1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "code/compiledMethod.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/compiledIC.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/abstractCompiler.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "compiler/disassembler.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/interpreterRuntime.hpp"
  43 #include "logging/log.hpp"
  44 #include "memory/metaspaceShared.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "memory/universe.hpp"
  47 #include "oops/klass.hpp"
  48 #include "oops/method.inline.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "prims/forte.hpp"
  52 #include "prims/jvmtiExport.hpp"
  53 #include "prims/methodHandles.hpp"
  54 #include "prims/nativeLookup.hpp"
  55 #include "runtime/arguments.hpp"
  56 #include "runtime/atomic.hpp"
  57 #include "runtime/biasedLocking.hpp"
  58 #include "runtime/compilationPolicy.hpp"
  59 #include "runtime/frame.inline.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/init.hpp"
  62 #include "runtime/interfaceSupport.inline.hpp"
  63 #include "runtime/java.hpp"
  64 #include "runtime/javaCalls.hpp"
  65 #include "runtime/sharedRuntime.hpp"
  66 #include "runtime/stubRoutines.hpp"
  67 #include "runtime/vframe.inline.hpp"
  68 #include "runtime/vframeArray.hpp"
  69 #include "trace/tracing.hpp"
  70 #include "utilities/copy.hpp"
  71 #include "utilities/dtrace.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/hashtable.inline.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/xmlstream.hpp"
  76 #ifdef COMPILER1
  77 #include "c1/c1_Runtime1.hpp"
  78 #endif
  79 #if INCLUDE_G1GC
  80 #include "gc/g1/g1ThreadLocalData.hpp"
  81 #endif // INCLUDE_G1GC
  82 
  83 // Shared stub locations
  84 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  85 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  86 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  90 address             SharedRuntime::_resolve_static_call_entry;
  91 
  92 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  96 
  97 #ifdef COMPILER2
  98 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  99 #endif // COMPILER2
 100 
 101 
 102 //----------------------------generate_stubs-----------------------------------
 103 void SharedRuntime::generate_stubs() {
 104   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 105   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 106   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 107   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 108   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 109   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 110   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 111 
 112 #if COMPILER2_OR_JVMCI
 113   // Vectors are generated only by C2 and JVMCI.
 114   bool support_wide = is_wide_vector(MaxVectorSize);
 115   if (support_wide) {
 116     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 117   }
 118 #endif // COMPILER2_OR_JVMCI
 119   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 120   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 121 
 122   generate_deopt_blob();
 123 
 124 #ifdef COMPILER2
 125   generate_uncommon_trap_blob();
 126 #endif // COMPILER2
 127 }
 128 
 129 #include <math.h>
 130 
 131 // Implementation of SharedRuntime
 132 
 133 #ifndef PRODUCT
 134 // For statistics
 135 int SharedRuntime::_ic_miss_ctr = 0;
 136 int SharedRuntime::_wrong_method_ctr = 0;
 137 int SharedRuntime::_resolve_static_ctr = 0;
 138 int SharedRuntime::_resolve_virtual_ctr = 0;
 139 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 140 int SharedRuntime::_implicit_null_throws = 0;
 141 int SharedRuntime::_implicit_div0_throws = 0;
 142 int SharedRuntime::_throw_null_ctr = 0;
 143 
 144 int SharedRuntime::_nof_normal_calls = 0;
 145 int SharedRuntime::_nof_optimized_calls = 0;
 146 int SharedRuntime::_nof_inlined_calls = 0;
 147 int SharedRuntime::_nof_megamorphic_calls = 0;
 148 int SharedRuntime::_nof_static_calls = 0;
 149 int SharedRuntime::_nof_inlined_static_calls = 0;
 150 int SharedRuntime::_nof_interface_calls = 0;
 151 int SharedRuntime::_nof_optimized_interface_calls = 0;
 152 int SharedRuntime::_nof_inlined_interface_calls = 0;
 153 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 154 int SharedRuntime::_nof_removable_exceptions = 0;
 155 
 156 int SharedRuntime::_new_instance_ctr=0;
 157 int SharedRuntime::_new_array_ctr=0;
 158 int SharedRuntime::_multi1_ctr=0;
 159 int SharedRuntime::_multi2_ctr=0;
 160 int SharedRuntime::_multi3_ctr=0;
 161 int SharedRuntime::_multi4_ctr=0;
 162 int SharedRuntime::_multi5_ctr=0;
 163 int SharedRuntime::_mon_enter_stub_ctr=0;
 164 int SharedRuntime::_mon_exit_stub_ctr=0;
 165 int SharedRuntime::_mon_enter_ctr=0;
 166 int SharedRuntime::_mon_exit_ctr=0;
 167 int SharedRuntime::_partial_subtype_ctr=0;
 168 int SharedRuntime::_jbyte_array_copy_ctr=0;
 169 int SharedRuntime::_jshort_array_copy_ctr=0;
 170 int SharedRuntime::_jint_array_copy_ctr=0;
 171 int SharedRuntime::_jlong_array_copy_ctr=0;
 172 int SharedRuntime::_oop_array_copy_ctr=0;
 173 int SharedRuntime::_checkcast_array_copy_ctr=0;
 174 int SharedRuntime::_unsafe_array_copy_ctr=0;
 175 int SharedRuntime::_generic_array_copy_ctr=0;
 176 int SharedRuntime::_slow_array_copy_ctr=0;
 177 int SharedRuntime::_find_handler_ctr=0;
 178 int SharedRuntime::_rethrow_ctr=0;
 179 
 180 int     SharedRuntime::_ICmiss_index                    = 0;
 181 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 182 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 183 
 184 
 185 void SharedRuntime::trace_ic_miss(address at) {
 186   for (int i = 0; i < _ICmiss_index; i++) {
 187     if (_ICmiss_at[i] == at) {
 188       _ICmiss_count[i]++;
 189       return;
 190     }
 191   }
 192   int index = _ICmiss_index++;
 193   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 194   _ICmiss_at[index] = at;
 195   _ICmiss_count[index] = 1;
 196 }
 197 
 198 void SharedRuntime::print_ic_miss_histogram() {
 199   if (ICMissHistogram) {
 200     tty->print_cr("IC Miss Histogram:");
 201     int tot_misses = 0;
 202     for (int i = 0; i < _ICmiss_index; i++) {
 203       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 204       tot_misses += _ICmiss_count[i];
 205     }
 206     tty->print_cr("Total IC misses: %7d", tot_misses);
 207   }
 208 }
 209 #endif // PRODUCT
 210 
 211 #if INCLUDE_G1GC
 212 
 213 // G1 write-barrier pre: executed before a pointer store.
 214 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 215   if (orig == NULL) {
 216     assert(false, "should be optimized out");
 217     return;
 218   }
 219   assert(oopDesc::is_oop(orig, true /* ignore mark word */), "Error");
 220   // store the original value that was in the field reference
 221   G1ThreadLocalData::satb_mark_queue(thread).enqueue(orig);
 222 JRT_END
 223 
 224 // G1 write-barrier post: executed after a pointer store.
 225 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 226   G1ThreadLocalData::dirty_card_queue(thread).enqueue(card_addr);
 227 JRT_END
 228 
 229 #endif // INCLUDE_G1GC
 230 
 231 
 232 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 233   return x * y;
 234 JRT_END
 235 
 236 
 237 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 238   if (x == min_jlong && y == CONST64(-1)) {
 239     return x;
 240   } else {
 241     return x / y;
 242   }
 243 JRT_END
 244 
 245 
 246 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 247   if (x == min_jlong && y == CONST64(-1)) {
 248     return 0;
 249   } else {
 250     return x % y;
 251   }
 252 JRT_END
 253 
 254 
 255 const juint  float_sign_mask  = 0x7FFFFFFF;
 256 const juint  float_infinity   = 0x7F800000;
 257 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 258 const julong double_infinity  = CONST64(0x7FF0000000000000);
 259 
 260 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 261 #ifdef _WIN64
 262   // 64-bit Windows on amd64 returns the wrong values for
 263   // infinity operands.
 264   union { jfloat f; juint i; } xbits, ybits;
 265   xbits.f = x;
 266   ybits.f = y;
 267   // x Mod Infinity == x unless x is infinity
 268   if (((xbits.i & float_sign_mask) != float_infinity) &&
 269        ((ybits.i & float_sign_mask) == float_infinity) ) {
 270     return x;
 271   }
 272   return ((jfloat)fmod_winx64((double)x, (double)y));
 273 #else
 274   return ((jfloat)fmod((double)x,(double)y));
 275 #endif
 276 JRT_END
 277 
 278 
 279 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 280 #ifdef _WIN64
 281   union { jdouble d; julong l; } xbits, ybits;
 282   xbits.d = x;
 283   ybits.d = y;
 284   // x Mod Infinity == x unless x is infinity
 285   if (((xbits.l & double_sign_mask) != double_infinity) &&
 286        ((ybits.l & double_sign_mask) == double_infinity) ) {
 287     return x;
 288   }
 289   return ((jdouble)fmod_winx64((double)x, (double)y));
 290 #else
 291   return ((jdouble)fmod((double)x,(double)y));
 292 #endif
 293 JRT_END
 294 
 295 #ifdef __SOFTFP__
 296 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 297   return x + y;
 298 JRT_END
 299 
 300 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 301   return x - y;
 302 JRT_END
 303 
 304 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 305   return x * y;
 306 JRT_END
 307 
 308 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 309   return x / y;
 310 JRT_END
 311 
 312 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 313   return x + y;
 314 JRT_END
 315 
 316 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 317   return x - y;
 318 JRT_END
 319 
 320 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 321   return x * y;
 322 JRT_END
 323 
 324 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 325   return x / y;
 326 JRT_END
 327 
 328 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 329   return (jfloat)x;
 330 JRT_END
 331 
 332 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 333   return (jdouble)x;
 334 JRT_END
 335 
 336 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 337   return (jdouble)x;
 338 JRT_END
 339 
 340 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 341   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 342 JRT_END
 343 
 344 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 345   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 346 JRT_END
 347 
 348 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 349   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 350 JRT_END
 351 
 352 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 353   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 354 JRT_END
 355 
 356 // Functions to return the opposite of the aeabi functions for nan.
 357 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 358   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 359 JRT_END
 360 
 361 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 362   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 363 JRT_END
 364 
 365 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 366   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 367 JRT_END
 368 
 369 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 370   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 371 JRT_END
 372 
 373 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 374   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 375 JRT_END
 376 
 377 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 378   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 379 JRT_END
 380 
 381 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 382   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 383 JRT_END
 384 
 385 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 386   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 387 JRT_END
 388 
 389 // Intrinsics make gcc generate code for these.
 390 float  SharedRuntime::fneg(float f)   {
 391   return -f;
 392 }
 393 
 394 double SharedRuntime::dneg(double f)  {
 395   return -f;
 396 }
 397 
 398 #endif // __SOFTFP__
 399 
 400 #if defined(__SOFTFP__) || defined(E500V2)
 401 // Intrinsics make gcc generate code for these.
 402 double SharedRuntime::dabs(double f)  {
 403   return (f <= (double)0.0) ? (double)0.0 - f : f;
 404 }
 405 
 406 #endif
 407 
 408 #if defined(__SOFTFP__) || defined(PPC)
 409 double SharedRuntime::dsqrt(double f) {
 410   return sqrt(f);
 411 }
 412 #endif
 413 
 414 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 415   if (g_isnan(x))
 416     return 0;
 417   if (x >= (jfloat) max_jint)
 418     return max_jint;
 419   if (x <= (jfloat) min_jint)
 420     return min_jint;
 421   return (jint) x;
 422 JRT_END
 423 
 424 
 425 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 426   if (g_isnan(x))
 427     return 0;
 428   if (x >= (jfloat) max_jlong)
 429     return max_jlong;
 430   if (x <= (jfloat) min_jlong)
 431     return min_jlong;
 432   return (jlong) x;
 433 JRT_END
 434 
 435 
 436 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 437   if (g_isnan(x))
 438     return 0;
 439   if (x >= (jdouble) max_jint)
 440     return max_jint;
 441   if (x <= (jdouble) min_jint)
 442     return min_jint;
 443   return (jint) x;
 444 JRT_END
 445 
 446 
 447 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 448   if (g_isnan(x))
 449     return 0;
 450   if (x >= (jdouble) max_jlong)
 451     return max_jlong;
 452   if (x <= (jdouble) min_jlong)
 453     return min_jlong;
 454   return (jlong) x;
 455 JRT_END
 456 
 457 
 458 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 459   return (jfloat)x;
 460 JRT_END
 461 
 462 
 463 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 464   return (jfloat)x;
 465 JRT_END
 466 
 467 
 468 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 469   return (jdouble)x;
 470 JRT_END
 471 
 472 // Exception handling across interpreter/compiler boundaries
 473 //
 474 // exception_handler_for_return_address(...) returns the continuation address.
 475 // The continuation address is the entry point of the exception handler of the
 476 // previous frame depending on the return address.
 477 
 478 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 479   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 480   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 481 
 482   // Reset method handle flag.
 483   thread->set_is_method_handle_return(false);
 484 
 485 #if INCLUDE_JVMCI
 486   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 487   // and other exception handler continuations do not read it
 488   thread->set_exception_pc(NULL);
 489 #endif // INCLUDE_JVMCI
 490 
 491   // The fastest case first
 492   CodeBlob* blob = CodeCache::find_blob(return_address);
 493   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 494   if (nm != NULL) {
 495     // Set flag if return address is a method handle call site.
 496     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 497     // native nmethods don't have exception handlers
 498     assert(!nm->is_native_method(), "no exception handler");
 499     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 500     if (nm->is_deopt_pc(return_address)) {
 501       // If we come here because of a stack overflow, the stack may be
 502       // unguarded. Reguard the stack otherwise if we return to the
 503       // deopt blob and the stack bang causes a stack overflow we
 504       // crash.
 505       bool guard_pages_enabled = thread->stack_guards_enabled();
 506       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 507       if (thread->reserved_stack_activation() != thread->stack_base()) {
 508         thread->set_reserved_stack_activation(thread->stack_base());
 509       }
 510       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 511       return SharedRuntime::deopt_blob()->unpack_with_exception();
 512     } else {
 513       return nm->exception_begin();
 514     }
 515   }
 516 
 517   // Entry code
 518   if (StubRoutines::returns_to_call_stub(return_address)) {
 519     return StubRoutines::catch_exception_entry();
 520   }
 521   // Interpreted code
 522   if (Interpreter::contains(return_address)) {
 523     return Interpreter::rethrow_exception_entry();
 524   }
 525 
 526   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 527   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 528 
 529 #ifndef PRODUCT
 530   { ResourceMark rm;
 531     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 532     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 533     tty->print_cr("b) other problem");
 534   }
 535 #endif // PRODUCT
 536 
 537   ShouldNotReachHere();
 538   return NULL;
 539 }
 540 
 541 
 542 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 543   return raw_exception_handler_for_return_address(thread, return_address);
 544 JRT_END
 545 
 546 
 547 address SharedRuntime::get_poll_stub(address pc) {
 548   address stub;
 549   // Look up the code blob
 550   CodeBlob *cb = CodeCache::find_blob(pc);
 551 
 552   // Should be an nmethod
 553   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 554 
 555   // Look up the relocation information
 556   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 557     "safepoint polling: type must be poll");
 558 
 559 #ifdef ASSERT
 560   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 561     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 562     Disassembler::decode(cb);
 563     fatal("Only polling locations are used for safepoint");
 564   }
 565 #endif
 566 
 567   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 568   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 569   if (at_poll_return) {
 570     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 571            "polling page return stub not created yet");
 572     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 573   } else if (has_wide_vectors) {
 574     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 575            "polling page vectors safepoint stub not created yet");
 576     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 577   } else {
 578     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 579            "polling page safepoint stub not created yet");
 580     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 581   }
 582   log_debug(safepoint)("... found polling page %s exception at pc = "
 583                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 584                        at_poll_return ? "return" : "loop",
 585                        (intptr_t)pc, (intptr_t)stub);
 586   return stub;
 587 }
 588 
 589 
 590 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 591   assert(caller.is_interpreted_frame(), "");
 592   int args_size = ArgumentSizeComputer(sig).size() + 1;
 593   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 594   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 595   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 596   return result;
 597 }
 598 
 599 
 600 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 601   if (JvmtiExport::can_post_on_exceptions()) {
 602     vframeStream vfst(thread, true);
 603     methodHandle method = methodHandle(thread, vfst.method());
 604     address bcp = method()->bcp_from(vfst.bci());
 605     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 606   }
 607   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 608 }
 609 
 610 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 611   Handle h_exception = Exceptions::new_exception(thread, name, message);
 612   throw_and_post_jvmti_exception(thread, h_exception);
 613 }
 614 
 615 // The interpreter code to call this tracing function is only
 616 // called/generated when UL is on for redefine, class and has the right level
 617 // and tags. Since obsolete methods are never compiled, we don't have
 618 // to modify the compilers to generate calls to this function.
 619 //
 620 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 621     JavaThread* thread, Method* method))
 622   if (method->is_obsolete()) {
 623     // We are calling an obsolete method, but this is not necessarily
 624     // an error. Our method could have been redefined just after we
 625     // fetched the Method* from the constant pool.
 626     ResourceMark rm;
 627     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 628   }
 629   return 0;
 630 JRT_END
 631 
 632 // ret_pc points into caller; we are returning caller's exception handler
 633 // for given exception
 634 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 635                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 636   assert(cm != NULL, "must exist");
 637   ResourceMark rm;
 638 
 639 #if INCLUDE_JVMCI
 640   if (cm->is_compiled_by_jvmci()) {
 641     // lookup exception handler for this pc
 642     int catch_pco = ret_pc - cm->code_begin();
 643     ExceptionHandlerTable table(cm);
 644     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 645     if (t != NULL) {
 646       return cm->code_begin() + t->pco();
 647     } else {
 648       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 649     }
 650   }
 651 #endif // INCLUDE_JVMCI
 652 
 653   nmethod* nm = cm->as_nmethod();
 654   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 655   // determine handler bci, if any
 656   EXCEPTION_MARK;
 657 
 658   int handler_bci = -1;
 659   int scope_depth = 0;
 660   if (!force_unwind) {
 661     int bci = sd->bci();
 662     bool recursive_exception = false;
 663     do {
 664       bool skip_scope_increment = false;
 665       // exception handler lookup
 666       Klass* ek = exception->klass();
 667       methodHandle mh(THREAD, sd->method());
 668       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 669       if (HAS_PENDING_EXCEPTION) {
 670         recursive_exception = true;
 671         // We threw an exception while trying to find the exception handler.
 672         // Transfer the new exception to the exception handle which will
 673         // be set into thread local storage, and do another lookup for an
 674         // exception handler for this exception, this time starting at the
 675         // BCI of the exception handler which caused the exception to be
 676         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 677         // argument to ensure that the correct exception is thrown (4870175).
 678         recursive_exception_occurred = true;
 679         exception = Handle(THREAD, PENDING_EXCEPTION);
 680         CLEAR_PENDING_EXCEPTION;
 681         if (handler_bci >= 0) {
 682           bci = handler_bci;
 683           handler_bci = -1;
 684           skip_scope_increment = true;
 685         }
 686       }
 687       else {
 688         recursive_exception = false;
 689       }
 690       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 691         sd = sd->sender();
 692         if (sd != NULL) {
 693           bci = sd->bci();
 694         }
 695         ++scope_depth;
 696       }
 697     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 698   }
 699 
 700   // found handling method => lookup exception handler
 701   int catch_pco = ret_pc - nm->code_begin();
 702 
 703   ExceptionHandlerTable table(nm);
 704   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 705   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 706     // Allow abbreviated catch tables.  The idea is to allow a method
 707     // to materialize its exceptions without committing to the exact
 708     // routing of exceptions.  In particular this is needed for adding
 709     // a synthetic handler to unlock monitors when inlining
 710     // synchronized methods since the unlock path isn't represented in
 711     // the bytecodes.
 712     t = table.entry_for(catch_pco, -1, 0);
 713   }
 714 
 715 #ifdef COMPILER1
 716   if (t == NULL && nm->is_compiled_by_c1()) {
 717     assert(nm->unwind_handler_begin() != NULL, "");
 718     return nm->unwind_handler_begin();
 719   }
 720 #endif
 721 
 722   if (t == NULL) {
 723     ttyLocker ttyl;
 724     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 725     tty->print_cr("   Exception:");
 726     exception->print();
 727     tty->cr();
 728     tty->print_cr(" Compiled exception table :");
 729     table.print();
 730     nm->print_code();
 731     guarantee(false, "missing exception handler");
 732     return NULL;
 733   }
 734 
 735   return nm->code_begin() + t->pco();
 736 }
 737 
 738 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 739   // These errors occur only at call sites
 740   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 741 JRT_END
 742 
 743 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 744   // These errors occur only at call sites
 745   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 746 JRT_END
 747 
 748 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 749   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 750 JRT_END
 751 
 752 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 753   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 754 JRT_END
 755 
 756 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 757   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 758   // cache sites (when the callee activation is not yet set up) so we are at a call site
 759   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 760 JRT_END
 761 
 762 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 763   throw_StackOverflowError_common(thread, false);
 764 JRT_END
 765 
 766 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 767   throw_StackOverflowError_common(thread, true);
 768 JRT_END
 769 
 770 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 771   // We avoid using the normal exception construction in this case because
 772   // it performs an upcall to Java, and we're already out of stack space.
 773   Thread* THREAD = thread;
 774   Klass* k = SystemDictionary::StackOverflowError_klass();
 775   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 776   if (delayed) {
 777     java_lang_Throwable::set_message(exception_oop,
 778                                      Universe::delayed_stack_overflow_error_message());
 779   }
 780   Handle exception (thread, exception_oop);
 781   if (StackTraceInThrowable) {
 782     java_lang_Throwable::fill_in_stack_trace(exception);
 783   }
 784   // Increment counter for hs_err file reporting
 785   Atomic::inc(&Exceptions::_stack_overflow_errors);
 786   throw_and_post_jvmti_exception(thread, exception);
 787 }
 788 
 789 #if INCLUDE_JVMCI
 790 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 791   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 792   thread->set_jvmci_implicit_exception_pc(pc);
 793   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 794   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 795 }
 796 #endif // INCLUDE_JVMCI
 797 
 798 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 799                                                            address pc,
 800                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 801 {
 802   address target_pc = NULL;
 803 
 804   if (Interpreter::contains(pc)) {
 805 #ifdef CC_INTERP
 806     // C++ interpreter doesn't throw implicit exceptions
 807     ShouldNotReachHere();
 808 #else
 809     switch (exception_kind) {
 810       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 811       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 812       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 813       default:                      ShouldNotReachHere();
 814     }
 815 #endif // !CC_INTERP
 816   } else {
 817     switch (exception_kind) {
 818       case STACK_OVERFLOW: {
 819         // Stack overflow only occurs upon frame setup; the callee is
 820         // going to be unwound. Dispatch to a shared runtime stub
 821         // which will cause the StackOverflowError to be fabricated
 822         // and processed.
 823         // Stack overflow should never occur during deoptimization:
 824         // the compiled method bangs the stack by as much as the
 825         // interpreter would need in case of a deoptimization. The
 826         // deoptimization blob and uncommon trap blob bang the stack
 827         // in a debug VM to verify the correctness of the compiled
 828         // method stack banging.
 829         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 830         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 831         return StubRoutines::throw_StackOverflowError_entry();
 832       }
 833 
 834       case IMPLICIT_NULL: {
 835         if (VtableStubs::contains(pc)) {
 836           // We haven't yet entered the callee frame. Fabricate an
 837           // exception and begin dispatching it in the caller. Since
 838           // the caller was at a call site, it's safe to destroy all
 839           // caller-saved registers, as these entry points do.
 840           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 841 
 842           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 843           if (vt_stub == NULL) return NULL;
 844 
 845           if (vt_stub->is_abstract_method_error(pc)) {
 846             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 847             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 848             // Instead of throwing the abstract method error here directly, we re-resolve
 849             // and will throw the AbstractMethodError during resolve. As a result, we'll
 850             // get a more detailed error message.
 851             return SharedRuntime::get_handle_wrong_method_stub();
 852           } else {
 853             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 854             // Assert that the signal comes from the expected location in stub code.
 855             assert(vt_stub->is_null_pointer_exception(pc),
 856                    "obtained signal from unexpected location in stub code");
 857             return StubRoutines::throw_NullPointerException_at_call_entry();
 858           }
 859         } else {
 860           CodeBlob* cb = CodeCache::find_blob(pc);
 861 
 862           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 863           if (cb == NULL) return NULL;
 864 
 865           // Exception happened in CodeCache. Must be either:
 866           // 1. Inline-cache check in C2I handler blob,
 867           // 2. Inline-cache check in nmethod, or
 868           // 3. Implicit null exception in nmethod
 869 
 870           if (!cb->is_compiled()) {
 871             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 872             if (!is_in_blob) {
 873               // Allow normal crash reporting to handle this
 874               return NULL;
 875             }
 876             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 877             // There is no handler here, so we will simply unwind.
 878             return StubRoutines::throw_NullPointerException_at_call_entry();
 879           }
 880 
 881           // Otherwise, it's a compiled method.  Consult its exception handlers.
 882           CompiledMethod* cm = (CompiledMethod*)cb;
 883           if (cm->inlinecache_check_contains(pc)) {
 884             // exception happened inside inline-cache check code
 885             // => the nmethod is not yet active (i.e., the frame
 886             // is not set up yet) => use return address pushed by
 887             // caller => don't push another return address
 888             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 889             return StubRoutines::throw_NullPointerException_at_call_entry();
 890           }
 891 
 892           if (cm->method()->is_method_handle_intrinsic()) {
 893             // exception happened inside MH dispatch code, similar to a vtable stub
 894             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 895             return StubRoutines::throw_NullPointerException_at_call_entry();
 896           }
 897 
 898 #ifndef PRODUCT
 899           _implicit_null_throws++;
 900 #endif
 901 #if INCLUDE_JVMCI
 902           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 903             // If there's no PcDesc then we'll die way down inside of
 904             // deopt instead of just getting normal error reporting,
 905             // so only go there if it will succeed.
 906             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 907           } else {
 908 #endif // INCLUDE_JVMCI
 909           assert (cm->is_nmethod(), "Expect nmethod");
 910           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 911 #if INCLUDE_JVMCI
 912           }
 913 #endif // INCLUDE_JVMCI
 914           // If there's an unexpected fault, target_pc might be NULL,
 915           // in which case we want to fall through into the normal
 916           // error handling code.
 917         }
 918 
 919         break; // fall through
 920       }
 921 
 922 
 923       case IMPLICIT_DIVIDE_BY_ZERO: {
 924         CompiledMethod* cm = CodeCache::find_compiled(pc);
 925         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 926 #ifndef PRODUCT
 927         _implicit_div0_throws++;
 928 #endif
 929 #if INCLUDE_JVMCI
 930         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 931           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 932         } else {
 933 #endif // INCLUDE_JVMCI
 934         target_pc = cm->continuation_for_implicit_exception(pc);
 935 #if INCLUDE_JVMCI
 936         }
 937 #endif // INCLUDE_JVMCI
 938         // If there's an unexpected fault, target_pc might be NULL,
 939         // in which case we want to fall through into the normal
 940         // error handling code.
 941         break; // fall through
 942       }
 943 
 944       default: ShouldNotReachHere();
 945     }
 946 
 947     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 948 
 949     if (exception_kind == IMPLICIT_NULL) {
 950 #ifndef PRODUCT
 951       // for AbortVMOnException flag
 952       Exceptions::debug_check_abort("java.lang.NullPointerException");
 953 #endif //PRODUCT
 954       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 955     } else {
 956 #ifndef PRODUCT
 957       // for AbortVMOnException flag
 958       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 959 #endif //PRODUCT
 960       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 961     }
 962     return target_pc;
 963   }
 964 
 965   ShouldNotReachHere();
 966   return NULL;
 967 }
 968 
 969 
 970 /**
 971  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 972  * installed in the native function entry of all native Java methods before
 973  * they get linked to their actual native methods.
 974  *
 975  * \note
 976  * This method actually never gets called!  The reason is because
 977  * the interpreter's native entries call NativeLookup::lookup() which
 978  * throws the exception when the lookup fails.  The exception is then
 979  * caught and forwarded on the return from NativeLookup::lookup() call
 980  * before the call to the native function.  This might change in the future.
 981  */
 982 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 983 {
 984   // We return a bad value here to make sure that the exception is
 985   // forwarded before we look at the return value.
 986   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 987 }
 988 JNI_END
 989 
 990 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 991   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 992 }
 993 
 994 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 995 #if INCLUDE_JVMCI
 996   if (!obj->klass()->has_finalizer()) {
 997     return;
 998   }
 999 #endif // INCLUDE_JVMCI
1000   assert(oopDesc::is_oop(obj), "must be a valid oop");
1001   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1002   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1003 JRT_END
1004 
1005 
1006 jlong SharedRuntime::get_java_tid(Thread* thread) {
1007   if (thread != NULL) {
1008     if (thread->is_Java_thread()) {
1009       oop obj = ((JavaThread*)thread)->threadObj();
1010       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1011     }
1012   }
1013   return 0;
1014 }
1015 
1016 /**
1017  * This function ought to be a void function, but cannot be because
1018  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1019  * 6254741.  Once that is fixed we can remove the dummy return value.
1020  */
1021 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1022   return dtrace_object_alloc_base(Thread::current(), o, size);
1023 }
1024 
1025 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1026   assert(DTraceAllocProbes, "wrong call");
1027   Klass* klass = o->klass();
1028   Symbol* name = klass->name();
1029   HOTSPOT_OBJECT_ALLOC(
1030                    get_java_tid(thread),
1031                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1032   return 0;
1033 }
1034 
1035 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1036     JavaThread* thread, Method* method))
1037   assert(DTraceMethodProbes, "wrong call");
1038   Symbol* kname = method->klass_name();
1039   Symbol* name = method->name();
1040   Symbol* sig = method->signature();
1041   HOTSPOT_METHOD_ENTRY(
1042       get_java_tid(thread),
1043       (char *) kname->bytes(), kname->utf8_length(),
1044       (char *) name->bytes(), name->utf8_length(),
1045       (char *) sig->bytes(), sig->utf8_length());
1046   return 0;
1047 JRT_END
1048 
1049 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1050     JavaThread* thread, Method* method))
1051   assert(DTraceMethodProbes, "wrong call");
1052   Symbol* kname = method->klass_name();
1053   Symbol* name = method->name();
1054   Symbol* sig = method->signature();
1055   HOTSPOT_METHOD_RETURN(
1056       get_java_tid(thread),
1057       (char *) kname->bytes(), kname->utf8_length(),
1058       (char *) name->bytes(), name->utf8_length(),
1059       (char *) sig->bytes(), sig->utf8_length());
1060   return 0;
1061 JRT_END
1062 
1063 
1064 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1065 // for a call current in progress, i.e., arguments has been pushed on stack
1066 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1067 // vtable updates, etc.  Caller frame must be compiled.
1068 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1069   ResourceMark rm(THREAD);
1070 
1071   // last java frame on stack (which includes native call frames)
1072   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1073 
1074   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1075 }
1076 
1077 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1078   CompiledMethod* caller = vfst.nm();
1079 
1080   nmethodLocker caller_lock(caller);
1081 
1082   address pc = vfst.frame_pc();
1083   { // Get call instruction under lock because another thread may be busy patching it.
1084     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1085     return caller->attached_method_before_pc(pc);
1086   }
1087   return NULL;
1088 }
1089 
1090 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1091 // for a call current in progress, i.e., arguments has been pushed on stack
1092 // but callee has not been invoked yet.  Caller frame must be compiled.
1093 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1094                                               vframeStream& vfst,
1095                                               Bytecodes::Code& bc,
1096                                               CallInfo& callinfo, TRAPS) {
1097   Handle receiver;
1098   Handle nullHandle;  //create a handy null handle for exception returns
1099 
1100   assert(!vfst.at_end(), "Java frame must exist");
1101 
1102   // Find caller and bci from vframe
1103   methodHandle caller(THREAD, vfst.method());
1104   int          bci   = vfst.bci();
1105 
1106   Bytecode_invoke bytecode(caller, bci);
1107   int bytecode_index = bytecode.index();
1108 
1109   methodHandle attached_method = extract_attached_method(vfst);
1110   if (attached_method.not_null()) {
1111     methodHandle callee = bytecode.static_target(CHECK_NH);
1112     vmIntrinsics::ID id = callee->intrinsic_id();
1113     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1114     // it attaches statically resolved method to the call site.
1115     if (MethodHandles::is_signature_polymorphic(id) &&
1116         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1117       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1118 
1119       // Adjust invocation mode according to the attached method.
1120       switch (bc) {
1121         case Bytecodes::_invokeinterface:
1122           if (!attached_method->method_holder()->is_interface()) {
1123             bc = Bytecodes::_invokevirtual;
1124           }
1125           break;
1126         case Bytecodes::_invokehandle:
1127           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1128             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1129                                               : Bytecodes::_invokevirtual;
1130           }
1131           break;
1132         default:
1133           break;
1134       }
1135     }
1136   } else {
1137     bc = bytecode.invoke_code();
1138   }
1139 
1140   bool has_receiver = bc != Bytecodes::_invokestatic &&
1141                       bc != Bytecodes::_invokedynamic &&
1142                       bc != Bytecodes::_invokehandle;
1143 
1144   // Find receiver for non-static call
1145   if (has_receiver) {
1146     // This register map must be update since we need to find the receiver for
1147     // compiled frames. The receiver might be in a register.
1148     RegisterMap reg_map2(thread);
1149     frame stubFrame   = thread->last_frame();
1150     // Caller-frame is a compiled frame
1151     frame callerFrame = stubFrame.sender(&reg_map2);
1152 
1153     if (attached_method.is_null()) {
1154       methodHandle callee = bytecode.static_target(CHECK_NH);
1155       if (callee.is_null()) {
1156         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1157       }
1158     }
1159 
1160     // Retrieve from a compiled argument list
1161     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1162 
1163     if (receiver.is_null()) {
1164       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1165     }
1166   }
1167 
1168   // Resolve method
1169   if (attached_method.not_null()) {
1170     // Parameterized by attached method.
1171     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1172   } else {
1173     // Parameterized by bytecode.
1174     constantPoolHandle constants(THREAD, caller->constants());
1175     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1176   }
1177 
1178 #ifdef ASSERT
1179   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1180   if (has_receiver) {
1181     assert(receiver.not_null(), "should have thrown exception");
1182     Klass* receiver_klass = receiver->klass();
1183     Klass* rk = NULL;
1184     if (attached_method.not_null()) {
1185       // In case there's resolved method attached, use its holder during the check.
1186       rk = attached_method->method_holder();
1187     } else {
1188       // Klass is already loaded.
1189       constantPoolHandle constants(THREAD, caller->constants());
1190       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1191     }
1192     Klass* static_receiver_klass = rk;
1193     methodHandle callee = callinfo.selected_method();
1194     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1195            "actual receiver must be subclass of static receiver klass");
1196     if (receiver_klass->is_instance_klass()) {
1197       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1198         tty->print_cr("ERROR: Klass not yet initialized!!");
1199         receiver_klass->print();
1200       }
1201       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1202     }
1203   }
1204 #endif
1205 
1206   return receiver;
1207 }
1208 
1209 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1210   ResourceMark rm(THREAD);
1211   // We need first to check if any Java activations (compiled, interpreted)
1212   // exist on the stack since last JavaCall.  If not, we need
1213   // to get the target method from the JavaCall wrapper.
1214   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1215   methodHandle callee_method;
1216   if (vfst.at_end()) {
1217     // No Java frames were found on stack since we did the JavaCall.
1218     // Hence the stack can only contain an entry_frame.  We need to
1219     // find the target method from the stub frame.
1220     RegisterMap reg_map(thread, false);
1221     frame fr = thread->last_frame();
1222     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1223     fr = fr.sender(&reg_map);
1224     assert(fr.is_entry_frame(), "must be");
1225     // fr is now pointing to the entry frame.
1226     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1227   } else {
1228     Bytecodes::Code bc;
1229     CallInfo callinfo;
1230     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1231     callee_method = callinfo.selected_method();
1232   }
1233   assert(callee_method()->is_method(), "must be");
1234   return callee_method;
1235 }
1236 
1237 // Resolves a call.
1238 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1239                                            bool is_virtual,
1240                                            bool is_optimized, TRAPS) {
1241   methodHandle callee_method;
1242   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1243   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1244     int retry_count = 0;
1245     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1246            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1247       // If has a pending exception then there is no need to re-try to
1248       // resolve this method.
1249       // If the method has been redefined, we need to try again.
1250       // Hack: we have no way to update the vtables of arrays, so don't
1251       // require that java.lang.Object has been updated.
1252 
1253       // It is very unlikely that method is redefined more than 100 times
1254       // in the middle of resolve. If it is looping here more than 100 times
1255       // means then there could be a bug here.
1256       guarantee((retry_count++ < 100),
1257                 "Could not resolve to latest version of redefined method");
1258       // method is redefined in the middle of resolve so re-try.
1259       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1260     }
1261   }
1262   return callee_method;
1263 }
1264 
1265 // Resolves a call.  The compilers generate code for calls that go here
1266 // and are patched with the real destination of the call.
1267 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1268                                            bool is_virtual,
1269                                            bool is_optimized, TRAPS) {
1270 
1271   ResourceMark rm(thread);
1272   RegisterMap cbl_map(thread, false);
1273   frame caller_frame = thread->last_frame().sender(&cbl_map);
1274 
1275   CodeBlob* caller_cb = caller_frame.cb();
1276   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1277   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1278 
1279   // make sure caller is not getting deoptimized
1280   // and removed before we are done with it.
1281   // CLEANUP - with lazy deopt shouldn't need this lock
1282   nmethodLocker caller_lock(caller_nm);
1283 
1284   // determine call info & receiver
1285   // note: a) receiver is NULL for static calls
1286   //       b) an exception is thrown if receiver is NULL for non-static calls
1287   CallInfo call_info;
1288   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1289   Handle receiver = find_callee_info(thread, invoke_code,
1290                                      call_info, CHECK_(methodHandle()));
1291   methodHandle callee_method = call_info.selected_method();
1292 
1293   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1294          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1295          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1296          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1297          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1298 
1299   assert(caller_nm->is_alive(), "It should be alive");
1300 
1301 #ifndef PRODUCT
1302   // tracing/debugging/statistics
1303   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1304                 (is_virtual) ? (&_resolve_virtual_ctr) :
1305                                (&_resolve_static_ctr);
1306   Atomic::inc(addr);
1307 
1308   if (TraceCallFixup) {
1309     ResourceMark rm(thread);
1310     tty->print("resolving %s%s (%s) call to",
1311       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1312       Bytecodes::name(invoke_code));
1313     callee_method->print_short_name(tty);
1314     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1315                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1316   }
1317 #endif
1318 
1319   // JSR 292 key invariant:
1320   // If the resolved method is a MethodHandle invoke target, the call
1321   // site must be a MethodHandle call site, because the lambda form might tail-call
1322   // leaving the stack in a state unknown to either caller or callee
1323   // TODO detune for now but we might need it again
1324 //  assert(!callee_method->is_compiled_lambda_form() ||
1325 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1326 
1327   // Compute entry points. This might require generation of C2I converter
1328   // frames, so we cannot be holding any locks here. Furthermore, the
1329   // computation of the entry points is independent of patching the call.  We
1330   // always return the entry-point, but we only patch the stub if the call has
1331   // not been deoptimized.  Return values: For a virtual call this is an
1332   // (cached_oop, destination address) pair. For a static call/optimized
1333   // virtual this is just a destination address.
1334 
1335   StaticCallInfo static_call_info;
1336   CompiledICInfo virtual_call_info;
1337 
1338   // Make sure the callee nmethod does not get deoptimized and removed before
1339   // we are done patching the code.
1340   CompiledMethod* callee = callee_method->code();
1341 
1342   if (callee != NULL) {
1343     assert(callee->is_compiled(), "must be nmethod for patching");
1344   }
1345 
1346   if (callee != NULL && !callee->is_in_use()) {
1347     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1348     callee = NULL;
1349   }
1350   nmethodLocker nl_callee(callee);
1351 #ifdef ASSERT
1352   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1353 #endif
1354 
1355   bool is_nmethod = caller_nm->is_nmethod();
1356 
1357   if (is_virtual) {
1358     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1359     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1360     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1361     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1362                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1363                      CHECK_(methodHandle()));
1364   } else {
1365     // static call
1366     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1367   }
1368 
1369   // grab lock, check for deoptimization and potentially patch caller
1370   {
1371     MutexLocker ml_patch(CompiledIC_lock);
1372 
1373     // Lock blocks for safepoint during which both nmethods can change state.
1374 
1375     // Now that we are ready to patch if the Method* was redefined then
1376     // don't update call site and let the caller retry.
1377     // Don't update call site if callee nmethod was unloaded or deoptimized.
1378     // Don't update call site if callee nmethod was replaced by an other nmethod
1379     // which may happen when multiply alive nmethod (tiered compilation)
1380     // will be supported.
1381     if (!callee_method->is_old() &&
1382         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1383 #ifdef ASSERT
1384       // We must not try to patch to jump to an already unloaded method.
1385       if (dest_entry_point != 0) {
1386         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1387         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1388                "should not call unloaded nmethod");
1389       }
1390 #endif
1391       if (is_virtual) {
1392         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1393         if (inline_cache->is_clean()) {
1394           inline_cache->set_to_monomorphic(virtual_call_info);
1395         }
1396       } else {
1397         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1398         if (ssc->is_clean()) ssc->set(static_call_info);
1399       }
1400     }
1401 
1402   } // unlock CompiledIC_lock
1403 
1404   return callee_method;
1405 }
1406 
1407 
1408 // Inline caches exist only in compiled code
1409 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1410 #ifdef ASSERT
1411   RegisterMap reg_map(thread, false);
1412   frame stub_frame = thread->last_frame();
1413   assert(stub_frame.is_runtime_frame(), "sanity check");
1414   frame caller_frame = stub_frame.sender(&reg_map);
1415   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1416 #endif /* ASSERT */
1417 
1418   methodHandle callee_method;
1419   JRT_BLOCK
1420     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1421     // Return Method* through TLS
1422     thread->set_vm_result_2(callee_method());
1423   JRT_BLOCK_END
1424   // return compiled code entry point after potential safepoints
1425   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1426   return callee_method->verified_code_entry();
1427 JRT_END
1428 
1429 
1430 // Handle call site that has been made non-entrant
1431 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1432   // 6243940 We might end up in here if the callee is deoptimized
1433   // as we race to call it.  We don't want to take a safepoint if
1434   // the caller was interpreted because the caller frame will look
1435   // interpreted to the stack walkers and arguments are now
1436   // "compiled" so it is much better to make this transition
1437   // invisible to the stack walking code. The i2c path will
1438   // place the callee method in the callee_target. It is stashed
1439   // there because if we try and find the callee by normal means a
1440   // safepoint is possible and have trouble gc'ing the compiled args.
1441   RegisterMap reg_map(thread, false);
1442   frame stub_frame = thread->last_frame();
1443   assert(stub_frame.is_runtime_frame(), "sanity check");
1444   frame caller_frame = stub_frame.sender(&reg_map);
1445 
1446   if (caller_frame.is_interpreted_frame() ||
1447       caller_frame.is_entry_frame()) {
1448     Method* callee = thread->callee_target();
1449     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1450     thread->set_vm_result_2(callee);
1451     thread->set_callee_target(NULL);
1452     return callee->get_c2i_entry();
1453   }
1454 
1455   // Must be compiled to compiled path which is safe to stackwalk
1456   methodHandle callee_method;
1457   JRT_BLOCK
1458     // Force resolving of caller (if we called from compiled frame)
1459     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1460     thread->set_vm_result_2(callee_method());
1461   JRT_BLOCK_END
1462   // return compiled code entry point after potential safepoints
1463   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1464   return callee_method->verified_code_entry();
1465 JRT_END
1466 
1467 // Handle abstract method call
1468 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1469   // Verbose error message for AbstractMethodError.
1470   // Get the called method from the invoke bytecode.
1471   vframeStream vfst(thread, true);
1472   assert(!vfst.at_end(), "Java frame must exist");
1473   methodHandle caller(vfst.method());
1474   Bytecode_invoke invoke(caller, vfst.bci());
1475   DEBUG_ONLY( invoke.verify(); )
1476 
1477   // Find the compiled caller frame.
1478   RegisterMap reg_map(thread);
1479   frame stubFrame = thread->last_frame();
1480   assert(stubFrame.is_runtime_frame(), "must be");
1481   frame callerFrame = stubFrame.sender(&reg_map);
1482   assert(callerFrame.is_compiled_frame(), "must be");
1483 
1484   // Install exception and return forward entry.
1485   address res = StubRoutines::throw_AbstractMethodError_entry();
1486   JRT_BLOCK
1487     methodHandle callee = invoke.static_target(thread);
1488     if (!callee.is_null()) {
1489       oop recv = callerFrame.retrieve_receiver(&reg_map);
1490       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1491       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1492       res = StubRoutines::forward_exception_entry();
1493     }
1494   JRT_BLOCK_END
1495   return res;
1496 JRT_END
1497 
1498 
1499 // resolve a static call and patch code
1500 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1501   methodHandle callee_method;
1502   JRT_BLOCK
1503     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1504     thread->set_vm_result_2(callee_method());
1505   JRT_BLOCK_END
1506   // return compiled code entry point after potential safepoints
1507   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1508   return callee_method->verified_code_entry();
1509 JRT_END
1510 
1511 
1512 // resolve virtual call and update inline cache to monomorphic
1513 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1514   methodHandle callee_method;
1515   JRT_BLOCK
1516     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1517     thread->set_vm_result_2(callee_method());
1518   JRT_BLOCK_END
1519   // return compiled code entry point after potential safepoints
1520   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1521   return callee_method->verified_code_entry();
1522 JRT_END
1523 
1524 
1525 // Resolve a virtual call that can be statically bound (e.g., always
1526 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1527 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1528   methodHandle callee_method;
1529   JRT_BLOCK
1530     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1531     thread->set_vm_result_2(callee_method());
1532   JRT_BLOCK_END
1533   // return compiled code entry point after potential safepoints
1534   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1535   return callee_method->verified_code_entry();
1536 JRT_END
1537 
1538 
1539 
1540 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1541   ResourceMark rm(thread);
1542   CallInfo call_info;
1543   Bytecodes::Code bc;
1544 
1545   // receiver is NULL for static calls. An exception is thrown for NULL
1546   // receivers for non-static calls
1547   Handle receiver = find_callee_info(thread, bc, call_info,
1548                                      CHECK_(methodHandle()));
1549   // Compiler1 can produce virtual call sites that can actually be statically bound
1550   // If we fell thru to below we would think that the site was going megamorphic
1551   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1552   // we'd try and do a vtable dispatch however methods that can be statically bound
1553   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1554   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1555   // plain ic_miss) and the site will be converted to an optimized virtual call site
1556   // never to miss again. I don't believe C2 will produce code like this but if it
1557   // did this would still be the correct thing to do for it too, hence no ifdef.
1558   //
1559   if (call_info.resolved_method()->can_be_statically_bound()) {
1560     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1561     if (TraceCallFixup) {
1562       RegisterMap reg_map(thread, false);
1563       frame caller_frame = thread->last_frame().sender(&reg_map);
1564       ResourceMark rm(thread);
1565       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1566       callee_method->print_short_name(tty);
1567       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1568       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1569     }
1570     return callee_method;
1571   }
1572 
1573   methodHandle callee_method = call_info.selected_method();
1574 
1575   bool should_be_mono = false;
1576 
1577 #ifndef PRODUCT
1578   Atomic::inc(&_ic_miss_ctr);
1579 
1580   // Statistics & Tracing
1581   if (TraceCallFixup) {
1582     ResourceMark rm(thread);
1583     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1584     callee_method->print_short_name(tty);
1585     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1586   }
1587 
1588   if (ICMissHistogram) {
1589     MutexLocker m(VMStatistic_lock);
1590     RegisterMap reg_map(thread, false);
1591     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1592     // produce statistics under the lock
1593     trace_ic_miss(f.pc());
1594   }
1595 #endif
1596 
1597   // install an event collector so that when a vtable stub is created the
1598   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1599   // event can't be posted when the stub is created as locks are held
1600   // - instead the event will be deferred until the event collector goes
1601   // out of scope.
1602   JvmtiDynamicCodeEventCollector event_collector;
1603 
1604   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1605   { MutexLocker ml_patch (CompiledIC_lock);
1606     RegisterMap reg_map(thread, false);
1607     frame caller_frame = thread->last_frame().sender(&reg_map);
1608     CodeBlob* cb = caller_frame.cb();
1609     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1610     if (cb->is_compiled()) {
1611       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1612       bool should_be_mono = false;
1613       if (inline_cache->is_optimized()) {
1614         if (TraceCallFixup) {
1615           ResourceMark rm(thread);
1616           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1617           callee_method->print_short_name(tty);
1618           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1619         }
1620         should_be_mono = true;
1621       } else if (inline_cache->is_icholder_call()) {
1622         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1623         if (ic_oop != NULL) {
1624 
1625           if (receiver()->klass() == ic_oop->holder_klass()) {
1626             // This isn't a real miss. We must have seen that compiled code
1627             // is now available and we want the call site converted to a
1628             // monomorphic compiled call site.
1629             // We can't assert for callee_method->code() != NULL because it
1630             // could have been deoptimized in the meantime
1631             if (TraceCallFixup) {
1632               ResourceMark rm(thread);
1633               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1634               callee_method->print_short_name(tty);
1635               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1636             }
1637             should_be_mono = true;
1638           }
1639         }
1640       }
1641 
1642       if (should_be_mono) {
1643 
1644         // We have a path that was monomorphic but was going interpreted
1645         // and now we have (or had) a compiled entry. We correct the IC
1646         // by using a new icBuffer.
1647         CompiledICInfo info;
1648         Klass* receiver_klass = receiver()->klass();
1649         inline_cache->compute_monomorphic_entry(callee_method,
1650                                                 receiver_klass,
1651                                                 inline_cache->is_optimized(),
1652                                                 false, caller_nm->is_nmethod(),
1653                                                 info, CHECK_(methodHandle()));
1654         inline_cache->set_to_monomorphic(info);
1655       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1656         // Potential change to megamorphic
1657         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1658         if (!successful) {
1659           inline_cache->set_to_clean();
1660         }
1661       } else {
1662         // Either clean or megamorphic
1663       }
1664     } else {
1665       fatal("Unimplemented");
1666     }
1667   } // Release CompiledIC_lock
1668 
1669   return callee_method;
1670 }
1671 
1672 //
1673 // Resets a call-site in compiled code so it will get resolved again.
1674 // This routines handles both virtual call sites, optimized virtual call
1675 // sites, and static call sites. Typically used to change a call sites
1676 // destination from compiled to interpreted.
1677 //
1678 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1679   ResourceMark rm(thread);
1680   RegisterMap reg_map(thread, false);
1681   frame stub_frame = thread->last_frame();
1682   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1683   frame caller = stub_frame.sender(&reg_map);
1684 
1685   // Do nothing if the frame isn't a live compiled frame.
1686   // nmethod could be deoptimized by the time we get here
1687   // so no update to the caller is needed.
1688 
1689   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1690 
1691     address pc = caller.pc();
1692 
1693     // Check for static or virtual call
1694     bool is_static_call = false;
1695     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1696 
1697     // Default call_addr is the location of the "basic" call.
1698     // Determine the address of the call we a reresolving. With
1699     // Inline Caches we will always find a recognizable call.
1700     // With Inline Caches disabled we may or may not find a
1701     // recognizable call. We will always find a call for static
1702     // calls and for optimized virtual calls. For vanilla virtual
1703     // calls it depends on the state of the UseInlineCaches switch.
1704     //
1705     // With Inline Caches disabled we can get here for a virtual call
1706     // for two reasons:
1707     //   1 - calling an abstract method. The vtable for abstract methods
1708     //       will run us thru handle_wrong_method and we will eventually
1709     //       end up in the interpreter to throw the ame.
1710     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1711     //       call and between the time we fetch the entry address and
1712     //       we jump to it the target gets deoptimized. Similar to 1
1713     //       we will wind up in the interprter (thru a c2i with c2).
1714     //
1715     address call_addr = NULL;
1716     {
1717       // Get call instruction under lock because another thread may be
1718       // busy patching it.
1719       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1720       // Location of call instruction
1721       call_addr = caller_nm->call_instruction_address(pc);
1722     }
1723     // Make sure nmethod doesn't get deoptimized and removed until
1724     // this is done with it.
1725     // CLEANUP - with lazy deopt shouldn't need this lock
1726     nmethodLocker nmlock(caller_nm);
1727 
1728     if (call_addr != NULL) {
1729       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1730       int ret = iter.next(); // Get item
1731       if (ret) {
1732         assert(iter.addr() == call_addr, "must find call");
1733         if (iter.type() == relocInfo::static_call_type) {
1734           is_static_call = true;
1735         } else {
1736           assert(iter.type() == relocInfo::virtual_call_type ||
1737                  iter.type() == relocInfo::opt_virtual_call_type
1738                 , "unexpected relocInfo. type");
1739         }
1740       } else {
1741         assert(!UseInlineCaches, "relocation info. must exist for this address");
1742       }
1743 
1744       // Cleaning the inline cache will force a new resolve. This is more robust
1745       // than directly setting it to the new destination, since resolving of calls
1746       // is always done through the same code path. (experience shows that it
1747       // leads to very hard to track down bugs, if an inline cache gets updated
1748       // to a wrong method). It should not be performance critical, since the
1749       // resolve is only done once.
1750 
1751       bool is_nmethod = caller_nm->is_nmethod();
1752       MutexLocker ml(CompiledIC_lock);
1753       if (is_static_call) {
1754         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1755         ssc->set_to_clean();
1756       } else {
1757         // compiled, dispatched call (which used to call an interpreted method)
1758         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1759         inline_cache->set_to_clean();
1760       }
1761     }
1762   }
1763 
1764   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1765 
1766 
1767 #ifndef PRODUCT
1768   Atomic::inc(&_wrong_method_ctr);
1769 
1770   if (TraceCallFixup) {
1771     ResourceMark rm(thread);
1772     tty->print("handle_wrong_method reresolving call to");
1773     callee_method->print_short_name(tty);
1774     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1775   }
1776 #endif
1777 
1778   return callee_method;
1779 }
1780 
1781 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1782   // The faulting unsafe accesses should be changed to throw the error
1783   // synchronously instead. Meanwhile the faulting instruction will be
1784   // skipped over (effectively turning it into a no-op) and an
1785   // asynchronous exception will be raised which the thread will
1786   // handle at a later point. If the instruction is a load it will
1787   // return garbage.
1788 
1789   // Request an async exception.
1790   thread->set_pending_unsafe_access_error();
1791 
1792   // Return address of next instruction to execute.
1793   return next_pc;
1794 }
1795 
1796 #ifdef ASSERT
1797 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1798                                                                 const BasicType* sig_bt,
1799                                                                 const VMRegPair* regs) {
1800   ResourceMark rm;
1801   const int total_args_passed = method->size_of_parameters();
1802   const VMRegPair*    regs_with_member_name = regs;
1803         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1804 
1805   const int member_arg_pos = total_args_passed - 1;
1806   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1807   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1808 
1809   const bool is_outgoing = method->is_method_handle_intrinsic();
1810   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1811 
1812   for (int i = 0; i < member_arg_pos; i++) {
1813     VMReg a =    regs_with_member_name[i].first();
1814     VMReg b = regs_without_member_name[i].first();
1815     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1816   }
1817   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1818 }
1819 #endif
1820 
1821 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1822   if (destination != entry_point) {
1823     CodeBlob* callee = CodeCache::find_blob(destination);
1824     // callee == cb seems weird. It means calling interpreter thru stub.
1825     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1826       // static call or optimized virtual
1827       if (TraceCallFixup) {
1828         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1829         moop->print_short_name(tty);
1830         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1831       }
1832       return true;
1833     } else {
1834       if (TraceCallFixup) {
1835         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1836         moop->print_short_name(tty);
1837         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1838       }
1839       // assert is too strong could also be resolve destinations.
1840       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1841     }
1842   } else {
1843     if (TraceCallFixup) {
1844       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1845       moop->print_short_name(tty);
1846       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1847     }
1848   }
1849   return false;
1850 }
1851 
1852 // ---------------------------------------------------------------------------
1853 // We are calling the interpreter via a c2i. Normally this would mean that
1854 // we were called by a compiled method. However we could have lost a race
1855 // where we went int -> i2c -> c2i and so the caller could in fact be
1856 // interpreted. If the caller is compiled we attempt to patch the caller
1857 // so he no longer calls into the interpreter.
1858 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1859   Method* moop(method);
1860 
1861   address entry_point = moop->from_compiled_entry_no_trampoline();
1862 
1863   // It's possible that deoptimization can occur at a call site which hasn't
1864   // been resolved yet, in which case this function will be called from
1865   // an nmethod that has been patched for deopt and we can ignore the
1866   // request for a fixup.
1867   // Also it is possible that we lost a race in that from_compiled_entry
1868   // is now back to the i2c in that case we don't need to patch and if
1869   // we did we'd leap into space because the callsite needs to use
1870   // "to interpreter" stub in order to load up the Method*. Don't
1871   // ask me how I know this...
1872 
1873   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1874   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1875     return;
1876   }
1877 
1878   // The check above makes sure this is a nmethod.
1879   CompiledMethod* nm = cb->as_compiled_method_or_null();
1880   assert(nm, "must be");
1881 
1882   // Get the return PC for the passed caller PC.
1883   address return_pc = caller_pc + frame::pc_return_offset;
1884 
1885   // There is a benign race here. We could be attempting to patch to a compiled
1886   // entry point at the same time the callee is being deoptimized. If that is
1887   // the case then entry_point may in fact point to a c2i and we'd patch the
1888   // call site with the same old data. clear_code will set code() to NULL
1889   // at the end of it. If we happen to see that NULL then we can skip trying
1890   // to patch. If we hit the window where the callee has a c2i in the
1891   // from_compiled_entry and the NULL isn't present yet then we lose the race
1892   // and patch the code with the same old data. Asi es la vida.
1893 
1894   if (moop->code() == NULL) return;
1895 
1896   if (nm->is_in_use()) {
1897 
1898     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1899     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1900     if (NativeCall::is_call_before(return_pc)) {
1901       ResourceMark mark;
1902       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1903       //
1904       // bug 6281185. We might get here after resolving a call site to a vanilla
1905       // virtual call. Because the resolvee uses the verified entry it may then
1906       // see compiled code and attempt to patch the site by calling us. This would
1907       // then incorrectly convert the call site to optimized and its downhill from
1908       // there. If you're lucky you'll get the assert in the bugid, if not you've
1909       // just made a call site that could be megamorphic into a monomorphic site
1910       // for the rest of its life! Just another racing bug in the life of
1911       // fixup_callers_callsite ...
1912       //
1913       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1914       iter.next();
1915       assert(iter.has_current(), "must have a reloc at java call site");
1916       relocInfo::relocType typ = iter.reloc()->type();
1917       if (typ != relocInfo::static_call_type &&
1918            typ != relocInfo::opt_virtual_call_type &&
1919            typ != relocInfo::static_stub_type) {
1920         return;
1921       }
1922       address destination = call->destination();
1923       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1924         call->set_destination_mt_safe(entry_point);
1925       }
1926     }
1927   }
1928 IRT_END
1929 
1930 
1931 // same as JVM_Arraycopy, but called directly from compiled code
1932 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1933                                                 oopDesc* dest, jint dest_pos,
1934                                                 jint length,
1935                                                 JavaThread* thread)) {
1936 #ifndef PRODUCT
1937   _slow_array_copy_ctr++;
1938 #endif
1939   // Check if we have null pointers
1940   if (src == NULL || dest == NULL) {
1941     THROW(vmSymbols::java_lang_NullPointerException());
1942   }
1943   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1944   // even though the copy_array API also performs dynamic checks to ensure
1945   // that src and dest are truly arrays (and are conformable).
1946   // The copy_array mechanism is awkward and could be removed, but
1947   // the compilers don't call this function except as a last resort,
1948   // so it probably doesn't matter.
1949   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1950                                         (arrayOopDesc*)dest, dest_pos,
1951                                         length, thread);
1952 }
1953 JRT_END
1954 
1955 // The caller of generate_class_cast_message() (or one of its callers)
1956 // must use a ResourceMark in order to correctly free the result.
1957 char* SharedRuntime::generate_class_cast_message(
1958     JavaThread* thread, Klass* caster_klass) {
1959 
1960   // Get target class name from the checkcast instruction
1961   vframeStream vfst(thread, true);
1962   assert(!vfst.at_end(), "Java frame must exist");
1963   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1964   constantPoolHandle cpool(thread, vfst.method()->constants());
1965   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1966   Symbol* target_klass_name = NULL;
1967   if (target_klass == NULL) {
1968     // This klass should be resolved, but just in case, get the name in the klass slot.
1969     target_klass_name = cpool->klass_name_at(cc.index());
1970   }
1971   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1972 }
1973 
1974 
1975 // The caller of generate_class_cast_message() (or one of its callers)
1976 // must use a ResourceMark in order to correctly free the result.
1977 char* SharedRuntime::generate_class_cast_message(
1978     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1979 
1980   const char* caster_name = caster_klass->class_loader_and_module_name();
1981 
1982   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
1983   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
1984                                                    target_klass->class_loader_and_module_name();
1985 
1986   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
1987 
1988   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1989   if (message == NULL) {
1990     // Shouldn't happen, but don't cause even more problems if it does
1991     message = const_cast<char*>(caster_klass->external_name());
1992   } else {
1993     jio_snprintf(message,
1994                  msglen,
1995                  "%s cannot be cast to %s",
1996                  caster_name,
1997                  target_name);
1998   }
1999   return message;
2000 }
2001 
2002 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2003   (void) JavaThread::current()->reguard_stack();
2004 JRT_END
2005 
2006 
2007 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2008 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2009   // Disable ObjectSynchronizer::quick_enter() in default config
2010   // on AARCH64 and ARM until JDK-8153107 is resolved.
2011   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2012       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2013       !SafepointSynchronize::is_synchronizing()) {
2014     // Only try quick_enter() if we're not trying to reach a safepoint
2015     // so that the calling thread reaches the safepoint more quickly.
2016     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2017   }
2018   // NO_ASYNC required because an async exception on the state transition destructor
2019   // would leave you with the lock held and it would never be released.
2020   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2021   // and the model is that an exception implies the method failed.
2022   JRT_BLOCK_NO_ASYNC
2023   oop obj(_obj);
2024   if (PrintBiasedLockingStatistics) {
2025     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2026   }
2027   Handle h_obj(THREAD, obj);
2028   if (UseBiasedLocking) {
2029     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2030     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2031   } else {
2032     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2033   }
2034   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2035   JRT_BLOCK_END
2036 JRT_END
2037 
2038 // Handles the uncommon cases of monitor unlocking in compiled code
2039 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2040    oop obj(_obj);
2041   assert(JavaThread::current() == THREAD, "invariant");
2042   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2043   // testing was unable to ever fire the assert that guarded it so I have removed it.
2044   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2045 #undef MIGHT_HAVE_PENDING
2046 #ifdef MIGHT_HAVE_PENDING
2047   // Save and restore any pending_exception around the exception mark.
2048   // While the slow_exit must not throw an exception, we could come into
2049   // this routine with one set.
2050   oop pending_excep = NULL;
2051   const char* pending_file;
2052   int pending_line;
2053   if (HAS_PENDING_EXCEPTION) {
2054     pending_excep = PENDING_EXCEPTION;
2055     pending_file  = THREAD->exception_file();
2056     pending_line  = THREAD->exception_line();
2057     CLEAR_PENDING_EXCEPTION;
2058   }
2059 #endif /* MIGHT_HAVE_PENDING */
2060 
2061   {
2062     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2063     EXCEPTION_MARK;
2064     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2065   }
2066 
2067 #ifdef MIGHT_HAVE_PENDING
2068   if (pending_excep != NULL) {
2069     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2070   }
2071 #endif /* MIGHT_HAVE_PENDING */
2072 JRT_END
2073 
2074 #ifndef PRODUCT
2075 
2076 void SharedRuntime::print_statistics() {
2077   ttyLocker ttyl;
2078   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2079 
2080   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2081 
2082   SharedRuntime::print_ic_miss_histogram();
2083 
2084   if (CountRemovableExceptions) {
2085     if (_nof_removable_exceptions > 0) {
2086       Unimplemented(); // this counter is not yet incremented
2087       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2088     }
2089   }
2090 
2091   // Dump the JRT_ENTRY counters
2092   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2093   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2094   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2095   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2096   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2097   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2098   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2099 
2100   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2101   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2102   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2103   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2104   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2105 
2106   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2107   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2108   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2109   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2110   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2111   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2112   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2113   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2114   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2115   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2116   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2117   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2118   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2119   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2120   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2121   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2122 
2123   AdapterHandlerLibrary::print_statistics();
2124 
2125   if (xtty != NULL)  xtty->tail("statistics");
2126 }
2127 
2128 inline double percent(int x, int y) {
2129   return 100.0 * x / MAX2(y, 1);
2130 }
2131 
2132 class MethodArityHistogram {
2133  public:
2134   enum { MAX_ARITY = 256 };
2135  private:
2136   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2137   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2138   static int _max_arity;                      // max. arity seen
2139   static int _max_size;                       // max. arg size seen
2140 
2141   static void add_method_to_histogram(nmethod* nm) {
2142     Method* m = nm->method();
2143     ArgumentCount args(m->signature());
2144     int arity   = args.size() + (m->is_static() ? 0 : 1);
2145     int argsize = m->size_of_parameters();
2146     arity   = MIN2(arity, MAX_ARITY-1);
2147     argsize = MIN2(argsize, MAX_ARITY-1);
2148     int count = nm->method()->compiled_invocation_count();
2149     _arity_histogram[arity]  += count;
2150     _size_histogram[argsize] += count;
2151     _max_arity = MAX2(_max_arity, arity);
2152     _max_size  = MAX2(_max_size, argsize);
2153   }
2154 
2155   void print_histogram_helper(int n, int* histo, const char* name) {
2156     const int N = MIN2(5, n);
2157     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2158     double sum = 0;
2159     double weighted_sum = 0;
2160     int i;
2161     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2162     double rest = sum;
2163     double percent = sum / 100;
2164     for (i = 0; i <= N; i++) {
2165       rest -= histo[i];
2166       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2167     }
2168     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2169     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2170   }
2171 
2172   void print_histogram() {
2173     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2174     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2175     tty->print_cr("\nSame for parameter size (in words):");
2176     print_histogram_helper(_max_size, _size_histogram, "size");
2177     tty->cr();
2178   }
2179 
2180  public:
2181   MethodArityHistogram() {
2182     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2183     _max_arity = _max_size = 0;
2184     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2185     CodeCache::nmethods_do(add_method_to_histogram);
2186     print_histogram();
2187   }
2188 };
2189 
2190 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2191 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2192 int MethodArityHistogram::_max_arity;
2193 int MethodArityHistogram::_max_size;
2194 
2195 void SharedRuntime::print_call_statistics(int comp_total) {
2196   tty->print_cr("Calls from compiled code:");
2197   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2198   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2199   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2200   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2201   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2202   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2203   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2204   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2205   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2206   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2207   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2208   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2209   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2210   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2211   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2212   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2213   tty->cr();
2214   tty->print_cr("Note 1: counter updates are not MT-safe.");
2215   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2216   tty->print_cr("        %% in nested categories are relative to their category");
2217   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2218   tty->cr();
2219 
2220   MethodArityHistogram h;
2221 }
2222 #endif
2223 
2224 
2225 // A simple wrapper class around the calling convention information
2226 // that allows sharing of adapters for the same calling convention.
2227 class AdapterFingerPrint : public CHeapObj<mtCode> {
2228  private:
2229   enum {
2230     _basic_type_bits = 4,
2231     _basic_type_mask = right_n_bits(_basic_type_bits),
2232     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2233     _compact_int_count = 3
2234   };
2235   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2236   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2237 
2238   union {
2239     int  _compact[_compact_int_count];
2240     int* _fingerprint;
2241   } _value;
2242   int _length; // A negative length indicates the fingerprint is in the compact form,
2243                // Otherwise _value._fingerprint is the array.
2244 
2245   // Remap BasicTypes that are handled equivalently by the adapters.
2246   // These are correct for the current system but someday it might be
2247   // necessary to make this mapping platform dependent.
2248   static int adapter_encoding(BasicType in) {
2249     switch (in) {
2250       case T_BOOLEAN:
2251       case T_BYTE:
2252       case T_SHORT:
2253       case T_CHAR:
2254         // There are all promoted to T_INT in the calling convention
2255         return T_INT;
2256 
2257       case T_OBJECT:
2258       case T_ARRAY:
2259         // In other words, we assume that any register good enough for
2260         // an int or long is good enough for a managed pointer.
2261 #ifdef _LP64
2262         return T_LONG;
2263 #else
2264         return T_INT;
2265 #endif
2266 
2267       case T_INT:
2268       case T_LONG:
2269       case T_FLOAT:
2270       case T_DOUBLE:
2271       case T_VOID:
2272         return in;
2273 
2274       default:
2275         ShouldNotReachHere();
2276         return T_CONFLICT;
2277     }
2278   }
2279 
2280  public:
2281   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2282     // The fingerprint is based on the BasicType signature encoded
2283     // into an array of ints with eight entries per int.
2284     int* ptr;
2285     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2286     if (len <= _compact_int_count) {
2287       assert(_compact_int_count == 3, "else change next line");
2288       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2289       // Storing the signature encoded as signed chars hits about 98%
2290       // of the time.
2291       _length = -len;
2292       ptr = _value._compact;
2293     } else {
2294       _length = len;
2295       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2296       ptr = _value._fingerprint;
2297     }
2298 
2299     // Now pack the BasicTypes with 8 per int
2300     int sig_index = 0;
2301     for (int index = 0; index < len; index++) {
2302       int value = 0;
2303       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2304         int bt = ((sig_index < total_args_passed)
2305                   ? adapter_encoding(sig_bt[sig_index++])
2306                   : 0);
2307         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2308         value = (value << _basic_type_bits) | bt;
2309       }
2310       ptr[index] = value;
2311     }
2312   }
2313 
2314   ~AdapterFingerPrint() {
2315     if (_length > 0) {
2316       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2317     }
2318   }
2319 
2320   int value(int index) {
2321     if (_length < 0) {
2322       return _value._compact[index];
2323     }
2324     return _value._fingerprint[index];
2325   }
2326   int length() {
2327     if (_length < 0) return -_length;
2328     return _length;
2329   }
2330 
2331   bool is_compact() {
2332     return _length <= 0;
2333   }
2334 
2335   unsigned int compute_hash() {
2336     int hash = 0;
2337     for (int i = 0; i < length(); i++) {
2338       int v = value(i);
2339       hash = (hash << 8) ^ v ^ (hash >> 5);
2340     }
2341     return (unsigned int)hash;
2342   }
2343 
2344   const char* as_string() {
2345     stringStream st;
2346     st.print("0x");
2347     for (int i = 0; i < length(); i++) {
2348       st.print("%08x", value(i));
2349     }
2350     return st.as_string();
2351   }
2352 
2353   bool equals(AdapterFingerPrint* other) {
2354     if (other->_length != _length) {
2355       return false;
2356     }
2357     if (_length < 0) {
2358       assert(_compact_int_count == 3, "else change next line");
2359       return _value._compact[0] == other->_value._compact[0] &&
2360              _value._compact[1] == other->_value._compact[1] &&
2361              _value._compact[2] == other->_value._compact[2];
2362     } else {
2363       for (int i = 0; i < _length; i++) {
2364         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2365           return false;
2366         }
2367       }
2368     }
2369     return true;
2370   }
2371 };
2372 
2373 
2374 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2375 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2376   friend class AdapterHandlerTableIterator;
2377 
2378  private:
2379 
2380 #ifndef PRODUCT
2381   static int _lookups; // number of calls to lookup
2382   static int _buckets; // number of buckets checked
2383   static int _equals;  // number of buckets checked with matching hash
2384   static int _hits;    // number of successful lookups
2385   static int _compact; // number of equals calls with compact signature
2386 #endif
2387 
2388   AdapterHandlerEntry* bucket(int i) {
2389     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2390   }
2391 
2392  public:
2393   AdapterHandlerTable()
2394     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2395 
2396   // Create a new entry suitable for insertion in the table
2397   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2398     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2399     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2400     if (DumpSharedSpaces) {
2401       ((CDSAdapterHandlerEntry*)entry)->init();
2402     }
2403     return entry;
2404   }
2405 
2406   // Insert an entry into the table
2407   void add(AdapterHandlerEntry* entry) {
2408     int index = hash_to_index(entry->hash());
2409     add_entry(index, entry);
2410   }
2411 
2412   void free_entry(AdapterHandlerEntry* entry) {
2413     entry->deallocate();
2414     BasicHashtable<mtCode>::free_entry(entry);
2415   }
2416 
2417   // Find a entry with the same fingerprint if it exists
2418   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2419     NOT_PRODUCT(_lookups++);
2420     AdapterFingerPrint fp(total_args_passed, sig_bt);
2421     unsigned int hash = fp.compute_hash();
2422     int index = hash_to_index(hash);
2423     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2424       NOT_PRODUCT(_buckets++);
2425       if (e->hash() == hash) {
2426         NOT_PRODUCT(_equals++);
2427         if (fp.equals(e->fingerprint())) {
2428 #ifndef PRODUCT
2429           if (fp.is_compact()) _compact++;
2430           _hits++;
2431 #endif
2432           return e;
2433         }
2434       }
2435     }
2436     return NULL;
2437   }
2438 
2439 #ifndef PRODUCT
2440   void print_statistics() {
2441     ResourceMark rm;
2442     int longest = 0;
2443     int empty = 0;
2444     int total = 0;
2445     int nonempty = 0;
2446     for (int index = 0; index < table_size(); index++) {
2447       int count = 0;
2448       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2449         count++;
2450       }
2451       if (count != 0) nonempty++;
2452       if (count == 0) empty++;
2453       if (count > longest) longest = count;
2454       total += count;
2455     }
2456     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2457                   empty, longest, total, total / (double)nonempty);
2458     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2459                   _lookups, _buckets, _equals, _hits, _compact);
2460   }
2461 #endif
2462 };
2463 
2464 
2465 #ifndef PRODUCT
2466 
2467 int AdapterHandlerTable::_lookups;
2468 int AdapterHandlerTable::_buckets;
2469 int AdapterHandlerTable::_equals;
2470 int AdapterHandlerTable::_hits;
2471 int AdapterHandlerTable::_compact;
2472 
2473 #endif
2474 
2475 class AdapterHandlerTableIterator : public StackObj {
2476  private:
2477   AdapterHandlerTable* _table;
2478   int _index;
2479   AdapterHandlerEntry* _current;
2480 
2481   void scan() {
2482     while (_index < _table->table_size()) {
2483       AdapterHandlerEntry* a = _table->bucket(_index);
2484       _index++;
2485       if (a != NULL) {
2486         _current = a;
2487         return;
2488       }
2489     }
2490   }
2491 
2492  public:
2493   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2494     scan();
2495   }
2496   bool has_next() {
2497     return _current != NULL;
2498   }
2499   AdapterHandlerEntry* next() {
2500     if (_current != NULL) {
2501       AdapterHandlerEntry* result = _current;
2502       _current = _current->next();
2503       if (_current == NULL) scan();
2504       return result;
2505     } else {
2506       return NULL;
2507     }
2508   }
2509 };
2510 
2511 
2512 // ---------------------------------------------------------------------------
2513 // Implementation of AdapterHandlerLibrary
2514 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2515 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2516 const int AdapterHandlerLibrary_size = 16*K;
2517 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2518 
2519 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2520   // Should be called only when AdapterHandlerLibrary_lock is active.
2521   if (_buffer == NULL) // Initialize lazily
2522       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2523   return _buffer;
2524 }
2525 
2526 extern "C" void unexpected_adapter_call() {
2527   ShouldNotCallThis();
2528 }
2529 
2530 void AdapterHandlerLibrary::initialize() {
2531   if (_adapters != NULL) return;
2532   _adapters = new AdapterHandlerTable();
2533 
2534   // Create a special handler for abstract methods.  Abstract methods
2535   // are never compiled so an i2c entry is somewhat meaningless, but
2536   // throw AbstractMethodError just in case.
2537   // Pass wrong_method_abstract for the c2i transitions to return
2538   // AbstractMethodError for invalid invocations.
2539   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2540   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2541                                                               StubRoutines::throw_AbstractMethodError_entry(),
2542                                                               wrong_method_abstract, wrong_method_abstract);
2543 }
2544 
2545 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2546                                                       address i2c_entry,
2547                                                       address c2i_entry,
2548                                                       address c2i_unverified_entry) {
2549   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2550 }
2551 
2552 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2553   AdapterHandlerEntry* entry = get_adapter0(method);
2554   if (method->is_shared()) {
2555     // See comments around Method::link_method()
2556     MutexLocker mu(AdapterHandlerLibrary_lock);
2557     if (method->adapter() == NULL) {
2558       method->update_adapter_trampoline(entry);
2559     }
2560     address trampoline = method->from_compiled_entry();
2561     if (*(int*)trampoline == 0) {
2562       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2563       MacroAssembler _masm(&buffer);
2564       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2565       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2566 
2567       if (PrintInterpreter) {
2568         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2569       }
2570     }
2571   }
2572 
2573   return entry;
2574 }
2575 
2576 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2577   // Use customized signature handler.  Need to lock around updates to
2578   // the AdapterHandlerTable (it is not safe for concurrent readers
2579   // and a single writer: this could be fixed if it becomes a
2580   // problem).
2581 
2582   ResourceMark rm;
2583 
2584   NOT_PRODUCT(int insts_size);
2585   AdapterBlob* new_adapter = NULL;
2586   AdapterHandlerEntry* entry = NULL;
2587   AdapterFingerPrint* fingerprint = NULL;
2588   {
2589     MutexLocker mu(AdapterHandlerLibrary_lock);
2590     // make sure data structure is initialized
2591     initialize();
2592 
2593     if (method->is_abstract()) {
2594       return _abstract_method_handler;
2595     }
2596 
2597     // Fill in the signature array, for the calling-convention call.
2598     int total_args_passed = method->size_of_parameters(); // All args on stack
2599 
2600     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2601     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2602     int i = 0;
2603     if (!method->is_static())  // Pass in receiver first
2604       sig_bt[i++] = T_OBJECT;
2605     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2606       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2607       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2608         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2609     }
2610     assert(i == total_args_passed, "");
2611 
2612     // Lookup method signature's fingerprint
2613     entry = _adapters->lookup(total_args_passed, sig_bt);
2614 
2615 #ifdef ASSERT
2616     AdapterHandlerEntry* shared_entry = NULL;
2617     // Start adapter sharing verification only after the VM is booted.
2618     if (VerifyAdapterSharing && (entry != NULL)) {
2619       shared_entry = entry;
2620       entry = NULL;
2621     }
2622 #endif
2623 
2624     if (entry != NULL) {
2625       return entry;
2626     }
2627 
2628     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2629     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2630 
2631     // Make a C heap allocated version of the fingerprint to store in the adapter
2632     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2633 
2634     // StubRoutines::code2() is initialized after this function can be called. As a result,
2635     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2636     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2637     // stub that ensure that an I2C stub is called from an interpreter frame.
2638     bool contains_all_checks = StubRoutines::code2() != NULL;
2639 
2640     // Create I2C & C2I handlers
2641     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2642     if (buf != NULL) {
2643       CodeBuffer buffer(buf);
2644       short buffer_locs[20];
2645       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2646                                              sizeof(buffer_locs)/sizeof(relocInfo));
2647 
2648       MacroAssembler _masm(&buffer);
2649       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2650                                                      total_args_passed,
2651                                                      comp_args_on_stack,
2652                                                      sig_bt,
2653                                                      regs,
2654                                                      fingerprint);
2655 #ifdef ASSERT
2656       if (VerifyAdapterSharing) {
2657         if (shared_entry != NULL) {
2658           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2659           // Release the one just created and return the original
2660           _adapters->free_entry(entry);
2661           return shared_entry;
2662         } else  {
2663           entry->save_code(buf->code_begin(), buffer.insts_size());
2664         }
2665       }
2666 #endif
2667 
2668       new_adapter = AdapterBlob::create(&buffer);
2669       NOT_PRODUCT(insts_size = buffer.insts_size());
2670     }
2671     if (new_adapter == NULL) {
2672       // CodeCache is full, disable compilation
2673       // Ought to log this but compile log is only per compile thread
2674       // and we're some non descript Java thread.
2675       return NULL; // Out of CodeCache space
2676     }
2677     entry->relocate(new_adapter->content_begin());
2678 #ifndef PRODUCT
2679     // debugging suppport
2680     if (PrintAdapterHandlers || PrintStubCode) {
2681       ttyLocker ttyl;
2682       entry->print_adapter_on(tty);
2683       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2684                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2685                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2686       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2687       if (Verbose || PrintStubCode) {
2688         address first_pc = entry->base_address();
2689         if (first_pc != NULL) {
2690           Disassembler::decode(first_pc, first_pc + insts_size);
2691           tty->cr();
2692         }
2693       }
2694     }
2695 #endif
2696     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2697     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2698     if (contains_all_checks || !VerifyAdapterCalls) {
2699       _adapters->add(entry);
2700     }
2701   }
2702   // Outside of the lock
2703   if (new_adapter != NULL) {
2704     char blob_id[256];
2705     jio_snprintf(blob_id,
2706                  sizeof(blob_id),
2707                  "%s(%s)@" PTR_FORMAT,
2708                  new_adapter->name(),
2709                  fingerprint->as_string(),
2710                  new_adapter->content_begin());
2711     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2712 
2713     if (JvmtiExport::should_post_dynamic_code_generated()) {
2714       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2715     }
2716   }
2717   return entry;
2718 }
2719 
2720 address AdapterHandlerEntry::base_address() {
2721   address base = _i2c_entry;
2722   if (base == NULL)  base = _c2i_entry;
2723   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2724   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2725   return base;
2726 }
2727 
2728 void AdapterHandlerEntry::relocate(address new_base) {
2729   address old_base = base_address();
2730   assert(old_base != NULL, "");
2731   ptrdiff_t delta = new_base - old_base;
2732   if (_i2c_entry != NULL)
2733     _i2c_entry += delta;
2734   if (_c2i_entry != NULL)
2735     _c2i_entry += delta;
2736   if (_c2i_unverified_entry != NULL)
2737     _c2i_unverified_entry += delta;
2738   assert(base_address() == new_base, "");
2739 }
2740 
2741 
2742 void AdapterHandlerEntry::deallocate() {
2743   delete _fingerprint;
2744 #ifdef ASSERT
2745   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2746 #endif
2747 }
2748 
2749 
2750 #ifdef ASSERT
2751 // Capture the code before relocation so that it can be compared
2752 // against other versions.  If the code is captured after relocation
2753 // then relative instructions won't be equivalent.
2754 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2755   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2756   _saved_code_length = length;
2757   memcpy(_saved_code, buffer, length);
2758 }
2759 
2760 
2761 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2762   if (length != _saved_code_length) {
2763     return false;
2764   }
2765 
2766   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2767 }
2768 #endif
2769 
2770 
2771 /**
2772  * Create a native wrapper for this native method.  The wrapper converts the
2773  * Java-compiled calling convention to the native convention, handles
2774  * arguments, and transitions to native.  On return from the native we transition
2775  * back to java blocking if a safepoint is in progress.
2776  */
2777 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2778   ResourceMark rm;
2779   nmethod* nm = NULL;
2780 
2781   assert(method->is_native(), "must be native");
2782   assert(method->is_method_handle_intrinsic() ||
2783          method->has_native_function(), "must have something valid to call!");
2784 
2785   {
2786     // Perform the work while holding the lock, but perform any printing outside the lock
2787     MutexLocker mu(AdapterHandlerLibrary_lock);
2788     // See if somebody beat us to it
2789     if (method->code() != NULL) {
2790       return;
2791     }
2792 
2793     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2794     assert(compile_id > 0, "Must generate native wrapper");
2795 
2796 
2797     ResourceMark rm;
2798     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2799     if (buf != NULL) {
2800       CodeBuffer buffer(buf);
2801       double locs_buf[20];
2802       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2803       MacroAssembler _masm(&buffer);
2804 
2805       // Fill in the signature array, for the calling-convention call.
2806       const int total_args_passed = method->size_of_parameters();
2807 
2808       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2809       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2810       int i=0;
2811       if (!method->is_static())  // Pass in receiver first
2812         sig_bt[i++] = T_OBJECT;
2813       SignatureStream ss(method->signature());
2814       for (; !ss.at_return_type(); ss.next()) {
2815         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2816         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2817           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2818       }
2819       assert(i == total_args_passed, "");
2820       BasicType ret_type = ss.type();
2821 
2822       // Now get the compiled-Java layout as input (or output) arguments.
2823       // NOTE: Stubs for compiled entry points of method handle intrinsics
2824       // are just trampolines so the argument registers must be outgoing ones.
2825       const bool is_outgoing = method->is_method_handle_intrinsic();
2826       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2827 
2828       // Generate the compiled-to-native wrapper code
2829       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2830 
2831       if (nm != NULL) {
2832         method->set_code(method, nm);
2833 
2834         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2835         if (directive->PrintAssemblyOption) {
2836           nm->print_code();
2837         }
2838         DirectivesStack::release(directive);
2839       }
2840     }
2841   } // Unlock AdapterHandlerLibrary_lock
2842 
2843 
2844   // Install the generated code.
2845   if (nm != NULL) {
2846     const char *msg = method->is_static() ? "(static)" : "";
2847     CompileTask::print_ul(nm, msg);
2848     if (PrintCompilation) {
2849       ttyLocker ttyl;
2850       CompileTask::print(tty, nm, msg);
2851     }
2852     nm->post_compiled_method_load_event();
2853   }
2854 }
2855 
2856 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2857   assert(thread == JavaThread::current(), "must be");
2858   // The code is about to enter a JNI lazy critical native method and
2859   // _needs_gc is true, so if this thread is already in a critical
2860   // section then just return, otherwise this thread should block
2861   // until needs_gc has been cleared.
2862   if (thread->in_critical()) {
2863     return;
2864   }
2865   // Lock and unlock a critical section to give the system a chance to block
2866   GCLocker::lock_critical(thread);
2867   GCLocker::unlock_critical(thread);
2868 JRT_END
2869 
2870 // -------------------------------------------------------------------------
2871 // Java-Java calling convention
2872 // (what you use when Java calls Java)
2873 
2874 //------------------------------name_for_receiver----------------------------------
2875 // For a given signature, return the VMReg for parameter 0.
2876 VMReg SharedRuntime::name_for_receiver() {
2877   VMRegPair regs;
2878   BasicType sig_bt = T_OBJECT;
2879   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2880   // Return argument 0 register.  In the LP64 build pointers
2881   // take 2 registers, but the VM wants only the 'main' name.
2882   return regs.first();
2883 }
2884 
2885 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2886   // This method is returning a data structure allocating as a
2887   // ResourceObject, so do not put any ResourceMarks in here.
2888   char *s = sig->as_C_string();
2889   int len = (int)strlen(s);
2890   s++; len--;                   // Skip opening paren
2891 
2892   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2893   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2894   int cnt = 0;
2895   if (has_receiver) {
2896     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2897   }
2898 
2899   while (*s != ')') {          // Find closing right paren
2900     switch (*s++) {            // Switch on signature character
2901     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2902     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2903     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2904     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2905     case 'I': sig_bt[cnt++] = T_INT;     break;
2906     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2907     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2908     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2909     case 'V': sig_bt[cnt++] = T_VOID;    break;
2910     case 'L':                   // Oop
2911       while (*s++ != ';');   // Skip signature
2912       sig_bt[cnt++] = T_OBJECT;
2913       break;
2914     case '[': {                 // Array
2915       do {                      // Skip optional size
2916         while (*s >= '0' && *s <= '9') s++;
2917       } while (*s++ == '[');   // Nested arrays?
2918       // Skip element type
2919       if (s[-1] == 'L')
2920         while (*s++ != ';'); // Skip signature
2921       sig_bt[cnt++] = T_ARRAY;
2922       break;
2923     }
2924     default : ShouldNotReachHere();
2925     }
2926   }
2927 
2928   if (has_appendix) {
2929     sig_bt[cnt++] = T_OBJECT;
2930   }
2931 
2932   assert(cnt < 256, "grow table size");
2933 
2934   int comp_args_on_stack;
2935   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2936 
2937   // the calling convention doesn't count out_preserve_stack_slots so
2938   // we must add that in to get "true" stack offsets.
2939 
2940   if (comp_args_on_stack) {
2941     for (int i = 0; i < cnt; i++) {
2942       VMReg reg1 = regs[i].first();
2943       if (reg1->is_stack()) {
2944         // Yuck
2945         reg1 = reg1->bias(out_preserve_stack_slots());
2946       }
2947       VMReg reg2 = regs[i].second();
2948       if (reg2->is_stack()) {
2949         // Yuck
2950         reg2 = reg2->bias(out_preserve_stack_slots());
2951       }
2952       regs[i].set_pair(reg2, reg1);
2953     }
2954   }
2955 
2956   // results
2957   *arg_size = cnt;
2958   return regs;
2959 }
2960 
2961 // OSR Migration Code
2962 //
2963 // This code is used convert interpreter frames into compiled frames.  It is
2964 // called from very start of a compiled OSR nmethod.  A temp array is
2965 // allocated to hold the interesting bits of the interpreter frame.  All
2966 // active locks are inflated to allow them to move.  The displaced headers and
2967 // active interpreter locals are copied into the temp buffer.  Then we return
2968 // back to the compiled code.  The compiled code then pops the current
2969 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2970 // copies the interpreter locals and displaced headers where it wants.
2971 // Finally it calls back to free the temp buffer.
2972 //
2973 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2974 
2975 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2976 
2977   //
2978   // This code is dependent on the memory layout of the interpreter local
2979   // array and the monitors. On all of our platforms the layout is identical
2980   // so this code is shared. If some platform lays the their arrays out
2981   // differently then this code could move to platform specific code or
2982   // the code here could be modified to copy items one at a time using
2983   // frame accessor methods and be platform independent.
2984 
2985   frame fr = thread->last_frame();
2986   assert(fr.is_interpreted_frame(), "");
2987   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2988 
2989   // Figure out how many monitors are active.
2990   int active_monitor_count = 0;
2991   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2992        kptr < fr.interpreter_frame_monitor_begin();
2993        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2994     if (kptr->obj() != NULL) active_monitor_count++;
2995   }
2996 
2997   // QQQ we could place number of active monitors in the array so that compiled code
2998   // could double check it.
2999 
3000   Method* moop = fr.interpreter_frame_method();
3001   int max_locals = moop->max_locals();
3002   // Allocate temp buffer, 1 word per local & 2 per active monitor
3003   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3004   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3005 
3006   // Copy the locals.  Order is preserved so that loading of longs works.
3007   // Since there's no GC I can copy the oops blindly.
3008   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3009   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3010                        (HeapWord*)&buf[0],
3011                        max_locals);
3012 
3013   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3014   int i = max_locals;
3015   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3016        kptr2 < fr.interpreter_frame_monitor_begin();
3017        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3018     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3019       BasicLock *lock = kptr2->lock();
3020       // Inflate so the displaced header becomes position-independent
3021       if (lock->displaced_header()->is_unlocked())
3022         ObjectSynchronizer::inflate_helper(kptr2->obj());
3023       // Now the displaced header is free to move
3024       buf[i++] = (intptr_t)lock->displaced_header();
3025       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3026     }
3027   }
3028   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3029 
3030   return buf;
3031 JRT_END
3032 
3033 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3034   FREE_C_HEAP_ARRAY(intptr_t, buf);
3035 JRT_END
3036 
3037 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3038   AdapterHandlerTableIterator iter(_adapters);
3039   while (iter.has_next()) {
3040     AdapterHandlerEntry* a = iter.next();
3041     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3042   }
3043   return false;
3044 }
3045 
3046 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3047   AdapterHandlerTableIterator iter(_adapters);
3048   while (iter.has_next()) {
3049     AdapterHandlerEntry* a = iter.next();
3050     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3051       st->print("Adapter for signature: ");
3052       a->print_adapter_on(tty);
3053       return;
3054     }
3055   }
3056   assert(false, "Should have found handler");
3057 }
3058 
3059 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3060   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3061                p2i(this), fingerprint()->as_string(),
3062                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3063 
3064 }
3065 
3066 #if INCLUDE_CDS
3067 
3068 void CDSAdapterHandlerEntry::init() {
3069   assert(DumpSharedSpaces, "used during dump time only");
3070   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3071   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3072 };
3073 
3074 #endif // INCLUDE_CDS
3075 
3076 
3077 #ifndef PRODUCT
3078 
3079 void AdapterHandlerLibrary::print_statistics() {
3080   _adapters->print_statistics();
3081 }
3082 
3083 #endif /* PRODUCT */
3084 
3085 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3086   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3087   if (thread->stack_reserved_zone_disabled()) {
3088   thread->enable_stack_reserved_zone();
3089   }
3090   thread->set_reserved_stack_activation(thread->stack_base());
3091 JRT_END
3092 
3093 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3094   ResourceMark rm(thread);
3095   frame activation;
3096   CompiledMethod* nm = NULL;
3097   int count = 1;
3098 
3099   assert(fr.is_java_frame(), "Must start on Java frame");
3100 
3101   while (true) {
3102     Method* method = NULL;
3103     bool found = false;
3104     if (fr.is_interpreted_frame()) {
3105       method = fr.interpreter_frame_method();
3106       if (method != NULL && method->has_reserved_stack_access()) {
3107         found = true;
3108       }
3109     } else {
3110       CodeBlob* cb = fr.cb();
3111       if (cb != NULL && cb->is_compiled()) {
3112         nm = cb->as_compiled_method();
3113         method = nm->method();
3114         // scope_desc_near() must be used, instead of scope_desc_at() because on
3115         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3116         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3117           method = sd->method();
3118           if (method != NULL && method->has_reserved_stack_access()) {
3119             found = true;
3120       }
3121     }
3122       }
3123     }
3124     if (found) {
3125       activation = fr;
3126       warning("Potentially dangerous stack overflow in "
3127               "ReservedStackAccess annotated method %s [%d]",
3128               method->name_and_sig_as_C_string(), count++);
3129       EventReservedStackActivation event;
3130       if (event.should_commit()) {
3131         event.set_method(method);
3132         event.commit();
3133       }
3134     }
3135     if (fr.is_first_java_frame()) {
3136       break;
3137     } else {
3138       fr = fr.java_sender();
3139     }
3140   }
3141   return activation;
3142 }
3143 
3144 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3145   // After any safepoint, just before going back to compiled code,
3146   // we inform the GC that we will be doing initializing writes to
3147   // this object in the future without emitting card-marks, so
3148   // GC may take any compensating steps.
3149 
3150   oop new_obj = thread->vm_result();
3151   if (new_obj == NULL) return;
3152 
3153   BarrierSet *bs = BarrierSet::barrier_set();
3154   bs->on_slowpath_allocation_exit(thread, new_obj);
3155 }