty->print_cr("### next object: " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
 531   } else {
 532     tty->print_cr("### next object (not sure if correct): " PTR_FORMAT " (" SSIZE_FORMAT " bytes)", next_obj, next_size);
 533   }
 534 }
 535 
 536 
 537 void report_heap_error(void* memblock, void* bad, const char* where) {
 538   tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
 539   tty->print_cr("## memory stomp: byte at " PTR_FORMAT " %s object " PTR_FORMAT, bad, where, memblock);
 540   print_neighbor_blocks(memblock);
 541   fatal("memory stomping error");
 542 }
 543 
 544 void verify_block(void* memblock) {
 545   size_t size = get_size(memblock);
 546   if (MallocCushion) {
 547     u_char* ptr = (u_char*)memblock - space_before;
 548     for (int i = 0; i < MallocCushion; i++) {
 549       if (ptr[i] != badResourceValue) {
 550         report_heap_error(memblock, ptr+i, "in front of");
 551       }
 552     }
 553     u_char* end = (u_char*)memblock + size + space_after;
 554     for (int j = -MallocCushion; j < 0; j++) {
 555       if (end[j] != badResourceValue) {
 556         report_heap_error(memblock, end+j, "after");
 557       }
 558     }
 559   }
 560 }
 561 #endif
 562 
 563 void* os::malloc(size_t size, MEMFLAGS memflags, address caller) {
 564   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 565   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 566 
 567   if (size == 0) {
 568     // return a valid pointer if size is zero
 569     // if NULL is returned the calling functions assume out of memory.
 570     size = 1;
 571   }
 572 
 573   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 574   u_char* ptr = (u_char*)::malloc(size + space_before + space_after);
 575 
 576 #ifdef ASSERT
 577   if (ptr == NULL) return NULL;
 578   if (MallocCushion) {
 579     for (u_char* p = ptr; p < ptr + MallocCushion; p++) *p = (u_char)badResourceValue;
 580     u_char* end = ptr + space_before + size;
 581     for (u_char* pq = ptr+MallocCushion; pq < end; pq++) *pq = (u_char)uninitBlockPad;
 582     for (u_char* q = end; q < end + MallocCushion; q++) *q = (u_char)badResourceValue;
 583   }
 584   // put size just before data
 585   *size_addr_from_base(ptr) = size;
 586 #endif
 587   u_char* memblock = ptr + space_before;
 588   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 589     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
 590     breakpoint();
 591   }
 592   debug_only(if (paranoid) verify_block(memblock));
 593   if (PrintMalloc && tty != NULL) tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, memblock);
 594 
 595   // we do not track MallocCushion memory
 596   if (MemTracker::is_on()) {
 597     MemTracker::record_malloc((address)memblock, size, memflags, caller == 0 ? CALLER_PC : caller);
 598   }
 599 
 600   return memblock;
 601 }
 602 
 603 
 604 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, address caller) {
 605 #ifndef ASSERT
 606   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 607   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 608   void* ptr = ::realloc(memblock, size);
 609   if (ptr != NULL && MemTracker::is_on()) {
 610     MemTracker::record_realloc((address)memblock, (address)ptr, size, memflags,
 611      caller == 0 ? CALLER_PC : caller);
 612   }
 613   return ptr;
 614 #else
 615   if (memblock == NULL) {
 616     return malloc(size, memflags, (caller == 0 ? CALLER_PC : caller));
 617   }
 618   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 619     tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
 620     breakpoint();
 621   }
 622   verify_block(memblock);
 623   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 624   if (size == 0) return NULL;
 625   // always move the block
 626   void* ptr = malloc(size, memflags, caller == 0 ? CALLER_PC : caller);
 627   if (PrintMalloc) tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
 628   // Copy to new memory if malloc didn't fail
 629   if ( ptr != NULL ) {
 630     memcpy(ptr, memblock, MIN2(size, get_size(memblock)));
 631     if (paranoid) verify_block(ptr);
 632     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 633       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
 634       breakpoint();
 635     }
 636     free(memblock);
 637   }
 638   return ptr;
 639 #endif
 640 }
 641 
 642 
 643 void  os::free(void *memblock, MEMFLAGS memflags) {
 644   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
 645 #ifdef ASSERT
 646   if (memblock == NULL) return;
 647   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 648     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
 649     breakpoint();
 650   }
 651   verify_block(memblock);
 652   NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
 653   // Added by detlefs.
 654   if (MallocCushion) {
 655     u_char* ptr = (u_char*)memblock - space_before;
 656     for (u_char* p = ptr; p < ptr + MallocCushion; p++) {
 657       guarantee(*p == badResourceValue,
 658                 "Thing freed should be malloc result.");
 659       *p = (u_char)freeBlockPad;
 660     }
 661     size_t size = get_size(memblock);
 662     inc_stat_counter(&free_bytes, size);
 663     u_char* end = ptr + space_before + size;
 664     for (u_char* q = end; q < end + MallocCushion; q++) {
 665       guarantee(*q == badResourceValue,
 666                 "Thing freed should be malloc result.");
 667       *q = (u_char)freeBlockPad;
 668     }
 669     if (PrintMalloc && tty != NULL)
 670       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)memblock);
 671   } else if (PrintMalloc && tty != NULL) {
 672     // tty->print_cr("os::free %p", memblock);
 673     fprintf(stderr, "os::free " PTR_FORMAT "\n", (uintptr_t)memblock);
 674   }
 675 #endif
 676   MemTracker::record_free((address)memblock, memflags);
 677 
 678   ::free((char*)memblock - space_before);
 679 }
 680 
 681 void os::init_random(long initval) {
 682   _rand_seed = initval;
 683 }
 684 
 685 
 686 long os::random() {
 687   /* standard, well-known linear congruential random generator with
 688    * next_rand = (16807*seed) mod (2**31-1)
 689    * see
 690    * (1) "Random Number Generators: Good Ones Are Hard to Find",
 691    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
 692    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
 693    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
 694   */
 695   const long a = 16807;
 696   const unsigned long m = 2147483647;
 697   const long q = m / a;        assert(q == 127773, "weird math");
 698   const long r = m % a;        assert(r == 2836, "weird math");
 699 
 700   // compute az=2^31p+q
 701   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
 702   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
 703   lo += (hi & 0x7FFF) << 16;
 704 
 705   // if q overflowed, ignore the overflow and increment q
 706   if (lo > m) {
 707     lo &= m;
 708     ++lo;
 709   }
 710   lo += hi >> 15;
 711 
 712   // if (p+q) overflowed, ignore the overflow and increment (p+q)
 713   if (lo > m) {
 714     lo &= m;
 715     ++lo;
 716   }
 717   return (_rand_seed = lo);
 718 }
 719 
 720 // The INITIALIZED state is distinguished from the SUSPENDED state because the
 721 // conditions in which a thread is first started are different from those in which
 722 // a suspension is resumed.  These differences make it hard for us to apply the
 723 // tougher checks when starting threads that we want to do when resuming them.
 724 // However, when start_thread is called as a result of Thread.start, on a Java
 725 // thread, the operation is synchronized on the Java Thread object.  So there
 726 // cannot be a race to start the thread and hence for the thread to exit while
 727 // we are working on it.  Non-Java threads that start Java threads either have
 728 // to do so in a context in which races are impossible, or should do appropriate
 729 // locking.
 730 
 731 void os::start_thread(Thread* thread) {
 732   // guard suspend/resume
 733   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
 734   OSThread* osthread = thread->osthread();
 735   osthread->set_state(RUNNABLE);
 736   pd_start_thread(thread);
 737 }
 738 
 739 //---------------------------------------------------------------------------
 740 // Helper functions for fatal error handler
 741 
 742 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
 743   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
 744 
 745   int cols = 0;
 746   int cols_per_line = 0;
 747   switch (unitsize) {
 748     case 1: cols_per_line = 16; break;
 749     case 2: cols_per_line = 8;  break;
 750     case 4: cols_per_line = 4;  break;
 751     case 8: cols_per_line = 2;  break;
 752     default: return;
 753   }
 754 
 755   address p = start;
 756   st->print(PTR_FORMAT ":   ", start);
 757   while (p < end) {
 758     switch (unitsize) {
 759       case 1: st->print("%02x", *(u1*)p); break;
 760       case 2: st->print("%04x", *(u2*)p); break;
 761       case 4: st->print("%08x", *(u4*)p); break;
 762       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
 763     }
 764     p += unitsize;
 765     cols++;
 766     if (cols >= cols_per_line && p < end) {
 767        cols = 0;
 768        st->cr();
 769        st->print(PTR_FORMAT ":   ", p);
 770     } else {
 771        st->print(" ");
 772     }
 773   }
 774   st->cr();
 775 }
 776 
 777 void os::print_environment_variables(outputStream* st, const char** env_list,
 778                                      char* buffer, int len) {
 779   if (env_list) {
 780     st->print_cr("Environment Variables:");
 781 
 782     for (int i = 0; env_list[i] != NULL; i++) {
 783       if (getenv(env_list[i], buffer, len)) {
 784         st->print(env_list[i]);
 785         st->print("=");
 786         st->print_cr(buffer);
 787       }
 788     }
 789   }
 790 }
 791 
 792 void os::print_cpu_info(outputStream* st) {
 793   // cpu
 794   st->print("CPU:");
 795   st->print("total %d", os::processor_count());
 796   // It's not safe to query number of active processors after crash
 797   // st->print("(active %d)", os::active_processor_count());
 798   st->print(" %s", VM_Version::cpu_features());
 799   st->cr();
 800   pd_print_cpu_info(st);
 801 }
 802 
 803 void os::print_date_and_time(outputStream *st) {
 804   time_t tloc;
 805   (void)time(&tloc);
 806   st->print("time: %s", ctime(&tloc));  // ctime adds newline.
 807 
 808   double t = os::elapsedTime();
 809   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
 810   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
 811   //       before printf. We lost some precision, but who cares?
 812   st->print_cr("elapsed time: %d seconds", (int)t);
 813 }
 814 
 815 // moved from debug.cpp (used to be find()) but still called from there
 816 // The verbose parameter is only set by the debug code in one case
 817 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
 818   address addr = (address)x;
 819   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
 820   if (b != NULL) {
 821     if (b->is_buffer_blob()) {
 822       // the interpreter is generated into a buffer blob
 823       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
 824       if (i != NULL) {
 825         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
 826         i->print_on(st);
 827         return;
 828       }
 829       if (Interpreter::contains(addr)) {
 830         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
 831                      " (not bytecode specific)", addr);
 832         return;
 833       }
 834       //
 835       if (AdapterHandlerLibrary::contains(b)) {
 836         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
 837         AdapterHandlerLibrary::print_handler_on(st, b);
 838       }
 839       // the stubroutines are generated into a buffer blob
 840       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
 841       if (d != NULL) {
 842         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
 843         d->print_on(st);
 844         st->cr();
 845         return;
 846       }
 847       if (StubRoutines::contains(addr)) {
 848         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
 849                      "stub routine", addr);
 850         return;
 851       }
 852       // the InlineCacheBuffer is using stubs generated into a buffer blob
 853       if (InlineCacheBuffer::contains(addr)) {
 854         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
 855         return;
 856       }
 857       VtableStub* v = VtableStubs::stub_containing(addr);
 858       if (v != NULL) {
 859         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
 860         v->print_on(st);
 861         st->cr();
 862         return;
 863       }
 864     }
 865     nmethod* nm = b->as_nmethod_or_null();
 866     if (nm != NULL) {
 867       ResourceMark rm;
 868       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
 869                 addr, (int)(addr - nm->entry_point()), nm);
 870       if (verbose) {
 871         st->print(" for ");
 872         nm->method()->print_value_on(st);
 873       }
 874       nm->print_nmethod(verbose);
 875       return;
 876     }
 877     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
 878     b->print_on(st);
 879     return;
 880   }
 881 
 882   if (Universe::heap()->is_in(addr)) {
 883     HeapWord* p = Universe::heap()->block_start(addr);
 884     bool print = false;
 885     // If we couldn't find it it just may mean that heap wasn't parseable
 886     // See if we were just given an oop directly
 887     if (p != NULL && Universe::heap()->block_is_obj(p)) {
 888       print = true;
 889     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
 890       p = (HeapWord*) addr;
 891       print = true;
 892     }
 893     if (print) {
 894       if (p == (HeapWord*) addr) {
 895         st->print_cr(INTPTR_FORMAT " is an oop", addr);
 896       } else {
 897         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
 898       }
 899       oop(p)->print_on(st);
 900       return;
 901     }
 902   } else {
 903     if (Universe::heap()->is_in_reserved(addr)) {
 904       st->print_cr(INTPTR_FORMAT " is an unallocated location "
 905                    "in the heap", addr);
 906       return;
 907     }
 908   }
 909   if (JNIHandles::is_global_handle((jobject) addr)) {
 910     st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
 911     return;
 912   }
 913   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
 914     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
 915     return;
 916   }
 917 #ifndef PRODUCT
 918   // we don't keep the block list in product mode
 919   if (JNIHandleBlock::any_contains((jobject) addr)) {
 920     st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
 921     return;
 922   }
 923 #endif
 924 
 925   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
 926     // Check for privilege stack
 927     if (thread->privileged_stack_top() != NULL &&
 928         thread->privileged_stack_top()->contains(addr)) {
 929       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
 930                    "for thread: " INTPTR_FORMAT, addr, thread);
 931       if (verbose) thread->print_on(st);
 932       return;
 933     }
 934     // If the addr is a java thread print information about that.
 935     if (addr == (address)thread) {
 936       if (verbose) {
 937         thread->print_on(st);
 938       } else {
 939         st->print_cr(INTPTR_FORMAT " is a thread", addr);
 940       }
 941       return;
 942     }
 943     // If the addr is in the stack region for this thread then report that
 944     // and print thread info
 945     if (thread->stack_base() >= addr &&
 946         addr > (thread->stack_base() - thread->stack_size())) {
 947       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
 948                    INTPTR_FORMAT, addr, thread);
 949       if (verbose) thread->print_on(st);
 950       return;
 951     }
 952 
 953   }
 954 
 955 #ifndef PRODUCT
 956   // Check if in metaspace.
 957   if (ClassLoaderDataGraph::contains((address)addr)) {
 958     // Use addr->print() from the debugger instead (not here)
 959     st->print_cr(INTPTR_FORMAT
 960                  " is pointing into metadata", addr);
 961     return;
 962   }
 963 #endif
 964 
 965   // Try an OS specific find
 966   if (os::find(addr, st)) {
 967     return;
 968   }
 969 
 970   st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
 971 }
 972 
 973 // Looks like all platforms except IA64 can use the same function to check
 974 // if C stack is walkable beyond current frame. The check for fp() is not
 975 // necessary on Sparc, but it's harmless.
 976 bool os::is_first_C_frame(frame* fr) {
 977 #ifdef IA64
 978   // In order to walk native frames on Itanium, we need to access the unwind
 979   // table, which is inside ELF. We don't want to parse ELF after fatal error,
 980   // so return true for IA64. If we need to support C stack walking on IA64,
 981   // this function needs to be moved to CPU specific files, as fp() on IA64
 982   // is register stack, which grows towards higher memory address.
 983   return true;
 984 #endif
 985 
 986   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
 987   // Check usp first, because if that's bad the other accessors may fault
 988   // on some architectures.  Ditto ufp second, etc.
 989   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
 990   // sp on amd can be 32 bit aligned.
 991   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
 992 
 993   uintptr_t usp    = (uintptr_t)fr->sp();
 994   if ((usp & sp_align_mask) != 0) return true;
 995 
 996   uintptr_t ufp    = (uintptr_t)fr->fp();
 997   if ((ufp & fp_align_mask) != 0) return true;
 998 
 999   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1000   if ((old_sp & sp_align_mask) != 0) return true;
1001   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1002 
1003   uintptr_t old_fp = (uintptr_t)fr->link();
1004   if ((old_fp & fp_align_mask) != 0) return true;
1005   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1006 
1007   // stack grows downwards; if old_fp is below current fp or if the stack
1008   // frame is too large, either the stack is corrupted or fp is not saved
1009   // on stack (i.e. on x86, ebp may be used as general register). The stack
1010   // is not walkable beyond current frame.
1011   if (old_fp < ufp) return true;
1012   if (old_fp - ufp > 64 * K) return true;
1013 
1014   return false;
1015 }
1016 
1017 #ifdef ASSERT
1018 extern "C" void test_random() {
1019   const double m = 2147483647;
1020   double mean = 0.0, variance = 0.0, t;
1021   long reps = 10000;
1022   unsigned long seed = 1;
1023 
1024   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1025   os::init_random(seed);
1026   long num;
1027   for (int k = 0; k < reps; k++) {
1028     num = os::random();
1029     double u = (double)num / m;
1030     assert(u >= 0.0 && u <= 1.0, "bad random number!");
1031 
1032     // calculate mean and variance of the random sequence
1033     mean += u;
1034     variance += (u*u);
1035   }
1036   mean /= reps;
1037   variance /= (reps - 1);
1038 
1039   assert(num == 1043618065, "bad seed");
1040   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1041   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1042   const double eps = 0.0001;
1043   t = fabsd(mean - 0.5018);
1044   assert(t < eps, "bad mean");
1045   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1046   assert(t < eps, "bad variance");
1047 }
1048 #endif
1049 
1050 
1051 // Set up the boot classpath.
1052 
1053 char* os::format_boot_path(const char* format_string,
1054                            const char* home,
1055                            int home_len,
1056                            char fileSep,
1057                            char pathSep) {
1058     assert((fileSep == '/' && pathSep == ':') ||
1059            (fileSep == '\\' && pathSep == ';'), "unexpected seperator chars");
1060 
1061     // Scan the format string to determine the length of the actual
1062     // boot classpath, and handle platform dependencies as well.
1063     int formatted_path_len = 0;
1064     const char* p;
1065     for (p = format_string; *p != 0; ++p) {
1066         if (*p == '%') formatted_path_len += home_len - 1;
1067         ++formatted_path_len;
1068     }
1069 
1070     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1071     if (formatted_path == NULL) {
1072         return NULL;
1073     }
1074 
1075     // Create boot classpath from format, substituting separator chars and
1076     // java home directory.
1077     char* q = formatted_path;
1078     for (p = format_string; *p != 0; ++p) {
1079         switch (*p) {
1080         case '%':
1081             strcpy(q, home);
1082             q += home_len;
1083             break;
1084         case '/':
1085             *q++ = fileSep;
1086             break;
1087         case ':':
1088             *q++ = pathSep;
1089             break;
1090         default:
1091             *q++ = *p;
1092         }
1093     }
1094     *q = '\0';
1095 
1096     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1097     return formatted_path;
1098 }
1099 
1100 
1101 bool os::set_boot_path(char fileSep, char pathSep) {
1102     const char* home = Arguments::get_java_home();
1103     int home_len = (int)strlen(home);
1104 
1105     static const char* meta_index_dir_format = "%/lib/";
1106     static const char* meta_index_format = "%/lib/meta-index";
1107     char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1108     if (meta_index == NULL) return false;
1109     char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1110     if (meta_index_dir == NULL) return false;
1111     Arguments::set_meta_index_path(meta_index, meta_index_dir);
1112 
1113     // Any modification to the JAR-file list, for the boot classpath must be
1114     // aligned with install/install/make/common/Pack.gmk. Note: boot class
1115     // path class JARs, are stripped for StackMapTable to reduce download size.
1116     static const char classpath_format[] =
1117         "%/lib/resources.jar:"
1118         "%/lib/rt.jar:"
1119         "%/lib/sunrsasign.jar:"
1120         "%/lib/jsse.jar:"
1121         "%/lib/jce.jar:"
1122         "%/lib/charsets.jar:"
1123         "%/lib/jfr.jar:"
1124 #ifdef __APPLE__
1125         "%/lib/JObjC.jar:"
1126 #endif
1127         "%/classes";
1128     char* sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1129     if (sysclasspath == NULL) return false;
1130     Arguments::set_sysclasspath(sysclasspath);
1131 
1132     return true;
1133 }
1134 
1135 /*
1136  * Splits a path, based on its separator, the number of
1137  * elements is returned back in n.
1138  * It is the callers responsibility to:
1139  *   a> check the value of n, and n may be 0.
1140  *   b> ignore any empty path elements
1141  *   c> free up the data.
1142  */
1143 char** os::split_path(const char* path, int* n) {
1144   *n = 0;
1145   if (path == NULL || strlen(path) == 0) {
1146     return NULL;
1147   }
1148   const char psepchar = *os::path_separator();
1149   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1150   if (inpath == NULL) {
1151     return NULL;
1152   }
1153   strncpy(inpath, path, strlen(path));
1154   int count = 1;
1155   char* p = strchr(inpath, psepchar);
1156   // Get a count of elements to allocate memory
1157   while (p != NULL) {
1158     count++;
1159     p++;
1160     p = strchr(p, psepchar);
1161   }
1162   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1163   if (opath == NULL) {
1164     return NULL;
1165   }
1166 
1167   // do the actual splitting
1168   p = inpath;
1169   for (int i = 0 ; i < count ; i++) {
1170     size_t len = strcspn(p, os::path_separator());
1171     if (len > JVM_MAXPATHLEN) {
1172       return NULL;
1173     }
1174     // allocate the string and add terminator storage
1175     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1176     if (s == NULL) {
1177       return NULL;
1178     }
1179     strncpy(s, p, len);
1180     s[len] = '\0';
1181     opath[i] = s;
1182     p += len + 1;
1183   }
1184   FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1185   *n = count;
1186   return opath;
1187 }
1188 
1189 void os::set_memory_serialize_page(address page) {
1190   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1191   _mem_serialize_page = (volatile int32_t *)page;
1192   // We initialize the serialization page shift count here
1193   // We assume a cache line size of 64 bytes
1194   assert(SerializePageShiftCount == count,
1195          "thread size changed, fix SerializePageShiftCount constant");
1196   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1197 }
1198 
1199 static volatile intptr_t SerializePageLock = 0;
1200 
1201 // This method is called from signal handler when SIGSEGV occurs while the current
1202 // thread tries to store to the "read-only" memory serialize page during state
1203 // transition.
1204 void os::block_on_serialize_page_trap() {
1205   if (TraceSafepoint) {
1206     tty->print_cr("Block until the serialize page permission restored");
1207   }
1208   // When VMThread is holding the SerializePageLock during modifying the
1209   // access permission of the memory serialize page, the following call
1210   // will block until the permission of that page is restored to rw.
1211   // Generally, it is unsafe to manipulate locks in signal handlers, but in
1212   // this case, it's OK as the signal is synchronous and we know precisely when
1213   // it can occur.
1214   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1215   Thread::muxRelease(&SerializePageLock);
1216 }
1217 
1218 // Serialize all thread state variables
1219 void os::serialize_thread_states() {
1220   // On some platforms such as Solaris & Linux, the time duration of the page
1221   // permission restoration is observed to be much longer than expected  due to
1222   // scheduler starvation problem etc. To avoid the long synchronization
1223   // time and expensive page trap spinning, 'SerializePageLock' is used to block
1224   // the mutator thread if such case is encountered. See bug 6546278 for details.
1225   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1226   os::protect_memory((char *)os::get_memory_serialize_page(),
1227                      os::vm_page_size(), MEM_PROT_READ);
1228   os::protect_memory((char *)os::get_memory_serialize_page(),
1229                      os::vm_page_size(), MEM_PROT_RW);
1230   Thread::muxRelease(&SerializePageLock);
1231 }
1232 
1233 // Returns true if the current stack pointer is above the stack shadow
1234 // pages, false otherwise.
1235 
1236 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1237   assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1238   address sp = current_stack_pointer();
1239   // Check if we have StackShadowPages above the yellow zone.  This parameter
1240   // is dependent on the depth of the maximum VM call stack possible from
1241   // the handler for stack overflow.  'instanceof' in the stack overflow
1242   // handler or a println uses at least 8k stack of VM and native code
1243   // respectively.
1244   const int framesize_in_bytes =
1245     Interpreter::size_top_interpreter_activation(method()) * wordSize;
1246   int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1247                       * vm_page_size()) + framesize_in_bytes;
1248   // The very lower end of the stack
1249   address stack_limit = thread->stack_base() - thread->stack_size();
1250   return (sp > (stack_limit + reserved_area));
1251 }
1252 
1253 size_t os::page_size_for_region(size_t region_min_size, size_t region_max_size,
1254                                 uint min_pages)
1255 {
1256   assert(min_pages > 0, "sanity");
1257   if (UseLargePages) {
1258     const size_t max_page_size = region_max_size / min_pages;
1259 
1260     for (unsigned int i = 0; _page_sizes[i] != 0; ++i) {
1261       const size_t sz = _page_sizes[i];
1262       const size_t mask = sz - 1;
1263       if ((region_min_size & mask) == 0 && (region_max_size & mask) == 0) {
1264         // The largest page size with no fragmentation.
1265         return sz;
1266       }
1267 
1268       if (sz <= max_page_size) {
1269         // The largest page size that satisfies the min_pages requirement.
1270         return sz;
1271       }
1272     }
1273   }
1274 
1275   return vm_page_size();
1276 }
1277 
1278 #ifndef PRODUCT
1279 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1280 {
1281   if (TracePageSizes) {
1282     tty->print("%s: ", str);
1283     for (int i = 0; i < count; ++i) {
1284       tty->print(" " SIZE_FORMAT, page_sizes[i]);
1285     }
1286     tty->cr();
1287   }
1288 }
1289 
1290 void os::trace_page_sizes(const char* str, const size_t region_min_size,
1291                           const size_t region_max_size, const size_t page_size,
1292                           const char* base, const size_t size)
1293 {
1294   if (TracePageSizes) {
1295     tty->print_cr("%s:  min=" SIZE_FORMAT " max=" SIZE_FORMAT
1296                   " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1297                   " size=" SIZE_FORMAT,
1298                   str, region_min_size, region_max_size,
1299                   page_size, base, size);
1300   }
1301 }
1302 #endif  // #ifndef PRODUCT
1303 
1304 // This is the working definition of a server class machine:
1305 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
1306 // because the graphics memory (?) sometimes masks physical memory.
1307 // If you want to change the definition of a server class machine
1308 // on some OS or platform, e.g., >=4GB on Windohs platforms,
1309 // then you'll have to parameterize this method based on that state,
1310 // as was done for logical processors here, or replicate and
1311 // specialize this method for each platform.  (Or fix os to have
1312 // some inheritance structure and use subclassing.  Sigh.)
1313 // If you want some platform to always or never behave as a server
1314 // class machine, change the setting of AlwaysActAsServerClassMachine
1315 // and NeverActAsServerClassMachine in globals*.hpp.
1316 bool os::is_server_class_machine() {
1317   // First check for the early returns
1318   if (NeverActAsServerClassMachine) {
1319     return false;
1320   }
1321   if (AlwaysActAsServerClassMachine) {
1322     return true;
1323   }
1324   // Then actually look at the machine
1325   bool         result            = false;
1326   const unsigned int    server_processors = 2;
1327   const julong server_memory     = 2UL * G;
1328   // We seem not to get our full complement of memory.
1329   //     We allow some part (1/8?) of the memory to be "missing",
1330   //     based on the sizes of DIMMs, and maybe graphics cards.
1331   const julong missing_memory   = 256UL * M;
1332 
1333   /* Is this a server class machine? */
1334   if ((os::active_processor_count() >= (int)server_processors) &&
1335       (os::physical_memory() >= (server_memory - missing_memory))) {
1336     const unsigned int logical_processors =
1337       VM_Version::logical_processors_per_package();
1338     if (logical_processors > 1) {
1339       const unsigned int physical_packages =
1340         os::active_processor_count() / logical_processors;
1341       if (physical_packages > server_processors) {
1342         result = true;
1343       }
1344     } else {
1345       result = true;
1346     }
1347   }
1348   return result;
1349 }
1350 
1351 // Read file line by line, if line is longer than bsize,
1352 // skip rest of line.
1353 int os::get_line_chars(int fd, char* buf, const size_t bsize){
1354   size_t sz, i = 0;
1355 
1356   // read until EOF, EOL or buf is full
1357   while ((sz = (int) read(fd, &buf[i], 1)) == 1 && i < (bsize-2) && buf[i] != '\n') {
1358      ++i;
1359   }
1360 
1361   if (buf[i] == '\n') {
1362     // EOL reached so ignore EOL character and return
1363 
1364     buf[i] = 0;
1365     return (int) i;
1366   }
1367 
1368   buf[i+1] = 0;
1369 
1370   if (sz != 1) {
1371     // EOF reached. if we read chars before EOF return them and
1372     // return EOF on next call otherwise return EOF
1373 
1374     return (i == 0) ? -1 : (int) i;
1375   }
1376 
1377   // line is longer than size of buf, skip to EOL
1378   char ch;
1379   while (read(fd, &ch, 1) == 1 && ch != '\n') {
1380     // Do nothing
1381   }
1382 
1383   // return initial part of line that fits in buf.
1384   // If we reached EOF, it will be returned on next call.
1385 
1386   return (int) i;
1387 }
1388 
1389 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1390   return os::pd_create_stack_guard_pages(addr, bytes);
1391 }
1392 
1393 
1394 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1395   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1396   if (result != NULL && MemTracker::is_on()) {
1397     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1398   }
1399 
1400   return result;
1401 }
1402 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1403   char* result = pd_attempt_reserve_memory_at(bytes, addr);
1404   if (result != NULL && MemTracker::is_on()) {
1405     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1406   }
1407   return result;
1408 }
1409 
1410 void os::split_reserved_memory(char *base, size_t size,
1411                                  size_t split, bool realloc) {
1412   pd_split_reserved_memory(base, size, split, realloc);
1413 }
1414 
1415 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1416   bool res = pd_commit_memory(addr, bytes, executable);
1417   if (res && MemTracker::is_on()) {
1418     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1419   }
1420   return res;
1421 }
1422 
1423 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1424                               bool executable) {
1425   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1426   if (res && MemTracker::is_on()) {
1427     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1428   }
1429   return res;
1430 }
1431 
1432 bool os::uncommit_memory(char* addr, size_t bytes) {
1433   bool res = pd_uncommit_memory(addr, bytes);
1434   if (res) {
1435     MemTracker::record_virtual_memory_uncommit((address)addr, bytes);
1436   }
1437   return res;
1438 }
1439 
1440 bool os::release_memory(char* addr, size_t bytes) {
1441   bool res = pd_release_memory(addr, bytes);
1442   if (res) {
1443     MemTracker::record_virtual_memory_release((address)addr, bytes);
1444   }
1445   return res;
1446 }
1447 
1448 
1449 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1450                            char *addr, size_t bytes, bool read_only,
1451                            bool allow_exec) {
1452   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1453   if (result != NULL && MemTracker::is_on()) {
1454     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1455   }
1456   return result;
1457 }
1458 
1459 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1460                              char *addr, size_t bytes, bool read_only,
1461                              bool allow_exec) {
1462   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1463                     read_only, allow_exec);
1464 }
1465 
1466 bool os::unmap_memory(char *addr, size_t bytes) {
1467   bool result = pd_unmap_memory(addr, bytes);
1468   if (result) {
1469     MemTracker::record_virtual_memory_release((address)addr, bytes);
1470   }
1471   return result;
1472 }
1473 
1474 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1475   pd_free_memory(addr, bytes, alignment_hint);
1476 }
1477 
1478 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1479   pd_realign_memory(addr, bytes, alignment_hint);
1480 }
1481