1 /*
   2  * Copyright (c) 2004, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_ADAPTIVESIZEPOLICY_HPP
  26 #define SHARE_VM_GC_SHARED_ADAPTIVESIZEPOLICY_HPP
  27 
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/gcCause.hpp"
  30 #include "gc/shared/gcUtil.hpp"
  31 #include "logging/log.hpp"
  32 #include "memory/allocation.hpp"
  33 #include "memory/universe.hpp"
  34 
  35 // This class keeps statistical information and computes the
  36 // size of the heap.
  37 
  38 // Forward decls
  39 class elapsedTimer;
  40 class SoftRefPolicy;
  41 
  42 class AdaptiveSizePolicy : public CHeapObj<mtGC> {
  43  friend class GCAdaptivePolicyCounters;
  44  friend class PSGCAdaptivePolicyCounters;
  45  friend class CMSGCAdaptivePolicyCounters;
  46  protected:
  47 
  48   enum GCPolicyKind {
  49     _gc_adaptive_size_policy,
  50     _gc_ps_adaptive_size_policy,
  51     _gc_cms_adaptive_size_policy
  52   };
  53   virtual GCPolicyKind kind() const { return _gc_adaptive_size_policy; }
  54 
  55   enum SizePolicyTrueValues {
  56     decrease_old_gen_for_throughput_true = -7,
  57     decrease_young_gen_for_througput_true = -6,
  58 
  59     increase_old_gen_for_min_pauses_true = -5,
  60     decrease_old_gen_for_min_pauses_true = -4,
  61     decrease_young_gen_for_maj_pauses_true = -3,
  62     increase_young_gen_for_min_pauses_true = -2,
  63     increase_old_gen_for_maj_pauses_true = -1,
  64 
  65     decrease_young_gen_for_min_pauses_true = 1,
  66     decrease_old_gen_for_maj_pauses_true = 2,
  67     increase_young_gen_for_maj_pauses_true = 3,
  68 
  69     increase_old_gen_for_throughput_true = 4,
  70     increase_young_gen_for_througput_true = 5,
  71 
  72     decrease_young_gen_for_footprint_true = 6,
  73     decrease_old_gen_for_footprint_true = 7,
  74     decide_at_full_gc_true = 8
  75   };
  76 
  77   // Goal for the fraction of the total time during which application
  78   // threads run
  79   const double _throughput_goal;
  80 
  81   // Last calculated sizes, in bytes, and aligned
  82   size_t _eden_size;        // calculated eden free space in bytes
  83   size_t _promo_size;       // calculated cms gen free space in bytes
  84 
  85   size_t _survivor_size;    // calculated survivor size in bytes
  86 
  87   // This is a hint for the heap:  we've detected that GC times
  88   // are taking longer than GCTimeLimit allows.
  89   bool _gc_overhead_limit_exceeded;
  90   // Use for diagnostics only.  If UseGCOverheadLimit is false,
  91   // this variable is still set.
  92   bool _print_gc_overhead_limit_would_be_exceeded;
  93   // Count of consecutive GC that have exceeded the
  94   // GC time limit criterion
  95   uint _gc_overhead_limit_count;
  96   // This flag signals that GCTimeLimit is being exceeded
  97   // but may not have done so for the required number of consecutive
  98   // collections
  99 
 100   // Minor collection timers used to determine both
 101   // pause and interval times for collections
 102   static elapsedTimer _minor_timer;
 103 
 104   // Major collection timers, used to determine both
 105   // pause and interval times for collections
 106   static elapsedTimer _major_timer;
 107 
 108   // Time statistics
 109   AdaptivePaddedAverage*   _avg_minor_pause;
 110   AdaptiveWeightedAverage* _avg_minor_interval;
 111   AdaptiveWeightedAverage* _avg_minor_gc_cost;
 112 
 113   AdaptiveWeightedAverage* _avg_major_interval;
 114   AdaptiveWeightedAverage* _avg_major_gc_cost;
 115 
 116   // Footprint statistics
 117   AdaptiveWeightedAverage* _avg_young_live;
 118   AdaptiveWeightedAverage* _avg_eden_live;
 119   AdaptiveWeightedAverage* _avg_old_live;
 120 
 121   // Statistics for survivor space calculation for young generation
 122   AdaptivePaddedAverage*   _avg_survived;
 123 
 124   // Objects that have been directly allocated in the old generation
 125   AdaptivePaddedNoZeroDevAverage*   _avg_pretenured;
 126 
 127   // Variable for estimating the major and minor pause times.
 128   // These variables represent linear least-squares fits of
 129   // the data.
 130   //   minor pause time vs. old gen size
 131   LinearLeastSquareFit* _minor_pause_old_estimator;
 132   //   minor pause time vs. young gen size
 133   LinearLeastSquareFit* _minor_pause_young_estimator;
 134 
 135   // Variables for estimating the major and minor collection costs
 136   //   minor collection time vs. young gen size
 137   LinearLeastSquareFit* _minor_collection_estimator;
 138   //   major collection time vs. cms gen size
 139   LinearLeastSquareFit* _major_collection_estimator;
 140 
 141   // These record the most recent collection times.  They
 142   // are available as an alternative to using the averages
 143   // for making ergonomic decisions.
 144   double _latest_minor_mutator_interval_seconds;
 145 
 146   // Allowed difference between major and minor GC times, used
 147   // for computing tenuring_threshold
 148   const double _threshold_tolerance_percent;
 149 
 150   const double _gc_pause_goal_sec; // Goal for maximum GC pause
 151 
 152   // Flag indicating that the adaptive policy is ready to use
 153   bool _young_gen_policy_is_ready;
 154 
 155   // Decrease/increase the young generation for minor pause time
 156   int _change_young_gen_for_min_pauses;
 157 
 158   // Decrease/increase the old generation for major pause time
 159   int _change_old_gen_for_maj_pauses;
 160 
 161   //   change old generation for throughput
 162   int _change_old_gen_for_throughput;
 163 
 164   //   change young generation for throughput
 165   int _change_young_gen_for_throughput;
 166 
 167   // Flag indicating that the policy would
 168   //   increase the tenuring threshold because of the total major GC cost
 169   //   is greater than the total minor GC cost
 170   bool _increment_tenuring_threshold_for_gc_cost;
 171   //   decrease the tenuring threshold because of the the total minor GC
 172   //   cost is greater than the total major GC cost
 173   bool _decrement_tenuring_threshold_for_gc_cost;
 174   //   decrease due to survivor size limit
 175   bool _decrement_tenuring_threshold_for_survivor_limit;
 176 
 177   //   decrease generation sizes for footprint
 178   int _decrease_for_footprint;
 179 
 180   // Set if the ergonomic decisions were made at a full GC.
 181   int _decide_at_full_gc;
 182 
 183   // Changing the generation sizing depends on the data that is
 184   // gathered about the effects of changes on the pause times and
 185   // throughput.  These variable count the number of data points
 186   // gathered.  The policy may use these counters as a threshold
 187   // for reliable data.
 188   julong _young_gen_change_for_minor_throughput;
 189   julong _old_gen_change_for_major_throughput;
 190 
 191   static const uint GCWorkersPerJavaThread  = 2;
 192 
 193   // Accessors
 194 
 195   double gc_pause_goal_sec() const { return _gc_pause_goal_sec; }
 196   // The value returned is unitless:  it's the proportion of time
 197   // spent in a particular collection type.
 198   // An interval time will be 0.0 if a collection type hasn't occurred yet.
 199   // The 1.4.2 implementation put a floor on the values of major_gc_cost
 200   // and minor_gc_cost.  This was useful because of the way major_gc_cost
 201   // and minor_gc_cost was used in calculating the sizes of the generations.
 202   // Do not use a floor in this implementation because any finite value
 203   // will put a limit on the throughput that can be achieved and any
 204   // throughput goal above that limit will drive the generations sizes
 205   // to extremes.
 206   double major_gc_cost() const {
 207     return MAX2(0.0F, _avg_major_gc_cost->average());
 208   }
 209 
 210   // The value returned is unitless:  it's the proportion of time
 211   // spent in a particular collection type.
 212   // An interval time will be 0.0 if a collection type hasn't occurred yet.
 213   // The 1.4.2 implementation put a floor on the values of major_gc_cost
 214   // and minor_gc_cost.  This was useful because of the way major_gc_cost
 215   // and minor_gc_cost was used in calculating the sizes of the generations.
 216   // Do not use a floor in this implementation because any finite value
 217   // will put a limit on the throughput that can be achieved and any
 218   // throughput goal above that limit will drive the generations sizes
 219   // to extremes.
 220 
 221   double minor_gc_cost() const {
 222     return MAX2(0.0F, _avg_minor_gc_cost->average());
 223   }
 224 
 225   // Because we're dealing with averages, gc_cost() can be
 226   // larger than 1.0 if just the sum of the minor cost the
 227   // the major cost is used.  Worse than that is the
 228   // fact that the minor cost and the major cost each
 229   // tend toward 1.0 in the extreme of high GC costs.
 230   // Limit the value of gc_cost to 1.0 so that the mutator
 231   // cost stays non-negative.
 232   virtual double gc_cost() const {
 233     double result = MIN2(1.0, minor_gc_cost() + major_gc_cost());
 234     assert(result >= 0.0, "Both minor and major costs are non-negative");
 235     return result;
 236   }
 237 
 238   // Elapsed time since the last major collection.
 239   virtual double time_since_major_gc() const;
 240 
 241   // Average interval between major collections to be used
 242   // in calculating the decaying major GC cost.  An overestimate
 243   // of this time would be a conservative estimate because
 244   // this time is used to decide if the major GC cost
 245   // should be decayed (i.e., if the time since the last
 246   // major GC is long compared to the time returned here,
 247   // then the major GC cost will be decayed).  See the
 248   // implementations for the specifics.
 249   virtual double major_gc_interval_average_for_decay() const {
 250     return _avg_major_interval->average();
 251   }
 252 
 253   // Return the cost of the GC where the major GC cost
 254   // has been decayed based on the time since the last
 255   // major collection.
 256   double decaying_gc_cost() const;
 257 
 258   // Decay the major GC cost.  Use this only for decisions on
 259   // whether to adjust, not to determine by how much to adjust.
 260   // This approximation is crude and may not be good enough for the
 261   // latter.
 262   double decaying_major_gc_cost() const;
 263 
 264   // Return the mutator cost using the decayed
 265   // GC cost.
 266   double adjusted_mutator_cost() const {
 267     double result = 1.0 - decaying_gc_cost();
 268     assert(result >= 0.0, "adjusted mutator cost calculation is incorrect");
 269     return result;
 270   }
 271 
 272   virtual double mutator_cost() const {
 273     double result = 1.0 - gc_cost();
 274     assert(result >= 0.0, "mutator cost calculation is incorrect");
 275     return result;
 276   }
 277 
 278 
 279   bool young_gen_policy_is_ready() { return _young_gen_policy_is_ready; }
 280 
 281   void update_minor_pause_young_estimator(double minor_pause_in_ms);
 282   virtual void update_minor_pause_old_estimator(double minor_pause_in_ms) {
 283     // This is not meaningful for all policies but needs to be present
 284     // to use minor_collection_end() in its current form.
 285   }
 286 
 287   virtual size_t eden_increment(size_t cur_eden);
 288   virtual size_t eden_increment(size_t cur_eden, uint percent_change);
 289   virtual size_t eden_decrement(size_t cur_eden);
 290   virtual size_t promo_increment(size_t cur_eden);
 291   virtual size_t promo_increment(size_t cur_eden, uint percent_change);
 292   virtual size_t promo_decrement(size_t cur_eden);
 293 
 294   virtual void clear_generation_free_space_flags();
 295 
 296   int change_old_gen_for_throughput() const {
 297     return _change_old_gen_for_throughput;
 298   }
 299   void set_change_old_gen_for_throughput(int v) {
 300     _change_old_gen_for_throughput = v;
 301   }
 302   int change_young_gen_for_throughput() const {
 303     return _change_young_gen_for_throughput;
 304   }
 305   void set_change_young_gen_for_throughput(int v) {
 306     _change_young_gen_for_throughput = v;
 307   }
 308 
 309   int change_old_gen_for_maj_pauses() const {
 310     return _change_old_gen_for_maj_pauses;
 311   }
 312   void set_change_old_gen_for_maj_pauses(int v) {
 313     _change_old_gen_for_maj_pauses = v;
 314   }
 315 
 316   bool decrement_tenuring_threshold_for_gc_cost() const {
 317     return _decrement_tenuring_threshold_for_gc_cost;
 318   }
 319   void set_decrement_tenuring_threshold_for_gc_cost(bool v) {
 320     _decrement_tenuring_threshold_for_gc_cost = v;
 321   }
 322   bool increment_tenuring_threshold_for_gc_cost() const {
 323     return _increment_tenuring_threshold_for_gc_cost;
 324   }
 325   void set_increment_tenuring_threshold_for_gc_cost(bool v) {
 326     _increment_tenuring_threshold_for_gc_cost = v;
 327   }
 328   bool decrement_tenuring_threshold_for_survivor_limit() const {
 329     return _decrement_tenuring_threshold_for_survivor_limit;
 330   }
 331   void set_decrement_tenuring_threshold_for_survivor_limit(bool v) {
 332     _decrement_tenuring_threshold_for_survivor_limit = v;
 333   }
 334   // Return true if the policy suggested a change.
 335   bool tenuring_threshold_change() const;
 336 
 337   static bool _debug_perturbation;
 338 
 339  public:
 340   AdaptiveSizePolicy(size_t init_eden_size,
 341                      size_t init_promo_size,
 342                      size_t init_survivor_size,
 343                      double gc_pause_goal_sec,
 344                      uint gc_cost_ratio);
 345 
 346   // Return number default  GC threads to use in the next GC.
 347   static uint calc_default_active_workers(uintx total_workers,
 348                                           const uintx min_workers,
 349                                           uintx active_workers,
 350                                           uintx application_workers);
 351 
 352   // Return number of GC threads to use in the next GC.
 353   // This is called sparingly so as not to change the
 354   // number of GC workers gratuitously.
 355   //   For ParNew collections
 356   //   For PS scavenge and ParOld collections
 357   //   For G1 evacuation pauses (subject to update)
 358   // Other collection phases inherit the number of
 359   // GC workers from the calls above.  For example,
 360   // a CMS parallel remark uses the same number of GC
 361   // workers as the most recent ParNew collection.
 362   static uint calc_active_workers(uintx total_workers,
 363                                   uintx active_workers,
 364                                   uintx application_workers);
 365 
 366   // Return number of GC threads to use in the next concurrent GC phase.
 367   static uint calc_active_conc_workers(uintx total_workers,
 368                                        uintx active_workers,
 369                                        uintx application_workers);
 370 
 371   bool is_gc_cms_adaptive_size_policy() {
 372     return kind() == _gc_cms_adaptive_size_policy;
 373   }
 374   bool is_gc_ps_adaptive_size_policy() {
 375     return kind() == _gc_ps_adaptive_size_policy;
 376   }
 377 
 378   AdaptivePaddedAverage*   avg_minor_pause() const { return _avg_minor_pause; }
 379   AdaptiveWeightedAverage* avg_minor_interval() const {
 380     return _avg_minor_interval;
 381   }
 382   AdaptiveWeightedAverage* avg_minor_gc_cost() const {
 383     return _avg_minor_gc_cost;
 384   }
 385 
 386   AdaptiveWeightedAverage* avg_major_gc_cost() const {
 387     return _avg_major_gc_cost;
 388   }
 389 
 390   AdaptiveWeightedAverage* avg_young_live() const { return _avg_young_live; }
 391   AdaptiveWeightedAverage* avg_eden_live() const { return _avg_eden_live; }
 392   AdaptiveWeightedAverage* avg_old_live() const { return _avg_old_live; }
 393 
 394   AdaptivePaddedAverage*  avg_survived() const { return _avg_survived; }
 395   AdaptivePaddedNoZeroDevAverage*  avg_pretenured() { return _avg_pretenured; }
 396 
 397   // Methods indicating events of interest to the adaptive size policy,
 398   // called by GC algorithms. It is the responsibility of users of this
 399   // policy to call these methods at the correct times!
 400   virtual void minor_collection_begin();
 401   virtual void minor_collection_end(GCCause::Cause gc_cause);
 402   virtual LinearLeastSquareFit* minor_pause_old_estimator() const {
 403     return _minor_pause_old_estimator;
 404   }
 405 
 406   LinearLeastSquareFit* minor_pause_young_estimator() {
 407     return _minor_pause_young_estimator;
 408   }
 409   LinearLeastSquareFit* minor_collection_estimator() {
 410     return _minor_collection_estimator;
 411   }
 412 
 413   LinearLeastSquareFit* major_collection_estimator() {
 414     return _major_collection_estimator;
 415   }
 416 
 417   float minor_pause_young_slope() {
 418     return _minor_pause_young_estimator->slope();
 419   }
 420 
 421   float minor_collection_slope() { return _minor_collection_estimator->slope();}
 422   float major_collection_slope() { return _major_collection_estimator->slope();}
 423 
 424   float minor_pause_old_slope() {
 425     return _minor_pause_old_estimator->slope();
 426   }
 427 
 428   void set_eden_size(size_t new_size) {
 429     _eden_size = new_size;
 430   }
 431   void set_survivor_size(size_t new_size) {
 432     _survivor_size = new_size;
 433   }
 434 
 435   size_t calculated_eden_size_in_bytes() const {
 436     return _eden_size;
 437   }
 438 
 439   size_t calculated_promo_size_in_bytes() const {
 440     return _promo_size;
 441   }
 442 
 443   size_t calculated_survivor_size_in_bytes() const {
 444     return _survivor_size;
 445   }
 446 
 447   // This is a hint for the heap:  we've detected that gc times
 448   // are taking longer than GCTimeLimit allows.
 449   // Most heaps will choose to throw an OutOfMemoryError when
 450   // this occurs but it is up to the heap to request this information
 451   // of the policy
 452   bool gc_overhead_limit_exceeded() {
 453     return _gc_overhead_limit_exceeded;
 454   }
 455   void set_gc_overhead_limit_exceeded(bool v) {
 456     _gc_overhead_limit_exceeded = v;
 457   }
 458 
 459   // Tests conditions indicate the GC overhead limit is being approached.
 460   bool gc_overhead_limit_near() {
 461     return gc_overhead_limit_count() >=
 462         (AdaptiveSizePolicyGCTimeLimitThreshold - 1);
 463   }
 464   uint gc_overhead_limit_count() { return _gc_overhead_limit_count; }
 465   void reset_gc_overhead_limit_count() { _gc_overhead_limit_count = 0; }
 466   void inc_gc_overhead_limit_count() { _gc_overhead_limit_count++; }
 467   // accessors for flags recording the decisions to resize the
 468   // generations to meet the pause goal.
 469 
 470   int change_young_gen_for_min_pauses() const {
 471     return _change_young_gen_for_min_pauses;
 472   }
 473   void set_change_young_gen_for_min_pauses(int v) {
 474     _change_young_gen_for_min_pauses = v;
 475   }
 476   void set_decrease_for_footprint(int v) { _decrease_for_footprint = v; }
 477   int decrease_for_footprint() const { return _decrease_for_footprint; }
 478   int decide_at_full_gc() { return _decide_at_full_gc; }
 479   void set_decide_at_full_gc(int v) { _decide_at_full_gc = v; }
 480 
 481   // Check the conditions for an out-of-memory due to excessive GC time.
 482   // Set _gc_overhead_limit_exceeded if all the conditions have been met.
 483   void check_gc_overhead_limit(size_t young_live,
 484                                size_t eden_live,
 485                                size_t max_old_gen_size,
 486                                size_t max_eden_size,
 487                                bool   is_full_gc,
 488                                GCCause::Cause gc_cause,
 489                                SoftRefPolicy* soft_ref_policy);
 490 
 491   static bool should_update_promo_stats(GCCause::Cause cause) {
 492     return ((GCCause::is_user_requested_gc(cause)  &&
 493                UseAdaptiveSizePolicyWithSystemGC) ||
 494             GCCause::is_tenured_allocation_failure_gc(cause));
 495   }
 496 
 497   static bool should_update_eden_stats(GCCause::Cause cause) {
 498     return ((GCCause::is_user_requested_gc(cause)  &&
 499                UseAdaptiveSizePolicyWithSystemGC) ||
 500             GCCause::is_allocation_failure_gc(cause));
 501   }
 502 
 503   // Printing support
 504   virtual bool print() const;
 505   void print_tenuring_threshold(uint new_tenuring_threshold) const;
 506 };
 507 
 508 #endif // SHARE_VM_GC_SHARED_ADAPTIVESIZEPOLICY_HPP