1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_SHARED_GENERATION_HPP
  26 #define SHARE_GC_SHARED_GENERATION_HPP
  27 
  28 #include "gc/shared/collectorCounters.hpp"
  29 #include "gc/shared/referenceProcessor.hpp"
  30 #include "logging/log.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/memRegion.hpp"
  33 #include "memory/virtualspace.hpp"
  34 #include "runtime/mutex.hpp"
  35 #include "runtime/perfData.hpp"
  36 
  37 // A Generation models a heap area for similarly-aged objects.
  38 // It will contain one ore more spaces holding the actual objects.
  39 //
  40 // The Generation class hierarchy:
  41 //
  42 // Generation                      - abstract base class
  43 // - DefNewGeneration              - allocation area (copy collected)
  44 // - CardGeneration                 - abstract class adding offset array behavior
  45 //   - TenuredGeneration             - tenured (old object) space (markSweepCompact)
  46 //
  47 // The system configuration currently allowed is:
  48 //
  49 //   DefNewGeneration + TenuredGeneration
  50 //
  51 
  52 class DefNewGeneration;
  53 class GCMemoryManager;
  54 class GenerationSpec;
  55 class CompactibleSpace;
  56 class ContiguousSpace;
  57 class CompactPoint;
  58 class OopClosure;
  59 class FastScanClosure;
  60 class GenCollectedHeap;
  61 class GCStats;
  62 
  63 // A "ScratchBlock" represents a block of memory in one generation usable by
  64 // another.  It represents "num_words" free words, starting at and including
  65 // the address of "this".
  66 struct ScratchBlock {
  67   ScratchBlock* next;
  68   size_t num_words;
  69   HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
  70                               // first two fields are word-sized.)
  71 };
  72 
  73 class Generation: public CHeapObj<mtGC> {
  74   friend class VMStructs;
  75  private:
  76   MemRegion _prev_used_region; // for collectors that want to "remember" a value for
  77                                // used region at some specific point during collection.
  78 
  79   GCMemoryManager* _gc_manager;
  80 
  81  protected:
  82   // Minimum and maximum addresses for memory reserved (not necessarily
  83   // committed) for generation.
  84   // Used by card marking code. Must not overlap with address ranges of
  85   // other generations.
  86   MemRegion _reserved;
  87 
  88   // Memory area reserved for generation
  89   VirtualSpace _virtual_space;
  90 
  91   // ("Weak") Reference processing support
  92   SpanSubjectToDiscoveryClosure _span_based_discoverer;
  93   ReferenceProcessor* _ref_processor;
  94 
  95   // Performance Counters
  96   CollectorCounters* _gc_counters;
  97 
  98   // Statistics for garbage collection
  99   GCStats* _gc_stats;
 100 
 101   // Initialize the generation.
 102   Generation(ReservedSpace rs, size_t initial_byte_size);
 103 
 104  public:
 105   // The set of possible generation kinds.
 106   enum Name {
 107     DefNew,
 108     MarkSweepCompact,
 109     Other
 110   };
 111 
 112   enum SomePublicConstants {
 113     // Generations are GenGrain-aligned and have size that are multiples of
 114     // GenGrain.
 115     // Note: on ARM we add 1 bit for card_table_base to be properly aligned
 116     // (we expect its low byte to be zero - see implementation of post_barrier)
 117     LogOfGenGrain = 16 ARM32_ONLY(+1),
 118     GenGrain = 1 << LogOfGenGrain
 119   };
 120 
 121   // allocate and initialize ("weak") refs processing support
 122   virtual void ref_processor_init();
 123   void set_ref_processor(ReferenceProcessor* rp) {
 124     assert(_ref_processor == NULL, "clobbering existing _ref_processor");
 125     _ref_processor = rp;
 126   }
 127 
 128   virtual Generation::Name kind() { return Generation::Other; }
 129 
 130   // This properly belongs in the collector, but for now this
 131   // will do.
 132   virtual bool refs_discovery_is_atomic() const { return true;  }
 133   virtual bool refs_discovery_is_mt()     const { return false; }
 134 
 135   // Space inquiries (results in bytes)
 136   size_t initial_size();
 137   virtual size_t capacity() const = 0;  // The maximum number of object bytes the
 138                                         // generation can currently hold.
 139   virtual size_t used() const = 0;      // The number of used bytes in the gen.
 140   virtual size_t free() const = 0;      // The number of free bytes in the gen.
 141 
 142   // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
 143   // Returns the total number of bytes  available in a generation
 144   // for the allocation of objects.
 145   virtual size_t max_capacity() const;
 146 
 147   // If this is a young generation, the maximum number of bytes that can be
 148   // allocated in this generation before a GC is triggered.
 149   virtual size_t capacity_before_gc() const { return 0; }
 150 
 151   // The largest number of contiguous free bytes in the generation,
 152   // including expansion  (Assumes called at a safepoint.)
 153   virtual size_t contiguous_available() const = 0;
 154   // The largest number of contiguous free bytes in this or any higher generation.
 155   virtual size_t max_contiguous_available() const;
 156 
 157   // Returns true if promotions of the specified amount are
 158   // likely to succeed without a promotion failure.
 159   // Promotion of the full amount is not guaranteed but
 160   // might be attempted in the worst case.
 161   virtual bool promotion_attempt_is_safe(size_t max_promotion_in_bytes) const;
 162 
 163   // For a non-young generation, this interface can be used to inform a
 164   // generation that a promotion attempt into that generation failed.
 165   // Typically used to enable diagnostic output for post-mortem analysis,
 166   // but other uses of the interface are not ruled out.
 167   virtual void promotion_failure_occurred() { /* does nothing */ }
 168 
 169   // Return an estimate of the maximum allocation that could be performed
 170   // in the generation without triggering any collection or expansion
 171   // activity.  It is "unsafe" because no locks are taken; the result
 172   // should be treated as an approximation, not a guarantee, for use in
 173   // heuristic resizing decisions.
 174   virtual size_t unsafe_max_alloc_nogc() const = 0;
 175 
 176   // Returns true if this generation cannot be expanded further
 177   // without a GC. Override as appropriate.
 178   virtual bool is_maximal_no_gc() const {
 179     return _virtual_space.uncommitted_size() == 0;
 180   }
 181 
 182   MemRegion reserved() const { return _reserved; }
 183 
 184   // Returns a region guaranteed to contain all the objects in the
 185   // generation.
 186   virtual MemRegion used_region() const { return _reserved; }
 187 
 188   MemRegion prev_used_region() const { return _prev_used_region; }
 189   virtual void  save_used_region()   { _prev_used_region = used_region(); }
 190 
 191   // Returns "TRUE" iff "p" points into the committed areas in the generation.
 192   // For some kinds of generations, this may be an expensive operation.
 193   // To avoid performance problems stemming from its inadvertent use in
 194   // product jvm's, we restrict its use to assertion checking or
 195   // verification only.
 196   virtual bool is_in(const void* p) const;
 197 
 198   /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
 199   bool is_in_reserved(const void* p) const {
 200     return _reserved.contains(p);
 201   }
 202 
 203   // If some space in the generation contains the given "addr", return a
 204   // pointer to that space, else return "NULL".
 205   virtual Space* space_containing(const void* addr) const;
 206 
 207   // Iteration - do not use for time critical operations
 208   virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
 209 
 210   // Returns the first space, if any, in the generation that can participate
 211   // in compaction, or else "NULL".
 212   virtual CompactibleSpace* first_compaction_space() const = 0;
 213 
 214   // Returns "true" iff this generation should be used to allocate an
 215   // object of the given size.  Young generations might
 216   // wish to exclude very large objects, for example, since, if allocated
 217   // often, they would greatly increase the frequency of young-gen
 218   // collection.
 219   virtual bool should_allocate(size_t word_size, bool is_tlab) {
 220     bool result = false;
 221     size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
 222     if (!is_tlab || supports_tlab_allocation()) {
 223       result = (word_size > 0) && (word_size < overflow_limit);
 224     }
 225     return result;
 226   }
 227 
 228   // Allocate and returns a block of the requested size, or returns "NULL".
 229   // Assumes the caller has done any necessary locking.
 230   virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
 231 
 232   // Like "allocate", but performs any necessary locking internally.
 233   virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
 234 
 235   // Some generation may offer a region for shared, contiguous allocation,
 236   // via inlined code (by exporting the address of the top and end fields
 237   // defining the extent of the contiguous allocation region.)
 238 
 239   // This function returns "true" iff the heap supports this kind of
 240   // allocation.  (More precisely, this means the style of allocation that
 241   // increments *top_addr()" with a CAS.) (Default is "no".)
 242   // A generation that supports this allocation style must use lock-free
 243   // allocation for *all* allocation, since there are times when lock free
 244   // allocation will be concurrent with plain "allocate" calls.
 245   virtual bool supports_inline_contig_alloc() const { return false; }
 246 
 247   // These functions return the addresses of the fields that define the
 248   // boundaries of the contiguous allocation area.  (These fields should be
 249   // physically near to one another.)
 250   virtual HeapWord* volatile* top_addr() const { return NULL; }
 251   virtual HeapWord** end_addr() const { return NULL; }
 252 
 253   // Thread-local allocation buffers
 254   virtual bool supports_tlab_allocation() const { return false; }
 255   virtual size_t tlab_capacity() const {
 256     guarantee(false, "Generation doesn't support thread local allocation buffers");
 257     return 0;
 258   }
 259   virtual size_t tlab_used() const {
 260     guarantee(false, "Generation doesn't support thread local allocation buffers");
 261     return 0;
 262   }
 263   virtual size_t unsafe_max_tlab_alloc() const {
 264     guarantee(false, "Generation doesn't support thread local allocation buffers");
 265     return 0;
 266   }
 267 
 268   // "obj" is the address of an object in a younger generation.  Allocate space
 269   // for "obj" in the current (or some higher) generation, and copy "obj" into
 270   // the newly allocated space, if possible, returning the result (or NULL if
 271   // the allocation failed).
 272   //
 273   // The "obj_size" argument is just obj->size(), passed along so the caller can
 274   // avoid repeating the virtual call to retrieve it.
 275   virtual oop promote(oop obj, size_t obj_size);
 276 
 277   // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
 278   // object "obj", whose original mark word was "m", and whose size is
 279   // "word_sz".  If possible, allocate space for "obj", copy obj into it
 280   // (taking care to copy "m" into the mark word when done, since the mark
 281   // word of "obj" may have been overwritten with a forwarding pointer, and
 282   // also taking care to copy the klass pointer *last*.  Returns the new
 283   // object if successful, or else NULL.
 284   virtual oop par_promote(int thread_num, oop obj, markWord m, size_t word_sz);
 285 
 286   // Informs the current generation that all par_promote_alloc's in the
 287   // collection have been completed; any supporting data structures can be
 288   // reset.  Default is to do nothing.
 289   virtual void par_promote_alloc_done(int thread_num) {}
 290 
 291   // Informs the current generation that all oop_since_save_marks_iterates
 292   // performed by "thread_num" in the current collection, if any, have been
 293   // completed; any supporting data structures can be reset.  Default is to
 294   // do nothing.
 295   virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
 296 
 297   // Returns "true" iff collect() should subsequently be called on this
 298   // this generation. See comment below.
 299   // This is a generic implementation which can be overridden.
 300   //
 301   // Note: in the current (1.4) implementation, when genCollectedHeap's
 302   // incremental_collection_will_fail flag is set, all allocations are
 303   // slow path (the only fast-path place to allocate is DefNew, which
 304   // will be full if the flag is set).
 305   // Thus, older generations which collect younger generations should
 306   // test this flag and collect if it is set.
 307   virtual bool should_collect(bool   full,
 308                               size_t word_size,
 309                               bool   is_tlab) {
 310     return (full || should_allocate(word_size, is_tlab));
 311   }
 312 
 313   // Returns true if the collection is likely to be safely
 314   // completed. Even if this method returns true, a collection
 315   // may not be guaranteed to succeed, and the system should be
 316   // able to safely unwind and recover from that failure, albeit
 317   // at some additional cost.
 318   virtual bool collection_attempt_is_safe() {
 319     guarantee(false, "Are you sure you want to call this method?");
 320     return true;
 321   }
 322 
 323   // Perform a garbage collection.
 324   // If full is true attempt a full garbage collection of this generation.
 325   // Otherwise, attempting to (at least) free enough space to support an
 326   // allocation of the given "word_size".
 327   virtual void collect(bool   full,
 328                        bool   clear_all_soft_refs,
 329                        size_t word_size,
 330                        bool   is_tlab) = 0;
 331 
 332   // Perform a heap collection, attempting to create (at least) enough
 333   // space to support an allocation of the given "word_size".  If
 334   // successful, perform the allocation and return the resulting
 335   // "oop" (initializing the allocated block). If the allocation is
 336   // still unsuccessful, return "NULL".
 337   virtual HeapWord* expand_and_allocate(size_t word_size,
 338                                         bool is_tlab,
 339                                         bool parallel = false) = 0;
 340 
 341   // Some generations may require some cleanup or preparation actions before
 342   // allowing a collection.  The default is to do nothing.
 343   virtual void gc_prologue(bool full) {}
 344 
 345   // Some generations may require some cleanup actions after a collection.
 346   // The default is to do nothing.
 347   virtual void gc_epilogue(bool full) {}
 348 
 349   // Save the high water marks for the used space in a generation.
 350   virtual void record_spaces_top() {}
 351 
 352   // Some generations may need to be "fixed-up" after some allocation
 353   // activity to make them parsable again. The default is to do nothing.
 354   virtual void ensure_parsability() {}
 355 
 356   // Generations may keep statistics about collection. This method
 357   // updates those statistics. current_generation is the generation
 358   // that was most recently collected. This allows the generation to
 359   // decide what statistics are valid to collect. For example, the
 360   // generation can decide to gather the amount of promoted data if
 361   // the collection of the young generation has completed.
 362   GCStats* gc_stats() const { return _gc_stats; }
 363   virtual void update_gc_stats(Generation* current_generation, bool full) {}
 364 
 365 #if INCLUDE_SERIALGC
 366   // Mark sweep support phase2
 367   virtual void prepare_for_compaction(CompactPoint* cp);
 368   // Mark sweep support phase3
 369   virtual void adjust_pointers();
 370   // Mark sweep support phase4
 371   virtual void compact();
 372   virtual void post_compact() { ShouldNotReachHere(); }
 373 #endif
 374 
 375   // Support for CMS's rescan. In this general form we return a pointer
 376   // to an abstract object that can be used, based on specific previously
 377   // decided protocols, to exchange information between generations,
 378   // information that may be useful for speeding up certain types of
 379   // garbage collectors. A NULL value indicates to the client that
 380   // no data recording is expected by the provider. The data-recorder is
 381   // expected to be GC worker thread-local, with the worker index
 382   // indicated by "thr_num".
 383   virtual void* get_data_recorder(int thr_num) { return NULL; }
 384   virtual void sample_eden_chunk() {}
 385 
 386   // Some generations may require some cleanup actions before allowing
 387   // a verification.
 388   virtual void prepare_for_verify() {}
 389 
 390   // Accessing "marks".
 391 
 392   // This function gives a generation a chance to note a point between
 393   // collections.  For example, a contiguous generation might note the
 394   // beginning allocation point post-collection, which might allow some later
 395   // operations to be optimized.
 396   virtual void save_marks() {}
 397 
 398   // This function allows generations to initialize any "saved marks".  That
 399   // is, should only be called when the generation is empty.
 400   virtual void reset_saved_marks() {}
 401 
 402   // This function is "true" iff any no allocations have occurred in the
 403   // generation since the last call to "save_marks".
 404   virtual bool no_allocs_since_save_marks() = 0;
 405 
 406   // The "requestor" generation is performing some garbage collection
 407   // action for which it would be useful to have scratch space.  If
 408   // the target is not the requestor, no gc actions will be required
 409   // of the target.  The requestor promises to allocate no more than
 410   // "max_alloc_words" in the target generation (via promotion say,
 411   // if the requestor is a young generation and the target is older).
 412   // If the target generation can provide any scratch space, it adds
 413   // it to "list", leaving "list" pointing to the head of the
 414   // augmented list.  The default is to offer no space.
 415   virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
 416                                   size_t max_alloc_words) {}
 417 
 418   // Give each generation an opportunity to do clean up for any
 419   // contributed scratch.
 420   virtual void reset_scratch() {}
 421 
 422   // When an older generation has been collected, and perhaps resized,
 423   // this method will be invoked on all younger generations (from older to
 424   // younger), allowing them to resize themselves as appropriate.
 425   virtual void compute_new_size() = 0;
 426 
 427   // Printing
 428   virtual const char* name() const = 0;
 429   virtual const char* short_name() const = 0;
 430 
 431   // Reference Processing accessor
 432   ReferenceProcessor* const ref_processor() { return _ref_processor; }
 433 
 434   // Iteration.
 435 
 436   // Iterate over all the ref-containing fields of all objects in the
 437   // generation, calling "cl.do_oop" on each.
 438   virtual void oop_iterate(OopIterateClosure* cl);
 439 
 440   // Iterate over all objects in the generation, calling "cl.do_object" on
 441   // each.
 442   virtual void object_iterate(ObjectClosure* cl);
 443 
 444   // Inform a generation that it longer contains references to objects
 445   // in any younger generation.    [e.g. Because younger gens are empty,
 446   // clear the card table.]
 447   virtual void clear_remembered_set() { }
 448 
 449   // Inform a generation that some of its objects have moved.  [e.g. The
 450   // generation's spaces were compacted, invalidating the card table.]
 451   virtual void invalidate_remembered_set() { }
 452 
 453   // Block abstraction.
 454 
 455   // Returns the address of the start of the "block" that contains the
 456   // address "addr".  We say "blocks" instead of "object" since some heaps
 457   // may not pack objects densely; a chunk may either be an object or a
 458   // non-object.
 459   virtual HeapWord* block_start(const void* addr) const;
 460 
 461   // Requires "addr" to be the start of a chunk, and returns its size.
 462   // "addr + size" is required to be the start of a new chunk, or the end
 463   // of the active area of the heap.
 464   virtual size_t block_size(const HeapWord* addr) const ;
 465 
 466   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 467   // the block is an object.
 468   virtual bool block_is_obj(const HeapWord* addr) const;
 469 
 470   void print_heap_change(size_t prev_used) const;
 471 
 472   virtual void print() const;
 473   virtual void print_on(outputStream* st) const;
 474 
 475   virtual void verify() = 0;
 476 
 477   struct StatRecord {
 478     int invocations;
 479     elapsedTimer accumulated_time;
 480     StatRecord() :
 481       invocations(0),
 482       accumulated_time(elapsedTimer()) {}
 483   };
 484 private:
 485   StatRecord _stat_record;
 486 public:
 487   StatRecord* stat_record() { return &_stat_record; }
 488 
 489   virtual void print_summary_info_on(outputStream* st);
 490 
 491   // Performance Counter support
 492   virtual void update_counters() = 0;
 493   virtual CollectorCounters* counters() { return _gc_counters; }
 494 
 495   GCMemoryManager* gc_manager() const {
 496     assert(_gc_manager != NULL, "not initialized yet");
 497     return _gc_manager;
 498   }
 499 
 500   void set_gc_manager(GCMemoryManager* gc_manager) {
 501     _gc_manager = gc_manager;
 502   }
 503 
 504 };
 505 
 506 #endif // SHARE_GC_SHARED_GENERATION_HPP