1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_interface/collectedHeap.inline.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/oopMapCache.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "memory/universe.inline.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/methodData.hpp"
  33 #include "oops/method.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "oops/oop.inline2.hpp"
  36 #include "prims/methodHandles.hpp"
  37 #include "runtime/frame.inline.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/javaCalls.hpp"
  40 #include "runtime/monitorChunk.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/signature.hpp"
  43 #include "runtime/stubCodeGenerator.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "utilities/decoder.hpp"
  46 
  47 #ifdef TARGET_ARCH_x86
  48 # include "nativeInst_x86.hpp"
  49 #endif
  50 #ifdef TARGET_ARCH_sparc
  51 # include "nativeInst_sparc.hpp"
  52 #endif
  53 #ifdef TARGET_ARCH_zero
  54 # include "nativeInst_zero.hpp"
  55 #endif
  56 #ifdef TARGET_ARCH_arm
  57 # include "nativeInst_arm.hpp"
  58 #endif
  59 #ifdef TARGET_ARCH_ppc
  60 # include "nativeInst_ppc.hpp"
  61 #endif
  62 
  63 RegisterMap::RegisterMap(JavaThread *thread, bool update_map) {
  64   _thread         = thread;
  65   _update_map     = update_map;
  66   clear();
  67   debug_only(_update_for_id = NULL;)
  68 #ifndef PRODUCT
  69   for (int i = 0; i < reg_count ; i++ ) _location[i] = NULL;
  70 #endif /* PRODUCT */
  71 }
  72 
  73 RegisterMap::RegisterMap(const RegisterMap* map) {
  74   assert(map != this, "bad initialization parameter");
  75   assert(map != NULL, "RegisterMap must be present");
  76   _thread                = map->thread();
  77   _update_map            = map->update_map();
  78   _include_argument_oops = map->include_argument_oops();
  79   debug_only(_update_for_id = map->_update_for_id;)
  80   pd_initialize_from(map);
  81   if (update_map()) {
  82     for(int i = 0; i < location_valid_size; i++) {
  83       LocationValidType bits = !update_map() ? 0 : map->_location_valid[i];
  84       _location_valid[i] = bits;
  85       // for whichever bits are set, pull in the corresponding map->_location
  86       int j = i*location_valid_type_size;
  87       while (bits != 0) {
  88         if ((bits & 1) != 0) {
  89           assert(0 <= j && j < reg_count, "range check");
  90           _location[j] = map->_location[j];
  91         }
  92         bits >>= 1;
  93         j += 1;
  94       }
  95     }
  96   }
  97 }
  98 
  99 void RegisterMap::clear() {
 100   set_include_argument_oops(true);
 101   if (_update_map) {
 102     for(int i = 0; i < location_valid_size; i++) {
 103       _location_valid[i] = 0;
 104     }
 105     pd_clear();
 106   } else {
 107     pd_initialize();
 108   }
 109 }
 110 
 111 #ifndef PRODUCT
 112 
 113 void RegisterMap::print_on(outputStream* st) const {
 114   st->print_cr("Register map");
 115   for(int i = 0; i < reg_count; i++) {
 116 
 117     VMReg r = VMRegImpl::as_VMReg(i);
 118     intptr_t* src = (intptr_t*) location(r);
 119     if (src != NULL) {
 120 
 121       r->print_on(st);
 122       st->print(" [" INTPTR_FORMAT "] = ", src);
 123       if (((uintptr_t)src & (sizeof(*src)-1)) != 0) {
 124         st->print_cr("<misaligned>");
 125       } else {
 126         st->print_cr(INTPTR_FORMAT, *src);
 127       }
 128     }
 129   }
 130 }
 131 
 132 void RegisterMap::print() const {
 133   print_on(tty);
 134 }
 135 
 136 #endif
 137 // This returns the pc that if you were in the debugger you'd see. Not
 138 // the idealized value in the frame object. This undoes the magic conversion
 139 // that happens for deoptimized frames. In addition it makes the value the
 140 // hardware would want to see in the native frame. The only user (at this point)
 141 // is deoptimization. It likely no one else should ever use it.
 142 
 143 address frame::raw_pc() const {
 144   if (is_deoptimized_frame()) {
 145     nmethod* nm = cb()->as_nmethod_or_null();
 146     if (nm->is_method_handle_return(pc()))
 147       return nm->deopt_mh_handler_begin() - pc_return_offset;
 148     else
 149       return nm->deopt_handler_begin() - pc_return_offset;
 150   } else {
 151     return (pc() - pc_return_offset);
 152   }
 153 }
 154 
 155 // Change the pc in a frame object. This does not change the actual pc in
 156 // actual frame. To do that use patch_pc.
 157 //
 158 void frame::set_pc(address   newpc ) {
 159 #ifdef ASSERT
 160   if (_cb != NULL && _cb->is_nmethod()) {
 161     assert(!((nmethod*)_cb)->is_deopt_pc(_pc), "invariant violation");
 162   }
 163 #endif // ASSERT
 164 
 165   // Unsafe to use the is_deoptimzed tester after changing pc
 166   _deopt_state = unknown;
 167   _pc = newpc;
 168   _cb = CodeCache::find_blob_unsafe(_pc);
 169 
 170 }
 171 
 172 // type testers
 173 bool frame::is_ignored_frame() const {
 174   return false;  // FIXME: some LambdaForm frames should be ignored
 175 }
 176 bool frame::is_deoptimized_frame() const {
 177   assert(_deopt_state != unknown, "not answerable");
 178   return _deopt_state == is_deoptimized;
 179 }
 180 
 181 bool frame::is_native_frame() const {
 182   return (_cb != NULL &&
 183           _cb->is_nmethod() &&
 184           ((nmethod*)_cb)->is_native_method());
 185 }
 186 
 187 bool frame::is_java_frame() const {
 188   if (is_interpreted_frame()) return true;
 189   if (is_compiled_frame())    return true;
 190   return false;
 191 }
 192 
 193 
 194 bool frame::is_compiled_frame() const {
 195   if (_cb != NULL &&
 196       _cb->is_nmethod() &&
 197       ((nmethod*)_cb)->is_java_method()) {
 198     return true;
 199   }
 200   return false;
 201 }
 202 
 203 
 204 bool frame::is_runtime_frame() const {
 205   return (_cb != NULL && _cb->is_runtime_stub());
 206 }
 207 
 208 bool frame::is_safepoint_blob_frame() const {
 209   return (_cb != NULL && _cb->is_safepoint_stub());
 210 }
 211 
 212 // testers
 213 
 214 bool frame::is_first_java_frame() const {
 215   RegisterMap map(JavaThread::current(), false); // No update
 216   frame s;
 217   for (s = sender(&map); !(s.is_java_frame() || s.is_first_frame()); s = s.sender(&map));
 218   return s.is_first_frame();
 219 }
 220 
 221 
 222 bool frame::entry_frame_is_first() const {
 223   return entry_frame_call_wrapper()->anchor()->last_Java_sp() == NULL;
 224 }
 225 
 226 
 227 bool frame::should_be_deoptimized() const {
 228   if (_deopt_state == is_deoptimized ||
 229       !is_compiled_frame() ) return false;
 230   assert(_cb != NULL && _cb->is_nmethod(), "must be an nmethod");
 231   nmethod* nm = (nmethod *)_cb;
 232   if (TraceDependencies) {
 233     tty->print("checking (%s) ", nm->is_marked_for_deoptimization() ? "true" : "false");
 234     nm->print_value_on(tty);
 235     tty->cr();
 236   }
 237 
 238   if( !nm->is_marked_for_deoptimization() )
 239     return false;
 240 
 241   // If at the return point, then the frame has already been popped, and
 242   // only the return needs to be executed. Don't deoptimize here.
 243   return !nm->is_at_poll_return(pc());
 244 }
 245 
 246 bool frame::can_be_deoptimized() const {
 247   if (!is_compiled_frame()) return false;
 248   nmethod* nm = (nmethod*)_cb;
 249 
 250   if( !nm->can_be_deoptimized() )
 251     return false;
 252 
 253   return !nm->is_at_poll_return(pc());
 254 }
 255 
 256 void frame::deoptimize(JavaThread* thread) {
 257   // Schedule deoptimization of an nmethod activation with this frame.
 258   assert(_cb != NULL && _cb->is_nmethod(), "must be");
 259   nmethod* nm = (nmethod*)_cb;
 260 
 261   // This is a fix for register window patching race
 262   if (NeedsDeoptSuspend && Thread::current() != thread) {
 263     assert(SafepointSynchronize::is_at_safepoint(),
 264            "patching other threads for deopt may only occur at a safepoint");
 265 
 266     // It is possible especially with DeoptimizeALot/DeoptimizeRandom that
 267     // we could see the frame again and ask for it to be deoptimized since
 268     // it might move for a long time. That is harmless and we just ignore it.
 269     if (id() == thread->must_deopt_id()) {
 270       assert(thread->is_deopt_suspend(), "lost suspension");
 271       return;
 272     }
 273 
 274     // We are at a safepoint so the target thread can only be
 275     // in 4 states:
 276     //     blocked - no problem
 277     //     blocked_trans - no problem (i.e. could have woken up from blocked
 278     //                                 during a safepoint).
 279     //     native - register window pc patching race
 280     //     native_trans - momentary state
 281     //
 282     // We could just wait out a thread in native_trans to block.
 283     // Then we'd have all the issues that the safepoint code has as to
 284     // whether to spin or block. It isn't worth it. Just treat it like
 285     // native and be done with it.
 286     //
 287     // Examine the state of the thread at the start of safepoint since
 288     // threads that were in native at the start of the safepoint could
 289     // come to a halt during the safepoint, changing the current value
 290     // of the safepoint_state.
 291     JavaThreadState state = thread->safepoint_state()->orig_thread_state();
 292     if (state == _thread_in_native || state == _thread_in_native_trans) {
 293       // Since we are at a safepoint the target thread will stop itself
 294       // before it can return to java as long as we remain at the safepoint.
 295       // Therefore we can put an additional request for the thread to stop
 296       // no matter what no (like a suspend). This will cause the thread
 297       // to notice it needs to do the deopt on its own once it leaves native.
 298       //
 299       // The only reason we must do this is because on machine with register
 300       // windows we have a race with patching the return address and the
 301       // window coming live as the thread returns to the Java code (but still
 302       // in native mode) and then blocks. It is only this top most frame
 303       // that is at risk. So in truth we could add an additional check to
 304       // see if this frame is one that is at risk.
 305       RegisterMap map(thread, false);
 306       frame at_risk =  thread->last_frame().sender(&map);
 307       if (id() == at_risk.id()) {
 308         thread->set_must_deopt_id(id());
 309         thread->set_deopt_suspend();
 310         return;
 311       }
 312     }
 313   } // NeedsDeoptSuspend
 314 
 315 
 316   // If the call site is a MethodHandle call site use the MH deopt
 317   // handler.
 318   address deopt = nm->is_method_handle_return(pc()) ?
 319     nm->deopt_mh_handler_begin() :
 320     nm->deopt_handler_begin();
 321 
 322   // Save the original pc before we patch in the new one
 323   nm->set_original_pc(this, pc());
 324   patch_pc(thread, deopt);
 325 
 326 #ifdef ASSERT
 327   {
 328     RegisterMap map(thread, false);
 329     frame check = thread->last_frame();
 330     while (id() != check.id()) {
 331       check = check.sender(&map);
 332     }
 333     assert(check.is_deoptimized_frame(), "missed deopt");
 334   }
 335 #endif // ASSERT
 336 }
 337 
 338 frame frame::java_sender() const {
 339   RegisterMap map(JavaThread::current(), false);
 340   frame s;
 341   for (s = sender(&map); !(s.is_java_frame() || s.is_first_frame()); s = s.sender(&map)) ;
 342   guarantee(s.is_java_frame(), "tried to get caller of first java frame");
 343   return s;
 344 }
 345 
 346 frame frame::real_sender(RegisterMap* map) const {
 347   frame result = sender(map);
 348   while (result.is_runtime_frame() ||
 349          result.is_ignored_frame()) {
 350     result = result.sender(map);
 351   }
 352   return result;
 353 }
 354 
 355 // Note: called by profiler - NOT for current thread
 356 frame frame::profile_find_Java_sender_frame(JavaThread *thread) {
 357 // If we don't recognize this frame, walk back up the stack until we do
 358   RegisterMap map(thread, false);
 359   frame first_java_frame = frame();
 360 
 361   // Find the first Java frame on the stack starting with input frame
 362   if (is_java_frame()) {
 363     // top frame is compiled frame or deoptimized frame
 364     first_java_frame = *this;
 365   } else if (safe_for_sender(thread)) {
 366     for (frame sender_frame = sender(&map);
 367       sender_frame.safe_for_sender(thread) && !sender_frame.is_first_frame();
 368       sender_frame = sender_frame.sender(&map)) {
 369       if (sender_frame.is_java_frame()) {
 370         first_java_frame = sender_frame;
 371         break;
 372       }
 373     }
 374   }
 375   return first_java_frame;
 376 }
 377 
 378 // Interpreter frames
 379 
 380 
 381 void frame::interpreter_frame_set_locals(intptr_t* locs)  {
 382   assert(is_interpreted_frame(), "Not an interpreted frame");
 383   *interpreter_frame_locals_addr() = locs;
 384 }
 385 
 386 Method* frame::interpreter_frame_method() const {
 387   assert(is_interpreted_frame(), "interpreted frame expected");
 388   Method* m = *interpreter_frame_method_addr();
 389   assert(m->is_metadata(), "bad Method* in interpreter frame");
 390   assert(m->is_method(), "not a Method*");
 391   return m;
 392 }
 393 
 394 void frame::interpreter_frame_set_method(Method* method) {
 395   assert(is_interpreted_frame(), "interpreted frame expected");
 396   *interpreter_frame_method_addr() = method;
 397 }
 398 
 399 void frame::interpreter_frame_set_bcx(intptr_t bcx) {
 400   assert(is_interpreted_frame(), "Not an interpreted frame");
 401   if (ProfileInterpreter) {
 402     bool formerly_bci = is_bci(interpreter_frame_bcx());
 403     bool is_now_bci = is_bci(bcx);
 404     *interpreter_frame_bcx_addr() = bcx;
 405 
 406     intptr_t mdx = interpreter_frame_mdx();
 407 
 408     if (mdx != 0) {
 409       if (formerly_bci) {
 410         if (!is_now_bci) {
 411           // The bcx was just converted from bci to bcp.
 412           // Convert the mdx in parallel.
 413           MethodData* mdo = interpreter_frame_method()->method_data();
 414           assert(mdo != NULL, "");
 415           int mdi = mdx - 1; // We distinguish valid mdi from zero by adding one.
 416           address mdp = mdo->di_to_dp(mdi);
 417           interpreter_frame_set_mdx((intptr_t)mdp);
 418         }
 419       } else {
 420         if (is_now_bci) {
 421           // The bcx was just converted from bcp to bci.
 422           // Convert the mdx in parallel.
 423           MethodData* mdo = interpreter_frame_method()->method_data();
 424           assert(mdo != NULL, "");
 425           int mdi = mdo->dp_to_di((address)mdx);
 426           interpreter_frame_set_mdx((intptr_t)mdi + 1); // distinguish valid from 0.
 427         }
 428       }
 429     }
 430   } else {
 431     *interpreter_frame_bcx_addr() = bcx;
 432   }
 433 }
 434 
 435 jint frame::interpreter_frame_bci() const {
 436   assert(is_interpreted_frame(), "interpreted frame expected");
 437   intptr_t bcx = interpreter_frame_bcx();
 438   return is_bci(bcx) ? bcx : interpreter_frame_method()->bci_from((address)bcx);
 439 }
 440 
 441 void frame::interpreter_frame_set_bci(jint bci) {
 442   assert(is_interpreted_frame(), "interpreted frame expected");
 443   assert(!is_bci(interpreter_frame_bcx()), "should not set bci during GC");
 444   interpreter_frame_set_bcx((intptr_t)interpreter_frame_method()->bcp_from(bci));
 445 }
 446 
 447 address frame::interpreter_frame_bcp() const {
 448   assert(is_interpreted_frame(), "interpreted frame expected");
 449   intptr_t bcx = interpreter_frame_bcx();
 450   return is_bci(bcx) ? interpreter_frame_method()->bcp_from(bcx) : (address)bcx;
 451 }
 452 
 453 void frame::interpreter_frame_set_bcp(address bcp) {
 454   assert(is_interpreted_frame(), "interpreted frame expected");
 455   assert(!is_bci(interpreter_frame_bcx()), "should not set bcp during GC");
 456   interpreter_frame_set_bcx((intptr_t)bcp);
 457 }
 458 
 459 void frame::interpreter_frame_set_mdx(intptr_t mdx) {
 460   assert(is_interpreted_frame(), "Not an interpreted frame");
 461   assert(ProfileInterpreter, "must be profiling interpreter");
 462   *interpreter_frame_mdx_addr() = mdx;
 463 }
 464 
 465 address frame::interpreter_frame_mdp() const {
 466   assert(ProfileInterpreter, "must be profiling interpreter");
 467   assert(is_interpreted_frame(), "interpreted frame expected");
 468   intptr_t bcx = interpreter_frame_bcx();
 469   intptr_t mdx = interpreter_frame_mdx();
 470 
 471   assert(!is_bci(bcx), "should not access mdp during GC");
 472   return (address)mdx;
 473 }
 474 
 475 void frame::interpreter_frame_set_mdp(address mdp) {
 476   assert(is_interpreted_frame(), "interpreted frame expected");
 477   if (mdp == NULL) {
 478     // Always allow the mdp to be cleared.
 479     interpreter_frame_set_mdx((intptr_t)mdp);
 480   }
 481   intptr_t bcx = interpreter_frame_bcx();
 482   assert(!is_bci(bcx), "should not set mdp during GC");
 483   interpreter_frame_set_mdx((intptr_t)mdp);
 484 }
 485 
 486 BasicObjectLock* frame::next_monitor_in_interpreter_frame(BasicObjectLock* current) const {
 487   assert(is_interpreted_frame(), "Not an interpreted frame");
 488 #ifdef ASSERT
 489   interpreter_frame_verify_monitor(current);
 490 #endif
 491   BasicObjectLock* next = (BasicObjectLock*) (((intptr_t*) current) + interpreter_frame_monitor_size());
 492   return next;
 493 }
 494 
 495 BasicObjectLock* frame::previous_monitor_in_interpreter_frame(BasicObjectLock* current) const {
 496   assert(is_interpreted_frame(), "Not an interpreted frame");
 497 #ifdef ASSERT
 498 //   // This verification needs to be checked before being enabled
 499 //   interpreter_frame_verify_monitor(current);
 500 #endif
 501   BasicObjectLock* previous = (BasicObjectLock*) (((intptr_t*) current) - interpreter_frame_monitor_size());
 502   return previous;
 503 }
 504 
 505 // Interpreter locals and expression stack locations.
 506 
 507 intptr_t* frame::interpreter_frame_local_at(int index) const {
 508   const int n = Interpreter::local_offset_in_bytes(index)/wordSize;
 509   return &((*interpreter_frame_locals_addr())[n]);
 510 }
 511 
 512 intptr_t* frame::interpreter_frame_expression_stack_at(jint offset) const {
 513   const int i = offset * interpreter_frame_expression_stack_direction();
 514   const int n = i * Interpreter::stackElementWords;
 515   return &(interpreter_frame_expression_stack()[n]);
 516 }
 517 
 518 jint frame::interpreter_frame_expression_stack_size() const {
 519   // Number of elements on the interpreter expression stack
 520   // Callers should span by stackElementWords
 521   int element_size = Interpreter::stackElementWords;
 522   if (frame::interpreter_frame_expression_stack_direction() < 0) {
 523     return (interpreter_frame_expression_stack() -
 524             interpreter_frame_tos_address() + 1)/element_size;
 525   } else {
 526     return (interpreter_frame_tos_address() -
 527             interpreter_frame_expression_stack() + 1)/element_size;
 528   }
 529 }
 530 
 531 
 532 // (frame::interpreter_frame_sender_sp accessor is in frame_<arch>.cpp)
 533 
 534 const char* frame::print_name() const {
 535   if (is_native_frame())      return "Native";
 536   if (is_interpreted_frame()) return "Interpreted";
 537   if (is_compiled_frame()) {
 538     if (is_deoptimized_frame()) return "Deoptimized";
 539     return "Compiled";
 540   }
 541   if (sp() == NULL)            return "Empty";
 542   return "C";
 543 }
 544 
 545 void frame::print_value_on(outputStream* st, JavaThread *thread) const {
 546   NOT_PRODUCT(address begin = pc()-40;)
 547   NOT_PRODUCT(address end   = NULL;)
 548 
 549   st->print("%s frame (sp=" INTPTR_FORMAT " unextended sp=" INTPTR_FORMAT, print_name(), sp(), unextended_sp());
 550   if (sp() != NULL)
 551     st->print(", fp=" INTPTR_FORMAT ", pc=" INTPTR_FORMAT, fp(), pc());
 552 
 553   if (StubRoutines::contains(pc())) {
 554     st->print_cr(")");
 555     st->print("(");
 556     StubCodeDesc* desc = StubCodeDesc::desc_for(pc());
 557     st->print("~Stub::%s", desc->name());
 558     NOT_PRODUCT(begin = desc->begin(); end = desc->end();)
 559   } else if (Interpreter::contains(pc())) {
 560     st->print_cr(")");
 561     st->print("(");
 562     InterpreterCodelet* desc = Interpreter::codelet_containing(pc());
 563     if (desc != NULL) {
 564       st->print("~");
 565       desc->print_on(st);
 566       NOT_PRODUCT(begin = desc->code_begin(); end = desc->code_end();)
 567     } else {
 568       st->print("~interpreter");
 569     }
 570   }
 571   st->print_cr(")");
 572 
 573   if (_cb != NULL) {
 574     st->print("     ");
 575     _cb->print_value_on(st);
 576     st->cr();
 577 #ifndef PRODUCT
 578     if (end == NULL) {
 579       begin = _cb->code_begin();
 580       end   = _cb->code_end();
 581     }
 582 #endif
 583   }
 584   NOT_PRODUCT(if (WizardMode && Verbose) Disassembler::decode(begin, end);)
 585 }
 586 
 587 
 588 void frame::print_on(outputStream* st) const {
 589   print_value_on(st,NULL);
 590   if (is_interpreted_frame()) {
 591     interpreter_frame_print_on(st);
 592   }
 593 }
 594 
 595 
 596 void frame::interpreter_frame_print_on(outputStream* st) const {
 597 #ifndef PRODUCT
 598   assert(is_interpreted_frame(), "Not an interpreted frame");
 599   jint i;
 600   for (i = 0; i < interpreter_frame_method()->max_locals(); i++ ) {
 601     intptr_t x = *interpreter_frame_local_at(i);
 602     st->print(" - local  [" INTPTR_FORMAT "]", x);
 603     st->fill_to(23);
 604     st->print_cr("; #%d", i);
 605   }
 606   for (i = interpreter_frame_expression_stack_size() - 1; i >= 0; --i ) {
 607     intptr_t x = *interpreter_frame_expression_stack_at(i);
 608     st->print(" - stack  [" INTPTR_FORMAT "]", x);
 609     st->fill_to(23);
 610     st->print_cr("; #%d", i);
 611   }
 612   // locks for synchronization
 613   for (BasicObjectLock* current = interpreter_frame_monitor_end();
 614        current < interpreter_frame_monitor_begin();
 615        current = next_monitor_in_interpreter_frame(current)) {
 616     st->print(" - obj    [");
 617     current->obj()->print_value_on(st);
 618     st->print_cr("]");
 619     st->print(" - lock   [");
 620     current->lock()->print_on(st);
 621     st->print_cr("]");
 622   }
 623   // monitor
 624   st->print_cr(" - monitor[" INTPTR_FORMAT "]", interpreter_frame_monitor_begin());
 625   // bcp
 626   st->print(" - bcp    [" INTPTR_FORMAT "]", interpreter_frame_bcp());
 627   st->fill_to(23);
 628   st->print_cr("; @%d", interpreter_frame_bci());
 629   // locals
 630   st->print_cr(" - locals [" INTPTR_FORMAT "]", interpreter_frame_local_at(0));
 631   // method
 632   st->print(" - method [" INTPTR_FORMAT "]", (address)interpreter_frame_method());
 633   st->fill_to(23);
 634   st->print("; ");
 635   interpreter_frame_method()->print_name(st);
 636   st->cr();
 637 #endif
 638 }
 639 
 640 // Return whether the frame is in the VM or os indicating a Hotspot problem.
 641 // Otherwise, it's likely a bug in the native library that the Java code calls,
 642 // hopefully indicating where to submit bugs.
 643 static void print_C_frame(outputStream* st, char* buf, int buflen, address pc) {
 644   // C/C++ frame
 645   bool in_vm = os::address_is_in_vm(pc);
 646   st->print(in_vm ? "V" : "C");
 647 
 648   int offset;
 649   bool found;
 650 
 651   // libname
 652   found = os::dll_address_to_library_name(pc, buf, buflen, &offset);
 653   if (found) {
 654     // skip directory names
 655     const char *p1, *p2;
 656     p1 = buf;
 657     int len = (int)strlen(os::file_separator());
 658     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
 659     st->print("  [%s+0x%x]", p1, offset);
 660   } else {
 661     st->print("  " PTR_FORMAT, pc);
 662   }
 663 
 664   // function name - os::dll_address_to_function_name() may return confusing
 665   // names if pc is within jvm.dll or libjvm.so, because JVM only has
 666   // JVM_xxxx and a few other symbols in the dynamic symbol table. Do this
 667   // only for native libraries.
 668   if (!in_vm || Decoder::can_decode_C_frame_in_vm()) {
 669     found = os::dll_address_to_function_name(pc, buf, buflen, &offset);
 670 
 671     if (found) {
 672       st->print("  %s+0x%x", buf, offset);
 673     }
 674   }
 675 }
 676 
 677 // frame::print_on_error() is called by fatal error handler. Notice that we may
 678 // crash inside this function if stack frame is corrupted. The fatal error
 679 // handler can catch and handle the crash. Here we assume the frame is valid.
 680 //
 681 // First letter indicates type of the frame:
 682 //    J: Java frame (compiled)
 683 //    j: Java frame (interpreted)
 684 //    V: VM frame (C/C++)
 685 //    v: Other frames running VM generated code (e.g. stubs, adapters, etc.)
 686 //    C: C/C++ frame
 687 //
 688 // We don't need detailed frame type as that in frame::print_name(). "C"
 689 // suggests the problem is in user lib; everything else is likely a VM bug.
 690 
 691 void frame::print_on_error(outputStream* st, char* buf, int buflen, bool verbose) const {
 692   if (_cb != NULL) {
 693     if (Interpreter::contains(pc())) {
 694       Method* m = this->interpreter_frame_method();
 695       if (m != NULL) {
 696         m->name_and_sig_as_C_string(buf, buflen);
 697         st->print("j  %s", buf);
 698         st->print("+%d", this->interpreter_frame_bci());
 699       } else {
 700         st->print("j  " PTR_FORMAT, pc());
 701       }
 702     } else if (StubRoutines::contains(pc())) {
 703       StubCodeDesc* desc = StubCodeDesc::desc_for(pc());
 704       if (desc != NULL) {
 705         st->print("v  ~StubRoutines::%s", desc->name());
 706       } else {
 707         st->print("v  ~StubRoutines::" PTR_FORMAT, pc());
 708       }
 709     } else if (_cb->is_buffer_blob()) {
 710       st->print("v  ~BufferBlob::%s", ((BufferBlob *)_cb)->name());
 711     } else if (_cb->is_nmethod()) {
 712       Method* m = ((nmethod *)_cb)->method();
 713       if (m != NULL) {
 714         m->name_and_sig_as_C_string(buf, buflen);
 715         st->print("J  %s", buf);
 716       } else {
 717         st->print("J  " PTR_FORMAT, pc());
 718       }
 719     } else if (_cb->is_runtime_stub()) {
 720       st->print("v  ~RuntimeStub::%s", ((RuntimeStub *)_cb)->name());
 721     } else if (_cb->is_deoptimization_stub()) {
 722       st->print("v  ~DeoptimizationBlob");
 723     } else if (_cb->is_exception_stub()) {
 724       st->print("v  ~ExceptionBlob");
 725     } else if (_cb->is_safepoint_stub()) {
 726       st->print("v  ~SafepointBlob");
 727     } else {
 728       st->print("v  blob " PTR_FORMAT, pc());
 729     }
 730   } else {
 731     print_C_frame(st, buf, buflen, pc());
 732   }
 733 }
 734 
 735 
 736 /*
 737   The interpreter_frame_expression_stack_at method in the case of SPARC needs the
 738   max_stack value of the method in order to compute the expression stack address.
 739   It uses the Method* in order to get the max_stack value but during GC this
 740   Method* value saved on the frame is changed by reverse_and_push and hence cannot
 741   be used. So we save the max_stack value in the FrameClosure object and pass it
 742   down to the interpreter_frame_expression_stack_at method
 743 */
 744 class InterpreterFrameClosure : public OffsetClosure {
 745  private:
 746   frame* _fr;
 747   OopClosure* _f;
 748   int    _max_locals;
 749   int    _max_stack;
 750 
 751  public:
 752   InterpreterFrameClosure(frame* fr, int max_locals, int max_stack,
 753                           OopClosure* f) {
 754     _fr         = fr;
 755     _max_locals = max_locals;
 756     _max_stack  = max_stack;
 757     _f          = f;
 758   }
 759 
 760   void offset_do(int offset) {
 761     oop* addr;
 762     if (offset < _max_locals) {
 763       addr = (oop*) _fr->interpreter_frame_local_at(offset);
 764       assert((intptr_t*)addr >= _fr->sp(), "must be inside the frame");
 765       _f->do_oop(addr);
 766     } else {
 767       addr = (oop*) _fr->interpreter_frame_expression_stack_at((offset - _max_locals));
 768       // In case of exceptions, the expression stack is invalid and the esp will be reset to express
 769       // this condition. Therefore, we call f only if addr is 'inside' the stack (i.e., addr >= esp for Intel).
 770       bool in_stack;
 771       if (frame::interpreter_frame_expression_stack_direction() > 0) {
 772         in_stack = (intptr_t*)addr <= _fr->interpreter_frame_tos_address();
 773       } else {
 774         in_stack = (intptr_t*)addr >= _fr->interpreter_frame_tos_address();
 775       }
 776       if (in_stack) {
 777         _f->do_oop(addr);
 778       }
 779     }
 780   }
 781 
 782   int max_locals()  { return _max_locals; }
 783   frame* fr()       { return _fr; }
 784 };
 785 
 786 
 787 class InterpretedArgumentOopFinder: public SignatureInfo {
 788  private:
 789   OopClosure* _f;        // Closure to invoke
 790   int    _offset;        // TOS-relative offset, decremented with each argument
 791   bool   _has_receiver;  // true if the callee has a receiver
 792   frame* _fr;
 793 
 794   void set(int size, BasicType type) {
 795     _offset -= size;
 796     if (type == T_OBJECT || type == T_ARRAY) oop_offset_do();
 797   }
 798 
 799   void oop_offset_do() {
 800     oop* addr;
 801     addr = (oop*)_fr->interpreter_frame_tos_at(_offset);
 802     _f->do_oop(addr);
 803   }
 804 
 805  public:
 806   InterpretedArgumentOopFinder(Symbol* signature, bool has_receiver, frame* fr, OopClosure* f) : SignatureInfo(signature), _has_receiver(has_receiver) {
 807     // compute size of arguments
 808     int args_size = ArgumentSizeComputer(signature).size() + (has_receiver ? 1 : 0);
 809     assert(!fr->is_interpreted_frame() ||
 810            args_size <= fr->interpreter_frame_expression_stack_size(),
 811             "args cannot be on stack anymore");
 812     // initialize InterpretedArgumentOopFinder
 813     _f         = f;
 814     _fr        = fr;
 815     _offset    = args_size;
 816   }
 817 
 818   void oops_do() {
 819     if (_has_receiver) {
 820       --_offset;
 821       oop_offset_do();
 822     }
 823     iterate_parameters();
 824   }
 825 };
 826 
 827 
 828 // Entry frame has following form (n arguments)
 829 //         +-----------+
 830 //   sp -> |  last arg |
 831 //         +-----------+
 832 //         :    :::    :
 833 //         +-----------+
 834 // (sp+n)->|  first arg|
 835 //         +-----------+
 836 
 837 
 838 
 839 // visits and GC's all the arguments in entry frame
 840 class EntryFrameOopFinder: public SignatureInfo {
 841  private:
 842   bool   _is_static;
 843   int    _offset;
 844   frame* _fr;
 845   OopClosure* _f;
 846 
 847   void set(int size, BasicType type) {
 848     assert (_offset >= 0, "illegal offset");
 849     if (type == T_OBJECT || type == T_ARRAY) oop_at_offset_do(_offset);
 850     _offset -= size;
 851   }
 852 
 853   void oop_at_offset_do(int offset) {
 854     assert (offset >= 0, "illegal offset");
 855     oop* addr = (oop*) _fr->entry_frame_argument_at(offset);
 856     _f->do_oop(addr);
 857   }
 858 
 859  public:
 860    EntryFrameOopFinder(frame* frame, Symbol* signature, bool is_static) : SignatureInfo(signature) {
 861      _f = NULL; // will be set later
 862      _fr = frame;
 863      _is_static = is_static;
 864      _offset = ArgumentSizeComputer(signature).size() - 1; // last parameter is at index 0
 865    }
 866 
 867   void arguments_do(OopClosure* f) {
 868     _f = f;
 869     if (!_is_static) oop_at_offset_do(_offset+1); // do the receiver
 870     iterate_parameters();
 871   }
 872 
 873 };
 874 
 875 oop* frame::interpreter_callee_receiver_addr(Symbol* signature) {
 876   ArgumentSizeComputer asc(signature);
 877   int size = asc.size();
 878   return (oop *)interpreter_frame_tos_at(size);
 879 }
 880 
 881 
 882 void frame::oops_interpreted_do(OopClosure* f, const RegisterMap* map, bool query_oop_map_cache) {
 883   assert(is_interpreted_frame(), "Not an interpreted frame");
 884   assert(map != NULL, "map must be set");
 885   Thread *thread = Thread::current();
 886   methodHandle m (thread, interpreter_frame_method());
 887   jint      bci = interpreter_frame_bci();
 888 
 889   assert(!Universe::heap()->is_in(m()),
 890           "must be valid oop");
 891   assert(m->is_method(), "checking frame value");
 892   assert((m->is_native() && bci == 0)  ||
 893          (!m->is_native() && bci >= 0 && bci < m->code_size()),
 894          "invalid bci value");
 895 
 896   // Handle the monitor elements in the activation
 897   for (
 898     BasicObjectLock* current = interpreter_frame_monitor_end();
 899     current < interpreter_frame_monitor_begin();
 900     current = next_monitor_in_interpreter_frame(current)
 901   ) {
 902 #ifdef ASSERT
 903     interpreter_frame_verify_monitor(current);
 904 #endif
 905     current->oops_do(f);
 906   }
 907 
 908   // process fixed part
 909 #if !defined(PPC) || defined(ZERO)
 910   if (m->is_native()) {
 911 #ifdef CC_INTERP
 912     interpreterState istate = get_interpreterState();
 913     f->do_oop((oop*)&istate->_oop_temp);
 914 #else
 915     f->do_oop((oop*)( fp() + interpreter_frame_oop_temp_offset ));
 916 #endif /* CC_INTERP */
 917   }
 918 #else // PPC
 919   if (m->is_native() && m->is_static()) {
 920     f->do_oop(interpreter_frame_mirror_addr());
 921   }
 922 #endif // PPC
 923 
 924   int max_locals = m->is_native() ? m->size_of_parameters() : m->max_locals();
 925 
 926   Symbol* signature = NULL;
 927   bool has_receiver = false;
 928 
 929   // Process a callee's arguments if we are at a call site
 930   // (i.e., if we are at an invoke bytecode)
 931   // This is used sometimes for calling into the VM, not for another
 932   // interpreted or compiled frame.
 933   if (!m->is_native()) {
 934     Bytecode_invoke call = Bytecode_invoke_check(m, bci);
 935     if (call.is_valid()) {
 936       signature = call.signature();
 937       has_receiver = call.has_receiver();
 938       if (map->include_argument_oops() &&
 939           interpreter_frame_expression_stack_size() > 0) {
 940         ResourceMark rm(thread);  // is this right ???
 941         // we are at a call site & the expression stack is not empty
 942         // => process callee's arguments
 943         //
 944         // Note: The expression stack can be empty if an exception
 945         //       occurred during method resolution/execution. In all
 946         //       cases we empty the expression stack completely be-
 947         //       fore handling the exception (the exception handling
 948         //       code in the interpreter calls a blocking runtime
 949         //       routine which can cause this code to be executed).
 950         //       (was bug gri 7/27/98)
 951         oops_interpreted_arguments_do(signature, has_receiver, f);
 952       }
 953     }
 954   }
 955 
 956   InterpreterFrameClosure blk(this, max_locals, m->max_stack(), f);
 957 
 958   // process locals & expression stack
 959   InterpreterOopMap mask;
 960   if (query_oop_map_cache) {
 961     m->mask_for(bci, &mask);
 962   } else {
 963     OopMapCache::compute_one_oop_map(m, bci, &mask);
 964   }
 965   mask.iterate_oop(&blk);
 966 }
 967 
 968 
 969 void frame::oops_interpreted_arguments_do(Symbol* signature, bool has_receiver, OopClosure* f) {
 970   InterpretedArgumentOopFinder finder(signature, has_receiver, this, f);
 971   finder.oops_do();
 972 }
 973 
 974 void frame::oops_code_blob_do(OopClosure* f, CodeBlobClosure* cf, const RegisterMap* reg_map) {
 975   assert(_cb != NULL, "sanity check");
 976   if (_cb->oop_maps() != NULL) {
 977     OopMapSet::oops_do(this, reg_map, f);
 978 
 979     // Preserve potential arguments for a callee. We handle this by dispatching
 980     // on the codeblob. For c2i, we do
 981     if (reg_map->include_argument_oops()) {
 982       _cb->preserve_callee_argument_oops(*this, reg_map, f);
 983     }
 984   }
 985   // In cases where perm gen is collected, GC will want to mark
 986   // oops referenced from nmethods active on thread stacks so as to
 987   // prevent them from being collected. However, this visit should be
 988   // restricted to certain phases of the collection only. The
 989   // closure decides how it wants nmethods to be traced.
 990   if (cf != NULL)
 991     cf->do_code_blob(_cb);
 992 }
 993 
 994 class CompiledArgumentOopFinder: public SignatureInfo {
 995  protected:
 996   OopClosure*     _f;
 997   int             _offset;        // the current offset, incremented with each argument
 998   bool            _has_receiver;  // true if the callee has a receiver
 999   frame           _fr;
1000   RegisterMap*    _reg_map;
1001   int             _arg_size;
1002   VMRegPair*      _regs;        // VMReg list of arguments
1003 
1004   void set(int size, BasicType type) {
1005     if (type == T_OBJECT || type == T_ARRAY) handle_oop_offset();
1006     _offset += size;
1007   }
1008 
1009   virtual void handle_oop_offset() {
1010     // Extract low order register number from register array.
1011     // In LP64-land, the high-order bits are valid but unhelpful.
1012     VMReg reg = _regs[_offset].first();
1013     oop *loc = _fr.oopmapreg_to_location(reg, _reg_map);
1014     _f->do_oop(loc);
1015   }
1016 
1017  public:
1018   CompiledArgumentOopFinder(Symbol* signature, bool has_receiver, OopClosure* f, frame fr,  const RegisterMap* reg_map)
1019     : SignatureInfo(signature) {
1020 
1021     // initialize CompiledArgumentOopFinder
1022     _f         = f;
1023     _offset    = 0;
1024     _has_receiver = has_receiver;
1025     _fr        = fr;
1026     _reg_map   = (RegisterMap*)reg_map;
1027     _arg_size  = ArgumentSizeComputer(signature).size() + (has_receiver ? 1 : 0);
1028 
1029     int arg_size;
1030     _regs = SharedRuntime::find_callee_arguments(signature, has_receiver, &arg_size);
1031     assert(arg_size == _arg_size, "wrong arg size");
1032   }
1033 
1034   void oops_do() {
1035     if (_has_receiver) {
1036       handle_oop_offset();
1037       _offset++;
1038     }
1039     iterate_parameters();
1040   }
1041 };
1042 
1043 void frame::oops_compiled_arguments_do(Symbol* signature, bool has_receiver, const RegisterMap* reg_map, OopClosure* f) {
1044   ResourceMark rm;
1045   CompiledArgumentOopFinder finder(signature, has_receiver, f, *this, reg_map);
1046   finder.oops_do();
1047 }
1048 
1049 
1050 // Get receiver out of callers frame, i.e. find parameter 0 in callers
1051 // frame.  Consult ADLC for where parameter 0 is to be found.  Then
1052 // check local reg_map for it being a callee-save register or argument
1053 // register, both of which are saved in the local frame.  If not found
1054 // there, it must be an in-stack argument of the caller.
1055 // Note: caller.sp() points to callee-arguments
1056 oop frame::retrieve_receiver(RegisterMap* reg_map) {
1057   frame caller = *this;
1058 
1059   // First consult the ADLC on where it puts parameter 0 for this signature.
1060   VMReg reg = SharedRuntime::name_for_receiver();
1061   oop r = *caller.oopmapreg_to_location(reg, reg_map);
1062   assert(Universe::heap()->is_in_or_null(r), err_msg("bad receiver: " INTPTR_FORMAT " (" INTX_FORMAT ")", (intptr_t) r, (intptr_t) r));
1063   return r;
1064 }
1065 
1066 
1067 oop* frame::oopmapreg_to_location(VMReg reg, const RegisterMap* reg_map) const {
1068   if(reg->is_reg()) {
1069     // If it is passed in a register, it got spilled in the stub frame.
1070     return (oop *)reg_map->location(reg);
1071   } else {
1072     int sp_offset_in_bytes = reg->reg2stack() * VMRegImpl::stack_slot_size;
1073     return (oop*)(((address)unextended_sp()) + sp_offset_in_bytes);
1074   }
1075 }
1076 
1077 BasicLock* frame::get_native_monitor() {
1078   nmethod* nm = (nmethod*)_cb;
1079   assert(_cb != NULL && _cb->is_nmethod() && nm->method()->is_native(),
1080          "Should not call this unless it's a native nmethod");
1081   int byte_offset = in_bytes(nm->native_basic_lock_sp_offset());
1082   assert(byte_offset >= 0, "should not see invalid offset");
1083   return (BasicLock*) &sp()[byte_offset / wordSize];
1084 }
1085 
1086 oop frame::get_native_receiver() {
1087   nmethod* nm = (nmethod*)_cb;
1088   assert(_cb != NULL && _cb->is_nmethod() && nm->method()->is_native(),
1089          "Should not call this unless it's a native nmethod");
1090   int byte_offset = in_bytes(nm->native_receiver_sp_offset());
1091   assert(byte_offset >= 0, "should not see invalid offset");
1092   oop owner = ((oop*) sp())[byte_offset / wordSize];
1093   assert( Universe::heap()->is_in(owner), "bad receiver" );
1094   return owner;
1095 }
1096 
1097 void frame::oops_entry_do(OopClosure* f, const RegisterMap* map) {
1098   assert(map != NULL, "map must be set");
1099   if (map->include_argument_oops()) {
1100     // must collect argument oops, as nobody else is doing it
1101     Thread *thread = Thread::current();
1102     methodHandle m (thread, entry_frame_call_wrapper()->callee_method());
1103     EntryFrameOopFinder finder(this, m->signature(), m->is_static());
1104     finder.arguments_do(f);
1105   }
1106   // Traverse the Handle Block saved in the entry frame
1107   entry_frame_call_wrapper()->oops_do(f);
1108 }
1109 
1110 
1111 void frame::oops_do_internal(OopClosure* f, CodeBlobClosure* cf, RegisterMap* map, bool use_interpreter_oop_map_cache) {
1112 #ifndef PRODUCT
1113   // simulate GC crash here to dump java thread in error report
1114   if (CrashGCForDumpingJavaThread) {
1115     char *t = NULL;
1116     *t = 'c';
1117   }
1118 #endif
1119   if (is_interpreted_frame()) {
1120     oops_interpreted_do(f, map, use_interpreter_oop_map_cache);
1121   } else if (is_entry_frame()) {
1122     oops_entry_do(f, map);
1123   } else if (CodeCache::contains(pc())) {
1124     oops_code_blob_do(f, cf, map);
1125 #ifdef SHARK
1126   } else if (is_fake_stub_frame()) {
1127     // nothing to do
1128 #endif // SHARK
1129   } else {
1130     ShouldNotReachHere();
1131   }
1132 }
1133 
1134 void frame::nmethods_do(CodeBlobClosure* cf) {
1135   if (_cb != NULL && _cb->is_nmethod()) {
1136     cf->do_code_blob(_cb);
1137   }
1138 }
1139 
1140 
1141 // call f() on the interpreted Method*s in the stack.
1142 // Have to walk the entire code cache for the compiled frames Yuck.
1143 void frame::metadata_do(void f(Metadata*)) {
1144   if (_cb != NULL && Interpreter::contains(pc())) {
1145     Method* m = this->interpreter_frame_method();
1146     assert(m != NULL, "huh?");
1147     f(m);
1148   }
1149 }
1150 
1151 void frame::gc_prologue() {
1152   if (is_interpreted_frame()) {
1153     // set bcx to bci to become Method* position independent during GC
1154     interpreter_frame_set_bcx(interpreter_frame_bci());
1155   }
1156 }
1157 
1158 
1159 void frame::gc_epilogue() {
1160   if (is_interpreted_frame()) {
1161     // set bcx back to bcp for interpreter
1162     interpreter_frame_set_bcx((intptr_t)interpreter_frame_bcp());
1163   }
1164   // call processor specific epilog function
1165   pd_gc_epilog();
1166 }
1167 
1168 
1169 # ifdef ENABLE_ZAP_DEAD_LOCALS
1170 
1171 void frame::CheckValueClosure::do_oop(oop* p) {
1172   if (CheckOopishValues && Universe::heap()->is_in_reserved(*p)) {
1173     warning("value @ " INTPTR_FORMAT " looks oopish (" INTPTR_FORMAT ") (thread = " INTPTR_FORMAT ")", p, (address)*p, Thread::current());
1174   }
1175 }
1176 frame::CheckValueClosure frame::_check_value;
1177 
1178 
1179 void frame::CheckOopClosure::do_oop(oop* p) {
1180   if (*p != NULL && !(*p)->is_oop()) {
1181     warning("value @ " INTPTR_FORMAT " should be an oop (" INTPTR_FORMAT ") (thread = " INTPTR_FORMAT ")", p, (address)*p, Thread::current());
1182  }
1183 }
1184 frame::CheckOopClosure frame::_check_oop;
1185 
1186 void frame::check_derived_oop(oop* base, oop* derived) {
1187   _check_oop.do_oop(base);
1188 }
1189 
1190 
1191 void frame::ZapDeadClosure::do_oop(oop* p) {
1192   if (TraceZapDeadLocals) tty->print_cr("zapping @ " INTPTR_FORMAT " containing " INTPTR_FORMAT, p, (address)*p);
1193   // Need cast because on _LP64 the conversion to oop is ambiguous.  Constant
1194   // can be either long or int.
1195   *p = (oop)(int)0xbabebabe;
1196 }
1197 frame::ZapDeadClosure frame::_zap_dead;
1198 
1199 void frame::zap_dead_locals(JavaThread* thread, const RegisterMap* map) {
1200   assert(thread == Thread::current(), "need to synchronize to do this to another thread");
1201   // Tracing - part 1
1202   if (TraceZapDeadLocals) {
1203     ResourceMark rm(thread);
1204     tty->print_cr("--------------------------------------------------------------------------------");
1205     tty->print("Zapping dead locals in ");
1206     print_on(tty);
1207     tty->cr();
1208   }
1209   // Zapping
1210        if (is_entry_frame      ()) zap_dead_entry_locals      (thread, map);
1211   else if (is_interpreted_frame()) zap_dead_interpreted_locals(thread, map);
1212   else if (is_compiled_frame()) zap_dead_compiled_locals   (thread, map);
1213 
1214   else
1215     // could be is_runtime_frame
1216     // so remove error: ShouldNotReachHere();
1217     ;
1218   // Tracing - part 2
1219   if (TraceZapDeadLocals) {
1220     tty->cr();
1221   }
1222 }
1223 
1224 
1225 void frame::zap_dead_interpreted_locals(JavaThread *thread, const RegisterMap* map) {
1226   // get current interpreter 'pc'
1227   assert(is_interpreted_frame(), "Not an interpreted frame");
1228   Method* m   = interpreter_frame_method();
1229   int       bci = interpreter_frame_bci();
1230 
1231   int max_locals = m->is_native() ? m->size_of_parameters() : m->max_locals();
1232 
1233   // process dynamic part
1234   InterpreterFrameClosure value_blk(this, max_locals, m->max_stack(),
1235                                     &_check_value);
1236   InterpreterFrameClosure   oop_blk(this, max_locals, m->max_stack(),
1237                                     &_check_oop  );
1238   InterpreterFrameClosure  dead_blk(this, max_locals, m->max_stack(),
1239                                     &_zap_dead   );
1240 
1241   // get frame map
1242   InterpreterOopMap mask;
1243   m->mask_for(bci, &mask);
1244   mask.iterate_all( &oop_blk, &value_blk, &dead_blk);
1245 }
1246 
1247 
1248 void frame::zap_dead_compiled_locals(JavaThread* thread, const RegisterMap* reg_map) {
1249 
1250   ResourceMark rm(thread);
1251   assert(_cb != NULL, "sanity check");
1252   if (_cb->oop_maps() != NULL) {
1253     OopMapSet::all_do(this, reg_map, &_check_oop, check_derived_oop, &_check_value);
1254   }
1255 }
1256 
1257 
1258 void frame::zap_dead_entry_locals(JavaThread*, const RegisterMap*) {
1259   if (TraceZapDeadLocals) warning("frame::zap_dead_entry_locals unimplemented");
1260 }
1261 
1262 
1263 void frame::zap_dead_deoptimized_locals(JavaThread*, const RegisterMap*) {
1264   if (TraceZapDeadLocals) warning("frame::zap_dead_deoptimized_locals unimplemented");
1265 }
1266 
1267 # endif // ENABLE_ZAP_DEAD_LOCALS
1268 
1269 void frame::verify(const RegisterMap* map) {
1270   // for now make sure receiver type is correct
1271   if (is_interpreted_frame()) {
1272     Method* method = interpreter_frame_method();
1273     guarantee(method->is_method(), "method is wrong in frame::verify");
1274     if (!method->is_static()) {
1275       // fetch the receiver
1276       oop* p = (oop*) interpreter_frame_local_at(0);
1277       // make sure we have the right receiver type
1278     }
1279   }
1280   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(), "must be empty before verify");)
1281   oops_do_internal(&VerifyOopClosure::verify_oop, NULL, (RegisterMap*)map, false);
1282 }
1283 
1284 
1285 #ifdef ASSERT
1286 bool frame::verify_return_pc(address x) {
1287   if (StubRoutines::returns_to_call_stub(x)) {
1288     return true;
1289   }
1290   if (CodeCache::contains(x)) {
1291     return true;
1292   }
1293   if (Interpreter::contains(x)) {
1294     return true;
1295   }
1296   return false;
1297 }
1298 #endif
1299 
1300 #ifdef ASSERT
1301 void frame::interpreter_frame_verify_monitor(BasicObjectLock* value) const {
1302   assert(is_interpreted_frame(), "Not an interpreted frame");
1303   // verify that the value is in the right part of the frame
1304   address low_mark  = (address) interpreter_frame_monitor_end();
1305   address high_mark = (address) interpreter_frame_monitor_begin();
1306   address current   = (address) value;
1307 
1308   const int monitor_size = frame::interpreter_frame_monitor_size();
1309   guarantee((high_mark - current) % monitor_size  ==  0         , "Misaligned top of BasicObjectLock*");
1310   guarantee( high_mark > current                                , "Current BasicObjectLock* higher than high_mark");
1311 
1312   guarantee((current - low_mark) % monitor_size  ==  0         , "Misaligned bottom of BasicObjectLock*");
1313   guarantee( current >= low_mark                               , "Current BasicObjectLock* below than low_mark");
1314 }
1315 #endif
1316 
1317 #ifndef PRODUCT
1318 void frame::describe(FrameValues& values, int frame_no) {
1319   // boundaries: sp and the 'real' frame pointer
1320   values.describe(-1, sp(), err_msg("sp for #%d", frame_no), 1);
1321   intptr_t* frame_pointer = real_fp(); // Note: may differ from fp()
1322 
1323   // print frame info at the highest boundary
1324   intptr_t* info_address = MAX2(sp(), frame_pointer);
1325 
1326   if (info_address != frame_pointer) {
1327     // print frame_pointer explicitly if not marked by the frame info
1328     values.describe(-1, frame_pointer, err_msg("frame pointer for #%d", frame_no), 1);
1329   }
1330 
1331   if (is_entry_frame() || is_compiled_frame() || is_interpreted_frame() || is_native_frame()) {
1332     // Label values common to most frames
1333     values.describe(-1, unextended_sp(), err_msg("unextended_sp for #%d", frame_no));
1334   }
1335 
1336   if (is_interpreted_frame()) {
1337     Method* m = interpreter_frame_method();
1338     int bci = interpreter_frame_bci();
1339 
1340     // Label the method and current bci
1341     values.describe(-1, info_address,
1342                     FormatBuffer<1024>("#%d method %s @ %d", frame_no, m->name_and_sig_as_C_string(), bci), 2);
1343     values.describe(-1, info_address,
1344                     err_msg("- %d locals %d max stack", m->max_locals(), m->max_stack()), 1);
1345     if (m->max_locals() > 0) {
1346       intptr_t* l0 = interpreter_frame_local_at(0);
1347       intptr_t* ln = interpreter_frame_local_at(m->max_locals() - 1);
1348       values.describe(-1, MAX2(l0, ln), err_msg("locals for #%d", frame_no), 1);
1349       // Report each local and mark as owned by this frame
1350       for (int l = 0; l < m->max_locals(); l++) {
1351         intptr_t* l0 = interpreter_frame_local_at(l);
1352         values.describe(frame_no, l0, err_msg("local %d", l));
1353       }
1354     }
1355 
1356     // Compute the actual expression stack size
1357     InterpreterOopMap mask;
1358     OopMapCache::compute_one_oop_map(m, bci, &mask);
1359     intptr_t* tos = NULL;
1360     // Report each stack element and mark as owned by this frame
1361     for (int e = 0; e < mask.expression_stack_size(); e++) {
1362       tos = MAX2(tos, interpreter_frame_expression_stack_at(e));
1363       values.describe(frame_no, interpreter_frame_expression_stack_at(e),
1364                       err_msg("stack %d", e));
1365     }
1366     if (tos != NULL) {
1367       values.describe(-1, tos, err_msg("expression stack for #%d", frame_no), 1);
1368     }
1369     if (interpreter_frame_monitor_begin() != interpreter_frame_monitor_end()) {
1370       values.describe(frame_no, (intptr_t*)interpreter_frame_monitor_begin(), "monitors begin");
1371       values.describe(frame_no, (intptr_t*)interpreter_frame_monitor_end(), "monitors end");
1372     }
1373   } else if (is_entry_frame()) {
1374     // For now just label the frame
1375     values.describe(-1, info_address, err_msg("#%d entry frame", frame_no), 2);
1376   } else if (is_compiled_frame()) {
1377     // For now just label the frame
1378     nmethod* nm = cb()->as_nmethod_or_null();
1379     values.describe(-1, info_address,
1380                     FormatBuffer<1024>("#%d nmethod " INTPTR_FORMAT " for method %s%s", frame_no,
1381                                        nm, nm->method()->name_and_sig_as_C_string(),
1382                                        (_deopt_state == is_deoptimized) ?
1383                                        " (deoptimized)" :
1384                                        ((_deopt_state == unknown) ? " (state unknown)" : "")),
1385                     2);
1386   } else if (is_native_frame()) {
1387     // For now just label the frame
1388     nmethod* nm = cb()->as_nmethod_or_null();
1389     values.describe(-1, info_address,
1390                     FormatBuffer<1024>("#%d nmethod " INTPTR_FORMAT " for native method %s", frame_no,
1391                                        nm, nm->method()->name_and_sig_as_C_string()), 2);
1392   } else {
1393     // provide default info if not handled before
1394     char *info = (char *) "special frame";
1395     if ((_cb != NULL) &&
1396         (_cb->name() != NULL)) {
1397       info = (char *)_cb->name();
1398     }
1399     values.describe(-1, info_address, err_msg("#%d <%s>", frame_no, info), 2);
1400   }
1401 
1402   // platform dependent additional data
1403   describe_pd(values, frame_no);
1404 }
1405 
1406 #endif
1407 
1408 
1409 //-----------------------------------------------------------------------------------
1410 // StackFrameStream implementation
1411 
1412 StackFrameStream::StackFrameStream(JavaThread *thread, bool update) : _reg_map(thread, update) {
1413   assert(thread->has_last_Java_frame(), "sanity check");
1414   _fr = thread->last_frame();
1415   _is_done = false;
1416 }
1417 
1418 
1419 #ifndef PRODUCT
1420 
1421 void FrameValues::describe(int owner, intptr_t* location, const char* description, int priority) {
1422   FrameValue fv;
1423   fv.location = location;
1424   fv.owner = owner;
1425   fv.priority = priority;
1426   fv.description = NEW_RESOURCE_ARRAY(char, strlen(description) + 1);
1427   strcpy(fv.description, description);
1428   _values.append(fv);
1429 }
1430 
1431 
1432 #ifdef ASSERT
1433 void FrameValues::validate() {
1434   _values.sort(compare);
1435   bool error = false;
1436   FrameValue prev;
1437   prev.owner = -1;
1438   for (int i = _values.length() - 1; i >= 0; i--) {
1439     FrameValue fv = _values.at(i);
1440     if (fv.owner == -1) continue;
1441     if (prev.owner == -1) {
1442       prev = fv;
1443       continue;
1444     }
1445     if (prev.location == fv.location) {
1446       if (fv.owner != prev.owner) {
1447         tty->print_cr("overlapping storage");
1448         tty->print_cr(" " INTPTR_FORMAT ": " INTPTR_FORMAT " %s", prev.location, *prev.location, prev.description);
1449         tty->print_cr(" " INTPTR_FORMAT ": " INTPTR_FORMAT " %s", fv.location, *fv.location, fv.description);
1450         error = true;
1451       }
1452     } else {
1453       prev = fv;
1454     }
1455   }
1456   assert(!error, "invalid layout");
1457 }
1458 #endif // ASSERT
1459 
1460 void FrameValues::print(JavaThread* thread) {
1461   _values.sort(compare);
1462 
1463   // Sometimes values like the fp can be invalid values if the
1464   // register map wasn't updated during the walk.  Trim out values
1465   // that aren't actually in the stack of the thread.
1466   int min_index = 0;
1467   int max_index = _values.length() - 1;
1468   intptr_t* v0 = _values.at(min_index).location;
1469   intptr_t* v1 = _values.at(max_index).location;
1470 
1471   if (thread == Thread::current()) {
1472     while (!thread->is_in_stack((address)v0)) {
1473       v0 = _values.at(++min_index).location;
1474     }
1475     while (!thread->is_in_stack((address)v1)) {
1476       v1 = _values.at(--max_index).location;
1477     }
1478   } else {
1479     while (!thread->on_local_stack((address)v0)) {
1480       v0 = _values.at(++min_index).location;
1481     }
1482     while (!thread->on_local_stack((address)v1)) {
1483       v1 = _values.at(--max_index).location;
1484     }
1485   }
1486   intptr_t* min = MIN2(v0, v1);
1487   intptr_t* max = MAX2(v0, v1);
1488   intptr_t* cur = max;
1489   intptr_t* last = NULL;
1490   for (int i = max_index; i >= min_index; i--) {
1491     FrameValue fv = _values.at(i);
1492     while (cur > fv.location) {
1493       tty->print_cr(" " INTPTR_FORMAT ": " INTPTR_FORMAT, cur, *cur);
1494       cur--;
1495     }
1496     if (last == fv.location) {
1497       const char* spacer = "          " LP64_ONLY("        ");
1498       tty->print_cr(" %s  %s %s", spacer, spacer, fv.description);
1499     } else {
1500       tty->print_cr(" " INTPTR_FORMAT ": " INTPTR_FORMAT " %s", fv.location, *fv.location, fv.description);
1501       last = fv.location;
1502       cur--;
1503     }
1504   }
1505 }
1506 
1507 #endif // ndef PRODUCT