1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMarkThread.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1CollectorState.hpp"
  32 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1CardLiveData.inline.hpp"
  36 #include "gc/g1/g1Policy.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/g1/heapRegionSet.inline.hpp"
  41 #include "gc/shared/adaptiveSizePolicy.hpp"
  42 #include "gc/shared/gcId.hpp"
  43 #include "gc/shared/gcTimer.hpp"
  44 #include "gc/shared/gcTrace.hpp"
  45 #include "gc/shared/gcTraceTime.inline.hpp"
  46 #include "gc/shared/genOopClosures.inline.hpp"
  47 #include "gc/shared/referencePolicy.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/suspendibleThreadSet.hpp"
  50 #include "gc/shared/taskqueue.inline.hpp"
  51 #include "gc/shared/vmGCOperations.hpp"
  52 #include "gc/shared/weakProcessor.hpp"
  53 #include "logging/log.hpp"
  54 #include "memory/allocation.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "runtime/atomic.hpp"
  58 #include "runtime/handles.inline.hpp"
  59 #include "runtime/java.hpp"
  60 #include "runtime/prefetch.inline.hpp"
  61 #include "services/memTracker.hpp"
  62 #include "utilities/align.hpp"
  63 #include "utilities/growableArray.hpp"
  64 
  65 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  66   assert(addr < _cm->finger(), "invariant");
  67   assert(addr >= _task->finger(), "invariant");
  68 
  69   // We move that task's local finger along.
  70   _task->move_finger_to(addr);
  71 
  72   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  73   // we only partially drain the local queue and global stack
  74   _task->drain_local_queue(true);
  75   _task->drain_global_stack(true);
  76 
  77   // if the has_aborted flag has been raised, we need to bail out of
  78   // the iteration
  79   return !_task->has_aborted();
  80 }
  81 
  82 G1CMMarkStack::G1CMMarkStack() :
  83   _max_chunk_capacity(0),
  84   _base(NULL),
  85   _chunk_capacity(0) {
  86   set_empty();
  87 }
  88 
  89 bool G1CMMarkStack::resize(size_t new_capacity) {
  90   assert(is_empty(), "Only resize when stack is empty.");
  91   assert(new_capacity <= _max_chunk_capacity,
  92          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  93 
  94   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
  95 
  96   if (new_base == NULL) {
  97     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
  98     return false;
  99   }
 100   // Release old mapping.
 101   if (_base != NULL) {
 102     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 103   }
 104 
 105   _base = new_base;
 106   _chunk_capacity = new_capacity;
 107   set_empty();
 108 
 109   return true;
 110 }
 111 
 112 size_t G1CMMarkStack::capacity_alignment() {
 113   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 114 }
 115 
 116 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 117   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 118 
 119   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 120 
 121   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 122   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 123 
 124   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 125             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 126             _max_chunk_capacity,
 127             initial_chunk_capacity);
 128 
 129   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 130                 initial_chunk_capacity, _max_chunk_capacity);
 131 
 132   return resize(initial_chunk_capacity);
 133 }
 134 
 135 void G1CMMarkStack::expand() {
 136   if (_chunk_capacity == _max_chunk_capacity) {
 137     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 138     return;
 139   }
 140   size_t old_capacity = _chunk_capacity;
 141   // Double capacity if possible
 142   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 143 
 144   if (resize(new_capacity)) {
 145     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 146                   old_capacity, new_capacity);
 147   } else {
 148     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 149                     old_capacity, new_capacity);
 150   }
 151 }
 152 
 153 G1CMMarkStack::~G1CMMarkStack() {
 154   if (_base != NULL) {
 155     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 156   }
 157 }
 158 
 159 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 160   elem->next = *list;
 161   *list = elem;
 162 }
 163 
 164 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 165   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 166   add_chunk_to_list(&_chunk_list, elem);
 167   _chunks_in_chunk_list++;
 168 }
 169 
 170 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 171   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 172   add_chunk_to_list(&_free_list, elem);
 173 }
 174 
 175 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 176   TaskQueueEntryChunk* result = *list;
 177   if (result != NULL) {
 178     *list = (*list)->next;
 179   }
 180   return result;
 181 }
 182 
 183 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 184   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 185   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 186   if (result != NULL) {
 187     _chunks_in_chunk_list--;
 188   }
 189   return result;
 190 }
 191 
 192 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 193   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 194   return remove_chunk_from_list(&_free_list);
 195 }
 196 
 197 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 198   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 199   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 200   // wraparound of _hwm.
 201   if (_hwm >= _chunk_capacity) {
 202     return NULL;
 203   }
 204 
 205   size_t cur_idx = Atomic::add(1u, &_hwm) - 1;
 206   if (cur_idx >= _chunk_capacity) {
 207     return NULL;
 208   }
 209 
 210   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 211   result->next = NULL;
 212   return result;
 213 }
 214 
 215 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 216   // Get a new chunk.
 217   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 218 
 219   if (new_chunk == NULL) {
 220     // Did not get a chunk from the free list. Allocate from backing memory.
 221     new_chunk = allocate_new_chunk();
 222 
 223     if (new_chunk == NULL) {
 224       return false;
 225     }
 226   }
 227 
 228   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 229 
 230   add_chunk_to_chunk_list(new_chunk);
 231 
 232   return true;
 233 }
 234 
 235 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 236   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 237 
 238   if (cur == NULL) {
 239     return false;
 240   }
 241 
 242   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 243 
 244   add_chunk_to_free_list(cur);
 245   return true;
 246 }
 247 
 248 void G1CMMarkStack::set_empty() {
 249   _chunks_in_chunk_list = 0;
 250   _hwm = 0;
 251   _chunk_list = NULL;
 252   _free_list = NULL;
 253 }
 254 
 255 G1CMRootRegions::G1CMRootRegions() :
 256   _cm(NULL), _scan_in_progress(false),
 257   _should_abort(false), _claimed_survivor_index(0) { }
 258 
 259 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 260   _survivors = survivors;
 261   _cm = cm;
 262 }
 263 
 264 void G1CMRootRegions::prepare_for_scan() {
 265   assert(!scan_in_progress(), "pre-condition");
 266 
 267   // Currently, only survivors can be root regions.
 268   _claimed_survivor_index = 0;
 269   _scan_in_progress = _survivors->regions()->is_nonempty();
 270   _should_abort = false;
 271 }
 272 
 273 HeapRegion* G1CMRootRegions::claim_next() {
 274   if (_should_abort) {
 275     // If someone has set the should_abort flag, we return NULL to
 276     // force the caller to bail out of their loop.
 277     return NULL;
 278   }
 279 
 280   // Currently, only survivors can be root regions.
 281   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 282 
 283   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 284   if (claimed_index < survivor_regions->length()) {
 285     return survivor_regions->at(claimed_index);
 286   }
 287   return NULL;
 288 }
 289 
 290 uint G1CMRootRegions::num_root_regions() const {
 291   return (uint)_survivors->regions()->length();
 292 }
 293 
 294 void G1CMRootRegions::notify_scan_done() {
 295   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 296   _scan_in_progress = false;
 297   RootRegionScan_lock->notify_all();
 298 }
 299 
 300 void G1CMRootRegions::cancel_scan() {
 301   notify_scan_done();
 302 }
 303 
 304 void G1CMRootRegions::scan_finished() {
 305   assert(scan_in_progress(), "pre-condition");
 306 
 307   // Currently, only survivors can be root regions.
 308   if (!_should_abort) {
 309     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 310     assert((uint)_claimed_survivor_index >= _survivors->length(),
 311            "we should have claimed all survivors, claimed index = %u, length = %u",
 312            (uint)_claimed_survivor_index, _survivors->length());
 313   }
 314 
 315   notify_scan_done();
 316 }
 317 
 318 bool G1CMRootRegions::wait_until_scan_finished() {
 319   if (!scan_in_progress()) return false;
 320 
 321   {
 322     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 323     while (scan_in_progress()) {
 324       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 325     }
 326   }
 327   return true;
 328 }
 329 
 330 // Returns the maximum number of workers to be used in a concurrent
 331 // phase based on the number of GC workers being used in a STW
 332 // phase.
 333 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 334   return MAX2((num_gc_workers + 2) / 4, 1U);
 335 }
 336 
 337 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 338                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 339                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 340   // _cm_thread set inside the constructor
 341   _g1h(g1h),
 342   _completed_initialization(false),
 343 
 344   _cleanup_list("Concurrent Mark Cleanup List"),
 345   _mark_bitmap_1(),
 346   _mark_bitmap_2(),
 347   _prev_mark_bitmap(&_mark_bitmap_1),
 348   _next_mark_bitmap(&_mark_bitmap_2),
 349 
 350   _heap_start(_g1h->reserved_region().start()),
 351   _heap_end(_g1h->reserved_region().end()),
 352 
 353   _root_regions(),
 354 
 355   _global_mark_stack(),
 356 
 357   // _finger set in set_non_marking_state
 358 
 359   _max_num_tasks(ParallelGCThreads),
 360   // _num_active_tasks set in set_non_marking_state()
 361   // _tasks set inside the constructor
 362 
 363   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 364   _terminator(ParallelTaskTerminator((int) _max_num_tasks, _task_queues)),
 365 
 366   _first_overflow_barrier_sync(),
 367   _second_overflow_barrier_sync(),
 368 
 369   _has_overflown(false),
 370   _concurrent(false),
 371   _has_aborted(false),
 372   _restart_for_overflow(false),
 373   _concurrent_marking_in_progress(false),
 374   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 375   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 376 
 377   // _verbose_level set below
 378 
 379   _init_times(),
 380   _remark_times(),
 381   _remark_mark_times(),
 382   _remark_weak_ref_times(),
 383   _cleanup_times(),
 384   _total_counting_time(0.0),
 385   _total_rs_scrub_time(0.0),
 386 
 387   _accum_task_vtime(NULL),
 388 
 389   _concurrent_workers(NULL),
 390   _num_concurrent_workers(0),
 391   _max_concurrent_workers(0)
 392 {
 393   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 394   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 395 
 396   // Create & start ConcurrentMark thread.
 397   _cm_thread = new ConcurrentMarkThread(this);
 398   if (_cm_thread->osthread() == NULL) {
 399     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 400   }
 401 
 402   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 403 
 404   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 405   satb_qs.set_buffer_size(G1SATBBufferSize);
 406 
 407   _root_regions.init(_g1h->survivor(), this);
 408 
 409   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 410     // Calculate the number of concurrent worker threads by scaling
 411     // the number of parallel GC threads.
 412     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 413     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 414   }
 415 
 416   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 417   if (ConcGCThreads > ParallelGCThreads) {
 418     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 419                     ConcGCThreads, ParallelGCThreads);
 420     return;
 421   }
 422 
 423   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 424   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 425 
 426   _num_concurrent_workers = ConcGCThreads;
 427   _max_concurrent_workers = _num_concurrent_workers;
 428 
 429   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 430   _concurrent_workers->initialize_workers();
 431 
 432   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 433     size_t mark_stack_size =
 434       MIN2(MarkStackSizeMax,
 435           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 436     // Verify that the calculated value for MarkStackSize is in range.
 437     // It would be nice to use the private utility routine from Arguments.
 438     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 439       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 440                       "must be between 1 and " SIZE_FORMAT,
 441                       mark_stack_size, MarkStackSizeMax);
 442       return;
 443     }
 444     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 445   } else {
 446     // Verify MarkStackSize is in range.
 447     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 448       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 449         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 450           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 451                           "must be between 1 and " SIZE_FORMAT,
 452                           MarkStackSize, MarkStackSizeMax);
 453           return;
 454         }
 455       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 456         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 457           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 458                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 459                           MarkStackSize, MarkStackSizeMax);
 460           return;
 461         }
 462       }
 463     }
 464   }
 465 
 466   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 467     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 468   }
 469 
 470   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 471   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 472 
 473   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 474   _num_active_tasks = _max_num_tasks;
 475 
 476   for (uint i = 0; i < _max_num_tasks; ++i) {
 477     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 478     task_queue->initialize();
 479     _task_queues->register_queue(i, task_queue);
 480 
 481     _tasks[i] = new G1CMTask(i, this, task_queue);
 482 
 483     _accum_task_vtime[i] = 0.0;
 484   }
 485 
 486   set_non_marking_state();
 487   _completed_initialization = true;
 488 }
 489 
 490 void G1ConcurrentMark::reset() {
 491   // Starting values for these two. This should be called in a STW
 492   // phase.
 493   MemRegion reserved = _g1h->g1_reserved();
 494   _heap_start = reserved.start();
 495   _heap_end   = reserved.end();
 496 
 497   // Separated the asserts so that we know which one fires.
 498   assert(_heap_start != NULL, "heap bounds should look ok");
 499   assert(_heap_end != NULL, "heap bounds should look ok");
 500   assert(_heap_start < _heap_end, "heap bounds should look ok");
 501 
 502   // Reset all the marking data structures and any necessary flags
 503   reset_marking_state();
 504 
 505   // We reset all of them, since different phases will use
 506   // different number of active threads. So, it's easiest to have all
 507   // of them ready.
 508   for (uint i = 0; i < _max_num_tasks; ++i) {
 509     _tasks[i]->reset(_next_mark_bitmap);
 510   }
 511 
 512   // we need this to make sure that the flag is on during the evac
 513   // pause with initial mark piggy-backed
 514   set_concurrent_marking_in_progress();
 515 }
 516 
 517 
 518 void G1ConcurrentMark::reset_marking_state() {
 519   _global_mark_stack.set_empty();
 520 
 521   // Expand the marking stack, if we have to and if we can.
 522   if (has_overflown()) {
 523     _global_mark_stack.expand();
 524   }
 525 
 526   clear_has_overflown();
 527   _finger = _heap_start;
 528 
 529   for (uint i = 0; i < _max_num_tasks; ++i) {
 530     G1CMTaskQueue* queue = _task_queues->queue(i);
 531     queue->set_empty();
 532   }
 533 }
 534 
 535 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 536   assert(active_tasks <= _max_num_tasks, "we should not have more");
 537 
 538   _num_active_tasks = active_tasks;
 539   // Need to update the three data structures below according to the
 540   // number of active threads for this phase.
 541   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 542   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 543   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 544 }
 545 
 546 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 547   set_concurrency(active_tasks);
 548 
 549   _concurrent = concurrent;
 550   // We propagate this to all tasks, not just the active ones.
 551   for (uint i = 0; i < _max_num_tasks; ++i) {
 552     _tasks[i]->set_concurrent(concurrent);
 553   }
 554 
 555   if (concurrent) {
 556     set_concurrent_marking_in_progress();
 557   } else {
 558     // We currently assume that the concurrent flag has been set to
 559     // false before we start remark. At this point we should also be
 560     // in a STW phase.
 561     assert(!concurrent_marking_in_progress(), "invariant");
 562     assert(out_of_regions(),
 563            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 564            p2i(_finger), p2i(_heap_end));
 565   }
 566 }
 567 
 568 void G1ConcurrentMark::set_non_marking_state() {
 569   // We set the global marking state to some default values when we're
 570   // not doing marking.
 571   reset_marking_state();
 572   _num_active_tasks = 0;
 573   clear_concurrent_marking_in_progress();
 574 }
 575 
 576 G1ConcurrentMark::~G1ConcurrentMark() {
 577   // The G1ConcurrentMark instance is never freed.
 578   ShouldNotReachHere();
 579 }
 580 
 581 class G1ClearBitMapTask : public AbstractGangTask {
 582 public:
 583   static size_t chunk_size() { return M; }
 584 
 585 private:
 586   // Heap region closure used for clearing the given mark bitmap.
 587   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 588   private:
 589     G1CMBitMap* _bitmap;
 590     G1ConcurrentMark* _cm;
 591   public:
 592     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) {
 593     }
 594 
 595     virtual bool do_heap_region(HeapRegion* r) {
 596       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 597 
 598       HeapWord* cur = r->bottom();
 599       HeapWord* const end = r->end();
 600 
 601       while (cur < end) {
 602         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 603         _bitmap->clear_range(mr);
 604 
 605         cur += chunk_size_in_words;
 606 
 607         // Abort iteration if after yielding the marking has been aborted.
 608         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 609           return true;
 610         }
 611         // Repeat the asserts from before the start of the closure. We will do them
 612         // as asserts here to minimize their overhead on the product. However, we
 613         // will have them as guarantees at the beginning / end of the bitmap
 614         // clearing to get some checking in the product.
 615         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 616         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 617       }
 618       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 619 
 620       return false;
 621     }
 622   };
 623 
 624   G1ClearBitmapHRClosure _cl;
 625   HeapRegionClaimer _hr_claimer;
 626   bool _suspendible; // If the task is suspendible, workers must join the STS.
 627 
 628 public:
 629   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 630     AbstractGangTask("G1 Clear Bitmap"),
 631     _cl(bitmap, suspendible ? cm : NULL),
 632     _hr_claimer(n_workers),
 633     _suspendible(suspendible)
 634   { }
 635 
 636   void work(uint worker_id) {
 637     SuspendibleThreadSetJoiner sts_join(_suspendible);
 638     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 639   }
 640 
 641   bool is_complete() {
 642     return _cl.is_complete();
 643   }
 644 };
 645 
 646 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 647   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 648 
 649   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 650   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 651 
 652   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 653 
 654   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 655 
 656   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 657   workers->run_task(&cl, num_workers);
 658   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 659 }
 660 
 661 void G1ConcurrentMark::cleanup_for_next_mark() {
 662   // Make sure that the concurrent mark thread looks to still be in
 663   // the current cycle.
 664   guarantee(cm_thread()->during_cycle(), "invariant");
 665 
 666   // We are finishing up the current cycle by clearing the next
 667   // marking bitmap and getting it ready for the next cycle. During
 668   // this time no other cycle can start. So, let's make sure that this
 669   // is the case.
 670   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 671 
 672   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 673 
 674   // Clear the live count data. If the marking has been aborted, the abort()
 675   // call already did that.
 676   if (!has_aborted()) {
 677     clear_live_data(_concurrent_workers);
 678     DEBUG_ONLY(verify_live_data_clear());
 679   }
 680 
 681   // Repeat the asserts from above.
 682   guarantee(cm_thread()->during_cycle(), "invariant");
 683   guarantee(!_g1h->collector_state()->mark_in_progress(), "invariant");
 684 }
 685 
 686 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 687   assert(SafepointSynchronize::is_at_safepoint(), "Should only clear the entire prev bitmap at a safepoint.");
 688   clear_bitmap(_prev_mark_bitmap, workers, false);
 689 }
 690 
 691 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 692   G1CMBitMap* _bitmap;
 693   bool _error;
 694  public:
 695   CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) {
 696   }
 697 
 698   virtual bool do_heap_region(HeapRegion* r) {
 699     // This closure can be called concurrently to the mutator, so we must make sure
 700     // that the result of the getNextMarkedWordAddress() call is compared to the
 701     // value passed to it as limit to detect any found bits.
 702     // end never changes in G1.
 703     HeapWord* end = r->end();
 704     return _bitmap->get_next_marked_addr(r->bottom(), end) != end;
 705   }
 706 };
 707 
 708 bool G1ConcurrentMark::next_mark_bitmap_is_clear() {
 709   CheckBitmapClearHRClosure cl(_next_mark_bitmap);
 710   _g1h->heap_region_iterate(&cl);
 711   return cl.is_complete();
 712 }
 713 
 714 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 715 public:
 716   bool do_heap_region(HeapRegion* r) {
 717     r->note_start_of_marking();
 718     return false;
 719   }
 720 };
 721 
 722 void G1ConcurrentMark::checkpoint_roots_initial_pre() {
 723   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 724 
 725   _has_aborted = false;
 726 
 727   // Initialize marking structures. This has to be done in a STW phase.
 728   reset();
 729 
 730   // For each region note start of marking.
 731   NoteStartOfMarkHRClosure startcl;
 732   g1h->heap_region_iterate(&startcl);
 733 }
 734 
 735 
 736 void G1ConcurrentMark::checkpoint_roots_initial_post() {
 737   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 738 
 739   // Start Concurrent Marking weak-reference discovery.
 740   ReferenceProcessor* rp = g1h->ref_processor_cm();
 741   // enable ("weak") refs discovery
 742   rp->enable_discovery();
 743   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 744 
 745   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 746   // This is the start of  the marking cycle, we're expected all
 747   // threads to have SATB queues with active set to false.
 748   satb_mq_set.set_active_all_threads(true, /* new active value */
 749                                      false /* expected_active */);
 750 
 751   _root_regions.prepare_for_scan();
 752 
 753   // update_g1_committed() will be called at the end of an evac pause
 754   // when marking is on. So, it's also called at the end of the
 755   // initial-mark pause to update the heap end, if the heap expands
 756   // during it. No need to call it here.
 757 }
 758 
 759 /*
 760  * Notice that in the next two methods, we actually leave the STS
 761  * during the barrier sync and join it immediately afterwards. If we
 762  * do not do this, the following deadlock can occur: one thread could
 763  * be in the barrier sync code, waiting for the other thread to also
 764  * sync up, whereas another one could be trying to yield, while also
 765  * waiting for the other threads to sync up too.
 766  *
 767  * Note, however, that this code is also used during remark and in
 768  * this case we should not attempt to leave / enter the STS, otherwise
 769  * we'll either hit an assert (debug / fastdebug) or deadlock
 770  * (product). So we should only leave / enter the STS if we are
 771  * operating concurrently.
 772  *
 773  * Because the thread that does the sync barrier has left the STS, it
 774  * is possible to be suspended for a Full GC or an evacuation pause
 775  * could occur. This is actually safe, since the entering the sync
 776  * barrier is one of the last things do_marking_step() does, and it
 777  * doesn't manipulate any data structures afterwards.
 778  */
 779 
 780 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 781   bool barrier_aborted;
 782   {
 783     SuspendibleThreadSetLeaver sts_leave(concurrent());
 784     barrier_aborted = !_first_overflow_barrier_sync.enter();
 785   }
 786 
 787   // at this point everyone should have synced up and not be doing any
 788   // more work
 789 
 790   if (barrier_aborted) {
 791     // If the barrier aborted we ignore the overflow condition and
 792     // just abort the whole marking phase as quickly as possible.
 793     return;
 794   }
 795 
 796   // If we're executing the concurrent phase of marking, reset the marking
 797   // state; otherwise the marking state is reset after reference processing,
 798   // during the remark pause.
 799   // If we reset here as a result of an overflow during the remark we will
 800   // see assertion failures from any subsequent set_concurrency_and_phase()
 801   // calls.
 802   if (concurrent()) {
 803     // let the task associated with with worker 0 do this
 804     if (worker_id == 0) {
 805       // task 0 is responsible for clearing the global data structures
 806       // We should be here because of an overflow. During STW we should
 807       // not clear the overflow flag since we rely on it being true when
 808       // we exit this method to abort the pause and restart concurrent
 809       // marking.
 810       reset_marking_state();
 811 
 812       log_info(gc, marking)("Concurrent Mark reset for overflow");
 813     }
 814   }
 815 
 816   // after this, each task should reset its own data structures then
 817   // then go into the second barrier
 818 }
 819 
 820 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 821   SuspendibleThreadSetLeaver sts_leave(concurrent());
 822   _second_overflow_barrier_sync.enter();
 823 
 824   // at this point everything should be re-initialized and ready to go
 825 }
 826 
 827 class G1CMConcurrentMarkingTask: public AbstractGangTask {
 828 private:
 829   G1ConcurrentMark*     _cm;
 830   ConcurrentMarkThread* _cmt;
 831 
 832 public:
 833   void work(uint worker_id) {
 834     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 835     ResourceMark rm;
 836 
 837     double start_vtime = os::elapsedVTime();
 838 
 839     {
 840       SuspendibleThreadSetJoiner sts_join;
 841 
 842       assert(worker_id < _cm->active_tasks(), "invariant");
 843 
 844       G1CMTask* task = _cm->task(worker_id);
 845       task->record_start_time();
 846       if (!_cm->has_aborted()) {
 847         do {
 848           task->do_marking_step(G1ConcMarkStepDurationMillis,
 849                                 true  /* do_termination */,
 850                                 false /* is_serial*/);
 851 
 852           _cm->do_yield_check();
 853         } while (!_cm->has_aborted() && task->has_aborted());
 854       }
 855       task->record_end_time();
 856       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 857     }
 858 
 859     double end_vtime = os::elapsedVTime();
 860     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 861   }
 862 
 863   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm,
 864                             ConcurrentMarkThread* cmt) :
 865       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 866 
 867   ~G1CMConcurrentMarkingTask() { }
 868 };
 869 
 870 uint G1ConcurrentMark::calc_active_marking_workers() {
 871   uint result = 0;
 872   if (!UseDynamicNumberOfGCThreads ||
 873       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 874        !ForceDynamicNumberOfGCThreads)) {
 875     result = _max_concurrent_workers;
 876   } else {
 877     result =
 878       AdaptiveSizePolicy::calc_default_active_workers(_max_concurrent_workers,
 879                                                       1, /* Minimum workers */
 880                                                       _num_concurrent_workers,
 881                                                       Threads::number_of_non_daemon_threads());
 882     // Don't scale the result down by scale_concurrent_workers() because
 883     // that scaling has already gone into "_max_concurrent_workers".
 884   }
 885   assert(result > 0 && result <= _max_concurrent_workers,
 886          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 887          _max_concurrent_workers, result);
 888   return result;
 889 }
 890 
 891 void G1ConcurrentMark::scan_root_region(HeapRegion* hr) {
 892   // Currently, only survivors can be root regions.
 893   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 894   G1RootRegionScanClosure cl(_g1h, this);
 895 
 896   const uintx interval = PrefetchScanIntervalInBytes;
 897   HeapWord* curr = hr->bottom();
 898   const HeapWord* end = hr->top();
 899   while (curr < end) {
 900     Prefetch::read(curr, interval);
 901     oop obj = oop(curr);
 902     int size = obj->oop_iterate_size(&cl);
 903     assert(size == obj->size(), "sanity");
 904     curr += size;
 905   }
 906 }
 907 
 908 class G1CMRootRegionScanTask : public AbstractGangTask {
 909 private:
 910   G1ConcurrentMark* _cm;
 911 
 912 public:
 913   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 914     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 915 
 916   void work(uint worker_id) {
 917     assert(Thread::current()->is_ConcurrentGC_thread(),
 918            "this should only be done by a conc GC thread");
 919 
 920     G1CMRootRegions* root_regions = _cm->root_regions();
 921     HeapRegion* hr = root_regions->claim_next();
 922     while (hr != NULL) {
 923       _cm->scan_root_region(hr);
 924       hr = root_regions->claim_next();
 925     }
 926   }
 927 };
 928 
 929 void G1ConcurrentMark::scan_root_regions() {
 930   // scan_in_progress() will have been set to true only if there was
 931   // at least one root region to scan. So, if it's false, we
 932   // should not attempt to do any further work.
 933   if (root_regions()->scan_in_progress()) {
 934     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 935 
 936     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 937                                    // We distribute work on a per-region basis, so starting
 938                                    // more threads than that is useless.
 939                                    root_regions()->num_root_regions());
 940     assert(_num_concurrent_workers <= _max_concurrent_workers,
 941            "Maximum number of marking threads exceeded");
 942 
 943     G1CMRootRegionScanTask task(this);
 944     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 945                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 946     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 947 
 948     // It's possible that has_aborted() is true here without actually
 949     // aborting the survivor scan earlier. This is OK as it's
 950     // mainly used for sanity checking.
 951     root_regions()->scan_finished();
 952   }
 953 }
 954 
 955 void G1ConcurrentMark::concurrent_cycle_start() {
 956   _gc_timer_cm->register_gc_start();
 957 
 958   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 959 
 960   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 961 }
 962 
 963 void G1ConcurrentMark::concurrent_cycle_end() {
 964   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 965 
 966   if (has_aborted()) {
 967     _gc_tracer_cm->report_concurrent_mode_failure();
 968   }
 969 
 970   _gc_timer_cm->register_gc_end();
 971 
 972   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 973 }
 974 
 975 void G1ConcurrentMark::mark_from_roots() {
 976   // we might be tempted to assert that:
 977   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
 978   //        "inconsistent argument?");
 979   // However that wouldn't be right, because it's possible that
 980   // a safepoint is indeed in progress as a younger generation
 981   // stop-the-world GC happens even as we mark in this generation.
 982 
 983   _restart_for_overflow = false;
 984 
 985   _num_concurrent_workers = calc_active_marking_workers();
 986 
 987   uint active_workers = MAX2(1U, _num_concurrent_workers);
 988 
 989   // Setting active workers is not guaranteed since fewer
 990   // worker threads may currently exist and more may not be
 991   // available.
 992   active_workers = _concurrent_workers->update_active_workers(active_workers);
 993   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 994 
 995   // Parallel task terminator is set in "set_concurrency_and_phase()"
 996   set_concurrency_and_phase(active_workers, true /* concurrent */);
 997 
 998   G1CMConcurrentMarkingTask marking_task(this, cm_thread());
 999   _concurrent_workers->run_task(&marking_task);
1000   print_stats();
1001 }
1002 
1003 void G1ConcurrentMark::checkpoint_roots_final(bool clear_all_soft_refs) {
1004   // world is stopped at this checkpoint
1005   assert(SafepointSynchronize::is_at_safepoint(),
1006          "world should be stopped");
1007 
1008   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1009 
1010   // If a full collection has happened, we shouldn't do this.
1011   if (has_aborted()) {
1012     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1013     return;
1014   }
1015 
1016   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1017 
1018   if (VerifyDuringGC) {
1019     g1h->verifier()->verify(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "During GC (before)");
1020   }
1021   g1h->verifier()->check_bitmaps("Remark Start");
1022 
1023   G1Policy* g1p = g1h->g1_policy();
1024   g1p->record_concurrent_mark_remark_start();
1025 
1026   double start = os::elapsedTime();
1027 
1028   checkpoint_roots_final_work();
1029 
1030   double mark_work_end = os::elapsedTime();
1031 
1032   weak_refs_work(clear_all_soft_refs);
1033 
1034   if (has_overflown()) {
1035     // We overflowed.  Restart concurrent marking.
1036     _restart_for_overflow = true;
1037 
1038     // Verify the heap w.r.t. the previous marking bitmap.
1039     if (VerifyDuringGC) {
1040       g1h->verifier()->verify(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1041     }
1042 
1043     // Clear the marking state because we will be restarting
1044     // marking due to overflowing the global mark stack.
1045     reset_marking_state();
1046   } else {
1047     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1048     // We're done with marking.
1049     // This is the end of  the marking cycle, we're expected all
1050     // threads to have SATB queues with active set to true.
1051     satb_mq_set.set_active_all_threads(false, /* new active value */
1052                                        true /* expected_active */);
1053 
1054     if (VerifyDuringGC) {
1055       g1h->verifier()->verify(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UseNextMarking, "During GC (after)");
1056     }
1057     g1h->verifier()->check_bitmaps("Remark End");
1058     assert(!restart_for_overflow(), "sanity");
1059     // Completely reset the marking state since marking completed
1060     set_non_marking_state();
1061   }
1062 
1063   // Statistics
1064   double now = os::elapsedTime();
1065   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1066   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1067   _remark_times.add((now - start) * 1000.0);
1068 
1069   g1p->record_concurrent_mark_remark_end();
1070 
1071   G1CMIsAliveClosure is_alive(g1h);
1072   _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1073 }
1074 
1075 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1076   G1CollectedHeap* _g1;
1077   size_t _freed_bytes;
1078   FreeRegionList* _local_cleanup_list;
1079   uint _old_regions_removed;
1080   uint _humongous_regions_removed;
1081   HRRSCleanupTask* _hrrs_cleanup_task;
1082 
1083 public:
1084   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1085                              FreeRegionList* local_cleanup_list,
1086                              HRRSCleanupTask* hrrs_cleanup_task) :
1087     _g1(g1),
1088     _freed_bytes(0),
1089     _local_cleanup_list(local_cleanup_list),
1090     _old_regions_removed(0),
1091     _humongous_regions_removed(0),
1092     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1093 
1094   size_t freed_bytes() { return _freed_bytes; }
1095   const uint old_regions_removed() { return _old_regions_removed; }
1096   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1097 
1098   bool do_heap_region(HeapRegion *hr) {
1099     _g1->reset_gc_time_stamps(hr);
1100     hr->note_end_of_marking();
1101 
1102     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1103       _freed_bytes += hr->used();
1104       hr->set_containing_set(NULL);
1105       if (hr->is_humongous()) {
1106         _humongous_regions_removed++;
1107         _g1->free_humongous_region(hr, _local_cleanup_list, true /* skip_remset */);
1108       } else {
1109         _old_regions_removed++;
1110         _g1->free_region(hr, _local_cleanup_list, true /* skip_remset */);
1111       }
1112     } else {
1113       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1114     }
1115 
1116     return false;
1117   }
1118 };
1119 
1120 class G1ParNoteEndTask: public AbstractGangTask {
1121   friend class G1NoteEndOfConcMarkClosure;
1122 
1123 protected:
1124   G1CollectedHeap* _g1h;
1125   FreeRegionList* _cleanup_list;
1126   HeapRegionClaimer _hrclaimer;
1127 
1128 public:
1129   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1130       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1131   }
1132 
1133   void work(uint worker_id) {
1134     FreeRegionList local_cleanup_list("Local Cleanup List");
1135     HRRSCleanupTask hrrs_cleanup_task;
1136     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1137                                            &hrrs_cleanup_task);
1138     _g1h->heap_region_par_iterate_from_worker_offset(&g1_note_end, &_hrclaimer, worker_id);
1139     assert(g1_note_end.is_complete(), "Shouldn't have yielded!");
1140 
1141     // Now update the lists
1142     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1143     {
1144       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1145       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1146 
1147       // If we iterate over the global cleanup list at the end of
1148       // cleanup to do this printing we will not guarantee to only
1149       // generate output for the newly-reclaimed regions (the list
1150       // might not be empty at the beginning of cleanup; we might
1151       // still be working on its previous contents). So we do the
1152       // printing here, before we append the new regions to the global
1153       // cleanup list.
1154 
1155       G1HRPrinter* hr_printer = _g1h->hr_printer();
1156       if (hr_printer->is_active()) {
1157         FreeRegionListIterator iter(&local_cleanup_list);
1158         while (iter.more_available()) {
1159           HeapRegion* hr = iter.get_next();
1160           hr_printer->cleanup(hr);
1161         }
1162       }
1163 
1164       _cleanup_list->add_ordered(&local_cleanup_list);
1165       assert(local_cleanup_list.is_empty(), "post-condition");
1166 
1167       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1168     }
1169   }
1170 };
1171 
1172 void G1ConcurrentMark::cleanup() {
1173   // world is stopped at this checkpoint
1174   assert(SafepointSynchronize::is_at_safepoint(),
1175          "world should be stopped");
1176   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1177 
1178   // If a full collection has happened, we shouldn't do this.
1179   if (has_aborted()) {
1180     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1181     return;
1182   }
1183 
1184   g1h->verifier()->verify_region_sets_optional();
1185 
1186   if (VerifyDuringGC) {
1187     g1h->verifier()->verify(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "During GC (before)");
1188   }
1189   g1h->verifier()->check_bitmaps("Cleanup Start");
1190 
1191   G1Policy* g1p = g1h->g1_policy();
1192   g1p->record_concurrent_mark_cleanup_start();
1193 
1194   double start = os::elapsedTime();
1195 
1196   HeapRegionRemSet::reset_for_cleanup_tasks();
1197 
1198   {
1199     GCTraceTime(Debug, gc)("Finalize Live Data");
1200     finalize_live_data();
1201   }
1202 
1203   if (VerifyDuringGC) {
1204     GCTraceTime(Debug, gc)("Verify Live Data");
1205     verify_live_data();
1206   }
1207 
1208   g1h->collector_state()->set_mark_in_progress(false);
1209 
1210   double count_end = os::elapsedTime();
1211   double this_final_counting_time = (count_end - start);
1212   _total_counting_time += this_final_counting_time;
1213 
1214   if (log_is_enabled(Trace, gc, liveness)) {
1215     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1216     _g1h->heap_region_iterate(&cl);
1217   }
1218 
1219   // Install newly created mark bitMap as "prev".
1220   swap_mark_bitmaps();
1221 
1222   g1h->reset_gc_time_stamp();
1223 
1224   uint n_workers = _g1h->workers()->active_workers();
1225 
1226   // Note end of marking in all heap regions.
1227   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1228   g1h->workers()->run_task(&g1_par_note_end_task);
1229   g1h->check_gc_time_stamps();
1230 
1231   if (!cleanup_list_is_empty()) {
1232     // The cleanup list is not empty, so we'll have to process it
1233     // concurrently. Notify anyone else that might be wanting free
1234     // regions that there will be more free regions coming soon.
1235     g1h->set_free_regions_coming();
1236   }
1237 
1238   // call below, since it affects the metric by which we sort the heap
1239   // regions.
1240   if (G1ScrubRemSets) {
1241     double rs_scrub_start = os::elapsedTime();
1242     g1h->scrub_rem_set();
1243     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1244   }
1245 
1246   // this will also free any regions totally full of garbage objects,
1247   // and sort the regions.
1248   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1249 
1250   // Statistics.
1251   double end = os::elapsedTime();
1252   _cleanup_times.add((end - start) * 1000.0);
1253 
1254   // Clean up will have freed any regions completely full of garbage.
1255   // Update the soft reference policy with the new heap occupancy.
1256   Universe::update_heap_info_at_gc();
1257 
1258   if (VerifyDuringGC) {
1259     g1h->verifier()->verify(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "During GC (after)");
1260   }
1261 
1262   g1h->verifier()->check_bitmaps("Cleanup End");
1263 
1264   g1h->verifier()->verify_region_sets_optional();
1265 
1266   // We need to make this be a "collection" so any collection pause that
1267   // races with it goes around and waits for completeCleanup to finish.
1268   g1h->increment_total_collections();
1269 
1270   // Clean out dead classes and update Metaspace sizes.
1271   if (ClassUnloadingWithConcurrentMark) {
1272     ClassLoaderDataGraph::purge();
1273   }
1274   MetaspaceGC::compute_new_size();
1275 
1276   // We reclaimed old regions so we should calculate the sizes to make
1277   // sure we update the old gen/space data.
1278   g1h->g1mm()->update_sizes();
1279   g1h->allocation_context_stats().update_after_mark();
1280 }
1281 
1282 void G1ConcurrentMark::complete_cleanup() {
1283   if (has_aborted()) return;
1284 
1285   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1286 
1287   _cleanup_list.verify_optional();
1288   FreeRegionList tmp_free_list("Tmp Free List");
1289 
1290   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1291                                   "cleanup list has %u entries",
1292                                   _cleanup_list.length());
1293 
1294   // No one else should be accessing the _cleanup_list at this point,
1295   // so it is not necessary to take any locks
1296   while (!_cleanup_list.is_empty()) {
1297     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1298     assert(hr != NULL, "Got NULL from a non-empty list");
1299     hr->par_clear();
1300     tmp_free_list.add_ordered(hr);
1301 
1302     // Instead of adding one region at a time to the secondary_free_list,
1303     // we accumulate them in the local list and move them a few at a
1304     // time. This also cuts down on the number of notify_all() calls
1305     // we do during this process. We'll also append the local list when
1306     // _cleanup_list is empty (which means we just removed the last
1307     // region from the _cleanup_list).
1308     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1309         _cleanup_list.is_empty()) {
1310       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1311                                       "appending %u entries to the secondary_free_list, "
1312                                       "cleanup list still has %u entries",
1313                                       tmp_free_list.length(),
1314                                       _cleanup_list.length());
1315 
1316       {
1317         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1318         g1h->secondary_free_list_add(&tmp_free_list);
1319         SecondaryFreeList_lock->notify_all();
1320       }
1321 #ifndef PRODUCT
1322       if (G1StressConcRegionFreeing) {
1323         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1324           os::sleep(Thread::current(), (jlong) 1, false);
1325         }
1326       }
1327 #endif
1328     }
1329   }
1330   assert(tmp_free_list.is_empty(), "post-condition");
1331 }
1332 
1333 // Supporting Object and Oop closures for reference discovery
1334 // and processing in during marking
1335 
1336 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1337   HeapWord* addr = (HeapWord*)obj;
1338   return addr != NULL &&
1339          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1340 }
1341 
1342 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1343 // Uses the G1CMTask associated with a worker thread (for serial reference
1344 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1345 // trace referent objects.
1346 //
1347 // Using the G1CMTask and embedded local queues avoids having the worker
1348 // threads operating on the global mark stack. This reduces the risk
1349 // of overflowing the stack - which we would rather avoid at this late
1350 // state. Also using the tasks' local queues removes the potential
1351 // of the workers interfering with each other that could occur if
1352 // operating on the global stack.
1353 
1354 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1355   G1ConcurrentMark* _cm;
1356   G1CMTask*         _task;
1357   int               _ref_counter_limit;
1358   int               _ref_counter;
1359   bool              _is_serial;
1360  public:
1361   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1362     _cm(cm), _task(task), _is_serial(is_serial),
1363     _ref_counter_limit(G1RefProcDrainInterval) {
1364     assert(_ref_counter_limit > 0, "sanity");
1365     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1366     _ref_counter = _ref_counter_limit;
1367   }
1368 
1369   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1370   virtual void do_oop(      oop* p) { do_oop_work(p); }
1371 
1372   template <class T> void do_oop_work(T* p) {
1373     if (!_cm->has_overflown()) {
1374       oop obj = oopDesc::load_decode_heap_oop(p);
1375       _task->deal_with_reference(obj);
1376       _ref_counter--;
1377 
1378       if (_ref_counter == 0) {
1379         // We have dealt with _ref_counter_limit references, pushing them
1380         // and objects reachable from them on to the local stack (and
1381         // possibly the global stack). Call G1CMTask::do_marking_step() to
1382         // process these entries.
1383         //
1384         // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1385         // there's nothing more to do (i.e. we're done with the entries that
1386         // were pushed as a result of the G1CMTask::deal_with_reference() calls
1387         // above) or we overflow.
1388         //
1389         // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1390         // flag while there may still be some work to do. (See the comment at
1391         // the beginning of G1CMTask::do_marking_step() for those conditions -
1392         // one of which is reaching the specified time target.) It is only
1393         // when G1CMTask::do_marking_step() returns without setting the
1394         // has_aborted() flag that the marking step has completed.
1395         do {
1396           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1397           _task->do_marking_step(mark_step_duration_ms,
1398                                  false      /* do_termination */,
1399                                  _is_serial);
1400         } while (_task->has_aborted() && !_cm->has_overflown());
1401         _ref_counter = _ref_counter_limit;
1402       }
1403     }
1404   }
1405 };
1406 
1407 // 'Drain' oop closure used by both serial and parallel reference processing.
1408 // Uses the G1CMTask associated with a given worker thread (for serial
1409 // reference processing the G1CMtask for worker 0 is used). Calls the
1410 // do_marking_step routine, with an unbelievably large timeout value,
1411 // to drain the marking data structures of the remaining entries
1412 // added by the 'keep alive' oop closure above.
1413 
1414 class G1CMDrainMarkingStackClosure: public VoidClosure {
1415   G1ConcurrentMark* _cm;
1416   G1CMTask*         _task;
1417   bool              _is_serial;
1418  public:
1419   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1420     _cm(cm), _task(task), _is_serial(is_serial) {
1421     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1422   }
1423 
1424   void do_void() {
1425     do {
1426       // We call G1CMTask::do_marking_step() to completely drain the local
1427       // and global marking stacks of entries pushed by the 'keep alive'
1428       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1429       //
1430       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1431       // if there's nothing more to do (i.e. we've completely drained the
1432       // entries that were pushed as a a result of applying the 'keep alive'
1433       // closure to the entries on the discovered ref lists) or we overflow
1434       // the global marking stack.
1435       //
1436       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1437       // flag while there may still be some work to do. (See the comment at
1438       // the beginning of G1CMTask::do_marking_step() for those conditions -
1439       // one of which is reaching the specified time target.) It is only
1440       // when G1CMTask::do_marking_step() returns without setting the
1441       // has_aborted() flag that the marking step has completed.
1442 
1443       _task->do_marking_step(1000000000.0 /* something very large */,
1444                              true         /* do_termination */,
1445                              _is_serial);
1446     } while (_task->has_aborted() && !_cm->has_overflown());
1447   }
1448 };
1449 
1450 // Implementation of AbstractRefProcTaskExecutor for parallel
1451 // reference processing at the end of G1 concurrent marking
1452 
1453 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1454 private:
1455   G1CollectedHeap*  _g1h;
1456   G1ConcurrentMark* _cm;
1457   WorkGang*         _workers;
1458   uint              _active_workers;
1459 
1460 public:
1461   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1462                           G1ConcurrentMark* cm,
1463                           WorkGang* workers,
1464                           uint n_workers) :
1465     _g1h(g1h), _cm(cm),
1466     _workers(workers), _active_workers(n_workers) { }
1467 
1468   // Executes the given task using concurrent marking worker threads.
1469   virtual void execute(ProcessTask& task);
1470   virtual void execute(EnqueueTask& task);
1471 };
1472 
1473 class G1CMRefProcTaskProxy: public AbstractGangTask {
1474   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1475   ProcessTask&      _proc_task;
1476   G1CollectedHeap*  _g1h;
1477   G1ConcurrentMark* _cm;
1478 
1479 public:
1480   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1481                        G1CollectedHeap* g1h,
1482                        G1ConcurrentMark* cm) :
1483     AbstractGangTask("Process reference objects in parallel"),
1484     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1485     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1486     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1487   }
1488 
1489   virtual void work(uint worker_id) {
1490     ResourceMark rm;
1491     HandleMark hm;
1492     G1CMTask* task = _cm->task(worker_id);
1493     G1CMIsAliveClosure g1_is_alive(_g1h);
1494     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1495     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1496 
1497     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1498   }
1499 };
1500 
1501 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1502   assert(_workers != NULL, "Need parallel worker threads.");
1503   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1504 
1505   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1506 
1507   // We need to reset the concurrency level before each
1508   // proxy task execution, so that the termination protocol
1509   // and overflow handling in G1CMTask::do_marking_step() knows
1510   // how many workers to wait for.
1511   _cm->set_concurrency(_active_workers);
1512   _workers->run_task(&proc_task_proxy);
1513 }
1514 
1515 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1516   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1517   EnqueueTask& _enq_task;
1518 
1519 public:
1520   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1521     AbstractGangTask("Enqueue reference objects in parallel"),
1522     _enq_task(enq_task) { }
1523 
1524   virtual void work(uint worker_id) {
1525     _enq_task.work(worker_id);
1526   }
1527 };
1528 
1529 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1530   assert(_workers != NULL, "Need parallel worker threads.");
1531   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1532 
1533   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1534 
1535   // Not strictly necessary but...
1536   //
1537   // We need to reset the concurrency level before each
1538   // proxy task execution, so that the termination protocol
1539   // and overflow handling in G1CMTask::do_marking_step() knows
1540   // how many workers to wait for.
1541   _cm->set_concurrency(_active_workers);
1542   _workers->run_task(&enq_task_proxy);
1543 }
1544 
1545 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1546   if (has_overflown()) {
1547     // Skip processing the discovered references if we have
1548     // overflown the global marking stack. Reference objects
1549     // only get discovered once so it is OK to not
1550     // de-populate the discovered reference lists. We could have,
1551     // but the only benefit would be that, when marking restarts,
1552     // less reference objects are discovered.
1553     return;
1554   }
1555 
1556   ResourceMark rm;
1557   HandleMark   hm;
1558 
1559   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1560 
1561   // Is alive closure.
1562   G1CMIsAliveClosure g1_is_alive(g1h);
1563 
1564   // Inner scope to exclude the cleaning of the string and symbol
1565   // tables from the displayed time.
1566   {
1567     GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm);
1568 
1569     ReferenceProcessor* rp = g1h->ref_processor_cm();
1570 
1571     // See the comment in G1CollectedHeap::ref_processing_init()
1572     // about how reference processing currently works in G1.
1573 
1574     // Set the soft reference policy
1575     rp->setup_policy(clear_all_soft_refs);
1576     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1577 
1578     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1579     // in serial reference processing. Note these closures are also
1580     // used for serially processing (by the the current thread) the
1581     // JNI references during parallel reference processing.
1582     //
1583     // These closures do not need to synchronize with the worker
1584     // threads involved in parallel reference processing as these
1585     // instances are executed serially by the current thread (e.g.
1586     // reference processing is not multi-threaded and is thus
1587     // performed by the current thread instead of a gang worker).
1588     //
1589     // The gang tasks involved in parallel reference processing create
1590     // their own instances of these closures, which do their own
1591     // synchronization among themselves.
1592     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1593     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1594 
1595     // We need at least one active thread. If reference processing
1596     // is not multi-threaded we use the current (VMThread) thread,
1597     // otherwise we use the work gang from the G1CollectedHeap and
1598     // we utilize all the worker threads we can.
1599     bool processing_is_mt = rp->processing_is_mt();
1600     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
1601     active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U);
1602 
1603     // Parallel processing task executor.
1604     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
1605                                               g1h->workers(), active_workers);
1606     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1607 
1608     // Set the concurrency level. The phase was already set prior to
1609     // executing the remark task.
1610     set_concurrency(active_workers);
1611 
1612     // Set the degree of MT processing here.  If the discovery was done MT,
1613     // the number of threads involved during discovery could differ from
1614     // the number of active workers.  This is OK as long as the discovered
1615     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1616     rp->set_active_mt_degree(active_workers);
1617 
1618     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q());
1619 
1620     // Process the weak references.
1621     const ReferenceProcessorStats& stats =
1622         rp->process_discovered_references(&g1_is_alive,
1623                                           &g1_keep_alive,
1624                                           &g1_drain_mark_stack,
1625                                           executor,
1626                                           &pt);
1627     _gc_tracer_cm->report_gc_reference_stats(stats);
1628     pt.print_all_references();
1629 
1630     // The do_oop work routines of the keep_alive and drain_marking_stack
1631     // oop closures will set the has_overflown flag if we overflow the
1632     // global marking stack.
1633 
1634     assert(has_overflown() || _global_mark_stack.is_empty(),
1635             "Mark stack should be empty (unless it has overflown)");
1636 
1637     assert(rp->num_q() == active_workers, "why not");
1638 
1639     rp->enqueue_discovered_references(executor, &pt);
1640 
1641     rp->verify_no_references_recorded();
1642 
1643     pt.print_enqueue_phase();
1644 
1645     assert(!rp->discovery_enabled(), "Post condition");
1646   }
1647 
1648   assert(has_overflown() || _global_mark_stack.is_empty(),
1649           "Mark stack should be empty (unless it has overflown)");
1650 
1651   {
1652     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1653     WeakProcessor::weak_oops_do(&g1_is_alive, &do_nothing_cl);
1654   }
1655 
1656   if (has_overflown()) {
1657     // We can not trust g1_is_alive if the marking stack overflowed
1658     return;
1659   }
1660 
1661   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1662 
1663   // Unload Klasses, String, Symbols, Code Cache, etc.
1664   if (ClassUnloadingWithConcurrentMark) {
1665     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1666     bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, _gc_timer_cm, false /* Defer cleaning */);
1667     g1h->complete_cleaning(&g1_is_alive, purged_classes);
1668   } else {
1669     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1670     // No need to clean string table and symbol table as they are treated as strong roots when
1671     // class unloading is disabled.
1672     g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled());
1673 
1674   }
1675 }
1676 
1677 void G1ConcurrentMark::swap_mark_bitmaps() {
1678   G1CMBitMap* temp = _prev_mark_bitmap;
1679   _prev_mark_bitmap = _next_mark_bitmap;
1680   _next_mark_bitmap = temp;
1681 }
1682 
1683 // Closure for marking entries in SATB buffers.
1684 class G1CMSATBBufferClosure : public SATBBufferClosure {
1685 private:
1686   G1CMTask* _task;
1687   G1CollectedHeap* _g1h;
1688 
1689   // This is very similar to G1CMTask::deal_with_reference, but with
1690   // more relaxed requirements for the argument, so this must be more
1691   // circumspect about treating the argument as an object.
1692   void do_entry(void* entry) const {
1693     _task->increment_refs_reached();
1694     oop const obj = static_cast<oop>(entry);
1695     _task->make_reference_grey(obj);
1696   }
1697 
1698 public:
1699   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1700     : _task(task), _g1h(g1h) { }
1701 
1702   virtual void do_buffer(void** buffer, size_t size) {
1703     for (size_t i = 0; i < size; ++i) {
1704       do_entry(buffer[i]);
1705     }
1706   }
1707 };
1708 
1709 class G1RemarkThreadsClosure : public ThreadClosure {
1710   G1CMSATBBufferClosure _cm_satb_cl;
1711   G1CMOopClosure _cm_cl;
1712   MarkingCodeBlobClosure _code_cl;
1713   int _thread_parity;
1714 
1715  public:
1716   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1717     _cm_satb_cl(task, g1h),
1718     _cm_cl(g1h, g1h->concurrent_mark(), task),
1719     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1720     _thread_parity(Threads::thread_claim_parity()) {}
1721 
1722   void do_thread(Thread* thread) {
1723     if (thread->is_Java_thread()) {
1724       if (thread->claim_oops_do(true, _thread_parity)) {
1725         JavaThread* jt = (JavaThread*)thread;
1726 
1727         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1728         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1729         // * Alive if on the stack of an executing method
1730         // * Weakly reachable otherwise
1731         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1732         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1733         jt->nmethods_do(&_code_cl);
1734 
1735         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
1736       }
1737     } else if (thread->is_VM_thread()) {
1738       if (thread->claim_oops_do(true, _thread_parity)) {
1739         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1740       }
1741     }
1742   }
1743 };
1744 
1745 class G1CMRemarkTask: public AbstractGangTask {
1746 private:
1747   G1ConcurrentMark* _cm;
1748 public:
1749   void work(uint worker_id) {
1750     G1CMTask* task = _cm->task(worker_id);
1751     task->record_start_time();
1752     {
1753       ResourceMark rm;
1754       HandleMark hm;
1755 
1756       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1757       Threads::threads_do(&threads_f);
1758     }
1759 
1760     do {
1761       task->do_marking_step(1000000000.0 /* something very large */,
1762                             true         /* do_termination       */,
1763                             false        /* is_serial            */);
1764     } while (task->has_aborted() && !_cm->has_overflown());
1765     // If we overflow, then we do not want to restart. We instead
1766     // want to abort remark and do concurrent marking again.
1767     task->record_end_time();
1768   }
1769 
1770   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1771     AbstractGangTask("Par Remark"), _cm(cm) {
1772     _cm->terminator()->reset_for_reuse(active_workers);
1773   }
1774 };
1775 
1776 void G1ConcurrentMark::checkpoint_roots_final_work() {
1777   ResourceMark rm;
1778   HandleMark   hm;
1779   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1780 
1781   GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm);
1782 
1783   g1h->ensure_parsability(false);
1784 
1785   // this is remark, so we'll use up all active threads
1786   uint active_workers = g1h->workers()->active_workers();
1787   set_concurrency_and_phase(active_workers, false /* concurrent */);
1788   // Leave _parallel_marking_threads at it's
1789   // value originally calculated in the G1ConcurrentMark
1790   // constructor and pass values of the active workers
1791   // through the gang in the task.
1792 
1793   {
1794     StrongRootsScope srs(active_workers);
1795 
1796     G1CMRemarkTask remarkTask(this, active_workers);
1797     // We will start all available threads, even if we decide that the
1798     // active_workers will be fewer. The extra ones will just bail out
1799     // immediately.
1800     g1h->workers()->run_task(&remarkTask);
1801   }
1802 
1803   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1804   guarantee(has_overflown() ||
1805             satb_mq_set.completed_buffers_num() == 0,
1806             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1807             BOOL_TO_STR(has_overflown()),
1808             satb_mq_set.completed_buffers_num());
1809 
1810   print_stats();
1811 }
1812 
1813 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1814   _prev_mark_bitmap->clear_range(mr);
1815 }
1816 
1817 HeapRegion*
1818 G1ConcurrentMark::claim_region(uint worker_id) {
1819   // "checkpoint" the finger
1820   HeapWord* finger = _finger;
1821 
1822   // _heap_end will not change underneath our feet; it only changes at
1823   // yield points.
1824   while (finger < _heap_end) {
1825     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1826 
1827     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1828     // Make sure that the reads below do not float before loading curr_region.
1829     OrderAccess::loadload();
1830     // Above heap_region_containing may return NULL as we always scan claim
1831     // until the end of the heap. In this case, just jump to the next region.
1832     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1833 
1834     // Is the gap between reading the finger and doing the CAS too long?
1835     HeapWord* res = Atomic::cmpxchg(end, &_finger, finger);
1836     if (res == finger && curr_region != NULL) {
1837       // we succeeded
1838       HeapWord*   bottom        = curr_region->bottom();
1839       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1840 
1841       // notice that _finger == end cannot be guaranteed here since,
1842       // someone else might have moved the finger even further
1843       assert(_finger >= end, "the finger should have moved forward");
1844 
1845       if (limit > bottom) {
1846         return curr_region;
1847       } else {
1848         assert(limit == bottom,
1849                "the region limit should be at bottom");
1850         // we return NULL and the caller should try calling
1851         // claim_region() again.
1852         return NULL;
1853       }
1854     } else {
1855       assert(_finger > finger, "the finger should have moved forward");
1856       // read it again
1857       finger = _finger;
1858     }
1859   }
1860 
1861   return NULL;
1862 }
1863 
1864 #ifndef PRODUCT
1865 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
1866 private:
1867   G1CollectedHeap* _g1h;
1868   const char* _phase;
1869   int _info;
1870 
1871 public:
1872   VerifyNoCSetOops(const char* phase, int info = -1) :
1873     _g1h(G1CollectedHeap::heap()),
1874     _phase(phase),
1875     _info(info)
1876   { }
1877 
1878   void operator()(G1TaskQueueEntry task_entry) const {
1879     if (task_entry.is_array_slice()) {
1880       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1881       return;
1882     }
1883     guarantee(oopDesc::is_oop(task_entry.obj()),
1884               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1885               p2i(task_entry.obj()), _phase, _info);
1886     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1887               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1888               p2i(task_entry.obj()), _phase, _info);
1889   }
1890 };
1891 
1892 void G1ConcurrentMark::verify_no_cset_oops() {
1893   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1894   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
1895     return;
1896   }
1897 
1898   // Verify entries on the global mark stack
1899   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1900 
1901   // Verify entries on the task queues
1902   for (uint i = 0; i < _max_num_tasks; ++i) {
1903     G1CMTaskQueue* queue = _task_queues->queue(i);
1904     queue->iterate(VerifyNoCSetOops("Queue", i));
1905   }
1906 
1907   // Verify the global finger
1908   HeapWord* global_finger = finger();
1909   if (global_finger != NULL && global_finger < _heap_end) {
1910     // Since we always iterate over all regions, we might get a NULL HeapRegion
1911     // here.
1912     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1913     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1914               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1915               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1916   }
1917 
1918   // Verify the task fingers
1919   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1920   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1921     G1CMTask* task = _tasks[i];
1922     HeapWord* task_finger = task->finger();
1923     if (task_finger != NULL && task_finger < _heap_end) {
1924       // See above note on the global finger verification.
1925       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1926       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1927                 !task_hr->in_collection_set(),
1928                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1929                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1930     }
1931   }
1932 }
1933 #endif // PRODUCT
1934 void G1ConcurrentMark::create_live_data() {
1935   _g1h->g1_rem_set()->create_card_live_data(_concurrent_workers, _next_mark_bitmap);
1936 }
1937 
1938 void G1ConcurrentMark::finalize_live_data() {
1939   _g1h->g1_rem_set()->finalize_card_live_data(_g1h->workers(), _next_mark_bitmap);
1940 }
1941 
1942 void G1ConcurrentMark::verify_live_data() {
1943   _g1h->g1_rem_set()->verify_card_live_data(_g1h->workers(), _next_mark_bitmap);
1944 }
1945 
1946 void G1ConcurrentMark::clear_live_data(WorkGang* workers) {
1947   _g1h->g1_rem_set()->clear_card_live_data(workers);
1948 }
1949 
1950 #ifdef ASSERT
1951 void G1ConcurrentMark::verify_live_data_clear() {
1952   _g1h->g1_rem_set()->verify_card_live_data_is_clear();
1953 }
1954 #endif
1955 
1956 void G1ConcurrentMark::print_stats() {
1957   if (!log_is_enabled(Debug, gc, stats)) {
1958     return;
1959   }
1960   log_debug(gc, stats)("---------------------------------------------------------------------");
1961   for (size_t i = 0; i < _num_active_tasks; ++i) {
1962     _tasks[i]->print_stats();
1963     log_debug(gc, stats)("---------------------------------------------------------------------");
1964   }
1965 }
1966 
1967 void G1ConcurrentMark::abort() {
1968   if (!cm_thread()->during_cycle() || _has_aborted) {
1969     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
1970     return;
1971   }
1972 
1973   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
1974   // concurrent bitmap clearing.
1975   {
1976     GCTraceTime(Debug, gc)("Clear Next Bitmap");
1977     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
1978   }
1979   // Note we cannot clear the previous marking bitmap here
1980   // since VerifyDuringGC verifies the objects marked during
1981   // a full GC against the previous bitmap.
1982 
1983   {
1984     GCTraceTime(Debug, gc)("Clear Live Data");
1985     clear_live_data(_g1h->workers());
1986   }
1987   DEBUG_ONLY({
1988     GCTraceTime(Debug, gc)("Verify Live Data Clear");
1989     verify_live_data_clear();
1990   })
1991   // Empty mark stack
1992   reset_marking_state();
1993   for (uint i = 0; i < _max_num_tasks; ++i) {
1994     _tasks[i]->clear_region_fields();
1995   }
1996   _first_overflow_barrier_sync.abort();
1997   _second_overflow_barrier_sync.abort();
1998   _has_aborted = true;
1999 
2000   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2001   satb_mq_set.abandon_partial_marking();
2002   // This can be called either during or outside marking, we'll read
2003   // the expected_active value from the SATB queue set.
2004   satb_mq_set.set_active_all_threads(
2005                                  false, /* new active value */
2006                                  satb_mq_set.is_active() /* expected_active */);
2007 }
2008 
2009 static void print_ms_time_info(const char* prefix, const char* name,
2010                                NumberSeq& ns) {
2011   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2012                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2013   if (ns.num() > 0) {
2014     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2015                            prefix, ns.sd(), ns.maximum());
2016   }
2017 }
2018 
2019 void G1ConcurrentMark::print_summary_info() {
2020   Log(gc, marking) log;
2021   if (!log.is_trace()) {
2022     return;
2023   }
2024 
2025   log.trace(" Concurrent marking:");
2026   print_ms_time_info("  ", "init marks", _init_times);
2027   print_ms_time_info("  ", "remarks", _remark_times);
2028   {
2029     print_ms_time_info("     ", "final marks", _remark_mark_times);
2030     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2031 
2032   }
2033   print_ms_time_info("  ", "cleanups", _cleanup_times);
2034   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2035             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2036   if (G1ScrubRemSets) {
2037     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2038               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2039   }
2040   log.trace("  Total stop_world time = %8.2f s.",
2041             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2042   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2043             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2044 }
2045 
2046 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2047   _concurrent_workers->print_worker_threads_on(st);
2048 }
2049 
2050 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2051   _concurrent_workers->threads_do(tc);
2052 }
2053 
2054 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2055   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2056                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2057   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2058   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2059 }
2060 
2061 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2062   ReferenceProcessor* result = g1h->ref_processor_cm();
2063   assert(result != NULL, "CM reference processor should not be NULL");
2064   return result;
2065 }
2066 
2067 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2068                                G1ConcurrentMark* cm,
2069                                G1CMTask* task)
2070   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2071     _g1h(g1h), _cm(cm), _task(task)
2072 { }
2073 
2074 void G1CMTask::setup_for_region(HeapRegion* hr) {
2075   assert(hr != NULL,
2076         "claim_region() should have filtered out NULL regions");
2077   _curr_region  = hr;
2078   _finger       = hr->bottom();
2079   update_region_limit();
2080 }
2081 
2082 void G1CMTask::update_region_limit() {
2083   HeapRegion* hr            = _curr_region;
2084   HeapWord* bottom          = hr->bottom();
2085   HeapWord* limit           = hr->next_top_at_mark_start();
2086 
2087   if (limit == bottom) {
2088     // The region was collected underneath our feet.
2089     // We set the finger to bottom to ensure that the bitmap
2090     // iteration that will follow this will not do anything.
2091     // (this is not a condition that holds when we set the region up,
2092     // as the region is not supposed to be empty in the first place)
2093     _finger = bottom;
2094   } else if (limit >= _region_limit) {
2095     assert(limit >= _finger, "peace of mind");
2096   } else {
2097     assert(limit < _region_limit, "only way to get here");
2098     // This can happen under some pretty unusual circumstances.  An
2099     // evacuation pause empties the region underneath our feet (NTAMS
2100     // at bottom). We then do some allocation in the region (NTAMS
2101     // stays at bottom), followed by the region being used as a GC
2102     // alloc region (NTAMS will move to top() and the objects
2103     // originally below it will be grayed). All objects now marked in
2104     // the region are explicitly grayed, if below the global finger,
2105     // and we do not need in fact to scan anything else. So, we simply
2106     // set _finger to be limit to ensure that the bitmap iteration
2107     // doesn't do anything.
2108     _finger = limit;
2109   }
2110 
2111   _region_limit = limit;
2112 }
2113 
2114 void G1CMTask::giveup_current_region() {
2115   assert(_curr_region != NULL, "invariant");
2116   clear_region_fields();
2117 }
2118 
2119 void G1CMTask::clear_region_fields() {
2120   // Values for these three fields that indicate that we're not
2121   // holding on to a region.
2122   _curr_region   = NULL;
2123   _finger        = NULL;
2124   _region_limit  = NULL;
2125 }
2126 
2127 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2128   if (cm_oop_closure == NULL) {
2129     assert(_cm_oop_closure != NULL, "invariant");
2130   } else {
2131     assert(_cm_oop_closure == NULL, "invariant");
2132   }
2133   _cm_oop_closure = cm_oop_closure;
2134 }
2135 
2136 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2137   guarantee(next_mark_bitmap != NULL, "invariant");
2138   _next_mark_bitmap              = next_mark_bitmap;
2139   clear_region_fields();
2140 
2141   _calls                         = 0;
2142   _elapsed_time_ms               = 0.0;
2143   _termination_time_ms           = 0.0;
2144   _termination_start_time_ms     = 0.0;
2145 }
2146 
2147 bool G1CMTask::should_exit_termination() {
2148   regular_clock_call();
2149   // This is called when we are in the termination protocol. We should
2150   // quit if, for some reason, this task wants to abort or the global
2151   // stack is not empty (this means that we can get work from it).
2152   return !_cm->mark_stack_empty() || has_aborted();
2153 }
2154 
2155 void G1CMTask::reached_limit() {
2156   assert(_words_scanned >= _words_scanned_limit ||
2157          _refs_reached >= _refs_reached_limit ,
2158          "shouldn't have been called otherwise");
2159   regular_clock_call();
2160 }
2161 
2162 void G1CMTask::regular_clock_call() {
2163   if (has_aborted()) return;
2164 
2165   // First, we need to recalculate the words scanned and refs reached
2166   // limits for the next clock call.
2167   recalculate_limits();
2168 
2169   // During the regular clock call we do the following
2170 
2171   // (1) If an overflow has been flagged, then we abort.
2172   if (_cm->has_overflown()) {
2173     set_has_aborted();
2174     return;
2175   }
2176 
2177   // If we are not concurrent (i.e. we're doing remark) we don't need
2178   // to check anything else. The other steps are only needed during
2179   // the concurrent marking phase.
2180   if (!_concurrent) {
2181     return;
2182   }
2183 
2184   // (2) If marking has been aborted for Full GC, then we also abort.
2185   if (_cm->has_aborted()) {
2186     set_has_aborted();
2187     return;
2188   }
2189 
2190   double curr_time_ms = os::elapsedVTime() * 1000.0;
2191 
2192   // (4) We check whether we should yield. If we have to, then we abort.
2193   if (SuspendibleThreadSet::should_yield()) {
2194     // We should yield. To do this we abort the task. The caller is
2195     // responsible for yielding.
2196     set_has_aborted();
2197     return;
2198   }
2199 
2200   // (5) We check whether we've reached our time quota. If we have,
2201   // then we abort.
2202   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2203   if (elapsed_time_ms > _time_target_ms) {
2204     set_has_aborted();
2205     _has_timed_out = true;
2206     return;
2207   }
2208 
2209   // (6) Finally, we check whether there are enough completed STAB
2210   // buffers available for processing. If there are, we abort.
2211   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2212   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2213     // we do need to process SATB buffers, we'll abort and restart
2214     // the marking task to do so
2215     set_has_aborted();
2216     return;
2217   }
2218 }
2219 
2220 void G1CMTask::recalculate_limits() {
2221   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2222   _words_scanned_limit      = _real_words_scanned_limit;
2223 
2224   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2225   _refs_reached_limit       = _real_refs_reached_limit;
2226 }
2227 
2228 void G1CMTask::decrease_limits() {
2229   // This is called when we believe that we're going to do an infrequent
2230   // operation which will increase the per byte scanned cost (i.e. move
2231   // entries to/from the global stack). It basically tries to decrease the
2232   // scanning limit so that the clock is called earlier.
2233 
2234   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2235   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2236 }
2237 
2238 void G1CMTask::move_entries_to_global_stack() {
2239   // Local array where we'll store the entries that will be popped
2240   // from the local queue.
2241   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2242 
2243   size_t n = 0;
2244   G1TaskQueueEntry task_entry;
2245   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2246     buffer[n] = task_entry;
2247     ++n;
2248   }
2249   if (n < G1CMMarkStack::EntriesPerChunk) {
2250     buffer[n] = G1TaskQueueEntry();
2251   }
2252 
2253   if (n > 0) {
2254     if (!_cm->mark_stack_push(buffer)) {
2255       set_has_aborted();
2256     }
2257   }
2258 
2259   // This operation was quite expensive, so decrease the limits.
2260   decrease_limits();
2261 }
2262 
2263 bool G1CMTask::get_entries_from_global_stack() {
2264   // Local array where we'll store the entries that will be popped
2265   // from the global stack.
2266   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2267 
2268   if (!_cm->mark_stack_pop(buffer)) {
2269     return false;
2270   }
2271 
2272   // We did actually pop at least one entry.
2273   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2274     G1TaskQueueEntry task_entry = buffer[i];
2275     if (task_entry.is_null()) {
2276       break;
2277     }
2278     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2279     bool success = _task_queue->push(task_entry);
2280     // We only call this when the local queue is empty or under a
2281     // given target limit. So, we do not expect this push to fail.
2282     assert(success, "invariant");
2283   }
2284 
2285   // This operation was quite expensive, so decrease the limits
2286   decrease_limits();
2287   return true;
2288 }
2289 
2290 void G1CMTask::drain_local_queue(bool partially) {
2291   if (has_aborted()) {
2292     return;
2293   }
2294 
2295   // Decide what the target size is, depending whether we're going to
2296   // drain it partially (so that other tasks can steal if they run out
2297   // of things to do) or totally (at the very end).
2298   size_t target_size;
2299   if (partially) {
2300     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2301   } else {
2302     target_size = 0;
2303   }
2304 
2305   if (_task_queue->size() > target_size) {
2306     G1TaskQueueEntry entry;
2307     bool ret = _task_queue->pop_local(entry);
2308     while (ret) {
2309       scan_task_entry(entry);
2310       if (_task_queue->size() <= target_size || has_aborted()) {
2311         ret = false;
2312       } else {
2313         ret = _task_queue->pop_local(entry);
2314       }
2315     }
2316   }
2317 }
2318 
2319 void G1CMTask::drain_global_stack(bool partially) {
2320   if (has_aborted()) return;
2321 
2322   // We have a policy to drain the local queue before we attempt to
2323   // drain the global stack.
2324   assert(partially || _task_queue->size() == 0, "invariant");
2325 
2326   // Decide what the target size is, depending whether we're going to
2327   // drain it partially (so that other tasks can steal if they run out
2328   // of things to do) or totally (at the very end).
2329   // Notice that when draining the global mark stack partially, due to the racyness
2330   // of the mark stack size update we might in fact drop below the target. But,
2331   // this is not a problem.
2332   // In case of total draining, we simply process until the global mark stack is
2333   // totally empty, disregarding the size counter.
2334   if (partially) {
2335     size_t const target_size = _cm->partial_mark_stack_size_target();
2336     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2337       if (get_entries_from_global_stack()) {
2338         drain_local_queue(partially);
2339       }
2340     }
2341   } else {
2342     while (!has_aborted() && get_entries_from_global_stack()) {
2343       drain_local_queue(partially);
2344     }
2345   }
2346 }
2347 
2348 // SATB Queue has several assumptions on whether to call the par or
2349 // non-par versions of the methods. this is why some of the code is
2350 // replicated. We should really get rid of the single-threaded version
2351 // of the code to simplify things.
2352 void G1CMTask::drain_satb_buffers() {
2353   if (has_aborted()) return;
2354 
2355   // We set this so that the regular clock knows that we're in the
2356   // middle of draining buffers and doesn't set the abort flag when it
2357   // notices that SATB buffers are available for draining. It'd be
2358   // very counter productive if it did that. :-)
2359   _draining_satb_buffers = true;
2360 
2361   G1CMSATBBufferClosure satb_cl(this, _g1h);
2362   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2363 
2364   // This keeps claiming and applying the closure to completed buffers
2365   // until we run out of buffers or we need to abort.
2366   while (!has_aborted() &&
2367          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2368     regular_clock_call();
2369   }
2370 
2371   _draining_satb_buffers = false;
2372 
2373   assert(has_aborted() ||
2374          _concurrent ||
2375          satb_mq_set.completed_buffers_num() == 0, "invariant");
2376 
2377   // again, this was a potentially expensive operation, decrease the
2378   // limits to get the regular clock call early
2379   decrease_limits();
2380 }
2381 
2382 void G1CMTask::print_stats() {
2383   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u",
2384                        _worker_id, _calls);
2385   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2386                        _elapsed_time_ms, _termination_time_ms);
2387   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
2388                        _step_times_ms.num(), _step_times_ms.avg(),
2389                        _step_times_ms.sd());
2390   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
2391                        _step_times_ms.maximum(), _step_times_ms.sum());
2392 }
2393 
2394 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) {
2395   return _task_queues->steal(worker_id, hash_seed, task_entry);
2396 }
2397 
2398 /*****************************************************************************
2399 
2400     The do_marking_step(time_target_ms, ...) method is the building
2401     block of the parallel marking framework. It can be called in parallel
2402     with other invocations of do_marking_step() on different tasks
2403     (but only one per task, obviously) and concurrently with the
2404     mutator threads, or during remark, hence it eliminates the need
2405     for two versions of the code. When called during remark, it will
2406     pick up from where the task left off during the concurrent marking
2407     phase. Interestingly, tasks are also claimable during evacuation
2408     pauses too, since do_marking_step() ensures that it aborts before
2409     it needs to yield.
2410 
2411     The data structures that it uses to do marking work are the
2412     following:
2413 
2414       (1) Marking Bitmap. If there are gray objects that appear only
2415       on the bitmap (this happens either when dealing with an overflow
2416       or when the initial marking phase has simply marked the roots
2417       and didn't push them on the stack), then tasks claim heap
2418       regions whose bitmap they then scan to find gray objects. A
2419       global finger indicates where the end of the last claimed region
2420       is. A local finger indicates how far into the region a task has
2421       scanned. The two fingers are used to determine how to gray an
2422       object (i.e. whether simply marking it is OK, as it will be
2423       visited by a task in the future, or whether it needs to be also
2424       pushed on a stack).
2425 
2426       (2) Local Queue. The local queue of the task which is accessed
2427       reasonably efficiently by the task. Other tasks can steal from
2428       it when they run out of work. Throughout the marking phase, a
2429       task attempts to keep its local queue short but not totally
2430       empty, so that entries are available for stealing by other
2431       tasks. Only when there is no more work, a task will totally
2432       drain its local queue.
2433 
2434       (3) Global Mark Stack. This handles local queue overflow. During
2435       marking only sets of entries are moved between it and the local
2436       queues, as access to it requires a mutex and more fine-grain
2437       interaction with it which might cause contention. If it
2438       overflows, then the marking phase should restart and iterate
2439       over the bitmap to identify gray objects. Throughout the marking
2440       phase, tasks attempt to keep the global mark stack at a small
2441       length but not totally empty, so that entries are available for
2442       popping by other tasks. Only when there is no more work, tasks
2443       will totally drain the global mark stack.
2444 
2445       (4) SATB Buffer Queue. This is where completed SATB buffers are
2446       made available. Buffers are regularly removed from this queue
2447       and scanned for roots, so that the queue doesn't get too
2448       long. During remark, all completed buffers are processed, as
2449       well as the filled in parts of any uncompleted buffers.
2450 
2451     The do_marking_step() method tries to abort when the time target
2452     has been reached. There are a few other cases when the
2453     do_marking_step() method also aborts:
2454 
2455       (1) When the marking phase has been aborted (after a Full GC).
2456 
2457       (2) When a global overflow (on the global stack) has been
2458       triggered. Before the task aborts, it will actually sync up with
2459       the other tasks to ensure that all the marking data structures
2460       (local queues, stacks, fingers etc.)  are re-initialized so that
2461       when do_marking_step() completes, the marking phase can
2462       immediately restart.
2463 
2464       (3) When enough completed SATB buffers are available. The
2465       do_marking_step() method only tries to drain SATB buffers right
2466       at the beginning. So, if enough buffers are available, the
2467       marking step aborts and the SATB buffers are processed at
2468       the beginning of the next invocation.
2469 
2470       (4) To yield. when we have to yield then we abort and yield
2471       right at the end of do_marking_step(). This saves us from a lot
2472       of hassle as, by yielding we might allow a Full GC. If this
2473       happens then objects will be compacted underneath our feet, the
2474       heap might shrink, etc. We save checking for this by just
2475       aborting and doing the yield right at the end.
2476 
2477     From the above it follows that the do_marking_step() method should
2478     be called in a loop (or, otherwise, regularly) until it completes.
2479 
2480     If a marking step completes without its has_aborted() flag being
2481     true, it means it has completed the current marking phase (and
2482     also all other marking tasks have done so and have all synced up).
2483 
2484     A method called regular_clock_call() is invoked "regularly" (in
2485     sub ms intervals) throughout marking. It is this clock method that
2486     checks all the abort conditions which were mentioned above and
2487     decides when the task should abort. A work-based scheme is used to
2488     trigger this clock method: when the number of object words the
2489     marking phase has scanned or the number of references the marking
2490     phase has visited reach a given limit. Additional invocations to
2491     the method clock have been planted in a few other strategic places
2492     too. The initial reason for the clock method was to avoid calling
2493     vtime too regularly, as it is quite expensive. So, once it was in
2494     place, it was natural to piggy-back all the other conditions on it
2495     too and not constantly check them throughout the code.
2496 
2497     If do_termination is true then do_marking_step will enter its
2498     termination protocol.
2499 
2500     The value of is_serial must be true when do_marking_step is being
2501     called serially (i.e. by the VMThread) and do_marking_step should
2502     skip any synchronization in the termination and overflow code.
2503     Examples include the serial remark code and the serial reference
2504     processing closures.
2505 
2506     The value of is_serial must be false when do_marking_step is
2507     being called by any of the worker threads in a work gang.
2508     Examples include the concurrent marking code (CMMarkingTask),
2509     the MT remark code, and the MT reference processing closures.
2510 
2511  *****************************************************************************/
2512 
2513 void G1CMTask::do_marking_step(double time_target_ms,
2514                                bool do_termination,
2515                                bool is_serial) {
2516   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2517   assert(_concurrent == _cm->concurrent(), "they should be the same");
2518 
2519   _start_time_ms = os::elapsedVTime() * 1000.0;
2520 
2521   // If do_stealing is true then do_marking_step will attempt to
2522   // steal work from the other G1CMTasks. It only makes sense to
2523   // enable stealing when the termination protocol is enabled
2524   // and do_marking_step() is not being called serially.
2525   bool do_stealing = do_termination && !is_serial;
2526 
2527   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2528   _time_target_ms = time_target_ms - diff_prediction_ms;
2529 
2530   // set up the variables that are used in the work-based scheme to
2531   // call the regular clock method
2532   _words_scanned = 0;
2533   _refs_reached  = 0;
2534   recalculate_limits();
2535 
2536   // clear all flags
2537   clear_has_aborted();
2538   _has_timed_out = false;
2539   _draining_satb_buffers = false;
2540 
2541   ++_calls;
2542 
2543   // Set up the bitmap and oop closures. Anything that uses them is
2544   // eventually called from this method, so it is OK to allocate these
2545   // statically.
2546   G1CMBitMapClosure bitmap_closure(this, _cm);
2547   G1CMOopClosure    cm_oop_closure(_g1h, _cm, this);
2548   set_cm_oop_closure(&cm_oop_closure);
2549 
2550   if (_cm->has_overflown()) {
2551     // This can happen if the mark stack overflows during a GC pause
2552     // and this task, after a yield point, restarts. We have to abort
2553     // as we need to get into the overflow protocol which happens
2554     // right at the end of this task.
2555     set_has_aborted();
2556   }
2557 
2558   // First drain any available SATB buffers. After this, we will not
2559   // look at SATB buffers before the next invocation of this method.
2560   // If enough completed SATB buffers are queued up, the regular clock
2561   // will abort this task so that it restarts.
2562   drain_satb_buffers();
2563   // ...then partially drain the local queue and the global stack
2564   drain_local_queue(true);
2565   drain_global_stack(true);
2566 
2567   do {
2568     if (!has_aborted() && _curr_region != NULL) {
2569       // This means that we're already holding on to a region.
2570       assert(_finger != NULL, "if region is not NULL, then the finger "
2571              "should not be NULL either");
2572 
2573       // We might have restarted this task after an evacuation pause
2574       // which might have evacuated the region we're holding on to
2575       // underneath our feet. Let's read its limit again to make sure
2576       // that we do not iterate over a region of the heap that
2577       // contains garbage (update_region_limit() will also move
2578       // _finger to the start of the region if it is found empty).
2579       update_region_limit();
2580       // We will start from _finger not from the start of the region,
2581       // as we might be restarting this task after aborting half-way
2582       // through scanning this region. In this case, _finger points to
2583       // the address where we last found a marked object. If this is a
2584       // fresh region, _finger points to start().
2585       MemRegion mr = MemRegion(_finger, _region_limit);
2586 
2587       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2588              "humongous regions should go around loop once only");
2589 
2590       // Some special cases:
2591       // If the memory region is empty, we can just give up the region.
2592       // If the current region is humongous then we only need to check
2593       // the bitmap for the bit associated with the start of the object,
2594       // scan the object if it's live, and give up the region.
2595       // Otherwise, let's iterate over the bitmap of the part of the region
2596       // that is left.
2597       // If the iteration is successful, give up the region.
2598       if (mr.is_empty()) {
2599         giveup_current_region();
2600         regular_clock_call();
2601       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2602         if (_next_mark_bitmap->is_marked(mr.start())) {
2603           // The object is marked - apply the closure
2604           bitmap_closure.do_addr(mr.start());
2605         }
2606         // Even if this task aborted while scanning the humongous object
2607         // we can (and should) give up the current region.
2608         giveup_current_region();
2609         regular_clock_call();
2610       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2611         giveup_current_region();
2612         regular_clock_call();
2613       } else {
2614         assert(has_aborted(), "currently the only way to do so");
2615         // The only way to abort the bitmap iteration is to return
2616         // false from the do_bit() method. However, inside the
2617         // do_bit() method we move the _finger to point to the
2618         // object currently being looked at. So, if we bail out, we
2619         // have definitely set _finger to something non-null.
2620         assert(_finger != NULL, "invariant");
2621 
2622         // Region iteration was actually aborted. So now _finger
2623         // points to the address of the object we last scanned. If we
2624         // leave it there, when we restart this task, we will rescan
2625         // the object. It is easy to avoid this. We move the finger by
2626         // enough to point to the next possible object header.
2627         assert(_finger < _region_limit, "invariant");
2628         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2629         // Check if bitmap iteration was aborted while scanning the last object
2630         if (new_finger >= _region_limit) {
2631           giveup_current_region();
2632         } else {
2633           move_finger_to(new_finger);
2634         }
2635       }
2636     }
2637     // At this point we have either completed iterating over the
2638     // region we were holding on to, or we have aborted.
2639 
2640     // We then partially drain the local queue and the global stack.
2641     // (Do we really need this?)
2642     drain_local_queue(true);
2643     drain_global_stack(true);
2644 
2645     // Read the note on the claim_region() method on why it might
2646     // return NULL with potentially more regions available for
2647     // claiming and why we have to check out_of_regions() to determine
2648     // whether we're done or not.
2649     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2650       // We are going to try to claim a new region. We should have
2651       // given up on the previous one.
2652       // Separated the asserts so that we know which one fires.
2653       assert(_curr_region  == NULL, "invariant");
2654       assert(_finger       == NULL, "invariant");
2655       assert(_region_limit == NULL, "invariant");
2656       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2657       if (claimed_region != NULL) {
2658         // Yes, we managed to claim one
2659         setup_for_region(claimed_region);
2660         assert(_curr_region == claimed_region, "invariant");
2661       }
2662       // It is important to call the regular clock here. It might take
2663       // a while to claim a region if, for example, we hit a large
2664       // block of empty regions. So we need to call the regular clock
2665       // method once round the loop to make sure it's called
2666       // frequently enough.
2667       regular_clock_call();
2668     }
2669 
2670     if (!has_aborted() && _curr_region == NULL) {
2671       assert(_cm->out_of_regions(),
2672              "at this point we should be out of regions");
2673     }
2674   } while ( _curr_region != NULL && !has_aborted());
2675 
2676   if (!has_aborted()) {
2677     // We cannot check whether the global stack is empty, since other
2678     // tasks might be pushing objects to it concurrently.
2679     assert(_cm->out_of_regions(),
2680            "at this point we should be out of regions");
2681     // Try to reduce the number of available SATB buffers so that
2682     // remark has less work to do.
2683     drain_satb_buffers();
2684   }
2685 
2686   // Since we've done everything else, we can now totally drain the
2687   // local queue and global stack.
2688   drain_local_queue(false);
2689   drain_global_stack(false);
2690 
2691   // Attempt at work stealing from other task's queues.
2692   if (do_stealing && !has_aborted()) {
2693     // We have not aborted. This means that we have finished all that
2694     // we could. Let's try to do some stealing...
2695 
2696     // We cannot check whether the global stack is empty, since other
2697     // tasks might be pushing objects to it concurrently.
2698     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2699            "only way to reach here");
2700     while (!has_aborted()) {
2701       G1TaskQueueEntry entry;
2702       if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) {
2703         scan_task_entry(entry);
2704 
2705         // And since we're towards the end, let's totally drain the
2706         // local queue and global stack.
2707         drain_local_queue(false);
2708         drain_global_stack(false);
2709       } else {
2710         break;
2711       }
2712     }
2713   }
2714 
2715   // We still haven't aborted. Now, let's try to get into the
2716   // termination protocol.
2717   if (do_termination && !has_aborted()) {
2718     // We cannot check whether the global stack is empty, since other
2719     // tasks might be concurrently pushing objects on it.
2720     // Separated the asserts so that we know which one fires.
2721     assert(_cm->out_of_regions(), "only way to reach here");
2722     assert(_task_queue->size() == 0, "only way to reach here");
2723     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2724 
2725     // The G1CMTask class also extends the TerminatorTerminator class,
2726     // hence its should_exit_termination() method will also decide
2727     // whether to exit the termination protocol or not.
2728     bool finished = (is_serial ||
2729                      _cm->terminator()->offer_termination(this));
2730     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2731     _termination_time_ms +=
2732       termination_end_time_ms - _termination_start_time_ms;
2733 
2734     if (finished) {
2735       // We're all done.
2736 
2737       if (_worker_id == 0) {
2738         // Let's allow task 0 to do this
2739         if (_concurrent) {
2740           assert(_cm->concurrent_marking_in_progress(), "invariant");
2741           // We need to set this to false before the next
2742           // safepoint. This way we ensure that the marking phase
2743           // doesn't observe any more heap expansions.
2744           _cm->clear_concurrent_marking_in_progress();
2745         }
2746       }
2747 
2748       // We can now guarantee that the global stack is empty, since
2749       // all other tasks have finished. We separated the guarantees so
2750       // that, if a condition is false, we can immediately find out
2751       // which one.
2752       guarantee(_cm->out_of_regions(), "only way to reach here");
2753       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2754       guarantee(_task_queue->size() == 0, "only way to reach here");
2755       guarantee(!_cm->has_overflown(), "only way to reach here");
2756     } else {
2757       // Apparently there's more work to do. Let's abort this task. It
2758       // will restart it and we can hopefully find more things to do.
2759       set_has_aborted();
2760     }
2761   }
2762 
2763   // Mainly for debugging purposes to make sure that a pointer to the
2764   // closure which was statically allocated in this frame doesn't
2765   // escape it by accident.
2766   set_cm_oop_closure(NULL);
2767   double end_time_ms = os::elapsedVTime() * 1000.0;
2768   double elapsed_time_ms = end_time_ms - _start_time_ms;
2769   // Update the step history.
2770   _step_times_ms.add(elapsed_time_ms);
2771 
2772   if (has_aborted()) {
2773     // The task was aborted for some reason.
2774     if (_has_timed_out) {
2775       double diff_ms = elapsed_time_ms - _time_target_ms;
2776       // Keep statistics of how well we did with respect to hitting
2777       // our target only if we actually timed out (if we aborted for
2778       // other reasons, then the results might get skewed).
2779       _marking_step_diffs_ms.add(diff_ms);
2780     }
2781 
2782     if (_cm->has_overflown()) {
2783       // This is the interesting one. We aborted because a global
2784       // overflow was raised. This means we have to restart the
2785       // marking phase and start iterating over regions. However, in
2786       // order to do this we have to make sure that all tasks stop
2787       // what they are doing and re-initialize in a safe manner. We
2788       // will achieve this with the use of two barrier sync points.
2789 
2790       if (!is_serial) {
2791         // We only need to enter the sync barrier if being called
2792         // from a parallel context
2793         _cm->enter_first_sync_barrier(_worker_id);
2794 
2795         // When we exit this sync barrier we know that all tasks have
2796         // stopped doing marking work. So, it's now safe to
2797         // re-initialize our data structures. At the end of this method,
2798         // task 0 will clear the global data structures.
2799       }
2800 
2801       // We clear the local state of this task...
2802       clear_region_fields();
2803 
2804       if (!is_serial) {
2805         // ...and enter the second barrier.
2806         _cm->enter_second_sync_barrier(_worker_id);
2807       }
2808       // At this point, if we're during the concurrent phase of
2809       // marking, everything has been re-initialized and we're
2810       // ready to restart.
2811     }
2812   }
2813 }
2814 
2815 G1CMTask::G1CMTask(uint worker_id, G1ConcurrentMark* cm, G1CMTaskQueue* task_queue) :
2816   _objArray_processor(this),
2817   _worker_id(worker_id),
2818   _g1h(G1CollectedHeap::heap()),
2819   _cm(cm),
2820   _next_mark_bitmap(NULL),
2821   _task_queue(task_queue),
2822   _calls(0),
2823   _time_target_ms(0.0),
2824   _start_time_ms(0.0),
2825   _cm_oop_closure(NULL),
2826   _curr_region(NULL),
2827   _finger(NULL),
2828   _region_limit(NULL),
2829   _words_scanned(0),
2830   _words_scanned_limit(0),
2831   _real_words_scanned_limit(0),
2832   _refs_reached(0),
2833   _refs_reached_limit(0),
2834   _real_refs_reached_limit(0),
2835   _hash_seed(17),
2836   _has_aborted(false),
2837   _has_timed_out(false),
2838   _draining_satb_buffers(false),
2839   _step_times_ms(),
2840   _elapsed_time_ms(0.0),
2841   _termination_time_ms(0.0),
2842   _termination_start_time_ms(0.0),
2843   _concurrent(false),
2844   _marking_step_diffs_ms()
2845 {
2846   guarantee(task_queue != NULL, "invariant");
2847 
2848   _marking_step_diffs_ms.add(0.5);
2849 }
2850 
2851 // These are formatting macros that are used below to ensure
2852 // consistent formatting. The *_H_* versions are used to format the
2853 // header for a particular value and they should be kept consistent
2854 // with the corresponding macro. Also note that most of the macros add
2855 // the necessary white space (as a prefix) which makes them a bit
2856 // easier to compose.
2857 
2858 // All the output lines are prefixed with this string to be able to
2859 // identify them easily in a large log file.
2860 #define G1PPRL_LINE_PREFIX            "###"
2861 
2862 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2863 #ifdef _LP64
2864 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2865 #else // _LP64
2866 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2867 #endif // _LP64
2868 
2869 // For per-region info
2870 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2871 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2872 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2873 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2874 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2875 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2876 
2877 // For summary info
2878 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2879 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2880 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2881 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2882 
2883 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2884   _total_used_bytes(0), _total_capacity_bytes(0),
2885   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2886   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2887 {
2888   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2889   MemRegion g1_reserved = g1h->g1_reserved();
2890   double now = os::elapsedTime();
2891 
2892   // Print the header of the output.
2893   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2894   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2895                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2896                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2897                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2898                           HeapRegion::GrainBytes);
2899   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2900   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2901                           G1PPRL_TYPE_H_FORMAT
2902                           G1PPRL_ADDR_BASE_H_FORMAT
2903                           G1PPRL_BYTE_H_FORMAT
2904                           G1PPRL_BYTE_H_FORMAT
2905                           G1PPRL_BYTE_H_FORMAT
2906                           G1PPRL_DOUBLE_H_FORMAT
2907                           G1PPRL_BYTE_H_FORMAT
2908                           G1PPRL_BYTE_H_FORMAT,
2909                           "type", "address-range",
2910                           "used", "prev-live", "next-live", "gc-eff",
2911                           "remset", "code-roots");
2912   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2913                           G1PPRL_TYPE_H_FORMAT
2914                           G1PPRL_ADDR_BASE_H_FORMAT
2915                           G1PPRL_BYTE_H_FORMAT
2916                           G1PPRL_BYTE_H_FORMAT
2917                           G1PPRL_BYTE_H_FORMAT
2918                           G1PPRL_DOUBLE_H_FORMAT
2919                           G1PPRL_BYTE_H_FORMAT
2920                           G1PPRL_BYTE_H_FORMAT,
2921                           "", "",
2922                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2923                           "(bytes)", "(bytes)");
2924 }
2925 
2926 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2927   const char* type       = r->get_type_str();
2928   HeapWord* bottom       = r->bottom();
2929   HeapWord* end          = r->end();
2930   size_t capacity_bytes  = r->capacity();
2931   size_t used_bytes      = r->used();
2932   size_t prev_live_bytes = r->live_bytes();
2933   size_t next_live_bytes = r->next_live_bytes();
2934   double gc_eff          = r->gc_efficiency();
2935   size_t remset_bytes    = r->rem_set()->mem_size();
2936   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
2937 
2938   _total_used_bytes      += used_bytes;
2939   _total_capacity_bytes  += capacity_bytes;
2940   _total_prev_live_bytes += prev_live_bytes;
2941   _total_next_live_bytes += next_live_bytes;
2942   _total_remset_bytes    += remset_bytes;
2943   _total_strong_code_roots_bytes += strong_code_roots_bytes;
2944 
2945   // Print a line for this particular region.
2946   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2947                           G1PPRL_TYPE_FORMAT
2948                           G1PPRL_ADDR_BASE_FORMAT
2949                           G1PPRL_BYTE_FORMAT
2950                           G1PPRL_BYTE_FORMAT
2951                           G1PPRL_BYTE_FORMAT
2952                           G1PPRL_DOUBLE_FORMAT
2953                           G1PPRL_BYTE_FORMAT
2954                           G1PPRL_BYTE_FORMAT,
2955                           type, p2i(bottom), p2i(end),
2956                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
2957                           remset_bytes, strong_code_roots_bytes);
2958 
2959   return false;
2960 }
2961 
2962 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
2963   // add static memory usages to remembered set sizes
2964   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
2965   // Print the footer of the output.
2966   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2967   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2968                          " SUMMARY"
2969                          G1PPRL_SUM_MB_FORMAT("capacity")
2970                          G1PPRL_SUM_MB_PERC_FORMAT("used")
2971                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
2972                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
2973                          G1PPRL_SUM_MB_FORMAT("remset")
2974                          G1PPRL_SUM_MB_FORMAT("code-roots"),
2975                          bytes_to_mb(_total_capacity_bytes),
2976                          bytes_to_mb(_total_used_bytes),
2977                          percent_of(_total_used_bytes, _total_capacity_bytes),
2978                          bytes_to_mb(_total_prev_live_bytes),
2979                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
2980                          bytes_to_mb(_total_next_live_bytes),
2981                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
2982                          bytes_to_mb(_total_remset_bytes),
2983                          bytes_to_mb(_total_strong_code_roots_bytes));
2984 }