1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "gc/shared/cardTableRS.hpp"
  34 #include "gc/shared/collectedHeap.inline.hpp"
  35 #include "gc/shared/collectorCounters.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/gcTrace.hpp"
  39 #include "gc/shared/gcTraceTime.inline.hpp"
  40 #include "gc/shared/genCollectedHeap.hpp"
  41 #include "gc/shared/genOopClosures.inline.hpp"
  42 #include "gc/shared/generationSpec.hpp"
  43 #include "gc/shared/space.hpp"
  44 #include "gc/shared/strongRootsScope.hpp"
  45 #include "gc/shared/vmGCOperations.hpp"
  46 #include "gc/shared/weakProcessor.hpp"
  47 #include "gc/shared/workgroup.hpp"
  48 #include "memory/filemap.hpp"
  49 #include "memory/resourceArea.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "runtime/biasedLocking.hpp"
  52 #include "runtime/handles.hpp"
  53 #include "runtime/handles.inline.hpp"
  54 #include "runtime/java.hpp"
  55 #include "runtime/vmThread.hpp"
  56 #include "services/management.hpp"
  57 #include "services/memoryService.hpp"
  58 #include "utilities/debug.hpp"
  59 #include "utilities/formatBuffer.hpp"
  60 #include "utilities/macros.hpp"
  61 #include "utilities/stack.inline.hpp"
  62 #include "utilities/vmError.hpp"
  63 
  64 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  65   CollectedHeap(),
  66   _rem_set(NULL),
  67   _gen_policy(policy),
  68   _soft_ref_gen_policy(),
  69   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  70   _full_collections_completed(0)
  71 {
  72   assert(policy != NULL, "Sanity check");
  73 }
  74 
  75 jint GenCollectedHeap::initialize() {
  76   // While there are no constraints in the GC code that HeapWordSize
  77   // be any particular value, there are multiple other areas in the
  78   // system which believe this to be true (e.g. oop->object_size in some
  79   // cases incorrectly returns the size in wordSize units rather than
  80   // HeapWordSize).
  81   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  82 
  83   // Allocate space for the heap.
  84 
  85   char* heap_address;
  86   ReservedSpace heap_rs;
  87 
  88   size_t heap_alignment = collector_policy()->heap_alignment();
  89 
  90   heap_address = allocate(heap_alignment, &heap_rs);
  91 
  92   if (!heap_rs.is_reserved()) {
  93     vm_shutdown_during_initialization(
  94       "Could not reserve enough space for object heap");
  95     return JNI_ENOMEM;
  96   }
  97 
  98   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
  99 
 100   _rem_set = new CardTableRS(reserved_region());
 101   set_barrier_set(rem_set()->bs());
 102 
 103   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 104   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 105   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 106 
 107   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 108   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 109   clear_incremental_collection_failed();
 110 
 111   return JNI_OK;
 112 }
 113 
 114 char* GenCollectedHeap::allocate(size_t alignment,
 115                                  ReservedSpace* heap_rs){
 116   // Now figure out the total size.
 117   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 118   assert(alignment % pageSize == 0, "Must be");
 119 
 120   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 121   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 122 
 123   // Check for overflow.
 124   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 125   if (total_reserved < young_spec->max_size()) {
 126     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 127                                   "the maximum representable size");
 128   }
 129   assert(total_reserved % alignment == 0,
 130          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 131          SIZE_FORMAT, total_reserved, alignment);
 132 
 133   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 134 
 135   os::trace_page_sizes("Heap",
 136                        collector_policy()->min_heap_byte_size(),
 137                        total_reserved,
 138                        alignment,
 139                        heap_rs->base(),
 140                        heap_rs->size());
 141 
 142   return heap_rs->base();
 143 }
 144 
 145 void GenCollectedHeap::post_initialize() {
 146   CollectedHeap::post_initialize();
 147   ref_processing_init();
 148   check_gen_kinds();
 149   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 150 
 151   _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 152                                       _old_gen->capacity(),
 153                                       def_new_gen->from()->capacity());
 154 
 155   _gen_policy->initialize_gc_policy_counters();
 156 }
 157 
 158 void GenCollectedHeap::ref_processing_init() {
 159   _young_gen->ref_processor_init();
 160   _old_gen->ref_processor_init();
 161 }
 162 
 163 size_t GenCollectedHeap::capacity() const {
 164   return _young_gen->capacity() + _old_gen->capacity();
 165 }
 166 
 167 size_t GenCollectedHeap::used() const {
 168   return _young_gen->used() + _old_gen->used();
 169 }
 170 
 171 void GenCollectedHeap::save_used_regions() {
 172   _old_gen->save_used_region();
 173   _young_gen->save_used_region();
 174 }
 175 
 176 size_t GenCollectedHeap::max_capacity() const {
 177   return _young_gen->max_capacity() + _old_gen->max_capacity();
 178 }
 179 
 180 // Update the _full_collections_completed counter
 181 // at the end of a stop-world full GC.
 182 unsigned int GenCollectedHeap::update_full_collections_completed() {
 183   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 184   assert(_full_collections_completed <= _total_full_collections,
 185          "Can't complete more collections than were started");
 186   _full_collections_completed = _total_full_collections;
 187   ml.notify_all();
 188   return _full_collections_completed;
 189 }
 190 
 191 // Update the _full_collections_completed counter, as appropriate,
 192 // at the end of a concurrent GC cycle. Note the conditional update
 193 // below to allow this method to be called by a concurrent collector
 194 // without synchronizing in any manner with the VM thread (which
 195 // may already have initiated a STW full collection "concurrently").
 196 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 197   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 198   assert((_full_collections_completed <= _total_full_collections) &&
 199          (count <= _total_full_collections),
 200          "Can't complete more collections than were started");
 201   if (count > _full_collections_completed) {
 202     _full_collections_completed = count;
 203     ml.notify_all();
 204   }
 205   return _full_collections_completed;
 206 }
 207 
 208 // Return true if any of the following is true:
 209 // . the allocation won't fit into the current young gen heap
 210 // . gc locker is occupied (jni critical section)
 211 // . heap memory is tight -- the most recent previous collection
 212 //   was a full collection because a partial collection (would
 213 //   have) failed and is likely to fail again
 214 bool GenCollectedHeap::should_try_older_generation_allocation(size_t word_size) const {
 215   size_t young_capacity = young_gen()->capacity_before_gc();
 216   return    (word_size > heap_word_size(young_capacity))
 217          || GCLocker::is_active_and_needs_gc()
 218          || incremental_collection_failed();
 219 }
 220 
 221 HeapWord* GenCollectedHeap::expand_heap_and_allocate(size_t size, bool   is_tlab) {
 222   HeapWord* result = NULL;
 223   if (old_gen()->should_allocate(size, is_tlab)) {
 224     result = old_gen()->expand_and_allocate(size, is_tlab);
 225   }
 226   if (result == NULL) {
 227     if (young_gen()->should_allocate(size, is_tlab)) {
 228       result = young_gen()->expand_and_allocate(size, is_tlab);
 229     }
 230   }
 231   assert(result == NULL || is_in_reserved(result), "result not in heap");
 232   return result;
 233 }
 234 
 235 HeapWord* GenCollectedHeap::mem_allocate_work(size_t size,
 236                                               bool is_tlab,
 237                                               bool* gc_overhead_limit_was_exceeded) {
 238   debug_only(check_for_valid_allocation_state());
 239   assert(no_gc_in_progress(), "Allocation during gc not allowed");
 240 
 241   // In general gc_overhead_limit_was_exceeded should be false so
 242   // set it so here and reset it to true only if the gc time
 243   // limit is being exceeded as checked below.
 244   *gc_overhead_limit_was_exceeded = false;
 245 
 246   HeapWord* result = NULL;
 247 
 248   // Loop until the allocation is satisfied, or unsatisfied after GC.
 249   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 250     HandleMark hm; // Discard any handles allocated in each iteration.
 251 
 252     // First allocation attempt is lock-free.
 253     Generation *young = young_gen();
 254     assert(young->supports_inline_contig_alloc(),
 255       "Otherwise, must do alloc within heap lock");
 256     if (young->should_allocate(size, is_tlab)) {
 257       result = young->par_allocate(size, is_tlab);
 258       if (result != NULL) {
 259         assert(is_in_reserved(result), "result not in heap");
 260         return result;
 261       }
 262     }
 263     uint gc_count_before;  // Read inside the Heap_lock locked region.
 264     {
 265       MutexLocker ml(Heap_lock);
 266       log_trace(gc, alloc)("GenCollectedHeap::mem_allocate_work: attempting locked slow path allocation");
 267       // Note that only large objects get a shot at being
 268       // allocated in later generations.
 269       bool first_only = ! should_try_older_generation_allocation(size);
 270 
 271       result = attempt_allocation(size, is_tlab, first_only);
 272       if (result != NULL) {
 273         assert(is_in_reserved(result), "result not in heap");
 274         return result;
 275       }
 276 
 277       if (GCLocker::is_active_and_needs_gc()) {
 278         if (is_tlab) {
 279           return NULL;  // Caller will retry allocating individual object.
 280         }
 281         if (!is_maximal_no_gc()) {
 282           // Try and expand heap to satisfy request.
 283           result = expand_heap_and_allocate(size, is_tlab);
 284           // Result could be null if we are out of space.
 285           if (result != NULL) {
 286             return result;
 287           }
 288         }
 289 
 290         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 291           return NULL; // We didn't get to do a GC and we didn't get any memory.
 292         }
 293 
 294         // If this thread is not in a jni critical section, we stall
 295         // the requestor until the critical section has cleared and
 296         // GC allowed. When the critical section clears, a GC is
 297         // initiated by the last thread exiting the critical section; so
 298         // we retry the allocation sequence from the beginning of the loop,
 299         // rather than causing more, now probably unnecessary, GC attempts.
 300         JavaThread* jthr = JavaThread::current();
 301         if (!jthr->in_critical()) {
 302           MutexUnlocker mul(Heap_lock);
 303           // Wait for JNI critical section to be exited
 304           GCLocker::stall_until_clear();
 305           gclocker_stalled_count += 1;
 306           continue;
 307         } else {
 308           if (CheckJNICalls) {
 309             fatal("Possible deadlock due to allocating while"
 310                   " in jni critical section");
 311           }
 312           return NULL;
 313         }
 314       }
 315 
 316       // Read the gc count while the heap lock is held.
 317       gc_count_before = total_collections();
 318     }
 319 
 320     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 321     VMThread::execute(&op);
 322     if (op.prologue_succeeded()) {
 323       result = op.result();
 324       if (op.gc_locked()) {
 325          assert(result == NULL, "must be NULL if gc_locked() is true");
 326          continue;  // Retry and/or stall as necessary.
 327       }
 328 
 329       // Allocation has failed and a collection
 330       // has been done.  If the gc time limit was exceeded the
 331       // this time, return NULL so that an out-of-memory
 332       // will be thrown.  Clear gc_overhead_limit_exceeded
 333       // so that the overhead exceeded does not persist.
 334 
 335       const bool limit_exceeded = gen_policy()->size_policy()->gc_overhead_limit_exceeded();
 336       const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 337 
 338       if (limit_exceeded && softrefs_clear) {
 339         *gc_overhead_limit_was_exceeded = true;
 340         gen_policy()->size_policy()->set_gc_overhead_limit_exceeded(false);
 341         if (op.result() != NULL) {
 342           CollectedHeap::fill_with_object(op.result(), size);
 343         }
 344         return NULL;
 345       }
 346       assert(result == NULL || is_in_reserved(result),
 347              "result not in heap");
 348       return result;
 349     }
 350 
 351     // Give a warning if we seem to be looping forever.
 352     if ((QueuedAllocationWarningCount > 0) &&
 353         (try_count % QueuedAllocationWarningCount == 0)) {
 354           log_warning(gc, ergo)("GenCollectedHeap::mem_allocate_work retries %d times,"
 355                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 356     }
 357   }
 358 }
 359 
 360 #ifndef PRODUCT
 361 // Override of memory state checking method in CollectedHeap:
 362 // Some collectors (CMS for example) can't have badHeapWordVal written
 363 // in the first two words of an object. (For instance , in the case of
 364 // CMS these words hold state used to synchronize between certain
 365 // (concurrent) GC steps and direct allocating mutators.)
 366 // The skip_header_HeapWords() method below, allows us to skip
 367 // over the requisite number of HeapWord's. Note that (for
 368 // generational collectors) this means that those many words are
 369 // skipped in each object, irrespective of the generation in which
 370 // that object lives. The resultant loss of precision seems to be
 371 // harmless and the pain of avoiding that imprecision appears somewhat
 372 // higher than we are prepared to pay for such rudimentary debugging
 373 // support.
 374 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 375                                                          size_t size) {
 376   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 377     // We are asked to check a size in HeapWords,
 378     // but the memory is mangled in juint words.
 379     juint* start = (juint*) (addr + skip_header_HeapWords());
 380     juint* end   = (juint*) (addr + size);
 381     for (juint* slot = start; slot < end; slot += 1) {
 382       assert(*slot == badHeapWordVal,
 383              "Found non badHeapWordValue in pre-allocation check");
 384     }
 385   }
 386 }
 387 #endif
 388 
 389 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 390                                                bool is_tlab,
 391                                                bool first_only) {
 392   HeapWord* res = NULL;
 393 
 394   if (_young_gen->should_allocate(size, is_tlab)) {
 395     res = _young_gen->allocate(size, is_tlab);
 396     if (res != NULL || first_only) {
 397       return res;
 398     }
 399   }
 400 
 401   if (_old_gen->should_allocate(size, is_tlab)) {
 402     res = _old_gen->allocate(size, is_tlab);
 403   }
 404 
 405   return res;
 406 }
 407 
 408 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 409                                          bool* gc_overhead_limit_was_exceeded) {
 410   return mem_allocate_work(size,
 411                            false /* is_tlab */,
 412                            gc_overhead_limit_was_exceeded);
 413 }
 414 
 415 bool GenCollectedHeap::must_clear_all_soft_refs() {
 416   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 417          _gc_cause == GCCause::_wb_full_gc;
 418 }
 419 
 420 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 421                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 422                                           bool restore_marks_for_biased_locking) {
 423   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 424   GCTraceTime(Trace, gc, phases) t1(title);
 425   TraceCollectorStats tcs(gen->counters());
 426   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 427 
 428   gen->stat_record()->invocations++;
 429   gen->stat_record()->accumulated_time.start();
 430 
 431   // Must be done anew before each collection because
 432   // a previous collection will do mangling and will
 433   // change top of some spaces.
 434   record_gen_tops_before_GC();
 435 
 436   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 437 
 438   if (run_verification && VerifyBeforeGC) {
 439     HandleMark hm;  // Discard invalid handles created during verification
 440     Universe::verify("Before GC");
 441   }
 442   COMPILER2_PRESENT(DerivedPointerTable::clear());
 443 
 444   if (restore_marks_for_biased_locking) {
 445     // We perform this mark word preservation work lazily
 446     // because it's only at this point that we know whether we
 447     // absolutely have to do it; we want to avoid doing it for
 448     // scavenge-only collections where it's unnecessary
 449     BiasedLocking::preserve_marks();
 450   }
 451 
 452   // Do collection work
 453   {
 454     // Note on ref discovery: For what appear to be historical reasons,
 455     // GCH enables and disabled (by enqueing) refs discovery.
 456     // In the future this should be moved into the generation's
 457     // collect method so that ref discovery and enqueueing concerns
 458     // are local to a generation. The collect method could return
 459     // an appropriate indication in the case that notification on
 460     // the ref lock was needed. This will make the treatment of
 461     // weak refs more uniform (and indeed remove such concerns
 462     // from GCH). XXX
 463 
 464     HandleMark hm;  // Discard invalid handles created during gc
 465     save_marks();   // save marks for all gens
 466     // We want to discover references, but not process them yet.
 467     // This mode is disabled in process_discovered_references if the
 468     // generation does some collection work, or in
 469     // enqueue_discovered_references if the generation returns
 470     // without doing any work.
 471     ReferenceProcessor* rp = gen->ref_processor();
 472     // If the discovery of ("weak") refs in this generation is
 473     // atomic wrt other collectors in this configuration, we
 474     // are guaranteed to have empty discovered ref lists.
 475     if (rp->discovery_is_atomic()) {
 476       rp->enable_discovery();
 477       rp->setup_policy(clear_soft_refs);
 478     } else {
 479       // collect() below will enable discovery as appropriate
 480     }
 481     gen->collect(full, clear_soft_refs, size, is_tlab);
 482     if (!rp->enqueuing_is_done()) {
 483       ReferenceProcessorPhaseTimes pt(NULL, rp->num_q());
 484       rp->enqueue_discovered_references(NULL, &pt);
 485       pt.print_enqueue_phase();
 486     } else {
 487       rp->set_enqueuing_is_done(false);
 488     }
 489     rp->verify_no_references_recorded();
 490   }
 491 
 492   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 493 
 494   gen->stat_record()->accumulated_time.stop();
 495 
 496   update_gc_stats(gen, full);
 497 
 498   if (run_verification && VerifyAfterGC) {
 499     HandleMark hm;  // Discard invalid handles created during verification
 500     Universe::verify("After GC");
 501   }
 502 }
 503 
 504 void GenCollectedHeap::do_collection(bool           full,
 505                                      bool           clear_all_soft_refs,
 506                                      size_t         size,
 507                                      bool           is_tlab,
 508                                      GenerationType max_generation) {
 509   ResourceMark rm;
 510   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 511 
 512   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 513   assert(my_thread->is_VM_thread() ||
 514          my_thread->is_ConcurrentGC_thread(),
 515          "incorrect thread type capability");
 516   assert(Heap_lock->is_locked(),
 517          "the requesting thread should have the Heap_lock");
 518   guarantee(!is_gc_active(), "collection is not reentrant");
 519 
 520   if (GCLocker::check_active_before_gc()) {
 521     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 522   }
 523 
 524   GCIdMark gc_id_mark;
 525 
 526   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 527                           soft_ref_policy()->should_clear_all_soft_refs();
 528 
 529   ClearedAllSoftRefs casr(do_clear_all_soft_refs, soft_ref_policy());
 530 
 531   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 532 
 533   print_heap_before_gc();
 534 
 535   {
 536     FlagSetting fl(_is_gc_active, true);
 537 
 538     bool complete = full && (max_generation == OldGen);
 539     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 540     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 541 
 542     FormatBuffer<> gc_string("%s", "Pause ");
 543     if (do_young_collection) {
 544       gc_string.append("Young");
 545     } else {
 546       gc_string.append("Full");
 547     }
 548 
 549     GCTraceCPUTime tcpu;
 550     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 551 
 552     gc_prologue(complete);
 553     increment_total_collections(complete);
 554 
 555     size_t young_prev_used = _young_gen->used();
 556     size_t old_prev_used = _old_gen->used();
 557 
 558     bool run_verification = total_collections() >= VerifyGCStartAt;
 559 
 560     bool prepared_for_verification = false;
 561     bool collected_old = false;
 562 
 563     if (do_young_collection) {
 564       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 565         prepare_for_verify();
 566         prepared_for_verification = true;
 567       }
 568 
 569       collect_generation(_young_gen,
 570                          full,
 571                          size,
 572                          is_tlab,
 573                          run_verification && VerifyGCLevel <= 0,
 574                          do_clear_all_soft_refs,
 575                          false);
 576 
 577       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 578           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 579         // Allocation request was met by young GC.
 580         size = 0;
 581       }
 582     }
 583 
 584     bool must_restore_marks_for_biased_locking = false;
 585 
 586     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 587       if (!complete) {
 588         // The full_collections increment was missed above.
 589         increment_total_full_collections();
 590       }
 591 
 592       if (!prepared_for_verification && run_verification &&
 593           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 594         prepare_for_verify();
 595       }
 596 
 597       if (do_young_collection) {
 598         // We did a young GC. Need a new GC id for the old GC.
 599         GCIdMark gc_id_mark;
 600         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 601         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 602       } else {
 603         // No young GC done. Use the same GC id as was set up earlier in this method.
 604         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 605       }
 606 
 607       must_restore_marks_for_biased_locking = true;
 608       collected_old = true;
 609     }
 610 
 611     // Update "complete" boolean wrt what actually transpired --
 612     // for instance, a promotion failure could have led to
 613     // a whole heap collection.
 614     complete = complete || collected_old;
 615 
 616     print_heap_change(young_prev_used, old_prev_used);
 617     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 618 
 619     // Adjust generation sizes.
 620     if (collected_old) {
 621       _old_gen->compute_new_size();
 622     }
 623     _young_gen->compute_new_size();
 624 
 625     if (complete) {
 626       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 627       ClassLoaderDataGraph::purge();
 628       MetaspaceAux::verify_metrics();
 629       // Resize the metaspace capacity after full collections
 630       MetaspaceGC::compute_new_size();
 631       update_full_collections_completed();
 632     }
 633 
 634     // Track memory usage and detect low memory after GC finishes
 635     MemoryService::track_memory_usage();
 636 
 637     gc_epilogue(complete);
 638 
 639     if (must_restore_marks_for_biased_locking) {
 640       BiasedLocking::restore_marks();
 641     }
 642   }
 643 
 644   print_heap_after_gc();
 645 
 646 #ifdef TRACESPINNING
 647   ParallelTaskTerminator::print_termination_counts();
 648 #endif
 649 }
 650 
 651 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 652   CodeCache::register_scavenge_root_nmethod(nm);
 653 }
 654 
 655 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 656   CodeCache::verify_scavenge_root_nmethod(nm);
 657 }
 658 
 659 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 660   GCCauseSetter x(this, GCCause::_allocation_failure);
 661   HeapWord* result = NULL;
 662 
 663   assert(size != 0, "Precondition violated");
 664   if (GCLocker::is_active_and_needs_gc()) {
 665     // GC locker is active; instead of a collection we will attempt
 666     // to expand the heap, if there's room for expansion.
 667     if (!is_maximal_no_gc()) {
 668       result = expand_heap_and_allocate(size, is_tlab);
 669     }
 670     return result;   // Could be null if we are out of space.
 671   } else if (!incremental_collection_will_fail(false /* don't consult_young */)) {
 672     // Do an incremental collection.
 673     do_collection(false,                     // full
 674                   false,                     // clear_all_soft_refs
 675                   size,                      // size
 676                   is_tlab,                   // is_tlab
 677                   GenCollectedHeap::OldGen); // max_generation
 678   } else {
 679     log_trace(gc)(" :: Trying full because partial may fail :: ");
 680     // Try a full collection; see delta for bug id 6266275
 681     // for the original code and why this has been simplified
 682     // with from-space allocation criteria modified and
 683     // such allocation moved out of the safepoint path.
 684     do_collection(true,                      // full
 685                   false,                     // clear_all_soft_refs
 686                   size,                      // size
 687                   is_tlab,                   // is_tlab
 688                   GenCollectedHeap::OldGen); // max_generation
 689   }
 690 
 691   result = attempt_allocation(size, is_tlab, false /*first_only*/);
 692 
 693   if (result != NULL) {
 694     assert(is_in_reserved(result), "result not in heap");
 695     return result;
 696   }
 697 
 698   // OK, collection failed, try expansion.
 699   result = expand_heap_and_allocate(size, is_tlab);
 700   if (result != NULL) {
 701     return result;
 702   }
 703 
 704   // If we reach this point, we're really out of memory. Try every trick
 705   // we can to reclaim memory. Force collection of soft references. Force
 706   // a complete compaction of the heap. Any additional methods for finding
 707   // free memory should be here, especially if they are expensive. If this
 708   // attempt fails, an OOM exception will be thrown.
 709   {
 710     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 711 
 712     do_collection(true,                      // full
 713                   true,                      // clear_all_soft_refs
 714                   size,                      // size
 715                   is_tlab,                   // is_tlab
 716                   GenCollectedHeap::OldGen); // max_generation
 717   }
 718 
 719   result = attempt_allocation(size, is_tlab, false /* first_only */);
 720   if (result != NULL) {
 721     assert(is_in_reserved(result), "result not in heap");
 722     return result;
 723   }
 724 
 725   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 726     "Flag should have been handled and cleared prior to this point");
 727 
 728   // What else?  We might try synchronous finalization later.  If the total
 729   // space available is large enough for the allocation, then a more
 730   // complete compaction phase than we've tried so far might be
 731   // appropriate.
 732   return NULL;
 733 }
 734 
 735 #ifdef ASSERT
 736 class AssertNonScavengableClosure: public OopClosure {
 737 public:
 738   virtual void do_oop(oop* p) {
 739     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 740       "Referent should not be scavengable.");  }
 741   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 742 };
 743 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 744 #endif
 745 
 746 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 747                                      ScanningOption so,
 748                                      OopClosure* strong_roots,
 749                                      OopClosure* weak_roots,
 750                                      CLDClosure* strong_cld_closure,
 751                                      CLDClosure* weak_cld_closure,
 752                                      CodeBlobToOopClosure* code_roots) {
 753   // General roots.
 754   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 755   assert(code_roots != NULL, "code root closure should always be set");
 756   // _n_termination for _process_strong_tasks should be set up stream
 757   // in a method not running in a GC worker.  Otherwise the GC worker
 758   // could be trying to change the termination condition while the task
 759   // is executing in another GC worker.
 760 
 761   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 762     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 763   }
 764 
 765   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 766   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 767 
 768   bool is_par = scope->n_threads() > 1;
 769   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 770 
 771   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 772     Universe::oops_do(strong_roots);
 773   }
 774   // Global (strong) JNI handles
 775   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 776     JNIHandles::oops_do(strong_roots);
 777   }
 778 
 779   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 780     ObjectSynchronizer::oops_do(strong_roots);
 781   }
 782   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 783     Management::oops_do(strong_roots);
 784   }
 785   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 786     JvmtiExport::oops_do(strong_roots);
 787   }
 788   if (UseAOT && !_process_strong_tasks->is_task_claimed(GCH_PS_aot_oops_do)) {
 789     AOTLoader::oops_do(strong_roots);
 790   }
 791 
 792   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 793     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 794   }
 795 
 796   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 797     if (so & SO_ScavengeCodeCache) {
 798       assert(code_roots != NULL, "must supply closure for code cache");
 799 
 800       // We only visit parts of the CodeCache when scavenging.
 801       CodeCache::scavenge_root_nmethods_do(code_roots);
 802     }
 803     if (so & SO_AllCodeCache) {
 804       assert(code_roots != NULL, "must supply closure for code cache");
 805 
 806       // CMSCollector uses this to do intermediate-strength collections.
 807       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 808       CodeCache::blobs_do(code_roots);
 809     }
 810     // Verify that the code cache contents are not subject to
 811     // movement by a scavenging collection.
 812     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 813     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 814   }
 815 }
 816 
 817 void GenCollectedHeap::process_string_table_roots(StrongRootsScope* scope,
 818                                                   OopClosure* root_closure) {
 819   assert(root_closure != NULL, "Must be set");
 820   // All threads execute the following. A specific chunk of buckets
 821   // from the StringTable are the individual tasks.
 822   if (scope->n_threads() > 1) {
 823     StringTable::possibly_parallel_oops_do(root_closure);
 824   } else {
 825     StringTable::oops_do(root_closure);
 826   }
 827 }
 828 
 829 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 830                                            OopsInGenClosure* root_closure,
 831                                            OopsInGenClosure* old_gen_closure,
 832                                            CLDClosure* cld_closure) {
 833   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 834 
 835   process_roots(scope, SO_ScavengeCodeCache, root_closure, root_closure,
 836                 cld_closure, cld_closure, &mark_code_closure);
 837   process_string_table_roots(scope, root_closure);
 838 
 839   if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 840     root_closure->reset_generation();
 841   }
 842 
 843   // When collection is parallel, all threads get to cooperate to do
 844   // old generation scanning.
 845   old_gen_closure->set_generation(_old_gen);
 846   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 847   old_gen_closure->reset_generation();
 848 
 849   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 850 }
 851 
 852 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 853                                           bool is_adjust_phase,
 854                                           ScanningOption so,
 855                                           bool only_strong_roots,
 856                                           OopsInGenClosure* root_closure,
 857                                           CLDClosure* cld_closure) {
 858   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 859   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 860   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 861 
 862   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 863   if (is_adjust_phase) {
 864     // We never treat the string table as roots during marking
 865     // for the full gc, so we only need to process it during
 866     // the adjust phase.
 867     process_string_table_roots(scope, root_closure);
 868   }
 869 
 870   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 871 }
 872 
 873 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 874   WeakProcessor::oops_do(root_closure);
 875   _young_gen->ref_processor()->weak_oops_do(root_closure);
 876   _old_gen->ref_processor()->weak_oops_do(root_closure);
 877 }
 878 
 879 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 880 void GenCollectedHeap::                                                 \
 881 oop_since_save_marks_iterate(GenerationType gen,                        \
 882                              OopClosureType* cur,                       \
 883                              OopClosureType* older) {                   \
 884   if (gen == YoungGen) {                              \
 885     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 886     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 887   } else {                                                              \
 888     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 889   }                                                                     \
 890 }
 891 
 892 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 893 
 894 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 895 
 896 bool GenCollectedHeap::no_allocs_since_save_marks() {
 897   return _young_gen->no_allocs_since_save_marks() &&
 898          _old_gen->no_allocs_since_save_marks();
 899 }
 900 
 901 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 902   return _young_gen->supports_inline_contig_alloc();
 903 }
 904 
 905 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 906   return _young_gen->top_addr();
 907 }
 908 
 909 HeapWord** GenCollectedHeap::end_addr() const {
 910   return _young_gen->end_addr();
 911 }
 912 
 913 // public collection interfaces
 914 
 915 void GenCollectedHeap::collect(GCCause::Cause cause) {
 916   if (cause == GCCause::_wb_young_gc) {
 917     // Young collection for the WhiteBox API.
 918     collect(cause, YoungGen);
 919   } else {
 920 #ifdef ASSERT
 921   if (cause == GCCause::_scavenge_alot) {
 922     // Young collection only.
 923     collect(cause, YoungGen);
 924   } else {
 925     // Stop-the-world full collection.
 926     collect(cause, OldGen);
 927   }
 928 #else
 929     // Stop-the-world full collection.
 930     collect(cause, OldGen);
 931 #endif
 932   }
 933 }
 934 
 935 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 936   // The caller doesn't have the Heap_lock
 937   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 938   MutexLocker ml(Heap_lock);
 939   collect_locked(cause, max_generation);
 940 }
 941 
 942 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 943   // The caller has the Heap_lock
 944   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 945   collect_locked(cause, OldGen);
 946 }
 947 
 948 // this is the private collection interface
 949 // The Heap_lock is expected to be held on entry.
 950 
 951 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 952   // Read the GC count while holding the Heap_lock
 953   unsigned int gc_count_before      = total_collections();
 954   unsigned int full_gc_count_before = total_full_collections();
 955   {
 956     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 957     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 958                          cause, max_generation);
 959     VMThread::execute(&op);
 960   }
 961 }
 962 
 963 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 964    do_full_collection(clear_all_soft_refs, OldGen);
 965 }
 966 
 967 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 968                                           GenerationType last_generation) {
 969   GenerationType local_last_generation;
 970   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 971       gc_cause() == GCCause::_gc_locker) {
 972     local_last_generation = YoungGen;
 973   } else {
 974     local_last_generation = last_generation;
 975   }
 976 
 977   do_collection(true,                   // full
 978                 clear_all_soft_refs,    // clear_all_soft_refs
 979                 0,                      // size
 980                 false,                  // is_tlab
 981                 local_last_generation); // last_generation
 982   // Hack XXX FIX ME !!!
 983   // A scavenge may not have been attempted, or may have
 984   // been attempted and failed, because the old gen was too full
 985   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
 986       incremental_collection_will_fail(false /* don't consult_young */)) {
 987     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 988     // This time allow the old gen to be collected as well
 989     do_collection(true,                // full
 990                   clear_all_soft_refs, // clear_all_soft_refs
 991                   0,                   // size
 992                   false,               // is_tlab
 993                   OldGen);             // last_generation
 994   }
 995 }
 996 
 997 bool GenCollectedHeap::is_in_young(oop p) {
 998   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 999   assert(result == _young_gen->is_in_reserved(p),
1000          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
1001   return result;
1002 }
1003 
1004 // Returns "TRUE" iff "p" points into the committed areas of the heap.
1005 bool GenCollectedHeap::is_in(const void* p) const {
1006   return _young_gen->is_in(p) || _old_gen->is_in(p);
1007 }
1008 
1009 #ifdef ASSERT
1010 // Don't implement this by using is_in_young().  This method is used
1011 // in some cases to check that is_in_young() is correct.
1012 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
1013   assert(is_in_reserved(p) || p == NULL,
1014     "Does not work if address is non-null and outside of the heap");
1015   return p < _young_gen->reserved().end() && p != NULL;
1016 }
1017 #endif
1018 
1019 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
1020   NoHeaderExtendedOopClosure no_header_cl(cl);
1021   oop_iterate(&no_header_cl);
1022 }
1023 
1024 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
1025   _young_gen->oop_iterate(cl);
1026   _old_gen->oop_iterate(cl);
1027 }
1028 
1029 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
1030   _young_gen->object_iterate(cl);
1031   _old_gen->object_iterate(cl);
1032 }
1033 
1034 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
1035   _young_gen->safe_object_iterate(cl);
1036   _old_gen->safe_object_iterate(cl);
1037 }
1038 
1039 Space* GenCollectedHeap::space_containing(const void* addr) const {
1040   Space* res = _young_gen->space_containing(addr);
1041   if (res != NULL) {
1042     return res;
1043   }
1044   res = _old_gen->space_containing(addr);
1045   assert(res != NULL, "Could not find containing space");
1046   return res;
1047 }
1048 
1049 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
1050   assert(is_in_reserved(addr), "block_start of address outside of heap");
1051   if (_young_gen->is_in_reserved(addr)) {
1052     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1053     return _young_gen->block_start(addr);
1054   }
1055 
1056   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1057   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1058   return _old_gen->block_start(addr);
1059 }
1060 
1061 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
1062   assert(is_in_reserved(addr), "block_size of address outside of heap");
1063   if (_young_gen->is_in_reserved(addr)) {
1064     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1065     return _young_gen->block_size(addr);
1066   }
1067 
1068   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1069   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1070   return _old_gen->block_size(addr);
1071 }
1072 
1073 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1074   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1075   assert(block_start(addr) == addr, "addr must be a block start");
1076   if (_young_gen->is_in_reserved(addr)) {
1077     return _young_gen->block_is_obj(addr);
1078   }
1079 
1080   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1081   return _old_gen->block_is_obj(addr);
1082 }
1083 
1084 bool GenCollectedHeap::supports_tlab_allocation() const {
1085   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1086   return _young_gen->supports_tlab_allocation();
1087 }
1088 
1089 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1090   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1091   if (_young_gen->supports_tlab_allocation()) {
1092     return _young_gen->tlab_capacity();
1093   }
1094   return 0;
1095 }
1096 
1097 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1098   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1099   if (_young_gen->supports_tlab_allocation()) {
1100     return _young_gen->tlab_used();
1101   }
1102   return 0;
1103 }
1104 
1105 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1106   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1107   if (_young_gen->supports_tlab_allocation()) {
1108     return _young_gen->unsafe_max_tlab_alloc();
1109   }
1110   return 0;
1111 }
1112 
1113 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
1114   bool gc_overhead_limit_was_exceeded;
1115   return mem_allocate_work(size /* size */,
1116                            true /* is_tlab */,
1117                            &gc_overhead_limit_was_exceeded);
1118 }
1119 
1120 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1121 // from the list headed by "*prev_ptr".
1122 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1123   bool first = true;
1124   size_t min_size = 0;   // "first" makes this conceptually infinite.
1125   ScratchBlock **smallest_ptr, *smallest;
1126   ScratchBlock  *cur = *prev_ptr;
1127   while (cur) {
1128     assert(*prev_ptr == cur, "just checking");
1129     if (first || cur->num_words < min_size) {
1130       smallest_ptr = prev_ptr;
1131       smallest     = cur;
1132       min_size     = smallest->num_words;
1133       first        = false;
1134     }
1135     prev_ptr = &cur->next;
1136     cur     =  cur->next;
1137   }
1138   smallest      = *smallest_ptr;
1139   *smallest_ptr = smallest->next;
1140   return smallest;
1141 }
1142 
1143 // Sort the scratch block list headed by res into decreasing size order,
1144 // and set "res" to the result.
1145 static void sort_scratch_list(ScratchBlock*& list) {
1146   ScratchBlock* sorted = NULL;
1147   ScratchBlock* unsorted = list;
1148   while (unsorted) {
1149     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1150     smallest->next  = sorted;
1151     sorted          = smallest;
1152   }
1153   list = sorted;
1154 }
1155 
1156 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1157                                                size_t max_alloc_words) {
1158   ScratchBlock* res = NULL;
1159   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1160   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1161   sort_scratch_list(res);
1162   return res;
1163 }
1164 
1165 void GenCollectedHeap::release_scratch() {
1166   _young_gen->reset_scratch();
1167   _old_gen->reset_scratch();
1168 }
1169 
1170 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1171   void do_generation(Generation* gen) {
1172     gen->prepare_for_verify();
1173   }
1174 };
1175 
1176 void GenCollectedHeap::prepare_for_verify() {
1177   ensure_parsability(false);        // no need to retire TLABs
1178   GenPrepareForVerifyClosure blk;
1179   generation_iterate(&blk, false);
1180 }
1181 
1182 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1183                                           bool old_to_young) {
1184   if (old_to_young) {
1185     cl->do_generation(_old_gen);
1186     cl->do_generation(_young_gen);
1187   } else {
1188     cl->do_generation(_young_gen);
1189     cl->do_generation(_old_gen);
1190   }
1191 }
1192 
1193 bool GenCollectedHeap::is_maximal_no_gc() const {
1194   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1195 }
1196 
1197 void GenCollectedHeap::save_marks() {
1198   _young_gen->save_marks();
1199   _old_gen->save_marks();
1200 }
1201 
1202 GenCollectedHeap* GenCollectedHeap::heap() {
1203   CollectedHeap* heap = Universe::heap();
1204   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1205   assert(heap->kind() == CollectedHeap::SerialHeap ||
1206          heap->kind() == CollectedHeap::CMSHeap, "Not a GenCollectedHeap");
1207   return (GenCollectedHeap*) heap;
1208 }
1209 
1210 void GenCollectedHeap::prepare_for_compaction() {
1211   // Start by compacting into same gen.
1212   CompactPoint cp(_old_gen);
1213   _old_gen->prepare_for_compaction(&cp);
1214   _young_gen->prepare_for_compaction(&cp);
1215 }
1216 
1217 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1218   log_debug(gc, verify)("%s", _old_gen->name());
1219   _old_gen->verify();
1220 
1221   log_debug(gc, verify)("%s", _old_gen->name());
1222   _young_gen->verify();
1223 
1224   log_debug(gc, verify)("RemSet");
1225   rem_set()->verify();
1226 }
1227 
1228 void GenCollectedHeap::print_on(outputStream* st) const {
1229   _young_gen->print_on(st);
1230   _old_gen->print_on(st);
1231   MetaspaceAux::print_on(st);
1232 }
1233 
1234 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1235 }
1236 
1237 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1238 }
1239 
1240 void GenCollectedHeap::print_tracing_info() const {
1241   if (log_is_enabled(Debug, gc, heap, exit)) {
1242     LogStreamHandle(Debug, gc, heap, exit) lsh;
1243     _young_gen->print_summary_info_on(&lsh);
1244     _old_gen->print_summary_info_on(&lsh);
1245   }
1246 }
1247 
1248 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1249   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1250                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1251   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1252                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1253 }
1254 
1255 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1256  private:
1257   bool _full;
1258  public:
1259   void do_generation(Generation* gen) {
1260     gen->gc_prologue(_full);
1261   }
1262   GenGCPrologueClosure(bool full) : _full(full) {};
1263 };
1264 
1265 void GenCollectedHeap::gc_prologue(bool full) {
1266   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1267 
1268   // Fill TLAB's and such
1269   CollectedHeap::accumulate_statistics_all_tlabs();
1270   ensure_parsability(true);   // retire TLABs
1271 
1272   // Walk generations
1273   GenGCPrologueClosure blk(full);
1274   generation_iterate(&blk, false);  // not old-to-young.
1275 };
1276 
1277 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1278  private:
1279   bool _full;
1280  public:
1281   void do_generation(Generation* gen) {
1282     gen->gc_epilogue(_full);
1283   }
1284   GenGCEpilogueClosure(bool full) : _full(full) {};
1285 };
1286 
1287 void GenCollectedHeap::gc_epilogue(bool full) {
1288 #if COMPILER2_OR_JVMCI
1289   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1290   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1291   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1292 #endif // COMPILER2_OR_JVMCI
1293 
1294   resize_all_tlabs();
1295 
1296   GenGCEpilogueClosure blk(full);
1297   generation_iterate(&blk, false);  // not old-to-young.
1298 
1299   if (!CleanChunkPoolAsync) {
1300     Chunk::clean_chunk_pool();
1301   }
1302 
1303   MetaspaceCounters::update_performance_counters();
1304   CompressedClassSpaceCounters::update_performance_counters();
1305 };
1306 
1307 #ifndef PRODUCT
1308 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1309  private:
1310  public:
1311   void do_generation(Generation* gen) {
1312     gen->record_spaces_top();
1313   }
1314 };
1315 
1316 void GenCollectedHeap::record_gen_tops_before_GC() {
1317   if (ZapUnusedHeapArea) {
1318     GenGCSaveTopsBeforeGCClosure blk;
1319     generation_iterate(&blk, false);  // not old-to-young.
1320   }
1321 }
1322 #endif  // not PRODUCT
1323 
1324 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1325  public:
1326   void do_generation(Generation* gen) {
1327     gen->ensure_parsability();
1328   }
1329 };
1330 
1331 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1332   CollectedHeap::ensure_parsability(retire_tlabs);
1333   GenEnsureParsabilityClosure ep_cl;
1334   generation_iterate(&ep_cl, false);
1335 }
1336 
1337 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1338                                               oop obj,
1339                                               size_t obj_size) {
1340   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1341   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1342   HeapWord* result = NULL;
1343 
1344   result = old_gen->expand_and_allocate(obj_size, false);
1345 
1346   if (result != NULL) {
1347     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1348   }
1349   return oop(result);
1350 }
1351 
1352 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1353   jlong _time;   // in ms
1354   jlong _now;    // in ms
1355 
1356  public:
1357   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1358 
1359   jlong time() { return _time; }
1360 
1361   void do_generation(Generation* gen) {
1362     _time = MIN2(_time, gen->time_of_last_gc(_now));
1363   }
1364 };
1365 
1366 jlong GenCollectedHeap::millis_since_last_gc() {
1367   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1368   // provided the underlying platform provides such a time source
1369   // (and it is bug free). So we still have to guard against getting
1370   // back a time later than 'now'.
1371   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1372   GenTimeOfLastGCClosure tolgc_cl(now);
1373   // iterate over generations getting the oldest
1374   // time that a generation was collected
1375   generation_iterate(&tolgc_cl, false);
1376 
1377   jlong retVal = now - tolgc_cl.time();
1378   if (retVal < 0) {
1379     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1380        ". returning zero instead.", retVal);
1381     return 0;
1382   }
1383   return retVal;
1384 }