1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/serial/defNewGeneration.inline.hpp"
  27 #include "gc/serial/serialHeap.inline.hpp"
  28 #include "gc/serial/tenuredGeneration.hpp"
  29 #include "gc/shared/adaptiveSizePolicy.hpp"
  30 #include "gc/shared/ageTable.inline.hpp"
  31 #include "gc/shared/cardTableRS.hpp"
  32 #include "gc/shared/collectorCounters.hpp"
  33 #include "gc/shared/gcArguments.hpp"
  34 #include "gc/shared/gcHeapSummary.hpp"
  35 #include "gc/shared/gcLocker.hpp"
  36 #include "gc/shared/gcPolicyCounters.hpp"
  37 #include "gc/shared/gcTimer.hpp"
  38 #include "gc/shared/gcTrace.hpp"
  39 #include "gc/shared/gcTraceTime.inline.hpp"
  40 #include "gc/shared/genOopClosures.inline.hpp"
  41 #include "gc/shared/generationSpec.hpp"
  42 #include "gc/shared/preservedMarks.inline.hpp"
  43 #include "gc/shared/referencePolicy.hpp"
  44 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  45 #include "gc/shared/space.inline.hpp"
  46 #include "gc/shared/spaceDecorator.inline.hpp"
  47 #include "gc/shared/strongRootsScope.hpp"
  48 #include "gc/shared/weakProcessor.hpp"
  49 #include "logging/log.hpp"
  50 #include "memory/iterator.inline.hpp"
  51 #include "memory/resourceArea.hpp"
  52 #include "oops/instanceRefKlass.hpp"
  53 #include "oops/oop.inline.hpp"
  54 #include "runtime/java.hpp"
  55 #include "runtime/prefetch.inline.hpp"
  56 #include "runtime/thread.inline.hpp"
  57 #include "utilities/align.hpp"
  58 #include "utilities/copy.hpp"
  59 #include "utilities/globalDefinitions.hpp"
  60 #include "utilities/stack.inline.hpp"
  61 
  62 //
  63 // DefNewGeneration functions.
  64 
  65 // Methods of protected closure types.
  66 
  67 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* young_gen) : _young_gen(young_gen) {
  68   assert(_young_gen->kind() == Generation::DefNew, "Expected the young generation here");
  69 }
  70 
  71 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  72   return cast_from_oop<HeapWord*>(p) >= _young_gen->reserved().end() || p->is_forwarded();
  73 }
  74 
  75 DefNewGeneration::KeepAliveClosure::
  76 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  77   _rs = GenCollectedHeap::heap()->rem_set();
  78 }
  79 
  80 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  81 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  82 
  83 
  84 DefNewGeneration::FastKeepAliveClosure::
  85 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  86   DefNewGeneration::KeepAliveClosure(cl) {
  87   _boundary = g->reserved().end();
  88 }
  89 
  90 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  91 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  92 
  93 DefNewGeneration::FastEvacuateFollowersClosure::
  94 FastEvacuateFollowersClosure(SerialHeap* heap,
  95                              DefNewScanClosure* cur,
  96                              DefNewYoungerGenClosure* older) :
  97   _heap(heap), _scan_cur_or_nonheap(cur), _scan_older(older)
  98 {
  99 }
 100 
 101 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 102   do {
 103     _heap->oop_since_save_marks_iterate(_scan_cur_or_nonheap, _scan_older);
 104   } while (!_heap->no_allocs_since_save_marks());
 105   guarantee(_heap->young_gen()->promo_failure_scan_is_complete(), "Failed to finish scan");
 106 }
 107 
 108 void CLDScanClosure::do_cld(ClassLoaderData* cld) {
 109   NOT_PRODUCT(ResourceMark rm);
 110   log_develop_trace(gc, scavenge)("CLDScanClosure::do_cld " PTR_FORMAT ", %s, dirty: %s",
 111                                   p2i(cld),
 112                                   cld->loader_name_and_id(),
 113                                   cld->has_modified_oops() ? "true" : "false");
 114 
 115   // If the cld has not been dirtied we know that there's
 116   // no references into  the young gen and we can skip it.
 117   if (cld->has_modified_oops()) {
 118     if (_accumulate_modified_oops) {
 119       cld->accumulate_modified_oops();
 120     }
 121 
 122     // Tell the closure which CLD is being scanned so that it can be dirtied
 123     // if oops are left pointing into the young gen.
 124     _scavenge_closure->set_scanned_cld(cld);
 125 
 126     // Clean the cld since we're going to scavenge all the metadata.
 127     cld->oops_do(_scavenge_closure, ClassLoaderData::_claim_none, /*clear_modified_oops*/true);
 128 
 129     _scavenge_closure->set_scanned_cld(NULL);
 130   }
 131 }
 132 
 133 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 134   _g(g)
 135 {
 136   _boundary = _g->reserved().end();
 137 }
 138 
 139 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 140                                    size_t initial_size,
 141                                    size_t min_size,
 142                                    size_t max_size,
 143                                    const char* policy)
 144   : Generation(rs, initial_size),
 145     _preserved_marks_set(false /* in_c_heap */),
 146     _promo_failure_drain_in_progress(false),
 147     _should_allocate_from_space(false)
 148 {
 149   MemRegion cmr((HeapWord*)_virtual_space.low(),
 150                 (HeapWord*)_virtual_space.high());
 151   GenCollectedHeap* gch = GenCollectedHeap::heap();
 152 
 153   gch->rem_set()->resize_covered_region(cmr);
 154 
 155   _eden_space = new ContiguousSpace();
 156   _from_space = new ContiguousSpace();
 157   _to_space   = new ContiguousSpace();
 158 
 159   // Compute the maximum eden and survivor space sizes. These sizes
 160   // are computed assuming the entire reserved space is committed.
 161   // These values are exported as performance counters.
 162   uintx size = _virtual_space.reserved_size();
 163   _max_survivor_size = compute_survivor_size(size, SpaceAlignment);
 164   _max_eden_size = size - (2*_max_survivor_size);
 165 
 166   // allocate the performance counters
 167 
 168   // Generation counters -- generation 0, 3 subspaces
 169   _gen_counters = new GenerationCounters("new", 0, 3,
 170       min_size, max_size, &_virtual_space);
 171   _gc_counters = new CollectorCounters(policy, 0);
 172 
 173   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 174                                       _gen_counters);
 175   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 176                                       _gen_counters);
 177   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 178                                     _gen_counters);
 179 
 180   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 181   update_counters();
 182   _old_gen = NULL;
 183   _tenuring_threshold = MaxTenuringThreshold;
 184   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 185 
 186   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 187 }
 188 
 189 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 190                                                 bool clear_space,
 191                                                 bool mangle_space) {
 192   // If the spaces are being cleared (only done at heap initialization
 193   // currently), the survivor spaces need not be empty.
 194   // Otherwise, no care is taken for used areas in the survivor spaces
 195   // so check.
 196   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 197     "Initialization of the survivor spaces assumes these are empty");
 198 
 199   // Compute sizes
 200   uintx size = _virtual_space.committed_size();
 201   uintx survivor_size = compute_survivor_size(size, SpaceAlignment);
 202   uintx eden_size = size - (2*survivor_size);
 203   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 204 
 205   if (eden_size < minimum_eden_size) {
 206     // May happen due to 64Kb rounding, if so adjust eden size back up
 207     minimum_eden_size = align_up(minimum_eden_size, SpaceAlignment);
 208     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 209     uintx unaligned_survivor_size =
 210       align_down(maximum_survivor_size, SpaceAlignment);
 211     survivor_size = MAX2(unaligned_survivor_size, SpaceAlignment);
 212     eden_size = size - (2*survivor_size);
 213     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 214     assert(eden_size >= minimum_eden_size, "just checking");
 215   }
 216 
 217   char *eden_start = _virtual_space.low();
 218   char *from_start = eden_start + eden_size;
 219   char *to_start   = from_start + survivor_size;
 220   char *to_end     = to_start   + survivor_size;
 221 
 222   assert(to_end == _virtual_space.high(), "just checking");
 223   assert(Space::is_aligned(eden_start), "checking alignment");
 224   assert(Space::is_aligned(from_start), "checking alignment");
 225   assert(Space::is_aligned(to_start),   "checking alignment");
 226 
 227   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 228   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 229   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 230 
 231   // A minimum eden size implies that there is a part of eden that
 232   // is being used and that affects the initialization of any
 233   // newly formed eden.
 234   bool live_in_eden = minimum_eden_size > 0;
 235 
 236   // If not clearing the spaces, do some checking to verify that
 237   // the space are already mangled.
 238   if (!clear_space) {
 239     // Must check mangling before the spaces are reshaped.  Otherwise,
 240     // the bottom or end of one space may have moved into another
 241     // a failure of the check may not correctly indicate which space
 242     // is not properly mangled.
 243     if (ZapUnusedHeapArea) {
 244       HeapWord* limit = (HeapWord*) _virtual_space.high();
 245       eden()->check_mangled_unused_area(limit);
 246       from()->check_mangled_unused_area(limit);
 247         to()->check_mangled_unused_area(limit);
 248     }
 249   }
 250 
 251   // Reset the spaces for their new regions.
 252   eden()->initialize(edenMR,
 253                      clear_space && !live_in_eden,
 254                      SpaceDecorator::Mangle);
 255   // If clear_space and live_in_eden, we will not have cleared any
 256   // portion of eden above its top. This can cause newly
 257   // expanded space not to be mangled if using ZapUnusedHeapArea.
 258   // We explicitly do such mangling here.
 259   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 260     eden()->mangle_unused_area();
 261   }
 262   from()->initialize(fromMR, clear_space, mangle_space);
 263   to()->initialize(toMR, clear_space, mangle_space);
 264 
 265   // Set next compaction spaces.
 266   eden()->set_next_compaction_space(from());
 267   // The to-space is normally empty before a compaction so need
 268   // not be considered.  The exception is during promotion
 269   // failure handling when to-space can contain live objects.
 270   from()->set_next_compaction_space(NULL);
 271 }
 272 
 273 void DefNewGeneration::swap_spaces() {
 274   ContiguousSpace* s = from();
 275   _from_space        = to();
 276   _to_space          = s;
 277   eden()->set_next_compaction_space(from());
 278   // The to-space is normally empty before a compaction so need
 279   // not be considered.  The exception is during promotion
 280   // failure handling when to-space can contain live objects.
 281   from()->set_next_compaction_space(NULL);
 282 
 283   if (UsePerfData) {
 284     CSpaceCounters* c = _from_counters;
 285     _from_counters = _to_counters;
 286     _to_counters = c;
 287   }
 288 }
 289 
 290 bool DefNewGeneration::expand(size_t bytes) {
 291   MutexLocker x(ExpandHeap_lock);
 292   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 293   bool success = _virtual_space.expand_by(bytes);
 294   if (success && ZapUnusedHeapArea) {
 295     // Mangle newly committed space immediately because it
 296     // can be done here more simply that after the new
 297     // spaces have been computed.
 298     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 299     MemRegion mangle_region(prev_high, new_high);
 300     SpaceMangler::mangle_region(mangle_region);
 301   }
 302 
 303   // Do not attempt an expand-to-the reserve size.  The
 304   // request should properly observe the maximum size of
 305   // the generation so an expand-to-reserve should be
 306   // unnecessary.  Also a second call to expand-to-reserve
 307   // value potentially can cause an undue expansion.
 308   // For example if the first expand fail for unknown reasons,
 309   // but the second succeeds and expands the heap to its maximum
 310   // value.
 311   if (GCLocker::is_active()) {
 312     log_debug(gc)("Garbage collection disabled, expanded heap instead");
 313   }
 314 
 315   return success;
 316 }
 317 
 318 size_t DefNewGeneration::adjust_for_thread_increase(size_t new_size_candidate,
 319                                                     size_t new_size_before,
 320                                                     size_t alignment) const {
 321   size_t desired_new_size = new_size_before;
 322 
 323   if (NewSizeThreadIncrease > 0) {
 324     int threads_count;
 325     size_t thread_increase_size = 0;
 326 
 327     // 1. Check an overflow at 'threads_count * NewSizeThreadIncrease'.
 328     threads_count = Threads::number_of_non_daemon_threads();
 329     if (threads_count > 0 && NewSizeThreadIncrease <= max_uintx / threads_count) {
 330       thread_increase_size = threads_count * NewSizeThreadIncrease;
 331 
 332       // 2. Check an overflow at 'new_size_candidate + thread_increase_size'.
 333       if (new_size_candidate <= max_uintx - thread_increase_size) {
 334         new_size_candidate += thread_increase_size;
 335 
 336         // 3. Check an overflow at 'align_up'.
 337         size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1));
 338         if (new_size_candidate <= aligned_max) {
 339           desired_new_size = align_up(new_size_candidate, alignment);
 340         }
 341       }
 342     }
 343   }
 344 
 345   return desired_new_size;
 346 }
 347 
 348 void DefNewGeneration::compute_new_size() {
 349   // This is called after a GC that includes the old generation, so from-space
 350   // will normally be empty.
 351   // Note that we check both spaces, since if scavenge failed they revert roles.
 352   // If not we bail out (otherwise we would have to relocate the objects).
 353   if (!from()->is_empty() || !to()->is_empty()) {
 354     return;
 355   }
 356 
 357   GenCollectedHeap* gch = GenCollectedHeap::heap();
 358 
 359   size_t old_size = gch->old_gen()->capacity();
 360   size_t new_size_before = _virtual_space.committed_size();
 361   size_t min_new_size = initial_size();
 362   size_t max_new_size = reserved().byte_size();
 363   assert(min_new_size <= new_size_before &&
 364          new_size_before <= max_new_size,
 365          "just checking");
 366   // All space sizes must be multiples of Generation::GenGrain.
 367   size_t alignment = Generation::GenGrain;
 368 
 369   int threads_count = 0;
 370   size_t thread_increase_size = 0;
 371 
 372   size_t new_size_candidate = old_size / NewRatio;
 373   // Compute desired new generation size based on NewRatio and NewSizeThreadIncrease
 374   // and reverts to previous value if any overflow happens
 375   size_t desired_new_size = adjust_for_thread_increase(new_size_candidate, new_size_before, alignment);
 376 
 377   // Adjust new generation size
 378   desired_new_size = clamp(desired_new_size, min_new_size, max_new_size);
 379   assert(desired_new_size <= max_new_size, "just checking");
 380 
 381   bool changed = false;
 382   if (desired_new_size > new_size_before) {
 383     size_t change = desired_new_size - new_size_before;
 384     assert(change % alignment == 0, "just checking");
 385     if (expand(change)) {
 386        changed = true;
 387     }
 388     // If the heap failed to expand to the desired size,
 389     // "changed" will be false.  If the expansion failed
 390     // (and at this point it was expected to succeed),
 391     // ignore the failure (leaving "changed" as false).
 392   }
 393   if (desired_new_size < new_size_before && eden()->is_empty()) {
 394     // bail out of shrinking if objects in eden
 395     size_t change = new_size_before - desired_new_size;
 396     assert(change % alignment == 0, "just checking");
 397     _virtual_space.shrink_by(change);
 398     changed = true;
 399   }
 400   if (changed) {
 401     // The spaces have already been mangled at this point but
 402     // may not have been cleared (set top = bottom) and should be.
 403     // Mangling was done when the heap was being expanded.
 404     compute_space_boundaries(eden()->used(),
 405                              SpaceDecorator::Clear,
 406                              SpaceDecorator::DontMangle);
 407     MemRegion cmr((HeapWord*)_virtual_space.low(),
 408                   (HeapWord*)_virtual_space.high());
 409     gch->rem_set()->resize_covered_region(cmr);
 410 
 411     log_debug(gc, ergo, heap)(
 412         "New generation size " SIZE_FORMAT "K->" SIZE_FORMAT "K [eden=" SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 413         new_size_before/K, _virtual_space.committed_size()/K,
 414         eden()->capacity()/K, from()->capacity()/K);
 415     log_trace(gc, ergo, heap)(
 416         "  [allowed " SIZE_FORMAT "K extra for %d threads]",
 417           thread_increase_size/K, threads_count);
 418       }
 419 }
 420 
 421 
 422 size_t DefNewGeneration::capacity() const {
 423   return eden()->capacity()
 424        + from()->capacity();  // to() is only used during scavenge
 425 }
 426 
 427 
 428 size_t DefNewGeneration::used() const {
 429   return eden()->used()
 430        + from()->used();      // to() is only used during scavenge
 431 }
 432 
 433 
 434 size_t DefNewGeneration::free() const {
 435   return eden()->free()
 436        + from()->free();      // to() is only used during scavenge
 437 }
 438 
 439 size_t DefNewGeneration::max_capacity() const {
 440   const size_t reserved_bytes = reserved().byte_size();
 441   return reserved_bytes - compute_survivor_size(reserved_bytes, SpaceAlignment);
 442 }
 443 
 444 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 445   return eden()->free();
 446 }
 447 
 448 size_t DefNewGeneration::capacity_before_gc() const {
 449   return eden()->capacity();
 450 }
 451 
 452 size_t DefNewGeneration::contiguous_available() const {
 453   return eden()->free();
 454 }
 455 
 456 
 457 HeapWord* volatile* DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 458 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 459 
 460 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 461   eden()->object_iterate(blk);
 462   from()->object_iterate(blk);
 463 }
 464 
 465 
 466 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 467                                      bool usedOnly) {
 468   blk->do_space(eden());
 469   blk->do_space(from());
 470   blk->do_space(to());
 471 }
 472 
 473 // The last collection bailed out, we are running out of heap space,
 474 // so we try to allocate the from-space, too.
 475 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 476   bool should_try_alloc = should_allocate_from_space() || GCLocker::is_active_and_needs_gc();
 477 
 478   // If the Heap_lock is not locked by this thread, this will be called
 479   // again later with the Heap_lock held.
 480   bool do_alloc = should_try_alloc && (Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()));
 481 
 482   HeapWord* result = NULL;
 483   if (do_alloc) {
 484     result = from()->allocate(size);
 485   }
 486 
 487   log_trace(gc, alloc)("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):  will_fail: %s  heap_lock: %s  free: " SIZE_FORMAT "%s%s returns %s",
 488                         size,
 489                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 490                           "true" : "false",
 491                         Heap_lock->is_locked() ? "locked" : "unlocked",
 492                         from()->free(),
 493                         should_try_alloc ? "" : "  should_allocate_from_space: NOT",
 494                         do_alloc ? "  Heap_lock is not owned by self" : "",
 495                         result == NULL ? "NULL" : "object");
 496 
 497   return result;
 498 }
 499 
 500 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 501                                                 bool   is_tlab,
 502                                                 bool   parallel) {
 503   // We don't attempt to expand the young generation (but perhaps we should.)
 504   return allocate(size, is_tlab);
 505 }
 506 
 507 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 508   // Set the desired survivor size to half the real survivor space
 509   size_t const survivor_capacity = to()->capacity() / HeapWordSize;
 510   size_t const desired_survivor_size = (size_t)((((double)survivor_capacity) * TargetSurvivorRatio) / 100);
 511 
 512   _tenuring_threshold = age_table()->compute_tenuring_threshold(desired_survivor_size);
 513 
 514   if (UsePerfData) {
 515     GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->counters();
 516     gc_counters->tenuring_threshold()->set_value(_tenuring_threshold);
 517     gc_counters->desired_survivor_size()->set_value(desired_survivor_size * oopSize);
 518   }
 519 
 520   age_table()->print_age_table(_tenuring_threshold);
 521 }
 522 
 523 void DefNewGeneration::collect(bool   full,
 524                                bool   clear_all_soft_refs,
 525                                size_t size,
 526                                bool   is_tlab) {
 527   assert(full || size > 0, "otherwise we don't want to collect");
 528 
 529   SerialHeap* heap = SerialHeap::heap();
 530 
 531   _gc_timer->register_gc_start();
 532   DefNewTracer gc_tracer;
 533   gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer->gc_start());
 534 
 535   _old_gen = heap->old_gen();
 536 
 537   // If the next generation is too full to accommodate promotion
 538   // from this generation, pass on collection; let the next generation
 539   // do it.
 540   if (!collection_attempt_is_safe()) {
 541     log_trace(gc)(":: Collection attempt not safe ::");
 542     heap->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 543     return;
 544   }
 545   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 546 
 547   init_assuming_no_promotion_failure();
 548 
 549   GCTraceTime(Trace, gc, phases) tm("DefNew", NULL, heap->gc_cause());
 550 
 551   heap->trace_heap_before_gc(&gc_tracer);
 552 
 553   // These can be shared for all code paths
 554   IsAliveClosure is_alive(this);
 555   ScanWeakRefClosure scan_weak_ref(this);
 556 
 557   age_table()->clear();
 558   to()->clear(SpaceDecorator::Mangle);
 559   // The preserved marks should be empty at the start of the GC.
 560   _preserved_marks_set.init(1);
 561 
 562   heap->rem_set()->prepare_for_younger_refs_iterate(false);
 563 
 564   assert(heap->no_allocs_since_save_marks(),
 565          "save marks have not been newly set.");
 566 
 567   DefNewScanClosure       scan_closure(this);
 568   DefNewYoungerGenClosure younger_gen_closure(this, _old_gen);
 569 
 570   CLDScanClosure cld_scan_closure(&scan_closure,
 571                                   heap->rem_set()->cld_rem_set()->accumulate_modified_oops());
 572 
 573   set_promo_failure_scan_stack_closure(&scan_closure);
 574   FastEvacuateFollowersClosure evacuate_followers(heap,
 575                                                   &scan_closure,
 576                                                   &younger_gen_closure);
 577 
 578   assert(heap->no_allocs_since_save_marks(),
 579          "save marks have not been newly set.");
 580 
 581   {
 582     // DefNew needs to run with n_threads == 0, to make sure the serial
 583     // version of the card table scanning code is used.
 584     // See: CardTableRS::non_clean_card_iterate_possibly_parallel.
 585     StrongRootsScope srs(0);
 586 
 587     heap->young_process_roots(&srs,
 588                               &scan_closure,
 589                               &younger_gen_closure,
 590                               &cld_scan_closure);
 591   }
 592 
 593   // "evacuate followers".
 594   evacuate_followers.do_void();
 595 
 596   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 597   ReferenceProcessor* rp = ref_processor();
 598   rp->setup_policy(clear_all_soft_refs);
 599   ReferenceProcessorPhaseTimes pt(_gc_timer, rp->max_num_queues());
 600   const ReferenceProcessorStats& stats =
 601   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 602                                     NULL, &pt);
 603   gc_tracer.report_gc_reference_stats(stats);
 604   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 605   pt.print_all_references();
 606 
 607   assert(heap->no_allocs_since_save_marks(), "save marks have not been newly set.");
 608 
 609   WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
 610 
 611   // Verify that the usage of keep_alive didn't copy any objects.
 612   assert(heap->no_allocs_since_save_marks(), "save marks have not been newly set.");
 613 
 614   if (!_promotion_failed) {
 615     // Swap the survivor spaces.
 616     eden()->clear(SpaceDecorator::Mangle);
 617     from()->clear(SpaceDecorator::Mangle);
 618     if (ZapUnusedHeapArea) {
 619       // This is now done here because of the piece-meal mangling which
 620       // can check for valid mangling at intermediate points in the
 621       // collection(s).  When a young collection fails to collect
 622       // sufficient space resizing of the young generation can occur
 623       // an redistribute the spaces in the young generation.  Mangle
 624       // here so that unzapped regions don't get distributed to
 625       // other spaces.
 626       to()->mangle_unused_area();
 627     }
 628     swap_spaces();
 629 
 630     assert(to()->is_empty(), "to space should be empty now");
 631 
 632     adjust_desired_tenuring_threshold();
 633 
 634     // A successful scavenge should restart the GC time limit count which is
 635     // for full GC's.
 636     AdaptiveSizePolicy* size_policy = heap->size_policy();
 637     size_policy->reset_gc_overhead_limit_count();
 638     assert(!heap->incremental_collection_failed(), "Should be clear");
 639   } else {
 640     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 641     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 642 
 643     remove_forwarding_pointers();
 644     log_info(gc, promotion)("Promotion failed");
 645     // Add to-space to the list of space to compact
 646     // when a promotion failure has occurred.  In that
 647     // case there can be live objects in to-space
 648     // as a result of a partial evacuation of eden
 649     // and from-space.
 650     swap_spaces();   // For uniformity wrt ParNewGeneration.
 651     from()->set_next_compaction_space(to());
 652     heap->set_incremental_collection_failed();
 653 
 654     // Inform the next generation that a promotion failure occurred.
 655     _old_gen->promotion_failure_occurred();
 656     gc_tracer.report_promotion_failed(_promotion_failed_info);
 657 
 658     // Reset the PromotionFailureALot counters.
 659     NOT_PRODUCT(heap->reset_promotion_should_fail();)
 660   }
 661   // We should have processed and cleared all the preserved marks.
 662   _preserved_marks_set.reclaim();
 663   // set new iteration safe limit for the survivor spaces
 664   from()->set_concurrent_iteration_safe_limit(from()->top());
 665   to()->set_concurrent_iteration_safe_limit(to()->top());
 666 
 667   heap->trace_heap_after_gc(&gc_tracer);
 668 
 669   _gc_timer->register_gc_end();
 670 
 671   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 672 }
 673 
 674 void DefNewGeneration::init_assuming_no_promotion_failure() {
 675   _promotion_failed = false;
 676   _promotion_failed_info.reset();
 677   from()->set_next_compaction_space(NULL);
 678 }
 679 
 680 void DefNewGeneration::remove_forwarding_pointers() {
 681   RemoveForwardedPointerClosure rspc;
 682   eden()->object_iterate(&rspc);
 683   from()->object_iterate(&rspc);
 684   restore_preserved_marks();
 685 }
 686 
 687 void DefNewGeneration::restore_preserved_marks() {
 688   _preserved_marks_set.restore(NULL);
 689 }
 690 
 691 void DefNewGeneration::handle_promotion_failure(oop old) {
 692   log_debug(gc, promotion)("Promotion failure size = %d) ", old->size());
 693 
 694   _promotion_failed = true;
 695   _promotion_failed_info.register_copy_failure(old->size());
 696   _preserved_marks_set.get()->push_if_necessary(old, old->mark_raw());
 697   // forward to self
 698   old->forward_to(old);
 699 
 700   _promo_failure_scan_stack.push(old);
 701 
 702   if (!_promo_failure_drain_in_progress) {
 703     // prevent recursion in copy_to_survivor_space()
 704     _promo_failure_drain_in_progress = true;
 705     drain_promo_failure_scan_stack();
 706     _promo_failure_drain_in_progress = false;
 707   }
 708 }
 709 
 710 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 711   assert(is_in_reserved(old) && !old->is_forwarded(),
 712          "shouldn't be scavenging this oop");
 713   size_t s = old->size();
 714   oop obj = NULL;
 715 
 716   // Try allocating obj in to-space (unless too old)
 717   if (old->age() < tenuring_threshold()) {
 718     obj = (oop) to()->allocate_aligned(s);
 719   }
 720 
 721   // Otherwise try allocating obj tenured
 722   if (obj == NULL) {
 723     obj = _old_gen->promote(old, s);
 724     if (obj == NULL) {
 725       handle_promotion_failure(old);
 726       return old;
 727     }
 728   } else {
 729     // Prefetch beyond obj
 730     const intx interval = PrefetchCopyIntervalInBytes;
 731     Prefetch::write(obj, interval);
 732 
 733     // Copy obj
 734     Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(old), cast_from_oop<HeapWord*>(obj), s);
 735 
 736     // Increment age if obj still in new generation
 737     obj->incr_age();
 738     age_table()->add(obj, s);
 739   }
 740 
 741   // Done, insert forward pointer to obj in this header
 742   old->forward_to(obj);
 743 
 744   return obj;
 745 }
 746 
 747 void DefNewGeneration::drain_promo_failure_scan_stack() {
 748   while (!_promo_failure_scan_stack.is_empty()) {
 749      oop obj = _promo_failure_scan_stack.pop();
 750      obj->oop_iterate(_promo_failure_scan_stack_closure);
 751   }
 752 }
 753 
 754 void DefNewGeneration::save_marks() {
 755   eden()->set_saved_mark();
 756   to()->set_saved_mark();
 757   from()->set_saved_mark();
 758 }
 759 
 760 
 761 void DefNewGeneration::reset_saved_marks() {
 762   eden()->reset_saved_mark();
 763   to()->reset_saved_mark();
 764   from()->reset_saved_mark();
 765 }
 766 
 767 
 768 bool DefNewGeneration::no_allocs_since_save_marks() {
 769   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 770   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 771   return to()->saved_mark_at_top();
 772 }
 773 
 774 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 775                                          size_t max_alloc_words) {
 776   if (requestor == this || _promotion_failed) {
 777     return;
 778   }
 779   assert(GenCollectedHeap::heap()->is_old_gen(requestor), "We should not call our own generation");
 780 
 781   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 782   if (to_space->top() > to_space->bottom()) {
 783     trace("to_space not empty when contribute_scratch called");
 784   }
 785   */
 786 
 787   ContiguousSpace* to_space = to();
 788   assert(to_space->end() >= to_space->top(), "pointers out of order");
 789   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 790   if (free_words >= MinFreeScratchWords) {
 791     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 792     sb->num_words = free_words;
 793     sb->next = list;
 794     list = sb;
 795   }
 796 }
 797 
 798 void DefNewGeneration::reset_scratch() {
 799   // If contributing scratch in to_space, mangle all of
 800   // to_space if ZapUnusedHeapArea.  This is needed because
 801   // top is not maintained while using to-space as scratch.
 802   if (ZapUnusedHeapArea) {
 803     to()->mangle_unused_area_complete();
 804   }
 805 }
 806 
 807 bool DefNewGeneration::collection_attempt_is_safe() {
 808   if (!to()->is_empty()) {
 809     log_trace(gc)(":: to is not empty ::");
 810     return false;
 811   }
 812   if (_old_gen == NULL) {
 813     GenCollectedHeap* gch = GenCollectedHeap::heap();
 814     _old_gen = gch->old_gen();
 815   }
 816   return _old_gen->promotion_attempt_is_safe(used());
 817 }
 818 
 819 void DefNewGeneration::gc_epilogue(bool full) {
 820   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 821 
 822   assert(!GCLocker::is_active(), "We should not be executing here");
 823   // Check if the heap is approaching full after a collection has
 824   // been done.  Generally the young generation is empty at
 825   // a minimum at the end of a collection.  If it is not, then
 826   // the heap is approaching full.
 827   GenCollectedHeap* gch = GenCollectedHeap::heap();
 828   if (full) {
 829     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 830     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 831       log_trace(gc)("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 832                             GCCause::to_string(gch->gc_cause()));
 833       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 834       set_should_allocate_from_space(); // we seem to be running out of space
 835     } else {
 836       log_trace(gc)("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 837                             GCCause::to_string(gch->gc_cause()));
 838       gch->clear_incremental_collection_failed(); // We just did a full collection
 839       clear_should_allocate_from_space(); // if set
 840     }
 841   } else {
 842 #ifdef ASSERT
 843     // It is possible that incremental_collection_failed() == true
 844     // here, because an attempted scavenge did not succeed. The policy
 845     // is normally expected to cause a full collection which should
 846     // clear that condition, so we should not be here twice in a row
 847     // with incremental_collection_failed() == true without having done
 848     // a full collection in between.
 849     if (!seen_incremental_collection_failed &&
 850         gch->incremental_collection_failed()) {
 851       log_trace(gc)("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 852                             GCCause::to_string(gch->gc_cause()));
 853       seen_incremental_collection_failed = true;
 854     } else if (seen_incremental_collection_failed) {
 855       log_trace(gc)("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 856                             GCCause::to_string(gch->gc_cause()));
 857       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 858              !gch->incremental_collection_failed(),
 859              "Twice in a row");
 860       seen_incremental_collection_failed = false;
 861     }
 862 #endif // ASSERT
 863   }
 864 
 865   if (ZapUnusedHeapArea) {
 866     eden()->check_mangled_unused_area_complete();
 867     from()->check_mangled_unused_area_complete();
 868     to()->check_mangled_unused_area_complete();
 869   }
 870 
 871   if (!CleanChunkPoolAsync) {
 872     Chunk::clean_chunk_pool();
 873   }
 874 
 875   // update the generation and space performance counters
 876   update_counters();
 877   gch->counters()->update_counters();
 878 }
 879 
 880 void DefNewGeneration::record_spaces_top() {
 881   assert(ZapUnusedHeapArea, "Not mangling unused space");
 882   eden()->set_top_for_allocations();
 883   to()->set_top_for_allocations();
 884   from()->set_top_for_allocations();
 885 }
 886 
 887 void DefNewGeneration::ref_processor_init() {
 888   Generation::ref_processor_init();
 889 }
 890 
 891 
 892 void DefNewGeneration::update_counters() {
 893   if (UsePerfData) {
 894     _eden_counters->update_all();
 895     _from_counters->update_all();
 896     _to_counters->update_all();
 897     _gen_counters->update_all();
 898   }
 899 }
 900 
 901 void DefNewGeneration::verify() {
 902   eden()->verify();
 903   from()->verify();
 904     to()->verify();
 905 }
 906 
 907 void DefNewGeneration::print_on(outputStream* st) const {
 908   Generation::print_on(st);
 909   st->print("  eden");
 910   eden()->print_on(st);
 911   st->print("  from");
 912   from()->print_on(st);
 913   st->print("  to  ");
 914   to()->print_on(st);
 915 }
 916 
 917 
 918 const char* DefNewGeneration::name() const {
 919   return "def new generation";
 920 }
 921 
 922 // Moved from inline file as they are not called inline
 923 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
 924   return eden();
 925 }
 926 
 927 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
 928   // This is the slow-path allocation for the DefNewGeneration.
 929   // Most allocations are fast-path in compiled code.
 930   // We try to allocate from the eden.  If that works, we are happy.
 931   // Note that since DefNewGeneration supports lock-free allocation, we
 932   // have to use it here, as well.
 933   HeapWord* result = eden()->par_allocate(word_size);
 934   if (result != NULL) {
 935     if (_old_gen != NULL) {
 936       _old_gen->sample_eden_chunk();
 937     }
 938   } else {
 939     // If the eden is full and the last collection bailed out, we are running
 940     // out of heap space, and we try to allocate the from-space, too.
 941     // allocate_from_space can't be inlined because that would introduce a
 942     // circular dependency at compile time.
 943     result = allocate_from_space(word_size);
 944   }
 945   return result;
 946 }
 947 
 948 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
 949                                          bool is_tlab) {
 950   HeapWord* res = eden()->par_allocate(word_size);
 951   if (_old_gen != NULL) {
 952     _old_gen->sample_eden_chunk();
 953   }
 954   return res;
 955 }
 956 
 957 size_t DefNewGeneration::tlab_capacity() const {
 958   return eden()->capacity();
 959 }
 960 
 961 size_t DefNewGeneration::tlab_used() const {
 962   return eden()->used();
 963 }
 964 
 965 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
 966   return unsafe_max_alloc_nogc();
 967 }