1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "gc/parallel/adjoiningGenerations.hpp"
  28 #include "gc/parallel/adjoiningVirtualSpaces.hpp"
  29 #include "gc/parallel/cardTableExtension.hpp"
  30 #include "gc/parallel/gcTaskManager.hpp"
  31 #include "gc/parallel/generationSizer.hpp"
  32 #include "gc/parallel/objectStartArray.inline.hpp"
  33 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  34 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  35 #include "gc/parallel/psMarkSweep.hpp"
  36 #include "gc/parallel/psMemoryPool.hpp"
  37 #include "gc/parallel/psParallelCompact.inline.hpp"
  38 #include "gc/parallel/psPromotionManager.hpp"
  39 #include "gc/parallel/psScavenge.hpp"
  40 #include "gc/parallel/vmPSOperations.hpp"
  41 #include "gc/shared/gcHeapSummary.hpp"
  42 #include "gc/shared/gcLocker.inline.hpp"
  43 #include "gc/shared/gcWhen.hpp"
  44 #include "logging/log.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/vmThread.hpp"
  49 #include "services/memoryManager.hpp"
  50 #include "services/memTracker.hpp"
  51 #include "utilities/vmError.hpp"
  52 
  53 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  54 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  55 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  56 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  57 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
  58 
  59 jint ParallelScavengeHeap::initialize() {
  60   const size_t heap_size = _collector_policy->max_heap_byte_size();
  61 
  62   ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->heap_alignment());
  63 
  64   os::trace_page_sizes("Heap",
  65                        _collector_policy->min_heap_byte_size(),
  66                        heap_size,
  67                        generation_alignment(),
  68                        heap_rs.base(),
  69                        heap_rs.size());
  70 
  71   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
  72 
  73   CardTableExtension* const barrier_set = new CardTableExtension(reserved_region());
  74   barrier_set->initialize();
  75   set_barrier_set(barrier_set);
  76 
  77   // Make up the generations
  78   // Calculate the maximum size that a generation can grow.  This
  79   // includes growth into the other generation.  Note that the
  80   // parameter _max_gen_size is kept as the maximum
  81   // size of the generation as the boundaries currently stand.
  82   // _max_gen_size is still used as that value.
  83   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
  84   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
  85 
  86   _gens = new AdjoiningGenerations(heap_rs, _collector_policy, generation_alignment());
  87 
  88   _old_gen = _gens->old_gen();
  89   _young_gen = _gens->young_gen();
  90 
  91   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
  92   const size_t old_capacity = _old_gen->capacity_in_bytes();
  93   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
  94   _size_policy =
  95     new PSAdaptiveSizePolicy(eden_capacity,
  96                              initial_promo_size,
  97                              young_gen()->to_space()->capacity_in_bytes(),
  98                              _collector_policy->gen_alignment(),
  99                              max_gc_pause_sec,
 100                              max_gc_minor_pause_sec,
 101                              GCTimeRatio
 102                              );
 103 
 104   assert(!UseAdaptiveGCBoundary ||
 105     (old_gen()->virtual_space()->high_boundary() ==
 106      young_gen()->virtual_space()->low_boundary()),
 107     "Boundaries must meet");
 108   // initialize the policy counters - 2 collectors, 2 generations
 109   _gc_policy_counters =
 110     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy);
 111 
 112   // Set up the GCTaskManager
 113   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
 114 
 115   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
 116     return JNI_ENOMEM;
 117   }
 118 
 119   return JNI_OK;
 120 }
 121 
 122 void ParallelScavengeHeap::initialize_serviceability() {
 123 
 124   _eden_pool = new EdenMutableSpacePool(_young_gen,
 125                                         _young_gen->eden_space(),
 126                                         "PS Eden Space",
 127                                         false /* support_usage_threshold */);
 128 
 129   _survivor_pool = new SurvivorMutableSpacePool(_young_gen,
 130                                                 "PS Survivor Space",
 131                                                 false /* support_usage_threshold */);
 132 
 133   _old_pool = new PSGenerationPool(_old_gen,
 134                                    "PS Old Gen",
 135                                    true /* support_usage_threshold */);
 136 
 137   _young_manager = new GCMemoryManager("PS Scavenge", "end of minor GC");
 138   _old_manager = new GCMemoryManager("PS MarkSweep", "end of major GC");
 139 
 140   _old_manager->add_pool(_eden_pool);
 141   _old_manager->add_pool(_survivor_pool);
 142   _old_manager->add_pool(_old_pool);
 143 
 144   _young_manager->add_pool(_eden_pool);
 145   _young_manager->add_pool(_survivor_pool);
 146 
 147 }
 148 
 149 void ParallelScavengeHeap::post_initialize() {
 150   CollectedHeap::post_initialize();
 151   // Need to init the tenuring threshold
 152   PSScavenge::initialize();
 153   if (UseParallelOldGC) {
 154     PSParallelCompact::post_initialize();
 155   } else {
 156     PSMarkSweep::initialize();
 157   }
 158   PSPromotionManager::initialize();
 159 }
 160 
 161 void ParallelScavengeHeap::update_counters() {
 162   young_gen()->update_counters();
 163   old_gen()->update_counters();
 164   MetaspaceCounters::update_performance_counters();
 165   CompressedClassSpaceCounters::update_performance_counters();
 166 }
 167 
 168 size_t ParallelScavengeHeap::capacity() const {
 169   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 170   return value;
 171 }
 172 
 173 size_t ParallelScavengeHeap::used() const {
 174   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 175   return value;
 176 }
 177 
 178 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 179   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 180 }
 181 
 182 
 183 size_t ParallelScavengeHeap::max_capacity() const {
 184   size_t estimated = reserved_region().byte_size();
 185   if (UseAdaptiveSizePolicy) {
 186     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 187   } else {
 188     estimated -= young_gen()->to_space()->capacity_in_bytes();
 189   }
 190   return MAX2(estimated, capacity());
 191 }
 192 
 193 bool ParallelScavengeHeap::is_in(const void* p) const {
 194   return young_gen()->is_in(p) || old_gen()->is_in(p);
 195 }
 196 
 197 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 198   return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p);
 199 }
 200 
 201 // There are two levels of allocation policy here.
 202 //
 203 // When an allocation request fails, the requesting thread must invoke a VM
 204 // operation, transfer control to the VM thread, and await the results of a
 205 // garbage collection. That is quite expensive, and we should avoid doing it
 206 // multiple times if possible.
 207 //
 208 // To accomplish this, we have a basic allocation policy, and also a
 209 // failed allocation policy.
 210 //
 211 // The basic allocation policy controls how you allocate memory without
 212 // attempting garbage collection. It is okay to grab locks and
 213 // expand the heap, if that can be done without coming to a safepoint.
 214 // It is likely that the basic allocation policy will not be very
 215 // aggressive.
 216 //
 217 // The failed allocation policy is invoked from the VM thread after
 218 // the basic allocation policy is unable to satisfy a mem_allocate
 219 // request. This policy needs to cover the entire range of collection,
 220 // heap expansion, and out-of-memory conditions. It should make every
 221 // attempt to allocate the requested memory.
 222 
 223 // Basic allocation policy. Should never be called at a safepoint, or
 224 // from the VM thread.
 225 //
 226 // This method must handle cases where many mem_allocate requests fail
 227 // simultaneously. When that happens, only one VM operation will succeed,
 228 // and the rest will not be executed. For that reason, this method loops
 229 // during failed allocation attempts. If the java heap becomes exhausted,
 230 // we rely on the size_policy object to force a bail out.
 231 HeapWord* ParallelScavengeHeap::mem_allocate(
 232                                      size_t size,
 233                                      bool* gc_overhead_limit_was_exceeded) {
 234   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 235   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 236   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 237 
 238   // In general gc_overhead_limit_was_exceeded should be false so
 239   // set it so here and reset it to true only if the gc time
 240   // limit is being exceeded as checked below.
 241   *gc_overhead_limit_was_exceeded = false;
 242 
 243   HeapWord* result = young_gen()->allocate(size);
 244 
 245   uint loop_count = 0;
 246   uint gc_count = 0;
 247   uint gclocker_stalled_count = 0;
 248 
 249   while (result == NULL) {
 250     // We don't want to have multiple collections for a single filled generation.
 251     // To prevent this, each thread tracks the total_collections() value, and if
 252     // the count has changed, does not do a new collection.
 253     //
 254     // The collection count must be read only while holding the heap lock. VM
 255     // operations also hold the heap lock during collections. There is a lock
 256     // contention case where thread A blocks waiting on the Heap_lock, while
 257     // thread B is holding it doing a collection. When thread A gets the lock,
 258     // the collection count has already changed. To prevent duplicate collections,
 259     // The policy MUST attempt allocations during the same period it reads the
 260     // total_collections() value!
 261     {
 262       MutexLocker ml(Heap_lock);
 263       gc_count = total_collections();
 264 
 265       result = young_gen()->allocate(size);
 266       if (result != NULL) {
 267         return result;
 268       }
 269 
 270       // If certain conditions hold, try allocating from the old gen.
 271       result = mem_allocate_old_gen(size);
 272       if (result != NULL) {
 273         return result;
 274       }
 275 
 276       if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 277         return NULL;
 278       }
 279 
 280       // Failed to allocate without a gc.
 281       if (GCLocker::is_active_and_needs_gc()) {
 282         // If this thread is not in a jni critical section, we stall
 283         // the requestor until the critical section has cleared and
 284         // GC allowed. When the critical section clears, a GC is
 285         // initiated by the last thread exiting the critical section; so
 286         // we retry the allocation sequence from the beginning of the loop,
 287         // rather than causing more, now probably unnecessary, GC attempts.
 288         JavaThread* jthr = JavaThread::current();
 289         if (!jthr->in_critical()) {
 290           MutexUnlocker mul(Heap_lock);
 291           GCLocker::stall_until_clear();
 292           gclocker_stalled_count += 1;
 293           continue;
 294         } else {
 295           if (CheckJNICalls) {
 296             fatal("Possible deadlock due to allocating while"
 297                   " in jni critical section");
 298           }
 299           return NULL;
 300         }
 301       }
 302     }
 303 
 304     if (result == NULL) {
 305       // Generate a VM operation
 306       VM_ParallelGCFailedAllocation op(size, gc_count);
 307       VMThread::execute(&op);
 308 
 309       // Did the VM operation execute? If so, return the result directly.
 310       // This prevents us from looping until time out on requests that can
 311       // not be satisfied.
 312       if (op.prologue_succeeded()) {
 313         assert(is_in_or_null(op.result()), "result not in heap");
 314 
 315         // If GC was locked out during VM operation then retry allocation
 316         // and/or stall as necessary.
 317         if (op.gc_locked()) {
 318           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 319           continue;  // retry and/or stall as necessary
 320         }
 321 
 322         // Exit the loop if the gc time limit has been exceeded.
 323         // The allocation must have failed above ("result" guarding
 324         // this path is NULL) and the most recent collection has exceeded the
 325         // gc overhead limit (although enough may have been collected to
 326         // satisfy the allocation).  Exit the loop so that an out-of-memory
 327         // will be thrown (return a NULL ignoring the contents of
 328         // op.result()),
 329         // but clear gc_overhead_limit_exceeded so that the next collection
 330         // starts with a clean slate (i.e., forgets about previous overhead
 331         // excesses).  Fill op.result() with a filler object so that the
 332         // heap remains parsable.
 333         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 334         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
 335 
 336         if (limit_exceeded && softrefs_clear) {
 337           *gc_overhead_limit_was_exceeded = true;
 338           size_policy()->set_gc_overhead_limit_exceeded(false);
 339           log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set");
 340           if (op.result() != NULL) {
 341             CollectedHeap::fill_with_object(op.result(), size);
 342           }
 343           return NULL;
 344         }
 345 
 346         return op.result();
 347       }
 348     }
 349 
 350     // The policy object will prevent us from looping forever. If the
 351     // time spent in gc crosses a threshold, we will bail out.
 352     loop_count++;
 353     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 354         (loop_count % QueuedAllocationWarningCount == 0)) {
 355       log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times", loop_count);
 356       log_warning(gc)("\tsize=" SIZE_FORMAT, size);
 357     }
 358   }
 359 
 360   return result;
 361 }
 362 
 363 // A "death march" is a series of ultra-slow allocations in which a full gc is
 364 // done before each allocation, and after the full gc the allocation still
 365 // cannot be satisfied from the young gen.  This routine detects that condition;
 366 // it should be called after a full gc has been done and the allocation
 367 // attempted from the young gen. The parameter 'addr' should be the result of
 368 // that young gen allocation attempt.
 369 void
 370 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
 371   if (addr != NULL) {
 372     _death_march_count = 0;  // death march has ended
 373   } else if (_death_march_count == 0) {
 374     if (should_alloc_in_eden(size)) {
 375       _death_march_count = 1;    // death march has started
 376     }
 377   }
 378 }
 379 
 380 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
 381   if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) {
 382     // Size is too big for eden, or gc is locked out.
 383     return old_gen()->allocate(size);
 384   }
 385 
 386   // If a "death march" is in progress, allocate from the old gen a limited
 387   // number of times before doing a GC.
 388   if (_death_march_count > 0) {
 389     if (_death_march_count < 64) {
 390       ++_death_march_count;
 391       return old_gen()->allocate(size);
 392     } else {
 393       _death_march_count = 0;
 394     }
 395   }
 396   return NULL;
 397 }
 398 
 399 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
 400   if (UseParallelOldGC) {
 401     // The do_full_collection() parameter clear_all_soft_refs
 402     // is interpreted here as maximum_compaction which will
 403     // cause SoftRefs to be cleared.
 404     bool maximum_compaction = clear_all_soft_refs;
 405     PSParallelCompact::invoke(maximum_compaction);
 406   } else {
 407     PSMarkSweep::invoke(clear_all_soft_refs);
 408   }
 409 }
 410 
 411 // Failed allocation policy. Must be called from the VM thread, and
 412 // only at a safepoint! Note that this method has policy for allocation
 413 // flow, and NOT collection policy. So we do not check for gc collection
 414 // time over limit here, that is the responsibility of the heap specific
 415 // collection methods. This method decides where to attempt allocations,
 416 // and when to attempt collections, but no collection specific policy.
 417 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
 418   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 419   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 420   assert(!is_gc_active(), "not reentrant");
 421   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 422 
 423   // We assume that allocation in eden will fail unless we collect.
 424 
 425   // First level allocation failure, scavenge and allocate in young gen.
 426   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 427   const bool invoked_full_gc = PSScavenge::invoke();
 428   HeapWord* result = young_gen()->allocate(size);
 429 
 430   // Second level allocation failure.
 431   //   Mark sweep and allocate in young generation.
 432   if (result == NULL && !invoked_full_gc) {
 433     do_full_collection(false);
 434     result = young_gen()->allocate(size);
 435   }
 436 
 437   death_march_check(result, size);
 438 
 439   // Third level allocation failure.
 440   //   After mark sweep and young generation allocation failure,
 441   //   allocate in old generation.
 442   if (result == NULL) {
 443     result = old_gen()->allocate(size);
 444   }
 445 
 446   // Fourth level allocation failure. We're running out of memory.
 447   //   More complete mark sweep and allocate in young generation.
 448   if (result == NULL) {
 449     do_full_collection(true);
 450     result = young_gen()->allocate(size);
 451   }
 452 
 453   // Fifth level allocation failure.
 454   //   After more complete mark sweep, allocate in old generation.
 455   if (result == NULL) {
 456     result = old_gen()->allocate(size);
 457   }
 458 
 459   return result;
 460 }
 461 
 462 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 463   CollectedHeap::ensure_parsability(retire_tlabs);
 464   young_gen()->eden_space()->ensure_parsability();
 465 }
 466 
 467 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 468   return young_gen()->eden_space()->tlab_capacity(thr);
 469 }
 470 
 471 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
 472   return young_gen()->eden_space()->tlab_used(thr);
 473 }
 474 
 475 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 476   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 477 }
 478 
 479 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
 480   return young_gen()->allocate(size);
 481 }
 482 
 483 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
 484   CollectedHeap::accumulate_statistics_all_tlabs();
 485 }
 486 
 487 void ParallelScavengeHeap::resize_all_tlabs() {
 488   CollectedHeap::resize_all_tlabs();
 489 }
 490 
 491 // This method is used by System.gc() and JVMTI.
 492 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 493   assert(!Heap_lock->owned_by_self(),
 494     "this thread should not own the Heap_lock");
 495 
 496   uint gc_count      = 0;
 497   uint full_gc_count = 0;
 498   {
 499     MutexLocker ml(Heap_lock);
 500     // This value is guarded by the Heap_lock
 501     gc_count      = total_collections();
 502     full_gc_count = total_full_collections();
 503   }
 504 
 505   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 506   VMThread::execute(&op);
 507 }
 508 
 509 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 510   young_gen()->object_iterate(cl);
 511   old_gen()->object_iterate(cl);
 512 }
 513 
 514 
 515 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 516   if (young_gen()->is_in_reserved(addr)) {
 517     assert(young_gen()->is_in(addr),
 518            "addr should be in allocated part of young gen");
 519     // called from os::print_location by find or VMError
 520     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
 521     Unimplemented();
 522   } else if (old_gen()->is_in_reserved(addr)) {
 523     assert(old_gen()->is_in(addr),
 524            "addr should be in allocated part of old gen");
 525     return old_gen()->start_array()->object_start((HeapWord*)addr);
 526   }
 527   return 0;
 528 }
 529 
 530 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
 531   return oop(addr)->size();
 532 }
 533 
 534 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 535   return block_start(addr) == addr;
 536 }
 537 
 538 jlong ParallelScavengeHeap::millis_since_last_gc() {
 539   return UseParallelOldGC ?
 540     PSParallelCompact::millis_since_last_gc() :
 541     PSMarkSweep::millis_since_last_gc();
 542 }
 543 
 544 void ParallelScavengeHeap::prepare_for_verify() {
 545   ensure_parsability(false);  // no need to retire TLABs for verification
 546 }
 547 
 548 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
 549   PSOldGen* old = old_gen();
 550   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
 551   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
 552   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
 553 
 554   PSYoungGen* young = young_gen();
 555   VirtualSpaceSummary young_summary(young->reserved().start(),
 556     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
 557 
 558   MutableSpace* eden = young_gen()->eden_space();
 559   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
 560 
 561   MutableSpace* from = young_gen()->from_space();
 562   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
 563 
 564   MutableSpace* to = young_gen()->to_space();
 565   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
 566 
 567   VirtualSpaceSummary heap_summary = create_heap_space_summary();
 568   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
 569 }
 570 
 571 void ParallelScavengeHeap::print_on(outputStream* st) const {
 572   young_gen()->print_on(st);
 573   old_gen()->print_on(st);
 574   MetaspaceAux::print_on(st);
 575 }
 576 
 577 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
 578   this->CollectedHeap::print_on_error(st);
 579 
 580   if (UseParallelOldGC) {
 581     st->cr();
 582     PSParallelCompact::print_on_error(st);
 583   }
 584 }
 585 
 586 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 587   PSScavenge::gc_task_manager()->threads_do(tc);
 588 }
 589 
 590 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 591   PSScavenge::gc_task_manager()->print_threads_on(st);
 592 }
 593 
 594 void ParallelScavengeHeap::print_tracing_info() const {
 595   AdaptiveSizePolicyOutput::print();
 596   log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
 597   log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs",
 598       UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweep::accumulated_time()->seconds());
 599 }
 600 
 601 
 602 void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) {
 603   // Why do we need the total_collections()-filter below?
 604   if (total_collections() > 0) {
 605     log_debug(gc, verify)("Tenured");
 606     old_gen()->verify();
 607 
 608     log_debug(gc, verify)("Eden");
 609     young_gen()->verify();
 610   }
 611 }
 612 
 613 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 614   const PSHeapSummary& heap_summary = create_ps_heap_summary();
 615   gc_tracer->report_gc_heap_summary(when, heap_summary);
 616 
 617   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 618   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 619 }
 620 
 621 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 622   CollectedHeap* heap = Universe::heap();
 623   assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 624   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Not a ParallelScavengeHeap");
 625   return (ParallelScavengeHeap*)heap;
 626 }
 627 
 628 // Before delegating the resize to the young generation,
 629 // the reserved space for the young and old generations
 630 // may be changed to accommodate the desired resize.
 631 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
 632     size_t survivor_size) {
 633   if (UseAdaptiveGCBoundary) {
 634     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 635       size_policy()->reset_bytes_absorbed_from_eden();
 636       return;  // The generation changed size already.
 637     }
 638     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
 639   }
 640 
 641   // Delegate the resize to the generation.
 642   _young_gen->resize(eden_size, survivor_size);
 643 }
 644 
 645 // Before delegating the resize to the old generation,
 646 // the reserved space for the young and old generations
 647 // may be changed to accommodate the desired resize.
 648 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
 649   if (UseAdaptiveGCBoundary) {
 650     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 651       size_policy()->reset_bytes_absorbed_from_eden();
 652       return;  // The generation changed size already.
 653     }
 654     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
 655   }
 656 
 657   // Delegate the resize to the generation.
 658   _old_gen->resize(desired_free_space);
 659 }
 660 
 661 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
 662   // nothing particular
 663 }
 664 
 665 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
 666   // nothing particular
 667 }
 668 
 669 #ifndef PRODUCT
 670 void ParallelScavengeHeap::record_gen_tops_before_GC() {
 671   if (ZapUnusedHeapArea) {
 672     young_gen()->record_spaces_top();
 673     old_gen()->record_spaces_top();
 674   }
 675 }
 676 
 677 void ParallelScavengeHeap::gen_mangle_unused_area() {
 678   if (ZapUnusedHeapArea) {
 679     young_gen()->eden_space()->mangle_unused_area();
 680     young_gen()->to_space()->mangle_unused_area();
 681     young_gen()->from_space()->mangle_unused_area();
 682     old_gen()->object_space()->mangle_unused_area();
 683   }
 684 }
 685 #endif
 686 
 687 bool ParallelScavengeHeap::is_scavengable(oop obj) {
 688   return is_in_young(obj);
 689 }
 690 
 691 void ParallelScavengeHeap::register_nmethod(nmethod* nm) {
 692   CodeCache::register_scavenge_root_nmethod(nm);
 693 }
 694 
 695 void ParallelScavengeHeap::verify_nmethod(nmethod* nm) {
 696   CodeCache::verify_scavenge_root_nmethod(nm);
 697 }
 698 
 699 GrowableArray<GCMemoryManager*> ParallelScavengeHeap::memory_managers() {
 700   GrowableArray<GCMemoryManager*> memory_managers(2);
 701   memory_managers.append(_young_manager);
 702   memory_managers.append(_old_manager);
 703   return memory_managers;
 704 }
 705 
 706 GrowableArray<MemoryPool*> ParallelScavengeHeap::memory_pools() {
 707   GrowableArray<MemoryPool*> memory_pools(3);
 708   memory_pools.append(_eden_pool);
 709   memory_pools.append(_survivor_pool);
 710   memory_pools.append(_old_pool);
 711   return memory_pools;
 712 }