/* * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1BlockOffsetTable.inline.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1ConcurrentRefine.hpp" #include "gc/g1/heapRegionManager.inline.hpp" #include "gc/g1/heapRegionRemSet.inline.hpp" #include "gc/shared/space.inline.hpp" #include "memory/allocation.hpp" #include "memory/padded.inline.hpp" #include "oops/oop.inline.hpp" #include "runtime/atomic.hpp" #include "utilities/bitMap.inline.hpp" #include "utilities/debug.hpp" #include "utilities/formatBuffer.hpp" #include "utilities/globalDefinitions.hpp" #include "utilities/growableArray.hpp" const char* HeapRegionRemSet::_state_strings[] = {"Untracked", "Updating", "Complete"}; const char* HeapRegionRemSet::_short_state_strings[] = {"UNTRA", "UPDAT", "CMPLT"}; PerRegionTable* PerRegionTable::alloc(HeapRegion* hr) { PerRegionTable* fl = _free_list; while (fl != NULL) { PerRegionTable* nxt = fl->next(); PerRegionTable* res = Atomic::cmpxchg(nxt, &_free_list, fl); if (res == fl) { fl->init(hr, true); return fl; } else { fl = _free_list; } } assert(fl == NULL, "Loop condition."); return new PerRegionTable(hr); } PerRegionTable* volatile PerRegionTable::_free_list = NULL; size_t OtherRegionsTable::_max_fine_entries = 0; size_t OtherRegionsTable::_mod_max_fine_entries_mask = 0; size_t OtherRegionsTable::_fine_eviction_stride = 0; size_t OtherRegionsTable::_fine_eviction_sample_size = 0; OtherRegionsTable::OtherRegionsTable(Mutex* m) : _g1h(G1CollectedHeap::heap()), _m(m), _coarse_map(G1CollectedHeap::heap()->max_regions(), mtGC), _n_coarse_entries(0), _fine_grain_regions(NULL), _n_fine_entries(0), _first_all_fine_prts(NULL), _last_all_fine_prts(NULL), _fine_eviction_start(0), _sparse_table() { typedef PerRegionTable* PerRegionTablePtr; if (_max_fine_entries == 0) { assert(_mod_max_fine_entries_mask == 0, "Both or none."); size_t max_entries_log = (size_t)log2_long((jlong)G1RSetRegionEntries); _max_fine_entries = (size_t)1 << max_entries_log; _mod_max_fine_entries_mask = _max_fine_entries - 1; assert(_fine_eviction_sample_size == 0 && _fine_eviction_stride == 0, "All init at same time."); _fine_eviction_sample_size = MAX2((size_t)4, max_entries_log); _fine_eviction_stride = _max_fine_entries / _fine_eviction_sample_size; } _fine_grain_regions = NEW_C_HEAP_ARRAY3(PerRegionTablePtr, _max_fine_entries, mtGC, CURRENT_PC, AllocFailStrategy::RETURN_NULL); if (_fine_grain_regions == NULL) { vm_exit_out_of_memory(sizeof(void*)*_max_fine_entries, OOM_MALLOC_ERROR, "Failed to allocate _fine_grain_entries."); } for (size_t i = 0; i < _max_fine_entries; i++) { _fine_grain_regions[i] = NULL; } } void OtherRegionsTable::link_to_all(PerRegionTable* prt) { // We always append to the beginning of the list for convenience; // the order of entries in this list does not matter. if (_first_all_fine_prts != NULL) { assert(_first_all_fine_prts->prev() == NULL, "invariant"); _first_all_fine_prts->set_prev(prt); prt->set_next(_first_all_fine_prts); } else { // this is the first element we insert. Adjust the "last" pointer _last_all_fine_prts = prt; assert(prt->next() == NULL, "just checking"); } // the new element is always the first element without a predecessor prt->set_prev(NULL); _first_all_fine_prts = prt; assert(prt->prev() == NULL, "just checking"); assert(_first_all_fine_prts == prt, "just checking"); assert((_first_all_fine_prts == NULL && _last_all_fine_prts == NULL) || (_first_all_fine_prts != NULL && _last_all_fine_prts != NULL), "just checking"); assert(_last_all_fine_prts == NULL || _last_all_fine_prts->next() == NULL, "just checking"); assert(_first_all_fine_prts == NULL || _first_all_fine_prts->prev() == NULL, "just checking"); } void OtherRegionsTable::unlink_from_all(PerRegionTable* prt) { if (prt->prev() != NULL) { assert(_first_all_fine_prts != prt, "just checking"); prt->prev()->set_next(prt->next()); // removing the last element in the list? if (_last_all_fine_prts == prt) { _last_all_fine_prts = prt->prev(); } } else { assert(_first_all_fine_prts == prt, "just checking"); _first_all_fine_prts = prt->next(); // list is empty now? if (_first_all_fine_prts == NULL) { _last_all_fine_prts = NULL; } } if (prt->next() != NULL) { prt->next()->set_prev(prt->prev()); } prt->set_next(NULL); prt->set_prev(NULL); assert((_first_all_fine_prts == NULL && _last_all_fine_prts == NULL) || (_first_all_fine_prts != NULL && _last_all_fine_prts != NULL), "just checking"); assert(_last_all_fine_prts == NULL || _last_all_fine_prts->next() == NULL, "just checking"); assert(_first_all_fine_prts == NULL || _first_all_fine_prts->prev() == NULL, "just checking"); } CardIdx_t OtherRegionsTable::card_within_region(OopOrNarrowOopStar within_region, HeapRegion* hr) { assert(hr->is_in_reserved(within_region), "HeapWord " PTR_FORMAT " is outside of region %u [" PTR_FORMAT ", " PTR_FORMAT ")", p2i(within_region), hr->hrm_index(), p2i(hr->bottom()), p2i(hr->end())); CardIdx_t result = (CardIdx_t)(pointer_delta((HeapWord*)within_region, hr->bottom()) >> (CardTable::card_shift - LogHeapWordSize)); return result; } void OtherRegionsTable::add_reference(OopOrNarrowOopStar from, uint tid) { // Note that this may be a continued H region. HeapRegion* from_hr = _g1h->heap_region_containing(from); RegionIdx_t from_hrm_ind = (RegionIdx_t) from_hr->hrm_index(); // If the region is already coarsened, return. if (_coarse_map.at(from_hrm_ind)) { assert(contains_reference(from), "We just found " PTR_FORMAT " in the Coarse table", p2i(from)); return; } // Otherwise find a per-region table to add it to. size_t ind = from_hrm_ind & _mod_max_fine_entries_mask; PerRegionTable* prt = find_region_table(ind, from_hr); if (prt == NULL) { MutexLocker x(_m, Mutex::_no_safepoint_check_flag); // Confirm that it's really not there... prt = find_region_table(ind, from_hr); if (prt == NULL) { CardIdx_t card_index = card_within_region(from, from_hr); if (_sparse_table.add_card(from_hrm_ind, card_index)) { assert(contains_reference_locked(from), "We just added " PTR_FORMAT " to the Sparse table", p2i(from)); return; } if (_n_fine_entries == _max_fine_entries) { prt = delete_region_table(); // There is no need to clear the links to the 'all' list here: // prt will be reused immediately, i.e. remain in the 'all' list. prt->init(from_hr, false /* clear_links_to_all_list */); } else { prt = PerRegionTable::alloc(from_hr); link_to_all(prt); } PerRegionTable* first_prt = _fine_grain_regions[ind]; prt->set_collision_list_next(first_prt); // The assignment into _fine_grain_regions allows the prt to // start being used concurrently. In addition to // collision_list_next which must be visible (else concurrent // parsing of the list, if any, may fail to see other entries), // the content of the prt must be visible (else for instance // some mark bits may not yet seem cleared or a 'later' update // performed by a concurrent thread could be undone when the // zeroing becomes visible). This requires store ordering. Atomic::release_store(&_fine_grain_regions[ind], prt); _n_fine_entries++; // Transfer from sparse to fine-grain. SparsePRTEntry *sprt_entry = _sparse_table.get_entry(from_hrm_ind); assert(sprt_entry != NULL, "There should have been an entry"); for (int i = 0; i < sprt_entry->num_valid_cards(); i++) { CardIdx_t c = sprt_entry->card(i); prt->add_card(c); } // Now we can delete the sparse entry. bool res = _sparse_table.delete_entry(from_hrm_ind); assert(res, "It should have been there."); } assert(prt != NULL && prt->hr() == from_hr, "consequence"); } // Note that we can't assert "prt->hr() == from_hr", because of the // possibility of concurrent reuse. But see head comment of // OtherRegionsTable for why this is OK. assert(prt != NULL, "Inv"); prt->add_reference(from); assert(contains_reference(from), "We just added " PTR_FORMAT " to the PRT (%d)", p2i(from), prt->contains_reference(from)); } PerRegionTable* OtherRegionsTable::find_region_table(size_t ind, HeapRegion* hr) const { assert(ind < _max_fine_entries, "Preconditions."); PerRegionTable* prt = _fine_grain_regions[ind]; while (prt != NULL && prt->hr() != hr) { prt = prt->collision_list_next(); } // Loop postcondition is the method postcondition. return prt; } jint OtherRegionsTable::_n_coarsenings = 0; PerRegionTable* OtherRegionsTable::delete_region_table() { assert(_m->owned_by_self(), "Precondition"); assert(_n_fine_entries == _max_fine_entries, "Precondition"); PerRegionTable* max = NULL; jint max_occ = 0; PerRegionTable** max_prev = NULL; size_t max_ind; size_t i = _fine_eviction_start; for (size_t k = 0; k < _fine_eviction_sample_size; k++) { size_t ii = i; // Make sure we get a non-NULL sample. while (_fine_grain_regions[ii] == NULL) { ii++; if (ii == _max_fine_entries) ii = 0; guarantee(ii != i, "We must find one."); } PerRegionTable** prev = &_fine_grain_regions[ii]; PerRegionTable* cur = *prev; while (cur != NULL) { jint cur_occ = cur->occupied(); if (max == NULL || cur_occ > max_occ) { max = cur; max_prev = prev; max_ind = i; max_occ = cur_occ; } prev = cur->collision_list_next_addr(); cur = cur->collision_list_next(); } i = i + _fine_eviction_stride; if (i >= _n_fine_entries) i = i - _n_fine_entries; } _fine_eviction_start++; if (_fine_eviction_start >= _n_fine_entries) { _fine_eviction_start -= _n_fine_entries; } guarantee(max != NULL, "Since _n_fine_entries > 0"); guarantee(max_prev != NULL, "Since max != NULL."); // Set the corresponding coarse bit. size_t max_hrm_index = (size_t) max->hr()->hrm_index(); if (!_coarse_map.at(max_hrm_index)) { _coarse_map.at_put(max_hrm_index, true); _n_coarse_entries++; } // Unsplice. *max_prev = max->collision_list_next(); Atomic::inc(&_n_coarsenings); _n_fine_entries--; return max; } bool OtherRegionsTable::occupancy_less_or_equal_than(size_t limit) const { if (limit <= (size_t)G1RSetSparseRegionEntries) { return occ_coarse() == 0 && _first_all_fine_prts == NULL && occ_sparse() <= limit; } else { // Current uses of this method may only use values less than G1RSetSparseRegionEntries // for the limit. The solution, comparing against occupied() would be too slow // at this time. Unimplemented(); return false; } } bool OtherRegionsTable::is_empty() const { return occ_sparse() == 0 && occ_coarse() == 0 && _first_all_fine_prts == NULL; } size_t OtherRegionsTable::occupied() const { size_t sum = occ_fine(); sum += occ_sparse(); sum += occ_coarse(); return sum; } size_t OtherRegionsTable::occ_fine() const { size_t sum = 0; size_t num = 0; PerRegionTable * cur = _first_all_fine_prts; while (cur != NULL) { sum += cur->occupied(); cur = cur->next(); num++; } guarantee(num == _n_fine_entries, "just checking"); return sum; } size_t OtherRegionsTable::occ_coarse() const { return (_n_coarse_entries * HeapRegion::CardsPerRegion); } size_t OtherRegionsTable::occ_sparse() const { return _sparse_table.occupied(); } size_t OtherRegionsTable::mem_size() const { size_t sum = 0; // all PRTs are of the same size so it is sufficient to query only one of them. if (_first_all_fine_prts != NULL) { assert(_last_all_fine_prts != NULL && _first_all_fine_prts->mem_size() == _last_all_fine_prts->mem_size(), "check that mem_size() is constant"); sum += _first_all_fine_prts->mem_size() * _n_fine_entries; } sum += (sizeof(PerRegionTable*) * _max_fine_entries); sum += (_coarse_map.size_in_words() * HeapWordSize); sum += (_sparse_table.mem_size()); sum += sizeof(OtherRegionsTable) - sizeof(_sparse_table); // Avoid double counting above. return sum; } size_t OtherRegionsTable::static_mem_size() { return G1FromCardCache::static_mem_size(); } size_t OtherRegionsTable::fl_mem_size() { return PerRegionTable::fl_mem_size(); } void OtherRegionsTable::clear() { // if there are no entries, skip this step if (_first_all_fine_prts != NULL) { guarantee(_first_all_fine_prts != NULL && _last_all_fine_prts != NULL, "just checking"); PerRegionTable::bulk_free(_first_all_fine_prts, _last_all_fine_prts); memset(_fine_grain_regions, 0, _max_fine_entries * sizeof(_fine_grain_regions[0])); } else { guarantee(_first_all_fine_prts == NULL && _last_all_fine_prts == NULL, "just checking"); } _first_all_fine_prts = _last_all_fine_prts = NULL; _sparse_table.clear(); if (_n_coarse_entries > 0) { _coarse_map.clear(); } _n_fine_entries = 0; _n_coarse_entries = 0; } bool OtherRegionsTable::contains_reference(OopOrNarrowOopStar from) const { // Cast away const in this case. MutexLocker x((Mutex*)_m, Mutex::_no_safepoint_check_flag); return contains_reference_locked(from); } bool OtherRegionsTable::contains_reference_locked(OopOrNarrowOopStar from) const { HeapRegion* hr = _g1h->heap_region_containing(from); RegionIdx_t hr_ind = (RegionIdx_t) hr->hrm_index(); // Is this region in the coarse map? if (_coarse_map.at(hr_ind)) return true; PerRegionTable* prt = find_region_table(hr_ind & _mod_max_fine_entries_mask, hr); if (prt != NULL) { return prt->contains_reference(from); } else { CardIdx_t card_index = card_within_region(from, hr); return _sparse_table.contains_card(hr_ind, card_index); } } HeapRegionRemSet::HeapRegionRemSet(G1BlockOffsetTable* bot, HeapRegion* hr) : _bot(bot), _code_roots(), _m(Mutex::leaf, FormatBuffer<128>("HeapRegionRemSet lock #%u", hr->hrm_index()), true, Mutex::_safepoint_check_never), _other_regions(&_m), _hr(hr), _state(Untracked) { } void HeapRegionRemSet::clear_fcc() { G1FromCardCache::clear(_hr->hrm_index()); } void HeapRegionRemSet::setup_remset_size() { const int LOG_M = 20; guarantee(HeapRegion::LogOfHRGrainBytes >= LOG_M, "Code assumes the region size >= 1M, but is " SIZE_FORMAT "B", HeapRegion::GrainBytes); int region_size_log_mb = HeapRegion::LogOfHRGrainBytes - LOG_M; if (FLAG_IS_DEFAULT(G1RSetSparseRegionEntries)) { G1RSetSparseRegionEntries = G1RSetSparseRegionEntriesBase * ((size_t)1 << (region_size_log_mb + 1)); } if (FLAG_IS_DEFAULT(G1RSetRegionEntries)) { G1RSetRegionEntries = G1RSetRegionEntriesBase * (region_size_log_mb + 1); } guarantee(G1RSetSparseRegionEntries > 0 && G1RSetRegionEntries > 0 , "Sanity"); } void HeapRegionRemSet::clear(bool only_cardset) { MutexLocker x(&_m, Mutex::_no_safepoint_check_flag); clear_locked(only_cardset); } void HeapRegionRemSet::clear_locked(bool only_cardset) { if (!only_cardset) { _code_roots.clear(); } clear_fcc(); _other_regions.clear(); set_state_empty(); assert(occupied_locked() == 0, "Should be clear."); } // Code roots support // // The code root set is protected by two separate locking schemes // When at safepoint the per-hrrs lock must be held during modifications // except when doing a full gc. // When not at safepoint the CodeCache_lock must be held during modifications. // When concurrent readers access the contains() function // (during the evacuation phase) no removals are allowed. void HeapRegionRemSet::add_strong_code_root(nmethod* nm) { assert(nm != NULL, "sanity"); assert((!CodeCache_lock->owned_by_self() || SafepointSynchronize::is_at_safepoint()), "should call add_strong_code_root_locked instead. CodeCache_lock->owned_by_self(): %s, is_at_safepoint(): %s", BOOL_TO_STR(CodeCache_lock->owned_by_self()), BOOL_TO_STR(SafepointSynchronize::is_at_safepoint())); // Optimistic unlocked contains-check if (!_code_roots.contains(nm)) { MutexLocker ml(&_m, Mutex::_no_safepoint_check_flag); add_strong_code_root_locked(nm); } } void HeapRegionRemSet::add_strong_code_root_locked(nmethod* nm) { assert(nm != NULL, "sanity"); assert((CodeCache_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && (_m.owned_by_self() || Thread::current()->is_VM_thread()))), "not safely locked. CodeCache_lock->owned_by_self(): %s, is_at_safepoint(): %s, _m.owned_by_self(): %s, Thread::current()->is_VM_thread(): %s", BOOL_TO_STR(CodeCache_lock->owned_by_self()), BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()), BOOL_TO_STR(_m.owned_by_self()), BOOL_TO_STR(Thread::current()->is_VM_thread())); _code_roots.add(nm); } void HeapRegionRemSet::remove_strong_code_root(nmethod* nm) { assert(nm != NULL, "sanity"); assert_locked_or_safepoint(CodeCache_lock); MutexLocker ml(CodeCache_lock->owned_by_self() ? NULL : &_m, Mutex::_no_safepoint_check_flag); _code_roots.remove(nm); // Check that there were no duplicates guarantee(!_code_roots.contains(nm), "duplicate entry found"); } void HeapRegionRemSet::strong_code_roots_do(CodeBlobClosure* blk) const { _code_roots.nmethods_do(blk); } void HeapRegionRemSet::clean_strong_code_roots(HeapRegion* hr) { _code_roots.clean(hr); } size_t HeapRegionRemSet::strong_code_roots_mem_size() { return _code_roots.mem_size(); }