1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_SPACE_INLINE_HPP
  26 #define SHARE_VM_GC_SHARED_SPACE_INLINE_HPP
  27 
  28 #include "gc/serial/markSweep.inline.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/generation.hpp"
  31 #include "gc/shared/space.hpp"
  32 #include "gc/shared/spaceDecorator.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/oopsHierarchy.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "runtime/prefetch.inline.hpp"
  37 #include "runtime/safepoint.hpp"
  38 
  39 inline HeapWord* Space::block_start(const void* p) {
  40   return block_start_const(p);
  41 }
  42 
  43 inline HeapWord* OffsetTableContigSpace::allocate(size_t size) {
  44   HeapWord* res = ContiguousSpace::allocate(size);
  45   if (res != NULL) {
  46     _offsets.alloc_block(res, size);
  47   }
  48   return res;
  49 }
  50 
  51 // Because of the requirement of keeping "_offsets" up to date with the
  52 // allocations, we sequentialize these with a lock.  Therefore, best if
  53 // this is used for larger LAB allocations only.
  54 inline HeapWord* OffsetTableContigSpace::par_allocate(size_t size) {
  55   MutexLocker x(&_par_alloc_lock);
  56   // This ought to be just "allocate", because of the lock above, but that
  57   // ContiguousSpace::allocate asserts that either the allocating thread
  58   // holds the heap lock or it is the VM thread and we're at a safepoint.
  59   // The best I (dld) could figure was to put a field in ContiguousSpace
  60   // meaning "locking at safepoint taken care of", and set/reset that
  61   // here.  But this will do for now, especially in light of the comment
  62   // above.  Perhaps in the future some lock-free manner of keeping the
  63   // coordination.
  64   HeapWord* res = ContiguousSpace::par_allocate(size);
  65   if (res != NULL) {
  66     _offsets.alloc_block(res, size);
  67   }
  68   return res;
  69 }
  70 
  71 inline HeapWord*
  72 OffsetTableContigSpace::block_start_const(const void* p) const {
  73   return _offsets.block_start(p);
  74 }
  75 
  76 size_t CompactibleSpace::obj_size(const HeapWord* addr) const {
  77   return oop(addr)->size();
  78 }
  79 
  80 class DeadSpacer : StackObj {
  81   size_t _allowed_deadspace_words;
  82   bool _active;
  83   CompactibleSpace* _space;
  84 
  85 public:
  86   DeadSpacer(CompactibleSpace* space) : _space(space), _allowed_deadspace_words(0) {
  87     size_t ratio = _space->allowed_dead_ratio();
  88     _active = ratio > 0;
  89 
  90     if (_active) {
  91       assert(!UseG1GC, "G1 should not be using dead space");
  92 
  93       // We allow some amount of garbage towards the bottom of the space, so
  94       // we don't start compacting before there is a significant gain to be made.
  95       // Occasionally, we want to ensure a full compaction, which is determined
  96       // by the MarkSweepAlwaysCompactCount parameter.
  97       if ((MarkSweep::total_invocations() % MarkSweepAlwaysCompactCount) != 0) {
  98         _allowed_deadspace_words = (space->capacity() * ratio / 100) / HeapWordSize;
  99       } else {
 100         _active = false;
 101       }
 102     }
 103   }
 104 
 105 
 106   bool insert_deadspace(HeapWord* dead_start, HeapWord* dead_end) {
 107     if (!_active) {
 108       return false;
 109     }
 110 
 111     size_t dead_length = pointer_delta(dead_end, dead_start);
 112     if (_allowed_deadspace_words >= dead_length) {
 113       _allowed_deadspace_words -= dead_length;
 114       CollectedHeap::fill_with_object(dead_start, dead_length);
 115       oop obj = oop(dead_start);
 116       obj->set_mark_raw(obj->mark_raw()->set_marked());
 117 
 118       assert(dead_length == (size_t)obj->size(), "bad filler object size");
 119       log_develop_trace(gc, compaction)("Inserting object to dead space: " PTR_FORMAT ", " PTR_FORMAT ", " SIZE_FORMAT "b",
 120           p2i(dead_start), p2i(dead_end), dead_length * HeapWordSize);
 121 
 122       return true;
 123     } else {
 124       _active = false;
 125       return false;
 126     }
 127   }
 128 
 129 };
 130 
 131 template <class SpaceType>
 132 inline void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp) {
 133   // Compute the new addresses for the live objects and store it in the mark
 134   // Used by universe::mark_sweep_phase2()
 135 
 136   // We're sure to be here before any objects are compacted into this
 137   // space, so this is a good time to initialize this:
 138   space->set_compaction_top(space->bottom());
 139 
 140   if (cp->space == NULL) {
 141     assert(cp->gen != NULL, "need a generation");
 142     assert(cp->threshold == NULL, "just checking");
 143     assert(cp->gen->first_compaction_space() == space, "just checking");
 144     cp->space = cp->gen->first_compaction_space();
 145     cp->threshold = cp->space->initialize_threshold();
 146     cp->space->set_compaction_top(cp->space->bottom());
 147   }
 148 
 149   HeapWord* compact_top = cp->space->compaction_top(); // This is where we are currently compacting to.
 150 
 151   DeadSpacer dead_spacer(space);
 152 
 153   HeapWord*  end_of_live = space->bottom();  // One byte beyond the last byte of the last live object.
 154   HeapWord*  first_dead = NULL; // The first dead object.
 155 
 156   const intx interval = PrefetchScanIntervalInBytes;
 157 
 158   HeapWord* cur_obj = space->bottom();
 159   HeapWord* scan_limit = space->scan_limit();
 160 
 161   while (cur_obj < scan_limit) {
 162     assert(!space->scanned_block_is_obj(cur_obj) ||
 163            oop(cur_obj)->mark_raw()->is_marked() || oop(cur_obj)->mark_raw()->is_unlocked() ||
 164            oop(cur_obj)->mark_raw()->has_bias_pattern(),
 165            "these are the only valid states during a mark sweep");
 166     if (space->scanned_block_is_obj(cur_obj) && oop(cur_obj)->is_gc_marked()) {
 167       // prefetch beyond cur_obj
 168       Prefetch::write(cur_obj, interval);
 169       size_t size = space->scanned_block_size(cur_obj);
 170       compact_top = cp->space->forward(oop(cur_obj), size, cp, compact_top);
 171       cur_obj += size;
 172       end_of_live = cur_obj;
 173     } else {
 174       // run over all the contiguous dead objects
 175       HeapWord* end = cur_obj;
 176       do {
 177         // prefetch beyond end
 178         Prefetch::write(end, interval);
 179         end += space->scanned_block_size(end);
 180       } while (end < scan_limit && (!space->scanned_block_is_obj(end) || !oop(end)->is_gc_marked()));
 181 
 182       // see if we might want to pretend this object is alive so that
 183       // we don't have to compact quite as often.
 184       if (cur_obj == compact_top && dead_spacer.insert_deadspace(cur_obj, end)) {
 185         oop obj = oop(cur_obj);
 186         compact_top = cp->space->forward(obj, obj->size(), cp, compact_top);
 187         end_of_live = end;
 188       } else {
 189         // otherwise, it really is a free region.
 190 
 191         // cur_obj is a pointer to a dead object. Use this dead memory to store a pointer to the next live object.
 192         *(HeapWord**)cur_obj = end;
 193 
 194         // see if this is the first dead region.
 195         if (first_dead == NULL) {
 196           first_dead = cur_obj;
 197         }
 198       }
 199 
 200       // move on to the next object
 201       cur_obj = end;
 202     }
 203   }
 204 
 205   assert(cur_obj == scan_limit, "just checking");
 206   space->_end_of_live = end_of_live;
 207   if (first_dead != NULL) {
 208     space->_first_dead = first_dead;
 209   } else {
 210     space->_first_dead = end_of_live;
 211   }
 212 
 213   // save the compaction_top of the compaction space.
 214   cp->space->set_compaction_top(compact_top);
 215 }
 216 
 217 template <class SpaceType>
 218 inline void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space) {
 219   // adjust all the interior pointers to point at the new locations of objects
 220   // Used by MarkSweep::mark_sweep_phase3()
 221 
 222   HeapWord* cur_obj = space->bottom();
 223   HeapWord* const end_of_live = space->_end_of_live;  // Established by "scan_and_forward".
 224   HeapWord* const first_dead = space->_first_dead;    // Established by "scan_and_forward".
 225 
 226   assert(first_dead <= end_of_live, "Stands to reason, no?");
 227 
 228   const intx interval = PrefetchScanIntervalInBytes;
 229 
 230   debug_only(HeapWord* prev_obj = NULL);
 231   while (cur_obj < end_of_live) {
 232     Prefetch::write(cur_obj, interval);
 233     if (cur_obj < first_dead || oop(cur_obj)->is_gc_marked()) {
 234       // cur_obj is alive
 235       // point all the oops to the new location
 236       size_t size = MarkSweep::adjust_pointers(oop(cur_obj));
 237       size = space->adjust_obj_size(size);
 238       debug_only(prev_obj = cur_obj);
 239       cur_obj += size;
 240     } else {
 241       debug_only(prev_obj = cur_obj);
 242       // cur_obj is not a live object, instead it points at the next live object
 243       cur_obj = *(HeapWord**)cur_obj;
 244       assert(cur_obj > prev_obj, "we should be moving forward through memory, cur_obj: " PTR_FORMAT ", prev_obj: " PTR_FORMAT, p2i(cur_obj), p2i(prev_obj));
 245     }
 246   }
 247 
 248   assert(cur_obj == end_of_live, "just checking");
 249 }
 250 
 251 #ifdef ASSERT
 252 template <class SpaceType>
 253 inline void CompactibleSpace::verify_up_to_first_dead(SpaceType* space) {
 254   HeapWord* cur_obj = space->bottom();
 255 
 256   if (cur_obj < space->_end_of_live && space->_first_dead > cur_obj && !oop(cur_obj)->is_gc_marked()) {
 257      // we have a chunk of the space which hasn't moved and we've reinitialized
 258      // the mark word during the previous pass, so we can't use is_gc_marked for
 259      // the traversal.
 260      HeapWord* prev_obj = NULL;
 261 
 262      while (cur_obj < space->_first_dead) {
 263        size_t size = space->obj_size(cur_obj);
 264        assert(!oop(cur_obj)->is_gc_marked(), "should be unmarked (special dense prefix handling)");
 265        prev_obj = cur_obj;
 266        cur_obj += size;
 267      }
 268   }
 269 }
 270 #endif
 271 
 272 template <class SpaceType>
 273 inline void CompactibleSpace::clear_empty_region(SpaceType* space) {
 274   // Let's remember if we were empty before we did the compaction.
 275   bool was_empty = space->used_region().is_empty();
 276   // Reset space after compaction is complete
 277   space->reset_after_compaction();
 278   // We do this clear, below, since it has overloaded meanings for some
 279   // space subtypes.  For example, OffsetTableContigSpace's that were
 280   // compacted into will have had their offset table thresholds updated
 281   // continuously, but those that weren't need to have their thresholds
 282   // re-initialized.  Also mangles unused area for debugging.
 283   if (space->used_region().is_empty()) {
 284     if (!was_empty) space->clear(SpaceDecorator::Mangle);
 285   } else {
 286     if (ZapUnusedHeapArea) space->mangle_unused_area();
 287   }
 288 }
 289 
 290 template <class SpaceType>
 291 inline void CompactibleSpace::scan_and_compact(SpaceType* space) {
 292   // Copy all live objects to their new location
 293   // Used by MarkSweep::mark_sweep_phase4()
 294 
 295   verify_up_to_first_dead(space);
 296 
 297   HeapWord* const bottom = space->bottom();
 298   HeapWord* const end_of_live = space->_end_of_live;
 299 
 300   assert(space->_first_dead <= end_of_live, "Invariant. _first_dead: " PTR_FORMAT " <= end_of_live: " PTR_FORMAT, p2i(space->_first_dead), p2i(end_of_live));
 301   if (space->_first_dead == end_of_live && (bottom == end_of_live || !oop(bottom)->is_gc_marked())) {
 302     // Nothing to compact. The space is either empty or all live object should be left in place.
 303     clear_empty_region(space);
 304     return;
 305   }
 306 
 307   const intx scan_interval = PrefetchScanIntervalInBytes;
 308   const intx copy_interval = PrefetchCopyIntervalInBytes;
 309 
 310   assert(bottom < end_of_live, "bottom: " PTR_FORMAT " should be < end_of_live: " PTR_FORMAT, p2i(bottom), p2i(end_of_live));
 311   HeapWord* cur_obj = bottom;
 312   if (space->_first_dead > cur_obj && !oop(cur_obj)->is_gc_marked()) {
 313     // All object before _first_dead can be skipped. They should not be moved.
 314     // A pointer to the first live object is stored at the memory location for _first_dead.
 315     cur_obj = *(HeapWord**)(space->_first_dead);
 316   }
 317 
 318   debug_only(HeapWord* prev_obj = NULL);
 319   while (cur_obj < end_of_live) {
 320     if (!oop(cur_obj)->is_gc_marked()) {
 321       debug_only(prev_obj = cur_obj);
 322       // The first word of the dead object contains a pointer to the next live object or end of space.
 323       cur_obj = *(HeapWord**)cur_obj;
 324       assert(cur_obj > prev_obj, "we should be moving forward through memory");
 325     } else {
 326       // prefetch beyond q
 327       Prefetch::read(cur_obj, scan_interval);
 328 
 329       // size and destination
 330       size_t size = space->obj_size(cur_obj);
 331       HeapWord* compaction_top = (HeapWord*)oop(cur_obj)->forwardee();
 332 
 333       // prefetch beyond compaction_top
 334       Prefetch::write(compaction_top, copy_interval);
 335 
 336       // copy object and reinit its mark
 337       assert(cur_obj != compaction_top, "everything in this pass should be moving");
 338       Copy::aligned_conjoint_words(cur_obj, compaction_top, size);
 339       oop(compaction_top)->init_mark_raw();
 340       assert(oop(compaction_top)->klass() != NULL, "should have a class");
 341 
 342       debug_only(prev_obj = cur_obj);
 343       cur_obj += size;
 344     }
 345   }
 346 
 347   clear_empty_region(space);
 348 }
 349 
 350 size_t ContiguousSpace::scanned_block_size(const HeapWord* addr) const {
 351   return oop(addr)->size();
 352 }
 353 
 354 #endif // SHARE_VM_GC_SHARED_SPACE_INLINE_HPP