1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1Allocator.inline.hpp"
  34 #include "gc/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc/g1/g1CollectionSet.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1YCTypes.hpp"
  57 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  58 #include "gc/g1/heapRegion.inline.hpp"
  59 #include "gc/g1/heapRegionRemSet.hpp"
  60 #include "gc/g1/heapRegionSet.inline.hpp"
  61 #include "gc/g1/vm_operations_g1.hpp"
  62 #include "gc/shared/gcHeapSummary.hpp"
  63 #include "gc/shared/gcId.hpp"
  64 #include "gc/shared/gcLocker.inline.hpp"
  65 #include "gc/shared/gcTimer.hpp"
  66 #include "gc/shared/gcTrace.hpp"
  67 #include "gc/shared/gcTraceTime.inline.hpp"
  68 #include "gc/shared/generationSpec.hpp"
  69 #include "gc/shared/isGCActiveMark.hpp"
  70 #include "gc/shared/preservedMarks.inline.hpp"
  71 #include "gc/shared/suspendibleThreadSet.hpp"
  72 #include "gc/shared/referenceProcessor.inline.hpp"
  73 #include "gc/shared/taskqueue.inline.hpp"
  74 #include "gc/shared/weakProcessor.hpp"
  75 #include "logging/log.hpp"
  76 #include "memory/allocation.hpp"
  77 #include "memory/iterator.hpp"
  78 #include "memory/resourceArea.hpp"
  79 #include "oops/oop.inline.hpp"
  80 #include "prims/resolvedMethodTable.hpp"
  81 #include "runtime/atomic.hpp"
  82 #include "runtime/init.hpp"
  83 #include "runtime/orderAccess.inline.hpp"
  84 #include "runtime/threadSMR.hpp"
  85 #include "runtime/vmThread.hpp"
  86 #include "utilities/align.hpp"
  87 #include "utilities/globalDefinitions.hpp"
  88 #include "utilities/stack.inline.hpp"
  89 
  90 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  91 
  92 // INVARIANTS/NOTES
  93 //
  94 // All allocation activity covered by the G1CollectedHeap interface is
  95 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  96 // and allocate_new_tlab, which are the "entry" points to the
  97 // allocation code from the rest of the JVM.  (Note that this does not
  98 // apply to TLAB allocation, which is not part of this interface: it
  99 // is done by clients of this interface.)
 100 
 101 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 102  private:
 103   size_t _num_dirtied;
 104   G1CollectedHeap* _g1h;
 105   G1SATBCardTableLoggingModRefBS* _g1_bs;
 106 
 107   HeapRegion* region_for_card(jbyte* card_ptr) const {
 108     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 109   }
 110 
 111   bool will_become_free(HeapRegion* hr) const {
 112     // A region will be freed by free_collection_set if the region is in the
 113     // collection set and has not had an evacuation failure.
 114     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 115   }
 116 
 117  public:
 118   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 119     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 120 
 121   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 122     HeapRegion* hr = region_for_card(card_ptr);
 123 
 124     // Should only dirty cards in regions that won't be freed.
 125     if (!will_become_free(hr)) {
 126       *card_ptr = CardTableModRefBS::dirty_card_val();
 127       _num_dirtied++;
 128     }
 129 
 130     return true;
 131   }
 132 
 133   size_t num_dirtied()   const { return _num_dirtied; }
 134 };
 135 
 136 
 137 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 138   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 139 }
 140 
 141 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 142   // The from card cache is not the memory that is actually committed. So we cannot
 143   // take advantage of the zero_filled parameter.
 144   reset_from_card_cache(start_idx, num_regions);
 145 }
 146 
 147 
 148 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 149                                              MemRegion mr) {
 150   return new HeapRegion(hrs_index, bot(), mr);
 151 }
 152 
 153 // Private methods.
 154 
 155 HeapRegion*
 156 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 157   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 158   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 159     if (!_secondary_free_list.is_empty()) {
 160       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 161                                       "secondary_free_list has %u entries",
 162                                       _secondary_free_list.length());
 163       // It looks as if there are free regions available on the
 164       // secondary_free_list. Let's move them to the free_list and try
 165       // again to allocate from it.
 166       append_secondary_free_list();
 167 
 168       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 169              "empty we should have moved at least one entry to the free_list");
 170       HeapRegion* res = _hrm.allocate_free_region(is_old);
 171       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 172                                       "allocated " HR_FORMAT " from secondary_free_list",
 173                                       HR_FORMAT_PARAMS(res));
 174       return res;
 175     }
 176 
 177     // Wait here until we get notified either when (a) there are no
 178     // more free regions coming or (b) some regions have been moved on
 179     // the secondary_free_list.
 180     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 181   }
 182 
 183   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 184                                   "could not allocate from secondary_free_list");
 185   return NULL;
 186 }
 187 
 188 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 189   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 190          "the only time we use this to allocate a humongous region is "
 191          "when we are allocating a single humongous region");
 192 
 193   HeapRegion* res;
 194   if (G1StressConcRegionFreeing) {
 195     if (!_secondary_free_list.is_empty()) {
 196       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 197                                       "forced to look at the secondary_free_list");
 198       res = new_region_try_secondary_free_list(is_old);
 199       if (res != NULL) {
 200         return res;
 201       }
 202     }
 203   }
 204 
 205   res = _hrm.allocate_free_region(is_old);
 206 
 207   if (res == NULL) {
 208     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 209                                     "res == NULL, trying the secondary_free_list");
 210     res = new_region_try_secondary_free_list(is_old);
 211   }
 212   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 213     // Currently, only attempts to allocate GC alloc regions set
 214     // do_expand to true. So, we should only reach here during a
 215     // safepoint. If this assumption changes we might have to
 216     // reconsider the use of _expand_heap_after_alloc_failure.
 217     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 218 
 219     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 220                               word_size * HeapWordSize);
 221 
 222     if (expand(word_size * HeapWordSize)) {
 223       // Given that expand() succeeded in expanding the heap, and we
 224       // always expand the heap by an amount aligned to the heap
 225       // region size, the free list should in theory not be empty.
 226       // In either case allocate_free_region() will check for NULL.
 227       res = _hrm.allocate_free_region(is_old);
 228     } else {
 229       _expand_heap_after_alloc_failure = false;
 230     }
 231   }
 232   return res;
 233 }
 234 
 235 HeapWord*
 236 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 237                                                            uint num_regions,
 238                                                            size_t word_size,
 239                                                            AllocationContext_t context) {
 240   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 241   assert(is_humongous(word_size), "word_size should be humongous");
 242   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 243 
 244   // Index of last region in the series.
 245   uint last = first + num_regions - 1;
 246 
 247   // We need to initialize the region(s) we just discovered. This is
 248   // a bit tricky given that it can happen concurrently with
 249   // refinement threads refining cards on these regions and
 250   // potentially wanting to refine the BOT as they are scanning
 251   // those cards (this can happen shortly after a cleanup; see CR
 252   // 6991377). So we have to set up the region(s) carefully and in
 253   // a specific order.
 254 
 255   // The word size sum of all the regions we will allocate.
 256   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 257   assert(word_size <= word_size_sum, "sanity");
 258 
 259   // This will be the "starts humongous" region.
 260   HeapRegion* first_hr = region_at(first);
 261   // The header of the new object will be placed at the bottom of
 262   // the first region.
 263   HeapWord* new_obj = first_hr->bottom();
 264   // This will be the new top of the new object.
 265   HeapWord* obj_top = new_obj + word_size;
 266 
 267   // First, we need to zero the header of the space that we will be
 268   // allocating. When we update top further down, some refinement
 269   // threads might try to scan the region. By zeroing the header we
 270   // ensure that any thread that will try to scan the region will
 271   // come across the zero klass word and bail out.
 272   //
 273   // NOTE: It would not have been correct to have used
 274   // CollectedHeap::fill_with_object() and make the space look like
 275   // an int array. The thread that is doing the allocation will
 276   // later update the object header to a potentially different array
 277   // type and, for a very short period of time, the klass and length
 278   // fields will be inconsistent. This could cause a refinement
 279   // thread to calculate the object size incorrectly.
 280   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 281 
 282   // Next, pad out the unused tail of the last region with filler
 283   // objects, for improved usage accounting.
 284   // How many words we use for filler objects.
 285   size_t word_fill_size = word_size_sum - word_size;
 286 
 287   // How many words memory we "waste" which cannot hold a filler object.
 288   size_t words_not_fillable = 0;
 289 
 290   if (word_fill_size >= min_fill_size()) {
 291     fill_with_objects(obj_top, word_fill_size);
 292   } else if (word_fill_size > 0) {
 293     // We have space to fill, but we cannot fit an object there.
 294     words_not_fillable = word_fill_size;
 295     word_fill_size = 0;
 296   }
 297 
 298   // We will set up the first region as "starts humongous". This
 299   // will also update the BOT covering all the regions to reflect
 300   // that there is a single object that starts at the bottom of the
 301   // first region.
 302   first_hr->set_starts_humongous(obj_top, word_fill_size);
 303   first_hr->set_allocation_context(context);
 304   // Then, if there are any, we will set up the "continues
 305   // humongous" regions.
 306   HeapRegion* hr = NULL;
 307   for (uint i = first + 1; i <= last; ++i) {
 308     hr = region_at(i);
 309     hr->set_continues_humongous(first_hr);
 310     hr->set_allocation_context(context);
 311   }
 312 
 313   // Up to this point no concurrent thread would have been able to
 314   // do any scanning on any region in this series. All the top
 315   // fields still point to bottom, so the intersection between
 316   // [bottom,top] and [card_start,card_end] will be empty. Before we
 317   // update the top fields, we'll do a storestore to make sure that
 318   // no thread sees the update to top before the zeroing of the
 319   // object header and the BOT initialization.
 320   OrderAccess::storestore();
 321 
 322   // Now, we will update the top fields of the "continues humongous"
 323   // regions except the last one.
 324   for (uint i = first; i < last; ++i) {
 325     hr = region_at(i);
 326     hr->set_top(hr->end());
 327   }
 328 
 329   hr = region_at(last);
 330   // If we cannot fit a filler object, we must set top to the end
 331   // of the humongous object, otherwise we cannot iterate the heap
 332   // and the BOT will not be complete.
 333   hr->set_top(hr->end() - words_not_fillable);
 334 
 335   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 336          "obj_top should be in last region");
 337 
 338   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 339 
 340   assert(words_not_fillable == 0 ||
 341          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 342          "Miscalculation in humongous allocation");
 343 
 344   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 345 
 346   for (uint i = first; i <= last; ++i) {
 347     hr = region_at(i);
 348     _humongous_set.add(hr);
 349     _hr_printer.alloc(hr);
 350   }
 351 
 352   return new_obj;
 353 }
 354 
 355 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 356   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 357   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 358 }
 359 
 360 // If could fit into free regions w/o expansion, try.
 361 // Otherwise, if can expand, do so.
 362 // Otherwise, if using ex regions might help, try with ex given back.
 363 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 364   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 365 
 366   _verifier->verify_region_sets_optional();
 367 
 368   uint first = G1_NO_HRM_INDEX;
 369   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 370 
 371   if (obj_regions == 1) {
 372     // Only one region to allocate, try to use a fast path by directly allocating
 373     // from the free lists. Do not try to expand here, we will potentially do that
 374     // later.
 375     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 376     if (hr != NULL) {
 377       first = hr->hrm_index();
 378     }
 379   } else {
 380     // We can't allocate humongous regions spanning more than one region while
 381     // cleanupComplete() is running, since some of the regions we find to be
 382     // empty might not yet be added to the free list. It is not straightforward
 383     // to know in which list they are on so that we can remove them. We only
 384     // need to do this if we need to allocate more than one region to satisfy the
 385     // current humongous allocation request. If we are only allocating one region
 386     // we use the one-region region allocation code (see above), that already
 387     // potentially waits for regions from the secondary free list.
 388     wait_while_free_regions_coming();
 389     append_secondary_free_list_if_not_empty_with_lock();
 390 
 391     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 392     // are lucky enough to find some.
 393     first = _hrm.find_contiguous_only_empty(obj_regions);
 394     if (first != G1_NO_HRM_INDEX) {
 395       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 396     }
 397   }
 398 
 399   if (first == G1_NO_HRM_INDEX) {
 400     // Policy: We could not find enough regions for the humongous object in the
 401     // free list. Look through the heap to find a mix of free and uncommitted regions.
 402     // If so, try expansion.
 403     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 404     if (first != G1_NO_HRM_INDEX) {
 405       // We found something. Make sure these regions are committed, i.e. expand
 406       // the heap. Alternatively we could do a defragmentation GC.
 407       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 408                                     word_size * HeapWordSize);
 409 
 410       _hrm.expand_at(first, obj_regions, workers());
 411       g1_policy()->record_new_heap_size(num_regions());
 412 
 413 #ifdef ASSERT
 414       for (uint i = first; i < first + obj_regions; ++i) {
 415         HeapRegion* hr = region_at(i);
 416         assert(hr->is_free(), "sanity");
 417         assert(hr->is_empty(), "sanity");
 418         assert(is_on_master_free_list(hr), "sanity");
 419       }
 420 #endif
 421       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 422     } else {
 423       // Policy: Potentially trigger a defragmentation GC.
 424     }
 425   }
 426 
 427   HeapWord* result = NULL;
 428   if (first != G1_NO_HRM_INDEX) {
 429     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 430                                                        word_size, context);
 431     assert(result != NULL, "it should always return a valid result");
 432 
 433     // A successful humongous object allocation changes the used space
 434     // information of the old generation so we need to recalculate the
 435     // sizes and update the jstat counters here.
 436     g1mm()->update_sizes();
 437   }
 438 
 439   _verifier->verify_region_sets_optional();
 440 
 441   return result;
 442 }
 443 
 444 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 445   assert_heap_not_locked_and_not_at_safepoint();
 446   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 447 
 448   return attempt_allocation(word_size);
 449 }
 450 
 451 HeapWord*
 452 G1CollectedHeap::mem_allocate(size_t word_size,
 453                               bool*  gc_overhead_limit_was_exceeded) {
 454   assert_heap_not_locked_and_not_at_safepoint();
 455 
 456   if (is_humongous(word_size)) {
 457     return attempt_allocation_humongous(word_size);
 458   }
 459   return attempt_allocation(word_size);
 460 }
 461 
 462 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 463                                                    AllocationContext_t context) {
 464   ResourceMark rm; // For retrieving the thread names in log messages.
 465 
 466   // Make sure you read the note in attempt_allocation_humongous().
 467 
 468   assert_heap_not_locked_and_not_at_safepoint();
 469   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 470          "be called for humongous allocation requests");
 471 
 472   // We should only get here after the first-level allocation attempt
 473   // (attempt_allocation()) failed to allocate.
 474 
 475   // We will loop until a) we manage to successfully perform the
 476   // allocation or b) we successfully schedule a collection which
 477   // fails to perform the allocation. b) is the only case when we'll
 478   // return NULL.
 479   HeapWord* result = NULL;
 480   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 481     bool should_try_gc;
 482     uint gc_count_before;
 483 
 484     {
 485       MutexLockerEx x(Heap_lock);
 486       result = _allocator->attempt_allocation_locked(word_size, context);
 487       if (result != NULL) {
 488         return result;
 489       }
 490 
 491       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 492       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 493       // waiting because the GCLocker is active to not wait too long.
 494       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 495         // No need for an ergo message here, can_expand_young_list() does this when
 496         // it returns true.
 497         result = _allocator->attempt_allocation_force(word_size, context);
 498         if (result != NULL) {
 499           return result;
 500         }
 501       }
 502       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 503       // the GCLocker initiated GC has been performed and then retry. This includes
 504       // the case when the GC Locker is not active but has not been performed.
 505       should_try_gc = !GCLocker::needs_gc();
 506       // Read the GC count while still holding the Heap_lock.
 507       gc_count_before = total_collections();
 508     }
 509 
 510     if (should_try_gc) {
 511       bool succeeded;
 512       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 513                                    GCCause::_g1_inc_collection_pause);
 514       if (result != NULL) {
 515         assert(succeeded, "only way to get back a non-NULL result");
 516         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 517                              Thread::current()->name(), p2i(result));
 518         return result;
 519       }
 520 
 521       if (succeeded) {
 522         // We successfully scheduled a collection which failed to allocate. No
 523         // point in trying to allocate further. We'll just return NULL.
 524         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 525                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 526         return NULL;
 527       }
 528       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 529                            Thread::current()->name(), word_size);
 530     } else {
 531       // Failed to schedule a collection.
 532       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 533         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 534                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 535         return NULL;
 536       }
 537       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 538       // The GCLocker is either active or the GCLocker initiated
 539       // GC has not yet been performed. Stall until it is and
 540       // then retry the allocation.
 541       GCLocker::stall_until_clear();
 542       gclocker_retry_count += 1;
 543     }
 544 
 545     // We can reach here if we were unsuccessful in scheduling a
 546     // collection (because another thread beat us to it) or if we were
 547     // stalled due to the GC locker. In either can we should retry the
 548     // allocation attempt in case another thread successfully
 549     // performed a collection and reclaimed enough space. We do the
 550     // first attempt (without holding the Heap_lock) here and the
 551     // follow-on attempt will be at the start of the next loop
 552     // iteration (after taking the Heap_lock).
 553 
 554     result = _allocator->attempt_allocation(word_size, context);
 555     if (result != NULL) {
 556       return result;
 557     }
 558 
 559     // Give a warning if we seem to be looping forever.
 560     if ((QueuedAllocationWarningCount > 0) &&
 561         (try_count % QueuedAllocationWarningCount == 0)) {
 562       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 563                              Thread::current()->name(), try_count, word_size);
 564     }
 565   }
 566 
 567   ShouldNotReachHere();
 568   return NULL;
 569 }
 570 
 571 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 572   assert_at_safepoint(true /* should_be_vm_thread */);
 573   if (_archive_allocator == NULL) {
 574     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 575   }
 576 }
 577 
 578 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 579   // Allocations in archive regions cannot be of a size that would be considered
 580   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 581   // may be different at archive-restore time.
 582   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 583 }
 584 
 585 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 586   assert_at_safepoint(true /* should_be_vm_thread */);
 587   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 588   if (is_archive_alloc_too_large(word_size)) {
 589     return NULL;
 590   }
 591   return _archive_allocator->archive_mem_allocate(word_size);
 592 }
 593 
 594 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 595                                               size_t end_alignment_in_bytes) {
 596   assert_at_safepoint(true /* should_be_vm_thread */);
 597   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 598 
 599   // Call complete_archive to do the real work, filling in the MemRegion
 600   // array with the archive regions.
 601   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 602   delete _archive_allocator;
 603   _archive_allocator = NULL;
 604 }
 605 
 606 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 607   assert(ranges != NULL, "MemRegion array NULL");
 608   assert(count != 0, "No MemRegions provided");
 609   MemRegion reserved = _hrm.reserved();
 610   for (size_t i = 0; i < count; i++) {
 611     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 612       return false;
 613     }
 614   }
 615   return true;
 616 }
 617 
 618 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 619                                             size_t count,
 620                                             bool open) {
 621   assert(!is_init_completed(), "Expect to be called at JVM init time");
 622   assert(ranges != NULL, "MemRegion array NULL");
 623   assert(count != 0, "No MemRegions provided");
 624   MutexLockerEx x(Heap_lock);
 625 
 626   MemRegion reserved = _hrm.reserved();
 627   HeapWord* prev_last_addr = NULL;
 628   HeapRegion* prev_last_region = NULL;
 629 
 630   // Temporarily disable pretouching of heap pages. This interface is used
 631   // when mmap'ing archived heap data in, so pre-touching is wasted.
 632   FlagSetting fs(AlwaysPreTouch, false);
 633 
 634   // Enable archive object checking used by G1MarkSweep. We have to let it know
 635   // about each archive range, so that objects in those ranges aren't marked.
 636   G1ArchiveAllocator::enable_archive_object_check();
 637 
 638   // For each specified MemRegion range, allocate the corresponding G1
 639   // regions and mark them as archive regions. We expect the ranges
 640   // in ascending starting address order, without overlap.
 641   for (size_t i = 0; i < count; i++) {
 642     MemRegion curr_range = ranges[i];
 643     HeapWord* start_address = curr_range.start();
 644     size_t word_size = curr_range.word_size();
 645     HeapWord* last_address = curr_range.last();
 646     size_t commits = 0;
 647 
 648     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 649               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 650               p2i(start_address), p2i(last_address));
 651     guarantee(start_address > prev_last_addr,
 652               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 653               p2i(start_address), p2i(prev_last_addr));
 654     prev_last_addr = last_address;
 655 
 656     // Check for ranges that start in the same G1 region in which the previous
 657     // range ended, and adjust the start address so we don't try to allocate
 658     // the same region again. If the current range is entirely within that
 659     // region, skip it, just adjusting the recorded top.
 660     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 661     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 662       start_address = start_region->end();
 663       if (start_address > last_address) {
 664         increase_used(word_size * HeapWordSize);
 665         start_region->set_top(last_address + 1);
 666         continue;
 667       }
 668       start_region->set_top(start_address);
 669       curr_range = MemRegion(start_address, last_address + 1);
 670       start_region = _hrm.addr_to_region(start_address);
 671     }
 672 
 673     // Perform the actual region allocation, exiting if it fails.
 674     // Then note how much new space we have allocated.
 675     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 676       return false;
 677     }
 678     increase_used(word_size * HeapWordSize);
 679     if (commits != 0) {
 680       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 681                                 HeapRegion::GrainWords * HeapWordSize * commits);
 682 
 683     }
 684 
 685     // Mark each G1 region touched by the range as archive, add it to
 686     // the old set, and set the allocation context and top.
 687     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 688     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 689     prev_last_region = last_region;
 690 
 691     while (curr_region != NULL) {
 692       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 693              "Region already in use (index %u)", curr_region->hrm_index());
 694       curr_region->set_allocation_context(AllocationContext::system());
 695       if (open) {
 696         curr_region->set_open_archive();
 697       } else {
 698         curr_region->set_closed_archive();
 699       }
 700       _hr_printer.alloc(curr_region);
 701       _old_set.add(curr_region);
 702       HeapWord* top;
 703       HeapRegion* next_region;
 704       if (curr_region != last_region) {
 705         top = curr_region->end();
 706         next_region = _hrm.next_region_in_heap(curr_region);
 707       } else {
 708         top = last_address + 1;
 709         next_region = NULL;
 710       }
 711       curr_region->set_top(top);
 712       curr_region->set_first_dead(top);
 713       curr_region->set_end_of_live(top);
 714       curr_region = next_region;
 715     }
 716 
 717     // Notify mark-sweep of the archive
 718     G1ArchiveAllocator::set_range_archive(curr_range, open);
 719   }
 720   return true;
 721 }
 722 
 723 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 724   assert(!is_init_completed(), "Expect to be called at JVM init time");
 725   assert(ranges != NULL, "MemRegion array NULL");
 726   assert(count != 0, "No MemRegions provided");
 727   MemRegion reserved = _hrm.reserved();
 728   HeapWord *prev_last_addr = NULL;
 729   HeapRegion* prev_last_region = NULL;
 730 
 731   // For each MemRegion, create filler objects, if needed, in the G1 regions
 732   // that contain the address range. The address range actually within the
 733   // MemRegion will not be modified. That is assumed to have been initialized
 734   // elsewhere, probably via an mmap of archived heap data.
 735   MutexLockerEx x(Heap_lock);
 736   for (size_t i = 0; i < count; i++) {
 737     HeapWord* start_address = ranges[i].start();
 738     HeapWord* last_address = ranges[i].last();
 739 
 740     assert(reserved.contains(start_address) && reserved.contains(last_address),
 741            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 742            p2i(start_address), p2i(last_address));
 743     assert(start_address > prev_last_addr,
 744            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 745            p2i(start_address), p2i(prev_last_addr));
 746 
 747     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 748     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 749     HeapWord* bottom_address = start_region->bottom();
 750 
 751     // Check for a range beginning in the same region in which the
 752     // previous one ended.
 753     if (start_region == prev_last_region) {
 754       bottom_address = prev_last_addr + 1;
 755     }
 756 
 757     // Verify that the regions were all marked as archive regions by
 758     // alloc_archive_regions.
 759     HeapRegion* curr_region = start_region;
 760     while (curr_region != NULL) {
 761       guarantee(curr_region->is_archive(),
 762                 "Expected archive region at index %u", curr_region->hrm_index());
 763       if (curr_region != last_region) {
 764         curr_region = _hrm.next_region_in_heap(curr_region);
 765       } else {
 766         curr_region = NULL;
 767       }
 768     }
 769 
 770     prev_last_addr = last_address;
 771     prev_last_region = last_region;
 772 
 773     // Fill the memory below the allocated range with dummy object(s),
 774     // if the region bottom does not match the range start, or if the previous
 775     // range ended within the same G1 region, and there is a gap.
 776     if (start_address != bottom_address) {
 777       size_t fill_size = pointer_delta(start_address, bottom_address);
 778       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 779       increase_used(fill_size * HeapWordSize);
 780     }
 781   }
 782 }
 783 
 784 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size) {
 785   assert_heap_not_locked_and_not_at_safepoint();
 786   assert(!is_humongous(word_size), "attempt_allocation() should not "
 787          "be called for humongous allocation requests");
 788 
 789   AllocationContext_t context = AllocationContext::current();
 790   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 791 
 792   if (result == NULL) {
 793     result = attempt_allocation_slow(word_size, context);
 794   }
 795   assert_heap_not_locked();
 796   if (result != NULL) {
 797     dirty_young_block(result, word_size);
 798   }
 799   return result;
 800 }
 801 
 802 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 803   assert(!is_init_completed(), "Expect to be called at JVM init time");
 804   assert(ranges != NULL, "MemRegion array NULL");
 805   assert(count != 0, "No MemRegions provided");
 806   MemRegion reserved = _hrm.reserved();
 807   HeapWord* prev_last_addr = NULL;
 808   HeapRegion* prev_last_region = NULL;
 809   size_t size_used = 0;
 810   size_t uncommitted_regions = 0;
 811 
 812   // For each Memregion, free the G1 regions that constitute it, and
 813   // notify mark-sweep that the range is no longer to be considered 'archive.'
 814   MutexLockerEx x(Heap_lock);
 815   for (size_t i = 0; i < count; i++) {
 816     HeapWord* start_address = ranges[i].start();
 817     HeapWord* last_address = ranges[i].last();
 818 
 819     assert(reserved.contains(start_address) && reserved.contains(last_address),
 820            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 821            p2i(start_address), p2i(last_address));
 822     assert(start_address > prev_last_addr,
 823            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 824            p2i(start_address), p2i(prev_last_addr));
 825     size_used += ranges[i].byte_size();
 826     prev_last_addr = last_address;
 827 
 828     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 829     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 830 
 831     // Check for ranges that start in the same G1 region in which the previous
 832     // range ended, and adjust the start address so we don't try to free
 833     // the same region again. If the current range is entirely within that
 834     // region, skip it.
 835     if (start_region == prev_last_region) {
 836       start_address = start_region->end();
 837       if (start_address > last_address) {
 838         continue;
 839       }
 840       start_region = _hrm.addr_to_region(start_address);
 841     }
 842     prev_last_region = last_region;
 843 
 844     // After verifying that each region was marked as an archive region by
 845     // alloc_archive_regions, set it free and empty and uncommit it.
 846     HeapRegion* curr_region = start_region;
 847     while (curr_region != NULL) {
 848       guarantee(curr_region->is_archive(),
 849                 "Expected archive region at index %u", curr_region->hrm_index());
 850       uint curr_index = curr_region->hrm_index();
 851       _old_set.remove(curr_region);
 852       curr_region->set_free();
 853       curr_region->set_top(curr_region->bottom());
 854       if (curr_region != last_region) {
 855         curr_region = _hrm.next_region_in_heap(curr_region);
 856       } else {
 857         curr_region = NULL;
 858       }
 859       _hrm.shrink_at(curr_index, 1);
 860       uncommitted_regions++;
 861     }
 862 
 863     // Notify mark-sweep that this is no longer an archive range.
 864     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 865   }
 866 
 867   if (uncommitted_regions != 0) {
 868     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 869                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 870   }
 871   decrease_used(size_used);
 872 }
 873 
 874 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 875   ResourceMark rm; // For retrieving the thread names in log messages.
 876 
 877   // The structure of this method has a lot of similarities to
 878   // attempt_allocation_slow(). The reason these two were not merged
 879   // into a single one is that such a method would require several "if
 880   // allocation is not humongous do this, otherwise do that"
 881   // conditional paths which would obscure its flow. In fact, an early
 882   // version of this code did use a unified method which was harder to
 883   // follow and, as a result, it had subtle bugs that were hard to
 884   // track down. So keeping these two methods separate allows each to
 885   // be more readable. It will be good to keep these two in sync as
 886   // much as possible.
 887 
 888   assert_heap_not_locked_and_not_at_safepoint();
 889   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 890          "should only be called for humongous allocations");
 891 
 892   // Humongous objects can exhaust the heap quickly, so we should check if we
 893   // need to start a marking cycle at each humongous object allocation. We do
 894   // the check before we do the actual allocation. The reason for doing it
 895   // before the allocation is that we avoid having to keep track of the newly
 896   // allocated memory while we do a GC.
 897   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 898                                            word_size)) {
 899     collect(GCCause::_g1_humongous_allocation);
 900   }
 901 
 902   // We will loop until a) we manage to successfully perform the
 903   // allocation or b) we successfully schedule a collection which
 904   // fails to perform the allocation. b) is the only case when we'll
 905   // return NULL.
 906   HeapWord* result = NULL;
 907   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 908     bool should_try_gc;
 909     uint gc_count_before;
 910 
 911 
 912     {
 913       MutexLockerEx x(Heap_lock);
 914 
 915       // Given that humongous objects are not allocated in young
 916       // regions, we'll first try to do the allocation without doing a
 917       // collection hoping that there's enough space in the heap.
 918       result = humongous_obj_allocate(word_size, AllocationContext::current());
 919       if (result != NULL) {
 920         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 921         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 922         return result;
 923       }
 924 
 925       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 926       // the GCLocker initiated GC has been performed and then retry. This includes
 927       // the case when the GC Locker is not active but has not been performed.
 928       should_try_gc = !GCLocker::needs_gc();
 929       // Read the GC count while still holding the Heap_lock.
 930       gc_count_before = total_collections();
 931     }
 932 
 933     if (should_try_gc) {
 934       bool succeeded;
 935       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 936                                    GCCause::_g1_humongous_allocation);
 937       if (result != NULL) {
 938         assert(succeeded, "only way to get back a non-NULL result");
 939         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 940                              Thread::current()->name(), p2i(result));
 941         return result;
 942       }
 943 
 944       if (succeeded) {
 945         // We successfully scheduled a collection which failed to allocate. No
 946         // point in trying to allocate further. We'll just return NULL.
 947         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 948                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 949         return NULL;
 950       }
 951       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 952                            Thread::current()->name(), word_size);
 953     } else {
 954       // Failed to schedule a collection.
 955       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 956         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 957                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 958         return NULL;
 959       }
 960       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 961       // The GCLocker is either active or the GCLocker initiated
 962       // GC has not yet been performed. Stall until it is and
 963       // then retry the allocation.
 964       GCLocker::stall_until_clear();
 965       gclocker_retry_count += 1;
 966     }
 967 
 968 
 969     // We can reach here if we were unsuccessful in scheduling a
 970     // collection (because another thread beat us to it) or if we were
 971     // stalled due to the GC locker. In either can we should retry the
 972     // allocation attempt in case another thread successfully
 973     // performed a collection and reclaimed enough space.
 974     // Humongous object allocation always needs a lock, so we wait for the retry
 975     // in the next iteration of the loop, unlike for the regular iteration case.
 976     // Give a warning if we seem to be looping forever.
 977 
 978     if ((QueuedAllocationWarningCount > 0) &&
 979         (try_count % QueuedAllocationWarningCount == 0)) {
 980       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 981                              Thread::current()->name(), try_count, word_size);
 982     }
 983   }
 984 
 985   ShouldNotReachHere();
 986   return NULL;
 987 }
 988 
 989 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 990                                                            AllocationContext_t context,
 991                                                            bool expect_null_mutator_alloc_region) {
 992   assert_at_safepoint(true /* should_be_vm_thread */);
 993   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
 994          "the current alloc region was unexpectedly found to be non-NULL");
 995 
 996   if (!is_humongous(word_size)) {
 997     return _allocator->attempt_allocation_locked(word_size, context);
 998   } else {
 999     HeapWord* result = humongous_obj_allocate(word_size, context);
1000     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1001       collector_state()->set_initiate_conc_mark_if_possible(true);
1002     }
1003     return result;
1004   }
1005 
1006   ShouldNotReachHere();
1007 }
1008 
1009 class PostCompactionPrinterClosure: public HeapRegionClosure {
1010 private:
1011   G1HRPrinter* _hr_printer;
1012 public:
1013   bool do_heap_region(HeapRegion* hr) {
1014     assert(!hr->is_young(), "not expecting to find young regions");
1015     _hr_printer->post_compaction(hr);
1016     return false;
1017   }
1018 
1019   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1020     : _hr_printer(hr_printer) { }
1021 };
1022 
1023 void G1CollectedHeap::print_hrm_post_compaction() {
1024   if (_hr_printer.is_active()) {
1025     PostCompactionPrinterClosure cl(hr_printer());
1026     heap_region_iterate(&cl);
1027   }
1028 }
1029 
1030 void G1CollectedHeap::abort_concurrent_cycle() {
1031   // Note: When we have a more flexible GC logging framework that
1032   // allows us to add optional attributes to a GC log record we
1033   // could consider timing and reporting how long we wait in the
1034   // following two methods.
1035   wait_while_free_regions_coming();
1036   // If we start the compaction before the CM threads finish
1037   // scanning the root regions we might trip them over as we'll
1038   // be moving objects / updating references. So let's wait until
1039   // they are done. By telling them to abort, they should complete
1040   // early.
1041   _cm->root_regions()->abort();
1042   _cm->root_regions()->wait_until_scan_finished();
1043   append_secondary_free_list_if_not_empty_with_lock();
1044 
1045   // Disable discovery and empty the discovered lists
1046   // for the CM ref processor.
1047   ref_processor_cm()->disable_discovery();
1048   ref_processor_cm()->abandon_partial_discovery();
1049   ref_processor_cm()->verify_no_references_recorded();
1050 
1051   // Abandon current iterations of concurrent marking and concurrent
1052   // refinement, if any are in progress.
1053   concurrent_mark()->abort();
1054 }
1055 
1056 void G1CollectedHeap::prepare_heap_for_full_collection() {
1057   // Make sure we'll choose a new allocation region afterwards.
1058   _allocator->release_mutator_alloc_region();
1059   _allocator->abandon_gc_alloc_regions();
1060   g1_rem_set()->cleanupHRRS();
1061 
1062   // We may have added regions to the current incremental collection
1063   // set between the last GC or pause and now. We need to clear the
1064   // incremental collection set and then start rebuilding it afresh
1065   // after this full GC.
1066   abandon_collection_set(collection_set());
1067 
1068   tear_down_region_sets(false /* free_list_only */);
1069   collector_state()->set_gcs_are_young(true);
1070 }
1071 
1072 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1073   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1074   assert(used() == recalculate_used(), "Should be equal");
1075   _verifier->verify_region_sets_optional();
1076   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1077   _verifier->check_bitmaps("Full GC Start");
1078 }
1079 
1080 void G1CollectedHeap::prepare_heap_for_mutators() {
1081   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1082   ClassLoaderDataGraph::purge();
1083   MetaspaceAux::verify_metrics();
1084 
1085   // Prepare heap for normal collections.
1086   assert(num_free_regions() == 0, "we should not have added any free regions");
1087   rebuild_region_sets(false /* free_list_only */);
1088   abort_refinement();
1089   resize_if_necessary_after_full_collection();
1090 
1091   // Rebuild the strong code root lists for each region
1092   rebuild_strong_code_roots();
1093 
1094   // Start a new incremental collection set for the next pause
1095   start_new_collection_set();
1096 
1097   _allocator->init_mutator_alloc_region();
1098 
1099   // Post collection state updates.
1100   MetaspaceGC::compute_new_size();
1101 }
1102 
1103 void G1CollectedHeap::abort_refinement() {
1104   if (_hot_card_cache->use_cache()) {
1105     _hot_card_cache->reset_hot_cache();
1106   }
1107 
1108   // Discard all remembered set updates.
1109   JavaThread::dirty_card_queue_set().abandon_logs();
1110   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1111 }
1112 
1113 void G1CollectedHeap::verify_after_full_collection() {
1114   check_gc_time_stamps();
1115   _hrm.verify_optional();
1116   _verifier->verify_region_sets_optional();
1117   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1118   // Clear the previous marking bitmap, if needed for bitmap verification.
1119   // Note we cannot do this when we clear the next marking bitmap in
1120   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1121   // objects marked during a full GC against the previous bitmap.
1122   // But we need to clear it before calling check_bitmaps below since
1123   // the full GC has compacted objects and updated TAMS but not updated
1124   // the prev bitmap.
1125   if (G1VerifyBitmaps) {
1126     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1127     _cm->clear_prev_bitmap(workers());
1128   }
1129   _verifier->check_bitmaps("Full GC End");
1130 
1131   // At this point there should be no regions in the
1132   // entire heap tagged as young.
1133   assert(check_young_list_empty(), "young list should be empty at this point");
1134 
1135   // Note: since we've just done a full GC, concurrent
1136   // marking is no longer active. Therefore we need not
1137   // re-enable reference discovery for the CM ref processor.
1138   // That will be done at the start of the next marking cycle.
1139   // We also know that the STW processor should no longer
1140   // discover any new references.
1141   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1142   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1143   ref_processor_stw()->verify_no_references_recorded();
1144   ref_processor_cm()->verify_no_references_recorded();
1145 }
1146 
1147 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1148   // Post collection logging.
1149   // We should do this after we potentially resize the heap so
1150   // that all the COMMIT / UNCOMMIT events are generated before
1151   // the compaction events.
1152   print_hrm_post_compaction();
1153   heap_transition->print();
1154   print_heap_after_gc();
1155   print_heap_regions();
1156 #ifdef TRACESPINNING
1157   ParallelTaskTerminator::print_termination_counts();
1158 #endif
1159 }
1160 
1161 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1162                                          bool clear_all_soft_refs) {
1163   assert_at_safepoint(true /* should_be_vm_thread */);
1164 
1165   if (GCLocker::check_active_before_gc()) {
1166     // Full GC was not completed.
1167     return false;
1168   }
1169 
1170   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1171       soft_ref_policy()->should_clear_all_soft_refs();
1172 
1173   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1174   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1175 
1176   collector.prepare_collection();
1177   collector.collect();
1178   collector.complete_collection();
1179 
1180   // Full collection was successfully completed.
1181   return true;
1182 }
1183 
1184 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1185   // Currently, there is no facility in the do_full_collection(bool) API to notify
1186   // the caller that the collection did not succeed (e.g., because it was locked
1187   // out by the GC locker). So, right now, we'll ignore the return value.
1188   bool dummy = do_full_collection(true,                /* explicit_gc */
1189                                   clear_all_soft_refs);
1190 }
1191 
1192 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1193   // Capacity, free and used after the GC counted as full regions to
1194   // include the waste in the following calculations.
1195   const size_t capacity_after_gc = capacity();
1196   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1197 
1198   // This is enforced in arguments.cpp.
1199   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1200          "otherwise the code below doesn't make sense");
1201 
1202   // We don't have floating point command-line arguments
1203   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1204   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1205   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1206   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1207 
1208   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1209   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1210 
1211   // We have to be careful here as these two calculations can overflow
1212   // 32-bit size_t's.
1213   double used_after_gc_d = (double) used_after_gc;
1214   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1215   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1216 
1217   // Let's make sure that they are both under the max heap size, which
1218   // by default will make them fit into a size_t.
1219   double desired_capacity_upper_bound = (double) max_heap_size;
1220   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1221                                     desired_capacity_upper_bound);
1222   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1223                                     desired_capacity_upper_bound);
1224 
1225   // We can now safely turn them into size_t's.
1226   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1227   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1228 
1229   // This assert only makes sense here, before we adjust them
1230   // with respect to the min and max heap size.
1231   assert(minimum_desired_capacity <= maximum_desired_capacity,
1232          "minimum_desired_capacity = " SIZE_FORMAT ", "
1233          "maximum_desired_capacity = " SIZE_FORMAT,
1234          minimum_desired_capacity, maximum_desired_capacity);
1235 
1236   // Should not be greater than the heap max size. No need to adjust
1237   // it with respect to the heap min size as it's a lower bound (i.e.,
1238   // we'll try to make the capacity larger than it, not smaller).
1239   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1240   // Should not be less than the heap min size. No need to adjust it
1241   // with respect to the heap max size as it's an upper bound (i.e.,
1242   // we'll try to make the capacity smaller than it, not greater).
1243   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1244 
1245   if (capacity_after_gc < minimum_desired_capacity) {
1246     // Don't expand unless it's significant
1247     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1248 
1249     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1250                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1251                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1252                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1253 
1254     expand(expand_bytes, _workers);
1255 
1256     // No expansion, now see if we want to shrink
1257   } else if (capacity_after_gc > maximum_desired_capacity) {
1258     // Capacity too large, compute shrinking size
1259     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1260 
1261     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1262                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1263                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1264                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1265 
1266     shrink(shrink_bytes);
1267   }
1268 }
1269 
1270 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1271                                                             AllocationContext_t context,
1272                                                             bool do_gc,
1273                                                             bool clear_all_soft_refs,
1274                                                             bool expect_null_mutator_alloc_region,
1275                                                             bool* gc_succeeded) {
1276   *gc_succeeded = true;
1277   // Let's attempt the allocation first.
1278   HeapWord* result =
1279     attempt_allocation_at_safepoint(word_size,
1280                                     context,
1281                                     expect_null_mutator_alloc_region);
1282   if (result != NULL) {
1283     return result;
1284   }
1285 
1286   // In a G1 heap, we're supposed to keep allocation from failing by
1287   // incremental pauses.  Therefore, at least for now, we'll favor
1288   // expansion over collection.  (This might change in the future if we can
1289   // do something smarter than full collection to satisfy a failed alloc.)
1290   result = expand_and_allocate(word_size, context);
1291   if (result != NULL) {
1292     return result;
1293   }
1294 
1295   if (do_gc) {
1296     // Expansion didn't work, we'll try to do a Full GC.
1297     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1298                                        clear_all_soft_refs);
1299   }
1300 
1301   return NULL;
1302 }
1303 
1304 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1305                                                      AllocationContext_t context,
1306                                                      bool* succeeded) {
1307   assert_at_safepoint(true /* should_be_vm_thread */);
1308 
1309   // Attempts to allocate followed by Full GC.
1310   HeapWord* result =
1311     satisfy_failed_allocation_helper(word_size,
1312                                      context,
1313                                      true,  /* do_gc */
1314                                      false, /* clear_all_soft_refs */
1315                                      false, /* expect_null_mutator_alloc_region */
1316                                      succeeded);
1317 
1318   if (result != NULL || !*succeeded) {
1319     return result;
1320   }
1321 
1322   // Attempts to allocate followed by Full GC that will collect all soft references.
1323   result = satisfy_failed_allocation_helper(word_size,
1324                                             context,
1325                                             true, /* do_gc */
1326                                             true, /* clear_all_soft_refs */
1327                                             true, /* expect_null_mutator_alloc_region */
1328                                             succeeded);
1329 
1330   if (result != NULL || !*succeeded) {
1331     return result;
1332   }
1333 
1334   // Attempts to allocate, no GC
1335   result = satisfy_failed_allocation_helper(word_size,
1336                                             context,
1337                                             false, /* do_gc */
1338                                             false, /* clear_all_soft_refs */
1339                                             true,  /* expect_null_mutator_alloc_region */
1340                                             succeeded);
1341 
1342   if (result != NULL) {
1343     return result;
1344   }
1345 
1346   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1347          "Flag should have been handled and cleared prior to this point");
1348 
1349   // What else?  We might try synchronous finalization later.  If the total
1350   // space available is large enough for the allocation, then a more
1351   // complete compaction phase than we've tried so far might be
1352   // appropriate.
1353   return NULL;
1354 }
1355 
1356 // Attempting to expand the heap sufficiently
1357 // to support an allocation of the given "word_size".  If
1358 // successful, perform the allocation and return the address of the
1359 // allocated block, or else "NULL".
1360 
1361 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1362   assert_at_safepoint(true /* should_be_vm_thread */);
1363 
1364   _verifier->verify_region_sets_optional();
1365 
1366   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1367   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1368                             word_size * HeapWordSize);
1369 
1370 
1371   if (expand(expand_bytes, _workers)) {
1372     _hrm.verify_optional();
1373     _verifier->verify_region_sets_optional();
1374     return attempt_allocation_at_safepoint(word_size,
1375                                            context,
1376                                            false /* expect_null_mutator_alloc_region */);
1377   }
1378   return NULL;
1379 }
1380 
1381 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1382   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1383   aligned_expand_bytes = align_up(aligned_expand_bytes,
1384                                        HeapRegion::GrainBytes);
1385 
1386   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1387                             expand_bytes, aligned_expand_bytes);
1388 
1389   if (is_maximal_no_gc()) {
1390     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1391     return false;
1392   }
1393 
1394   double expand_heap_start_time_sec = os::elapsedTime();
1395   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1396   assert(regions_to_expand > 0, "Must expand by at least one region");
1397 
1398   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1399   if (expand_time_ms != NULL) {
1400     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1401   }
1402 
1403   if (expanded_by > 0) {
1404     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1405     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1406     g1_policy()->record_new_heap_size(num_regions());
1407   } else {
1408     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1409 
1410     // The expansion of the virtual storage space was unsuccessful.
1411     // Let's see if it was because we ran out of swap.
1412     if (G1ExitOnExpansionFailure &&
1413         _hrm.available() >= regions_to_expand) {
1414       // We had head room...
1415       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1416     }
1417   }
1418   return regions_to_expand > 0;
1419 }
1420 
1421 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1422   size_t aligned_shrink_bytes =
1423     ReservedSpace::page_align_size_down(shrink_bytes);
1424   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1425                                          HeapRegion::GrainBytes);
1426   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1427 
1428   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1429   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1430 
1431 
1432   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1433                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1434   if (num_regions_removed > 0) {
1435     g1_policy()->record_new_heap_size(num_regions());
1436   } else {
1437     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1438   }
1439 }
1440 
1441 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1442   _verifier->verify_region_sets_optional();
1443 
1444   // We should only reach here at the end of a Full GC which means we
1445   // should not not be holding to any GC alloc regions. The method
1446   // below will make sure of that and do any remaining clean up.
1447   _allocator->abandon_gc_alloc_regions();
1448 
1449   // Instead of tearing down / rebuilding the free lists here, we
1450   // could instead use the remove_all_pending() method on free_list to
1451   // remove only the ones that we need to remove.
1452   tear_down_region_sets(true /* free_list_only */);
1453   shrink_helper(shrink_bytes);
1454   rebuild_region_sets(true /* free_list_only */);
1455 
1456   _hrm.verify_optional();
1457   _verifier->verify_region_sets_optional();
1458 }
1459 
1460 // Public methods.
1461 
1462 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1463   CollectedHeap(),
1464   _young_gen_sampling_thread(NULL),
1465   _collector_policy(collector_policy),
1466   _soft_ref_policy(),
1467   _memory_manager("G1 Young Generation", "end of minor GC"),
1468   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1469   _eden_pool(NULL),
1470   _survivor_pool(NULL),
1471   _old_pool(NULL),
1472   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1473   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1474   _g1_policy(create_g1_policy(_gc_timer_stw)),
1475   _collection_set(this, _g1_policy),
1476   _dirty_card_queue_set(false),
1477   _is_alive_closure_cm(this),
1478   _is_alive_closure_stw(this),
1479   _ref_processor_cm(NULL),
1480   _ref_processor_stw(NULL),
1481   _bot(NULL),
1482   _hot_card_cache(NULL),
1483   _g1_rem_set(NULL),
1484   _cr(NULL),
1485   _g1mm(NULL),
1486   _preserved_marks_set(true /* in_c_heap */),
1487   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1488   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1489   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1490   _humongous_reclaim_candidates(),
1491   _has_humongous_reclaim_candidates(false),
1492   _archive_allocator(NULL),
1493   _free_regions_coming(false),
1494   _gc_time_stamp(0),
1495   _summary_bytes_used(0),
1496   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1497   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1498   _expand_heap_after_alloc_failure(true),
1499   _old_marking_cycles_started(0),
1500   _old_marking_cycles_completed(0),
1501   _in_cset_fast_test() {
1502 
1503   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1504                           /* are_GC_task_threads */true,
1505                           /* are_ConcurrentGC_threads */false);
1506   _workers->initialize_workers();
1507   _verifier = new G1HeapVerifier(this);
1508 
1509   _allocator = G1Allocator::create_allocator(this);
1510 
1511   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1512 
1513   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1514 
1515   // Override the default _filler_array_max_size so that no humongous filler
1516   // objects are created.
1517   _filler_array_max_size = _humongous_object_threshold_in_words;
1518 
1519   uint n_queues = ParallelGCThreads;
1520   _task_queues = new RefToScanQueueSet(n_queues);
1521 
1522   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1523 
1524   for (uint i = 0; i < n_queues; i++) {
1525     RefToScanQueue* q = new RefToScanQueue();
1526     q->initialize();
1527     _task_queues->register_queue(i, q);
1528     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1529   }
1530 
1531   // Initialize the G1EvacuationFailureALot counters and flags.
1532   NOT_PRODUCT(reset_evacuation_should_fail();)
1533 
1534   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1535 }
1536 
1537 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1538                                                                  size_t size,
1539                                                                  size_t translation_factor) {
1540   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1541   // Allocate a new reserved space, preferring to use large pages.
1542   ReservedSpace rs(size, preferred_page_size);
1543   G1RegionToSpaceMapper* result  =
1544     G1RegionToSpaceMapper::create_mapper(rs,
1545                                          size,
1546                                          rs.alignment(),
1547                                          HeapRegion::GrainBytes,
1548                                          translation_factor,
1549                                          mtGC);
1550 
1551   os::trace_page_sizes_for_requested_size(description,
1552                                           size,
1553                                           preferred_page_size,
1554                                           rs.alignment(),
1555                                           rs.base(),
1556                                           rs.size());
1557 
1558   return result;
1559 }
1560 
1561 jint G1CollectedHeap::initialize_concurrent_refinement() {
1562   jint ecode = JNI_OK;
1563   _cr = G1ConcurrentRefine::create(&ecode);
1564   return ecode;
1565 }
1566 
1567 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1568   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1569   if (_young_gen_sampling_thread->osthread() == NULL) {
1570     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1571     return JNI_ENOMEM;
1572   }
1573   return JNI_OK;
1574 }
1575 
1576 jint G1CollectedHeap::initialize() {
1577   os::enable_vtime();
1578 
1579   // Necessary to satisfy locking discipline assertions.
1580 
1581   MutexLocker x(Heap_lock);
1582 
1583   // While there are no constraints in the GC code that HeapWordSize
1584   // be any particular value, there are multiple other areas in the
1585   // system which believe this to be true (e.g. oop->object_size in some
1586   // cases incorrectly returns the size in wordSize units rather than
1587   // HeapWordSize).
1588   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1589 
1590   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1591   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1592   size_t heap_alignment = collector_policy()->heap_alignment();
1593 
1594   // Ensure that the sizes are properly aligned.
1595   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1596   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1597   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1598 
1599   // Reserve the maximum.
1600 
1601   // When compressed oops are enabled, the preferred heap base
1602   // is calculated by subtracting the requested size from the
1603   // 32Gb boundary and using the result as the base address for
1604   // heap reservation. If the requested size is not aligned to
1605   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1606   // into the ReservedHeapSpace constructor) then the actual
1607   // base of the reserved heap may end up differing from the
1608   // address that was requested (i.e. the preferred heap base).
1609   // If this happens then we could end up using a non-optimal
1610   // compressed oops mode.
1611 
1612   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1613                                                  heap_alignment);
1614 
1615   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1616 
1617   // Create the barrier set for the entire reserved region.
1618   G1SATBCardTableLoggingModRefBS* bs
1619     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1620   bs->initialize();
1621   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1622   set_barrier_set(bs);
1623 
1624   // Create the hot card cache.
1625   _hot_card_cache = new G1HotCardCache(this);
1626 
1627   // Carve out the G1 part of the heap.
1628   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1629   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1630   G1RegionToSpaceMapper* heap_storage =
1631     G1RegionToSpaceMapper::create_mapper(g1_rs,
1632                                          g1_rs.size(),
1633                                          page_size,
1634                                          HeapRegion::GrainBytes,
1635                                          1,
1636                                          mtJavaHeap);
1637   os::trace_page_sizes("Heap",
1638                        collector_policy()->min_heap_byte_size(),
1639                        max_byte_size,
1640                        page_size,
1641                        heap_rs.base(),
1642                        heap_rs.size());
1643   heap_storage->set_mapping_changed_listener(&_listener);
1644 
1645   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1646   G1RegionToSpaceMapper* bot_storage =
1647     create_aux_memory_mapper("Block Offset Table",
1648                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1649                              G1BlockOffsetTable::heap_map_factor());
1650 
1651   G1RegionToSpaceMapper* cardtable_storage =
1652     create_aux_memory_mapper("Card Table",
1653                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1654                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1655 
1656   G1RegionToSpaceMapper* card_counts_storage =
1657     create_aux_memory_mapper("Card Counts Table",
1658                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1659                              G1CardCounts::heap_map_factor());
1660 
1661   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1662   G1RegionToSpaceMapper* prev_bitmap_storage =
1663     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1664   G1RegionToSpaceMapper* next_bitmap_storage =
1665     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1666 
1667   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1668   g1_barrier_set()->initialize(cardtable_storage);
1669   // Do later initialization work for concurrent refinement.
1670   _hot_card_cache->initialize(card_counts_storage);
1671 
1672   // 6843694 - ensure that the maximum region index can fit
1673   // in the remembered set structures.
1674   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1675   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1676 
1677   // Also create a G1 rem set.
1678   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1679   _g1_rem_set->initialize(max_capacity(), max_regions());
1680 
1681   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1682   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1683   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1684             "too many cards per region");
1685 
1686   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1687 
1688   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1689 
1690   {
1691     HeapWord* start = _hrm.reserved().start();
1692     HeapWord* end = _hrm.reserved().end();
1693     size_t granularity = HeapRegion::GrainBytes;
1694 
1695     _in_cset_fast_test.initialize(start, end, granularity);
1696     _humongous_reclaim_candidates.initialize(start, end, granularity);
1697   }
1698 
1699   // Create the G1ConcurrentMark data structure and thread.
1700   // (Must do this late, so that "max_regions" is defined.)
1701   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1702   if (_cm == NULL || !_cm->completed_initialization()) {
1703     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1704     return JNI_ENOMEM;
1705   }
1706   _cmThread = _cm->cm_thread();
1707 
1708   // Now expand into the initial heap size.
1709   if (!expand(init_byte_size, _workers)) {
1710     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1711     return JNI_ENOMEM;
1712   }
1713 
1714   // Perform any initialization actions delegated to the policy.
1715   g1_policy()->init(this, &_collection_set);
1716 
1717   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1718                                                SATB_Q_FL_lock,
1719                                                G1SATBProcessCompletedThreshold,
1720                                                Shared_SATB_Q_lock);
1721 
1722   jint ecode = initialize_concurrent_refinement();
1723   if (ecode != JNI_OK) {
1724     return ecode;
1725   }
1726 
1727   ecode = initialize_young_gen_sampling_thread();
1728   if (ecode != JNI_OK) {
1729     return ecode;
1730   }
1731 
1732   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1733                                                 DirtyCardQ_FL_lock,
1734                                                 (int)concurrent_refine()->yellow_zone(),
1735                                                 (int)concurrent_refine()->red_zone(),
1736                                                 Shared_DirtyCardQ_lock,
1737                                                 NULL,  // fl_owner
1738                                                 true); // init_free_ids
1739 
1740   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1741                                     DirtyCardQ_FL_lock,
1742                                     -1, // never trigger processing
1743                                     -1, // no limit on length
1744                                     Shared_DirtyCardQ_lock,
1745                                     &JavaThread::dirty_card_queue_set());
1746 
1747   // Here we allocate the dummy HeapRegion that is required by the
1748   // G1AllocRegion class.
1749   HeapRegion* dummy_region = _hrm.get_dummy_region();
1750 
1751   // We'll re-use the same region whether the alloc region will
1752   // require BOT updates or not and, if it doesn't, then a non-young
1753   // region will complain that it cannot support allocations without
1754   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1755   dummy_region->set_eden();
1756   // Make sure it's full.
1757   dummy_region->set_top(dummy_region->end());
1758   G1AllocRegion::setup(this, dummy_region);
1759 
1760   _allocator->init_mutator_alloc_region();
1761 
1762   // Do create of the monitoring and management support so that
1763   // values in the heap have been properly initialized.
1764   _g1mm = new G1MonitoringSupport(this);
1765 
1766   G1StringDedup::initialize();
1767 
1768   _preserved_marks_set.init(ParallelGCThreads);
1769 
1770   _collection_set.initialize(max_regions());
1771 
1772   return JNI_OK;
1773 }
1774 
1775 void G1CollectedHeap::initialize_serviceability() {
1776   _eden_pool = new G1EdenPool(this);
1777   _survivor_pool = new G1SurvivorPool(this);
1778   _old_pool = new G1OldGenPool(this);
1779 
1780   _full_gc_memory_manager.add_pool(_eden_pool);
1781   _full_gc_memory_manager.add_pool(_survivor_pool);
1782   _full_gc_memory_manager.add_pool(_old_pool);
1783 
1784   _memory_manager.add_pool(_eden_pool);
1785   _memory_manager.add_pool(_survivor_pool);
1786 
1787 }
1788 
1789 void G1CollectedHeap::stop() {
1790   // Stop all concurrent threads. We do this to make sure these threads
1791   // do not continue to execute and access resources (e.g. logging)
1792   // that are destroyed during shutdown.
1793   _cr->stop();
1794   _young_gen_sampling_thread->stop();
1795   _cmThread->stop();
1796   if (G1StringDedup::is_enabled()) {
1797     G1StringDedup::stop();
1798   }
1799 }
1800 
1801 void G1CollectedHeap::safepoint_synchronize_begin() {
1802   SuspendibleThreadSet::synchronize();
1803 }
1804 
1805 void G1CollectedHeap::safepoint_synchronize_end() {
1806   SuspendibleThreadSet::desynchronize();
1807 }
1808 
1809 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1810   return HeapRegion::max_region_size();
1811 }
1812 
1813 void G1CollectedHeap::post_initialize() {
1814   CollectedHeap::post_initialize();
1815   ref_processing_init();
1816 }
1817 
1818 void G1CollectedHeap::ref_processing_init() {
1819   // Reference processing in G1 currently works as follows:
1820   //
1821   // * There are two reference processor instances. One is
1822   //   used to record and process discovered references
1823   //   during concurrent marking; the other is used to
1824   //   record and process references during STW pauses
1825   //   (both full and incremental).
1826   // * Both ref processors need to 'span' the entire heap as
1827   //   the regions in the collection set may be dotted around.
1828   //
1829   // * For the concurrent marking ref processor:
1830   //   * Reference discovery is enabled at initial marking.
1831   //   * Reference discovery is disabled and the discovered
1832   //     references processed etc during remarking.
1833   //   * Reference discovery is MT (see below).
1834   //   * Reference discovery requires a barrier (see below).
1835   //   * Reference processing may or may not be MT
1836   //     (depending on the value of ParallelRefProcEnabled
1837   //     and ParallelGCThreads).
1838   //   * A full GC disables reference discovery by the CM
1839   //     ref processor and abandons any entries on it's
1840   //     discovered lists.
1841   //
1842   // * For the STW processor:
1843   //   * Non MT discovery is enabled at the start of a full GC.
1844   //   * Processing and enqueueing during a full GC is non-MT.
1845   //   * During a full GC, references are processed after marking.
1846   //
1847   //   * Discovery (may or may not be MT) is enabled at the start
1848   //     of an incremental evacuation pause.
1849   //   * References are processed near the end of a STW evacuation pause.
1850   //   * For both types of GC:
1851   //     * Discovery is atomic - i.e. not concurrent.
1852   //     * Reference discovery will not need a barrier.
1853 
1854   MemRegion mr = reserved_region();
1855 
1856   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1857 
1858   // Concurrent Mark ref processor
1859   _ref_processor_cm =
1860     new ReferenceProcessor(mr,    // span
1861                            mt_processing,
1862                                 // mt processing
1863                            ParallelGCThreads,
1864                                 // degree of mt processing
1865                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1866                                 // mt discovery
1867                            MAX2(ParallelGCThreads, ConcGCThreads),
1868                                 // degree of mt discovery
1869                            false,
1870                                 // Reference discovery is not atomic
1871                            &_is_alive_closure_cm);
1872                                 // is alive closure
1873                                 // (for efficiency/performance)
1874 
1875   // STW ref processor
1876   _ref_processor_stw =
1877     new ReferenceProcessor(mr,    // span
1878                            mt_processing,
1879                                 // mt processing
1880                            ParallelGCThreads,
1881                                 // degree of mt processing
1882                            (ParallelGCThreads > 1),
1883                                 // mt discovery
1884                            ParallelGCThreads,
1885                                 // degree of mt discovery
1886                            true,
1887                                 // Reference discovery is atomic
1888                            &_is_alive_closure_stw);
1889                                 // is alive closure
1890                                 // (for efficiency/performance)
1891 }
1892 
1893 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1894   return _collector_policy;
1895 }
1896 
1897 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1898   return &_soft_ref_policy;
1899 }
1900 
1901 size_t G1CollectedHeap::capacity() const {
1902   return _hrm.length() * HeapRegion::GrainBytes;
1903 }
1904 
1905 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1906   return _hrm.total_free_bytes();
1907 }
1908 
1909 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
1910   hr->reset_gc_time_stamp();
1911 }
1912 
1913 #ifndef PRODUCT
1914 
1915 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
1916 private:
1917   unsigned _gc_time_stamp;
1918   bool _failures;
1919 
1920 public:
1921   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
1922     _gc_time_stamp(gc_time_stamp), _failures(false) { }
1923 
1924   virtual bool do_heap_region(HeapRegion* hr) {
1925     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
1926     if (_gc_time_stamp != region_gc_time_stamp) {
1927       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
1928                             region_gc_time_stamp, _gc_time_stamp);
1929       _failures = true;
1930     }
1931     return false;
1932   }
1933 
1934   bool failures() { return _failures; }
1935 };
1936 
1937 void G1CollectedHeap::check_gc_time_stamps() {
1938   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
1939   heap_region_iterate(&cl);
1940   guarantee(!cl.failures(), "all GC time stamps should have been reset");
1941 }
1942 #endif // PRODUCT
1943 
1944 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1945   _hot_card_cache->drain(cl, worker_i);
1946 }
1947 
1948 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1949   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1950   size_t n_completed_buffers = 0;
1951   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1952     n_completed_buffers++;
1953   }
1954   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
1955   dcqs.clear_n_completed_buffers();
1956   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1957 }
1958 
1959 // Computes the sum of the storage used by the various regions.
1960 size_t G1CollectedHeap::used() const {
1961   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1962   if (_archive_allocator != NULL) {
1963     result += _archive_allocator->used();
1964   }
1965   return result;
1966 }
1967 
1968 size_t G1CollectedHeap::used_unlocked() const {
1969   return _summary_bytes_used;
1970 }
1971 
1972 class SumUsedClosure: public HeapRegionClosure {
1973   size_t _used;
1974 public:
1975   SumUsedClosure() : _used(0) {}
1976   bool do_heap_region(HeapRegion* r) {
1977     _used += r->used();
1978     return false;
1979   }
1980   size_t result() { return _used; }
1981 };
1982 
1983 size_t G1CollectedHeap::recalculate_used() const {
1984   double recalculate_used_start = os::elapsedTime();
1985 
1986   SumUsedClosure blk;
1987   heap_region_iterate(&blk);
1988 
1989   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1990   return blk.result();
1991 }
1992 
1993 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1994   switch (cause) {
1995     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1996     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1997     case GCCause::_update_allocation_context_stats_inc: return true;
1998     case GCCause::_wb_conc_mark:                        return true;
1999     default :                                           return false;
2000   }
2001 }
2002 
2003 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2004   switch (cause) {
2005     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2006     case GCCause::_g1_humongous_allocation: return true;
2007     default:                                return is_user_requested_concurrent_full_gc(cause);
2008   }
2009 }
2010 
2011 #ifndef PRODUCT
2012 void G1CollectedHeap::allocate_dummy_regions() {
2013   // Let's fill up most of the region
2014   size_t word_size = HeapRegion::GrainWords - 1024;
2015   // And as a result the region we'll allocate will be humongous.
2016   guarantee(is_humongous(word_size), "sanity");
2017 
2018   // _filler_array_max_size is set to humongous object threshold
2019   // but temporarily change it to use CollectedHeap::fill_with_object().
2020   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2021 
2022   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2023     // Let's use the existing mechanism for the allocation
2024     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2025                                                  AllocationContext::system());
2026     if (dummy_obj != NULL) {
2027       MemRegion mr(dummy_obj, word_size);
2028       CollectedHeap::fill_with_object(mr);
2029     } else {
2030       // If we can't allocate once, we probably cannot allocate
2031       // again. Let's get out of the loop.
2032       break;
2033     }
2034   }
2035 }
2036 #endif // !PRODUCT
2037 
2038 void G1CollectedHeap::increment_old_marking_cycles_started() {
2039   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2040          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2041          "Wrong marking cycle count (started: %d, completed: %d)",
2042          _old_marking_cycles_started, _old_marking_cycles_completed);
2043 
2044   _old_marking_cycles_started++;
2045 }
2046 
2047 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2048   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2049 
2050   // We assume that if concurrent == true, then the caller is a
2051   // concurrent thread that was joined the Suspendible Thread
2052   // Set. If there's ever a cheap way to check this, we should add an
2053   // assert here.
2054 
2055   // Given that this method is called at the end of a Full GC or of a
2056   // concurrent cycle, and those can be nested (i.e., a Full GC can
2057   // interrupt a concurrent cycle), the number of full collections
2058   // completed should be either one (in the case where there was no
2059   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2060   // behind the number of full collections started.
2061 
2062   // This is the case for the inner caller, i.e. a Full GC.
2063   assert(concurrent ||
2064          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2065          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2066          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2067          "is inconsistent with _old_marking_cycles_completed = %u",
2068          _old_marking_cycles_started, _old_marking_cycles_completed);
2069 
2070   // This is the case for the outer caller, i.e. the concurrent cycle.
2071   assert(!concurrent ||
2072          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2073          "for outer caller (concurrent cycle): "
2074          "_old_marking_cycles_started = %u "
2075          "is inconsistent with _old_marking_cycles_completed = %u",
2076          _old_marking_cycles_started, _old_marking_cycles_completed);
2077 
2078   _old_marking_cycles_completed += 1;
2079 
2080   // We need to clear the "in_progress" flag in the CM thread before
2081   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2082   // is set) so that if a waiter requests another System.gc() it doesn't
2083   // incorrectly see that a marking cycle is still in progress.
2084   if (concurrent) {
2085     _cmThread->set_idle();
2086   }
2087 
2088   // This notify_all() will ensure that a thread that called
2089   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2090   // and it's waiting for a full GC to finish will be woken up. It is
2091   // waiting in VM_G1CollectForAllocation::doit_epilogue().
2092   FullGCCount_lock->notify_all();
2093 }
2094 
2095 void G1CollectedHeap::collect(GCCause::Cause cause) {
2096   assert_heap_not_locked();
2097 
2098   uint gc_count_before;
2099   uint old_marking_count_before;
2100   uint full_gc_count_before;
2101   bool retry_gc;
2102 
2103   do {
2104     retry_gc = false;
2105 
2106     {
2107       MutexLocker ml(Heap_lock);
2108 
2109       // Read the GC count while holding the Heap_lock
2110       gc_count_before = total_collections();
2111       full_gc_count_before = total_full_collections();
2112       old_marking_count_before = _old_marking_cycles_started;
2113     }
2114 
2115     if (should_do_concurrent_full_gc(cause)) {
2116       // Schedule an initial-mark evacuation pause that will start a
2117       // concurrent cycle. We're setting word_size to 0 which means that
2118       // we are not requesting a post-GC allocation.
2119       VM_G1CollectForAllocation op(0,     /* word_size */
2120                                    gc_count_before,
2121                                    cause,
2122                                    true,  /* should_initiate_conc_mark */
2123                                    g1_policy()->max_pause_time_ms(),
2124                                    AllocationContext::current());
2125       VMThread::execute(&op);
2126       if (!op.pause_succeeded()) {
2127         if (old_marking_count_before == _old_marking_cycles_started) {
2128           retry_gc = op.should_retry_gc();
2129         } else {
2130           // A Full GC happened while we were trying to schedule the
2131           // initial-mark GC. No point in starting a new cycle given
2132           // that the whole heap was collected anyway.
2133         }
2134 
2135         if (retry_gc) {
2136           if (GCLocker::is_active_and_needs_gc()) {
2137             GCLocker::stall_until_clear();
2138           }
2139         }
2140       }
2141     } else {
2142       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2143           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2144 
2145         // Schedule a standard evacuation pause. We're setting word_size
2146         // to 0 which means that we are not requesting a post-GC allocation.
2147         VM_G1CollectForAllocation op(0,     /* word_size */
2148                                      gc_count_before,
2149                                      cause,
2150                                      false, /* should_initiate_conc_mark */
2151                                      g1_policy()->max_pause_time_ms(),
2152                                      AllocationContext::current());
2153         VMThread::execute(&op);
2154       } else {
2155         // Schedule a Full GC.
2156         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2157         VMThread::execute(&op);
2158       }
2159     }
2160   } while (retry_gc);
2161 }
2162 
2163 bool G1CollectedHeap::is_in(const void* p) const {
2164   if (_hrm.reserved().contains(p)) {
2165     // Given that we know that p is in the reserved space,
2166     // heap_region_containing() should successfully
2167     // return the containing region.
2168     HeapRegion* hr = heap_region_containing(p);
2169     return hr->is_in(p);
2170   } else {
2171     return false;
2172   }
2173 }
2174 
2175 #ifdef ASSERT
2176 bool G1CollectedHeap::is_in_exact(const void* p) const {
2177   bool contains = reserved_region().contains(p);
2178   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2179   if (contains && available) {
2180     return true;
2181   } else {
2182     return false;
2183   }
2184 }
2185 #endif
2186 
2187 // Iteration functions.
2188 
2189 // Iterates an ObjectClosure over all objects within a HeapRegion.
2190 
2191 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2192   ObjectClosure* _cl;
2193 public:
2194   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2195   bool do_heap_region(HeapRegion* r) {
2196     if (!r->is_continues_humongous()) {
2197       r->object_iterate(_cl);
2198     }
2199     return false;
2200   }
2201 };
2202 
2203 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2204   IterateObjectClosureRegionClosure blk(cl);
2205   heap_region_iterate(&blk);
2206 }
2207 
2208 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2209   _hrm.iterate(cl);
2210 }
2211 
2212 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2213                                                                  HeapRegionClaimer *hrclaimer,
2214                                                                  uint worker_id) const {
2215   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2216 }
2217 
2218 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2219                                                          HeapRegionClaimer *hrclaimer) const {
2220   _hrm.par_iterate(cl, hrclaimer, 0);
2221 }
2222 
2223 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2224   _collection_set.iterate(cl);
2225 }
2226 
2227 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2228   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2229 }
2230 
2231 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2232   HeapRegion* hr = heap_region_containing(addr);
2233   return hr->block_start(addr);
2234 }
2235 
2236 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2237   HeapRegion* hr = heap_region_containing(addr);
2238   return hr->block_size(addr);
2239 }
2240 
2241 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2242   HeapRegion* hr = heap_region_containing(addr);
2243   return hr->block_is_obj(addr);
2244 }
2245 
2246 bool G1CollectedHeap::supports_tlab_allocation() const {
2247   return true;
2248 }
2249 
2250 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2251   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2252 }
2253 
2254 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2255   return _eden.length() * HeapRegion::GrainBytes;
2256 }
2257 
2258 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2259 // must be equal to the humongous object limit.
2260 size_t G1CollectedHeap::max_tlab_size() const {
2261   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2262 }
2263 
2264 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2265   AllocationContext_t context = AllocationContext::current();
2266   return _allocator->unsafe_max_tlab_alloc(context);
2267 }
2268 
2269 size_t G1CollectedHeap::max_capacity() const {
2270   return _hrm.reserved().byte_size();
2271 }
2272 
2273 jlong G1CollectedHeap::millis_since_last_gc() {
2274   // See the notes in GenCollectedHeap::millis_since_last_gc()
2275   // for more information about the implementation.
2276   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2277     _g1_policy->collection_pause_end_millis();
2278   if (ret_val < 0) {
2279     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2280       ". returning zero instead.", ret_val);
2281     return 0;
2282   }
2283   return ret_val;
2284 }
2285 
2286 void G1CollectedHeap::prepare_for_verify() {
2287   _verifier->prepare_for_verify();
2288 }
2289 
2290 void G1CollectedHeap::verify(VerifyOption vo) {
2291   _verifier->verify(vo);
2292 }
2293 
2294 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2295   return true;
2296 }
2297 
2298 const char* const* G1CollectedHeap::concurrent_phases() const {
2299   return _cmThread->concurrent_phases();
2300 }
2301 
2302 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2303   return _cmThread->request_concurrent_phase(phase);
2304 }
2305 
2306 class PrintRegionClosure: public HeapRegionClosure {
2307   outputStream* _st;
2308 public:
2309   PrintRegionClosure(outputStream* st) : _st(st) {}
2310   bool do_heap_region(HeapRegion* r) {
2311     r->print_on(_st);
2312     return false;
2313   }
2314 };
2315 
2316 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2317                                        const HeapRegion* hr,
2318                                        const VerifyOption vo) const {
2319   switch (vo) {
2320   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2321   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2322   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2323   default:                            ShouldNotReachHere();
2324   }
2325   return false; // keep some compilers happy
2326 }
2327 
2328 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2329                                        const VerifyOption vo) const {
2330   switch (vo) {
2331   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2332   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2333   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2334   default:                            ShouldNotReachHere();
2335   }
2336   return false; // keep some compilers happy
2337 }
2338 
2339 void G1CollectedHeap::print_heap_regions() const {
2340   LogTarget(Trace, gc, heap, region) lt;
2341   if (lt.is_enabled()) {
2342     LogStream ls(lt);
2343     print_regions_on(&ls);
2344   }
2345 }
2346 
2347 void G1CollectedHeap::print_on(outputStream* st) const {
2348   st->print(" %-20s", "garbage-first heap");
2349   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2350             capacity()/K, used_unlocked()/K);
2351   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2352             p2i(_hrm.reserved().start()),
2353             p2i(_hrm.reserved().end()));
2354   st->cr();
2355   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2356   uint young_regions = young_regions_count();
2357   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2358             (size_t) young_regions * HeapRegion::GrainBytes / K);
2359   uint survivor_regions = survivor_regions_count();
2360   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2361             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2362   st->cr();
2363   MetaspaceAux::print_on(st);
2364 }
2365 
2366 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2367   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2368                "HS=humongous(starts), HC=humongous(continues), "
2369                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2370                "AC=allocation context, "
2371                "TAMS=top-at-mark-start (previous, next)");
2372   PrintRegionClosure blk(st);
2373   heap_region_iterate(&blk);
2374 }
2375 
2376 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2377   print_on(st);
2378 
2379   // Print the per-region information.
2380   print_regions_on(st);
2381 }
2382 
2383 void G1CollectedHeap::print_on_error(outputStream* st) const {
2384   this->CollectedHeap::print_on_error(st);
2385 
2386   if (_cm != NULL) {
2387     st->cr();
2388     _cm->print_on_error(st);
2389   }
2390 }
2391 
2392 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2393   workers()->print_worker_threads_on(st);
2394   _cmThread->print_on(st);
2395   st->cr();
2396   _cm->print_worker_threads_on(st);
2397   _cr->print_threads_on(st);
2398   _young_gen_sampling_thread->print_on(st);
2399   if (G1StringDedup::is_enabled()) {
2400     G1StringDedup::print_worker_threads_on(st);
2401   }
2402 }
2403 
2404 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2405   workers()->threads_do(tc);
2406   tc->do_thread(_cmThread);
2407   _cm->threads_do(tc);
2408   _cr->threads_do(tc);
2409   tc->do_thread(_young_gen_sampling_thread);
2410   if (G1StringDedup::is_enabled()) {
2411     G1StringDedup::threads_do(tc);
2412   }
2413 }
2414 
2415 void G1CollectedHeap::print_tracing_info() const {
2416   g1_rem_set()->print_summary_info();
2417   concurrent_mark()->print_summary_info();
2418 }
2419 
2420 #ifndef PRODUCT
2421 // Helpful for debugging RSet issues.
2422 
2423 class PrintRSetsClosure : public HeapRegionClosure {
2424 private:
2425   const char* _msg;
2426   size_t _occupied_sum;
2427 
2428 public:
2429   bool do_heap_region(HeapRegion* r) {
2430     HeapRegionRemSet* hrrs = r->rem_set();
2431     size_t occupied = hrrs->occupied();
2432     _occupied_sum += occupied;
2433 
2434     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2435     if (occupied == 0) {
2436       tty->print_cr("  RSet is empty");
2437     } else {
2438       hrrs->print();
2439     }
2440     tty->print_cr("----------");
2441     return false;
2442   }
2443 
2444   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2445     tty->cr();
2446     tty->print_cr("========================================");
2447     tty->print_cr("%s", msg);
2448     tty->cr();
2449   }
2450 
2451   ~PrintRSetsClosure() {
2452     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2453     tty->print_cr("========================================");
2454     tty->cr();
2455   }
2456 };
2457 
2458 void G1CollectedHeap::print_cset_rsets() {
2459   PrintRSetsClosure cl("Printing CSet RSets");
2460   collection_set_iterate(&cl);
2461 }
2462 
2463 void G1CollectedHeap::print_all_rsets() {
2464   PrintRSetsClosure cl("Printing All RSets");;
2465   heap_region_iterate(&cl);
2466 }
2467 #endif // PRODUCT
2468 
2469 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2470 
2471   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2472   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2473   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2474 
2475   size_t eden_capacity_bytes =
2476     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2477 
2478   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2479   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2480                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2481 }
2482 
2483 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2484   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2485                        stats->unused(), stats->used(), stats->region_end_waste(),
2486                        stats->regions_filled(), stats->direct_allocated(),
2487                        stats->failure_used(), stats->failure_waste());
2488 }
2489 
2490 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2491   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2492   gc_tracer->report_gc_heap_summary(when, heap_summary);
2493 
2494   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2495   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2496 }
2497 
2498 G1CollectedHeap* G1CollectedHeap::heap() {
2499   CollectedHeap* heap = Universe::heap();
2500   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2501   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2502   return (G1CollectedHeap*)heap;
2503 }
2504 
2505 void G1CollectedHeap::gc_prologue(bool full) {
2506   // always_do_update_barrier = false;
2507   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2508 
2509   // This summary needs to be printed before incrementing total collections.
2510   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2511 
2512   // Update common counters.
2513   increment_total_collections(full /* full gc */);
2514   if (full) {
2515     increment_old_marking_cycles_started();
2516     reset_gc_time_stamp();
2517   } else {
2518     increment_gc_time_stamp();
2519   }
2520 
2521   // Fill TLAB's and such
2522   double start = os::elapsedTime();
2523   accumulate_statistics_all_tlabs();
2524   ensure_parsability(true);
2525   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2526 }
2527 
2528 void G1CollectedHeap::gc_epilogue(bool full) {
2529   // Update common counters.
2530   if (full) {
2531     // Update the number of full collections that have been completed.
2532     increment_old_marking_cycles_completed(false /* concurrent */);
2533   }
2534 
2535   // We are at the end of the GC. Total collections has already been increased.
2536   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2537 
2538   // FIXME: what is this about?
2539   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2540   // is set.
2541 #if COMPILER2_OR_JVMCI
2542   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2543 #endif
2544   // always_do_update_barrier = true;
2545 
2546   double start = os::elapsedTime();
2547   resize_all_tlabs();
2548   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2549 
2550   allocation_context_stats().update(full);
2551 
2552   MemoryService::track_memory_usage();
2553   // We have just completed a GC. Update the soft reference
2554   // policy with the new heap occupancy
2555   Universe::update_heap_info_at_gc();
2556 }
2557 
2558 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2559                                                uint gc_count_before,
2560                                                bool* succeeded,
2561                                                GCCause::Cause gc_cause) {
2562   assert_heap_not_locked_and_not_at_safepoint();
2563   VM_G1CollectForAllocation op(word_size,
2564                                gc_count_before,
2565                                gc_cause,
2566                                false, /* should_initiate_conc_mark */
2567                                g1_policy()->max_pause_time_ms(),
2568                                AllocationContext::current());
2569   VMThread::execute(&op);
2570 
2571   HeapWord* result = op.result();
2572   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2573   assert(result == NULL || ret_succeeded,
2574          "the result should be NULL if the VM did not succeed");
2575   *succeeded = ret_succeeded;
2576 
2577   assert_heap_not_locked();
2578   return result;
2579 }
2580 
2581 void
2582 G1CollectedHeap::doConcurrentMark() {
2583   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2584   if (!_cmThread->in_progress()) {
2585     _cmThread->set_started();
2586     CGC_lock->notify();
2587   }
2588 }
2589 
2590 size_t G1CollectedHeap::pending_card_num() {
2591   size_t extra_cards = 0;
2592   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2593     DirtyCardQueue& dcq = curr->dirty_card_queue();
2594     extra_cards += dcq.size();
2595   }
2596   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2597   size_t buffer_size = dcqs.buffer_size();
2598   size_t buffer_num = dcqs.completed_buffers_num();
2599 
2600   return buffer_size * buffer_num + extra_cards;
2601 }
2602 
2603 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2604  private:
2605   size_t _total_humongous;
2606   size_t _candidate_humongous;
2607 
2608   DirtyCardQueue _dcq;
2609 
2610   // We don't nominate objects with many remembered set entries, on
2611   // the assumption that such objects are likely still live.
2612   bool is_remset_small(HeapRegion* region) const {
2613     HeapRegionRemSet* const rset = region->rem_set();
2614     return G1EagerReclaimHumongousObjectsWithStaleRefs
2615       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2616       : rset->is_empty();
2617   }
2618 
2619   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2620     assert(region->is_starts_humongous(), "Must start a humongous object");
2621 
2622     oop obj = oop(region->bottom());
2623 
2624     // Dead objects cannot be eager reclaim candidates. Due to class
2625     // unloading it is unsafe to query their classes so we return early.
2626     if (heap->is_obj_dead(obj, region)) {
2627       return false;
2628     }
2629 
2630     // Candidate selection must satisfy the following constraints
2631     // while concurrent marking is in progress:
2632     //
2633     // * In order to maintain SATB invariants, an object must not be
2634     // reclaimed if it was allocated before the start of marking and
2635     // has not had its references scanned.  Such an object must have
2636     // its references (including type metadata) scanned to ensure no
2637     // live objects are missed by the marking process.  Objects
2638     // allocated after the start of concurrent marking don't need to
2639     // be scanned.
2640     //
2641     // * An object must not be reclaimed if it is on the concurrent
2642     // mark stack.  Objects allocated after the start of concurrent
2643     // marking are never pushed on the mark stack.
2644     //
2645     // Nominating only objects allocated after the start of concurrent
2646     // marking is sufficient to meet both constraints.  This may miss
2647     // some objects that satisfy the constraints, but the marking data
2648     // structures don't support efficiently performing the needed
2649     // additional tests or scrubbing of the mark stack.
2650     //
2651     // However, we presently only nominate is_typeArray() objects.
2652     // A humongous object containing references induces remembered
2653     // set entries on other regions.  In order to reclaim such an
2654     // object, those remembered sets would need to be cleaned up.
2655     //
2656     // We also treat is_typeArray() objects specially, allowing them
2657     // to be reclaimed even if allocated before the start of
2658     // concurrent mark.  For this we rely on mark stack insertion to
2659     // exclude is_typeArray() objects, preventing reclaiming an object
2660     // that is in the mark stack.  We also rely on the metadata for
2661     // such objects to be built-in and so ensured to be kept live.
2662     // Frequent allocation and drop of large binary blobs is an
2663     // important use case for eager reclaim, and this special handling
2664     // may reduce needed headroom.
2665 
2666     return obj->is_typeArray() && is_remset_small(region);
2667   }
2668 
2669  public:
2670   RegisterHumongousWithInCSetFastTestClosure()
2671   : _total_humongous(0),
2672     _candidate_humongous(0),
2673     _dcq(&JavaThread::dirty_card_queue_set()) {
2674   }
2675 
2676   virtual bool do_heap_region(HeapRegion* r) {
2677     if (!r->is_starts_humongous()) {
2678       return false;
2679     }
2680     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2681 
2682     bool is_candidate = humongous_region_is_candidate(g1h, r);
2683     uint rindex = r->hrm_index();
2684     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2685     if (is_candidate) {
2686       _candidate_humongous++;
2687       g1h->register_humongous_region_with_cset(rindex);
2688       // Is_candidate already filters out humongous object with large remembered sets.
2689       // If we have a humongous object with a few remembered sets, we simply flush these
2690       // remembered set entries into the DCQS. That will result in automatic
2691       // re-evaluation of their remembered set entries during the following evacuation
2692       // phase.
2693       if (!r->rem_set()->is_empty()) {
2694         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2695                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2696         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2697         HeapRegionRemSetIterator hrrs(r->rem_set());
2698         size_t card_index;
2699         while (hrrs.has_next(card_index)) {
2700           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2701           // The remembered set might contain references to already freed
2702           // regions. Filter out such entries to avoid failing card table
2703           // verification.
2704           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2705             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2706               *card_ptr = CardTableModRefBS::dirty_card_val();
2707               _dcq.enqueue(card_ptr);
2708             }
2709           }
2710         }
2711         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2712                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2713                hrrs.n_yielded(), r->rem_set()->occupied());
2714         r->rem_set()->clear_locked();
2715       }
2716       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2717     }
2718     _total_humongous++;
2719 
2720     return false;
2721   }
2722 
2723   size_t total_humongous() const { return _total_humongous; }
2724   size_t candidate_humongous() const { return _candidate_humongous; }
2725 
2726   void flush_rem_set_entries() { _dcq.flush(); }
2727 };
2728 
2729 void G1CollectedHeap::register_humongous_regions_with_cset() {
2730   if (!G1EagerReclaimHumongousObjects) {
2731     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2732     return;
2733   }
2734   double time = os::elapsed_counter();
2735 
2736   // Collect reclaim candidate information and register candidates with cset.
2737   RegisterHumongousWithInCSetFastTestClosure cl;
2738   heap_region_iterate(&cl);
2739 
2740   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2741   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2742                                                                   cl.total_humongous(),
2743                                                                   cl.candidate_humongous());
2744   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2745 
2746   // Finally flush all remembered set entries to re-check into the global DCQS.
2747   cl.flush_rem_set_entries();
2748 }
2749 
2750 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2751   public:
2752     bool do_heap_region(HeapRegion* hr) {
2753       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2754         hr->verify_rem_set();
2755       }
2756       return false;
2757     }
2758 };
2759 
2760 uint G1CollectedHeap::num_task_queues() const {
2761   return _task_queues->size();
2762 }
2763 
2764 #if TASKQUEUE_STATS
2765 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2766   st->print_raw_cr("GC Task Stats");
2767   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2768   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2769 }
2770 
2771 void G1CollectedHeap::print_taskqueue_stats() const {
2772   if (!log_is_enabled(Trace, gc, task, stats)) {
2773     return;
2774   }
2775   Log(gc, task, stats) log;
2776   ResourceMark rm;
2777   LogStream ls(log.trace());
2778   outputStream* st = &ls;
2779 
2780   print_taskqueue_stats_hdr(st);
2781 
2782   TaskQueueStats totals;
2783   const uint n = num_task_queues();
2784   for (uint i = 0; i < n; ++i) {
2785     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2786     totals += task_queue(i)->stats;
2787   }
2788   st->print_raw("tot "); totals.print(st); st->cr();
2789 
2790   DEBUG_ONLY(totals.verify());
2791 }
2792 
2793 void G1CollectedHeap::reset_taskqueue_stats() {
2794   const uint n = num_task_queues();
2795   for (uint i = 0; i < n; ++i) {
2796     task_queue(i)->stats.reset();
2797   }
2798 }
2799 #endif // TASKQUEUE_STATS
2800 
2801 void G1CollectedHeap::wait_for_root_region_scanning() {
2802   double scan_wait_start = os::elapsedTime();
2803   // We have to wait until the CM threads finish scanning the
2804   // root regions as it's the only way to ensure that all the
2805   // objects on them have been correctly scanned before we start
2806   // moving them during the GC.
2807   bool waited = _cm->root_regions()->wait_until_scan_finished();
2808   double wait_time_ms = 0.0;
2809   if (waited) {
2810     double scan_wait_end = os::elapsedTime();
2811     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2812   }
2813   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2814 }
2815 
2816 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2817 private:
2818   G1HRPrinter* _hr_printer;
2819 public:
2820   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2821 
2822   virtual bool do_heap_region(HeapRegion* r) {
2823     _hr_printer->cset(r);
2824     return false;
2825   }
2826 };
2827 
2828 void G1CollectedHeap::start_new_collection_set() {
2829   collection_set()->start_incremental_building();
2830 
2831   clear_cset_fast_test();
2832 
2833   guarantee(_eden.length() == 0, "eden should have been cleared");
2834   g1_policy()->transfer_survivors_to_cset(survivor());
2835 }
2836 
2837 bool
2838 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2839   assert_at_safepoint(true /* should_be_vm_thread */);
2840   guarantee(!is_gc_active(), "collection is not reentrant");
2841 
2842   if (GCLocker::check_active_before_gc()) {
2843     return false;
2844   }
2845 
2846   _gc_timer_stw->register_gc_start();
2847 
2848   GCIdMark gc_id_mark;
2849   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2850 
2851   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2852   ResourceMark rm;
2853 
2854   g1_policy()->note_gc_start();
2855 
2856   wait_for_root_region_scanning();
2857 
2858   print_heap_before_gc();
2859   print_heap_regions();
2860   trace_heap_before_gc(_gc_tracer_stw);
2861 
2862   _verifier->verify_region_sets_optional();
2863   _verifier->verify_dirty_young_regions();
2864 
2865   // We should not be doing initial mark unless the conc mark thread is running
2866   if (!_cmThread->should_terminate()) {
2867     // This call will decide whether this pause is an initial-mark
2868     // pause. If it is, during_initial_mark_pause() will return true
2869     // for the duration of this pause.
2870     g1_policy()->decide_on_conc_mark_initiation();
2871   }
2872 
2873   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2874   assert(!collector_state()->during_initial_mark_pause() ||
2875           collector_state()->gcs_are_young(), "sanity");
2876 
2877   // We also do not allow mixed GCs during marking.
2878   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
2879 
2880   // Record whether this pause is an initial mark. When the current
2881   // thread has completed its logging output and it's safe to signal
2882   // the CM thread, the flag's value in the policy has been reset.
2883   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
2884 
2885   // Inner scope for scope based logging, timers, and stats collection
2886   {
2887     EvacuationInfo evacuation_info;
2888 
2889     if (collector_state()->during_initial_mark_pause()) {
2890       // We are about to start a marking cycle, so we increment the
2891       // full collection counter.
2892       increment_old_marking_cycles_started();
2893       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2894     }
2895 
2896     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2897 
2898     GCTraceCPUTime tcpu;
2899 
2900     G1HeapVerifier::G1VerifyType verify_type;
2901     FormatBuffer<> gc_string("Pause ");
2902     if (collector_state()->during_initial_mark_pause()) {
2903       gc_string.append("Initial Mark");
2904       verify_type = G1HeapVerifier::G1VerifyInitialMark;
2905     } else if (collector_state()->gcs_are_young()) {
2906       gc_string.append("Young");
2907       verify_type = G1HeapVerifier::G1VerifyYoungOnly;
2908     } else {
2909       gc_string.append("Mixed");
2910       verify_type = G1HeapVerifier::G1VerifyMixed;
2911     }
2912     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2913 
2914     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2915                                                                   workers()->active_workers(),
2916                                                                   Threads::number_of_non_daemon_threads());
2917     workers()->update_active_workers(active_workers);
2918     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2919 
2920     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2921     TraceMemoryManagerStats tms(&_memory_manager, gc_cause());
2922 
2923     // If the secondary_free_list is not empty, append it to the
2924     // free_list. No need to wait for the cleanup operation to finish;
2925     // the region allocation code will check the secondary_free_list
2926     // and wait if necessary. If the G1StressConcRegionFreeing flag is
2927     // set, skip this step so that the region allocation code has to
2928     // get entries from the secondary_free_list.
2929     if (!G1StressConcRegionFreeing) {
2930       append_secondary_free_list_if_not_empty_with_lock();
2931     }
2932 
2933     G1HeapTransition heap_transition(this);
2934     size_t heap_used_bytes_before_gc = used();
2935 
2936     // Don't dynamically change the number of GC threads this early.  A value of
2937     // 0 is used to indicate serial work.  When parallel work is done,
2938     // it will be set.
2939 
2940     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2941       IsGCActiveMark x;
2942 
2943       gc_prologue(false);
2944 
2945       if (VerifyRememberedSets) {
2946         log_info(gc, verify)("[Verifying RemSets before GC]");
2947         VerifyRegionRemSetClosure v_cl;
2948         heap_region_iterate(&v_cl);
2949       }
2950 
2951       _verifier->verify_before_gc(verify_type);
2952 
2953       _verifier->check_bitmaps("GC Start");
2954 
2955 #if COMPILER2_OR_JVMCI
2956       DerivedPointerTable::clear();
2957 #endif
2958 
2959       // Please see comment in g1CollectedHeap.hpp and
2960       // G1CollectedHeap::ref_processing_init() to see how
2961       // reference processing currently works in G1.
2962 
2963       // Enable discovery in the STW reference processor
2964       if (g1_policy()->should_process_references()) {
2965         ref_processor_stw()->enable_discovery();
2966       } else {
2967         ref_processor_stw()->disable_discovery();
2968       }
2969 
2970       {
2971         // We want to temporarily turn off discovery by the
2972         // CM ref processor, if necessary, and turn it back on
2973         // on again later if we do. Using a scoped
2974         // NoRefDiscovery object will do this.
2975         NoRefDiscovery no_cm_discovery(ref_processor_cm());
2976 
2977         // Forget the current alloc region (we might even choose it to be part
2978         // of the collection set!).
2979         _allocator->release_mutator_alloc_region();
2980 
2981         // This timing is only used by the ergonomics to handle our pause target.
2982         // It is unclear why this should not include the full pause. We will
2983         // investigate this in CR 7178365.
2984         //
2985         // Preserving the old comment here if that helps the investigation:
2986         //
2987         // The elapsed time induced by the start time below deliberately elides
2988         // the possible verification above.
2989         double sample_start_time_sec = os::elapsedTime();
2990 
2991         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2992 
2993         if (collector_state()->during_initial_mark_pause()) {
2994           concurrent_mark()->checkpoint_roots_initial_pre();
2995         }
2996 
2997         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2998 
2999         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3000 
3001         // Make sure the remembered sets are up to date. This needs to be
3002         // done before register_humongous_regions_with_cset(), because the
3003         // remembered sets are used there to choose eager reclaim candidates.
3004         // If the remembered sets are not up to date we might miss some
3005         // entries that need to be handled.
3006         g1_rem_set()->cleanupHRRS();
3007 
3008         register_humongous_regions_with_cset();
3009 
3010         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3011 
3012         // We call this after finalize_cset() to
3013         // ensure that the CSet has been finalized.
3014         _cm->verify_no_cset_oops();
3015 
3016         if (_hr_printer.is_active()) {
3017           G1PrintCollectionSetClosure cl(&_hr_printer);
3018           _collection_set.iterate(&cl);
3019         }
3020 
3021         // Initialize the GC alloc regions.
3022         _allocator->init_gc_alloc_regions(evacuation_info);
3023 
3024         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3025         pre_evacuate_collection_set();
3026 
3027         // Actually do the work...
3028         evacuate_collection_set(evacuation_info, &per_thread_states);
3029 
3030         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3031 
3032         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3033         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3034 
3035         eagerly_reclaim_humongous_regions();
3036 
3037         record_obj_copy_mem_stats();
3038         _survivor_evac_stats.adjust_desired_plab_sz();
3039         _old_evac_stats.adjust_desired_plab_sz();
3040 
3041         double start = os::elapsedTime();
3042         start_new_collection_set();
3043         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3044 
3045         if (evacuation_failed()) {
3046           set_used(recalculate_used());
3047           if (_archive_allocator != NULL) {
3048             _archive_allocator->clear_used();
3049           }
3050           for (uint i = 0; i < ParallelGCThreads; i++) {
3051             if (_evacuation_failed_info_array[i].has_failed()) {
3052               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3053             }
3054           }
3055         } else {
3056           // The "used" of the the collection set have already been subtracted
3057           // when they were freed.  Add in the bytes evacuated.
3058           increase_used(g1_policy()->bytes_copied_during_gc());
3059         }
3060 
3061         if (collector_state()->during_initial_mark_pause()) {
3062           // We have to do this before we notify the CM threads that
3063           // they can start working to make sure that all the
3064           // appropriate initialization is done on the CM object.
3065           concurrent_mark()->checkpoint_roots_initial_post();
3066           collector_state()->set_mark_in_progress(true);
3067           // Note that we don't actually trigger the CM thread at
3068           // this point. We do that later when we're sure that
3069           // the current thread has completed its logging output.
3070         }
3071 
3072         allocate_dummy_regions();
3073 
3074         _allocator->init_mutator_alloc_region();
3075 
3076         {
3077           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3078           if (expand_bytes > 0) {
3079             size_t bytes_before = capacity();
3080             // No need for an ergo logging here,
3081             // expansion_amount() does this when it returns a value > 0.
3082             double expand_ms;
3083             if (!expand(expand_bytes, _workers, &expand_ms)) {
3084               // We failed to expand the heap. Cannot do anything about it.
3085             }
3086             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3087           }
3088         }
3089 
3090         // We redo the verification but now wrt to the new CSet which
3091         // has just got initialized after the previous CSet was freed.
3092         _cm->verify_no_cset_oops();
3093 
3094         // This timing is only used by the ergonomics to handle our pause target.
3095         // It is unclear why this should not include the full pause. We will
3096         // investigate this in CR 7178365.
3097         double sample_end_time_sec = os::elapsedTime();
3098         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3099         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3100         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3101 
3102         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3103         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3104 
3105         if (VerifyRememberedSets) {
3106           log_info(gc, verify)("[Verifying RemSets after GC]");
3107           VerifyRegionRemSetClosure v_cl;
3108           heap_region_iterate(&v_cl);
3109         }
3110 
3111         _verifier->verify_after_gc(verify_type);
3112         _verifier->check_bitmaps("GC End");
3113 
3114         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3115         ref_processor_stw()->verify_no_references_recorded();
3116 
3117         // CM reference discovery will be re-enabled if necessary.
3118       }
3119 
3120 #ifdef TRACESPINNING
3121       ParallelTaskTerminator::print_termination_counts();
3122 #endif
3123 
3124       gc_epilogue(false);
3125     }
3126 
3127     // Print the remainder of the GC log output.
3128     if (evacuation_failed()) {
3129       log_info(gc)("To-space exhausted");
3130     }
3131 
3132     g1_policy()->print_phases();
3133     heap_transition.print();
3134 
3135     // It is not yet to safe to tell the concurrent mark to
3136     // start as we have some optional output below. We don't want the
3137     // output from the concurrent mark thread interfering with this
3138     // logging output either.
3139 
3140     _hrm.verify_optional();
3141     _verifier->verify_region_sets_optional();
3142 
3143     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3144     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3145 
3146     print_heap_after_gc();
3147     print_heap_regions();
3148     trace_heap_after_gc(_gc_tracer_stw);
3149 
3150     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3151     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3152     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3153     // before any GC notifications are raised.
3154     g1mm()->update_sizes();
3155 
3156     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3157     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3158     _gc_timer_stw->register_gc_end();
3159     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3160   }
3161   // It should now be safe to tell the concurrent mark thread to start
3162   // without its logging output interfering with the logging output
3163   // that came from the pause.
3164 
3165   if (should_start_conc_mark) {
3166     // CAUTION: after the doConcurrentMark() call below,
3167     // the concurrent marking thread(s) could be running
3168     // concurrently with us. Make sure that anything after
3169     // this point does not assume that we are the only GC thread
3170     // running. Note: of course, the actual marking work will
3171     // not start until the safepoint itself is released in
3172     // SuspendibleThreadSet::desynchronize().
3173     doConcurrentMark();
3174   }
3175 
3176   return true;
3177 }
3178 
3179 void G1CollectedHeap::remove_self_forwarding_pointers() {
3180   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3181   workers()->run_task(&rsfp_task);
3182 }
3183 
3184 void G1CollectedHeap::restore_after_evac_failure() {
3185   double remove_self_forwards_start = os::elapsedTime();
3186 
3187   remove_self_forwarding_pointers();
3188   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3189   _preserved_marks_set.restore(&task_executor);
3190 
3191   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3192 }
3193 
3194 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3195   if (!_evacuation_failed) {
3196     _evacuation_failed = true;
3197   }
3198 
3199   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3200   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3201 }
3202 
3203 bool G1ParEvacuateFollowersClosure::offer_termination() {
3204   G1ParScanThreadState* const pss = par_scan_state();
3205   start_term_time();
3206   const bool res = terminator()->offer_termination();
3207   end_term_time();
3208   return res;
3209 }
3210 
3211 void G1ParEvacuateFollowersClosure::do_void() {
3212   G1ParScanThreadState* const pss = par_scan_state();
3213   pss->trim_queue();
3214   do {
3215     pss->steal_and_trim_queue(queues());
3216   } while (!offer_termination());
3217 }
3218 
3219 class G1ParTask : public AbstractGangTask {
3220 protected:
3221   G1CollectedHeap*         _g1h;
3222   G1ParScanThreadStateSet* _pss;
3223   RefToScanQueueSet*       _queues;
3224   G1RootProcessor*         _root_processor;
3225   ParallelTaskTerminator   _terminator;
3226   uint                     _n_workers;
3227 
3228 public:
3229   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3230     : AbstractGangTask("G1 collection"),
3231       _g1h(g1h),
3232       _pss(per_thread_states),
3233       _queues(task_queues),
3234       _root_processor(root_processor),
3235       _terminator(n_workers, _queues),
3236       _n_workers(n_workers)
3237   {}
3238 
3239   void work(uint worker_id) {
3240     if (worker_id >= _n_workers) return;  // no work needed this round
3241 
3242     double start_sec = os::elapsedTime();
3243     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3244 
3245     {
3246       ResourceMark rm;
3247       HandleMark   hm;
3248 
3249       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3250 
3251       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3252       pss->set_ref_processor(rp);
3253 
3254       double start_strong_roots_sec = os::elapsedTime();
3255 
3256       _root_processor->evacuate_roots(pss->closures(), worker_id);
3257 
3258       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3259       // treating the nmethods visited to act as roots for concurrent marking.
3260       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3261       // objects copied by the current evacuation.
3262       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3263                                                       pss->closures()->weak_codeblobs(),
3264                                                       worker_id);
3265 
3266       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3267 
3268       double term_sec = 0.0;
3269       size_t evac_term_attempts = 0;
3270       {
3271         double start = os::elapsedTime();
3272         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3273         evac.do_void();
3274 
3275         evac_term_attempts = evac.term_attempts();
3276         term_sec = evac.term_time();
3277         double elapsed_sec = os::elapsedTime() - start;
3278         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3279         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3280         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3281       }
3282 
3283       assert(pss->queue_is_empty(), "should be empty");
3284 
3285       if (log_is_enabled(Debug, gc, task, stats)) {
3286         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3287         size_t lab_waste;
3288         size_t lab_undo_waste;
3289         pss->waste(lab_waste, lab_undo_waste);
3290         _g1h->print_termination_stats(worker_id,
3291                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3292                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3293                                       term_sec * 1000.0,                          /* evac term time */
3294                                       evac_term_attempts,                         /* evac term attempts */
3295                                       lab_waste,                                  /* alloc buffer waste */
3296                                       lab_undo_waste                              /* undo waste */
3297                                       );
3298       }
3299 
3300       // Close the inner scope so that the ResourceMark and HandleMark
3301       // destructors are executed here and are included as part of the
3302       // "GC Worker Time".
3303     }
3304     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3305   }
3306 };
3307 
3308 void G1CollectedHeap::print_termination_stats_hdr() {
3309   log_debug(gc, task, stats)("GC Termination Stats");
3310   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3311   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3312   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3313 }
3314 
3315 void G1CollectedHeap::print_termination_stats(uint worker_id,
3316                                               double elapsed_ms,
3317                                               double strong_roots_ms,
3318                                               double term_ms,
3319                                               size_t term_attempts,
3320                                               size_t alloc_buffer_waste,
3321                                               size_t undo_waste) const {
3322   log_debug(gc, task, stats)
3323               ("%3d %9.2f %9.2f %6.2f "
3324                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3325                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3326                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3327                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3328                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3329                alloc_buffer_waste * HeapWordSize / K,
3330                undo_waste * HeapWordSize / K);
3331 }
3332 
3333 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3334 private:
3335   BoolObjectClosure* _is_alive;
3336   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3337 
3338   int _initial_string_table_size;
3339   int _initial_symbol_table_size;
3340 
3341   bool  _process_strings;
3342   int _strings_processed;
3343   int _strings_removed;
3344 
3345   bool  _process_symbols;
3346   int _symbols_processed;
3347   int _symbols_removed;
3348 
3349   bool _process_string_dedup;
3350 
3351 public:
3352   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3353     AbstractGangTask("String/Symbol Unlinking"),
3354     _is_alive(is_alive),
3355     _dedup_closure(is_alive, NULL, false),
3356     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3357     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3358     _process_string_dedup(process_string_dedup) {
3359 
3360     _initial_string_table_size = StringTable::the_table()->table_size();
3361     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3362     if (process_strings) {
3363       StringTable::clear_parallel_claimed_index();
3364     }
3365     if (process_symbols) {
3366       SymbolTable::clear_parallel_claimed_index();
3367     }
3368   }
3369 
3370   ~G1StringAndSymbolCleaningTask() {
3371     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3372               "claim value %d after unlink less than initial string table size %d",
3373               StringTable::parallel_claimed_index(), _initial_string_table_size);
3374     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3375               "claim value %d after unlink less than initial symbol table size %d",
3376               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3377 
3378     log_info(gc, stringtable)(
3379         "Cleaned string and symbol table, "
3380         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3381         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3382         strings_processed(), strings_removed(),
3383         symbols_processed(), symbols_removed());
3384   }
3385 
3386   void work(uint worker_id) {
3387     int strings_processed = 0;
3388     int strings_removed = 0;
3389     int symbols_processed = 0;
3390     int symbols_removed = 0;
3391     if (_process_strings) {
3392       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3393       Atomic::add(strings_processed, &_strings_processed);
3394       Atomic::add(strings_removed, &_strings_removed);
3395     }
3396     if (_process_symbols) {
3397       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3398       Atomic::add(symbols_processed, &_symbols_processed);
3399       Atomic::add(symbols_removed, &_symbols_removed);
3400     }
3401     if (_process_string_dedup) {
3402       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3403     }
3404   }
3405 
3406   size_t strings_processed() const { return (size_t)_strings_processed; }
3407   size_t strings_removed()   const { return (size_t)_strings_removed; }
3408 
3409   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3410   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3411 };
3412 
3413 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3414 private:
3415   static Monitor* _lock;
3416 
3417   BoolObjectClosure* const _is_alive;
3418   const bool               _unloading_occurred;
3419   const uint               _num_workers;
3420 
3421   // Variables used to claim nmethods.
3422   CompiledMethod* _first_nmethod;
3423   CompiledMethod* volatile _claimed_nmethod;
3424 
3425   // The list of nmethods that need to be processed by the second pass.
3426   CompiledMethod* volatile _postponed_list;
3427   volatile uint            _num_entered_barrier;
3428 
3429  public:
3430   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3431       _is_alive(is_alive),
3432       _unloading_occurred(unloading_occurred),
3433       _num_workers(num_workers),
3434       _first_nmethod(NULL),
3435       _claimed_nmethod(NULL),
3436       _postponed_list(NULL),
3437       _num_entered_barrier(0)
3438   {
3439     CompiledMethod::increase_unloading_clock();
3440     // Get first alive nmethod
3441     CompiledMethodIterator iter = CompiledMethodIterator();
3442     if(iter.next_alive()) {
3443       _first_nmethod = iter.method();
3444     }
3445     _claimed_nmethod = _first_nmethod;
3446   }
3447 
3448   ~G1CodeCacheUnloadingTask() {
3449     CodeCache::verify_clean_inline_caches();
3450 
3451     CodeCache::set_needs_cache_clean(false);
3452     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3453 
3454     CodeCache::verify_icholder_relocations();
3455   }
3456 
3457  private:
3458   void add_to_postponed_list(CompiledMethod* nm) {
3459       CompiledMethod* old;
3460       do {
3461         old = _postponed_list;
3462         nm->set_unloading_next(old);
3463       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3464   }
3465 
3466   void clean_nmethod(CompiledMethod* nm) {
3467     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3468 
3469     if (postponed) {
3470       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3471       add_to_postponed_list(nm);
3472     }
3473 
3474     // Mark that this thread has been cleaned/unloaded.
3475     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3476     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3477   }
3478 
3479   void clean_nmethod_postponed(CompiledMethod* nm) {
3480     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3481   }
3482 
3483   static const int MaxClaimNmethods = 16;
3484 
3485   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3486     CompiledMethod* first;
3487     CompiledMethodIterator last;
3488 
3489     do {
3490       *num_claimed_nmethods = 0;
3491 
3492       first = _claimed_nmethod;
3493       last = CompiledMethodIterator(first);
3494 
3495       if (first != NULL) {
3496 
3497         for (int i = 0; i < MaxClaimNmethods; i++) {
3498           if (!last.next_alive()) {
3499             break;
3500           }
3501           claimed_nmethods[i] = last.method();
3502           (*num_claimed_nmethods)++;
3503         }
3504       }
3505 
3506     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3507   }
3508 
3509   CompiledMethod* claim_postponed_nmethod() {
3510     CompiledMethod* claim;
3511     CompiledMethod* next;
3512 
3513     do {
3514       claim = _postponed_list;
3515       if (claim == NULL) {
3516         return NULL;
3517       }
3518 
3519       next = claim->unloading_next();
3520 
3521     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3522 
3523     return claim;
3524   }
3525 
3526  public:
3527   // Mark that we're done with the first pass of nmethod cleaning.
3528   void barrier_mark(uint worker_id) {
3529     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3530     _num_entered_barrier++;
3531     if (_num_entered_barrier == _num_workers) {
3532       ml.notify_all();
3533     }
3534   }
3535 
3536   // See if we have to wait for the other workers to
3537   // finish their first-pass nmethod cleaning work.
3538   void barrier_wait(uint worker_id) {
3539     if (_num_entered_barrier < _num_workers) {
3540       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3541       while (_num_entered_barrier < _num_workers) {
3542           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3543       }
3544     }
3545   }
3546 
3547   // Cleaning and unloading of nmethods. Some work has to be postponed
3548   // to the second pass, when we know which nmethods survive.
3549   void work_first_pass(uint worker_id) {
3550     // The first nmethods is claimed by the first worker.
3551     if (worker_id == 0 && _first_nmethod != NULL) {
3552       clean_nmethod(_first_nmethod);
3553       _first_nmethod = NULL;
3554     }
3555 
3556     int num_claimed_nmethods;
3557     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3558 
3559     while (true) {
3560       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3561 
3562       if (num_claimed_nmethods == 0) {
3563         break;
3564       }
3565 
3566       for (int i = 0; i < num_claimed_nmethods; i++) {
3567         clean_nmethod(claimed_nmethods[i]);
3568       }
3569     }
3570   }
3571 
3572   void work_second_pass(uint worker_id) {
3573     CompiledMethod* nm;
3574     // Take care of postponed nmethods.
3575     while ((nm = claim_postponed_nmethod()) != NULL) {
3576       clean_nmethod_postponed(nm);
3577     }
3578   }
3579 };
3580 
3581 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3582 
3583 class G1KlassCleaningTask : public StackObj {
3584   BoolObjectClosure*                      _is_alive;
3585   volatile int                            _clean_klass_tree_claimed;
3586   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3587 
3588  public:
3589   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3590       _is_alive(is_alive),
3591       _clean_klass_tree_claimed(0),
3592       _klass_iterator() {
3593   }
3594 
3595  private:
3596   bool claim_clean_klass_tree_task() {
3597     if (_clean_klass_tree_claimed) {
3598       return false;
3599     }
3600 
3601     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3602   }
3603 
3604   InstanceKlass* claim_next_klass() {
3605     Klass* klass;
3606     do {
3607       klass =_klass_iterator.next_klass();
3608     } while (klass != NULL && !klass->is_instance_klass());
3609 
3610     // this can be null so don't call InstanceKlass::cast
3611     return static_cast<InstanceKlass*>(klass);
3612   }
3613 
3614 public:
3615 
3616   void clean_klass(InstanceKlass* ik) {
3617     ik->clean_weak_instanceklass_links(_is_alive);
3618   }
3619 
3620   void work() {
3621     ResourceMark rm;
3622 
3623     // One worker will clean the subklass/sibling klass tree.
3624     if (claim_clean_klass_tree_task()) {
3625       Klass::clean_subklass_tree(_is_alive);
3626     }
3627 
3628     // All workers will help cleaning the classes,
3629     InstanceKlass* klass;
3630     while ((klass = claim_next_klass()) != NULL) {
3631       clean_klass(klass);
3632     }
3633   }
3634 };
3635 
3636 class G1ResolvedMethodCleaningTask : public StackObj {
3637   BoolObjectClosure* _is_alive;
3638   volatile int       _resolved_method_task_claimed;
3639 public:
3640   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3641       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3642 
3643   bool claim_resolved_method_task() {
3644     if (_resolved_method_task_claimed) {
3645       return false;
3646     }
3647     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3648   }
3649 
3650   // These aren't big, one thread can do it all.
3651   void work() {
3652     if (claim_resolved_method_task()) {
3653       ResolvedMethodTable::unlink(_is_alive);
3654     }
3655   }
3656 };
3657 
3658 
3659 // To minimize the remark pause times, the tasks below are done in parallel.
3660 class G1ParallelCleaningTask : public AbstractGangTask {
3661 private:
3662   G1StringAndSymbolCleaningTask _string_symbol_task;
3663   G1CodeCacheUnloadingTask      _code_cache_task;
3664   G1KlassCleaningTask           _klass_cleaning_task;
3665   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3666 
3667 public:
3668   // The constructor is run in the VMThread.
3669   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3670       AbstractGangTask("Parallel Cleaning"),
3671       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3672       _code_cache_task(num_workers, is_alive, unloading_occurred),
3673       _klass_cleaning_task(is_alive),
3674       _resolved_method_cleaning_task(is_alive) {
3675   }
3676 
3677   // The parallel work done by all worker threads.
3678   void work(uint worker_id) {
3679     // Do first pass of code cache cleaning.
3680     _code_cache_task.work_first_pass(worker_id);
3681 
3682     // Let the threads mark that the first pass is done.
3683     _code_cache_task.barrier_mark(worker_id);
3684 
3685     // Clean the Strings and Symbols.
3686     _string_symbol_task.work(worker_id);
3687 
3688     // Clean unreferenced things in the ResolvedMethodTable
3689     _resolved_method_cleaning_task.work();
3690 
3691     // Wait for all workers to finish the first code cache cleaning pass.
3692     _code_cache_task.barrier_wait(worker_id);
3693 
3694     // Do the second code cache cleaning work, which realize on
3695     // the liveness information gathered during the first pass.
3696     _code_cache_task.work_second_pass(worker_id);
3697 
3698     // Clean all klasses that were not unloaded.
3699     _klass_cleaning_task.work();
3700   }
3701 };
3702 
3703 
3704 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3705                                         bool class_unloading_occurred) {
3706   uint n_workers = workers()->active_workers();
3707 
3708   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3709   workers()->run_task(&g1_unlink_task);
3710 }
3711 
3712 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3713                                        bool process_strings,
3714                                        bool process_symbols,
3715                                        bool process_string_dedup) {
3716   if (!process_strings && !process_symbols && !process_string_dedup) {
3717     // Nothing to clean.
3718     return;
3719   }
3720 
3721   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3722   workers()->run_task(&g1_unlink_task);
3723 
3724 }
3725 
3726 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3727  private:
3728   DirtyCardQueueSet* _queue;
3729   G1CollectedHeap* _g1h;
3730  public:
3731   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3732     _queue(queue), _g1h(g1h) { }
3733 
3734   virtual void work(uint worker_id) {
3735     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3736     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3737 
3738     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3739     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3740 
3741     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3742   }
3743 };
3744 
3745 void G1CollectedHeap::redirty_logged_cards() {
3746   double redirty_logged_cards_start = os::elapsedTime();
3747 
3748   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3749   dirty_card_queue_set().reset_for_par_iteration();
3750   workers()->run_task(&redirty_task);
3751 
3752   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3753   dcq.merge_bufferlists(&dirty_card_queue_set());
3754   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3755 
3756   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3757 }
3758 
3759 // Weak Reference Processing support
3760 
3761 // An always "is_alive" closure that is used to preserve referents.
3762 // If the object is non-null then it's alive.  Used in the preservation
3763 // of referent objects that are pointed to by reference objects
3764 // discovered by the CM ref processor.
3765 class G1AlwaysAliveClosure: public BoolObjectClosure {
3766   G1CollectedHeap* _g1;
3767 public:
3768   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3769   bool do_object_b(oop p) {
3770     if (p != NULL) {
3771       return true;
3772     }
3773     return false;
3774   }
3775 };
3776 
3777 bool G1STWIsAliveClosure::do_object_b(oop p) {
3778   // An object is reachable if it is outside the collection set,
3779   // or is inside and copied.
3780   return !_g1->is_in_cset(p) || p->is_forwarded();
3781 }
3782 
3783 // Non Copying Keep Alive closure
3784 class G1KeepAliveClosure: public OopClosure {
3785   G1CollectedHeap* _g1;
3786 public:
3787   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3788   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3789   void do_oop(oop* p) {
3790     oop obj = *p;
3791     assert(obj != NULL, "the caller should have filtered out NULL values");
3792 
3793     const InCSetState cset_state = _g1->in_cset_state(obj);
3794     if (!cset_state.is_in_cset_or_humongous()) {
3795       return;
3796     }
3797     if (cset_state.is_in_cset()) {
3798       assert( obj->is_forwarded(), "invariant" );
3799       *p = obj->forwardee();
3800     } else {
3801       assert(!obj->is_forwarded(), "invariant" );
3802       assert(cset_state.is_humongous(),
3803              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3804       _g1->set_humongous_is_live(obj);
3805     }
3806   }
3807 };
3808 
3809 // Copying Keep Alive closure - can be called from both
3810 // serial and parallel code as long as different worker
3811 // threads utilize different G1ParScanThreadState instances
3812 // and different queues.
3813 
3814 class G1CopyingKeepAliveClosure: public OopClosure {
3815   G1CollectedHeap*         _g1h;
3816   OopClosure*              _copy_non_heap_obj_cl;
3817   G1ParScanThreadState*    _par_scan_state;
3818 
3819 public:
3820   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3821                             OopClosure* non_heap_obj_cl,
3822                             G1ParScanThreadState* pss):
3823     _g1h(g1h),
3824     _copy_non_heap_obj_cl(non_heap_obj_cl),
3825     _par_scan_state(pss)
3826   {}
3827 
3828   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3829   virtual void do_oop(      oop* p) { do_oop_work(p); }
3830 
3831   template <class T> void do_oop_work(T* p) {
3832     oop obj = oopDesc::load_decode_heap_oop(p);
3833 
3834     if (_g1h->is_in_cset_or_humongous(obj)) {
3835       // If the referent object has been forwarded (either copied
3836       // to a new location or to itself in the event of an
3837       // evacuation failure) then we need to update the reference
3838       // field and, if both reference and referent are in the G1
3839       // heap, update the RSet for the referent.
3840       //
3841       // If the referent has not been forwarded then we have to keep
3842       // it alive by policy. Therefore we have copy the referent.
3843       //
3844       // If the reference field is in the G1 heap then we can push
3845       // on the PSS queue. When the queue is drained (after each
3846       // phase of reference processing) the object and it's followers
3847       // will be copied, the reference field set to point to the
3848       // new location, and the RSet updated. Otherwise we need to
3849       // use the the non-heap or metadata closures directly to copy
3850       // the referent object and update the pointer, while avoiding
3851       // updating the RSet.
3852 
3853       if (_g1h->is_in_g1_reserved(p)) {
3854         _par_scan_state->push_on_queue(p);
3855       } else {
3856         assert(!Metaspace::contains((const void*)p),
3857                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3858         _copy_non_heap_obj_cl->do_oop(p);
3859       }
3860     }
3861   }
3862 };
3863 
3864 // Serial drain queue closure. Called as the 'complete_gc'
3865 // closure for each discovered list in some of the
3866 // reference processing phases.
3867 
3868 class G1STWDrainQueueClosure: public VoidClosure {
3869 protected:
3870   G1CollectedHeap* _g1h;
3871   G1ParScanThreadState* _par_scan_state;
3872 
3873   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3874 
3875 public:
3876   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3877     _g1h(g1h),
3878     _par_scan_state(pss)
3879   { }
3880 
3881   void do_void() {
3882     G1ParScanThreadState* const pss = par_scan_state();
3883     pss->trim_queue();
3884   }
3885 };
3886 
3887 // Parallel Reference Processing closures
3888 
3889 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3890 // processing during G1 evacuation pauses.
3891 
3892 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3893 private:
3894   G1CollectedHeap*          _g1h;
3895   G1ParScanThreadStateSet*  _pss;
3896   RefToScanQueueSet*        _queues;
3897   WorkGang*                 _workers;
3898   uint                      _active_workers;
3899 
3900 public:
3901   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3902                            G1ParScanThreadStateSet* per_thread_states,
3903                            WorkGang* workers,
3904                            RefToScanQueueSet *task_queues,
3905                            uint n_workers) :
3906     _g1h(g1h),
3907     _pss(per_thread_states),
3908     _queues(task_queues),
3909     _workers(workers),
3910     _active_workers(n_workers)
3911   {
3912     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3913   }
3914 
3915   // Executes the given task using concurrent marking worker threads.
3916   virtual void execute(ProcessTask& task);
3917   virtual void execute(EnqueueTask& task);
3918 };
3919 
3920 // Gang task for possibly parallel reference processing
3921 
3922 class G1STWRefProcTaskProxy: public AbstractGangTask {
3923   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3924   ProcessTask&     _proc_task;
3925   G1CollectedHeap* _g1h;
3926   G1ParScanThreadStateSet* _pss;
3927   RefToScanQueueSet* _task_queues;
3928   ParallelTaskTerminator* _terminator;
3929 
3930 public:
3931   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3932                         G1CollectedHeap* g1h,
3933                         G1ParScanThreadStateSet* per_thread_states,
3934                         RefToScanQueueSet *task_queues,
3935                         ParallelTaskTerminator* terminator) :
3936     AbstractGangTask("Process reference objects in parallel"),
3937     _proc_task(proc_task),
3938     _g1h(g1h),
3939     _pss(per_thread_states),
3940     _task_queues(task_queues),
3941     _terminator(terminator)
3942   {}
3943 
3944   virtual void work(uint worker_id) {
3945     // The reference processing task executed by a single worker.
3946     ResourceMark rm;
3947     HandleMark   hm;
3948 
3949     G1STWIsAliveClosure is_alive(_g1h);
3950 
3951     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3952     pss->set_ref_processor(NULL);
3953 
3954     // Keep alive closure.
3955     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3956 
3957     // Complete GC closure
3958     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3959 
3960     // Call the reference processing task's work routine.
3961     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3962 
3963     // Note we cannot assert that the refs array is empty here as not all
3964     // of the processing tasks (specifically phase2 - pp2_work) execute
3965     // the complete_gc closure (which ordinarily would drain the queue) so
3966     // the queue may not be empty.
3967   }
3968 };
3969 
3970 // Driver routine for parallel reference processing.
3971 // Creates an instance of the ref processing gang
3972 // task and has the worker threads execute it.
3973 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
3974   assert(_workers != NULL, "Need parallel worker threads.");
3975 
3976   ParallelTaskTerminator terminator(_active_workers, _queues);
3977   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3978 
3979   _workers->run_task(&proc_task_proxy);
3980 }
3981 
3982 // Gang task for parallel reference enqueueing.
3983 
3984 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
3985   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
3986   EnqueueTask& _enq_task;
3987 
3988 public:
3989   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
3990     AbstractGangTask("Enqueue reference objects in parallel"),
3991     _enq_task(enq_task)
3992   { }
3993 
3994   virtual void work(uint worker_id) {
3995     _enq_task.work(worker_id);
3996   }
3997 };
3998 
3999 // Driver routine for parallel reference enqueueing.
4000 // Creates an instance of the ref enqueueing gang
4001 // task and has the worker threads execute it.
4002 
4003 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4004   assert(_workers != NULL, "Need parallel worker threads.");
4005 
4006   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4007 
4008   _workers->run_task(&enq_task_proxy);
4009 }
4010 
4011 // End of weak reference support closures
4012 
4013 // Abstract task used to preserve (i.e. copy) any referent objects
4014 // that are in the collection set and are pointed to by reference
4015 // objects discovered by the CM ref processor.
4016 
4017 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4018 protected:
4019   G1CollectedHeap*         _g1h;
4020   G1ParScanThreadStateSet* _pss;
4021   RefToScanQueueSet*       _queues;
4022   ParallelTaskTerminator   _terminator;
4023   uint                     _n_workers;
4024 
4025 public:
4026   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4027     AbstractGangTask("ParPreserveCMReferents"),
4028     _g1h(g1h),
4029     _pss(per_thread_states),
4030     _queues(task_queues),
4031     _terminator(workers, _queues),
4032     _n_workers(workers)
4033   {
4034     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4035   }
4036 
4037   void work(uint worker_id) {
4038     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4039 
4040     ResourceMark rm;
4041     HandleMark   hm;
4042 
4043     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4044     pss->set_ref_processor(NULL);
4045     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4046 
4047     // Is alive closure
4048     G1AlwaysAliveClosure always_alive(_g1h);
4049 
4050     // Copying keep alive closure. Applied to referent objects that need
4051     // to be copied.
4052     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4053 
4054     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4055 
4056     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4057     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4058 
4059     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4060     // So this must be true - but assert just in case someone decides to
4061     // change the worker ids.
4062     assert(worker_id < limit, "sanity");
4063     assert(!rp->discovery_is_atomic(), "check this code");
4064 
4065     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4066     for (uint idx = worker_id; idx < limit; idx += stride) {
4067       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4068 
4069       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4070       while (iter.has_next()) {
4071         // Since discovery is not atomic for the CM ref processor, we
4072         // can see some null referent objects.
4073         iter.load_ptrs(DEBUG_ONLY(true));
4074         oop ref = iter.obj();
4075 
4076         // This will filter nulls.
4077         if (iter.is_referent_alive()) {
4078           iter.make_referent_alive();
4079         }
4080         iter.move_to_next();
4081       }
4082     }
4083 
4084     // Drain the queue - which may cause stealing
4085     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4086     drain_queue.do_void();
4087     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4088     assert(pss->queue_is_empty(), "should be");
4089   }
4090 };
4091 
4092 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4093   // Any reference objects, in the collection set, that were 'discovered'
4094   // by the CM ref processor should have already been copied (either by
4095   // applying the external root copy closure to the discovered lists, or
4096   // by following an RSet entry).
4097   //
4098   // But some of the referents, that are in the collection set, that these
4099   // reference objects point to may not have been copied: the STW ref
4100   // processor would have seen that the reference object had already
4101   // been 'discovered' and would have skipped discovering the reference,
4102   // but would not have treated the reference object as a regular oop.
4103   // As a result the copy closure would not have been applied to the
4104   // referent object.
4105   //
4106   // We need to explicitly copy these referent objects - the references
4107   // will be processed at the end of remarking.
4108   //
4109   // We also need to do this copying before we process the reference
4110   // objects discovered by the STW ref processor in case one of these
4111   // referents points to another object which is also referenced by an
4112   // object discovered by the STW ref processor.
4113   double preserve_cm_referents_time = 0.0;
4114 
4115   // To avoid spawning task when there is no work to do, check that
4116   // a concurrent cycle is active and that some references have been
4117   // discovered.
4118   if (concurrent_mark()->cm_thread()->during_cycle() &&
4119       ref_processor_cm()->has_discovered_references()) {
4120     double preserve_cm_referents_start = os::elapsedTime();
4121     uint no_of_gc_workers = workers()->active_workers();
4122     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4123                                                    per_thread_states,
4124                                                    no_of_gc_workers,
4125                                                    _task_queues);
4126     workers()->run_task(&keep_cm_referents);
4127     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4128   }
4129 
4130   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4131 }
4132 
4133 // Weak Reference processing during an evacuation pause (part 1).
4134 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4135   double ref_proc_start = os::elapsedTime();
4136 
4137   ReferenceProcessor* rp = _ref_processor_stw;
4138   assert(rp->discovery_enabled(), "should have been enabled");
4139 
4140   // Closure to test whether a referent is alive.
4141   G1STWIsAliveClosure is_alive(this);
4142 
4143   // Even when parallel reference processing is enabled, the processing
4144   // of JNI refs is serial and performed serially by the current thread
4145   // rather than by a worker. The following PSS will be used for processing
4146   // JNI refs.
4147 
4148   // Use only a single queue for this PSS.
4149   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4150   pss->set_ref_processor(NULL);
4151   assert(pss->queue_is_empty(), "pre-condition");
4152 
4153   // Keep alive closure.
4154   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4155 
4156   // Serial Complete GC closure
4157   G1STWDrainQueueClosure drain_queue(this, pss);
4158 
4159   // Setup the soft refs policy...
4160   rp->setup_policy(false);
4161 
4162   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4163 
4164   ReferenceProcessorStats stats;
4165   if (!rp->processing_is_mt()) {
4166     // Serial reference processing...
4167     stats = rp->process_discovered_references(&is_alive,
4168                                               &keep_alive,
4169                                               &drain_queue,
4170                                               NULL,
4171                                               pt);
4172   } else {
4173     uint no_of_gc_workers = workers()->active_workers();
4174 
4175     // Parallel reference processing
4176     assert(no_of_gc_workers <= rp->max_num_q(),
4177            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4178            no_of_gc_workers,  rp->max_num_q());
4179 
4180     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4181     stats = rp->process_discovered_references(&is_alive,
4182                                               &keep_alive,
4183                                               &drain_queue,
4184                                               &par_task_executor,
4185                                               pt);
4186   }
4187 
4188   _gc_tracer_stw->report_gc_reference_stats(stats);
4189 
4190   // We have completed copying any necessary live referent objects.
4191   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4192 
4193   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4194   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4195 }
4196 
4197 // Weak Reference processing during an evacuation pause (part 2).
4198 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4199   double ref_enq_start = os::elapsedTime();
4200 
4201   ReferenceProcessor* rp = _ref_processor_stw;
4202   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4203 
4204   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4205 
4206   // Now enqueue any remaining on the discovered lists on to
4207   // the pending list.
4208   if (!rp->processing_is_mt()) {
4209     // Serial reference processing...
4210     rp->enqueue_discovered_references(NULL, pt);
4211   } else {
4212     // Parallel reference enqueueing
4213 
4214     uint n_workers = workers()->active_workers();
4215 
4216     assert(n_workers <= rp->max_num_q(),
4217            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4218            n_workers,  rp->max_num_q());
4219 
4220     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4221     rp->enqueue_discovered_references(&par_task_executor, pt);
4222   }
4223 
4224   rp->verify_no_references_recorded();
4225   assert(!rp->discovery_enabled(), "should have been disabled");
4226 
4227   // If during an initial mark pause we install a pending list head which is not otherwise reachable
4228   // ensure that it is marked in the bitmap for concurrent marking to discover.
4229   if (collector_state()->during_initial_mark_pause()) {
4230     oop pll_head = Universe::reference_pending_list();
4231     if (pll_head != NULL) {
4232       _cm->mark_in_next_bitmap(pll_head);
4233     }
4234   }
4235 
4236   // FIXME
4237   // CM's reference processing also cleans up the string and symbol tables.
4238   // Should we do that here also? We could, but it is a serial operation
4239   // and could significantly increase the pause time.
4240 
4241   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4242   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4243 }
4244 
4245 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4246   double merge_pss_time_start = os::elapsedTime();
4247   per_thread_states->flush();
4248   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4249 }
4250 
4251 void G1CollectedHeap::pre_evacuate_collection_set() {
4252   _expand_heap_after_alloc_failure = true;
4253   _evacuation_failed = false;
4254 
4255   // Disable the hot card cache.
4256   _hot_card_cache->reset_hot_cache_claimed_index();
4257   _hot_card_cache->set_use_cache(false);
4258 
4259   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4260   _preserved_marks_set.assert_empty();
4261 
4262   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4263 
4264   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4265   if (collector_state()->during_initial_mark_pause()) {
4266     double start_clear_claimed_marks = os::elapsedTime();
4267 
4268     ClassLoaderDataGraph::clear_claimed_marks();
4269 
4270     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4271     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4272   }
4273 }
4274 
4275 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4276   // Should G1EvacuationFailureALot be in effect for this GC?
4277   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4278 
4279   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4280 
4281   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4282 
4283   double start_par_time_sec = os::elapsedTime();
4284   double end_par_time_sec;
4285 
4286   {
4287     const uint n_workers = workers()->active_workers();
4288     G1RootProcessor root_processor(this, n_workers);
4289     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4290 
4291     print_termination_stats_hdr();
4292 
4293     workers()->run_task(&g1_par_task);
4294     end_par_time_sec = os::elapsedTime();
4295 
4296     // Closing the inner scope will execute the destructor
4297     // for the G1RootProcessor object. We record the current
4298     // elapsed time before closing the scope so that time
4299     // taken for the destructor is NOT included in the
4300     // reported parallel time.
4301   }
4302 
4303   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4304   phase_times->record_par_time(par_time_ms);
4305 
4306   double code_root_fixup_time_ms =
4307         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4308   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4309 }
4310 
4311 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4312   // Process any discovered reference objects - we have
4313   // to do this _before_ we retire the GC alloc regions
4314   // as we may have to copy some 'reachable' referent
4315   // objects (and their reachable sub-graphs) that were
4316   // not copied during the pause.
4317   if (g1_policy()->should_process_references()) {
4318     preserve_cm_referents(per_thread_states);
4319     process_discovered_references(per_thread_states);
4320   } else {
4321     ref_processor_stw()->verify_no_references_recorded();
4322   }
4323 
4324   G1STWIsAliveClosure is_alive(this);
4325   G1KeepAliveClosure keep_alive(this);
4326 
4327   {
4328     double start = os::elapsedTime();
4329 
4330     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4331 
4332     double time_ms = (os::elapsedTime() - start) * 1000.0;
4333     g1_policy()->phase_times()->record_ref_proc_time(time_ms);
4334   }
4335 
4336   if (G1StringDedup::is_enabled()) {
4337     double fixup_start = os::elapsedTime();
4338 
4339     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4340 
4341     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4342     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4343   }
4344 
4345   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4346 
4347   if (evacuation_failed()) {
4348     restore_after_evac_failure();
4349 
4350     // Reset the G1EvacuationFailureALot counters and flags
4351     // Note: the values are reset only when an actual
4352     // evacuation failure occurs.
4353     NOT_PRODUCT(reset_evacuation_should_fail();)
4354   }
4355 
4356   _preserved_marks_set.assert_empty();
4357 
4358   // Enqueue any remaining references remaining on the STW
4359   // reference processor's discovered lists. We need to do
4360   // this after the card table is cleaned (and verified) as
4361   // the act of enqueueing entries on to the pending list
4362   // will log these updates (and dirty their associated
4363   // cards). We need these updates logged to update any
4364   // RSets.
4365   if (g1_policy()->should_process_references()) {
4366     enqueue_discovered_references(per_thread_states);
4367   } else {
4368     g1_policy()->phase_times()->record_ref_enq_time(0);
4369   }
4370 
4371   _allocator->release_gc_alloc_regions(evacuation_info);
4372 
4373   merge_per_thread_state_info(per_thread_states);
4374 
4375   // Reset and re-enable the hot card cache.
4376   // Note the counts for the cards in the regions in the
4377   // collection set are reset when the collection set is freed.
4378   _hot_card_cache->reset_hot_cache();
4379   _hot_card_cache->set_use_cache(true);
4380 
4381   purge_code_root_memory();
4382 
4383   redirty_logged_cards();
4384 #if COMPILER2_OR_JVMCI
4385   double start = os::elapsedTime();
4386   DerivedPointerTable::update_pointers();
4387   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4388 #endif
4389   g1_policy()->print_age_table();
4390 }
4391 
4392 void G1CollectedHeap::record_obj_copy_mem_stats() {
4393   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4394 
4395   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4396                                                create_g1_evac_summary(&_old_evac_stats));
4397 }
4398 
4399 void G1CollectedHeap::free_region(HeapRegion* hr,
4400                                   FreeRegionList* free_list,
4401                                   bool skip_remset,
4402                                   bool skip_hot_card_cache,
4403                                   bool locked) {
4404   assert(!hr->is_free(), "the region should not be free");
4405   assert(!hr->is_empty(), "the region should not be empty");
4406   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4407   assert(free_list != NULL, "pre-condition");
4408 
4409   if (G1VerifyBitmaps) {
4410     MemRegion mr(hr->bottom(), hr->end());
4411     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4412   }
4413 
4414   // Clear the card counts for this region.
4415   // Note: we only need to do this if the region is not young
4416   // (since we don't refine cards in young regions).
4417   if (!skip_hot_card_cache && !hr->is_young()) {
4418     _hot_card_cache->reset_card_counts(hr);
4419   }
4420   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4421   free_list->add_ordered(hr);
4422 }
4423 
4424 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4425                                             FreeRegionList* free_list,
4426                                             bool skip_remset) {
4427   assert(hr->is_humongous(), "this is only for humongous regions");
4428   assert(free_list != NULL, "pre-condition");
4429   hr->clear_humongous();
4430   free_region(hr, free_list, skip_remset);
4431 }
4432 
4433 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4434                                            const uint humongous_regions_removed) {
4435   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4436     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4437     _old_set.bulk_remove(old_regions_removed);
4438     _humongous_set.bulk_remove(humongous_regions_removed);
4439   }
4440 
4441 }
4442 
4443 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4444   assert(list != NULL, "list can't be null");
4445   if (!list->is_empty()) {
4446     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4447     _hrm.insert_list_into_free_list(list);
4448   }
4449 }
4450 
4451 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4452   decrease_used(bytes);
4453 }
4454 
4455 class G1ParScrubRemSetTask: public AbstractGangTask {
4456 protected:
4457   G1RemSet* _g1rs;
4458   HeapRegionClaimer _hrclaimer;
4459 
4460 public:
4461   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4462     AbstractGangTask("G1 ScrubRS"),
4463     _g1rs(g1_rs),
4464     _hrclaimer(num_workers) {
4465   }
4466 
4467   void work(uint worker_id) {
4468     _g1rs->scrub(worker_id, &_hrclaimer);
4469   }
4470 };
4471 
4472 void G1CollectedHeap::scrub_rem_set() {
4473   uint num_workers = workers()->active_workers();
4474   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4475   workers()->run_task(&g1_par_scrub_rs_task);
4476 }
4477 
4478 class G1FreeCollectionSetTask : public AbstractGangTask {
4479 private:
4480 
4481   // Closure applied to all regions in the collection set to do work that needs to
4482   // be done serially in a single thread.
4483   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4484   private:
4485     EvacuationInfo* _evacuation_info;
4486     const size_t* _surviving_young_words;
4487 
4488     // Bytes used in successfully evacuated regions before the evacuation.
4489     size_t _before_used_bytes;
4490     // Bytes used in unsucessfully evacuated regions before the evacuation
4491     size_t _after_used_bytes;
4492 
4493     size_t _bytes_allocated_in_old_since_last_gc;
4494 
4495     size_t _failure_used_words;
4496     size_t _failure_waste_words;
4497 
4498     FreeRegionList _local_free_list;
4499   public:
4500     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4501       HeapRegionClosure(),
4502       _evacuation_info(evacuation_info),
4503       _surviving_young_words(surviving_young_words),
4504       _before_used_bytes(0),
4505       _after_used_bytes(0),
4506       _bytes_allocated_in_old_since_last_gc(0),
4507       _failure_used_words(0),
4508       _failure_waste_words(0),
4509       _local_free_list("Local Region List for CSet Freeing") {
4510     }
4511 
4512     virtual bool do_heap_region(HeapRegion* r) {
4513       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4514 
4515       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4516       g1h->clear_in_cset(r);
4517 
4518       if (r->is_young()) {
4519         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4520                "Young index %d is wrong for region %u of type %s with %u young regions",
4521                r->young_index_in_cset(),
4522                r->hrm_index(),
4523                r->get_type_str(),
4524                g1h->collection_set()->young_region_length());
4525         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4526         r->record_surv_words_in_group(words_survived);
4527       }
4528 
4529       if (!r->evacuation_failed()) {
4530         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4531         _before_used_bytes += r->used();
4532         g1h->free_region(r,
4533                          &_local_free_list,
4534                          true, /* skip_remset */
4535                          true, /* skip_hot_card_cache */
4536                          true  /* locked */);
4537       } else {
4538         r->uninstall_surv_rate_group();
4539         r->set_young_index_in_cset(-1);
4540         r->set_evacuation_failed(false);
4541         // When moving a young gen region to old gen, we "allocate" that whole region
4542         // there. This is in addition to any already evacuated objects. Notify the
4543         // policy about that.
4544         // Old gen regions do not cause an additional allocation: both the objects
4545         // still in the region and the ones already moved are accounted for elsewhere.
4546         if (r->is_young()) {
4547           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4548         }
4549         // The region is now considered to be old.
4550         r->set_old();
4551         // Do some allocation statistics accounting. Regions that failed evacuation
4552         // are always made old, so there is no need to update anything in the young
4553         // gen statistics, but we need to update old gen statistics.
4554         size_t used_words = r->marked_bytes() / HeapWordSize;
4555 
4556         _failure_used_words += used_words;
4557         _failure_waste_words += HeapRegion::GrainWords - used_words;
4558 
4559         g1h->old_set_add(r);
4560         _after_used_bytes += r->used();
4561       }
4562       return false;
4563     }
4564 
4565     void complete_work() {
4566       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4567 
4568       _evacuation_info->set_regions_freed(_local_free_list.length());
4569       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4570 
4571       g1h->prepend_to_freelist(&_local_free_list);
4572       g1h->decrement_summary_bytes(_before_used_bytes);
4573 
4574       G1Policy* policy = g1h->g1_policy();
4575       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4576 
4577       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4578     }
4579   };
4580 
4581   G1CollectionSet* _collection_set;
4582   G1SerialFreeCollectionSetClosure _cl;
4583   const size_t* _surviving_young_words;
4584 
4585   size_t _rs_lengths;
4586 
4587   volatile jint _serial_work_claim;
4588 
4589   struct WorkItem {
4590     uint region_idx;
4591     bool is_young;
4592     bool evacuation_failed;
4593 
4594     WorkItem(HeapRegion* r) {
4595       region_idx = r->hrm_index();
4596       is_young = r->is_young();
4597       evacuation_failed = r->evacuation_failed();
4598     }
4599   };
4600 
4601   volatile size_t _parallel_work_claim;
4602   size_t _num_work_items;
4603   WorkItem* _work_items;
4604 
4605   void do_serial_work() {
4606     // Need to grab the lock to be allowed to modify the old region list.
4607     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4608     _collection_set->iterate(&_cl);
4609   }
4610 
4611   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4612     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4613 
4614     HeapRegion* r = g1h->region_at(region_idx);
4615     assert(!g1h->is_on_master_free_list(r), "sanity");
4616 
4617     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4618 
4619     if (!is_young) {
4620       g1h->_hot_card_cache->reset_card_counts(r);
4621     }
4622 
4623     if (!evacuation_failed) {
4624       r->rem_set()->clear_locked();
4625     }
4626   }
4627 
4628   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4629   private:
4630     size_t _cur_idx;
4631     WorkItem* _work_items;
4632   public:
4633     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4634 
4635     virtual bool do_heap_region(HeapRegion* r) {
4636       _work_items[_cur_idx++] = WorkItem(r);
4637       return false;
4638     }
4639   };
4640 
4641   void prepare_work() {
4642     G1PrepareFreeCollectionSetClosure cl(_work_items);
4643     _collection_set->iterate(&cl);
4644   }
4645 
4646   void complete_work() {
4647     _cl.complete_work();
4648 
4649     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4650     policy->record_max_rs_lengths(_rs_lengths);
4651     policy->cset_regions_freed();
4652   }
4653 public:
4654   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4655     AbstractGangTask("G1 Free Collection Set"),
4656     _cl(evacuation_info, surviving_young_words),
4657     _collection_set(collection_set),
4658     _surviving_young_words(surviving_young_words),
4659     _serial_work_claim(0),
4660     _rs_lengths(0),
4661     _parallel_work_claim(0),
4662     _num_work_items(collection_set->region_length()),
4663     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4664     prepare_work();
4665   }
4666 
4667   ~G1FreeCollectionSetTask() {
4668     complete_work();
4669     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4670   }
4671 
4672   // Chunk size for work distribution. The chosen value has been determined experimentally
4673   // to be a good tradeoff between overhead and achievable parallelism.
4674   static uint chunk_size() { return 32; }
4675 
4676   virtual void work(uint worker_id) {
4677     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4678 
4679     // Claim serial work.
4680     if (_serial_work_claim == 0) {
4681       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4682       if (value == 0) {
4683         double serial_time = os::elapsedTime();
4684         do_serial_work();
4685         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4686       }
4687     }
4688 
4689     // Start parallel work.
4690     double young_time = 0.0;
4691     bool has_young_time = false;
4692     double non_young_time = 0.0;
4693     bool has_non_young_time = false;
4694 
4695     while (true) {
4696       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4697       size_t cur = end - chunk_size();
4698 
4699       if (cur >= _num_work_items) {
4700         break;
4701       }
4702 
4703       double start_time = os::elapsedTime();
4704 
4705       end = MIN2(end, _num_work_items);
4706 
4707       for (; cur < end; cur++) {
4708         bool is_young = _work_items[cur].is_young;
4709 
4710         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4711 
4712         double end_time = os::elapsedTime();
4713         double time_taken = end_time - start_time;
4714         if (is_young) {
4715           young_time += time_taken;
4716           has_young_time = true;
4717         } else {
4718           non_young_time += time_taken;
4719           has_non_young_time = true;
4720         }
4721         start_time = end_time;
4722       }
4723     }
4724 
4725     if (has_young_time) {
4726       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4727     }
4728     if (has_non_young_time) {
4729       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4730     }
4731   }
4732 };
4733 
4734 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4735   _eden.clear();
4736 
4737   double free_cset_start_time = os::elapsedTime();
4738 
4739   {
4740     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4741     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4742 
4743     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4744 
4745     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4746                         cl.name(),
4747                         num_workers,
4748                         _collection_set.region_length());
4749     workers()->run_task(&cl, num_workers);
4750   }
4751   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4752 
4753   collection_set->clear();
4754 }
4755 
4756 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4757  private:
4758   FreeRegionList* _free_region_list;
4759   HeapRegionSet* _proxy_set;
4760   uint _humongous_objects_reclaimed;
4761   uint _humongous_regions_reclaimed;
4762   size_t _freed_bytes;
4763  public:
4764 
4765   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4766     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4767   }
4768 
4769   virtual bool do_heap_region(HeapRegion* r) {
4770     if (!r->is_starts_humongous()) {
4771       return false;
4772     }
4773 
4774     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4775 
4776     oop obj = (oop)r->bottom();
4777     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4778 
4779     // The following checks whether the humongous object is live are sufficient.
4780     // The main additional check (in addition to having a reference from the roots
4781     // or the young gen) is whether the humongous object has a remembered set entry.
4782     //
4783     // A humongous object cannot be live if there is no remembered set for it
4784     // because:
4785     // - there can be no references from within humongous starts regions referencing
4786     // the object because we never allocate other objects into them.
4787     // (I.e. there are no intra-region references that may be missed by the
4788     // remembered set)
4789     // - as soon there is a remembered set entry to the humongous starts region
4790     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4791     // until the end of a concurrent mark.
4792     //
4793     // It is not required to check whether the object has been found dead by marking
4794     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4795     // all objects allocated during that time are considered live.
4796     // SATB marking is even more conservative than the remembered set.
4797     // So if at this point in the collection there is no remembered set entry,
4798     // nobody has a reference to it.
4799     // At the start of collection we flush all refinement logs, and remembered sets
4800     // are completely up-to-date wrt to references to the humongous object.
4801     //
4802     // Other implementation considerations:
4803     // - never consider object arrays at this time because they would pose
4804     // considerable effort for cleaning up the the remembered sets. This is
4805     // required because stale remembered sets might reference locations that
4806     // are currently allocated into.
4807     uint region_idx = r->hrm_index();
4808     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4809         !r->rem_set()->is_empty()) {
4810       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4811                                region_idx,
4812                                (size_t)obj->size() * HeapWordSize,
4813                                p2i(r->bottom()),
4814                                r->rem_set()->occupied(),
4815                                r->rem_set()->strong_code_roots_list_length(),
4816                                next_bitmap->is_marked(r->bottom()),
4817                                g1h->is_humongous_reclaim_candidate(region_idx),
4818                                obj->is_typeArray()
4819                               );
4820       return false;
4821     }
4822 
4823     guarantee(obj->is_typeArray(),
4824               "Only eagerly reclaiming type arrays is supported, but the object "
4825               PTR_FORMAT " is not.", p2i(r->bottom()));
4826 
4827     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4828                              region_idx,
4829                              (size_t)obj->size() * HeapWordSize,
4830                              p2i(r->bottom()),
4831                              r->rem_set()->occupied(),
4832                              r->rem_set()->strong_code_roots_list_length(),
4833                              next_bitmap->is_marked(r->bottom()),
4834                              g1h->is_humongous_reclaim_candidate(region_idx),
4835                              obj->is_typeArray()
4836                             );
4837 
4838     // Need to clear mark bit of the humongous object if already set.
4839     if (next_bitmap->is_marked(r->bottom())) {
4840       next_bitmap->clear(r->bottom());
4841     }
4842     _humongous_objects_reclaimed++;
4843     do {
4844       HeapRegion* next = g1h->next_region_in_humongous(r);
4845       _freed_bytes += r->used();
4846       r->set_containing_set(NULL);
4847       _humongous_regions_reclaimed++;
4848       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4849       r = next;
4850     } while (r != NULL);
4851 
4852     return false;
4853   }
4854 
4855   uint humongous_objects_reclaimed() {
4856     return _humongous_objects_reclaimed;
4857   }
4858 
4859   uint humongous_regions_reclaimed() {
4860     return _humongous_regions_reclaimed;
4861   }
4862 
4863   size_t bytes_freed() const {
4864     return _freed_bytes;
4865   }
4866 };
4867 
4868 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4869   assert_at_safepoint(true);
4870 
4871   if (!G1EagerReclaimHumongousObjects ||
4872       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4873     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4874     return;
4875   }
4876 
4877   double start_time = os::elapsedTime();
4878 
4879   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4880 
4881   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4882   heap_region_iterate(&cl);
4883 
4884   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4885 
4886   G1HRPrinter* hrp = hr_printer();
4887   if (hrp->is_active()) {
4888     FreeRegionListIterator iter(&local_cleanup_list);
4889     while (iter.more_available()) {
4890       HeapRegion* hr = iter.get_next();
4891       hrp->cleanup(hr);
4892     }
4893   }
4894 
4895   prepend_to_freelist(&local_cleanup_list);
4896   decrement_summary_bytes(cl.bytes_freed());
4897 
4898   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4899                                                                     cl.humongous_objects_reclaimed());
4900 }
4901 
4902 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4903 public:
4904   virtual bool do_heap_region(HeapRegion* r) {
4905     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4906     G1CollectedHeap::heap()->clear_in_cset(r);
4907     r->set_young_index_in_cset(-1);
4908     return false;
4909   }
4910 };
4911 
4912 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4913   G1AbandonCollectionSetClosure cl;
4914   collection_set->iterate(&cl);
4915 
4916   collection_set->clear();
4917   collection_set->stop_incremental_building();
4918 }
4919 
4920 void G1CollectedHeap::set_free_regions_coming() {
4921   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
4922 
4923   assert(!free_regions_coming(), "pre-condition");
4924   _free_regions_coming = true;
4925 }
4926 
4927 void G1CollectedHeap::reset_free_regions_coming() {
4928   assert(free_regions_coming(), "pre-condition");
4929 
4930   {
4931     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4932     _free_regions_coming = false;
4933     SecondaryFreeList_lock->notify_all();
4934   }
4935 
4936   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
4937 }
4938 
4939 void G1CollectedHeap::wait_while_free_regions_coming() {
4940   // Most of the time we won't have to wait, so let's do a quick test
4941   // first before we take the lock.
4942   if (!free_regions_coming()) {
4943     return;
4944   }
4945 
4946   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
4947 
4948   {
4949     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4950     while (free_regions_coming()) {
4951       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
4952     }
4953   }
4954 
4955   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
4956 }
4957 
4958 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4959   return _allocator->is_retained_old_region(hr);
4960 }
4961 
4962 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4963   _eden.add(hr);
4964   _g1_policy->set_region_eden(hr);
4965 }
4966 
4967 #ifdef ASSERT
4968 
4969 class NoYoungRegionsClosure: public HeapRegionClosure {
4970 private:
4971   bool _success;
4972 public:
4973   NoYoungRegionsClosure() : _success(true) { }
4974   bool do_heap_region(HeapRegion* r) {
4975     if (r->is_young()) {
4976       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4977                             p2i(r->bottom()), p2i(r->end()));
4978       _success = false;
4979     }
4980     return false;
4981   }
4982   bool success() { return _success; }
4983 };
4984 
4985 bool G1CollectedHeap::check_young_list_empty() {
4986   bool ret = (young_regions_count() == 0);
4987 
4988   NoYoungRegionsClosure closure;
4989   heap_region_iterate(&closure);
4990   ret = ret && closure.success();
4991 
4992   return ret;
4993 }
4994 
4995 #endif // ASSERT
4996 
4997 class TearDownRegionSetsClosure : public HeapRegionClosure {
4998 private:
4999   HeapRegionSet *_old_set;
5000 
5001 public:
5002   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5003 
5004   bool do_heap_region(HeapRegion* r) {
5005     if (r->is_old()) {
5006       _old_set->remove(r);
5007     } else if(r->is_young()) {
5008       r->uninstall_surv_rate_group();
5009     } else {
5010       // We ignore free regions, we'll empty the free list afterwards.
5011       // We ignore humongous regions, we're not tearing down the
5012       // humongous regions set.
5013       assert(r->is_free() || r->is_humongous(),
5014              "it cannot be another type");
5015     }
5016     return false;
5017   }
5018 
5019   ~TearDownRegionSetsClosure() {
5020     assert(_old_set->is_empty(), "post-condition");
5021   }
5022 };
5023 
5024 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5025   assert_at_safepoint(true /* should_be_vm_thread */);
5026 
5027   if (!free_list_only) {
5028     TearDownRegionSetsClosure cl(&_old_set);
5029     heap_region_iterate(&cl);
5030 
5031     // Note that emptying the _young_list is postponed and instead done as
5032     // the first step when rebuilding the regions sets again. The reason for
5033     // this is that during a full GC string deduplication needs to know if
5034     // a collected region was young or old when the full GC was initiated.
5035   }
5036   _hrm.remove_all_free_regions();
5037 }
5038 
5039 void G1CollectedHeap::increase_used(size_t bytes) {
5040   _summary_bytes_used += bytes;
5041 }
5042 
5043 void G1CollectedHeap::decrease_used(size_t bytes) {
5044   assert(_summary_bytes_used >= bytes,
5045          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5046          _summary_bytes_used, bytes);
5047   _summary_bytes_used -= bytes;
5048 }
5049 
5050 void G1CollectedHeap::set_used(size_t bytes) {
5051   _summary_bytes_used = bytes;
5052 }
5053 
5054 class RebuildRegionSetsClosure : public HeapRegionClosure {
5055 private:
5056   bool            _free_list_only;
5057   HeapRegionSet*   _old_set;
5058   HeapRegionManager*   _hrm;
5059   size_t          _total_used;
5060 
5061 public:
5062   RebuildRegionSetsClosure(bool free_list_only,
5063                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5064     _free_list_only(free_list_only),
5065     _old_set(old_set), _hrm(hrm), _total_used(0) {
5066     assert(_hrm->num_free_regions() == 0, "pre-condition");
5067     if (!free_list_only) {
5068       assert(_old_set->is_empty(), "pre-condition");
5069     }
5070   }
5071 
5072   bool do_heap_region(HeapRegion* r) {
5073     if (r->is_empty()) {
5074       // Add free regions to the free list
5075       r->set_free();
5076       r->set_allocation_context(AllocationContext::system());
5077       _hrm->insert_into_free_list(r);
5078     } else if (!_free_list_only) {
5079 
5080       if (r->is_humongous()) {
5081         // We ignore humongous regions. We left the humongous set unchanged.
5082       } else {
5083         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5084         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
5085         r->move_to_old();
5086         _old_set->add(r);
5087       }
5088       _total_used += r->used();
5089     }
5090 
5091     return false;
5092   }
5093 
5094   size_t total_used() {
5095     return _total_used;
5096   }
5097 };
5098 
5099 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5100   assert_at_safepoint(true /* should_be_vm_thread */);
5101 
5102   if (!free_list_only) {
5103     _eden.clear();
5104     _survivor.clear();
5105   }
5106 
5107   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5108   heap_region_iterate(&cl);
5109 
5110   if (!free_list_only) {
5111     set_used(cl.total_used());
5112     if (_archive_allocator != NULL) {
5113       _archive_allocator->clear_used();
5114     }
5115   }
5116   assert(used_unlocked() == recalculate_used(),
5117          "inconsistent used_unlocked(), "
5118          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5119          used_unlocked(), recalculate_used());
5120 }
5121 
5122 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5123   HeapRegion* hr = heap_region_containing(p);
5124   return hr->is_in(p);
5125 }
5126 
5127 // Methods for the mutator alloc region
5128 
5129 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5130                                                       bool force) {
5131   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5132   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5133   if (force || should_allocate) {
5134     HeapRegion* new_alloc_region = new_region(word_size,
5135                                               false /* is_old */,
5136                                               false /* do_expand */);
5137     if (new_alloc_region != NULL) {
5138       set_region_short_lived_locked(new_alloc_region);
5139       _hr_printer.alloc(new_alloc_region, !should_allocate);
5140       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5141       return new_alloc_region;
5142     }
5143   }
5144   return NULL;
5145 }
5146 
5147 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5148                                                   size_t allocated_bytes) {
5149   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5150   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5151 
5152   collection_set()->add_eden_region(alloc_region);
5153   increase_used(allocated_bytes);
5154   _hr_printer.retire(alloc_region);
5155   // We update the eden sizes here, when the region is retired,
5156   // instead of when it's allocated, since this is the point that its
5157   // used space has been recored in _summary_bytes_used.
5158   g1mm()->update_eden_size();
5159 }
5160 
5161 // Methods for the GC alloc regions
5162 
5163 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5164   if (dest.is_old()) {
5165     return true;
5166   } else {
5167     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5168   }
5169 }
5170 
5171 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5172   assert(FreeList_lock->owned_by_self(), "pre-condition");
5173 
5174   if (!has_more_regions(dest)) {
5175     return NULL;
5176   }
5177 
5178   const bool is_survivor = dest.is_young();
5179 
5180   HeapRegion* new_alloc_region = new_region(word_size,
5181                                             !is_survivor,
5182                                             true /* do_expand */);
5183   if (new_alloc_region != NULL) {
5184     // We really only need to do this for old regions given that we
5185     // should never scan survivors. But it doesn't hurt to do it
5186     // for survivors too.
5187     new_alloc_region->record_timestamp();
5188     if (is_survivor) {
5189       new_alloc_region->set_survivor();
5190       _survivor.add(new_alloc_region);
5191       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5192     } else {
5193       new_alloc_region->set_old();
5194       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5195     }
5196     _hr_printer.alloc(new_alloc_region);
5197     bool during_im = collector_state()->during_initial_mark_pause();
5198     new_alloc_region->note_start_of_copying(during_im);
5199     return new_alloc_region;
5200   }
5201   return NULL;
5202 }
5203 
5204 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5205                                              size_t allocated_bytes,
5206                                              InCSetState dest) {
5207   bool during_im = collector_state()->during_initial_mark_pause();
5208   alloc_region->note_end_of_copying(during_im);
5209   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5210   if (dest.is_old()) {
5211     _old_set.add(alloc_region);
5212   }
5213   _hr_printer.retire(alloc_region);
5214 }
5215 
5216 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5217   bool expanded = false;
5218   uint index = _hrm.find_highest_free(&expanded);
5219 
5220   if (index != G1_NO_HRM_INDEX) {
5221     if (expanded) {
5222       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5223                                 HeapRegion::GrainWords * HeapWordSize);
5224     }
5225     _hrm.allocate_free_regions_starting_at(index, 1);
5226     return region_at(index);
5227   }
5228   return NULL;
5229 }
5230 
5231 // Optimized nmethod scanning
5232 
5233 class RegisterNMethodOopClosure: public OopClosure {
5234   G1CollectedHeap* _g1h;
5235   nmethod* _nm;
5236 
5237   template <class T> void do_oop_work(T* p) {
5238     T heap_oop = oopDesc::load_heap_oop(p);
5239     if (!oopDesc::is_null(heap_oop)) {
5240       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5241       HeapRegion* hr = _g1h->heap_region_containing(obj);
5242       assert(!hr->is_continues_humongous(),
5243              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5244              " starting at " HR_FORMAT,
5245              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5246 
5247       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5248       hr->add_strong_code_root_locked(_nm);
5249     }
5250   }
5251 
5252 public:
5253   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5254     _g1h(g1h), _nm(nm) {}
5255 
5256   void do_oop(oop* p)       { do_oop_work(p); }
5257   void do_oop(narrowOop* p) { do_oop_work(p); }
5258 };
5259 
5260 class UnregisterNMethodOopClosure: public OopClosure {
5261   G1CollectedHeap* _g1h;
5262   nmethod* _nm;
5263 
5264   template <class T> void do_oop_work(T* p) {
5265     T heap_oop = oopDesc::load_heap_oop(p);
5266     if (!oopDesc::is_null(heap_oop)) {
5267       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5268       HeapRegion* hr = _g1h->heap_region_containing(obj);
5269       assert(!hr->is_continues_humongous(),
5270              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5271              " starting at " HR_FORMAT,
5272              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5273 
5274       hr->remove_strong_code_root(_nm);
5275     }
5276   }
5277 
5278 public:
5279   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5280     _g1h(g1h), _nm(nm) {}
5281 
5282   void do_oop(oop* p)       { do_oop_work(p); }
5283   void do_oop(narrowOop* p) { do_oop_work(p); }
5284 };
5285 
5286 // Returns true if the reference points to an object that
5287 // can move in an incremental collection.
5288 bool G1CollectedHeap::is_scavengable(oop obj) {
5289   HeapRegion* hr = heap_region_containing(obj);
5290   return !hr->is_pinned();
5291 }
5292 
5293 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5294   guarantee(nm != NULL, "sanity");
5295   RegisterNMethodOopClosure reg_cl(this, nm);
5296   nm->oops_do(&reg_cl);
5297 }
5298 
5299 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5300   guarantee(nm != NULL, "sanity");
5301   UnregisterNMethodOopClosure reg_cl(this, nm);
5302   nm->oops_do(&reg_cl, true);
5303 }
5304 
5305 void G1CollectedHeap::purge_code_root_memory() {
5306   double purge_start = os::elapsedTime();
5307   G1CodeRootSet::purge();
5308   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5309   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5310 }
5311 
5312 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5313   G1CollectedHeap* _g1h;
5314 
5315 public:
5316   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5317     _g1h(g1h) {}
5318 
5319   void do_code_blob(CodeBlob* cb) {
5320     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5321     if (nm == NULL) {
5322       return;
5323     }
5324 
5325     if (ScavengeRootsInCode) {
5326       _g1h->register_nmethod(nm);
5327     }
5328   }
5329 };
5330 
5331 void G1CollectedHeap::rebuild_strong_code_roots() {
5332   RebuildStrongCodeRootClosure blob_cl(this);
5333   CodeCache::blobs_do(&blob_cl);
5334 }
5335 
5336 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
5337   GrowableArray<GCMemoryManager*> memory_managers(2);
5338   memory_managers.append(&_memory_manager);
5339   memory_managers.append(&_full_gc_memory_manager);
5340   return memory_managers;
5341 }
5342 
5343 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
5344   GrowableArray<MemoryPool*> memory_pools(3);
5345   memory_pools.append(_eden_pool);
5346   memory_pools.append(_survivor_pool);
5347   memory_pools.append(_old_pool);
5348   return memory_pools;
5349 }