1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/cardTableRS.hpp"
  27 #include "gc/shared/genCollectedHeap.hpp"
  28 #include "gc/shared/genOopClosures.hpp"
  29 #include "gc/shared/generation.hpp"
  30 #include "gc/shared/space.inline.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "oops/access.inline.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "runtime/atomic.hpp"
  35 #include "runtime/java.hpp"
  36 #include "runtime/os.hpp"
  37 #include "utilities/macros.hpp"
  38 
  39 class HasAccumulatedModifiedOopsClosure : public CLDClosure {
  40   bool _found;
  41  public:
  42   HasAccumulatedModifiedOopsClosure() : _found(false) {}
  43   void do_cld(ClassLoaderData* cld) {
  44     if (_found) {
  45       return;
  46     }
  47 
  48     if (cld->has_accumulated_modified_oops()) {
  49       _found = true;
  50     }
  51   }
  52   bool found() {
  53     return _found;
  54   }
  55 };
  56 
  57 bool CLDRemSet::mod_union_is_clear() {
  58   HasAccumulatedModifiedOopsClosure closure;
  59   ClassLoaderDataGraph::cld_do(&closure);
  60 
  61   return !closure.found();
  62 }
  63 
  64 
  65 class ClearCLDModUnionClosure : public CLDClosure {
  66  public:
  67   void do_cld(ClassLoaderData* cld) {
  68     if (cld->has_accumulated_modified_oops()) {
  69       cld->clear_accumulated_modified_oops();
  70     }
  71   }
  72 };
  73 
  74 void CLDRemSet::clear_mod_union() {
  75   ClearCLDModUnionClosure closure;
  76   ClassLoaderDataGraph::cld_do(&closure);
  77 }
  78 
  79 
  80 jbyte CardTableRS::find_unused_youngergenP_card_value() {
  81   for (jbyte v = youngergenP1_card;
  82        v < cur_youngergen_and_prev_nonclean_card;
  83        v++) {
  84     bool seen = false;
  85     for (int g = 0; g < _regions_to_iterate; g++) {
  86       if (_last_cur_val_in_gen[g] == v) {
  87         seen = true;
  88         break;
  89       }
  90     }
  91     if (!seen) {
  92       return v;
  93     }
  94   }
  95   ShouldNotReachHere();
  96   return 0;
  97 }
  98 
  99 void CardTableRS::prepare_for_younger_refs_iterate(bool parallel) {
 100   // Parallel or sequential, we must always set the prev to equal the
 101   // last one written.
 102   if (parallel) {
 103     // Find a parallel value to be used next.
 104     jbyte next_val = find_unused_youngergenP_card_value();
 105     set_cur_youngergen_card_val(next_val);
 106 
 107   } else {
 108     // In an sequential traversal we will always write youngergen, so that
 109     // the inline barrier is  correct.
 110     set_cur_youngergen_card_val(youngergen_card);
 111   }
 112 }
 113 
 114 void CardTableRS::younger_refs_iterate(Generation* g,
 115                                        OopsInGenClosure* blk,
 116                                        uint n_threads) {
 117   // The indexing in this array is slightly odd. We want to access
 118   // the old generation record here, which is at index 2.
 119   _last_cur_val_in_gen[2] = cur_youngergen_card_val();
 120   g->younger_refs_iterate(blk, n_threads);
 121 }
 122 
 123 inline bool ClearNoncleanCardWrapper::clear_card(jbyte* entry) {
 124   if (_is_par) {
 125     return clear_card_parallel(entry);
 126   } else {
 127     return clear_card_serial(entry);
 128   }
 129 }
 130 
 131 inline bool ClearNoncleanCardWrapper::clear_card_parallel(jbyte* entry) {
 132   while (true) {
 133     // In the parallel case, we may have to do this several times.
 134     jbyte entry_val = *entry;
 135     assert(entry_val != CardTableRS::clean_card_val(),
 136            "We shouldn't be looking at clean cards, and this should "
 137            "be the only place they get cleaned.");
 138     if (CardTableRS::card_is_dirty_wrt_gen_iter(entry_val)
 139         || _ct->is_prev_youngergen_card_val(entry_val)) {
 140       jbyte res =
 141         Atomic::cmpxchg(CardTableRS::clean_card_val(), entry, entry_val);
 142       if (res == entry_val) {
 143         break;
 144       } else {
 145         assert(res == CardTableRS::cur_youngergen_and_prev_nonclean_card,
 146                "The CAS above should only fail if another thread did "
 147                "a GC write barrier.");
 148       }
 149     } else if (entry_val ==
 150                CardTableRS::cur_youngergen_and_prev_nonclean_card) {
 151       // Parallelism shouldn't matter in this case.  Only the thread
 152       // assigned to scan the card should change this value.
 153       *entry = _ct->cur_youngergen_card_val();
 154       break;
 155     } else {
 156       assert(entry_val == _ct->cur_youngergen_card_val(),
 157              "Should be the only possibility.");
 158       // In this case, the card was clean before, and become
 159       // cur_youngergen only because of processing of a promoted object.
 160       // We don't have to look at the card.
 161       return false;
 162     }
 163   }
 164   return true;
 165 }
 166 
 167 
 168 inline bool ClearNoncleanCardWrapper::clear_card_serial(jbyte* entry) {
 169   jbyte entry_val = *entry;
 170   assert(entry_val != CardTableRS::clean_card_val(),
 171          "We shouldn't be looking at clean cards, and this should "
 172          "be the only place they get cleaned.");
 173   assert(entry_val != CardTableRS::cur_youngergen_and_prev_nonclean_card,
 174          "This should be possible in the sequential case.");
 175   *entry = CardTableRS::clean_card_val();
 176   return true;
 177 }
 178 
 179 ClearNoncleanCardWrapper::ClearNoncleanCardWrapper(
 180   DirtyCardToOopClosure* dirty_card_closure, CardTableRS* ct, bool is_par) :
 181     _dirty_card_closure(dirty_card_closure), _ct(ct), _is_par(is_par) {
 182 }
 183 
 184 bool ClearNoncleanCardWrapper::is_word_aligned(jbyte* entry) {
 185   return (((intptr_t)entry) & (BytesPerWord-1)) == 0;
 186 }
 187 
 188 // The regions are visited in *decreasing* address order.
 189 // This order aids with imprecise card marking, where a dirty
 190 // card may cause scanning, and summarization marking, of objects
 191 // that extend onto subsequent cards.
 192 void ClearNoncleanCardWrapper::do_MemRegion(MemRegion mr) {
 193   assert(mr.word_size() > 0, "Error");
 194   assert(_ct->is_aligned(mr.start()), "mr.start() should be card aligned");
 195   // mr.end() may not necessarily be card aligned.
 196   jbyte* cur_entry = _ct->byte_for(mr.last());
 197   const jbyte* limit = _ct->byte_for(mr.start());
 198   HeapWord* end_of_non_clean = mr.end();
 199   HeapWord* start_of_non_clean = end_of_non_clean;
 200   while (cur_entry >= limit) {
 201     HeapWord* cur_hw = _ct->addr_for(cur_entry);
 202     if ((*cur_entry != CardTableRS::clean_card_val()) && clear_card(cur_entry)) {
 203       // Continue the dirty range by opening the
 204       // dirty window one card to the left.
 205       start_of_non_clean = cur_hw;
 206     } else {
 207       // We hit a "clean" card; process any non-empty
 208       // "dirty" range accumulated so far.
 209       if (start_of_non_clean < end_of_non_clean) {
 210         const MemRegion mrd(start_of_non_clean, end_of_non_clean);
 211         _dirty_card_closure->do_MemRegion(mrd);
 212       }
 213 
 214       // fast forward through potential continuous whole-word range of clean cards beginning at a word-boundary
 215       if (is_word_aligned(cur_entry)) {
 216         jbyte* cur_row = cur_entry - BytesPerWord;
 217         while (cur_row >= limit && *((intptr_t*)cur_row) ==  CardTableRS::clean_card_row_val()) {
 218           cur_row -= BytesPerWord;
 219         }
 220         cur_entry = cur_row + BytesPerWord;
 221         cur_hw = _ct->addr_for(cur_entry);
 222       }
 223 
 224       // Reset the dirty window, while continuing to look
 225       // for the next dirty card that will start a
 226       // new dirty window.
 227       end_of_non_clean = cur_hw;
 228       start_of_non_clean = cur_hw;
 229     }
 230     // Note that "cur_entry" leads "start_of_non_clean" in
 231     // its leftward excursion after this point
 232     // in the loop and, when we hit the left end of "mr",
 233     // will point off of the left end of the card-table
 234     // for "mr".
 235     cur_entry--;
 236   }
 237   // If the first card of "mr" was dirty, we will have
 238   // been left with a dirty window, co-initial with "mr",
 239   // which we now process.
 240   if (start_of_non_clean < end_of_non_clean) {
 241     const MemRegion mrd(start_of_non_clean, end_of_non_clean);
 242     _dirty_card_closure->do_MemRegion(mrd);
 243   }
 244 }
 245 
 246 // clean (by dirty->clean before) ==> cur_younger_gen
 247 // dirty                          ==> cur_youngergen_and_prev_nonclean_card
 248 // precleaned                     ==> cur_youngergen_and_prev_nonclean_card
 249 // prev-younger-gen               ==> cur_youngergen_and_prev_nonclean_card
 250 // cur-younger-gen                ==> cur_younger_gen
 251 // cur_youngergen_and_prev_nonclean_card ==> no change.
 252 void CardTableRS::write_ref_field_gc_par(void* field, oop new_val) {
 253   volatile jbyte* entry = byte_for(field);
 254   do {
 255     jbyte entry_val = *entry;
 256     // We put this first because it's probably the most common case.
 257     if (entry_val == clean_card_val()) {
 258       // No threat of contention with cleaning threads.
 259       *entry = cur_youngergen_card_val();
 260       return;
 261     } else if (card_is_dirty_wrt_gen_iter(entry_val)
 262                || is_prev_youngergen_card_val(entry_val)) {
 263       // Mark it as both cur and prev youngergen; card cleaning thread will
 264       // eventually remove the previous stuff.
 265       jbyte new_val = cur_youngergen_and_prev_nonclean_card;
 266       jbyte res = Atomic::cmpxchg(new_val, entry, entry_val);
 267       // Did the CAS succeed?
 268       if (res == entry_val) return;
 269       // Otherwise, retry, to see the new value.
 270       continue;
 271     } else {
 272       assert(entry_val == cur_youngergen_and_prev_nonclean_card
 273              || entry_val == cur_youngergen_card_val(),
 274              "should be only possibilities.");
 275       return;
 276     }
 277   } while (true);
 278 }
 279 
 280 void CardTableRS::younger_refs_in_space_iterate(Space* sp,
 281                                                 OopsInGenClosure* cl,
 282                                                 uint n_threads) {
 283   verify_used_region_at_save_marks(sp);
 284 
 285   const MemRegion urasm = sp->used_region_at_save_marks();
 286   non_clean_card_iterate_possibly_parallel(sp, urasm, cl, this, n_threads);
 287 }
 288 
 289 #ifdef ASSERT
 290 void CardTableRS::verify_used_region_at_save_marks(Space* sp) const {
 291   MemRegion ur    = sp->used_region();
 292   MemRegion urasm = sp->used_region_at_save_marks();
 293 
 294   assert(ur.contains(urasm),
 295          "Did you forget to call save_marks()? "
 296          "[" PTR_FORMAT ", " PTR_FORMAT ") is not contained in "
 297          "[" PTR_FORMAT ", " PTR_FORMAT ")",
 298          p2i(urasm.start()), p2i(urasm.end()), p2i(ur.start()), p2i(ur.end()));
 299 }
 300 #endif
 301 
 302 void CardTableRS::clear_into_younger(Generation* old_gen) {
 303   assert(GenCollectedHeap::heap()->is_old_gen(old_gen),
 304          "Should only be called for the old generation");
 305   // The card tables for the youngest gen need never be cleared.
 306   // There's a bit of subtlety in the clear() and invalidate()
 307   // methods that we exploit here and in invalidate_or_clear()
 308   // below to avoid missing cards at the fringes. If clear() or
 309   // invalidate() are changed in the future, this code should
 310   // be revisited. 20040107.ysr
 311   clear(old_gen->prev_used_region());
 312 }
 313 
 314 void CardTableRS::invalidate_or_clear(Generation* old_gen) {
 315   assert(GenCollectedHeap::heap()->is_old_gen(old_gen),
 316          "Should only be called for the old generation");
 317   // Invalidate the cards for the currently occupied part of
 318   // the old generation and clear the cards for the
 319   // unoccupied part of the generation (if any, making use
 320   // of that generation's prev_used_region to determine that
 321   // region). No need to do anything for the youngest
 322   // generation. Also see note#20040107.ysr above.
 323   MemRegion used_mr = old_gen->used_region();
 324   MemRegion to_be_cleared_mr = old_gen->prev_used_region().minus(used_mr);
 325   if (!to_be_cleared_mr.is_empty()) {
 326     clear(to_be_cleared_mr);
 327   }
 328   invalidate(used_mr);
 329 }
 330 
 331 
 332 class VerifyCleanCardClosure: public OopClosure {
 333 private:
 334   HeapWord* _boundary;
 335   HeapWord* _begin;
 336   HeapWord* _end;
 337 protected:
 338   template <class T> void do_oop_work(T* p) {
 339     HeapWord* jp = (HeapWord*)p;
 340     assert(jp >= _begin && jp < _end,
 341            "Error: jp " PTR_FORMAT " should be within "
 342            "[_begin, _end) = [" PTR_FORMAT "," PTR_FORMAT ")",
 343            p2i(jp), p2i(_begin), p2i(_end));
 344     oop obj = RawAccess<>::oop_load(p);
 345     guarantee(obj == NULL || (HeapWord*)obj >= _boundary,
 346               "pointer " PTR_FORMAT " at " PTR_FORMAT " on "
 347               "clean card crosses boundary" PTR_FORMAT,
 348               p2i(obj), p2i(jp), p2i(_boundary));
 349   }
 350 
 351 public:
 352   VerifyCleanCardClosure(HeapWord* b, HeapWord* begin, HeapWord* end) :
 353     _boundary(b), _begin(begin), _end(end) {
 354     assert(b <= begin,
 355            "Error: boundary " PTR_FORMAT " should be at or below begin " PTR_FORMAT,
 356            p2i(b), p2i(begin));
 357     assert(begin <= end,
 358            "Error: begin " PTR_FORMAT " should be strictly below end " PTR_FORMAT,
 359            p2i(begin), p2i(end));
 360   }
 361 
 362   virtual void do_oop(oop* p)       { VerifyCleanCardClosure::do_oop_work(p); }
 363   virtual void do_oop(narrowOop* p) { VerifyCleanCardClosure::do_oop_work(p); }
 364 };
 365 
 366 class VerifyCTSpaceClosure: public SpaceClosure {
 367 private:
 368   CardTableRS* _ct;
 369   HeapWord* _boundary;
 370 public:
 371   VerifyCTSpaceClosure(CardTableRS* ct, HeapWord* boundary) :
 372     _ct(ct), _boundary(boundary) {}
 373   virtual void do_space(Space* s) { _ct->verify_space(s, _boundary); }
 374 };
 375 
 376 class VerifyCTGenClosure: public GenCollectedHeap::GenClosure {
 377   CardTableRS* _ct;
 378 public:
 379   VerifyCTGenClosure(CardTableRS* ct) : _ct(ct) {}
 380   void do_generation(Generation* gen) {
 381     // Skip the youngest generation.
 382     if (GenCollectedHeap::heap()->is_young_gen(gen)) {
 383       return;
 384     }
 385     // Normally, we're interested in pointers to younger generations.
 386     VerifyCTSpaceClosure blk(_ct, gen->reserved().start());
 387     gen->space_iterate(&blk, true);
 388   }
 389 };
 390 
 391 void CardTableRS::verify_space(Space* s, HeapWord* gen_boundary) {
 392   // We don't need to do young-gen spaces.
 393   if (s->end() <= gen_boundary) return;
 394   MemRegion used = s->used_region();
 395 
 396   jbyte* cur_entry = byte_for(used.start());
 397   jbyte* limit = byte_after(used.last());
 398   while (cur_entry < limit) {
 399     if (*cur_entry == clean_card_val()) {
 400       jbyte* first_dirty = cur_entry+1;
 401       while (first_dirty < limit &&
 402              *first_dirty == clean_card_val()) {
 403         first_dirty++;
 404       }
 405       // If the first object is a regular object, and it has a
 406       // young-to-old field, that would mark the previous card.
 407       HeapWord* boundary = addr_for(cur_entry);
 408       HeapWord* end = (first_dirty >= limit) ? used.end() : addr_for(first_dirty);
 409       HeapWord* boundary_block = s->block_start(boundary);
 410       HeapWord* begin = boundary;             // Until proven otherwise.
 411       HeapWord* start_block = boundary_block; // Until proven otherwise.
 412       if (boundary_block < boundary) {
 413         if (s->block_is_obj(boundary_block) && s->obj_is_alive(boundary_block)) {
 414           oop boundary_obj = oop(boundary_block);
 415           if (!boundary_obj->is_objArray() &&
 416               !boundary_obj->is_typeArray()) {
 417             guarantee(cur_entry > byte_for(used.start()),
 418                       "else boundary would be boundary_block");
 419             if (*byte_for(boundary_block) != clean_card_val()) {
 420               begin = boundary_block + s->block_size(boundary_block);
 421               start_block = begin;
 422             }
 423           }
 424         }
 425       }
 426       // Now traverse objects until end.
 427       if (begin < end) {
 428         MemRegion mr(begin, end);
 429         VerifyCleanCardClosure verify_blk(gen_boundary, begin, end);
 430         for (HeapWord* cur = start_block; cur < end; cur += s->block_size(cur)) {
 431           if (s->block_is_obj(cur) && s->obj_is_alive(cur)) {
 432             oop(cur)->oop_iterate_no_header(&verify_blk, mr);
 433           }
 434         }
 435       }
 436       cur_entry = first_dirty;
 437     } else {
 438       // We'd normally expect that cur_youngergen_and_prev_nonclean_card
 439       // is a transient value, that cannot be in the card table
 440       // except during GC, and thus assert that:
 441       // guarantee(*cur_entry != cur_youngergen_and_prev_nonclean_card,
 442       //        "Illegal CT value");
 443       // That however, need not hold, as will become clear in the
 444       // following...
 445 
 446       // We'd normally expect that if we are in the parallel case,
 447       // we can't have left a prev value (which would be different
 448       // from the current value) in the card table, and so we'd like to
 449       // assert that:
 450       // guarantee(cur_youngergen_card_val() == youngergen_card
 451       //           || !is_prev_youngergen_card_val(*cur_entry),
 452       //           "Illegal CT value");
 453       // That, however, may not hold occasionally, because of
 454       // CMS or MSC in the old gen. To wit, consider the
 455       // following two simple illustrative scenarios:
 456       // (a) CMS: Consider the case where a large object L
 457       //     spanning several cards is allocated in the old
 458       //     gen, and has a young gen reference stored in it, dirtying
 459       //     some interior cards. A young collection scans the card,
 460       //     finds a young ref and installs a youngergenP_n value.
 461       //     L then goes dead. Now a CMS collection starts,
 462       //     finds L dead and sweeps it up. Assume that L is
 463       //     abutting _unallocated_blk, so _unallocated_blk is
 464       //     adjusted down to (below) L. Assume further that
 465       //     no young collection intervenes during this CMS cycle.
 466       //     The next young gen cycle will not get to look at this
 467       //     youngergenP_n card since it lies in the unoccupied
 468       //     part of the space.
 469       //     Some young collections later the blocks on this
 470       //     card can be re-allocated either due to direct allocation
 471       //     or due to absorbing promotions. At this time, the
 472       //     before-gc verification will fail the above assert.
 473       // (b) MSC: In this case, an object L with a young reference
 474       //     is on a card that (therefore) holds a youngergen_n value.
 475       //     Suppose also that L lies towards the end of the used
 476       //     the used space before GC. An MSC collection
 477       //     occurs that compacts to such an extent that this
 478       //     card is no longer in the occupied part of the space.
 479       //     Since current code in MSC does not always clear cards
 480       //     in the unused part of old gen, this stale youngergen_n
 481       //     value is left behind and can later be covered by
 482       //     an object when promotion or direct allocation
 483       //     re-allocates that part of the heap.
 484       //
 485       // Fortunately, the presence of such stale card values is
 486       // "only" a minor annoyance in that subsequent young collections
 487       // might needlessly scan such cards, but would still never corrupt
 488       // the heap as a result. However, it's likely not to be a significant
 489       // performance inhibitor in practice. For instance,
 490       // some recent measurements with unoccupied cards eagerly cleared
 491       // out to maintain this invariant, showed next to no
 492       // change in young collection times; of course one can construct
 493       // degenerate examples where the cost can be significant.)
 494       // Note, in particular, that if the "stale" card is modified
 495       // after re-allocation, it would be dirty, not "stale". Thus,
 496       // we can never have a younger ref in such a card and it is
 497       // safe not to scan that card in any collection. [As we see
 498       // below, we do some unnecessary scanning
 499       // in some cases in the current parallel scanning algorithm.]
 500       //
 501       // The main point below is that the parallel card scanning code
 502       // deals correctly with these stale card values. There are two main
 503       // cases to consider where we have a stale "young gen" value and a
 504       // "derivative" case to consider, where we have a stale
 505       // "cur_younger_gen_and_prev_non_clean" value, as will become
 506       // apparent in the case analysis below.
 507       // o Case 1. If the stale value corresponds to a younger_gen_n
 508       //   value other than the cur_younger_gen value then the code
 509       //   treats this as being tantamount to a prev_younger_gen
 510       //   card. This means that the card may be unnecessarily scanned.
 511       //   There are two sub-cases to consider:
 512       //   o Case 1a. Let us say that the card is in the occupied part
 513       //     of the generation at the time the collection begins. In
 514       //     that case the card will be either cleared when it is scanned
 515       //     for young pointers, or will be set to cur_younger_gen as a
 516       //     result of promotion. (We have elided the normal case where
 517       //     the scanning thread and the promoting thread interleave
 518       //     possibly resulting in a transient
 519       //     cur_younger_gen_and_prev_non_clean value before settling
 520       //     to cur_younger_gen. [End Case 1a.]
 521       //   o Case 1b. Consider now the case when the card is in the unoccupied
 522       //     part of the space which becomes occupied because of promotions
 523       //     into it during the current young GC. In this case the card
 524       //     will never be scanned for young references. The current
 525       //     code will set the card value to either
 526       //     cur_younger_gen_and_prev_non_clean or leave
 527       //     it with its stale value -- because the promotions didn't
 528       //     result in any younger refs on that card. Of these two
 529       //     cases, the latter will be covered in Case 1a during
 530       //     a subsequent scan. To deal with the former case, we need
 531       //     to further consider how we deal with a stale value of
 532       //     cur_younger_gen_and_prev_non_clean in our case analysis
 533       //     below. This we do in Case 3 below. [End Case 1b]
 534       //   [End Case 1]
 535       // o Case 2. If the stale value corresponds to cur_younger_gen being
 536       //   a value not necessarily written by a current promotion, the
 537       //   card will not be scanned by the younger refs scanning code.
 538       //   (This is OK since as we argued above such cards cannot contain
 539       //   any younger refs.) The result is that this value will be
 540       //   treated as a prev_younger_gen value in a subsequent collection,
 541       //   which is addressed in Case 1 above. [End Case 2]
 542       // o Case 3. We here consider the "derivative" case from Case 1b. above
 543       //   because of which we may find a stale
 544       //   cur_younger_gen_and_prev_non_clean card value in the table.
 545       //   Once again, as in Case 1, we consider two subcases, depending
 546       //   on whether the card lies in the occupied or unoccupied part
 547       //   of the space at the start of the young collection.
 548       //   o Case 3a. Let us say the card is in the occupied part of
 549       //     the old gen at the start of the young collection. In that
 550       //     case, the card will be scanned by the younger refs scanning
 551       //     code which will set it to cur_younger_gen. In a subsequent
 552       //     scan, the card will be considered again and get its final
 553       //     correct value. [End Case 3a]
 554       //   o Case 3b. Now consider the case where the card is in the
 555       //     unoccupied part of the old gen, and is occupied as a result
 556       //     of promotions during thus young gc. In that case,
 557       //     the card will not be scanned for younger refs. The presence
 558       //     of newly promoted objects on the card will then result in
 559       //     its keeping the value cur_younger_gen_and_prev_non_clean
 560       //     value, which we have dealt with in Case 3 here. [End Case 3b]
 561       //   [End Case 3]
 562       //
 563       // (Please refer to the code in the helper class
 564       // ClearNonCleanCardWrapper and in CardTable for details.)
 565       //
 566       // The informal arguments above can be tightened into a formal
 567       // correctness proof and it behooves us to write up such a proof,
 568       // or to use model checking to prove that there are no lingering
 569       // concerns.
 570       //
 571       // Clearly because of Case 3b one cannot bound the time for
 572       // which a card will retain what we have called a "stale" value.
 573       // However, one can obtain a Loose upper bound on the redundant
 574       // work as a result of such stale values. Note first that any
 575       // time a stale card lies in the occupied part of the space at
 576       // the start of the collection, it is scanned by younger refs
 577       // code and we can define a rank function on card values that
 578       // declines when this is so. Note also that when a card does not
 579       // lie in the occupied part of the space at the beginning of a
 580       // young collection, its rank can either decline or stay unchanged.
 581       // In this case, no extra work is done in terms of redundant
 582       // younger refs scanning of that card.
 583       // Then, the case analysis above reveals that, in the worst case,
 584       // any such stale card will be scanned unnecessarily at most twice.
 585       //
 586       // It is nonetheless advisable to try and get rid of some of this
 587       // redundant work in a subsequent (low priority) re-design of
 588       // the card-scanning code, if only to simplify the underlying
 589       // state machine analysis/proof. ysr 1/28/2002. XXX
 590       cur_entry++;
 591     }
 592   }
 593 }
 594 
 595 void CardTableRS::verify() {
 596   // At present, we only know how to verify the card table RS for
 597   // generational heaps.
 598   VerifyCTGenClosure blk(this);
 599   GenCollectedHeap::heap()->generation_iterate(&blk, false);
 600   CardTable::verify();
 601 }
 602 
 603 CardTableRS::CardTableRS(MemRegion whole_heap, bool scanned_concurrently) :
 604   CardTable(whole_heap, scanned_concurrently),
 605   _cur_youngergen_card_val(youngergenP1_card),
 606   // LNC functionality
 607   _lowest_non_clean(NULL),
 608   _lowest_non_clean_chunk_size(NULL),
 609   _lowest_non_clean_base_chunk_index(NULL),
 610   _last_LNC_resizing_collection(NULL)
 611 {
 612   // max_gens is really GenCollectedHeap::heap()->gen_policy()->number_of_generations()
 613   // (which is always 2, young & old), but GenCollectedHeap has not been initialized yet.
 614   uint max_gens = 2;
 615   _last_cur_val_in_gen = NEW_C_HEAP_ARRAY3(jbyte, max_gens + 1,
 616                          mtGC, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 617   if (_last_cur_val_in_gen == NULL) {
 618     vm_exit_during_initialization("Could not create last_cur_val_in_gen array.");
 619   }
 620   for (uint i = 0; i < max_gens + 1; i++) {
 621     _last_cur_val_in_gen[i] = clean_card_val();
 622   }
 623 }
 624 
 625 CardTableRS::~CardTableRS() {
 626   if (_last_cur_val_in_gen) {
 627     FREE_C_HEAP_ARRAY(jbyte, _last_cur_val_in_gen);
 628     _last_cur_val_in_gen = NULL;
 629   }
 630   if (_lowest_non_clean) {
 631     FREE_C_HEAP_ARRAY(CardArr, _lowest_non_clean);
 632     _lowest_non_clean = NULL;
 633   }
 634   if (_lowest_non_clean_chunk_size) {
 635     FREE_C_HEAP_ARRAY(size_t, _lowest_non_clean_chunk_size);
 636     _lowest_non_clean_chunk_size = NULL;
 637   }
 638   if (_lowest_non_clean_base_chunk_index) {
 639     FREE_C_HEAP_ARRAY(uintptr_t, _lowest_non_clean_base_chunk_index);
 640     _lowest_non_clean_base_chunk_index = NULL;
 641   }
 642   if (_last_LNC_resizing_collection) {
 643     FREE_C_HEAP_ARRAY(int, _last_LNC_resizing_collection);
 644     _last_LNC_resizing_collection = NULL;
 645   }
 646 }
 647 
 648 void CardTableRS::initialize() {
 649   CardTable::initialize();
 650   _lowest_non_clean =
 651     NEW_C_HEAP_ARRAY(CardArr, _max_covered_regions, mtGC);
 652   _lowest_non_clean_chunk_size =
 653     NEW_C_HEAP_ARRAY(size_t, _max_covered_regions, mtGC);
 654   _lowest_non_clean_base_chunk_index =
 655     NEW_C_HEAP_ARRAY(uintptr_t, _max_covered_regions, mtGC);
 656   _last_LNC_resizing_collection =
 657     NEW_C_HEAP_ARRAY(int, _max_covered_regions, mtGC);
 658   if (_lowest_non_clean == NULL
 659       || _lowest_non_clean_chunk_size == NULL
 660       || _lowest_non_clean_base_chunk_index == NULL
 661       || _last_LNC_resizing_collection == NULL)
 662     vm_exit_during_initialization("couldn't allocate an LNC array.");
 663   for (int i = 0; i < _max_covered_regions; i++) {
 664     _lowest_non_clean[i] = NULL;
 665     _lowest_non_clean_chunk_size[i] = 0;
 666     _last_LNC_resizing_collection[i] = -1;
 667   }
 668 }
 669 
 670 bool CardTableRS::card_will_be_scanned(jbyte cv) {
 671   return card_is_dirty_wrt_gen_iter(cv) || is_prev_nonclean_card_val(cv);
 672 }
 673 
 674 bool CardTableRS::card_may_have_been_dirty(jbyte cv) {
 675   return
 676     cv != clean_card &&
 677     (card_is_dirty_wrt_gen_iter(cv) ||
 678      CardTableRS::youngergen_may_have_been_dirty(cv));
 679 }
 680 
 681 void CardTableRS::non_clean_card_iterate_possibly_parallel(
 682   Space* sp,
 683   MemRegion mr,
 684   OopsInGenClosure* cl,
 685   CardTableRS* ct,
 686   uint n_threads)
 687 {
 688   if (!mr.is_empty()) {
 689     if (n_threads > 0) {
 690       non_clean_card_iterate_parallel_work(sp, mr, cl, ct, n_threads);
 691     } else {
 692       // clear_cl finds contiguous dirty ranges of cards to process and clear.
 693 
 694       // This is the single-threaded version used by DefNew.
 695       const bool parallel = false;
 696 
 697       DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(), cl->gen_boundary(), parallel);
 698       ClearNoncleanCardWrapper clear_cl(dcto_cl, ct, parallel);
 699 
 700       clear_cl.do_MemRegion(mr);
 701     }
 702   }
 703 }
 704 
 705 void CardTableRS::non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
 706                                                        OopsInGenClosure* cl, CardTableRS* ct,
 707                                                        uint n_threads) {
 708   fatal("Parallel gc not supported here.");
 709 }
 710 
 711 bool CardTableRS::is_in_young(oop obj) const {
 712   return GenCollectedHeap::heap()->is_in_young(obj);
 713 }