1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/moduleEntry.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/gcId.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "gc/shared/workgroup.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "interpreter/linkResolver.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvmtifiles/jvmtiEnv.hpp"
  44 #include "logging/log.hpp"
  45 #include "logging/logConfiguration.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/allocation.inline.hpp"
  48 #include "memory/metaspaceShared.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "oops/access.inline.hpp"
  53 #include "oops/instanceKlass.hpp"
  54 #include "oops/objArrayOop.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "oops/symbol.hpp"
  57 #include "oops/typeArrayOop.inline.hpp"
  58 #include "oops/verifyOopClosure.hpp"
  59 #include "prims/jvm_misc.hpp"
  60 #include "prims/jvmtiExport.hpp"
  61 #include "prims/jvmtiThreadState.hpp"
  62 #include "prims/privilegedStack.hpp"
  63 #include "runtime/arguments.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/biasedLocking.hpp"
  66 #include "runtime/flags/jvmFlagConstraintList.hpp"
  67 #include "runtime/flags/jvmFlagRangeList.hpp"
  68 #include "runtime/flags/jvmFlagWriteableList.hpp"
  69 #include "runtime/deoptimization.hpp"
  70 #include "runtime/frame.inline.hpp"
  71 #include "runtime/handshake.hpp"
  72 #include "runtime/init.hpp"
  73 #include "runtime/interfaceSupport.inline.hpp"
  74 #include "runtime/java.hpp"
  75 #include "runtime/javaCalls.hpp"
  76 #include "runtime/jniHandles.inline.hpp"
  77 #include "runtime/jniPeriodicChecker.hpp"
  78 #include "runtime/memprofiler.hpp"
  79 #include "runtime/mutexLocker.hpp"
  80 #include "runtime/objectMonitor.hpp"
  81 #include "runtime/orderAccess.inline.hpp"
  82 #include "runtime/osThread.hpp"
  83 #include "runtime/prefetch.inline.hpp"
  84 #include "runtime/safepoint.hpp"
  85 #include "runtime/safepointMechanism.inline.hpp"
  86 #include "runtime/sharedRuntime.hpp"
  87 #include "runtime/statSampler.hpp"
  88 #include "runtime/stubRoutines.hpp"
  89 #include "runtime/sweeper.hpp"
  90 #include "runtime/task.hpp"
  91 #include "runtime/thread.inline.hpp"
  92 #include "runtime/threadCritical.hpp"
  93 #include "runtime/threadSMR.inline.hpp"
  94 #include "runtime/timer.hpp"
  95 #include "runtime/timerTrace.hpp"
  96 #include "runtime/vframe.inline.hpp"
  97 #include "runtime/vframeArray.hpp"
  98 #include "runtime/vframe_hp.hpp"
  99 #include "runtime/vmThread.hpp"
 100 #include "runtime/vm_operations.hpp"
 101 #include "runtime/vm_version.hpp"
 102 #include "services/attachListener.hpp"
 103 #include "services/management.hpp"
 104 #include "services/memTracker.hpp"
 105 #include "services/threadService.hpp"
 106 #include "trace/traceMacros.hpp"
 107 #include "trace/tracing.hpp"
 108 #include "trace/tracingExport.hpp"
 109 #include "utilities/align.hpp"
 110 #include "utilities/copy.hpp"
 111 #include "utilities/defaultStream.hpp"
 112 #include "utilities/dtrace.hpp"
 113 #include "utilities/events.hpp"
 114 #include "utilities/macros.hpp"
 115 #include "utilities/preserveException.hpp"
 116 #include "utilities/vmError.hpp"
 117 #if INCLUDE_PARALLELGC
 118 #include "gc/parallel/pcTasks.hpp"
 119 #endif
 120 #if INCLUDE_JVMCI
 121 #include "jvmci/jvmciCompiler.hpp"
 122 #include "jvmci/jvmciRuntime.hpp"
 123 #include "logging/logHandle.hpp"
 124 #endif
 125 #ifdef COMPILER1
 126 #include "c1/c1_Compiler.hpp"
 127 #endif
 128 #ifdef COMPILER2
 129 #include "opto/c2compiler.hpp"
 130 #include "opto/idealGraphPrinter.hpp"
 131 #endif
 132 #if INCLUDE_RTM_OPT
 133 #include "runtime/rtmLocking.hpp"
 134 #endif
 135 
 136 // Initialization after module runtime initialization
 137 void universe_post_module_init();  // must happen after call_initPhase2
 138 
 139 #ifdef DTRACE_ENABLED
 140 
 141 // Only bother with this argument setup if dtrace is available
 142 
 143   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 144   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 145 
 146   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 147     {                                                                      \
 148       ResourceMark rm(this);                                               \
 149       int len = 0;                                                         \
 150       const char* name = (javathread)->get_thread_name();                  \
 151       len = strlen(name);                                                  \
 152       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 153         (char *) name, len,                                                \
 154         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 155         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 156         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 157     }
 158 
 159 #else //  ndef DTRACE_ENABLED
 160 
 161   #define DTRACE_THREAD_PROBE(probe, javathread)
 162 
 163 #endif // ndef DTRACE_ENABLED
 164 
 165 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 166 // Current thread is maintained as a thread-local variable
 167 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 168 #endif
 169 // Class hierarchy
 170 // - Thread
 171 //   - VMThread
 172 //   - WatcherThread
 173 //   - ConcurrentMarkSweepThread
 174 //   - JavaThread
 175 //     - CompilerThread
 176 
 177 // ======= Thread ========
 178 // Support for forcing alignment of thread objects for biased locking
 179 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 180   if (UseBiasedLocking) {
 181     const int alignment = markOopDesc::biased_lock_alignment;
 182     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 183     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 184                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 185                                                          AllocFailStrategy::RETURN_NULL);
 186     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 187     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 188            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 189            "JavaThread alignment code overflowed allocated storage");
 190     if (aligned_addr != real_malloc_addr) {
 191       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 192                               p2i(real_malloc_addr),
 193                               p2i(aligned_addr));
 194     }
 195     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 196     return aligned_addr;
 197   } else {
 198     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 199                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 200   }
 201 }
 202 
 203 void Thread::operator delete(void* p) {
 204   if (UseBiasedLocking) {
 205     FreeHeap(((Thread*) p)->_real_malloc_address);
 206   } else {
 207     FreeHeap(p);
 208   }
 209 }
 210 
 211 void JavaThread::smr_delete() {
 212   if (_on_thread_list) {
 213     ThreadsSMRSupport::smr_delete(this);
 214   } else {
 215     delete this;
 216   }
 217 }
 218 
 219 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 220 // JavaThread
 221 
 222 
 223 Thread::Thread() {
 224   // stack and get_thread
 225   set_stack_base(NULL);
 226   set_stack_size(0);
 227   set_self_raw_id(0);
 228   set_lgrp_id(-1);
 229   DEBUG_ONLY(clear_suspendible_thread();)
 230 
 231   // allocated data structures
 232   set_osthread(NULL);
 233   set_resource_area(new (mtThread)ResourceArea());
 234   DEBUG_ONLY(_current_resource_mark = NULL;)
 235   set_handle_area(new (mtThread) HandleArea(NULL));
 236   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 237   set_active_handles(NULL);
 238   set_free_handle_block(NULL);
 239   set_last_handle_mark(NULL);
 240 
 241   // This initial value ==> never claimed.
 242   _oops_do_parity = 0;
 243   _threads_hazard_ptr = NULL;
 244   _nested_threads_hazard_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246   _rcu_counter = 0;
 247 
 248   // the handle mark links itself to last_handle_mark
 249   new HandleMark(this);
 250 
 251   // plain initialization
 252   debug_only(_owned_locks = NULL;)
 253   debug_only(_allow_allocation_count = 0;)
 254   NOT_PRODUCT(_allow_safepoint_count = 0;)
 255   NOT_PRODUCT(_skip_gcalot = false;)
 256   _jvmti_env_iteration_count = 0;
 257   set_allocated_bytes(0);
 258   _vm_operation_started_count = 0;
 259   _vm_operation_completed_count = 0;
 260   _current_pending_monitor = NULL;
 261   _current_pending_monitor_is_from_java = true;
 262   _current_waiting_monitor = NULL;
 263   _num_nested_signal = 0;
 264   omFreeList = NULL;
 265   omFreeCount = 0;
 266   omFreeProvision = 32;
 267   omInUseList = NULL;
 268   omInUseCount = 0;
 269 
 270 #ifdef ASSERT
 271   _visited_for_critical_count = false;
 272 #endif
 273 
 274   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 275                          Monitor::_safepoint_check_sometimes);
 276   _suspend_flags = 0;
 277 
 278   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 279   _hashStateX = os::random();
 280   _hashStateY = 842502087;
 281   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 282   _hashStateW = 273326509;
 283 
 284   _OnTrap   = 0;
 285   _schedctl = NULL;
 286   _Stalled  = 0;
 287   _TypeTag  = 0x2BAD;
 288 
 289   // Many of the following fields are effectively final - immutable
 290   // Note that nascent threads can't use the Native Monitor-Mutex
 291   // construct until the _MutexEvent is initialized ...
 292   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 293   // we might instead use a stack of ParkEvents that we could provision on-demand.
 294   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 295   // and ::Release()
 296   _ParkEvent   = ParkEvent::Allocate(this);
 297   _SleepEvent  = ParkEvent::Allocate(this);
 298   _MutexEvent  = ParkEvent::Allocate(this);
 299   _MuxEvent    = ParkEvent::Allocate(this);
 300 
 301 #ifdef CHECK_UNHANDLED_OOPS
 302   if (CheckUnhandledOops) {
 303     _unhandled_oops = new UnhandledOops(this);
 304   }
 305 #endif // CHECK_UNHANDLED_OOPS
 306 #ifdef ASSERT
 307   if (UseBiasedLocking) {
 308     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 309     assert(this == _real_malloc_address ||
 310            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 311            "bug in forced alignment of thread objects");
 312   }
 313 #endif // ASSERT
 314 
 315   // Notify the barrier set that a thread is being created. Note that the
 316   // main thread is created before a barrier set is available. The call to
 317   // BarrierSet::on_thread_create() for the main thread is therefore deferred
 318   // until it calls BarrierSet::set_barrier_set().
 319   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 320   if (barrier_set != NULL) {
 321     barrier_set->on_thread_create(this);
 322   }
 323 }
 324 
 325 void Thread::initialize_thread_current() {
 326 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 327   assert(_thr_current == NULL, "Thread::current already initialized");
 328   _thr_current = this;
 329 #endif
 330   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 331   ThreadLocalStorage::set_thread(this);
 332   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 333 }
 334 
 335 void Thread::clear_thread_current() {
 336   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 337 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 338   _thr_current = NULL;
 339 #endif
 340   ThreadLocalStorage::set_thread(NULL);
 341 }
 342 
 343 void Thread::record_stack_base_and_size() {
 344   set_stack_base(os::current_stack_base());
 345   set_stack_size(os::current_stack_size());
 346   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 347   // in initialize_thread(). Without the adjustment, stack size is
 348   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 349   // So far, only Solaris has real implementation of initialize_thread().
 350   //
 351   // set up any platform-specific state.
 352   os::initialize_thread(this);
 353 
 354   // Set stack limits after thread is initialized.
 355   if (is_Java_thread()) {
 356     ((JavaThread*) this)->set_stack_overflow_limit();
 357     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 358   }
 359 #if INCLUDE_NMT
 360   // record thread's native stack, stack grows downward
 361   MemTracker::record_thread_stack(stack_end(), stack_size());
 362 #endif // INCLUDE_NMT
 363   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 364     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 365     os::current_thread_id(), p2i(stack_base() - stack_size()),
 366     p2i(stack_base()), stack_size()/1024);
 367 }
 368 
 369 
 370 Thread::~Thread() {
 371   EVENT_THREAD_DESTRUCT(this);
 372 
 373   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 374   // set might not be available if we encountered errors during bootstrapping.
 375   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 376   if (barrier_set != NULL) {
 377     barrier_set->on_thread_destroy(this);
 378   }
 379 
 380   // stack_base can be NULL if the thread is never started or exited before
 381   // record_stack_base_and_size called. Although, we would like to ensure
 382   // that all started threads do call record_stack_base_and_size(), there is
 383   // not proper way to enforce that.
 384 #if INCLUDE_NMT
 385   if (_stack_base != NULL) {
 386     MemTracker::release_thread_stack(stack_end(), stack_size());
 387 #ifdef ASSERT
 388     set_stack_base(NULL);
 389 #endif
 390   }
 391 #endif // INCLUDE_NMT
 392 
 393   // deallocate data structures
 394   delete resource_area();
 395   // since the handle marks are using the handle area, we have to deallocated the root
 396   // handle mark before deallocating the thread's handle area,
 397   assert(last_handle_mark() != NULL, "check we have an element");
 398   delete last_handle_mark();
 399   assert(last_handle_mark() == NULL, "check we have reached the end");
 400 
 401   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 402   // We NULL out the fields for good hygiene.
 403   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 404   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 405   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 406   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 407 
 408   delete handle_area();
 409   delete metadata_handles();
 410 
 411   // SR_handler uses this as a termination indicator -
 412   // needs to happen before os::free_thread()
 413   delete _SR_lock;
 414   _SR_lock = NULL;
 415 
 416   // osthread() can be NULL, if creation of thread failed.
 417   if (osthread() != NULL) os::free_thread(osthread());
 418 
 419   // clear Thread::current if thread is deleting itself.
 420   // Needed to ensure JNI correctly detects non-attached threads.
 421   if (this == Thread::current()) {
 422     clear_thread_current();
 423   }
 424 
 425   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 426 }
 427 
 428 // NOTE: dummy function for assertion purpose.
 429 void Thread::run() {
 430   ShouldNotReachHere();
 431 }
 432 
 433 #ifdef ASSERT
 434 // A JavaThread is considered "dangling" if it is not the current
 435 // thread, has been added the Threads list, the system is not at a
 436 // safepoint and the Thread is not "protected".
 437 //
 438 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 439   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 440          !((JavaThread *) thread)->on_thread_list() ||
 441          SafepointSynchronize::is_at_safepoint() ||
 442          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 443          "possibility of dangling Thread pointer");
 444 }
 445 #endif
 446 
 447 ThreadPriority Thread::get_priority(const Thread* const thread) {
 448   ThreadPriority priority;
 449   // Can return an error!
 450   (void)os::get_priority(thread, priority);
 451   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 452   return priority;
 453 }
 454 
 455 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 456   debug_only(check_for_dangling_thread_pointer(thread);)
 457   // Can return an error!
 458   (void)os::set_priority(thread, priority);
 459 }
 460 
 461 
 462 void Thread::start(Thread* thread) {
 463   // Start is different from resume in that its safety is guaranteed by context or
 464   // being called from a Java method synchronized on the Thread object.
 465   if (!DisableStartThread) {
 466     if (thread->is_Java_thread()) {
 467       // Initialize the thread state to RUNNABLE before starting this thread.
 468       // Can not set it after the thread started because we do not know the
 469       // exact thread state at that time. It could be in MONITOR_WAIT or
 470       // in SLEEPING or some other state.
 471       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 472                                           java_lang_Thread::RUNNABLE);
 473     }
 474     os::start_thread(thread);
 475   }
 476 }
 477 
 478 // Enqueue a VM_Operation to do the job for us - sometime later
 479 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 480   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 481   VMThread::execute(vm_stop);
 482 }
 483 
 484 
 485 // Check if an external suspend request has completed (or has been
 486 // cancelled). Returns true if the thread is externally suspended and
 487 // false otherwise.
 488 //
 489 // The bits parameter returns information about the code path through
 490 // the routine. Useful for debugging:
 491 //
 492 // set in is_ext_suspend_completed():
 493 // 0x00000001 - routine was entered
 494 // 0x00000010 - routine return false at end
 495 // 0x00000100 - thread exited (return false)
 496 // 0x00000200 - suspend request cancelled (return false)
 497 // 0x00000400 - thread suspended (return true)
 498 // 0x00001000 - thread is in a suspend equivalent state (return true)
 499 // 0x00002000 - thread is native and walkable (return true)
 500 // 0x00004000 - thread is native_trans and walkable (needed retry)
 501 //
 502 // set in wait_for_ext_suspend_completion():
 503 // 0x00010000 - routine was entered
 504 // 0x00020000 - suspend request cancelled before loop (return false)
 505 // 0x00040000 - thread suspended before loop (return true)
 506 // 0x00080000 - suspend request cancelled in loop (return false)
 507 // 0x00100000 - thread suspended in loop (return true)
 508 // 0x00200000 - suspend not completed during retry loop (return false)
 509 
 510 // Helper class for tracing suspend wait debug bits.
 511 //
 512 // 0x00000100 indicates that the target thread exited before it could
 513 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 514 // 0x00080000 each indicate a cancelled suspend request so they don't
 515 // count as wait failures either.
 516 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 517 
 518 class TraceSuspendDebugBits : public StackObj {
 519  private:
 520   JavaThread * jt;
 521   bool         is_wait;
 522   bool         called_by_wait;  // meaningful when !is_wait
 523   uint32_t *   bits;
 524 
 525  public:
 526   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 527                         uint32_t *_bits) {
 528     jt             = _jt;
 529     is_wait        = _is_wait;
 530     called_by_wait = _called_by_wait;
 531     bits           = _bits;
 532   }
 533 
 534   ~TraceSuspendDebugBits() {
 535     if (!is_wait) {
 536 #if 1
 537       // By default, don't trace bits for is_ext_suspend_completed() calls.
 538       // That trace is very chatty.
 539       return;
 540 #else
 541       if (!called_by_wait) {
 542         // If tracing for is_ext_suspend_completed() is enabled, then only
 543         // trace calls to it from wait_for_ext_suspend_completion()
 544         return;
 545       }
 546 #endif
 547     }
 548 
 549     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 550       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 551         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 552         ResourceMark rm;
 553 
 554         tty->print_cr(
 555                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 556                       jt->get_thread_name(), *bits);
 557 
 558         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 559       }
 560     }
 561   }
 562 };
 563 #undef DEBUG_FALSE_BITS
 564 
 565 
 566 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 567                                           uint32_t *bits) {
 568   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 569 
 570   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 571   bool do_trans_retry;           // flag to force the retry
 572 
 573   *bits |= 0x00000001;
 574 
 575   do {
 576     do_trans_retry = false;
 577 
 578     if (is_exiting()) {
 579       // Thread is in the process of exiting. This is always checked
 580       // first to reduce the risk of dereferencing a freed JavaThread.
 581       *bits |= 0x00000100;
 582       return false;
 583     }
 584 
 585     if (!is_external_suspend()) {
 586       // Suspend request is cancelled. This is always checked before
 587       // is_ext_suspended() to reduce the risk of a rogue resume
 588       // confusing the thread that made the suspend request.
 589       *bits |= 0x00000200;
 590       return false;
 591     }
 592 
 593     if (is_ext_suspended()) {
 594       // thread is suspended
 595       *bits |= 0x00000400;
 596       return true;
 597     }
 598 
 599     // Now that we no longer do hard suspends of threads running
 600     // native code, the target thread can be changing thread state
 601     // while we are in this routine:
 602     //
 603     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 604     //
 605     // We save a copy of the thread state as observed at this moment
 606     // and make our decision about suspend completeness based on the
 607     // copy. This closes the race where the thread state is seen as
 608     // _thread_in_native_trans in the if-thread_blocked check, but is
 609     // seen as _thread_blocked in if-thread_in_native_trans check.
 610     JavaThreadState save_state = thread_state();
 611 
 612     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 613       // If the thread's state is _thread_blocked and this blocking
 614       // condition is known to be equivalent to a suspend, then we can
 615       // consider the thread to be externally suspended. This means that
 616       // the code that sets _thread_blocked has been modified to do
 617       // self-suspension if the blocking condition releases. We also
 618       // used to check for CONDVAR_WAIT here, but that is now covered by
 619       // the _thread_blocked with self-suspension check.
 620       //
 621       // Return true since we wouldn't be here unless there was still an
 622       // external suspend request.
 623       *bits |= 0x00001000;
 624       return true;
 625     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 626       // Threads running native code will self-suspend on native==>VM/Java
 627       // transitions. If its stack is walkable (should always be the case
 628       // unless this function is called before the actual java_suspend()
 629       // call), then the wait is done.
 630       *bits |= 0x00002000;
 631       return true;
 632     } else if (!called_by_wait && !did_trans_retry &&
 633                save_state == _thread_in_native_trans &&
 634                frame_anchor()->walkable()) {
 635       // The thread is transitioning from thread_in_native to another
 636       // thread state. check_safepoint_and_suspend_for_native_trans()
 637       // will force the thread to self-suspend. If it hasn't gotten
 638       // there yet we may have caught the thread in-between the native
 639       // code check above and the self-suspend. Lucky us. If we were
 640       // called by wait_for_ext_suspend_completion(), then it
 641       // will be doing the retries so we don't have to.
 642       //
 643       // Since we use the saved thread state in the if-statement above,
 644       // there is a chance that the thread has already transitioned to
 645       // _thread_blocked by the time we get here. In that case, we will
 646       // make a single unnecessary pass through the logic below. This
 647       // doesn't hurt anything since we still do the trans retry.
 648 
 649       *bits |= 0x00004000;
 650 
 651       // Once the thread leaves thread_in_native_trans for another
 652       // thread state, we break out of this retry loop. We shouldn't
 653       // need this flag to prevent us from getting back here, but
 654       // sometimes paranoia is good.
 655       did_trans_retry = true;
 656 
 657       // We wait for the thread to transition to a more usable state.
 658       for (int i = 1; i <= SuspendRetryCount; i++) {
 659         // We used to do an "os::yield_all(i)" call here with the intention
 660         // that yielding would increase on each retry. However, the parameter
 661         // is ignored on Linux which means the yield didn't scale up. Waiting
 662         // on the SR_lock below provides a much more predictable scale up for
 663         // the delay. It also provides a simple/direct point to check for any
 664         // safepoint requests from the VMThread
 665 
 666         // temporarily drops SR_lock while doing wait with safepoint check
 667         // (if we're a JavaThread - the WatcherThread can also call this)
 668         // and increase delay with each retry
 669         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 670 
 671         // check the actual thread state instead of what we saved above
 672         if (thread_state() != _thread_in_native_trans) {
 673           // the thread has transitioned to another thread state so
 674           // try all the checks (except this one) one more time.
 675           do_trans_retry = true;
 676           break;
 677         }
 678       } // end retry loop
 679 
 680 
 681     }
 682   } while (do_trans_retry);
 683 
 684   *bits |= 0x00000010;
 685   return false;
 686 }
 687 
 688 // Wait for an external suspend request to complete (or be cancelled).
 689 // Returns true if the thread is externally suspended and false otherwise.
 690 //
 691 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 692                                                  uint32_t *bits) {
 693   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 694                              false /* !called_by_wait */, bits);
 695 
 696   // local flag copies to minimize SR_lock hold time
 697   bool is_suspended;
 698   bool pending;
 699   uint32_t reset_bits;
 700 
 701   // set a marker so is_ext_suspend_completed() knows we are the caller
 702   *bits |= 0x00010000;
 703 
 704   // We use reset_bits to reinitialize the bits value at the top of
 705   // each retry loop. This allows the caller to make use of any
 706   // unused bits for their own marking purposes.
 707   reset_bits = *bits;
 708 
 709   {
 710     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 711     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 712                                             delay, bits);
 713     pending = is_external_suspend();
 714   }
 715   // must release SR_lock to allow suspension to complete
 716 
 717   if (!pending) {
 718     // A cancelled suspend request is the only false return from
 719     // is_ext_suspend_completed() that keeps us from entering the
 720     // retry loop.
 721     *bits |= 0x00020000;
 722     return false;
 723   }
 724 
 725   if (is_suspended) {
 726     *bits |= 0x00040000;
 727     return true;
 728   }
 729 
 730   for (int i = 1; i <= retries; i++) {
 731     *bits = reset_bits;  // reinit to only track last retry
 732 
 733     // We used to do an "os::yield_all(i)" call here with the intention
 734     // that yielding would increase on each retry. However, the parameter
 735     // is ignored on Linux which means the yield didn't scale up. Waiting
 736     // on the SR_lock below provides a much more predictable scale up for
 737     // the delay. It also provides a simple/direct point to check for any
 738     // safepoint requests from the VMThread
 739 
 740     {
 741       MutexLocker ml(SR_lock());
 742       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 743       // can also call this)  and increase delay with each retry
 744       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 745 
 746       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 747                                               delay, bits);
 748 
 749       // It is possible for the external suspend request to be cancelled
 750       // (by a resume) before the actual suspend operation is completed.
 751       // Refresh our local copy to see if we still need to wait.
 752       pending = is_external_suspend();
 753     }
 754 
 755     if (!pending) {
 756       // A cancelled suspend request is the only false return from
 757       // is_ext_suspend_completed() that keeps us from staying in the
 758       // retry loop.
 759       *bits |= 0x00080000;
 760       return false;
 761     }
 762 
 763     if (is_suspended) {
 764       *bits |= 0x00100000;
 765       return true;
 766     }
 767   } // end retry loop
 768 
 769   // thread did not suspend after all our retries
 770   *bits |= 0x00200000;
 771   return false;
 772 }
 773 
 774 // Called from API entry points which perform stack walking. If the
 775 // associated JavaThread is the current thread, then wait_for_suspend
 776 // is not used. Otherwise, it determines if we should wait for the
 777 // "other" thread to complete external suspension. (NOTE: in future
 778 // releases the suspension mechanism should be reimplemented so this
 779 // is not necessary.)
 780 //
 781 bool
 782 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 783   if (this != JavaThread::current()) {
 784     // "other" threads require special handling.
 785     if (wait_for_suspend) {
 786       // We are allowed to wait for the external suspend to complete
 787       // so give the other thread a chance to get suspended.
 788       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 789                                            SuspendRetryDelay, bits)) {
 790         // Didn't make it so let the caller know.
 791         return false;
 792       }
 793     }
 794     // We aren't allowed to wait for the external suspend to complete
 795     // so if the other thread isn't externally suspended we need to
 796     // let the caller know.
 797     else if (!is_ext_suspend_completed_with_lock(bits)) {
 798       return false;
 799     }
 800   }
 801 
 802   return true;
 803 }
 804 
 805 #ifndef PRODUCT
 806 void JavaThread::record_jump(address target, address instr, const char* file,
 807                              int line) {
 808 
 809   // This should not need to be atomic as the only way for simultaneous
 810   // updates is via interrupts. Even then this should be rare or non-existent
 811   // and we don't care that much anyway.
 812 
 813   int index = _jmp_ring_index;
 814   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 815   _jmp_ring[index]._target = (intptr_t) target;
 816   _jmp_ring[index]._instruction = (intptr_t) instr;
 817   _jmp_ring[index]._file = file;
 818   _jmp_ring[index]._line = line;
 819 }
 820 #endif // PRODUCT
 821 
 822 void Thread::interrupt(Thread* thread) {
 823   debug_only(check_for_dangling_thread_pointer(thread);)
 824   os::interrupt(thread);
 825 }
 826 
 827 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 828   debug_only(check_for_dangling_thread_pointer(thread);)
 829   // Note:  If clear_interrupted==false, this simply fetches and
 830   // returns the value of the field osthread()->interrupted().
 831   return os::is_interrupted(thread, clear_interrupted);
 832 }
 833 
 834 
 835 // GC Support
 836 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 837   int thread_parity = _oops_do_parity;
 838   if (thread_parity != strong_roots_parity) {
 839     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 840     if (res == thread_parity) {
 841       return true;
 842     } else {
 843       guarantee(res == strong_roots_parity, "Or else what?");
 844       return false;
 845     }
 846   }
 847   return false;
 848 }
 849 
 850 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 851   active_handles()->oops_do(f);
 852   // Do oop for ThreadShadow
 853   f->do_oop((oop*)&_pending_exception);
 854   handle_area()->oops_do(f);
 855 
 856   if (MonitorInUseLists) {
 857     // When using thread local monitor lists, we scan them here,
 858     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 859     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 860   }
 861 }
 862 
 863 void Thread::metadata_handles_do(void f(Metadata*)) {
 864   // Only walk the Handles in Thread.
 865   if (metadata_handles() != NULL) {
 866     for (int i = 0; i< metadata_handles()->length(); i++) {
 867       f(metadata_handles()->at(i));
 868     }
 869   }
 870 }
 871 
 872 void Thread::print_on(outputStream* st) const {
 873   // get_priority assumes osthread initialized
 874   if (osthread() != NULL) {
 875     int os_prio;
 876     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 877       st->print("os_prio=%d ", os_prio);
 878     }
 879     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 880     osthread()->print_on(st);
 881   }
 882   if (_threads_hazard_ptr != NULL) {
 883     st->print("_threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
 884   }
 885   if (_nested_threads_hazard_ptr != NULL) {
 886     print_nested_threads_hazard_ptrs_on(st);
 887   }
 888   st->print(" ");
 889   debug_only(if (WizardMode) print_owned_locks_on(st);)
 890 }
 891 
 892 void Thread::print_nested_threads_hazard_ptrs_on(outputStream* st) const {
 893   assert(_nested_threads_hazard_ptr != NULL, "must be set to print");
 894 
 895   if (EnableThreadSMRStatistics) {
 896     st->print(", _nested_threads_hazard_ptr_cnt=%u", _nested_threads_hazard_ptr_cnt);
 897   }
 898   st->print(", _nested_threads_hazard_ptrs=");
 899   for (NestedThreadsList* node = _nested_threads_hazard_ptr; node != NULL;
 900        node = node->next()) {
 901     if (node != _nested_threads_hazard_ptr) {
 902       // First node does not need a comma-space separator.
 903       st->print(", ");
 904     }
 905     st->print(INTPTR_FORMAT, p2i(node->t_list()));
 906   }
 907 }
 908 
 909 // Thread::print_on_error() is called by fatal error handler. Don't use
 910 // any lock or allocate memory.
 911 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 912   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 913 
 914   if (is_VM_thread())                 { st->print("VMThread"); }
 915   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 916   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 917   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 918   else                                { st->print("Thread"); }
 919 
 920   if (is_Named_thread()) {
 921     st->print(" \"%s\"", name());
 922   }
 923 
 924   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 925             p2i(stack_end()), p2i(stack_base()));
 926 
 927   if (osthread()) {
 928     st->print(" [id=%d]", osthread()->thread_id());
 929   }
 930 
 931   if (_threads_hazard_ptr != NULL) {
 932     st->print(" _threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
 933   }
 934   if (_nested_threads_hazard_ptr != NULL) {
 935     print_nested_threads_hazard_ptrs_on(st);
 936   }
 937 }
 938 
 939 void Thread::print_value_on(outputStream* st) const {
 940   if (is_Named_thread()) {
 941     st->print(" \"%s\" ", name());
 942   }
 943   st->print(INTPTR_FORMAT, p2i(this));   // print address
 944 }
 945 
 946 #ifdef ASSERT
 947 void Thread::print_owned_locks_on(outputStream* st) const {
 948   Monitor *cur = _owned_locks;
 949   if (cur == NULL) {
 950     st->print(" (no locks) ");
 951   } else {
 952     st->print_cr(" Locks owned:");
 953     while (cur) {
 954       cur->print_on(st);
 955       cur = cur->next();
 956     }
 957   }
 958 }
 959 
 960 static int ref_use_count  = 0;
 961 
 962 bool Thread::owns_locks_but_compiled_lock() const {
 963   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 964     if (cur != Compile_lock) return true;
 965   }
 966   return false;
 967 }
 968 
 969 
 970 #endif
 971 
 972 #ifndef PRODUCT
 973 
 974 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
 975 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
 976 // no threads which allow_vm_block's are held
 977 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 978   // Check if current thread is allowed to block at a safepoint
 979   if (!(_allow_safepoint_count == 0)) {
 980     fatal("Possible safepoint reached by thread that does not allow it");
 981   }
 982   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 983     fatal("LEAF method calling lock?");
 984   }
 985 
 986 #ifdef ASSERT
 987   if (potential_vm_operation && is_Java_thread()
 988       && !Universe::is_bootstrapping()) {
 989     // Make sure we do not hold any locks that the VM thread also uses.
 990     // This could potentially lead to deadlocks
 991     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 992       // Threads_lock is special, since the safepoint synchronization will not start before this is
 993       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 994       // since it is used to transfer control between JavaThreads and the VMThread
 995       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 996       if ((cur->allow_vm_block() &&
 997            cur != Threads_lock &&
 998            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 999            cur != VMOperationRequest_lock &&
1000            cur != VMOperationQueue_lock) ||
1001            cur->rank() == Mutex::special) {
1002         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1003       }
1004     }
1005   }
1006 
1007   if (GCALotAtAllSafepoints) {
1008     // We could enter a safepoint here and thus have a gc
1009     InterfaceSupport::check_gc_alot();
1010   }
1011 #endif
1012 }
1013 #endif
1014 
1015 bool Thread::is_in_stack(address adr) const {
1016   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1017   address end = os::current_stack_pointer();
1018   // Allow non Java threads to call this without stack_base
1019   if (_stack_base == NULL) return true;
1020   if (stack_base() >= adr && adr >= end) return true;
1021 
1022   return false;
1023 }
1024 
1025 bool Thread::is_in_usable_stack(address adr) const {
1026   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1027   size_t usable_stack_size = _stack_size - stack_guard_size;
1028 
1029   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1030 }
1031 
1032 
1033 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1034 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1035 // used for compilation in the future. If that change is made, the need for these methods
1036 // should be revisited, and they should be removed if possible.
1037 
1038 bool Thread::is_lock_owned(address adr) const {
1039   return on_local_stack(adr);
1040 }
1041 
1042 bool Thread::set_as_starting_thread() {
1043   // NOTE: this must be called inside the main thread.
1044   return os::create_main_thread((JavaThread*)this);
1045 }
1046 
1047 static void initialize_class(Symbol* class_name, TRAPS) {
1048   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1049   InstanceKlass::cast(klass)->initialize(CHECK);
1050 }
1051 
1052 
1053 // Creates the initial ThreadGroup
1054 static Handle create_initial_thread_group(TRAPS) {
1055   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
1056   InstanceKlass* ik = InstanceKlass::cast(k);
1057 
1058   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
1059   {
1060     JavaValue result(T_VOID);
1061     JavaCalls::call_special(&result,
1062                             system_instance,
1063                             ik,
1064                             vmSymbols::object_initializer_name(),
1065                             vmSymbols::void_method_signature(),
1066                             CHECK_NH);
1067   }
1068   Universe::set_system_thread_group(system_instance());
1069 
1070   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
1071   {
1072     JavaValue result(T_VOID);
1073     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1074     JavaCalls::call_special(&result,
1075                             main_instance,
1076                             ik,
1077                             vmSymbols::object_initializer_name(),
1078                             vmSymbols::threadgroup_string_void_signature(),
1079                             system_instance,
1080                             string,
1081                             CHECK_NH);
1082   }
1083   return main_instance;
1084 }
1085 
1086 // Creates the initial Thread
1087 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1088                                  TRAPS) {
1089   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1090   InstanceKlass* ik = InstanceKlass::cast(k);
1091   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1092 
1093   java_lang_Thread::set_thread(thread_oop(), thread);
1094   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1095   thread->set_threadObj(thread_oop());
1096 
1097   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1098 
1099   JavaValue result(T_VOID);
1100   JavaCalls::call_special(&result, thread_oop,
1101                           ik,
1102                           vmSymbols::object_initializer_name(),
1103                           vmSymbols::threadgroup_string_void_signature(),
1104                           thread_group,
1105                           string,
1106                           CHECK_NULL);
1107   return thread_oop();
1108 }
1109 
1110 char java_runtime_name[128] = "";
1111 char java_runtime_version[128] = "";
1112 
1113 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1114 static const char* get_java_runtime_name(TRAPS) {
1115   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1116                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1117   fieldDescriptor fd;
1118   bool found = k != NULL &&
1119                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1120                                                         vmSymbols::string_signature(), &fd);
1121   if (found) {
1122     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1123     if (name_oop == NULL) {
1124       return NULL;
1125     }
1126     const char* name = java_lang_String::as_utf8_string(name_oop,
1127                                                         java_runtime_name,
1128                                                         sizeof(java_runtime_name));
1129     return name;
1130   } else {
1131     return NULL;
1132   }
1133 }
1134 
1135 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1136 static const char* get_java_runtime_version(TRAPS) {
1137   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1138                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1139   fieldDescriptor fd;
1140   bool found = k != NULL &&
1141                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1142                                                         vmSymbols::string_signature(), &fd);
1143   if (found) {
1144     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1145     if (name_oop == NULL) {
1146       return NULL;
1147     }
1148     const char* name = java_lang_String::as_utf8_string(name_oop,
1149                                                         java_runtime_version,
1150                                                         sizeof(java_runtime_version));
1151     return name;
1152   } else {
1153     return NULL;
1154   }
1155 }
1156 
1157 // General purpose hook into Java code, run once when the VM is initialized.
1158 // The Java library method itself may be changed independently from the VM.
1159 static void call_postVMInitHook(TRAPS) {
1160   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1161   if (klass != NULL) {
1162     JavaValue result(T_VOID);
1163     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1164                            vmSymbols::void_method_signature(),
1165                            CHECK);
1166   }
1167 }
1168 
1169 static void reset_vm_info_property(TRAPS) {
1170   // the vm info string
1171   ResourceMark rm(THREAD);
1172   const char *vm_info = VM_Version::vm_info_string();
1173 
1174   // java.lang.System class
1175   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1176 
1177   // setProperty arguments
1178   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1179   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1180 
1181   // return value
1182   JavaValue r(T_OBJECT);
1183 
1184   // public static String setProperty(String key, String value);
1185   JavaCalls::call_static(&r,
1186                          klass,
1187                          vmSymbols::setProperty_name(),
1188                          vmSymbols::string_string_string_signature(),
1189                          key_str,
1190                          value_str,
1191                          CHECK);
1192 }
1193 
1194 
1195 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1196                                     bool daemon, TRAPS) {
1197   assert(thread_group.not_null(), "thread group should be specified");
1198   assert(threadObj() == NULL, "should only create Java thread object once");
1199 
1200   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1201   InstanceKlass* ik = InstanceKlass::cast(k);
1202   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1203 
1204   java_lang_Thread::set_thread(thread_oop(), this);
1205   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1206   set_threadObj(thread_oop());
1207 
1208   JavaValue result(T_VOID);
1209   if (thread_name != NULL) {
1210     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1211     // Thread gets assigned specified name and null target
1212     JavaCalls::call_special(&result,
1213                             thread_oop,
1214                             ik,
1215                             vmSymbols::object_initializer_name(),
1216                             vmSymbols::threadgroup_string_void_signature(),
1217                             thread_group, // Argument 1
1218                             name,         // Argument 2
1219                             THREAD);
1220   } else {
1221     // Thread gets assigned name "Thread-nnn" and null target
1222     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1223     JavaCalls::call_special(&result,
1224                             thread_oop,
1225                             ik,
1226                             vmSymbols::object_initializer_name(),
1227                             vmSymbols::threadgroup_runnable_void_signature(),
1228                             thread_group, // Argument 1
1229                             Handle(),     // Argument 2
1230                             THREAD);
1231   }
1232 
1233 
1234   if (daemon) {
1235     java_lang_Thread::set_daemon(thread_oop());
1236   }
1237 
1238   if (HAS_PENDING_EXCEPTION) {
1239     return;
1240   }
1241 
1242   Klass* group =  SystemDictionary::ThreadGroup_klass();
1243   Handle threadObj(THREAD, this->threadObj());
1244 
1245   JavaCalls::call_special(&result,
1246                           thread_group,
1247                           group,
1248                           vmSymbols::add_method_name(),
1249                           vmSymbols::thread_void_signature(),
1250                           threadObj,          // Arg 1
1251                           THREAD);
1252 }
1253 
1254 // NamedThread --  non-JavaThread subclasses with multiple
1255 // uniquely named instances should derive from this.
1256 NamedThread::NamedThread() : Thread() {
1257   _name = NULL;
1258   _processed_thread = NULL;
1259   _gc_id = GCId::undefined();
1260 }
1261 
1262 NamedThread::~NamedThread() {
1263   if (_name != NULL) {
1264     FREE_C_HEAP_ARRAY(char, _name);
1265     _name = NULL;
1266   }
1267 }
1268 
1269 void NamedThread::set_name(const char* format, ...) {
1270   guarantee(_name == NULL, "Only get to set name once.");
1271   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1272   guarantee(_name != NULL, "alloc failure");
1273   va_list ap;
1274   va_start(ap, format);
1275   jio_vsnprintf(_name, max_name_len, format, ap);
1276   va_end(ap);
1277 }
1278 
1279 void NamedThread::initialize_named_thread() {
1280   set_native_thread_name(name());
1281 }
1282 
1283 void NamedThread::print_on(outputStream* st) const {
1284   st->print("\"%s\" ", name());
1285   Thread::print_on(st);
1286   st->cr();
1287 }
1288 
1289 
1290 // ======= WatcherThread ========
1291 
1292 // The watcher thread exists to simulate timer interrupts.  It should
1293 // be replaced by an abstraction over whatever native support for
1294 // timer interrupts exists on the platform.
1295 
1296 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1297 bool WatcherThread::_startable = false;
1298 volatile bool  WatcherThread::_should_terminate = false;
1299 
1300 WatcherThread::WatcherThread() : Thread() {
1301   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1302   if (os::create_thread(this, os::watcher_thread)) {
1303     _watcher_thread = this;
1304 
1305     // Set the watcher thread to the highest OS priority which should not be
1306     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1307     // is created. The only normal thread using this priority is the reference
1308     // handler thread, which runs for very short intervals only.
1309     // If the VMThread's priority is not lower than the WatcherThread profiling
1310     // will be inaccurate.
1311     os::set_priority(this, MaxPriority);
1312     if (!DisableStartThread) {
1313       os::start_thread(this);
1314     }
1315   }
1316 }
1317 
1318 int WatcherThread::sleep() const {
1319   // The WatcherThread does not participate in the safepoint protocol
1320   // for the PeriodicTask_lock because it is not a JavaThread.
1321   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1322 
1323   if (_should_terminate) {
1324     // check for termination before we do any housekeeping or wait
1325     return 0;  // we did not sleep.
1326   }
1327 
1328   // remaining will be zero if there are no tasks,
1329   // causing the WatcherThread to sleep until a task is
1330   // enrolled
1331   int remaining = PeriodicTask::time_to_wait();
1332   int time_slept = 0;
1333 
1334   // we expect this to timeout - we only ever get unparked when
1335   // we should terminate or when a new task has been enrolled
1336   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1337 
1338   jlong time_before_loop = os::javaTimeNanos();
1339 
1340   while (true) {
1341     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1342                                             remaining);
1343     jlong now = os::javaTimeNanos();
1344 
1345     if (remaining == 0) {
1346       // if we didn't have any tasks we could have waited for a long time
1347       // consider the time_slept zero and reset time_before_loop
1348       time_slept = 0;
1349       time_before_loop = now;
1350     } else {
1351       // need to recalculate since we might have new tasks in _tasks
1352       time_slept = (int) ((now - time_before_loop) / 1000000);
1353     }
1354 
1355     // Change to task list or spurious wakeup of some kind
1356     if (timedout || _should_terminate) {
1357       break;
1358     }
1359 
1360     remaining = PeriodicTask::time_to_wait();
1361     if (remaining == 0) {
1362       // Last task was just disenrolled so loop around and wait until
1363       // another task gets enrolled
1364       continue;
1365     }
1366 
1367     remaining -= time_slept;
1368     if (remaining <= 0) {
1369       break;
1370     }
1371   }
1372 
1373   return time_slept;
1374 }
1375 
1376 void WatcherThread::run() {
1377   assert(this == watcher_thread(), "just checking");
1378 
1379   this->record_stack_base_and_size();
1380   this->set_native_thread_name(this->name());
1381   this->set_active_handles(JNIHandleBlock::allocate_block());
1382   while (true) {
1383     assert(watcher_thread() == Thread::current(), "thread consistency check");
1384     assert(watcher_thread() == this, "thread consistency check");
1385 
1386     // Calculate how long it'll be until the next PeriodicTask work
1387     // should be done, and sleep that amount of time.
1388     int time_waited = sleep();
1389 
1390     if (VMError::is_error_reported()) {
1391       // A fatal error has happened, the error handler(VMError::report_and_die)
1392       // should abort JVM after creating an error log file. However in some
1393       // rare cases, the error handler itself might deadlock. Here periodically
1394       // check for error reporting timeouts, and if it happens, just proceed to
1395       // abort the VM.
1396 
1397       // This code is in WatcherThread because WatcherThread wakes up
1398       // periodically so the fatal error handler doesn't need to do anything;
1399       // also because the WatcherThread is less likely to crash than other
1400       // threads.
1401 
1402       for (;;) {
1403         // Note: we use naked sleep in this loop because we want to avoid using
1404         // any kind of VM infrastructure which may be broken at this point.
1405         if (VMError::check_timeout()) {
1406           // We hit error reporting timeout. Error reporting was interrupted and
1407           // will be wrapping things up now (closing files etc). Give it some more
1408           // time, then quit the VM.
1409           os::naked_short_sleep(200);
1410           // Print a message to stderr.
1411           fdStream err(defaultStream::output_fd());
1412           err.print_raw_cr("# [ timer expired, abort... ]");
1413           // skip atexit/vm_exit/vm_abort hooks
1414           os::die();
1415         }
1416 
1417         // Wait a second, then recheck for timeout.
1418         os::naked_short_sleep(999);
1419       }
1420     }
1421 
1422     if (_should_terminate) {
1423       // check for termination before posting the next tick
1424       break;
1425     }
1426 
1427     PeriodicTask::real_time_tick(time_waited);
1428   }
1429 
1430   // Signal that it is terminated
1431   {
1432     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1433     _watcher_thread = NULL;
1434     Terminator_lock->notify();
1435   }
1436 }
1437 
1438 void WatcherThread::start() {
1439   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1440 
1441   if (watcher_thread() == NULL && _startable) {
1442     _should_terminate = false;
1443     // Create the single instance of WatcherThread
1444     new WatcherThread();
1445   }
1446 }
1447 
1448 void WatcherThread::make_startable() {
1449   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1450   _startable = true;
1451 }
1452 
1453 void WatcherThread::stop() {
1454   {
1455     // Follow normal safepoint aware lock enter protocol since the
1456     // WatcherThread is stopped by another JavaThread.
1457     MutexLocker ml(PeriodicTask_lock);
1458     _should_terminate = true;
1459 
1460     WatcherThread* watcher = watcher_thread();
1461     if (watcher != NULL) {
1462       // unpark the WatcherThread so it can see that it should terminate
1463       watcher->unpark();
1464     }
1465   }
1466 
1467   MutexLocker mu(Terminator_lock);
1468 
1469   while (watcher_thread() != NULL) {
1470     // This wait should make safepoint checks, wait without a timeout,
1471     // and wait as a suspend-equivalent condition.
1472     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1473                           Mutex::_as_suspend_equivalent_flag);
1474   }
1475 }
1476 
1477 void WatcherThread::unpark() {
1478   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1479   PeriodicTask_lock->notify();
1480 }
1481 
1482 void WatcherThread::print_on(outputStream* st) const {
1483   st->print("\"%s\" ", name());
1484   Thread::print_on(st);
1485   st->cr();
1486 }
1487 
1488 // ======= JavaThread ========
1489 
1490 #if INCLUDE_JVMCI
1491 
1492 jlong* JavaThread::_jvmci_old_thread_counters;
1493 
1494 bool jvmci_counters_include(JavaThread* thread) {
1495   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1496 }
1497 
1498 void JavaThread::collect_counters(typeArrayOop array) {
1499   if (JVMCICounterSize > 0) {
1500     MutexLocker tl(Threads_lock);
1501     JavaThreadIteratorWithHandle jtiwh;
1502     for (int i = 0; i < array->length(); i++) {
1503       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1504     }
1505     for (; JavaThread *tp = jtiwh.next(); ) {
1506       if (jvmci_counters_include(tp)) {
1507         for (int i = 0; i < array->length(); i++) {
1508           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1509         }
1510       }
1511     }
1512   }
1513 }
1514 
1515 #endif // INCLUDE_JVMCI
1516 
1517 // A JavaThread is a normal Java thread
1518 
1519 void JavaThread::initialize() {
1520   // Initialize fields
1521 
1522   set_saved_exception_pc(NULL);
1523   set_threadObj(NULL);
1524   _anchor.clear();
1525   set_entry_point(NULL);
1526   set_jni_functions(jni_functions());
1527   set_callee_target(NULL);
1528   set_vm_result(NULL);
1529   set_vm_result_2(NULL);
1530   set_vframe_array_head(NULL);
1531   set_vframe_array_last(NULL);
1532   set_deferred_locals(NULL);
1533   set_deopt_mark(NULL);
1534   set_deopt_compiled_method(NULL);
1535   clear_must_deopt_id();
1536   set_monitor_chunks(NULL);
1537   set_next(NULL);
1538   _on_thread_list = false;
1539   set_thread_state(_thread_new);
1540   _terminated = _not_terminated;
1541   _privileged_stack_top = NULL;
1542   _array_for_gc = NULL;
1543   _suspend_equivalent = false;
1544   _in_deopt_handler = 0;
1545   _doing_unsafe_access = false;
1546   _stack_guard_state = stack_guard_unused;
1547 #if INCLUDE_JVMCI
1548   _pending_monitorenter = false;
1549   _pending_deoptimization = -1;
1550   _pending_failed_speculation = NULL;
1551   _pending_transfer_to_interpreter = false;
1552   _adjusting_comp_level = false;
1553   _jvmci._alternate_call_target = NULL;
1554   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1555   if (JVMCICounterSize > 0) {
1556     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1557     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1558   } else {
1559     _jvmci_counters = NULL;
1560   }
1561 #endif // INCLUDE_JVMCI
1562   _reserved_stack_activation = NULL;  // stack base not known yet
1563   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1564   _exception_pc  = 0;
1565   _exception_handler_pc = 0;
1566   _is_method_handle_return = 0;
1567   _jvmti_thread_state= NULL;
1568   _should_post_on_exceptions_flag = JNI_FALSE;
1569   _jvmti_get_loaded_classes_closure = NULL;
1570   _interp_only_mode    = 0;
1571   _special_runtime_exit_condition = _no_async_condition;
1572   _pending_async_exception = NULL;
1573   _thread_stat = NULL;
1574   _thread_stat = new ThreadStatistics();
1575   _blocked_on_compilation = false;
1576   _jni_active_critical = 0;
1577   _pending_jni_exception_check_fn = NULL;
1578   _do_not_unlock_if_synchronized = false;
1579   _cached_monitor_info = NULL;
1580   _parker = Parker::Allocate(this);
1581 
1582 #ifndef PRODUCT
1583   _jmp_ring_index = 0;
1584   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1585     record_jump(NULL, NULL, NULL, 0);
1586   }
1587 #endif // PRODUCT
1588 
1589   // Setup safepoint state info for this thread
1590   ThreadSafepointState::create(this);
1591 
1592   debug_only(_java_call_counter = 0);
1593 
1594   // JVMTI PopFrame support
1595   _popframe_condition = popframe_inactive;
1596   _popframe_preserved_args = NULL;
1597   _popframe_preserved_args_size = 0;
1598   _frames_to_pop_failed_realloc = 0;
1599 
1600   if (SafepointMechanism::uses_thread_local_poll()) {
1601     SafepointMechanism::initialize_header(this);
1602   }
1603 
1604   pd_initialize();
1605 }
1606 
1607 JavaThread::JavaThread(bool is_attaching_via_jni) :
1608                        Thread() {
1609   initialize();
1610   if (is_attaching_via_jni) {
1611     _jni_attach_state = _attaching_via_jni;
1612   } else {
1613     _jni_attach_state = _not_attaching_via_jni;
1614   }
1615   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1616 }
1617 
1618 bool JavaThread::reguard_stack(address cur_sp) {
1619   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1620       && _stack_guard_state != stack_guard_reserved_disabled) {
1621     return true; // Stack already guarded or guard pages not needed.
1622   }
1623 
1624   if (register_stack_overflow()) {
1625     // For those architectures which have separate register and
1626     // memory stacks, we must check the register stack to see if
1627     // it has overflowed.
1628     return false;
1629   }
1630 
1631   // Java code never executes within the yellow zone: the latter is only
1632   // there to provoke an exception during stack banging.  If java code
1633   // is executing there, either StackShadowPages should be larger, or
1634   // some exception code in c1, c2 or the interpreter isn't unwinding
1635   // when it should.
1636   guarantee(cur_sp > stack_reserved_zone_base(),
1637             "not enough space to reguard - increase StackShadowPages");
1638   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1639     enable_stack_yellow_reserved_zone();
1640     if (reserved_stack_activation() != stack_base()) {
1641       set_reserved_stack_activation(stack_base());
1642     }
1643   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1644     set_reserved_stack_activation(stack_base());
1645     enable_stack_reserved_zone();
1646   }
1647   return true;
1648 }
1649 
1650 bool JavaThread::reguard_stack(void) {
1651   return reguard_stack(os::current_stack_pointer());
1652 }
1653 
1654 
1655 void JavaThread::block_if_vm_exited() {
1656   if (_terminated == _vm_exited) {
1657     // _vm_exited is set at safepoint, and Threads_lock is never released
1658     // we will block here forever
1659     Threads_lock->lock_without_safepoint_check();
1660     ShouldNotReachHere();
1661   }
1662 }
1663 
1664 
1665 // Remove this ifdef when C1 is ported to the compiler interface.
1666 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1667 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1668 
1669 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1670                        Thread() {
1671   initialize();
1672   _jni_attach_state = _not_attaching_via_jni;
1673   set_entry_point(entry_point);
1674   // Create the native thread itself.
1675   // %note runtime_23
1676   os::ThreadType thr_type = os::java_thread;
1677   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1678                                                      os::java_thread;
1679   os::create_thread(this, thr_type, stack_sz);
1680   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1681   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1682   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1683   // the exception consists of creating the exception object & initializing it, initialization
1684   // will leave the VM via a JavaCall and then all locks must be unlocked).
1685   //
1686   // The thread is still suspended when we reach here. Thread must be explicit started
1687   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1688   // by calling Threads:add. The reason why this is not done here, is because the thread
1689   // object must be fully initialized (take a look at JVM_Start)
1690 }
1691 
1692 JavaThread::~JavaThread() {
1693 
1694   // JSR166 -- return the parker to the free list
1695   Parker::Release(_parker);
1696   _parker = NULL;
1697 
1698   // Free any remaining  previous UnrollBlock
1699   vframeArray* old_array = vframe_array_last();
1700 
1701   if (old_array != NULL) {
1702     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1703     old_array->set_unroll_block(NULL);
1704     delete old_info;
1705     delete old_array;
1706   }
1707 
1708   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1709   if (deferred != NULL) {
1710     // This can only happen if thread is destroyed before deoptimization occurs.
1711     assert(deferred->length() != 0, "empty array!");
1712     do {
1713       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1714       deferred->remove_at(0);
1715       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1716       delete dlv;
1717     } while (deferred->length() != 0);
1718     delete deferred;
1719   }
1720 
1721   // All Java related clean up happens in exit
1722   ThreadSafepointState::destroy(this);
1723   if (_thread_stat != NULL) delete _thread_stat;
1724 
1725 #if INCLUDE_JVMCI
1726   if (JVMCICounterSize > 0) {
1727     if (jvmci_counters_include(this)) {
1728       for (int i = 0; i < JVMCICounterSize; i++) {
1729         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1730       }
1731     }
1732     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1733   }
1734 #endif // INCLUDE_JVMCI
1735 }
1736 
1737 
1738 // The first routine called by a new Java thread
1739 void JavaThread::run() {
1740   // initialize thread-local alloc buffer related fields
1741   this->initialize_tlab();
1742 
1743   // used to test validity of stack trace backs
1744   this->record_base_of_stack_pointer();
1745 
1746   // Record real stack base and size.
1747   this->record_stack_base_and_size();
1748 
1749   this->create_stack_guard_pages();
1750 
1751   this->cache_global_variables();
1752 
1753   // Thread is now sufficient initialized to be handled by the safepoint code as being
1754   // in the VM. Change thread state from _thread_new to _thread_in_vm
1755   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1756 
1757   assert(JavaThread::current() == this, "sanity check");
1758   assert(!Thread::current()->owns_locks(), "sanity check");
1759 
1760   DTRACE_THREAD_PROBE(start, this);
1761 
1762   // This operation might block. We call that after all safepoint checks for a new thread has
1763   // been completed.
1764   this->set_active_handles(JNIHandleBlock::allocate_block());
1765 
1766   if (JvmtiExport::should_post_thread_life()) {
1767     JvmtiExport::post_thread_start(this);
1768   }
1769 
1770   EventThreadStart event;
1771   if (event.should_commit()) {
1772     event.set_thread(THREAD_TRACE_ID(this));
1773     event.commit();
1774   }
1775 
1776   // We call another function to do the rest so we are sure that the stack addresses used
1777   // from there will be lower than the stack base just computed
1778   thread_main_inner();
1779 
1780   // Note, thread is no longer valid at this point!
1781 }
1782 
1783 
1784 void JavaThread::thread_main_inner() {
1785   assert(JavaThread::current() == this, "sanity check");
1786   assert(this->threadObj() != NULL, "just checking");
1787 
1788   // Execute thread entry point unless this thread has a pending exception
1789   // or has been stopped before starting.
1790   // Note: Due to JVM_StopThread we can have pending exceptions already!
1791   if (!this->has_pending_exception() &&
1792       !java_lang_Thread::is_stillborn(this->threadObj())) {
1793     {
1794       ResourceMark rm(this);
1795       this->set_native_thread_name(this->get_thread_name());
1796     }
1797     HandleMark hm(this);
1798     this->entry_point()(this, this);
1799   }
1800 
1801   DTRACE_THREAD_PROBE(stop, this);
1802 
1803   this->exit(false);
1804   this->smr_delete();
1805 }
1806 
1807 
1808 static void ensure_join(JavaThread* thread) {
1809   // We do not need to grab the Threads_lock, since we are operating on ourself.
1810   Handle threadObj(thread, thread->threadObj());
1811   assert(threadObj.not_null(), "java thread object must exist");
1812   ObjectLocker lock(threadObj, thread);
1813   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1814   thread->clear_pending_exception();
1815   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1816   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1817   // Clear the native thread instance - this makes isAlive return false and allows the join()
1818   // to complete once we've done the notify_all below
1819   java_lang_Thread::set_thread(threadObj(), NULL);
1820   lock.notify_all(thread);
1821   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1822   thread->clear_pending_exception();
1823 }
1824 
1825 
1826 // For any new cleanup additions, please check to see if they need to be applied to
1827 // cleanup_failed_attach_current_thread as well.
1828 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1829   assert(this == JavaThread::current(), "thread consistency check");
1830 
1831   elapsedTimer _timer_exit_phase1;
1832   elapsedTimer _timer_exit_phase2;
1833   elapsedTimer _timer_exit_phase3;
1834   elapsedTimer _timer_exit_phase4;
1835 
1836   if (log_is_enabled(Debug, os, thread, timer)) {
1837     _timer_exit_phase1.start();
1838   }
1839 
1840   HandleMark hm(this);
1841   Handle uncaught_exception(this, this->pending_exception());
1842   this->clear_pending_exception();
1843   Handle threadObj(this, this->threadObj());
1844   assert(threadObj.not_null(), "Java thread object should be created");
1845 
1846   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1847   {
1848     EXCEPTION_MARK;
1849 
1850     CLEAR_PENDING_EXCEPTION;
1851   }
1852   if (!destroy_vm) {
1853     if (uncaught_exception.not_null()) {
1854       EXCEPTION_MARK;
1855       // Call method Thread.dispatchUncaughtException().
1856       Klass* thread_klass = SystemDictionary::Thread_klass();
1857       JavaValue result(T_VOID);
1858       JavaCalls::call_virtual(&result,
1859                               threadObj, thread_klass,
1860                               vmSymbols::dispatchUncaughtException_name(),
1861                               vmSymbols::throwable_void_signature(),
1862                               uncaught_exception,
1863                               THREAD);
1864       if (HAS_PENDING_EXCEPTION) {
1865         ResourceMark rm(this);
1866         jio_fprintf(defaultStream::error_stream(),
1867                     "\nException: %s thrown from the UncaughtExceptionHandler"
1868                     " in thread \"%s\"\n",
1869                     pending_exception()->klass()->external_name(),
1870                     get_thread_name());
1871         CLEAR_PENDING_EXCEPTION;
1872       }
1873     }
1874 
1875     // Called before the java thread exit since we want to read info
1876     // from java_lang_Thread object
1877     EventThreadEnd event;
1878     if (event.should_commit()) {
1879       event.set_thread(THREAD_TRACE_ID(this));
1880       event.commit();
1881     }
1882 
1883     // Call after last event on thread
1884     EVENT_THREAD_EXIT(this);
1885 
1886     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1887     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1888     // is deprecated anyhow.
1889     if (!is_Compiler_thread()) {
1890       int count = 3;
1891       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1892         EXCEPTION_MARK;
1893         JavaValue result(T_VOID);
1894         Klass* thread_klass = SystemDictionary::Thread_klass();
1895         JavaCalls::call_virtual(&result,
1896                                 threadObj, thread_klass,
1897                                 vmSymbols::exit_method_name(),
1898                                 vmSymbols::void_method_signature(),
1899                                 THREAD);
1900         CLEAR_PENDING_EXCEPTION;
1901       }
1902     }
1903     // notify JVMTI
1904     if (JvmtiExport::should_post_thread_life()) {
1905       JvmtiExport::post_thread_end(this);
1906     }
1907 
1908     // We have notified the agents that we are exiting, before we go on,
1909     // we must check for a pending external suspend request and honor it
1910     // in order to not surprise the thread that made the suspend request.
1911     while (true) {
1912       {
1913         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1914         if (!is_external_suspend()) {
1915           set_terminated(_thread_exiting);
1916           ThreadService::current_thread_exiting(this);
1917           break;
1918         }
1919         // Implied else:
1920         // Things get a little tricky here. We have a pending external
1921         // suspend request, but we are holding the SR_lock so we
1922         // can't just self-suspend. So we temporarily drop the lock
1923         // and then self-suspend.
1924       }
1925 
1926       ThreadBlockInVM tbivm(this);
1927       java_suspend_self();
1928 
1929       // We're done with this suspend request, but we have to loop around
1930       // and check again. Eventually we will get SR_lock without a pending
1931       // external suspend request and will be able to mark ourselves as
1932       // exiting.
1933     }
1934     // no more external suspends are allowed at this point
1935   } else {
1936     // before_exit() has already posted JVMTI THREAD_END events
1937   }
1938 
1939   if (log_is_enabled(Debug, os, thread, timer)) {
1940     _timer_exit_phase1.stop();
1941     _timer_exit_phase2.start();
1942   }
1943   // Notify waiters on thread object. This has to be done after exit() is called
1944   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1945   // group should have the destroyed bit set before waiters are notified).
1946   ensure_join(this);
1947   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1948 
1949   if (log_is_enabled(Debug, os, thread, timer)) {
1950     _timer_exit_phase2.stop();
1951     _timer_exit_phase3.start();
1952   }
1953   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1954   // held by this thread must be released. The spec does not distinguish
1955   // between JNI-acquired and regular Java monitors. We can only see
1956   // regular Java monitors here if monitor enter-exit matching is broken.
1957   //
1958   // Optionally release any monitors for regular JavaThread exits. This
1959   // is provided as a work around for any bugs in monitor enter-exit
1960   // matching. This can be expensive so it is not enabled by default.
1961   //
1962   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1963   // ObjectSynchronizer::release_monitors_owned_by_thread().
1964   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1965     // Sanity check even though JNI DetachCurrentThread() would have
1966     // returned JNI_ERR if there was a Java frame. JavaThread exit
1967     // should be done executing Java code by the time we get here.
1968     assert(!this->has_last_Java_frame(),
1969            "should not have a Java frame when detaching or exiting");
1970     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1971     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1972   }
1973 
1974   // These things needs to be done while we are still a Java Thread. Make sure that thread
1975   // is in a consistent state, in case GC happens
1976   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1977 
1978   if (active_handles() != NULL) {
1979     JNIHandleBlock* block = active_handles();
1980     set_active_handles(NULL);
1981     JNIHandleBlock::release_block(block);
1982   }
1983 
1984   if (free_handle_block() != NULL) {
1985     JNIHandleBlock* block = free_handle_block();
1986     set_free_handle_block(NULL);
1987     JNIHandleBlock::release_block(block);
1988   }
1989 
1990   // These have to be removed while this is still a valid thread.
1991   remove_stack_guard_pages();
1992 
1993   if (UseTLAB) {
1994     tlab().make_parsable(true);  // retire TLAB
1995   }
1996 
1997   if (JvmtiEnv::environments_might_exist()) {
1998     JvmtiExport::cleanup_thread(this);
1999   }
2000 
2001   // We must flush any deferred card marks and other various GC barrier
2002   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2003   // before removing a thread from the list of active threads.
2004   BarrierSet::barrier_set()->on_thread_detach(this);
2005 
2006   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2007     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2008     os::current_thread_id());
2009 
2010   if (log_is_enabled(Debug, os, thread, timer)) {
2011     _timer_exit_phase3.stop();
2012     _timer_exit_phase4.start();
2013   }
2014   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2015   Threads::remove(this);
2016 
2017   if (log_is_enabled(Debug, os, thread, timer)) {
2018     _timer_exit_phase4.stop();
2019     ResourceMark rm(this);
2020     log_debug(os, thread, timer)("name='%s'"
2021                                  ", exit-phase1=" JLONG_FORMAT
2022                                  ", exit-phase2=" JLONG_FORMAT
2023                                  ", exit-phase3=" JLONG_FORMAT
2024                                  ", exit-phase4=" JLONG_FORMAT,
2025                                  get_thread_name(),
2026                                  _timer_exit_phase1.milliseconds(),
2027                                  _timer_exit_phase2.milliseconds(),
2028                                  _timer_exit_phase3.milliseconds(),
2029                                  _timer_exit_phase4.milliseconds());
2030   }
2031 }
2032 
2033 void JavaThread::cleanup_failed_attach_current_thread() {
2034   if (active_handles() != NULL) {
2035     JNIHandleBlock* block = active_handles();
2036     set_active_handles(NULL);
2037     JNIHandleBlock::release_block(block);
2038   }
2039 
2040   if (free_handle_block() != NULL) {
2041     JNIHandleBlock* block = free_handle_block();
2042     set_free_handle_block(NULL);
2043     JNIHandleBlock::release_block(block);
2044   }
2045 
2046   // These have to be removed while this is still a valid thread.
2047   remove_stack_guard_pages();
2048 
2049   if (UseTLAB) {
2050     tlab().make_parsable(true);  // retire TLAB, if any
2051   }
2052 
2053   BarrierSet::barrier_set()->on_thread_detach(this);
2054 
2055   Threads::remove(this);
2056   this->smr_delete();
2057 }
2058 
2059 JavaThread* JavaThread::active() {
2060   Thread* thread = Thread::current();
2061   if (thread->is_Java_thread()) {
2062     return (JavaThread*) thread;
2063   } else {
2064     assert(thread->is_VM_thread(), "this must be a vm thread");
2065     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2066     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2067     assert(ret->is_Java_thread(), "must be a Java thread");
2068     return ret;
2069   }
2070 }
2071 
2072 bool JavaThread::is_lock_owned(address adr) const {
2073   if (Thread::is_lock_owned(adr)) return true;
2074 
2075   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2076     if (chunk->contains(adr)) return true;
2077   }
2078 
2079   return false;
2080 }
2081 
2082 
2083 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2084   chunk->set_next(monitor_chunks());
2085   set_monitor_chunks(chunk);
2086 }
2087 
2088 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2089   guarantee(monitor_chunks() != NULL, "must be non empty");
2090   if (monitor_chunks() == chunk) {
2091     set_monitor_chunks(chunk->next());
2092   } else {
2093     MonitorChunk* prev = monitor_chunks();
2094     while (prev->next() != chunk) prev = prev->next();
2095     prev->set_next(chunk->next());
2096   }
2097 }
2098 
2099 // JVM support.
2100 
2101 // Note: this function shouldn't block if it's called in
2102 // _thread_in_native_trans state (such as from
2103 // check_special_condition_for_native_trans()).
2104 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2105 
2106   if (has_last_Java_frame() && has_async_condition()) {
2107     // If we are at a polling page safepoint (not a poll return)
2108     // then we must defer async exception because live registers
2109     // will be clobbered by the exception path. Poll return is
2110     // ok because the call we a returning from already collides
2111     // with exception handling registers and so there is no issue.
2112     // (The exception handling path kills call result registers but
2113     //  this is ok since the exception kills the result anyway).
2114 
2115     if (is_at_poll_safepoint()) {
2116       // if the code we are returning to has deoptimized we must defer
2117       // the exception otherwise live registers get clobbered on the
2118       // exception path before deoptimization is able to retrieve them.
2119       //
2120       RegisterMap map(this, false);
2121       frame caller_fr = last_frame().sender(&map);
2122       assert(caller_fr.is_compiled_frame(), "what?");
2123       if (caller_fr.is_deoptimized_frame()) {
2124         log_info(exceptions)("deferred async exception at compiled safepoint");
2125         return;
2126       }
2127     }
2128   }
2129 
2130   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2131   if (condition == _no_async_condition) {
2132     // Conditions have changed since has_special_runtime_exit_condition()
2133     // was called:
2134     // - if we were here only because of an external suspend request,
2135     //   then that was taken care of above (or cancelled) so we are done
2136     // - if we were here because of another async request, then it has
2137     //   been cleared between the has_special_runtime_exit_condition()
2138     //   and now so again we are done
2139     return;
2140   }
2141 
2142   // Check for pending async. exception
2143   if (_pending_async_exception != NULL) {
2144     // Only overwrite an already pending exception, if it is not a threadDeath.
2145     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2146 
2147       // We cannot call Exceptions::_throw(...) here because we cannot block
2148       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2149 
2150       LogTarget(Info, exceptions) lt;
2151       if (lt.is_enabled()) {
2152         ResourceMark rm;
2153         LogStream ls(lt);
2154         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2155           if (has_last_Java_frame()) {
2156             frame f = last_frame();
2157            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2158           }
2159         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2160       }
2161       _pending_async_exception = NULL;
2162       clear_has_async_exception();
2163     }
2164   }
2165 
2166   if (check_unsafe_error &&
2167       condition == _async_unsafe_access_error && !has_pending_exception()) {
2168     condition = _no_async_condition;  // done
2169     switch (thread_state()) {
2170     case _thread_in_vm: {
2171       JavaThread* THREAD = this;
2172       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2173     }
2174     case _thread_in_native: {
2175       ThreadInVMfromNative tiv(this);
2176       JavaThread* THREAD = this;
2177       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2178     }
2179     case _thread_in_Java: {
2180       ThreadInVMfromJava tiv(this);
2181       JavaThread* THREAD = this;
2182       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2183     }
2184     default:
2185       ShouldNotReachHere();
2186     }
2187   }
2188 
2189   assert(condition == _no_async_condition || has_pending_exception() ||
2190          (!check_unsafe_error && condition == _async_unsafe_access_error),
2191          "must have handled the async condition, if no exception");
2192 }
2193 
2194 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2195   //
2196   // Check for pending external suspend. Internal suspend requests do
2197   // not use handle_special_runtime_exit_condition().
2198   // If JNIEnv proxies are allowed, don't self-suspend if the target
2199   // thread is not the current thread. In older versions of jdbx, jdbx
2200   // threads could call into the VM with another thread's JNIEnv so we
2201   // can be here operating on behalf of a suspended thread (4432884).
2202   bool do_self_suspend = is_external_suspend_with_lock();
2203   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2204     //
2205     // Because thread is external suspended the safepoint code will count
2206     // thread as at a safepoint. This can be odd because we can be here
2207     // as _thread_in_Java which would normally transition to _thread_blocked
2208     // at a safepoint. We would like to mark the thread as _thread_blocked
2209     // before calling java_suspend_self like all other callers of it but
2210     // we must then observe proper safepoint protocol. (We can't leave
2211     // _thread_blocked with a safepoint in progress). However we can be
2212     // here as _thread_in_native_trans so we can't use a normal transition
2213     // constructor/destructor pair because they assert on that type of
2214     // transition. We could do something like:
2215     //
2216     // JavaThreadState state = thread_state();
2217     // set_thread_state(_thread_in_vm);
2218     // {
2219     //   ThreadBlockInVM tbivm(this);
2220     //   java_suspend_self()
2221     // }
2222     // set_thread_state(_thread_in_vm_trans);
2223     // if (safepoint) block;
2224     // set_thread_state(state);
2225     //
2226     // but that is pretty messy. Instead we just go with the way the
2227     // code has worked before and note that this is the only path to
2228     // java_suspend_self that doesn't put the thread in _thread_blocked
2229     // mode.
2230 
2231     frame_anchor()->make_walkable(this);
2232     java_suspend_self();
2233 
2234     // We might be here for reasons in addition to the self-suspend request
2235     // so check for other async requests.
2236   }
2237 
2238   if (check_asyncs) {
2239     check_and_handle_async_exceptions();
2240   }
2241 #if INCLUDE_TRACE
2242   if (is_trace_suspend()) {
2243     TRACE_SUSPEND_THREAD(this);
2244   }
2245 #endif
2246 }
2247 
2248 void JavaThread::send_thread_stop(oop java_throwable)  {
2249   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2250   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2251   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2252 
2253   // Do not throw asynchronous exceptions against the compiler thread
2254   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2255   if (!can_call_java()) return;
2256 
2257   {
2258     // Actually throw the Throwable against the target Thread - however
2259     // only if there is no thread death exception installed already.
2260     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2261       // If the topmost frame is a runtime stub, then we are calling into
2262       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2263       // must deoptimize the caller before continuing, as the compiled  exception handler table
2264       // may not be valid
2265       if (has_last_Java_frame()) {
2266         frame f = last_frame();
2267         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2268           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2269           RegisterMap reg_map(this, UseBiasedLocking);
2270           frame compiled_frame = f.sender(&reg_map);
2271           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2272             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2273           }
2274         }
2275       }
2276 
2277       // Set async. pending exception in thread.
2278       set_pending_async_exception(java_throwable);
2279 
2280       if (log_is_enabled(Info, exceptions)) {
2281          ResourceMark rm;
2282         log_info(exceptions)("Pending Async. exception installed of type: %s",
2283                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2284       }
2285       // for AbortVMOnException flag
2286       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2287     }
2288   }
2289 
2290 
2291   // Interrupt thread so it will wake up from a potential wait()
2292   Thread::interrupt(this);
2293 }
2294 
2295 // External suspension mechanism.
2296 //
2297 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2298 // to any VM_locks and it is at a transition
2299 // Self-suspension will happen on the transition out of the vm.
2300 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2301 //
2302 // Guarantees on return:
2303 //   + Target thread will not execute any new bytecode (that's why we need to
2304 //     force a safepoint)
2305 //   + Target thread will not enter any new monitors
2306 //
2307 void JavaThread::java_suspend() {
2308   ThreadsListHandle tlh;
2309   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2310     return;
2311   }
2312 
2313   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2314     if (!is_external_suspend()) {
2315       // a racing resume has cancelled us; bail out now
2316       return;
2317     }
2318 
2319     // suspend is done
2320     uint32_t debug_bits = 0;
2321     // Warning: is_ext_suspend_completed() may temporarily drop the
2322     // SR_lock to allow the thread to reach a stable thread state if
2323     // it is currently in a transient thread state.
2324     if (is_ext_suspend_completed(false /* !called_by_wait */,
2325                                  SuspendRetryDelay, &debug_bits)) {
2326       return;
2327     }
2328   }
2329 
2330   VM_ThreadSuspend vm_suspend;
2331   VMThread::execute(&vm_suspend);
2332 }
2333 
2334 // Part II of external suspension.
2335 // A JavaThread self suspends when it detects a pending external suspend
2336 // request. This is usually on transitions. It is also done in places
2337 // where continuing to the next transition would surprise the caller,
2338 // e.g., monitor entry.
2339 //
2340 // Returns the number of times that the thread self-suspended.
2341 //
2342 // Note: DO NOT call java_suspend_self() when you just want to block current
2343 //       thread. java_suspend_self() is the second stage of cooperative
2344 //       suspension for external suspend requests and should only be used
2345 //       to complete an external suspend request.
2346 //
2347 int JavaThread::java_suspend_self() {
2348   int ret = 0;
2349 
2350   // we are in the process of exiting so don't suspend
2351   if (is_exiting()) {
2352     clear_external_suspend();
2353     return ret;
2354   }
2355 
2356   assert(_anchor.walkable() ||
2357          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2358          "must have walkable stack");
2359 
2360   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2361 
2362   assert(!this->is_ext_suspended(),
2363          "a thread trying to self-suspend should not already be suspended");
2364 
2365   if (this->is_suspend_equivalent()) {
2366     // If we are self-suspending as a result of the lifting of a
2367     // suspend equivalent condition, then the suspend_equivalent
2368     // flag is not cleared until we set the ext_suspended flag so
2369     // that wait_for_ext_suspend_completion() returns consistent
2370     // results.
2371     this->clear_suspend_equivalent();
2372   }
2373 
2374   // A racing resume may have cancelled us before we grabbed SR_lock
2375   // above. Or another external suspend request could be waiting for us
2376   // by the time we return from SR_lock()->wait(). The thread
2377   // that requested the suspension may already be trying to walk our
2378   // stack and if we return now, we can change the stack out from under
2379   // it. This would be a "bad thing (TM)" and cause the stack walker
2380   // to crash. We stay self-suspended until there are no more pending
2381   // external suspend requests.
2382   while (is_external_suspend()) {
2383     ret++;
2384     this->set_ext_suspended();
2385 
2386     // _ext_suspended flag is cleared by java_resume()
2387     while (is_ext_suspended()) {
2388       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2389     }
2390   }
2391 
2392   return ret;
2393 }
2394 
2395 #ifdef ASSERT
2396 // Verify the JavaThread has not yet been published in the Threads::list, and
2397 // hence doesn't need protection from concurrent access at this stage.
2398 void JavaThread::verify_not_published() {
2399   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2400   // since an unpublished JavaThread doesn't participate in the
2401   // Thread-SMR protocol for keeping a ThreadsList alive.
2402   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2403 }
2404 #endif
2405 
2406 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2407 // progress or when _suspend_flags is non-zero.
2408 // Current thread needs to self-suspend if there is a suspend request and/or
2409 // block if a safepoint is in progress.
2410 // Async exception ISN'T checked.
2411 // Note only the ThreadInVMfromNative transition can call this function
2412 // directly and when thread state is _thread_in_native_trans
2413 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2414   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2415 
2416   JavaThread *curJT = JavaThread::current();
2417   bool do_self_suspend = thread->is_external_suspend();
2418 
2419   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2420 
2421   // If JNIEnv proxies are allowed, don't self-suspend if the target
2422   // thread is not the current thread. In older versions of jdbx, jdbx
2423   // threads could call into the VM with another thread's JNIEnv so we
2424   // can be here operating on behalf of a suspended thread (4432884).
2425   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2426     JavaThreadState state = thread->thread_state();
2427 
2428     // We mark this thread_blocked state as a suspend-equivalent so
2429     // that a caller to is_ext_suspend_completed() won't be confused.
2430     // The suspend-equivalent state is cleared by java_suspend_self().
2431     thread->set_suspend_equivalent();
2432 
2433     // If the safepoint code sees the _thread_in_native_trans state, it will
2434     // wait until the thread changes to other thread state. There is no
2435     // guarantee on how soon we can obtain the SR_lock and complete the
2436     // self-suspend request. It would be a bad idea to let safepoint wait for
2437     // too long. Temporarily change the state to _thread_blocked to
2438     // let the VM thread know that this thread is ready for GC. The problem
2439     // of changing thread state is that safepoint could happen just after
2440     // java_suspend_self() returns after being resumed, and VM thread will
2441     // see the _thread_blocked state. We must check for safepoint
2442     // after restoring the state and make sure we won't leave while a safepoint
2443     // is in progress.
2444     thread->set_thread_state(_thread_blocked);
2445     thread->java_suspend_self();
2446     thread->set_thread_state(state);
2447 
2448     InterfaceSupport::serialize_thread_state_with_handler(thread);
2449   }
2450 
2451   SafepointMechanism::block_if_requested(curJT);
2452 
2453   if (thread->is_deopt_suspend()) {
2454     thread->clear_deopt_suspend();
2455     RegisterMap map(thread, false);
2456     frame f = thread->last_frame();
2457     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2458       f = f.sender(&map);
2459     }
2460     if (f.id() == thread->must_deopt_id()) {
2461       thread->clear_must_deopt_id();
2462       f.deoptimize(thread);
2463     } else {
2464       fatal("missed deoptimization!");
2465     }
2466   }
2467 #if INCLUDE_TRACE
2468   if (thread->is_trace_suspend()) {
2469     TRACE_SUSPEND_THREAD(thread);
2470   }
2471 #endif
2472 }
2473 
2474 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2475 // progress or when _suspend_flags is non-zero.
2476 // Current thread needs to self-suspend if there is a suspend request and/or
2477 // block if a safepoint is in progress.
2478 // Also check for pending async exception (not including unsafe access error).
2479 // Note only the native==>VM/Java barriers can call this function and when
2480 // thread state is _thread_in_native_trans.
2481 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2482   check_safepoint_and_suspend_for_native_trans(thread);
2483 
2484   if (thread->has_async_exception()) {
2485     // We are in _thread_in_native_trans state, don't handle unsafe
2486     // access error since that may block.
2487     thread->check_and_handle_async_exceptions(false);
2488   }
2489 }
2490 
2491 // This is a variant of the normal
2492 // check_special_condition_for_native_trans with slightly different
2493 // semantics for use by critical native wrappers.  It does all the
2494 // normal checks but also performs the transition back into
2495 // thread_in_Java state.  This is required so that critical natives
2496 // can potentially block and perform a GC if they are the last thread
2497 // exiting the GCLocker.
2498 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2499   check_special_condition_for_native_trans(thread);
2500 
2501   // Finish the transition
2502   thread->set_thread_state(_thread_in_Java);
2503 
2504   if (thread->do_critical_native_unlock()) {
2505     ThreadInVMfromJavaNoAsyncException tiv(thread);
2506     GCLocker::unlock_critical(thread);
2507     thread->clear_critical_native_unlock();
2508   }
2509 }
2510 
2511 // We need to guarantee the Threads_lock here, since resumes are not
2512 // allowed during safepoint synchronization
2513 // Can only resume from an external suspension
2514 void JavaThread::java_resume() {
2515   assert_locked_or_safepoint(Threads_lock);
2516 
2517   // Sanity check: thread is gone, has started exiting or the thread
2518   // was not externally suspended.
2519   ThreadsListHandle tlh;
2520   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2521     return;
2522   }
2523 
2524   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2525 
2526   clear_external_suspend();
2527 
2528   if (is_ext_suspended()) {
2529     clear_ext_suspended();
2530     SR_lock()->notify_all();
2531   }
2532 }
2533 
2534 size_t JavaThread::_stack_red_zone_size = 0;
2535 size_t JavaThread::_stack_yellow_zone_size = 0;
2536 size_t JavaThread::_stack_reserved_zone_size = 0;
2537 size_t JavaThread::_stack_shadow_zone_size = 0;
2538 
2539 void JavaThread::create_stack_guard_pages() {
2540   if (!os::uses_stack_guard_pages() ||
2541       _stack_guard_state != stack_guard_unused ||
2542       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2543       log_info(os, thread)("Stack guard page creation for thread "
2544                            UINTX_FORMAT " disabled", os::current_thread_id());
2545     return;
2546   }
2547   address low_addr = stack_end();
2548   size_t len = stack_guard_zone_size();
2549 
2550   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2551   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2552 
2553   int must_commit = os::must_commit_stack_guard_pages();
2554   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2555 
2556   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2557     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2558     return;
2559   }
2560 
2561   if (os::guard_memory((char *) low_addr, len)) {
2562     _stack_guard_state = stack_guard_enabled;
2563   } else {
2564     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2565       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2566     if (os::uncommit_memory((char *) low_addr, len)) {
2567       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2568     }
2569     return;
2570   }
2571 
2572   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2573     PTR_FORMAT "-" PTR_FORMAT ".",
2574     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2575 }
2576 
2577 void JavaThread::remove_stack_guard_pages() {
2578   assert(Thread::current() == this, "from different thread");
2579   if (_stack_guard_state == stack_guard_unused) return;
2580   address low_addr = stack_end();
2581   size_t len = stack_guard_zone_size();
2582 
2583   if (os::must_commit_stack_guard_pages()) {
2584     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2585       _stack_guard_state = stack_guard_unused;
2586     } else {
2587       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2588         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2589       return;
2590     }
2591   } else {
2592     if (_stack_guard_state == stack_guard_unused) return;
2593     if (os::unguard_memory((char *) low_addr, len)) {
2594       _stack_guard_state = stack_guard_unused;
2595     } else {
2596       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2597         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2598       return;
2599     }
2600   }
2601 
2602   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2603     PTR_FORMAT "-" PTR_FORMAT ".",
2604     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2605 }
2606 
2607 void JavaThread::enable_stack_reserved_zone() {
2608   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2609   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2610 
2611   // The base notation is from the stack's point of view, growing downward.
2612   // We need to adjust it to work correctly with guard_memory()
2613   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2614 
2615   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2616   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2617 
2618   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2619     _stack_guard_state = stack_guard_enabled;
2620   } else {
2621     warning("Attempt to guard stack reserved zone failed.");
2622   }
2623   enable_register_stack_guard();
2624 }
2625 
2626 void JavaThread::disable_stack_reserved_zone() {
2627   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2628   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2629 
2630   // Simply return if called for a thread that does not use guard pages.
2631   if (_stack_guard_state == stack_guard_unused) return;
2632 
2633   // The base notation is from the stack's point of view, growing downward.
2634   // We need to adjust it to work correctly with guard_memory()
2635   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2636 
2637   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2638     _stack_guard_state = stack_guard_reserved_disabled;
2639   } else {
2640     warning("Attempt to unguard stack reserved zone failed.");
2641   }
2642   disable_register_stack_guard();
2643 }
2644 
2645 void JavaThread::enable_stack_yellow_reserved_zone() {
2646   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2647   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2648 
2649   // The base notation is from the stacks point of view, growing downward.
2650   // We need to adjust it to work correctly with guard_memory()
2651   address base = stack_red_zone_base();
2652 
2653   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2654   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2655 
2656   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2657     _stack_guard_state = stack_guard_enabled;
2658   } else {
2659     warning("Attempt to guard stack yellow zone failed.");
2660   }
2661   enable_register_stack_guard();
2662 }
2663 
2664 void JavaThread::disable_stack_yellow_reserved_zone() {
2665   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2666   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2667 
2668   // Simply return if called for a thread that does not use guard pages.
2669   if (_stack_guard_state == stack_guard_unused) return;
2670 
2671   // The base notation is from the stacks point of view, growing downward.
2672   // We need to adjust it to work correctly with guard_memory()
2673   address base = stack_red_zone_base();
2674 
2675   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2676     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2677   } else {
2678     warning("Attempt to unguard stack yellow zone failed.");
2679   }
2680   disable_register_stack_guard();
2681 }
2682 
2683 void JavaThread::enable_stack_red_zone() {
2684   // The base notation is from the stacks point of view, growing downward.
2685   // We need to adjust it to work correctly with guard_memory()
2686   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2687   address base = stack_red_zone_base() - stack_red_zone_size();
2688 
2689   guarantee(base < stack_base(), "Error calculating stack red zone");
2690   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2691 
2692   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2693     warning("Attempt to guard stack red zone failed.");
2694   }
2695 }
2696 
2697 void JavaThread::disable_stack_red_zone() {
2698   // The base notation is from the stacks point of view, growing downward.
2699   // We need to adjust it to work correctly with guard_memory()
2700   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2701   address base = stack_red_zone_base() - stack_red_zone_size();
2702   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2703     warning("Attempt to unguard stack red zone failed.");
2704   }
2705 }
2706 
2707 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2708   // ignore is there is no stack
2709   if (!has_last_Java_frame()) return;
2710   // traverse the stack frames. Starts from top frame.
2711   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2712     frame* fr = fst.current();
2713     f(fr, fst.register_map());
2714   }
2715 }
2716 
2717 
2718 #ifndef PRODUCT
2719 // Deoptimization
2720 // Function for testing deoptimization
2721 void JavaThread::deoptimize() {
2722   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2723   StackFrameStream fst(this, UseBiasedLocking);
2724   bool deopt = false;           // Dump stack only if a deopt actually happens.
2725   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2726   // Iterate over all frames in the thread and deoptimize
2727   for (; !fst.is_done(); fst.next()) {
2728     if (fst.current()->can_be_deoptimized()) {
2729 
2730       if (only_at) {
2731         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2732         // consists of comma or carriage return separated numbers so
2733         // search for the current bci in that string.
2734         address pc = fst.current()->pc();
2735         nmethod* nm =  (nmethod*) fst.current()->cb();
2736         ScopeDesc* sd = nm->scope_desc_at(pc);
2737         char buffer[8];
2738         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2739         size_t len = strlen(buffer);
2740         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2741         while (found != NULL) {
2742           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2743               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2744             // Check that the bci found is bracketed by terminators.
2745             break;
2746           }
2747           found = strstr(found + 1, buffer);
2748         }
2749         if (!found) {
2750           continue;
2751         }
2752       }
2753 
2754       if (DebugDeoptimization && !deopt) {
2755         deopt = true; // One-time only print before deopt
2756         tty->print_cr("[BEFORE Deoptimization]");
2757         trace_frames();
2758         trace_stack();
2759       }
2760       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2761     }
2762   }
2763 
2764   if (DebugDeoptimization && deopt) {
2765     tty->print_cr("[AFTER Deoptimization]");
2766     trace_frames();
2767   }
2768 }
2769 
2770 
2771 // Make zombies
2772 void JavaThread::make_zombies() {
2773   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2774     if (fst.current()->can_be_deoptimized()) {
2775       // it is a Java nmethod
2776       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2777       nm->make_not_entrant();
2778     }
2779   }
2780 }
2781 #endif // PRODUCT
2782 
2783 
2784 void JavaThread::deoptimized_wrt_marked_nmethods() {
2785   if (!has_last_Java_frame()) return;
2786   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2787   StackFrameStream fst(this, UseBiasedLocking);
2788   for (; !fst.is_done(); fst.next()) {
2789     if (fst.current()->should_be_deoptimized()) {
2790       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2791     }
2792   }
2793 }
2794 
2795 
2796 // If the caller is a NamedThread, then remember, in the current scope,
2797 // the given JavaThread in its _processed_thread field.
2798 class RememberProcessedThread: public StackObj {
2799   NamedThread* _cur_thr;
2800  public:
2801   RememberProcessedThread(JavaThread* jthr) {
2802     Thread* thread = Thread::current();
2803     if (thread->is_Named_thread()) {
2804       _cur_thr = (NamedThread *)thread;
2805       _cur_thr->set_processed_thread(jthr);
2806     } else {
2807       _cur_thr = NULL;
2808     }
2809   }
2810 
2811   ~RememberProcessedThread() {
2812     if (_cur_thr) {
2813       _cur_thr->set_processed_thread(NULL);
2814     }
2815   }
2816 };
2817 
2818 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2819   // Verify that the deferred card marks have been flushed.
2820   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2821 
2822   // Traverse the GCHandles
2823   Thread::oops_do(f, cf);
2824 
2825   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2826 
2827   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2828          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2829 
2830   if (has_last_Java_frame()) {
2831     // Record JavaThread to GC thread
2832     RememberProcessedThread rpt(this);
2833 
2834     // Traverse the privileged stack
2835     if (_privileged_stack_top != NULL) {
2836       _privileged_stack_top->oops_do(f);
2837     }
2838 
2839     // traverse the registered growable array
2840     if (_array_for_gc != NULL) {
2841       for (int index = 0; index < _array_for_gc->length(); index++) {
2842         f->do_oop(_array_for_gc->adr_at(index));
2843       }
2844     }
2845 
2846     // Traverse the monitor chunks
2847     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2848       chunk->oops_do(f);
2849     }
2850 
2851     // Traverse the execution stack
2852     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2853       fst.current()->oops_do(f, cf, fst.register_map());
2854     }
2855   }
2856 
2857   // callee_target is never live across a gc point so NULL it here should
2858   // it still contain a methdOop.
2859 
2860   set_callee_target(NULL);
2861 
2862   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2863   // If we have deferred set_locals there might be oops waiting to be
2864   // written
2865   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2866   if (list != NULL) {
2867     for (int i = 0; i < list->length(); i++) {
2868       list->at(i)->oops_do(f);
2869     }
2870   }
2871 
2872   // Traverse instance variables at the end since the GC may be moving things
2873   // around using this function
2874   f->do_oop((oop*) &_threadObj);
2875   f->do_oop((oop*) &_vm_result);
2876   f->do_oop((oop*) &_exception_oop);
2877   f->do_oop((oop*) &_pending_async_exception);
2878 
2879   if (jvmti_thread_state() != NULL) {
2880     jvmti_thread_state()->oops_do(f);
2881   }
2882 }
2883 
2884 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2885   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2886          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2887 
2888   if (has_last_Java_frame()) {
2889     // Traverse the execution stack
2890     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2891       fst.current()->nmethods_do(cf);
2892     }
2893   }
2894 }
2895 
2896 void JavaThread::metadata_do(void f(Metadata*)) {
2897   if (has_last_Java_frame()) {
2898     // Traverse the execution stack to call f() on the methods in the stack
2899     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2900       fst.current()->metadata_do(f);
2901     }
2902   } else if (is_Compiler_thread()) {
2903     // need to walk ciMetadata in current compile tasks to keep alive.
2904     CompilerThread* ct = (CompilerThread*)this;
2905     if (ct->env() != NULL) {
2906       ct->env()->metadata_do(f);
2907     }
2908     CompileTask* task = ct->task();
2909     if (task != NULL) {
2910       task->metadata_do(f);
2911     }
2912   }
2913 }
2914 
2915 // Printing
2916 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2917   switch (_thread_state) {
2918   case _thread_uninitialized:     return "_thread_uninitialized";
2919   case _thread_new:               return "_thread_new";
2920   case _thread_new_trans:         return "_thread_new_trans";
2921   case _thread_in_native:         return "_thread_in_native";
2922   case _thread_in_native_trans:   return "_thread_in_native_trans";
2923   case _thread_in_vm:             return "_thread_in_vm";
2924   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2925   case _thread_in_Java:           return "_thread_in_Java";
2926   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2927   case _thread_blocked:           return "_thread_blocked";
2928   case _thread_blocked_trans:     return "_thread_blocked_trans";
2929   default:                        return "unknown thread state";
2930   }
2931 }
2932 
2933 #ifndef PRODUCT
2934 void JavaThread::print_thread_state_on(outputStream *st) const {
2935   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2936 };
2937 void JavaThread::print_thread_state() const {
2938   print_thread_state_on(tty);
2939 }
2940 #endif // PRODUCT
2941 
2942 // Called by Threads::print() for VM_PrintThreads operation
2943 void JavaThread::print_on(outputStream *st) const {
2944   st->print_raw("\"");
2945   st->print_raw(get_thread_name());
2946   st->print_raw("\" ");
2947   oop thread_oop = threadObj();
2948   if (thread_oop != NULL) {
2949     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2950     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2951     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2952   }
2953   Thread::print_on(st);
2954   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2955   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2956   if (thread_oop != NULL) {
2957     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2958   }
2959 #ifndef PRODUCT
2960   print_thread_state_on(st);
2961   _safepoint_state->print_on(st);
2962 #endif // PRODUCT
2963   if (is_Compiler_thread()) {
2964     CompileTask *task = ((CompilerThread*)this)->task();
2965     if (task != NULL) {
2966       st->print("   Compiling: ");
2967       task->print(st, NULL, true, false);
2968     } else {
2969       st->print("   No compile task");
2970     }
2971     st->cr();
2972   }
2973 }
2974 
2975 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2976   st->print("%s", get_thread_name_string(buf, buflen));
2977 }
2978 
2979 // Called by fatal error handler. The difference between this and
2980 // JavaThread::print() is that we can't grab lock or allocate memory.
2981 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2982   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2983   oop thread_obj = threadObj();
2984   if (thread_obj != NULL) {
2985     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2986   }
2987   st->print(" [");
2988   st->print("%s", _get_thread_state_name(_thread_state));
2989   if (osthread()) {
2990     st->print(", id=%d", osthread()->thread_id());
2991   }
2992   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2993             p2i(stack_end()), p2i(stack_base()));
2994   st->print("]");
2995 
2996   if (_threads_hazard_ptr != NULL) {
2997     st->print(" _threads_hazard_ptr=" INTPTR_FORMAT, p2i(_threads_hazard_ptr));
2998   }
2999   if (_nested_threads_hazard_ptr != NULL) {
3000     print_nested_threads_hazard_ptrs_on(st);
3001   }
3002   return;
3003 }
3004 
3005 // Verification
3006 
3007 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3008 
3009 void JavaThread::verify() {
3010   // Verify oops in the thread.
3011   oops_do(&VerifyOopClosure::verify_oop, NULL);
3012 
3013   // Verify the stack frames.
3014   frames_do(frame_verify);
3015 }
3016 
3017 // CR 6300358 (sub-CR 2137150)
3018 // Most callers of this method assume that it can't return NULL but a
3019 // thread may not have a name whilst it is in the process of attaching to
3020 // the VM - see CR 6412693, and there are places where a JavaThread can be
3021 // seen prior to having it's threadObj set (eg JNI attaching threads and
3022 // if vm exit occurs during initialization). These cases can all be accounted
3023 // for such that this method never returns NULL.
3024 const char* JavaThread::get_thread_name() const {
3025 #ifdef ASSERT
3026   // early safepoints can hit while current thread does not yet have TLS
3027   if (!SafepointSynchronize::is_at_safepoint()) {
3028     Thread *cur = Thread::current();
3029     if (!(cur->is_Java_thread() && cur == this)) {
3030       // Current JavaThreads are allowed to get their own name without
3031       // the Threads_lock.
3032       assert_locked_or_safepoint(Threads_lock);
3033     }
3034   }
3035 #endif // ASSERT
3036   return get_thread_name_string();
3037 }
3038 
3039 // Returns a non-NULL representation of this thread's name, or a suitable
3040 // descriptive string if there is no set name
3041 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3042   const char* name_str;
3043   oop thread_obj = threadObj();
3044   if (thread_obj != NULL) {
3045     oop name = java_lang_Thread::name(thread_obj);
3046     if (name != NULL) {
3047       if (buf == NULL) {
3048         name_str = java_lang_String::as_utf8_string(name);
3049       } else {
3050         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3051       }
3052     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3053       name_str = "<no-name - thread is attaching>";
3054     } else {
3055       name_str = Thread::name();
3056     }
3057   } else {
3058     name_str = Thread::name();
3059   }
3060   assert(name_str != NULL, "unexpected NULL thread name");
3061   return name_str;
3062 }
3063 
3064 
3065 const char* JavaThread::get_threadgroup_name() const {
3066   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3067   oop thread_obj = threadObj();
3068   if (thread_obj != NULL) {
3069     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3070     if (thread_group != NULL) {
3071       // ThreadGroup.name can be null
3072       return java_lang_ThreadGroup::name(thread_group);
3073     }
3074   }
3075   return NULL;
3076 }
3077 
3078 const char* JavaThread::get_parent_name() const {
3079   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3080   oop thread_obj = threadObj();
3081   if (thread_obj != NULL) {
3082     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3083     if (thread_group != NULL) {
3084       oop parent = java_lang_ThreadGroup::parent(thread_group);
3085       if (parent != NULL) {
3086         // ThreadGroup.name can be null
3087         return java_lang_ThreadGroup::name(parent);
3088       }
3089     }
3090   }
3091   return NULL;
3092 }
3093 
3094 ThreadPriority JavaThread::java_priority() const {
3095   oop thr_oop = threadObj();
3096   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3097   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3098   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3099   return priority;
3100 }
3101 
3102 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3103 
3104   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3105   // Link Java Thread object <-> C++ Thread
3106 
3107   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3108   // and put it into a new Handle.  The Handle "thread_oop" can then
3109   // be used to pass the C++ thread object to other methods.
3110 
3111   // Set the Java level thread object (jthread) field of the
3112   // new thread (a JavaThread *) to C++ thread object using the
3113   // "thread_oop" handle.
3114 
3115   // Set the thread field (a JavaThread *) of the
3116   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3117 
3118   Handle thread_oop(Thread::current(),
3119                     JNIHandles::resolve_non_null(jni_thread));
3120   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3121          "must be initialized");
3122   set_threadObj(thread_oop());
3123   java_lang_Thread::set_thread(thread_oop(), this);
3124 
3125   if (prio == NoPriority) {
3126     prio = java_lang_Thread::priority(thread_oop());
3127     assert(prio != NoPriority, "A valid priority should be present");
3128   }
3129 
3130   // Push the Java priority down to the native thread; needs Threads_lock
3131   Thread::set_priority(this, prio);
3132 
3133   // Add the new thread to the Threads list and set it in motion.
3134   // We must have threads lock in order to call Threads::add.
3135   // It is crucial that we do not block before the thread is
3136   // added to the Threads list for if a GC happens, then the java_thread oop
3137   // will not be visited by GC.
3138   Threads::add(this);
3139 }
3140 
3141 oop JavaThread::current_park_blocker() {
3142   // Support for JSR-166 locks
3143   oop thread_oop = threadObj();
3144   if (thread_oop != NULL &&
3145       JDK_Version::current().supports_thread_park_blocker()) {
3146     return java_lang_Thread::park_blocker(thread_oop);
3147   }
3148   return NULL;
3149 }
3150 
3151 
3152 void JavaThread::print_stack_on(outputStream* st) {
3153   if (!has_last_Java_frame()) return;
3154   ResourceMark rm;
3155   HandleMark   hm;
3156 
3157   RegisterMap reg_map(this);
3158   vframe* start_vf = last_java_vframe(&reg_map);
3159   int count = 0;
3160   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3161     if (f->is_java_frame()) {
3162       javaVFrame* jvf = javaVFrame::cast(f);
3163       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3164 
3165       // Print out lock information
3166       if (JavaMonitorsInStackTrace) {
3167         jvf->print_lock_info_on(st, count);
3168       }
3169     } else {
3170       // Ignore non-Java frames
3171     }
3172 
3173     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3174     count++;
3175     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3176   }
3177 }
3178 
3179 
3180 // JVMTI PopFrame support
3181 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3182   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3183   if (in_bytes(size_in_bytes) != 0) {
3184     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3185     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3186     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3187   }
3188 }
3189 
3190 void* JavaThread::popframe_preserved_args() {
3191   return _popframe_preserved_args;
3192 }
3193 
3194 ByteSize JavaThread::popframe_preserved_args_size() {
3195   return in_ByteSize(_popframe_preserved_args_size);
3196 }
3197 
3198 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3199   int sz = in_bytes(popframe_preserved_args_size());
3200   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3201   return in_WordSize(sz / wordSize);
3202 }
3203 
3204 void JavaThread::popframe_free_preserved_args() {
3205   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3206   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3207   _popframe_preserved_args = NULL;
3208   _popframe_preserved_args_size = 0;
3209 }
3210 
3211 #ifndef PRODUCT
3212 
3213 void JavaThread::trace_frames() {
3214   tty->print_cr("[Describe stack]");
3215   int frame_no = 1;
3216   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3217     tty->print("  %d. ", frame_no++);
3218     fst.current()->print_value_on(tty, this);
3219     tty->cr();
3220   }
3221 }
3222 
3223 class PrintAndVerifyOopClosure: public OopClosure {
3224  protected:
3225   template <class T> inline void do_oop_work(T* p) {
3226     oop obj = RawAccess<>::oop_load(p);
3227     if (obj == NULL) return;
3228     tty->print(INTPTR_FORMAT ": ", p2i(p));
3229     if (oopDesc::is_oop_or_null(obj)) {
3230       if (obj->is_objArray()) {
3231         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3232       } else {
3233         obj->print();
3234       }
3235     } else {
3236       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3237     }
3238     tty->cr();
3239   }
3240  public:
3241   virtual void do_oop(oop* p) { do_oop_work(p); }
3242   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3243 };
3244 
3245 
3246 static void oops_print(frame* f, const RegisterMap *map) {
3247   PrintAndVerifyOopClosure print;
3248   f->print_value();
3249   f->oops_do(&print, NULL, (RegisterMap*)map);
3250 }
3251 
3252 // Print our all the locations that contain oops and whether they are
3253 // valid or not.  This useful when trying to find the oldest frame
3254 // where an oop has gone bad since the frame walk is from youngest to
3255 // oldest.
3256 void JavaThread::trace_oops() {
3257   tty->print_cr("[Trace oops]");
3258   frames_do(oops_print);
3259 }
3260 
3261 
3262 #ifdef ASSERT
3263 // Print or validate the layout of stack frames
3264 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3265   ResourceMark rm;
3266   PRESERVE_EXCEPTION_MARK;
3267   FrameValues values;
3268   int frame_no = 0;
3269   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3270     fst.current()->describe(values, ++frame_no);
3271     if (depth == frame_no) break;
3272   }
3273   if (validate_only) {
3274     values.validate();
3275   } else {
3276     tty->print_cr("[Describe stack layout]");
3277     values.print(this);
3278   }
3279 }
3280 #endif
3281 
3282 void JavaThread::trace_stack_from(vframe* start_vf) {
3283   ResourceMark rm;
3284   int vframe_no = 1;
3285   for (vframe* f = start_vf; f; f = f->sender()) {
3286     if (f->is_java_frame()) {
3287       javaVFrame::cast(f)->print_activation(vframe_no++);
3288     } else {
3289       f->print();
3290     }
3291     if (vframe_no > StackPrintLimit) {
3292       tty->print_cr("...<more frames>...");
3293       return;
3294     }
3295   }
3296 }
3297 
3298 
3299 void JavaThread::trace_stack() {
3300   if (!has_last_Java_frame()) return;
3301   ResourceMark rm;
3302   HandleMark   hm;
3303   RegisterMap reg_map(this);
3304   trace_stack_from(last_java_vframe(&reg_map));
3305 }
3306 
3307 
3308 #endif // PRODUCT
3309 
3310 
3311 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3312   assert(reg_map != NULL, "a map must be given");
3313   frame f = last_frame();
3314   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3315     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3316   }
3317   return NULL;
3318 }
3319 
3320 
3321 Klass* JavaThread::security_get_caller_class(int depth) {
3322   vframeStream vfst(this);
3323   vfst.security_get_caller_frame(depth);
3324   if (!vfst.at_end()) {
3325     return vfst.method()->method_holder();
3326   }
3327   return NULL;
3328 }
3329 
3330 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3331   assert(thread->is_Compiler_thread(), "must be compiler thread");
3332   CompileBroker::compiler_thread_loop();
3333 }
3334 
3335 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3336   NMethodSweeper::sweeper_loop();
3337 }
3338 
3339 // Create a CompilerThread
3340 CompilerThread::CompilerThread(CompileQueue* queue,
3341                                CompilerCounters* counters)
3342                                : JavaThread(&compiler_thread_entry) {
3343   _env   = NULL;
3344   _log   = NULL;
3345   _task  = NULL;
3346   _queue = queue;
3347   _counters = counters;
3348   _buffer_blob = NULL;
3349   _compiler = NULL;
3350 
3351   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3352   resource_area()->bias_to(mtCompiler);
3353 
3354 #ifndef PRODUCT
3355   _ideal_graph_printer = NULL;
3356 #endif
3357 }
3358 
3359 CompilerThread::~CompilerThread() {
3360   // Delete objects which were allocated on heap.
3361   delete _counters;
3362 }
3363 
3364 bool CompilerThread::can_call_java() const {
3365   return _compiler != NULL && _compiler->is_jvmci();
3366 }
3367 
3368 // Create sweeper thread
3369 CodeCacheSweeperThread::CodeCacheSweeperThread()
3370 : JavaThread(&sweeper_thread_entry) {
3371   _scanned_compiled_method = NULL;
3372 }
3373 
3374 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3375   JavaThread::oops_do(f, cf);
3376   if (_scanned_compiled_method != NULL && cf != NULL) {
3377     // Safepoints can occur when the sweeper is scanning an nmethod so
3378     // process it here to make sure it isn't unloaded in the middle of
3379     // a scan.
3380     cf->do_code_blob(_scanned_compiled_method);
3381   }
3382 }
3383 
3384 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3385   JavaThread::nmethods_do(cf);
3386   if (_scanned_compiled_method != NULL && cf != NULL) {
3387     // Safepoints can occur when the sweeper is scanning an nmethod so
3388     // process it here to make sure it isn't unloaded in the middle of
3389     // a scan.
3390     cf->do_code_blob(_scanned_compiled_method);
3391   }
3392 }
3393 
3394 
3395 // ======= Threads ========
3396 
3397 // The Threads class links together all active threads, and provides
3398 // operations over all threads. It is protected by the Threads_lock,
3399 // which is also used in other global contexts like safepointing.
3400 // ThreadsListHandles are used to safely perform operations on one
3401 // or more threads without the risk of the thread exiting during the
3402 // operation.
3403 //
3404 // Note: The Threads_lock is currently more widely used than we
3405 // would like. We are actively migrating Threads_lock uses to other
3406 // mechanisms in order to reduce Threads_lock contention.
3407 
3408 JavaThread* Threads::_thread_list = NULL;
3409 int         Threads::_number_of_threads = 0;
3410 int         Threads::_number_of_non_daemon_threads = 0;
3411 int         Threads::_return_code = 0;
3412 int         Threads::_thread_claim_parity = 0;
3413 size_t      JavaThread::_stack_size_at_create = 0;
3414 
3415 #ifdef ASSERT
3416 bool        Threads::_vm_complete = false;
3417 #endif
3418 
3419 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3420   Prefetch::read((void*)addr, prefetch_interval);
3421   return *addr;
3422 }
3423 
3424 // Possibly the ugliest for loop the world has seen. C++ does not allow
3425 // multiple types in the declaration section of the for loop. In this case
3426 // we are only dealing with pointers and hence can cast them. It looks ugly
3427 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3428 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3429     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3430              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3431              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3432              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3433              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3434          MACRO_current_p != MACRO_end;                                                                                    \
3435          MACRO_current_p++,                                                                                               \
3436              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3437 
3438 // All JavaThreads
3439 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3440 
3441 // All non-JavaThreads (i.e., every non-JavaThread in the system).
3442 void Threads::non_java_threads_do(ThreadClosure* tc) {
3443   // Someday we could have a table or list of all non-JavaThreads.
3444   // For now, just manually iterate through them.
3445   tc->do_thread(VMThread::vm_thread());
3446   if (Universe::heap() != NULL) {
3447     Universe::heap()->gc_threads_do(tc);
3448   }
3449   WatcherThread *wt = WatcherThread::watcher_thread();
3450   // Strictly speaking, the following NULL check isn't sufficient to make sure
3451   // the data for WatcherThread is still valid upon being examined. However,
3452   // considering that WatchThread terminates when the VM is on the way to
3453   // exit at safepoint, the chance of the above is extremely small. The right
3454   // way to prevent termination of WatcherThread would be to acquire
3455   // Terminator_lock, but we can't do that without violating the lock rank
3456   // checking in some cases.
3457   if (wt != NULL) {
3458     tc->do_thread(wt);
3459   }
3460 
3461 #if INCLUDE_TRACE
3462   Thread* sampler_thread = TracingExport::sampler_thread_acquire();
3463   if (sampler_thread != NULL) {
3464     tc->do_thread(sampler_thread);
3465   }
3466 #endif
3467 
3468   // If CompilerThreads ever become non-JavaThreads, add them here
3469 }
3470 
3471 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3472 void Threads::threads_do(ThreadClosure* tc) {
3473   assert_locked_or_safepoint(Threads_lock);
3474   // ALL_JAVA_THREADS iterates through all JavaThreads.
3475   ALL_JAVA_THREADS(p) {
3476     tc->do_thread(p);
3477   }
3478   non_java_threads_do(tc);
3479 }
3480 
3481 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3482   int cp = Threads::thread_claim_parity();
3483   ALL_JAVA_THREADS(p) {
3484     if (p->claim_oops_do(is_par, cp)) {
3485       tc->do_thread(p);
3486     }
3487   }
3488   VMThread* vmt = VMThread::vm_thread();
3489   if (vmt->claim_oops_do(is_par, cp)) {
3490     tc->do_thread(vmt);
3491   }
3492 }
3493 
3494 // The system initialization in the library has three phases.
3495 //
3496 // Phase 1: java.lang.System class initialization
3497 //     java.lang.System is a primordial class loaded and initialized
3498 //     by the VM early during startup.  java.lang.System.<clinit>
3499 //     only does registerNatives and keeps the rest of the class
3500 //     initialization work later until thread initialization completes.
3501 //
3502 //     System.initPhase1 initializes the system properties, the static
3503 //     fields in, out, and err. Set up java signal handlers, OS-specific
3504 //     system settings, and thread group of the main thread.
3505 static void call_initPhase1(TRAPS) {
3506   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3507   JavaValue result(T_VOID);
3508   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3509                                          vmSymbols::void_method_signature(), CHECK);
3510 }
3511 
3512 // Phase 2. Module system initialization
3513 //     This will initialize the module system.  Only java.base classes
3514 //     can be loaded until phase 2 completes.
3515 //
3516 //     Call System.initPhase2 after the compiler initialization and jsr292
3517 //     classes get initialized because module initialization runs a lot of java
3518 //     code, that for performance reasons, should be compiled.  Also, this will
3519 //     enable the startup code to use lambda and other language features in this
3520 //     phase and onward.
3521 //
3522 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3523 static void call_initPhase2(TRAPS) {
3524   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3525 
3526   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3527 
3528   JavaValue result(T_INT);
3529   JavaCallArguments args;
3530   args.push_int(DisplayVMOutputToStderr);
3531   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3532   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3533                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3534   if (result.get_jint() != JNI_OK) {
3535     vm_exit_during_initialization(); // no message or exception
3536   }
3537 
3538   universe_post_module_init();
3539 }
3540 
3541 // Phase 3. final setup - set security manager, system class loader and TCCL
3542 //
3543 //     This will instantiate and set the security manager, set the system class
3544 //     loader as well as the thread context class loader.  The security manager
3545 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3546 //     other modules or the application's classpath.
3547 static void call_initPhase3(TRAPS) {
3548   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3549   JavaValue result(T_VOID);
3550   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3551                                          vmSymbols::void_method_signature(), CHECK);
3552 }
3553 
3554 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3555   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3556 
3557   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3558     create_vm_init_libraries();
3559   }
3560 
3561   initialize_class(vmSymbols::java_lang_String(), CHECK);
3562 
3563   // Inject CompactStrings value after the static initializers for String ran.
3564   java_lang_String::set_compact_strings(CompactStrings);
3565 
3566   // Initialize java_lang.System (needed before creating the thread)
3567   initialize_class(vmSymbols::java_lang_System(), CHECK);
3568   // The VM creates & returns objects of this class. Make sure it's initialized.
3569   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3570   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3571   Handle thread_group = create_initial_thread_group(CHECK);
3572   Universe::set_main_thread_group(thread_group());
3573   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3574   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3575   main_thread->set_threadObj(thread_object);
3576   // Set thread status to running since main thread has
3577   // been started and running.
3578   java_lang_Thread::set_thread_status(thread_object,
3579                                       java_lang_Thread::RUNNABLE);
3580 
3581   // The VM creates objects of this class.
3582   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3583 
3584   // The VM preresolves methods to these classes. Make sure that they get initialized
3585   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3586   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3587 
3588   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3589   call_initPhase1(CHECK);
3590 
3591   // get the Java runtime name after java.lang.System is initialized
3592   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3593   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3594 
3595   // an instance of OutOfMemory exception has been allocated earlier
3596   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3597   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3598   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3599   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3600   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3601   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3602   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3603   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3604 }
3605 
3606 void Threads::initialize_jsr292_core_classes(TRAPS) {
3607   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3608 
3609   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3610   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3611   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3612   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3613 }
3614 
3615 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3616   extern void JDK_Version_init();
3617 
3618   // Preinitialize version info.
3619   VM_Version::early_initialize();
3620 
3621   // Check version
3622   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3623 
3624   // Initialize library-based TLS
3625   ThreadLocalStorage::init();
3626 
3627   // Initialize the output stream module
3628   ostream_init();
3629 
3630   // Process java launcher properties.
3631   Arguments::process_sun_java_launcher_properties(args);
3632 
3633   // Initialize the os module
3634   os::init();
3635 
3636   // Record VM creation timing statistics
3637   TraceVmCreationTime create_vm_timer;
3638   create_vm_timer.start();
3639 
3640   // Initialize system properties.
3641   Arguments::init_system_properties();
3642 
3643   // So that JDK version can be used as a discriminator when parsing arguments
3644   JDK_Version_init();
3645 
3646   // Update/Initialize System properties after JDK version number is known
3647   Arguments::init_version_specific_system_properties();
3648 
3649   // Make sure to initialize log configuration *before* parsing arguments
3650   LogConfiguration::initialize(create_vm_timer.begin_time());
3651 
3652   // Parse arguments
3653   // Note: this internally calls os::init_container_support()
3654   jint parse_result = Arguments::parse(args);
3655   if (parse_result != JNI_OK) return parse_result;
3656 
3657   os::init_before_ergo();
3658 
3659   jint ergo_result = Arguments::apply_ergo();
3660   if (ergo_result != JNI_OK) return ergo_result;
3661 
3662   // Final check of all ranges after ergonomics which may change values.
3663   if (!JVMFlagRangeList::check_ranges()) {
3664     return JNI_EINVAL;
3665   }
3666 
3667   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3668   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3669   if (!constraint_result) {
3670     return JNI_EINVAL;
3671   }
3672 
3673   JVMFlagWriteableList::mark_startup();
3674 
3675   if (PauseAtStartup) {
3676     os::pause();
3677   }
3678 
3679   HOTSPOT_VM_INIT_BEGIN();
3680 
3681   // Timing (must come after argument parsing)
3682   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3683 
3684 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3685   // Initialize assert poison page mechanism.
3686   if (ShowRegistersOnAssert) {
3687     initialize_assert_poison();
3688   }
3689 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3690 
3691   // Initialize the os module after parsing the args
3692   jint os_init_2_result = os::init_2();
3693   if (os_init_2_result != JNI_OK) return os_init_2_result;
3694 
3695   SafepointMechanism::initialize();
3696 
3697   jint adjust_after_os_result = Arguments::adjust_after_os();
3698   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3699 
3700   // Initialize output stream logging
3701   ostream_init_log();
3702 
3703   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3704   // Must be before create_vm_init_agents()
3705   if (Arguments::init_libraries_at_startup()) {
3706     convert_vm_init_libraries_to_agents();
3707   }
3708 
3709   // Launch -agentlib/-agentpath and converted -Xrun agents
3710   if (Arguments::init_agents_at_startup()) {
3711     create_vm_init_agents();
3712   }
3713 
3714   // Initialize Threads state
3715   _thread_list = NULL;
3716   _number_of_threads = 0;
3717   _number_of_non_daemon_threads = 0;
3718 
3719   // Initialize global data structures and create system classes in heap
3720   vm_init_globals();
3721 
3722 #if INCLUDE_JVMCI
3723   if (JVMCICounterSize > 0) {
3724     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3725     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3726   } else {
3727     JavaThread::_jvmci_old_thread_counters = NULL;
3728   }
3729 #endif // INCLUDE_JVMCI
3730 
3731   // Attach the main thread to this os thread
3732   JavaThread* main_thread = new JavaThread();
3733   main_thread->set_thread_state(_thread_in_vm);
3734   main_thread->initialize_thread_current();
3735   // must do this before set_active_handles
3736   main_thread->record_stack_base_and_size();
3737   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3738 
3739   if (!main_thread->set_as_starting_thread()) {
3740     vm_shutdown_during_initialization(
3741                                       "Failed necessary internal allocation. Out of swap space");
3742     main_thread->smr_delete();
3743     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3744     return JNI_ENOMEM;
3745   }
3746 
3747   // Enable guard page *after* os::create_main_thread(), otherwise it would
3748   // crash Linux VM, see notes in os_linux.cpp.
3749   main_thread->create_stack_guard_pages();
3750 
3751   // Initialize Java-Level synchronization subsystem
3752   ObjectMonitor::Initialize();
3753 
3754   // Initialize global modules
3755   jint status = init_globals();
3756   if (status != JNI_OK) {
3757     main_thread->smr_delete();
3758     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3759     return status;
3760   }
3761 
3762   if (TRACE_INITIALIZE() != JNI_OK) {
3763     vm_exit_during_initialization("Failed to initialize tracing backend");
3764   }
3765 
3766   // Should be done after the heap is fully created
3767   main_thread->cache_global_variables();
3768 
3769   HandleMark hm;
3770 
3771   { MutexLocker mu(Threads_lock);
3772     Threads::add(main_thread);
3773   }
3774 
3775   // Any JVMTI raw monitors entered in onload will transition into
3776   // real raw monitor. VM is setup enough here for raw monitor enter.
3777   JvmtiExport::transition_pending_onload_raw_monitors();
3778 
3779   // Create the VMThread
3780   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3781 
3782   VMThread::create();
3783     Thread* vmthread = VMThread::vm_thread();
3784 
3785     if (!os::create_thread(vmthread, os::vm_thread)) {
3786       vm_exit_during_initialization("Cannot create VM thread. "
3787                                     "Out of system resources.");
3788     }
3789 
3790     // Wait for the VM thread to become ready, and VMThread::run to initialize
3791     // Monitors can have spurious returns, must always check another state flag
3792     {
3793       MutexLocker ml(Notify_lock);
3794       os::start_thread(vmthread);
3795       while (vmthread->active_handles() == NULL) {
3796         Notify_lock->wait();
3797       }
3798     }
3799   }
3800 
3801   assert(Universe::is_fully_initialized(), "not initialized");
3802   if (VerifyDuringStartup) {
3803     // Make sure we're starting with a clean slate.
3804     VM_Verify verify_op;
3805     VMThread::execute(&verify_op);
3806   }
3807 
3808   Thread* THREAD = Thread::current();
3809 
3810   // Always call even when there are not JVMTI environments yet, since environments
3811   // may be attached late and JVMTI must track phases of VM execution
3812   JvmtiExport::enter_early_start_phase();
3813 
3814   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3815   JvmtiExport::post_early_vm_start();
3816 
3817   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3818 
3819   // We need this for ClassDataSharing - the initial vm.info property is set
3820   // with the default value of CDS "sharing" which may be reset through
3821   // command line options.
3822   reset_vm_info_property(CHECK_JNI_ERR);
3823 
3824   quicken_jni_functions();
3825 
3826   // No more stub generation allowed after that point.
3827   StubCodeDesc::freeze();
3828 
3829   // Set flag that basic initialization has completed. Used by exceptions and various
3830   // debug stuff, that does not work until all basic classes have been initialized.
3831   set_init_completed();
3832 
3833   LogConfiguration::post_initialize();
3834   Metaspace::post_initialize();
3835 
3836   HOTSPOT_VM_INIT_END();
3837 
3838   // record VM initialization completion time
3839 #if INCLUDE_MANAGEMENT
3840   Management::record_vm_init_completed();
3841 #endif // INCLUDE_MANAGEMENT
3842 
3843   // Signal Dispatcher needs to be started before VMInit event is posted
3844   os::signal_init(CHECK_JNI_ERR);
3845 
3846   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3847   if (!DisableAttachMechanism) {
3848     AttachListener::vm_start();
3849     if (StartAttachListener || AttachListener::init_at_startup()) {
3850       AttachListener::init();
3851     }
3852   }
3853 
3854   // Launch -Xrun agents
3855   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3856   // back-end can launch with -Xdebug -Xrunjdwp.
3857   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3858     create_vm_init_libraries();
3859   }
3860 
3861   if (CleanChunkPoolAsync) {
3862     Chunk::start_chunk_pool_cleaner_task();
3863   }
3864 
3865   // initialize compiler(s)
3866 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3867 #if INCLUDE_JVMCI
3868   bool force_JVMCI_intialization = false;
3869   if (EnableJVMCI) {
3870     // Initialize JVMCI eagerly when it is explicitly requested.
3871     // Or when JVMCIPrintProperties is enabled.
3872     // The JVMCI Java initialization code will read this flag and
3873     // do the printing if it's set.
3874     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties;
3875 
3876     if (!force_JVMCI_intialization) {
3877       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3878       // compilations via JVMCI will not actually block until JVMCI is initialized.
3879       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3880     }
3881   }
3882 #endif
3883   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3884   // Postpone completion of compiler initialization to after JVMCI
3885   // is initialized to avoid timeouts of blocking compilations.
3886   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3887     CompileBroker::compilation_init_phase2();
3888   }
3889 #endif
3890 
3891   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3892   // It is done after compilers are initialized, because otherwise compilations of
3893   // signature polymorphic MH intrinsics can be missed
3894   // (see SystemDictionary::find_method_handle_intrinsic).
3895   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3896 
3897   // This will initialize the module system.  Only java.base classes can be
3898   // loaded until phase 2 completes
3899   call_initPhase2(CHECK_JNI_ERR);
3900 
3901   // Always call even when there are not JVMTI environments yet, since environments
3902   // may be attached late and JVMTI must track phases of VM execution
3903   JvmtiExport::enter_start_phase();
3904 
3905   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3906   JvmtiExport::post_vm_start();
3907 
3908   // Final system initialization including security manager and system class loader
3909   call_initPhase3(CHECK_JNI_ERR);
3910 
3911   // cache the system and platform class loaders
3912   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3913 
3914 #if INCLUDE_CDS
3915   if (DumpSharedSpaces) {
3916     // capture the module path info from the ModuleEntryTable
3917     ClassLoader::initialize_module_path(THREAD);
3918   }
3919 #endif
3920 
3921 #if INCLUDE_JVMCI
3922   if (force_JVMCI_intialization) {
3923     JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3924     CompileBroker::compilation_init_phase2();
3925   }
3926 #endif
3927 
3928   // Always call even when there are not JVMTI environments yet, since environments
3929   // may be attached late and JVMTI must track phases of VM execution
3930   JvmtiExport::enter_live_phase();
3931 
3932   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3933   JvmtiExport::post_vm_initialized();
3934 
3935   if (TRACE_START() != JNI_OK) {
3936     vm_exit_during_initialization("Failed to start tracing backend.");
3937   }
3938 
3939 #if INCLUDE_MANAGEMENT
3940   Management::initialize(THREAD);
3941 
3942   if (HAS_PENDING_EXCEPTION) {
3943     // management agent fails to start possibly due to
3944     // configuration problem and is responsible for printing
3945     // stack trace if appropriate. Simply exit VM.
3946     vm_exit(1);
3947   }
3948 #endif // INCLUDE_MANAGEMENT
3949 
3950   if (MemProfiling)                   MemProfiler::engage();
3951   StatSampler::engage();
3952   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3953 
3954   BiasedLocking::init();
3955 
3956 #if INCLUDE_RTM_OPT
3957   RTMLockingCounters::init();
3958 #endif
3959 
3960   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3961     call_postVMInitHook(THREAD);
3962     // The Java side of PostVMInitHook.run must deal with all
3963     // exceptions and provide means of diagnosis.
3964     if (HAS_PENDING_EXCEPTION) {
3965       CLEAR_PENDING_EXCEPTION;
3966     }
3967   }
3968 
3969   {
3970     MutexLocker ml(PeriodicTask_lock);
3971     // Make sure the WatcherThread can be started by WatcherThread::start()
3972     // or by dynamic enrollment.
3973     WatcherThread::make_startable();
3974     // Start up the WatcherThread if there are any periodic tasks
3975     // NOTE:  All PeriodicTasks should be registered by now. If they
3976     //   aren't, late joiners might appear to start slowly (we might
3977     //   take a while to process their first tick).
3978     if (PeriodicTask::num_tasks() > 0) {
3979       WatcherThread::start();
3980     }
3981   }
3982 
3983   create_vm_timer.end();
3984 #ifdef ASSERT
3985   _vm_complete = true;
3986 #endif
3987 
3988   if (DumpSharedSpaces) {
3989     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3990     ShouldNotReachHere();
3991   }
3992 
3993   return JNI_OK;
3994 }
3995 
3996 // type for the Agent_OnLoad and JVM_OnLoad entry points
3997 extern "C" {
3998   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3999 }
4000 // Find a command line agent library and return its entry point for
4001 //         -agentlib:  -agentpath:   -Xrun
4002 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4003 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4004                                     const char *on_load_symbols[],
4005                                     size_t num_symbol_entries) {
4006   OnLoadEntry_t on_load_entry = NULL;
4007   void *library = NULL;
4008 
4009   if (!agent->valid()) {
4010     char buffer[JVM_MAXPATHLEN];
4011     char ebuf[1024] = "";
4012     const char *name = agent->name();
4013     const char *msg = "Could not find agent library ";
4014 
4015     // First check to see if agent is statically linked into executable
4016     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4017       library = agent->os_lib();
4018     } else if (agent->is_absolute_path()) {
4019       library = os::dll_load(name, ebuf, sizeof ebuf);
4020       if (library == NULL) {
4021         const char *sub_msg = " in absolute path, with error: ";
4022         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4023         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4024         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4025         // If we can't find the agent, exit.
4026         vm_exit_during_initialization(buf, NULL);
4027         FREE_C_HEAP_ARRAY(char, buf);
4028       }
4029     } else {
4030       // Try to load the agent from the standard dll directory
4031       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4032                              name)) {
4033         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4034       }
4035       if (library == NULL) { // Try the library path directory.
4036         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4037           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4038         }
4039         if (library == NULL) {
4040           const char *sub_msg = " on the library path, with error: ";
4041           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4042 
4043           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4044                        strlen(ebuf) + strlen(sub_msg2) + 1;
4045           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4046           if (!agent->is_instrument_lib()) {
4047             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4048           } else {
4049             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4050           }
4051           // If we can't find the agent, exit.
4052           vm_exit_during_initialization(buf, NULL);
4053           FREE_C_HEAP_ARRAY(char, buf);
4054         }
4055       }
4056     }
4057     agent->set_os_lib(library);
4058     agent->set_valid();
4059   }
4060 
4061   // Find the OnLoad function.
4062   on_load_entry =
4063     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4064                                                           false,
4065                                                           on_load_symbols,
4066                                                           num_symbol_entries));
4067   return on_load_entry;
4068 }
4069 
4070 // Find the JVM_OnLoad entry point
4071 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4072   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4073   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4074 }
4075 
4076 // Find the Agent_OnLoad entry point
4077 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4078   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4079   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4080 }
4081 
4082 // For backwards compatibility with -Xrun
4083 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4084 // treated like -agentpath:
4085 // Must be called before agent libraries are created
4086 void Threads::convert_vm_init_libraries_to_agents() {
4087   AgentLibrary* agent;
4088   AgentLibrary* next;
4089 
4090   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4091     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4092     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4093 
4094     // If there is an JVM_OnLoad function it will get called later,
4095     // otherwise see if there is an Agent_OnLoad
4096     if (on_load_entry == NULL) {
4097       on_load_entry = lookup_agent_on_load(agent);
4098       if (on_load_entry != NULL) {
4099         // switch it to the agent list -- so that Agent_OnLoad will be called,
4100         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4101         Arguments::convert_library_to_agent(agent);
4102       } else {
4103         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4104       }
4105     }
4106   }
4107 }
4108 
4109 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4110 // Invokes Agent_OnLoad
4111 // Called very early -- before JavaThreads exist
4112 void Threads::create_vm_init_agents() {
4113   extern struct JavaVM_ main_vm;
4114   AgentLibrary* agent;
4115 
4116   JvmtiExport::enter_onload_phase();
4117 
4118   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4119     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4120 
4121     if (on_load_entry != NULL) {
4122       // Invoke the Agent_OnLoad function
4123       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4124       if (err != JNI_OK) {
4125         vm_exit_during_initialization("agent library failed to init", agent->name());
4126       }
4127     } else {
4128       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4129     }
4130   }
4131   JvmtiExport::enter_primordial_phase();
4132 }
4133 
4134 extern "C" {
4135   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4136 }
4137 
4138 void Threads::shutdown_vm_agents() {
4139   // Send any Agent_OnUnload notifications
4140   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4141   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4142   extern struct JavaVM_ main_vm;
4143   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4144 
4145     // Find the Agent_OnUnload function.
4146     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4147                                                    os::find_agent_function(agent,
4148                                                    false,
4149                                                    on_unload_symbols,
4150                                                    num_symbol_entries));
4151 
4152     // Invoke the Agent_OnUnload function
4153     if (unload_entry != NULL) {
4154       JavaThread* thread = JavaThread::current();
4155       ThreadToNativeFromVM ttn(thread);
4156       HandleMark hm(thread);
4157       (*unload_entry)(&main_vm);
4158     }
4159   }
4160 }
4161 
4162 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4163 // Invokes JVM_OnLoad
4164 void Threads::create_vm_init_libraries() {
4165   extern struct JavaVM_ main_vm;
4166   AgentLibrary* agent;
4167 
4168   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4169     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4170 
4171     if (on_load_entry != NULL) {
4172       // Invoke the JVM_OnLoad function
4173       JavaThread* thread = JavaThread::current();
4174       ThreadToNativeFromVM ttn(thread);
4175       HandleMark hm(thread);
4176       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4177       if (err != JNI_OK) {
4178         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4179       }
4180     } else {
4181       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4182     }
4183   }
4184 }
4185 
4186 
4187 // Last thread running calls java.lang.Shutdown.shutdown()
4188 void JavaThread::invoke_shutdown_hooks() {
4189   HandleMark hm(this);
4190 
4191   // We could get here with a pending exception, if so clear it now.
4192   if (this->has_pending_exception()) {
4193     this->clear_pending_exception();
4194   }
4195 
4196   EXCEPTION_MARK;
4197   Klass* shutdown_klass =
4198     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4199                                       THREAD);
4200   if (shutdown_klass != NULL) {
4201     // SystemDictionary::resolve_or_null will return null if there was
4202     // an exception.  If we cannot load the Shutdown class, just don't
4203     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4204     // won't be run.  Note that if a shutdown hook was registered,
4205     // the Shutdown class would have already been loaded
4206     // (Runtime.addShutdownHook will load it).
4207     JavaValue result(T_VOID);
4208     JavaCalls::call_static(&result,
4209                            shutdown_klass,
4210                            vmSymbols::shutdown_method_name(),
4211                            vmSymbols::void_method_signature(),
4212                            THREAD);
4213   }
4214   CLEAR_PENDING_EXCEPTION;
4215 }
4216 
4217 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4218 // the program falls off the end of main(). Another VM exit path is through
4219 // vm_exit() when the program calls System.exit() to return a value or when
4220 // there is a serious error in VM. The two shutdown paths are not exactly
4221 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4222 // and VM_Exit op at VM level.
4223 //
4224 // Shutdown sequence:
4225 //   + Shutdown native memory tracking if it is on
4226 //   + Wait until we are the last non-daemon thread to execute
4227 //     <-- every thing is still working at this moment -->
4228 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4229 //        shutdown hooks
4230 //   + Call before_exit(), prepare for VM exit
4231 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4232 //        currently the only user of this mechanism is File.deleteOnExit())
4233 //      > stop StatSampler, watcher thread, CMS threads,
4234 //        post thread end and vm death events to JVMTI,
4235 //        stop signal thread
4236 //   + Call JavaThread::exit(), it will:
4237 //      > release JNI handle blocks, remove stack guard pages
4238 //      > remove this thread from Threads list
4239 //     <-- no more Java code from this thread after this point -->
4240 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4241 //     the compiler threads at safepoint
4242 //     <-- do not use anything that could get blocked by Safepoint -->
4243 //   + Disable tracing at JNI/JVM barriers
4244 //   + Set _vm_exited flag for threads that are still running native code
4245 //   + Delete this thread
4246 //   + Call exit_globals()
4247 //      > deletes tty
4248 //      > deletes PerfMemory resources
4249 //   + Return to caller
4250 
4251 bool Threads::destroy_vm() {
4252   JavaThread* thread = JavaThread::current();
4253 
4254 #ifdef ASSERT
4255   _vm_complete = false;
4256 #endif
4257   // Wait until we are the last non-daemon thread to execute
4258   { MutexLocker nu(Threads_lock);
4259     while (Threads::number_of_non_daemon_threads() > 1)
4260       // This wait should make safepoint checks, wait without a timeout,
4261       // and wait as a suspend-equivalent condition.
4262       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4263                          Mutex::_as_suspend_equivalent_flag);
4264   }
4265 
4266   EventShutdown e;
4267   if (e.should_commit()) {
4268     e.set_reason("No remaining non-daemon Java threads");
4269     e.commit();
4270   }
4271 
4272   // Hang forever on exit if we are reporting an error.
4273   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4274     os::infinite_sleep();
4275   }
4276   os::wait_for_keypress_at_exit();
4277 
4278   // run Java level shutdown hooks
4279   thread->invoke_shutdown_hooks();
4280 
4281   before_exit(thread);
4282 
4283   thread->exit(true);
4284 
4285   // Stop VM thread.
4286   {
4287     // 4945125 The vm thread comes to a safepoint during exit.
4288     // GC vm_operations can get caught at the safepoint, and the
4289     // heap is unparseable if they are caught. Grab the Heap_lock
4290     // to prevent this. The GC vm_operations will not be able to
4291     // queue until after the vm thread is dead. After this point,
4292     // we'll never emerge out of the safepoint before the VM exits.
4293 
4294     MutexLocker ml(Heap_lock);
4295 
4296     VMThread::wait_for_vm_thread_exit();
4297     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4298     VMThread::destroy();
4299   }
4300 
4301   // Now, all Java threads are gone except daemon threads. Daemon threads
4302   // running Java code or in VM are stopped by the Safepoint. However,
4303   // daemon threads executing native code are still running.  But they
4304   // will be stopped at native=>Java/VM barriers. Note that we can't
4305   // simply kill or suspend them, as it is inherently deadlock-prone.
4306 
4307   VM_Exit::set_vm_exited();
4308 
4309   // Clean up ideal graph printers after the VMThread has started
4310   // the final safepoint which will block all the Compiler threads.
4311   // Note that this Thread has already logically exited so the
4312   // clean_up() function's use of a JavaThreadIteratorWithHandle
4313   // would be a problem except set_vm_exited() has remembered the
4314   // shutdown thread which is granted a policy exception.
4315 #if defined(COMPILER2) && !defined(PRODUCT)
4316   IdealGraphPrinter::clean_up();
4317 #endif
4318 
4319   notify_vm_shutdown();
4320 
4321   // We are after VM_Exit::set_vm_exited() so we can't call
4322   // thread->smr_delete() or we will block on the Threads_lock.
4323   // Deleting the shutdown thread here is safe because another
4324   // JavaThread cannot have an active ThreadsListHandle for
4325   // this JavaThread.
4326   delete thread;
4327 
4328 #if INCLUDE_JVMCI
4329   if (JVMCICounterSize > 0) {
4330     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4331   }
4332 #endif
4333 
4334   // exit_globals() will delete tty
4335   exit_globals();
4336 
4337   LogConfiguration::finalize();
4338 
4339   return true;
4340 }
4341 
4342 
4343 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4344   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4345   return is_supported_jni_version(version);
4346 }
4347 
4348 
4349 jboolean Threads::is_supported_jni_version(jint version) {
4350   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4351   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4352   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4353   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4354   if (version == JNI_VERSION_9) return JNI_TRUE;
4355   if (version == JNI_VERSION_10) return JNI_TRUE;
4356   return JNI_FALSE;
4357 }
4358 
4359 
4360 void Threads::add(JavaThread* p, bool force_daemon) {
4361   // The threads lock must be owned at this point
4362   assert_locked_or_safepoint(Threads_lock);
4363 
4364   BarrierSet::barrier_set()->on_thread_attach(p);
4365 
4366   p->set_next(_thread_list);
4367   _thread_list = p;
4368 
4369   // Once a JavaThread is added to the Threads list, smr_delete() has
4370   // to be used to delete it. Otherwise we can just delete it directly.
4371   p->set_on_thread_list();
4372 
4373   _number_of_threads++;
4374   oop threadObj = p->threadObj();
4375   bool daemon = true;
4376   // Bootstrapping problem: threadObj can be null for initial
4377   // JavaThread (or for threads attached via JNI)
4378   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4379     _number_of_non_daemon_threads++;
4380     daemon = false;
4381   }
4382 
4383   ThreadService::add_thread(p, daemon);
4384 
4385   // Maintain fast thread list
4386   ThreadsSMRSupport::add_thread(p);
4387 
4388   // Possible GC point.
4389   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4390 }
4391 
4392 void Threads::remove(JavaThread* p) {
4393 
4394   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4395   ObjectSynchronizer::omFlush(p);
4396 
4397   // Extra scope needed for Thread_lock, so we can check
4398   // that we do not remove thread without safepoint code notice
4399   { MutexLocker ml(Threads_lock);
4400 
4401     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4402 
4403     // Maintain fast thread list
4404     ThreadsSMRSupport::remove_thread(p);
4405 
4406     JavaThread* current = _thread_list;
4407     JavaThread* prev    = NULL;
4408 
4409     while (current != p) {
4410       prev    = current;
4411       current = current->next();
4412     }
4413 
4414     if (prev) {
4415       prev->set_next(current->next());
4416     } else {
4417       _thread_list = p->next();
4418     }
4419 
4420     _number_of_threads--;
4421     oop threadObj = p->threadObj();
4422     bool daemon = true;
4423     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4424       _number_of_non_daemon_threads--;
4425       daemon = false;
4426 
4427       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4428       // on destroy_vm will wake up.
4429       if (number_of_non_daemon_threads() == 1) {
4430         Threads_lock->notify_all();
4431       }
4432     }
4433     ThreadService::remove_thread(p, daemon);
4434 
4435     // Make sure that safepoint code disregard this thread. This is needed since
4436     // the thread might mess around with locks after this point. This can cause it
4437     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4438     // of this thread since it is removed from the queue.
4439     p->set_terminated_value();
4440   } // unlock Threads_lock
4441 
4442   // Since Events::log uses a lock, we grab it outside the Threads_lock
4443   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4444 }
4445 
4446 // Operations on the Threads list for GC.  These are not explicitly locked,
4447 // but the garbage collector must provide a safe context for them to run.
4448 // In particular, these things should never be called when the Threads_lock
4449 // is held by some other thread. (Note: the Safepoint abstraction also
4450 // uses the Threads_lock to guarantee this property. It also makes sure that
4451 // all threads gets blocked when exiting or starting).
4452 
4453 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4454   ALL_JAVA_THREADS(p) {
4455     p->oops_do(f, cf);
4456   }
4457   VMThread::vm_thread()->oops_do(f, cf);
4458 }
4459 
4460 void Threads::change_thread_claim_parity() {
4461   // Set the new claim parity.
4462   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4463          "Not in range.");
4464   _thread_claim_parity++;
4465   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4466   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4467          "Not in range.");
4468 }
4469 
4470 #ifdef ASSERT
4471 void Threads::assert_all_threads_claimed() {
4472   ALL_JAVA_THREADS(p) {
4473     const int thread_parity = p->oops_do_parity();
4474     assert((thread_parity == _thread_claim_parity),
4475            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4476   }
4477   VMThread* vmt = VMThread::vm_thread();
4478   const int thread_parity = vmt->oops_do_parity();
4479   assert((thread_parity == _thread_claim_parity),
4480          "VMThread " PTR_FORMAT " has incorrect parity %d != %d", p2i(vmt), thread_parity, _thread_claim_parity);
4481 }
4482 #endif // ASSERT
4483 
4484 class ParallelOopsDoThreadClosure : public ThreadClosure {
4485 private:
4486   OopClosure* _f;
4487   CodeBlobClosure* _cf;
4488 public:
4489   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4490   void do_thread(Thread* t) {
4491     t->oops_do(_f, _cf);
4492   }
4493 };
4494 
4495 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4496   ParallelOopsDoThreadClosure tc(f, cf);
4497   possibly_parallel_threads_do(is_par, &tc);
4498 }
4499 
4500 #if INCLUDE_PARALLELGC
4501 // Used by ParallelScavenge
4502 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4503   ALL_JAVA_THREADS(p) {
4504     q->enqueue(new ThreadRootsTask(p));
4505   }
4506   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4507 }
4508 
4509 // Used by Parallel Old
4510 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4511   ALL_JAVA_THREADS(p) {
4512     q->enqueue(new ThreadRootsMarkingTask(p));
4513   }
4514   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4515 }
4516 #endif // INCLUDE_PARALLELGC
4517 
4518 void Threads::nmethods_do(CodeBlobClosure* cf) {
4519   ALL_JAVA_THREADS(p) {
4520     // This is used by the code cache sweeper to mark nmethods that are active
4521     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4522     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4523     if(!p->is_Code_cache_sweeper_thread()) {
4524       p->nmethods_do(cf);
4525     }
4526   }
4527 }
4528 
4529 void Threads::metadata_do(void f(Metadata*)) {
4530   ALL_JAVA_THREADS(p) {
4531     p->metadata_do(f);
4532   }
4533 }
4534 
4535 class ThreadHandlesClosure : public ThreadClosure {
4536   void (*_f)(Metadata*);
4537  public:
4538   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4539   virtual void do_thread(Thread* thread) {
4540     thread->metadata_handles_do(_f);
4541   }
4542 };
4543 
4544 void Threads::metadata_handles_do(void f(Metadata*)) {
4545   // Only walk the Handles in Thread.
4546   ThreadHandlesClosure handles_closure(f);
4547   threads_do(&handles_closure);
4548 }
4549 
4550 void Threads::deoptimized_wrt_marked_nmethods() {
4551   ALL_JAVA_THREADS(p) {
4552     p->deoptimized_wrt_marked_nmethods();
4553   }
4554 }
4555 
4556 
4557 // Get count Java threads that are waiting to enter the specified monitor.
4558 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4559                                                          int count,
4560                                                          address monitor) {
4561   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4562 
4563   int i = 0;
4564   DO_JAVA_THREADS(t_list, p) {
4565     if (!p->can_call_java()) continue;
4566 
4567     address pending = (address)p->current_pending_monitor();
4568     if (pending == monitor) {             // found a match
4569       if (i < count) result->append(p);   // save the first count matches
4570       i++;
4571     }
4572   }
4573 
4574   return result;
4575 }
4576 
4577 
4578 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4579                                                       address owner) {
4580   // NULL owner means not locked so we can skip the search
4581   if (owner == NULL) return NULL;
4582 
4583   DO_JAVA_THREADS(t_list, p) {
4584     // first, see if owner is the address of a Java thread
4585     if (owner == (address)p) return p;
4586   }
4587 
4588   // Cannot assert on lack of success here since this function may be
4589   // used by code that is trying to report useful problem information
4590   // like deadlock detection.
4591   if (UseHeavyMonitors) return NULL;
4592 
4593   // If we didn't find a matching Java thread and we didn't force use of
4594   // heavyweight monitors, then the owner is the stack address of the
4595   // Lock Word in the owning Java thread's stack.
4596   //
4597   JavaThread* the_owner = NULL;
4598   DO_JAVA_THREADS(t_list, q) {
4599     if (q->is_lock_owned(owner)) {
4600       the_owner = q;
4601       break;
4602     }
4603   }
4604 
4605   // cannot assert on lack of success here; see above comment
4606   return the_owner;
4607 }
4608 
4609 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4610 void Threads::print_on(outputStream* st, bool print_stacks,
4611                        bool internal_format, bool print_concurrent_locks) {
4612   char buf[32];
4613   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4614 
4615   st->print_cr("Full thread dump %s (%s %s):",
4616                Abstract_VM_Version::vm_name(),
4617                Abstract_VM_Version::vm_release(),
4618                Abstract_VM_Version::vm_info_string());
4619   st->cr();
4620 
4621 #if INCLUDE_SERVICES
4622   // Dump concurrent locks
4623   ConcurrentLocksDump concurrent_locks;
4624   if (print_concurrent_locks) {
4625     concurrent_locks.dump_at_safepoint();
4626   }
4627 #endif // INCLUDE_SERVICES
4628 
4629   ThreadsSMRSupport::print_info_on(st);
4630   st->cr();
4631 
4632   ALL_JAVA_THREADS(p) {
4633     ResourceMark rm;
4634     p->print_on(st);
4635     if (print_stacks) {
4636       if (internal_format) {
4637         p->trace_stack();
4638       } else {
4639         p->print_stack_on(st);
4640       }
4641     }
4642     st->cr();
4643 #if INCLUDE_SERVICES
4644     if (print_concurrent_locks) {
4645       concurrent_locks.print_locks_on(p, st);
4646     }
4647 #endif // INCLUDE_SERVICES
4648   }
4649 
4650   VMThread::vm_thread()->print_on(st);
4651   st->cr();
4652   Universe::heap()->print_gc_threads_on(st);
4653   WatcherThread* wt = WatcherThread::watcher_thread();
4654   if (wt != NULL) {
4655     wt->print_on(st);
4656     st->cr();
4657   }
4658 
4659   st->flush();
4660 }
4661 
4662 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4663                              int buflen, bool* found_current) {
4664   if (this_thread != NULL) {
4665     bool is_current = (current == this_thread);
4666     *found_current = *found_current || is_current;
4667     st->print("%s", is_current ? "=>" : "  ");
4668 
4669     st->print(PTR_FORMAT, p2i(this_thread));
4670     st->print(" ");
4671     this_thread->print_on_error(st, buf, buflen);
4672     st->cr();
4673   }
4674 }
4675 
4676 class PrintOnErrorClosure : public ThreadClosure {
4677   outputStream* _st;
4678   Thread* _current;
4679   char* _buf;
4680   int _buflen;
4681   bool* _found_current;
4682  public:
4683   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4684                       int buflen, bool* found_current) :
4685    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4686 
4687   virtual void do_thread(Thread* thread) {
4688     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4689   }
4690 };
4691 
4692 // Threads::print_on_error() is called by fatal error handler. It's possible
4693 // that VM is not at safepoint and/or current thread is inside signal handler.
4694 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4695 // memory (even in resource area), it might deadlock the error handler.
4696 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4697                              int buflen) {
4698   ThreadsSMRSupport::print_info_on(st);
4699   st->cr();
4700 
4701   bool found_current = false;
4702   st->print_cr("Java Threads: ( => current thread )");
4703   ALL_JAVA_THREADS(thread) {
4704     print_on_error(thread, st, current, buf, buflen, &found_current);
4705   }
4706   st->cr();
4707 
4708   st->print_cr("Other Threads:");
4709   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4710   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4711 
4712   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4713   Universe::heap()->gc_threads_do(&print_closure);
4714 
4715   if (!found_current) {
4716     st->cr();
4717     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4718     current->print_on_error(st, buf, buflen);
4719     st->cr();
4720   }
4721   st->cr();
4722 
4723   st->print_cr("Threads with active compile tasks:");
4724   print_threads_compiling(st, buf, buflen);
4725 }
4726 
4727 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4728   ALL_JAVA_THREADS(thread) {
4729     if (thread->is_Compiler_thread()) {
4730       CompilerThread* ct = (CompilerThread*) thread;
4731 
4732       // Keep task in local variable for NULL check.
4733       // ct->_task might be set to NULL by concurring compiler thread
4734       // because it completed the compilation. The task is never freed,
4735       // though, just returned to a free list.
4736       CompileTask* task = ct->task();
4737       if (task != NULL) {
4738         thread->print_name_on_error(st, buf, buflen);
4739         task->print(st, NULL, true, true);
4740       }
4741     }
4742   }
4743 }
4744 
4745 
4746 // Internal SpinLock and Mutex
4747 // Based on ParkEvent
4748 
4749 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4750 //
4751 // We employ SpinLocks _only for low-contention, fixed-length
4752 // short-duration critical sections where we're concerned
4753 // about native mutex_t or HotSpot Mutex:: latency.
4754 // The mux construct provides a spin-then-block mutual exclusion
4755 // mechanism.
4756 //
4757 // Testing has shown that contention on the ListLock guarding gFreeList
4758 // is common.  If we implement ListLock as a simple SpinLock it's common
4759 // for the JVM to devolve to yielding with little progress.  This is true
4760 // despite the fact that the critical sections protected by ListLock are
4761 // extremely short.
4762 //
4763 // TODO-FIXME: ListLock should be of type SpinLock.
4764 // We should make this a 1st-class type, integrated into the lock
4765 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4766 // should have sufficient padding to avoid false-sharing and excessive
4767 // cache-coherency traffic.
4768 
4769 
4770 typedef volatile int SpinLockT;
4771 
4772 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4773   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4774     return;   // normal fast-path return
4775   }
4776 
4777   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4778   TEVENT(SpinAcquire - ctx);
4779   int ctr = 0;
4780   int Yields = 0;
4781   for (;;) {
4782     while (*adr != 0) {
4783       ++ctr;
4784       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4785         if (Yields > 5) {
4786           os::naked_short_sleep(1);
4787         } else {
4788           os::naked_yield();
4789           ++Yields;
4790         }
4791       } else {
4792         SpinPause();
4793       }
4794     }
4795     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4796   }
4797 }
4798 
4799 void Thread::SpinRelease(volatile int * adr) {
4800   assert(*adr != 0, "invariant");
4801   OrderAccess::fence();      // guarantee at least release consistency.
4802   // Roach-motel semantics.
4803   // It's safe if subsequent LDs and STs float "up" into the critical section,
4804   // but prior LDs and STs within the critical section can't be allowed
4805   // to reorder or float past the ST that releases the lock.
4806   // Loads and stores in the critical section - which appear in program
4807   // order before the store that releases the lock - must also appear
4808   // before the store that releases the lock in memory visibility order.
4809   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4810   // the ST of 0 into the lock-word which releases the lock, so fence
4811   // more than covers this on all platforms.
4812   *adr = 0;
4813 }
4814 
4815 // muxAcquire and muxRelease:
4816 //
4817 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4818 //    The LSB of the word is set IFF the lock is held.
4819 //    The remainder of the word points to the head of a singly-linked list
4820 //    of threads blocked on the lock.
4821 //
4822 // *  The current implementation of muxAcquire-muxRelease uses its own
4823 //    dedicated Thread._MuxEvent instance.  If we're interested in
4824 //    minimizing the peak number of extant ParkEvent instances then
4825 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4826 //    as certain invariants were satisfied.  Specifically, care would need
4827 //    to be taken with regards to consuming unpark() "permits".
4828 //    A safe rule of thumb is that a thread would never call muxAcquire()
4829 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4830 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4831 //    consume an unpark() permit intended for monitorenter, for instance.
4832 //    One way around this would be to widen the restricted-range semaphore
4833 //    implemented in park().  Another alternative would be to provide
4834 //    multiple instances of the PlatformEvent() for each thread.  One
4835 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4836 //
4837 // *  Usage:
4838 //    -- Only as leaf locks
4839 //    -- for short-term locking only as muxAcquire does not perform
4840 //       thread state transitions.
4841 //
4842 // Alternatives:
4843 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4844 //    but with parking or spin-then-park instead of pure spinning.
4845 // *  Use Taura-Oyama-Yonenzawa locks.
4846 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4847 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4848 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4849 //    acquiring threads use timers (ParkTimed) to detect and recover from
4850 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4851 //    boundaries by using placement-new.
4852 // *  Augment MCS with advisory back-link fields maintained with CAS().
4853 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4854 //    The validity of the backlinks must be ratified before we trust the value.
4855 //    If the backlinks are invalid the exiting thread must back-track through the
4856 //    the forward links, which are always trustworthy.
4857 // *  Add a successor indication.  The LockWord is currently encoded as
4858 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4859 //    to provide the usual futile-wakeup optimization.
4860 //    See RTStt for details.
4861 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4862 //
4863 
4864 
4865 const intptr_t LOCKBIT = 1;
4866 
4867 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4868   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4869   if (w == 0) return;
4870   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4871     return;
4872   }
4873 
4874   TEVENT(muxAcquire - Contention);
4875   ParkEvent * const Self = Thread::current()->_MuxEvent;
4876   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4877   for (;;) {
4878     int its = (os::is_MP() ? 100 : 0) + 1;
4879 
4880     // Optional spin phase: spin-then-park strategy
4881     while (--its >= 0) {
4882       w = *Lock;
4883       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4884         return;
4885       }
4886     }
4887 
4888     Self->reset();
4889     Self->OnList = intptr_t(Lock);
4890     // The following fence() isn't _strictly necessary as the subsequent
4891     // CAS() both serializes execution and ratifies the fetched *Lock value.
4892     OrderAccess::fence();
4893     for (;;) {
4894       w = *Lock;
4895       if ((w & LOCKBIT) == 0) {
4896         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4897           Self->OnList = 0;   // hygiene - allows stronger asserts
4898           return;
4899         }
4900         continue;      // Interference -- *Lock changed -- Just retry
4901       }
4902       assert(w & LOCKBIT, "invariant");
4903       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4904       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4905     }
4906 
4907     while (Self->OnList != 0) {
4908       Self->park();
4909     }
4910   }
4911 }
4912 
4913 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4914   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4915   if (w == 0) return;
4916   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4917     return;
4918   }
4919 
4920   TEVENT(muxAcquire - Contention);
4921   ParkEvent * ReleaseAfter = NULL;
4922   if (ev == NULL) {
4923     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4924   }
4925   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4926   for (;;) {
4927     guarantee(ev->OnList == 0, "invariant");
4928     int its = (os::is_MP() ? 100 : 0) + 1;
4929 
4930     // Optional spin phase: spin-then-park strategy
4931     while (--its >= 0) {
4932       w = *Lock;
4933       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4934         if (ReleaseAfter != NULL) {
4935           ParkEvent::Release(ReleaseAfter);
4936         }
4937         return;
4938       }
4939     }
4940 
4941     ev->reset();
4942     ev->OnList = intptr_t(Lock);
4943     // The following fence() isn't _strictly necessary as the subsequent
4944     // CAS() both serializes execution and ratifies the fetched *Lock value.
4945     OrderAccess::fence();
4946     for (;;) {
4947       w = *Lock;
4948       if ((w & LOCKBIT) == 0) {
4949         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4950           ev->OnList = 0;
4951           // We call ::Release while holding the outer lock, thus
4952           // artificially lengthening the critical section.
4953           // Consider deferring the ::Release() until the subsequent unlock(),
4954           // after we've dropped the outer lock.
4955           if (ReleaseAfter != NULL) {
4956             ParkEvent::Release(ReleaseAfter);
4957           }
4958           return;
4959         }
4960         continue;      // Interference -- *Lock changed -- Just retry
4961       }
4962       assert(w & LOCKBIT, "invariant");
4963       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4964       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4965     }
4966 
4967     while (ev->OnList != 0) {
4968       ev->park();
4969     }
4970   }
4971 }
4972 
4973 // Release() must extract a successor from the list and then wake that thread.
4974 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4975 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4976 // Release() would :
4977 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4978 // (B) Extract a successor from the private list "in-hand"
4979 // (C) attempt to CAS() the residual back into *Lock over null.
4980 //     If there were any newly arrived threads and the CAS() would fail.
4981 //     In that case Release() would detach the RATs, re-merge the list in-hand
4982 //     with the RATs and repeat as needed.  Alternately, Release() might
4983 //     detach and extract a successor, but then pass the residual list to the wakee.
4984 //     The wakee would be responsible for reattaching and remerging before it
4985 //     competed for the lock.
4986 //
4987 // Both "pop" and DMR are immune from ABA corruption -- there can be
4988 // multiple concurrent pushers, but only one popper or detacher.
4989 // This implementation pops from the head of the list.  This is unfair,
4990 // but tends to provide excellent throughput as hot threads remain hot.
4991 // (We wake recently run threads first).
4992 //
4993 // All paths through muxRelease() will execute a CAS.
4994 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4995 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4996 // executed within the critical section are complete and globally visible before the
4997 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4998 void Thread::muxRelease(volatile intptr_t * Lock)  {
4999   for (;;) {
5000     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5001     assert(w & LOCKBIT, "invariant");
5002     if (w == LOCKBIT) return;
5003     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5004     assert(List != NULL, "invariant");
5005     assert(List->OnList == intptr_t(Lock), "invariant");
5006     ParkEvent * const nxt = List->ListNext;
5007     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5008 
5009     // The following CAS() releases the lock and pops the head element.
5010     // The CAS() also ratifies the previously fetched lock-word value.
5011     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5012       continue;
5013     }
5014     List->OnList = 0;
5015     OrderAccess::fence();
5016     List->unpark();
5017     return;
5018   }
5019 }
5020 
5021 
5022 void Threads::verify() {
5023   ALL_JAVA_THREADS(p) {
5024     p->verify();
5025   }
5026   VMThread* thread = VMThread::vm_thread();
5027   if (thread != NULL) thread->verify();
5028 }