1 /*
   2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OOPS_METHODDATA_HPP
  26 #define SHARE_OOPS_METHODDATA_HPP
  27 
  28 #include "interpreter/bytecodes.hpp"
  29 #include "oops/metadata.hpp"
  30 #include "oops/method.hpp"
  31 #include "oops/oop.hpp"
  32 #include "runtime/atomic.hpp"
  33 #include "utilities/align.hpp"
  34 
  35 class BytecodeStream;
  36 class KlassSizeStats;
  37 
  38 // The MethodData object collects counts and other profile information
  39 // during zeroth-tier (interpretive) and first-tier execution.
  40 // The profile is used later by compilation heuristics.  Some heuristics
  41 // enable use of aggressive (or "heroic") optimizations.  An aggressive
  42 // optimization often has a down-side, a corner case that it handles
  43 // poorly, but which is thought to be rare.  The profile provides
  44 // evidence of this rarity for a given method or even BCI.  It allows
  45 // the compiler to back out of the optimization at places where it
  46 // has historically been a poor choice.  Other heuristics try to use
  47 // specific information gathered about types observed at a given site.
  48 //
  49 // All data in the profile is approximate.  It is expected to be accurate
  50 // on the whole, but the system expects occasional inaccuraces, due to
  51 // counter overflow, multiprocessor races during data collection, space
  52 // limitations, missing MDO blocks, etc.  Bad or missing data will degrade
  53 // optimization quality but will not affect correctness.  Also, each MDO
  54 // is marked with its birth-date ("creation_mileage") which can be used
  55 // to assess the quality ("maturity") of its data.
  56 //
  57 // Short (<32-bit) counters are designed to overflow to a known "saturated"
  58 // state.  Also, certain recorded per-BCI events are given one-bit counters
  59 // which overflow to a saturated state which applied to all counters at
  60 // that BCI.  In other words, there is a small lattice which approximates
  61 // the ideal of an infinite-precision counter for each event at each BCI,
  62 // and the lattice quickly "bottoms out" in a state where all counters
  63 // are taken to be indefinitely large.
  64 //
  65 // The reader will find many data races in profile gathering code, starting
  66 // with invocation counter incrementation.  None of these races harm correct
  67 // execution of the compiled code.
  68 
  69 // forward decl
  70 class ProfileData;
  71 
  72 // DataLayout
  73 //
  74 // Overlay for generic profiling data.
  75 class DataLayout {
  76   friend class VMStructs;
  77   friend class JVMCIVMStructs;
  78 
  79 private:
  80   // Every data layout begins with a header.  This header
  81   // contains a tag, which is used to indicate the size/layout
  82   // of the data, 8 bits of flags, which can be used in any way,
  83   // 32 bits of trap history (none/one reason/many reasons),
  84   // and a bci, which is used to tie this piece of data to a
  85   // specific bci in the bytecodes.
  86   union {
  87     u8 _bits;
  88     struct {
  89       u1 _tag;
  90       u1 _flags;
  91       u2 _bci;
  92       u4 _traps;
  93     } _struct;
  94   } _header;
  95 
  96   // The data layout has an arbitrary number of cells, each sized
  97   // to accomodate a pointer or an integer.
  98   intptr_t _cells[1];
  99 
 100   // Some types of data layouts need a length field.
 101   static bool needs_array_len(u1 tag);
 102 
 103 public:
 104   enum {
 105     counter_increment = 1
 106   };
 107 
 108   enum {
 109     cell_size = sizeof(intptr_t)
 110   };
 111 
 112   // Tag values
 113   enum {
 114     no_tag,
 115     bit_data_tag,
 116     counter_data_tag,
 117     jump_data_tag,
 118     receiver_type_data_tag,
 119     virtual_call_data_tag,
 120     ret_data_tag,
 121     branch_data_tag,
 122     multi_branch_data_tag,
 123     arg_info_data_tag,
 124     call_type_data_tag,
 125     virtual_call_type_data_tag,
 126     parameters_type_data_tag,
 127     speculative_trap_data_tag
 128   };
 129 
 130   enum {
 131     // The trap state breaks down as [recompile:1 | reason:31].
 132     // This further breakdown is defined in deoptimization.cpp.
 133     // See Deoptimization::trap_state_reason for an assert that
 134     // trap_bits is big enough to hold reasons < Reason_RECORDED_LIMIT.
 135     //
 136     // The trap_state is collected only if ProfileTraps is true.
 137     trap_bits = 1+31,  // 31: enough to distinguish [0..Reason_RECORDED_LIMIT].
 138     trap_mask = -1,
 139     first_flag = 0
 140   };
 141 
 142   // Size computation
 143   static int header_size_in_bytes() {
 144     return header_size_in_cells() * cell_size;
 145   }
 146   static int header_size_in_cells() {
 147     return LP64_ONLY(1) NOT_LP64(2);
 148   }
 149 
 150   static int compute_size_in_bytes(int cell_count) {
 151     return header_size_in_bytes() + cell_count * cell_size;
 152   }
 153 
 154   // Initialization
 155   void initialize(u1 tag, u2 bci, int cell_count);
 156 
 157   // Accessors
 158   u1 tag() {
 159     return _header._struct._tag;
 160   }
 161 
 162   // Return 32 bits of trap state.
 163   // The state tells if traps with zero, one, or many reasons have occurred.
 164   // It also tells whether zero or many recompilations have occurred.
 165   // The associated trap histogram in the MDO itself tells whether
 166   // traps are common or not.  If a BCI shows that a trap X has
 167   // occurred, and the MDO shows N occurrences of X, we make the
 168   // simplifying assumption that all N occurrences can be blamed
 169   // on that BCI.
 170   uint trap_state() const {
 171     return _header._struct._traps;
 172   }
 173 
 174   void set_trap_state(uint new_state) {
 175     assert(ProfileTraps, "used only under +ProfileTraps");
 176     uint old_flags = _header._struct._traps;
 177     _header._struct._traps = new_state | old_flags;
 178   }
 179 
 180   u1 flags() const {
 181     return _header._struct._flags;
 182   }
 183 
 184   u2 bci() const {
 185     return _header._struct._bci;
 186   }
 187 
 188   void set_header(u8 value) {
 189     _header._bits = value;
 190   }
 191   u8 header() {
 192     return _header._bits;
 193   }
 194   void set_cell_at(int index, intptr_t value) {
 195     _cells[index] = value;
 196   }
 197   void release_set_cell_at(int index, intptr_t value);
 198   intptr_t cell_at(int index) const {
 199     return _cells[index];
 200   }
 201 
 202   void set_flag_at(u1 flag_number) {
 203     _header._struct._flags |= (0x1 << flag_number);
 204   }
 205   bool flag_at(u1 flag_number) const {
 206     return (_header._struct._flags & (0x1 << flag_number)) != 0;
 207   }
 208 
 209   // Low-level support for code generation.
 210   static ByteSize header_offset() {
 211     return byte_offset_of(DataLayout, _header);
 212   }
 213   static ByteSize tag_offset() {
 214     return byte_offset_of(DataLayout, _header._struct._tag);
 215   }
 216   static ByteSize flags_offset() {
 217     return byte_offset_of(DataLayout, _header._struct._flags);
 218   }
 219   static ByteSize bci_offset() {
 220     return byte_offset_of(DataLayout, _header._struct._bci);
 221   }
 222   static ByteSize cell_offset(int index) {
 223     return byte_offset_of(DataLayout, _cells) + in_ByteSize(index * cell_size);
 224   }
 225   // Return a value which, when or-ed as a byte into _flags, sets the flag.
 226   static u1 flag_number_to_constant(u1 flag_number) {
 227     DataLayout temp; temp.set_header(0);
 228     temp.set_flag_at(flag_number);
 229     return temp._header._struct._flags;
 230   }
 231   // Return a value which, when or-ed as a word into _header, sets the flag.
 232   static u8 flag_mask_to_header_mask(uint byte_constant) {
 233     DataLayout temp; temp.set_header(0);
 234     temp._header._struct._flags = byte_constant;
 235     return temp._header._bits;
 236   }
 237 
 238   ProfileData* data_in();
 239 
 240   // GC support
 241   void clean_weak_klass_links(bool always_clean);
 242 
 243   // Redefinition support
 244   void clean_weak_method_links();
 245   DEBUG_ONLY(void verify_clean_weak_method_links();)
 246 };
 247 
 248 
 249 // ProfileData class hierarchy
 250 class ProfileData;
 251 class   BitData;
 252 class     CounterData;
 253 class       ReceiverTypeData;
 254 class         VirtualCallData;
 255 class           VirtualCallTypeData;
 256 class       RetData;
 257 class       CallTypeData;
 258 class   JumpData;
 259 class     BranchData;
 260 class   ArrayData;
 261 class     MultiBranchData;
 262 class     ArgInfoData;
 263 class     ParametersTypeData;
 264 class   SpeculativeTrapData;
 265 
 266 // ProfileData
 267 //
 268 // A ProfileData object is created to refer to a section of profiling
 269 // data in a structured way.
 270 class ProfileData : public ResourceObj {
 271   friend class TypeEntries;
 272   friend class ReturnTypeEntry;
 273   friend class TypeStackSlotEntries;
 274 private:
 275   enum {
 276     tab_width_one = 16,
 277     tab_width_two = 36
 278   };
 279 
 280   // This is a pointer to a section of profiling data.
 281   DataLayout* _data;
 282 
 283   char* print_data_on_helper(const MethodData* md) const;
 284 
 285 protected:
 286   DataLayout* data() { return _data; }
 287   const DataLayout* data() const { return _data; }
 288 
 289   enum {
 290     cell_size = DataLayout::cell_size
 291   };
 292 
 293 public:
 294   // How many cells are in this?
 295   virtual int cell_count() const {
 296     ShouldNotReachHere();
 297     return -1;
 298   }
 299 
 300   // Return the size of this data.
 301   int size_in_bytes() {
 302     return DataLayout::compute_size_in_bytes(cell_count());
 303   }
 304 
 305 protected:
 306   // Low-level accessors for underlying data
 307   void set_intptr_at(int index, intptr_t value) {
 308     assert(0 <= index && index < cell_count(), "oob");
 309     data()->set_cell_at(index, value);
 310   }
 311   void release_set_intptr_at(int index, intptr_t value);
 312   intptr_t intptr_at(int index) const {
 313     assert(0 <= index && index < cell_count(), "oob");
 314     return data()->cell_at(index);
 315   }
 316   void set_uint_at(int index, uint value) {
 317     set_intptr_at(index, (intptr_t) value);
 318   }
 319   void release_set_uint_at(int index, uint value);
 320   uint uint_at(int index) const {
 321     return (uint)intptr_at(index);
 322   }
 323   void set_int_at(int index, int value) {
 324     set_intptr_at(index, (intptr_t) value);
 325   }
 326   void release_set_int_at(int index, int value);
 327   int int_at(int index) const {
 328     return (int)intptr_at(index);
 329   }
 330   int int_at_unchecked(int index) const {
 331     return (int)data()->cell_at(index);
 332   }
 333   void set_oop_at(int index, oop value) {
 334     set_intptr_at(index, cast_from_oop<intptr_t>(value));
 335   }
 336   oop oop_at(int index) const {
 337     return cast_to_oop(intptr_at(index));
 338   }
 339 
 340   void set_flag_at(int flag_number) {
 341     data()->set_flag_at(flag_number);
 342   }
 343   bool flag_at(int flag_number) const {
 344     return data()->flag_at(flag_number);
 345   }
 346 
 347   // two convenient imports for use by subclasses:
 348   static ByteSize cell_offset(int index) {
 349     return DataLayout::cell_offset(index);
 350   }
 351   static int flag_number_to_constant(int flag_number) {
 352     return DataLayout::flag_number_to_constant(flag_number);
 353   }
 354 
 355   ProfileData(DataLayout* data) {
 356     _data = data;
 357   }
 358 
 359 public:
 360   // Constructor for invalid ProfileData.
 361   ProfileData();
 362 
 363   u2 bci() const {
 364     return data()->bci();
 365   }
 366 
 367   address dp() {
 368     return (address)_data;
 369   }
 370 
 371   int trap_state() const {
 372     return data()->trap_state();
 373   }
 374   void set_trap_state(int new_state) {
 375     data()->set_trap_state(new_state);
 376   }
 377 
 378   // Type checking
 379   virtual bool is_BitData()         const { return false; }
 380   virtual bool is_CounterData()     const { return false; }
 381   virtual bool is_JumpData()        const { return false; }
 382   virtual bool is_ReceiverTypeData()const { return false; }
 383   virtual bool is_VirtualCallData() const { return false; }
 384   virtual bool is_RetData()         const { return false; }
 385   virtual bool is_BranchData()      const { return false; }
 386   virtual bool is_ArrayData()       const { return false; }
 387   virtual bool is_MultiBranchData() const { return false; }
 388   virtual bool is_ArgInfoData()     const { return false; }
 389   virtual bool is_CallTypeData()    const { return false; }
 390   virtual bool is_VirtualCallTypeData()const { return false; }
 391   virtual bool is_ParametersTypeData() const { return false; }
 392   virtual bool is_SpeculativeTrapData()const { return false; }
 393 
 394 
 395   BitData* as_BitData() const {
 396     assert(is_BitData(), "wrong type");
 397     return is_BitData()         ? (BitData*)        this : NULL;
 398   }
 399   CounterData* as_CounterData() const {
 400     assert(is_CounterData(), "wrong type");
 401     return is_CounterData()     ? (CounterData*)    this : NULL;
 402   }
 403   JumpData* as_JumpData() const {
 404     assert(is_JumpData(), "wrong type");
 405     return is_JumpData()        ? (JumpData*)       this : NULL;
 406   }
 407   ReceiverTypeData* as_ReceiverTypeData() const {
 408     assert(is_ReceiverTypeData(), "wrong type");
 409     return is_ReceiverTypeData() ? (ReceiverTypeData*)this : NULL;
 410   }
 411   VirtualCallData* as_VirtualCallData() const {
 412     assert(is_VirtualCallData(), "wrong type");
 413     return is_VirtualCallData() ? (VirtualCallData*)this : NULL;
 414   }
 415   RetData* as_RetData() const {
 416     assert(is_RetData(), "wrong type");
 417     return is_RetData()         ? (RetData*)        this : NULL;
 418   }
 419   BranchData* as_BranchData() const {
 420     assert(is_BranchData(), "wrong type");
 421     return is_BranchData()      ? (BranchData*)     this : NULL;
 422   }
 423   ArrayData* as_ArrayData() const {
 424     assert(is_ArrayData(), "wrong type");
 425     return is_ArrayData()       ? (ArrayData*)      this : NULL;
 426   }
 427   MultiBranchData* as_MultiBranchData() const {
 428     assert(is_MultiBranchData(), "wrong type");
 429     return is_MultiBranchData() ? (MultiBranchData*)this : NULL;
 430   }
 431   ArgInfoData* as_ArgInfoData() const {
 432     assert(is_ArgInfoData(), "wrong type");
 433     return is_ArgInfoData() ? (ArgInfoData*)this : NULL;
 434   }
 435   CallTypeData* as_CallTypeData() const {
 436     assert(is_CallTypeData(), "wrong type");
 437     return is_CallTypeData() ? (CallTypeData*)this : NULL;
 438   }
 439   VirtualCallTypeData* as_VirtualCallTypeData() const {
 440     assert(is_VirtualCallTypeData(), "wrong type");
 441     return is_VirtualCallTypeData() ? (VirtualCallTypeData*)this : NULL;
 442   }
 443   ParametersTypeData* as_ParametersTypeData() const {
 444     assert(is_ParametersTypeData(), "wrong type");
 445     return is_ParametersTypeData() ? (ParametersTypeData*)this : NULL;
 446   }
 447   SpeculativeTrapData* as_SpeculativeTrapData() const {
 448     assert(is_SpeculativeTrapData(), "wrong type");
 449     return is_SpeculativeTrapData() ? (SpeculativeTrapData*)this : NULL;
 450   }
 451 
 452 
 453   // Subclass specific initialization
 454   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo) {}
 455 
 456   // GC support
 457   virtual void clean_weak_klass_links(bool always_clean) {}
 458 
 459   // Redefinition support
 460   virtual void clean_weak_method_links() {}
 461   DEBUG_ONLY(virtual void verify_clean_weak_method_links() {})
 462 
 463   // CI translation: ProfileData can represent both MethodDataOop data
 464   // as well as CIMethodData data. This function is provided for translating
 465   // an oop in a ProfileData to the ci equivalent. Generally speaking,
 466   // most ProfileData don't require any translation, so we provide the null
 467   // translation here, and the required translators are in the ci subclasses.
 468   virtual void translate_from(const ProfileData* data) {}
 469 
 470   virtual void print_data_on(outputStream* st, const char* extra = NULL) const {
 471     ShouldNotReachHere();
 472   }
 473 
 474   void print_data_on(outputStream* st, const MethodData* md) const;
 475 
 476   void print_shared(outputStream* st, const char* name, const char* extra) const;
 477   void tab(outputStream* st, bool first = false) const;
 478 };
 479 
 480 // BitData
 481 //
 482 // A BitData holds a flag or two in its header.
 483 class BitData : public ProfileData {
 484   friend class VMStructs;
 485   friend class JVMCIVMStructs;
 486 protected:
 487   enum {
 488     // null_seen:
 489     //  saw a null operand (cast/aastore/instanceof)
 490       null_seen_flag              = DataLayout::first_flag + 0
 491 #if INCLUDE_JVMCI
 492     // bytecode threw any exception
 493     , exception_seen_flag         = null_seen_flag + 1
 494 #endif
 495   };
 496   enum { bit_cell_count = 0 };  // no additional data fields needed.
 497 public:
 498   BitData(DataLayout* layout) : ProfileData(layout) {
 499   }
 500 
 501   virtual bool is_BitData() const { return true; }
 502 
 503   static int static_cell_count() {
 504     return bit_cell_count;
 505   }
 506 
 507   virtual int cell_count() const {
 508     return static_cell_count();
 509   }
 510 
 511   // Accessor
 512 
 513   // The null_seen flag bit is specially known to the interpreter.
 514   // Consulting it allows the compiler to avoid setting up null_check traps.
 515   bool null_seen()     { return flag_at(null_seen_flag); }
 516   void set_null_seen()    { set_flag_at(null_seen_flag); }
 517 
 518 #if INCLUDE_JVMCI
 519   // true if an exception was thrown at the specific BCI
 520   bool exception_seen() { return flag_at(exception_seen_flag); }
 521   void set_exception_seen() { set_flag_at(exception_seen_flag); }
 522 #endif
 523 
 524   // Code generation support
 525   static int null_seen_byte_constant() {
 526     return flag_number_to_constant(null_seen_flag);
 527   }
 528 
 529   static ByteSize bit_data_size() {
 530     return cell_offset(bit_cell_count);
 531   }
 532 
 533   void print_data_on(outputStream* st, const char* extra = NULL) const;
 534 };
 535 
 536 // CounterData
 537 //
 538 // A CounterData corresponds to a simple counter.
 539 class CounterData : public BitData {
 540   friend class VMStructs;
 541   friend class JVMCIVMStructs;
 542 protected:
 543   enum {
 544     count_off,
 545     counter_cell_count
 546   };
 547 public:
 548   CounterData(DataLayout* layout) : BitData(layout) {}
 549 
 550   virtual bool is_CounterData() const { return true; }
 551 
 552   static int static_cell_count() {
 553     return counter_cell_count;
 554   }
 555 
 556   virtual int cell_count() const {
 557     return static_cell_count();
 558   }
 559 
 560   // Direct accessor
 561   int count() const {
 562     intptr_t raw_data = intptr_at(count_off);
 563     if (raw_data > max_jint) {
 564       raw_data = max_jint;
 565     } else if (raw_data < min_jint) {
 566       raw_data = min_jint;
 567     }
 568     return int(raw_data);
 569   }
 570 
 571   // Code generation support
 572   static ByteSize count_offset() {
 573     return cell_offset(count_off);
 574   }
 575   static ByteSize counter_data_size() {
 576     return cell_offset(counter_cell_count);
 577   }
 578 
 579   void set_count(int count) {
 580     set_int_at(count_off, count);
 581   }
 582 
 583   void print_data_on(outputStream* st, const char* extra = NULL) const;
 584 };
 585 
 586 // JumpData
 587 //
 588 // A JumpData is used to access profiling information for a direct
 589 // branch.  It is a counter, used for counting the number of branches,
 590 // plus a data displacement, used for realigning the data pointer to
 591 // the corresponding target bci.
 592 class JumpData : public ProfileData {
 593   friend class VMStructs;
 594   friend class JVMCIVMStructs;
 595 protected:
 596   enum {
 597     taken_off_set,
 598     displacement_off_set,
 599     jump_cell_count
 600   };
 601 
 602   void set_displacement(int displacement) {
 603     set_int_at(displacement_off_set, displacement);
 604   }
 605 
 606 public:
 607   JumpData(DataLayout* layout) : ProfileData(layout) {
 608     assert(layout->tag() == DataLayout::jump_data_tag ||
 609       layout->tag() == DataLayout::branch_data_tag, "wrong type");
 610   }
 611 
 612   virtual bool is_JumpData() const { return true; }
 613 
 614   static int static_cell_count() {
 615     return jump_cell_count;
 616   }
 617 
 618   virtual int cell_count() const {
 619     return static_cell_count();
 620   }
 621 
 622   // Direct accessor
 623   uint taken() const {
 624     return uint_at(taken_off_set);
 625   }
 626 
 627   void set_taken(uint cnt) {
 628     set_uint_at(taken_off_set, cnt);
 629   }
 630 
 631   // Saturating counter
 632   uint inc_taken() {
 633     uint cnt = taken() + 1;
 634     // Did we wrap? Will compiler screw us??
 635     if (cnt == 0) cnt--;
 636     set_uint_at(taken_off_set, cnt);
 637     return cnt;
 638   }
 639 
 640   int displacement() const {
 641     return int_at(displacement_off_set);
 642   }
 643 
 644   // Code generation support
 645   static ByteSize taken_offset() {
 646     return cell_offset(taken_off_set);
 647   }
 648 
 649   static ByteSize displacement_offset() {
 650     return cell_offset(displacement_off_set);
 651   }
 652 
 653   // Specific initialization.
 654   void post_initialize(BytecodeStream* stream, MethodData* mdo);
 655 
 656   void print_data_on(outputStream* st, const char* extra = NULL) const;
 657 };
 658 
 659 // Entries in a ProfileData object to record types: it can either be
 660 // none (no profile), unknown (conflicting profile data) or a klass if
 661 // a single one is seen. Whether a null reference was seen is also
 662 // recorded. No counter is associated with the type and a single type
 663 // is tracked (unlike VirtualCallData).
 664 class TypeEntries {
 665 
 666 public:
 667 
 668   // A single cell is used to record information for a type:
 669   // - the cell is initialized to 0
 670   // - when a type is discovered it is stored in the cell
 671   // - bit zero of the cell is used to record whether a null reference
 672   // was encountered or not
 673   // - bit 1 is set to record a conflict in the type information
 674 
 675   enum {
 676     null_seen = 1,
 677     type_mask = ~null_seen,
 678     type_unknown = 2,
 679     status_bits = null_seen | type_unknown,
 680     type_klass_mask = ~status_bits
 681   };
 682 
 683   // what to initialize a cell to
 684   static intptr_t type_none() {
 685     return 0;
 686   }
 687 
 688   // null seen = bit 0 set?
 689   static bool was_null_seen(intptr_t v) {
 690     return (v & null_seen) != 0;
 691   }
 692 
 693   // conflicting type information = bit 1 set?
 694   static bool is_type_unknown(intptr_t v) {
 695     return (v & type_unknown) != 0;
 696   }
 697 
 698   // not type information yet = all bits cleared, ignoring bit 0?
 699   static bool is_type_none(intptr_t v) {
 700     return (v & type_mask) == 0;
 701   }
 702 
 703   // recorded type: cell without bit 0 and 1
 704   static intptr_t klass_part(intptr_t v) {
 705     intptr_t r = v & type_klass_mask;
 706     return r;
 707   }
 708 
 709   // type recorded
 710   static Klass* valid_klass(intptr_t k) {
 711     if (!is_type_none(k) &&
 712         !is_type_unknown(k)) {
 713       Klass* res = (Klass*)klass_part(k);
 714       assert(res != NULL, "invalid");
 715       return res;
 716     } else {
 717       return NULL;
 718     }
 719   }
 720 
 721   static intptr_t with_status(intptr_t k, intptr_t in) {
 722     return k | (in & status_bits);
 723   }
 724 
 725   static intptr_t with_status(Klass* k, intptr_t in) {
 726     return with_status((intptr_t)k, in);
 727   }
 728 
 729   static void print_klass(outputStream* st, intptr_t k);
 730 
 731 protected:
 732   // ProfileData object these entries are part of
 733   ProfileData* _pd;
 734   // offset within the ProfileData object where the entries start
 735   const int _base_off;
 736 
 737   TypeEntries(int base_off)
 738     : _pd(NULL), _base_off(base_off) {}
 739 
 740   void set_intptr_at(int index, intptr_t value) {
 741     _pd->set_intptr_at(index, value);
 742   }
 743 
 744   intptr_t intptr_at(int index) const {
 745     return _pd->intptr_at(index);
 746   }
 747 
 748 public:
 749   void set_profile_data(ProfileData* pd) {
 750     _pd = pd;
 751   }
 752 };
 753 
 754 // Type entries used for arguments passed at a call and parameters on
 755 // method entry. 2 cells per entry: one for the type encoded as in
 756 // TypeEntries and one initialized with the stack slot where the
 757 // profiled object is to be found so that the interpreter can locate
 758 // it quickly.
 759 class TypeStackSlotEntries : public TypeEntries {
 760 
 761 private:
 762   enum {
 763     stack_slot_entry,
 764     type_entry,
 765     per_arg_cell_count
 766   };
 767 
 768   // offset of cell for stack slot for entry i within ProfileData object
 769   int stack_slot_offset(int i) const {
 770     return _base_off + stack_slot_local_offset(i);
 771   }
 772 
 773   const int _number_of_entries;
 774 
 775   // offset of cell for type for entry i within ProfileData object
 776   int type_offset_in_cells(int i) const {
 777     return _base_off + type_local_offset(i);
 778   }
 779 
 780 public:
 781 
 782   TypeStackSlotEntries(int base_off, int nb_entries)
 783     : TypeEntries(base_off), _number_of_entries(nb_entries) {}
 784 
 785   static int compute_cell_count(Symbol* signature, bool include_receiver, int max);
 786 
 787   void post_initialize(Symbol* signature, bool has_receiver, bool include_receiver);
 788 
 789   int number_of_entries() const { return _number_of_entries; }
 790 
 791   // offset of cell for stack slot for entry i within this block of cells for a TypeStackSlotEntries
 792   static int stack_slot_local_offset(int i) {
 793     return i * per_arg_cell_count + stack_slot_entry;
 794   }
 795 
 796   // offset of cell for type for entry i within this block of cells for a TypeStackSlotEntries
 797   static int type_local_offset(int i) {
 798     return i * per_arg_cell_count + type_entry;
 799   }
 800 
 801   // stack slot for entry i
 802   uint stack_slot(int i) const {
 803     assert(i >= 0 && i < _number_of_entries, "oob");
 804     return _pd->uint_at(stack_slot_offset(i));
 805   }
 806 
 807   // set stack slot for entry i
 808   void set_stack_slot(int i, uint num) {
 809     assert(i >= 0 && i < _number_of_entries, "oob");
 810     _pd->set_uint_at(stack_slot_offset(i), num);
 811   }
 812 
 813   // type for entry i
 814   intptr_t type(int i) const {
 815     assert(i >= 0 && i < _number_of_entries, "oob");
 816     return _pd->intptr_at(type_offset_in_cells(i));
 817   }
 818 
 819   // set type for entry i
 820   void set_type(int i, intptr_t k) {
 821     assert(i >= 0 && i < _number_of_entries, "oob");
 822     _pd->set_intptr_at(type_offset_in_cells(i), k);
 823   }
 824 
 825   static ByteSize per_arg_size() {
 826     return in_ByteSize(per_arg_cell_count * DataLayout::cell_size);
 827   }
 828 
 829   static int per_arg_count() {
 830     return per_arg_cell_count;
 831   }
 832 
 833   ByteSize type_offset(int i) const {
 834     return DataLayout::cell_offset(type_offset_in_cells(i));
 835   }
 836 
 837   // GC support
 838   void clean_weak_klass_links(bool always_clean);
 839 
 840   void print_data_on(outputStream* st) const;
 841 };
 842 
 843 // Type entry used for return from a call. A single cell to record the
 844 // type.
 845 class ReturnTypeEntry : public TypeEntries {
 846 
 847 private:
 848   enum {
 849     cell_count = 1
 850   };
 851 
 852 public:
 853   ReturnTypeEntry(int base_off)
 854     : TypeEntries(base_off) {}
 855 
 856   void post_initialize() {
 857     set_type(type_none());
 858   }
 859 
 860   intptr_t type() const {
 861     return _pd->intptr_at(_base_off);
 862   }
 863 
 864   void set_type(intptr_t k) {
 865     _pd->set_intptr_at(_base_off, k);
 866   }
 867 
 868   static int static_cell_count() {
 869     return cell_count;
 870   }
 871 
 872   static ByteSize size() {
 873     return in_ByteSize(cell_count * DataLayout::cell_size);
 874   }
 875 
 876   ByteSize type_offset() {
 877     return DataLayout::cell_offset(_base_off);
 878   }
 879 
 880   // GC support
 881   void clean_weak_klass_links(bool always_clean);
 882 
 883   void print_data_on(outputStream* st) const;
 884 };
 885 
 886 // Entries to collect type information at a call: contains arguments
 887 // (TypeStackSlotEntries), a return type (ReturnTypeEntry) and a
 888 // number of cells. Because the number of cells for the return type is
 889 // smaller than the number of cells for the type of an arguments, the
 890 // number of cells is used to tell how many arguments are profiled and
 891 // whether a return value is profiled. See has_arguments() and
 892 // has_return().
 893 class TypeEntriesAtCall {
 894 private:
 895   static int stack_slot_local_offset(int i) {
 896     return header_cell_count() + TypeStackSlotEntries::stack_slot_local_offset(i);
 897   }
 898 
 899   static int argument_type_local_offset(int i) {
 900     return header_cell_count() + TypeStackSlotEntries::type_local_offset(i);
 901   }
 902 
 903 public:
 904 
 905   static int header_cell_count() {
 906     return 1;
 907   }
 908 
 909   static int cell_count_local_offset() {
 910     return 0;
 911   }
 912 
 913   static int compute_cell_count(BytecodeStream* stream);
 914 
 915   static void initialize(DataLayout* dl, int base, int cell_count) {
 916     int off = base + cell_count_local_offset();
 917     dl->set_cell_at(off, cell_count - base - header_cell_count());
 918   }
 919 
 920   static bool arguments_profiling_enabled();
 921   static bool return_profiling_enabled();
 922 
 923   // Code generation support
 924   static ByteSize cell_count_offset() {
 925     return in_ByteSize(cell_count_local_offset() * DataLayout::cell_size);
 926   }
 927 
 928   static ByteSize args_data_offset() {
 929     return in_ByteSize(header_cell_count() * DataLayout::cell_size);
 930   }
 931 
 932   static ByteSize stack_slot_offset(int i) {
 933     return in_ByteSize(stack_slot_local_offset(i) * DataLayout::cell_size);
 934   }
 935 
 936   static ByteSize argument_type_offset(int i) {
 937     return in_ByteSize(argument_type_local_offset(i) * DataLayout::cell_size);
 938   }
 939 
 940   static ByteSize return_only_size() {
 941     return ReturnTypeEntry::size() + in_ByteSize(header_cell_count() * DataLayout::cell_size);
 942   }
 943 
 944 };
 945 
 946 // CallTypeData
 947 //
 948 // A CallTypeData is used to access profiling information about a non
 949 // virtual call for which we collect type information about arguments
 950 // and return value.
 951 class CallTypeData : public CounterData {
 952 private:
 953   // entries for arguments if any
 954   TypeStackSlotEntries _args;
 955   // entry for return type if any
 956   ReturnTypeEntry _ret;
 957 
 958   int cell_count_global_offset() const {
 959     return CounterData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
 960   }
 961 
 962   // number of cells not counting the header
 963   int cell_count_no_header() const {
 964     return uint_at(cell_count_global_offset());
 965   }
 966 
 967   void check_number_of_arguments(int total) {
 968     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
 969   }
 970 
 971 public:
 972   CallTypeData(DataLayout* layout) :
 973     CounterData(layout),
 974     _args(CounterData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
 975     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
 976   {
 977     assert(layout->tag() == DataLayout::call_type_data_tag, "wrong type");
 978     // Some compilers (VC++) don't want this passed in member initialization list
 979     _args.set_profile_data(this);
 980     _ret.set_profile_data(this);
 981   }
 982 
 983   const TypeStackSlotEntries* args() const {
 984     assert(has_arguments(), "no profiling of arguments");
 985     return &_args;
 986   }
 987 
 988   const ReturnTypeEntry* ret() const {
 989     assert(has_return(), "no profiling of return value");
 990     return &_ret;
 991   }
 992 
 993   virtual bool is_CallTypeData() const { return true; }
 994 
 995   static int static_cell_count() {
 996     return -1;
 997   }
 998 
 999   static int compute_cell_count(BytecodeStream* stream) {
1000     return CounterData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1001   }
1002 
1003   static void initialize(DataLayout* dl, int cell_count) {
1004     TypeEntriesAtCall::initialize(dl, CounterData::static_cell_count(), cell_count);
1005   }
1006 
1007   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1008 
1009   virtual int cell_count() const {
1010     return CounterData::static_cell_count() +
1011       TypeEntriesAtCall::header_cell_count() +
1012       int_at_unchecked(cell_count_global_offset());
1013   }
1014 
1015   int number_of_arguments() const {
1016     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1017   }
1018 
1019   void set_argument_type(int i, Klass* k) {
1020     assert(has_arguments(), "no arguments!");
1021     intptr_t current = _args.type(i);
1022     _args.set_type(i, TypeEntries::with_status(k, current));
1023   }
1024 
1025   void set_return_type(Klass* k) {
1026     assert(has_return(), "no return!");
1027     intptr_t current = _ret.type();
1028     _ret.set_type(TypeEntries::with_status(k, current));
1029   }
1030 
1031   // An entry for a return value takes less space than an entry for an
1032   // argument so if the number of cells exceeds the number of cells
1033   // needed for an argument, this object contains type information for
1034   // at least one argument.
1035   bool has_arguments() const {
1036     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1037     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1038     return res;
1039   }
1040 
1041   // An entry for a return value takes less space than an entry for an
1042   // argument, so if the remainder of the number of cells divided by
1043   // the number of cells for an argument is not null, a return value
1044   // is profiled in this object.
1045   bool has_return() const {
1046     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1047     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1048     return res;
1049   }
1050 
1051   // Code generation support
1052   static ByteSize args_data_offset() {
1053     return cell_offset(CounterData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1054   }
1055 
1056   ByteSize argument_type_offset(int i) {
1057     return _args.type_offset(i);
1058   }
1059 
1060   ByteSize return_type_offset() {
1061     return _ret.type_offset();
1062   }
1063 
1064   // GC support
1065   virtual void clean_weak_klass_links(bool always_clean) {
1066     if (has_arguments()) {
1067       _args.clean_weak_klass_links(always_clean);
1068     }
1069     if (has_return()) {
1070       _ret.clean_weak_klass_links(always_clean);
1071     }
1072   }
1073 
1074   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1075 };
1076 
1077 // ReceiverTypeData
1078 //
1079 // A ReceiverTypeData is used to access profiling information about a
1080 // dynamic type check.  It consists of a counter which counts the total times
1081 // that the check is reached, and a series of (Klass*, count) pairs
1082 // which are used to store a type profile for the receiver of the check.
1083 class ReceiverTypeData : public CounterData {
1084   friend class VMStructs;
1085   friend class JVMCIVMStructs;
1086 protected:
1087   enum {
1088 #if INCLUDE_JVMCI
1089     // Description of the different counters
1090     // ReceiverTypeData for instanceof/checkcast/aastore:
1091     //   count is decremented for failed type checks
1092     //   JVMCI only: nonprofiled_count is incremented on type overflow
1093     // VirtualCallData for invokevirtual/invokeinterface:
1094     //   count is incremented on type overflow
1095     //   JVMCI only: nonprofiled_count is incremented on method overflow
1096 
1097     // JVMCI is interested in knowing the percentage of type checks involving a type not explicitly in the profile
1098     nonprofiled_count_off_set = counter_cell_count,
1099     receiver0_offset,
1100 #else
1101     receiver0_offset = counter_cell_count,
1102 #endif
1103     count0_offset,
1104     receiver_type_row_cell_count = (count0_offset + 1) - receiver0_offset
1105   };
1106 
1107 public:
1108   ReceiverTypeData(DataLayout* layout) : CounterData(layout) {
1109     assert(layout->tag() == DataLayout::receiver_type_data_tag ||
1110            layout->tag() == DataLayout::virtual_call_data_tag ||
1111            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1112   }
1113 
1114   virtual bool is_ReceiverTypeData() const { return true; }
1115 
1116   static int static_cell_count() {
1117     return counter_cell_count + (uint) TypeProfileWidth * receiver_type_row_cell_count JVMCI_ONLY(+ 1);
1118   }
1119 
1120   virtual int cell_count() const {
1121     return static_cell_count();
1122   }
1123 
1124   // Direct accessors
1125   static uint row_limit() {
1126     return TypeProfileWidth;
1127   }
1128   static int receiver_cell_index(uint row) {
1129     return receiver0_offset + row * receiver_type_row_cell_count;
1130   }
1131   static int receiver_count_cell_index(uint row) {
1132     return count0_offset + row * receiver_type_row_cell_count;
1133   }
1134 
1135   Klass* receiver(uint row) const {
1136     assert(row < row_limit(), "oob");
1137 
1138     Klass* recv = (Klass*)intptr_at(receiver_cell_index(row));
1139     assert(recv == NULL || recv->is_klass(), "wrong type");
1140     return recv;
1141   }
1142 
1143   void set_receiver(uint row, Klass* k) {
1144     assert((uint)row < row_limit(), "oob");
1145     set_intptr_at(receiver_cell_index(row), (uintptr_t)k);
1146   }
1147 
1148   uint receiver_count(uint row) const {
1149     assert(row < row_limit(), "oob");
1150     return uint_at(receiver_count_cell_index(row));
1151   }
1152 
1153   void set_receiver_count(uint row, uint count) {
1154     assert(row < row_limit(), "oob");
1155     set_uint_at(receiver_count_cell_index(row), count);
1156   }
1157 
1158   void clear_row(uint row) {
1159     assert(row < row_limit(), "oob");
1160     // Clear total count - indicator of polymorphic call site.
1161     // The site may look like as monomorphic after that but
1162     // it allow to have more accurate profiling information because
1163     // there was execution phase change since klasses were unloaded.
1164     // If the site is still polymorphic then MDO will be updated
1165     // to reflect it. But it could be the case that the site becomes
1166     // only bimorphic. Then keeping total count not 0 will be wrong.
1167     // Even if we use monomorphic (when it is not) for compilation
1168     // we will only have trap, deoptimization and recompile again
1169     // with updated MDO after executing method in Interpreter.
1170     // An additional receiver will be recorded in the cleaned row
1171     // during next call execution.
1172     //
1173     // Note: our profiling logic works with empty rows in any slot.
1174     // We do sorting a profiling info (ciCallProfile) for compilation.
1175     //
1176     set_count(0);
1177     set_receiver(row, NULL);
1178     set_receiver_count(row, 0);
1179 #if INCLUDE_JVMCI
1180     if (!this->is_VirtualCallData()) {
1181       // if this is a ReceiverTypeData for JVMCI, the nonprofiled_count
1182       // must also be reset (see "Description of the different counters" above)
1183       set_nonprofiled_count(0);
1184     }
1185 #endif
1186   }
1187 
1188   // Code generation support
1189   static ByteSize receiver_offset(uint row) {
1190     return cell_offset(receiver_cell_index(row));
1191   }
1192   static ByteSize receiver_count_offset(uint row) {
1193     return cell_offset(receiver_count_cell_index(row));
1194   }
1195 #if INCLUDE_JVMCI
1196   static ByteSize nonprofiled_receiver_count_offset() {
1197     return cell_offset(nonprofiled_count_off_set);
1198   }
1199   uint nonprofiled_count() const {
1200     return uint_at(nonprofiled_count_off_set);
1201   }
1202   void set_nonprofiled_count(uint count) {
1203     set_uint_at(nonprofiled_count_off_set, count);
1204   }
1205 #endif // INCLUDE_JVMCI
1206   static ByteSize receiver_type_data_size() {
1207     return cell_offset(static_cell_count());
1208   }
1209 
1210   // GC support
1211   virtual void clean_weak_klass_links(bool always_clean);
1212 
1213   void print_receiver_data_on(outputStream* st) const;
1214   void print_data_on(outputStream* st, const char* extra = NULL) const;
1215 };
1216 
1217 // VirtualCallData
1218 //
1219 // A VirtualCallData is used to access profiling information about a
1220 // virtual call.  For now, it has nothing more than a ReceiverTypeData.
1221 class VirtualCallData : public ReceiverTypeData {
1222 public:
1223   VirtualCallData(DataLayout* layout) : ReceiverTypeData(layout) {
1224     assert(layout->tag() == DataLayout::virtual_call_data_tag ||
1225            layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1226   }
1227 
1228   virtual bool is_VirtualCallData() const { return true; }
1229 
1230   static int static_cell_count() {
1231     // At this point we could add more profile state, e.g., for arguments.
1232     // But for now it's the same size as the base record type.
1233     return ReceiverTypeData::static_cell_count() JVMCI_ONLY(+ (uint) MethodProfileWidth * receiver_type_row_cell_count);
1234   }
1235 
1236   virtual int cell_count() const {
1237     return static_cell_count();
1238   }
1239 
1240   // Direct accessors
1241   static ByteSize virtual_call_data_size() {
1242     return cell_offset(static_cell_count());
1243   }
1244 
1245 #if INCLUDE_JVMCI
1246   static ByteSize method_offset(uint row) {
1247     return cell_offset(method_cell_index(row));
1248   }
1249   static ByteSize method_count_offset(uint row) {
1250     return cell_offset(method_count_cell_index(row));
1251   }
1252   static int method_cell_index(uint row) {
1253     return receiver0_offset + (row + TypeProfileWidth) * receiver_type_row_cell_count;
1254   }
1255   static int method_count_cell_index(uint row) {
1256     return count0_offset + (row + TypeProfileWidth) * receiver_type_row_cell_count;
1257   }
1258   static uint method_row_limit() {
1259     return MethodProfileWidth;
1260   }
1261 
1262   Method* method(uint row) const {
1263     assert(row < method_row_limit(), "oob");
1264 
1265     Method* method = (Method*)intptr_at(method_cell_index(row));
1266     assert(method == NULL || method->is_method(), "must be");
1267     return method;
1268   }
1269 
1270   uint method_count(uint row) const {
1271     assert(row < method_row_limit(), "oob");
1272     return uint_at(method_count_cell_index(row));
1273   }
1274 
1275   void set_method(uint row, Method* m) {
1276     assert((uint)row < method_row_limit(), "oob");
1277     set_intptr_at(method_cell_index(row), (uintptr_t)m);
1278   }
1279 
1280   void set_method_count(uint row, uint count) {
1281     assert(row < method_row_limit(), "oob");
1282     set_uint_at(method_count_cell_index(row), count);
1283   }
1284 
1285   void clear_method_row(uint row) {
1286     assert(row < method_row_limit(), "oob");
1287     // Clear total count - indicator of polymorphic call site (see comment for clear_row() in ReceiverTypeData).
1288     set_nonprofiled_count(0);
1289     set_method(row, NULL);
1290     set_method_count(row, 0);
1291   }
1292 
1293   // GC support
1294   virtual void clean_weak_klass_links(bool always_clean);
1295 
1296   // Redefinition support
1297   virtual void clean_weak_method_links();
1298 #endif // INCLUDE_JVMCI
1299 
1300   void print_method_data_on(outputStream* st) const NOT_JVMCI_RETURN;
1301   void print_data_on(outputStream* st, const char* extra = NULL) const;
1302 };
1303 
1304 // VirtualCallTypeData
1305 //
1306 // A VirtualCallTypeData is used to access profiling information about
1307 // a virtual call for which we collect type information about
1308 // arguments and return value.
1309 class VirtualCallTypeData : public VirtualCallData {
1310 private:
1311   // entries for arguments if any
1312   TypeStackSlotEntries _args;
1313   // entry for return type if any
1314   ReturnTypeEntry _ret;
1315 
1316   int cell_count_global_offset() const {
1317     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::cell_count_local_offset();
1318   }
1319 
1320   // number of cells not counting the header
1321   int cell_count_no_header() const {
1322     return uint_at(cell_count_global_offset());
1323   }
1324 
1325   void check_number_of_arguments(int total) {
1326     assert(number_of_arguments() == total, "should be set in DataLayout::initialize");
1327   }
1328 
1329 public:
1330   VirtualCallTypeData(DataLayout* layout) :
1331     VirtualCallData(layout),
1332     _args(VirtualCallData::static_cell_count()+TypeEntriesAtCall::header_cell_count(), number_of_arguments()),
1333     _ret(cell_count() - ReturnTypeEntry::static_cell_count())
1334   {
1335     assert(layout->tag() == DataLayout::virtual_call_type_data_tag, "wrong type");
1336     // Some compilers (VC++) don't want this passed in member initialization list
1337     _args.set_profile_data(this);
1338     _ret.set_profile_data(this);
1339   }
1340 
1341   const TypeStackSlotEntries* args() const {
1342     assert(has_arguments(), "no profiling of arguments");
1343     return &_args;
1344   }
1345 
1346   const ReturnTypeEntry* ret() const {
1347     assert(has_return(), "no profiling of return value");
1348     return &_ret;
1349   }
1350 
1351   virtual bool is_VirtualCallTypeData() const { return true; }
1352 
1353   static int static_cell_count() {
1354     return -1;
1355   }
1356 
1357   static int compute_cell_count(BytecodeStream* stream) {
1358     return VirtualCallData::static_cell_count() + TypeEntriesAtCall::compute_cell_count(stream);
1359   }
1360 
1361   static void initialize(DataLayout* dl, int cell_count) {
1362     TypeEntriesAtCall::initialize(dl, VirtualCallData::static_cell_count(), cell_count);
1363   }
1364 
1365   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1366 
1367   virtual int cell_count() const {
1368     return VirtualCallData::static_cell_count() +
1369       TypeEntriesAtCall::header_cell_count() +
1370       int_at_unchecked(cell_count_global_offset());
1371   }
1372 
1373   int number_of_arguments() const {
1374     return cell_count_no_header() / TypeStackSlotEntries::per_arg_count();
1375   }
1376 
1377   void set_argument_type(int i, Klass* k) {
1378     assert(has_arguments(), "no arguments!");
1379     intptr_t current = _args.type(i);
1380     _args.set_type(i, TypeEntries::with_status(k, current));
1381   }
1382 
1383   void set_return_type(Klass* k) {
1384     assert(has_return(), "no return!");
1385     intptr_t current = _ret.type();
1386     _ret.set_type(TypeEntries::with_status(k, current));
1387   }
1388 
1389   // An entry for a return value takes less space than an entry for an
1390   // argument, so if the remainder of the number of cells divided by
1391   // the number of cells for an argument is not null, a return value
1392   // is profiled in this object.
1393   bool has_return() const {
1394     bool res = (cell_count_no_header() % TypeStackSlotEntries::per_arg_count()) != 0;
1395     assert (!res || TypeEntriesAtCall::return_profiling_enabled(), "no profiling of return values");
1396     return res;
1397   }
1398 
1399   // An entry for a return value takes less space than an entry for an
1400   // argument so if the number of cells exceeds the number of cells
1401   // needed for an argument, this object contains type information for
1402   // at least one argument.
1403   bool has_arguments() const {
1404     bool res = cell_count_no_header() >= TypeStackSlotEntries::per_arg_count();
1405     assert (!res || TypeEntriesAtCall::arguments_profiling_enabled(), "no profiling of arguments");
1406     return res;
1407   }
1408 
1409   // Code generation support
1410   static ByteSize args_data_offset() {
1411     return cell_offset(VirtualCallData::static_cell_count()) + TypeEntriesAtCall::args_data_offset();
1412   }
1413 
1414   ByteSize argument_type_offset(int i) {
1415     return _args.type_offset(i);
1416   }
1417 
1418   ByteSize return_type_offset() {
1419     return _ret.type_offset();
1420   }
1421 
1422   // GC support
1423   virtual void clean_weak_klass_links(bool always_clean) {
1424     ReceiverTypeData::clean_weak_klass_links(always_clean);
1425     if (has_arguments()) {
1426       _args.clean_weak_klass_links(always_clean);
1427     }
1428     if (has_return()) {
1429       _ret.clean_weak_klass_links(always_clean);
1430     }
1431   }
1432 
1433   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1434 };
1435 
1436 // RetData
1437 //
1438 // A RetData is used to access profiling information for a ret bytecode.
1439 // It is composed of a count of the number of times that the ret has
1440 // been executed, followed by a series of triples of the form
1441 // (bci, count, di) which count the number of times that some bci was the
1442 // target of the ret and cache a corresponding data displacement.
1443 class RetData : public CounterData {
1444 protected:
1445   enum {
1446     bci0_offset = counter_cell_count,
1447     count0_offset,
1448     displacement0_offset,
1449     ret_row_cell_count = (displacement0_offset + 1) - bci0_offset
1450   };
1451 
1452   void set_bci(uint row, int bci) {
1453     assert((uint)row < row_limit(), "oob");
1454     set_int_at(bci0_offset + row * ret_row_cell_count, bci);
1455   }
1456   void release_set_bci(uint row, int bci);
1457   void set_bci_count(uint row, uint count) {
1458     assert((uint)row < row_limit(), "oob");
1459     set_uint_at(count0_offset + row * ret_row_cell_count, count);
1460   }
1461   void set_bci_displacement(uint row, int disp) {
1462     set_int_at(displacement0_offset + row * ret_row_cell_count, disp);
1463   }
1464 
1465 public:
1466   RetData(DataLayout* layout) : CounterData(layout) {
1467     assert(layout->tag() == DataLayout::ret_data_tag, "wrong type");
1468   }
1469 
1470   virtual bool is_RetData() const { return true; }
1471 
1472   enum {
1473     no_bci = -1 // value of bci when bci1/2 are not in use.
1474   };
1475 
1476   static int static_cell_count() {
1477     return counter_cell_count + (uint) BciProfileWidth * ret_row_cell_count;
1478   }
1479 
1480   virtual int cell_count() const {
1481     return static_cell_count();
1482   }
1483 
1484   static uint row_limit() {
1485     return BciProfileWidth;
1486   }
1487   static int bci_cell_index(uint row) {
1488     return bci0_offset + row * ret_row_cell_count;
1489   }
1490   static int bci_count_cell_index(uint row) {
1491     return count0_offset + row * ret_row_cell_count;
1492   }
1493   static int bci_displacement_cell_index(uint row) {
1494     return displacement0_offset + row * ret_row_cell_count;
1495   }
1496 
1497   // Direct accessors
1498   int bci(uint row) const {
1499     return int_at(bci_cell_index(row));
1500   }
1501   uint bci_count(uint row) const {
1502     return uint_at(bci_count_cell_index(row));
1503   }
1504   int bci_displacement(uint row) const {
1505     return int_at(bci_displacement_cell_index(row));
1506   }
1507 
1508   // Interpreter Runtime support
1509   address fixup_ret(int return_bci, MethodData* mdo);
1510 
1511   // Code generation support
1512   static ByteSize bci_offset(uint row) {
1513     return cell_offset(bci_cell_index(row));
1514   }
1515   static ByteSize bci_count_offset(uint row) {
1516     return cell_offset(bci_count_cell_index(row));
1517   }
1518   static ByteSize bci_displacement_offset(uint row) {
1519     return cell_offset(bci_displacement_cell_index(row));
1520   }
1521 
1522   // Specific initialization.
1523   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1524 
1525   void print_data_on(outputStream* st, const char* extra = NULL) const;
1526 };
1527 
1528 // BranchData
1529 //
1530 // A BranchData is used to access profiling data for a two-way branch.
1531 // It consists of taken and not_taken counts as well as a data displacement
1532 // for the taken case.
1533 class BranchData : public JumpData {
1534   friend class VMStructs;
1535   friend class JVMCIVMStructs;
1536 protected:
1537   enum {
1538     not_taken_off_set = jump_cell_count,
1539     branch_cell_count
1540   };
1541 
1542   void set_displacement(int displacement) {
1543     set_int_at(displacement_off_set, displacement);
1544   }
1545 
1546 public:
1547   BranchData(DataLayout* layout) : JumpData(layout) {
1548     assert(layout->tag() == DataLayout::branch_data_tag, "wrong type");
1549   }
1550 
1551   virtual bool is_BranchData() const { return true; }
1552 
1553   static int static_cell_count() {
1554     return branch_cell_count;
1555   }
1556 
1557   virtual int cell_count() const {
1558     return static_cell_count();
1559   }
1560 
1561   // Direct accessor
1562   uint not_taken() const {
1563     return uint_at(not_taken_off_set);
1564   }
1565 
1566   void set_not_taken(uint cnt) {
1567     set_uint_at(not_taken_off_set, cnt);
1568   }
1569 
1570   uint inc_not_taken() {
1571     uint cnt = not_taken() + 1;
1572     // Did we wrap? Will compiler screw us??
1573     if (cnt == 0) cnt--;
1574     set_uint_at(not_taken_off_set, cnt);
1575     return cnt;
1576   }
1577 
1578   // Code generation support
1579   static ByteSize not_taken_offset() {
1580     return cell_offset(not_taken_off_set);
1581   }
1582   static ByteSize branch_data_size() {
1583     return cell_offset(branch_cell_count);
1584   }
1585 
1586   // Specific initialization.
1587   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1588 
1589   void print_data_on(outputStream* st, const char* extra = NULL) const;
1590 };
1591 
1592 // ArrayData
1593 //
1594 // A ArrayData is a base class for accessing profiling data which does
1595 // not have a statically known size.  It consists of an array length
1596 // and an array start.
1597 class ArrayData : public ProfileData {
1598   friend class VMStructs;
1599   friend class JVMCIVMStructs;
1600 protected:
1601   friend class DataLayout;
1602 
1603   enum {
1604     array_len_off_set,
1605     array_start_off_set
1606   };
1607 
1608   uint array_uint_at(int index) const {
1609     int aindex = index + array_start_off_set;
1610     return uint_at(aindex);
1611   }
1612   int array_int_at(int index) const {
1613     int aindex = index + array_start_off_set;
1614     return int_at(aindex);
1615   }
1616   oop array_oop_at(int index) const {
1617     int aindex = index + array_start_off_set;
1618     return oop_at(aindex);
1619   }
1620   void array_set_int_at(int index, int value) {
1621     int aindex = index + array_start_off_set;
1622     set_int_at(aindex, value);
1623   }
1624 
1625   // Code generation support for subclasses.
1626   static ByteSize array_element_offset(int index) {
1627     return cell_offset(array_start_off_set + index);
1628   }
1629 
1630 public:
1631   ArrayData(DataLayout* layout) : ProfileData(layout) {}
1632 
1633   virtual bool is_ArrayData() const { return true; }
1634 
1635   static int static_cell_count() {
1636     return -1;
1637   }
1638 
1639   int array_len() const {
1640     return int_at_unchecked(array_len_off_set);
1641   }
1642 
1643   virtual int cell_count() const {
1644     return array_len() + 1;
1645   }
1646 
1647   // Code generation support
1648   static ByteSize array_len_offset() {
1649     return cell_offset(array_len_off_set);
1650   }
1651   static ByteSize array_start_offset() {
1652     return cell_offset(array_start_off_set);
1653   }
1654 };
1655 
1656 // MultiBranchData
1657 //
1658 // A MultiBranchData is used to access profiling information for
1659 // a multi-way branch (*switch bytecodes).  It consists of a series
1660 // of (count, displacement) pairs, which count the number of times each
1661 // case was taken and specify the data displacment for each branch target.
1662 class MultiBranchData : public ArrayData {
1663   friend class VMStructs;
1664   friend class JVMCIVMStructs;
1665 protected:
1666   enum {
1667     default_count_off_set,
1668     default_disaplacement_off_set,
1669     case_array_start
1670   };
1671   enum {
1672     relative_count_off_set,
1673     relative_displacement_off_set,
1674     per_case_cell_count
1675   };
1676 
1677   void set_default_displacement(int displacement) {
1678     array_set_int_at(default_disaplacement_off_set, displacement);
1679   }
1680   void set_displacement_at(int index, int displacement) {
1681     array_set_int_at(case_array_start +
1682                      index * per_case_cell_count +
1683                      relative_displacement_off_set,
1684                      displacement);
1685   }
1686 
1687 public:
1688   MultiBranchData(DataLayout* layout) : ArrayData(layout) {
1689     assert(layout->tag() == DataLayout::multi_branch_data_tag, "wrong type");
1690   }
1691 
1692   virtual bool is_MultiBranchData() const { return true; }
1693 
1694   static int compute_cell_count(BytecodeStream* stream);
1695 
1696   int number_of_cases() const {
1697     int alen = array_len() - 2; // get rid of default case here.
1698     assert(alen % per_case_cell_count == 0, "must be even");
1699     return (alen / per_case_cell_count);
1700   }
1701 
1702   uint default_count() const {
1703     return array_uint_at(default_count_off_set);
1704   }
1705   int default_displacement() const {
1706     return array_int_at(default_disaplacement_off_set);
1707   }
1708 
1709   uint count_at(int index) const {
1710     return array_uint_at(case_array_start +
1711                          index * per_case_cell_count +
1712                          relative_count_off_set);
1713   }
1714   int displacement_at(int index) const {
1715     return array_int_at(case_array_start +
1716                         index * per_case_cell_count +
1717                         relative_displacement_off_set);
1718   }
1719 
1720   // Code generation support
1721   static ByteSize default_count_offset() {
1722     return array_element_offset(default_count_off_set);
1723   }
1724   static ByteSize default_displacement_offset() {
1725     return array_element_offset(default_disaplacement_off_set);
1726   }
1727   static ByteSize case_count_offset(int index) {
1728     return case_array_offset() +
1729            (per_case_size() * index) +
1730            relative_count_offset();
1731   }
1732   static ByteSize case_array_offset() {
1733     return array_element_offset(case_array_start);
1734   }
1735   static ByteSize per_case_size() {
1736     return in_ByteSize(per_case_cell_count) * cell_size;
1737   }
1738   static ByteSize relative_count_offset() {
1739     return in_ByteSize(relative_count_off_set) * cell_size;
1740   }
1741   static ByteSize relative_displacement_offset() {
1742     return in_ByteSize(relative_displacement_off_set) * cell_size;
1743   }
1744 
1745   // Specific initialization.
1746   void post_initialize(BytecodeStream* stream, MethodData* mdo);
1747 
1748   void print_data_on(outputStream* st, const char* extra = NULL) const;
1749 };
1750 
1751 class ArgInfoData : public ArrayData {
1752 
1753 public:
1754   ArgInfoData(DataLayout* layout) : ArrayData(layout) {
1755     assert(layout->tag() == DataLayout::arg_info_data_tag, "wrong type");
1756   }
1757 
1758   virtual bool is_ArgInfoData() const { return true; }
1759 
1760 
1761   int number_of_args() const {
1762     return array_len();
1763   }
1764 
1765   uint arg_modified(int arg) const {
1766     return array_uint_at(arg);
1767   }
1768 
1769   void set_arg_modified(int arg, uint val) {
1770     array_set_int_at(arg, val);
1771   }
1772 
1773   void print_data_on(outputStream* st, const char* extra = NULL) const;
1774 };
1775 
1776 // ParametersTypeData
1777 //
1778 // A ParametersTypeData is used to access profiling information about
1779 // types of parameters to a method
1780 class ParametersTypeData : public ArrayData {
1781 
1782 private:
1783   TypeStackSlotEntries _parameters;
1784 
1785   static int stack_slot_local_offset(int i) {
1786     assert_profiling_enabled();
1787     return array_start_off_set + TypeStackSlotEntries::stack_slot_local_offset(i);
1788   }
1789 
1790   static int type_local_offset(int i) {
1791     assert_profiling_enabled();
1792     return array_start_off_set + TypeStackSlotEntries::type_local_offset(i);
1793   }
1794 
1795   static bool profiling_enabled();
1796   static void assert_profiling_enabled() {
1797     assert(profiling_enabled(), "method parameters profiling should be on");
1798   }
1799 
1800 public:
1801   ParametersTypeData(DataLayout* layout) : ArrayData(layout), _parameters(1, number_of_parameters()) {
1802     assert(layout->tag() == DataLayout::parameters_type_data_tag, "wrong type");
1803     // Some compilers (VC++) don't want this passed in member initialization list
1804     _parameters.set_profile_data(this);
1805   }
1806 
1807   static int compute_cell_count(Method* m);
1808 
1809   virtual bool is_ParametersTypeData() const { return true; }
1810 
1811   virtual void post_initialize(BytecodeStream* stream, MethodData* mdo);
1812 
1813   int number_of_parameters() const {
1814     return array_len() / TypeStackSlotEntries::per_arg_count();
1815   }
1816 
1817   const TypeStackSlotEntries* parameters() const { return &_parameters; }
1818 
1819   uint stack_slot(int i) const {
1820     return _parameters.stack_slot(i);
1821   }
1822 
1823   void set_type(int i, Klass* k) {
1824     intptr_t current = _parameters.type(i);
1825     _parameters.set_type(i, TypeEntries::with_status((intptr_t)k, current));
1826   }
1827 
1828   virtual void clean_weak_klass_links(bool always_clean) {
1829     _parameters.clean_weak_klass_links(always_clean);
1830   }
1831 
1832   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1833 
1834   static ByteSize stack_slot_offset(int i) {
1835     return cell_offset(stack_slot_local_offset(i));
1836   }
1837 
1838   static ByteSize type_offset(int i) {
1839     return cell_offset(type_local_offset(i));
1840   }
1841 };
1842 
1843 // SpeculativeTrapData
1844 //
1845 // A SpeculativeTrapData is used to record traps due to type
1846 // speculation. It records the root of the compilation: that type
1847 // speculation is wrong in the context of one compilation (for
1848 // method1) doesn't mean it's wrong in the context of another one (for
1849 // method2). Type speculation could have more/different data in the
1850 // context of the compilation of method2 and it's worthwhile to try an
1851 // optimization that failed for compilation of method1 in the context
1852 // of compilation of method2.
1853 // Space for SpeculativeTrapData entries is allocated from the extra
1854 // data space in the MDO. If we run out of space, the trap data for
1855 // the ProfileData at that bci is updated.
1856 class SpeculativeTrapData : public ProfileData {
1857 protected:
1858   enum {
1859     speculative_trap_method,
1860 #ifndef _LP64
1861     // The size of the area for traps is a multiple of the header
1862     // size, 2 cells on 32 bits. Packed at the end of this area are
1863     // argument info entries (with tag
1864     // DataLayout::arg_info_data_tag). The logic in
1865     // MethodData::bci_to_extra_data() that guarantees traps don't
1866     // overflow over argument info entries assumes the size of a
1867     // SpeculativeTrapData is twice the header size. On 32 bits, a
1868     // SpeculativeTrapData must be 4 cells.
1869     padding,
1870 #endif
1871     speculative_trap_cell_count
1872   };
1873 public:
1874   SpeculativeTrapData(DataLayout* layout) : ProfileData(layout) {
1875     assert(layout->tag() == DataLayout::speculative_trap_data_tag, "wrong type");
1876   }
1877 
1878   virtual bool is_SpeculativeTrapData() const { return true; }
1879 
1880   static int static_cell_count() {
1881     return speculative_trap_cell_count;
1882   }
1883 
1884   virtual int cell_count() const {
1885     return static_cell_count();
1886   }
1887 
1888   // Direct accessor
1889   Method* method() const {
1890     return (Method*)intptr_at(speculative_trap_method);
1891   }
1892 
1893   void set_method(Method* m) {
1894     assert(!m->is_old(), "cannot add old methods");
1895     set_intptr_at(speculative_trap_method, (intptr_t)m);
1896   }
1897 
1898   static ByteSize method_offset() {
1899     return cell_offset(speculative_trap_method);
1900   }
1901 
1902   virtual void print_data_on(outputStream* st, const char* extra = NULL) const;
1903 };
1904 
1905 // MethodData*
1906 //
1907 // A MethodData* holds information which has been collected about
1908 // a method.  Its layout looks like this:
1909 //
1910 // -----------------------------
1911 // | header                    |
1912 // | klass                     |
1913 // -----------------------------
1914 // | method                    |
1915 // | size of the MethodData* |
1916 // -----------------------------
1917 // | Data entries...           |
1918 // |   (variable size)         |
1919 // |                           |
1920 // .                           .
1921 // .                           .
1922 // .                           .
1923 // |                           |
1924 // -----------------------------
1925 //
1926 // The data entry area is a heterogeneous array of DataLayouts. Each
1927 // DataLayout in the array corresponds to a specific bytecode in the
1928 // method.  The entries in the array are sorted by the corresponding
1929 // bytecode.  Access to the data is via resource-allocated ProfileData,
1930 // which point to the underlying blocks of DataLayout structures.
1931 //
1932 // During interpretation, if profiling in enabled, the interpreter
1933 // maintains a method data pointer (mdp), which points at the entry
1934 // in the array corresponding to the current bci.  In the course of
1935 // intepretation, when a bytecode is encountered that has profile data
1936 // associated with it, the entry pointed to by mdp is updated, then the
1937 // mdp is adjusted to point to the next appropriate DataLayout.  If mdp
1938 // is NULL to begin with, the interpreter assumes that the current method
1939 // is not (yet) being profiled.
1940 //
1941 // In MethodData* parlance, "dp" is a "data pointer", the actual address
1942 // of a DataLayout element.  A "di" is a "data index", the offset in bytes
1943 // from the base of the data entry array.  A "displacement" is the byte offset
1944 // in certain ProfileData objects that indicate the amount the mdp must be
1945 // adjusted in the event of a change in control flow.
1946 //
1947 
1948 class CleanExtraDataClosure : public StackObj {
1949 public:
1950   virtual bool is_live(Method* m) = 0;
1951 };
1952 
1953 
1954 #if INCLUDE_JVMCI
1955 // Encapsulates an encoded speculation reason. These are linked together in
1956 // a list that is atomically appended to during deoptimization. Entries are
1957 // never removed from the list.
1958 // @see jdk.vm.ci.hotspot.HotSpotSpeculationLog.HotSpotSpeculationEncoding
1959 class FailedSpeculation: public CHeapObj<mtCompiler> {
1960  private:
1961   // The length of HotSpotSpeculationEncoding.toByteArray(). The data itself
1962   // is an array embedded at the end of this object.
1963   int   _data_len;
1964 
1965   // Next entry in a linked list.
1966   FailedSpeculation* _next;
1967 
1968   FailedSpeculation(address data, int data_len);
1969 
1970   FailedSpeculation** next_adr() { return &_next; }
1971 
1972   // Placement new operator for inlining the speculation data into
1973   // the FailedSpeculation object.
1974   void* operator new(size_t size, size_t fs_size) throw();
1975 
1976  public:
1977   char* data()         { return (char*)(((address) this) + sizeof(FailedSpeculation)); }
1978   int data_len() const { return _data_len; }
1979   FailedSpeculation* next() const { return _next; }
1980 
1981   // Atomically appends a speculation from nm to the list whose head is at (*failed_speculations_address).
1982   // Returns false if the FailedSpeculation object could not be allocated.
1983   static bool add_failed_speculation(nmethod* nm, FailedSpeculation** failed_speculations_address, address speculation, int speculation_len);
1984 
1985   // Frees all entries in the linked list whose head is at (*failed_speculations_address).
1986   static void free_failed_speculations(FailedSpeculation** failed_speculations_address);
1987 };
1988 #endif
1989 
1990 class MethodData : public Metadata {
1991   friend class VMStructs;
1992   friend class JVMCIVMStructs;
1993 private:
1994   friend class ProfileData;
1995   friend class TypeEntriesAtCall;
1996 
1997   // If you add a new field that points to any metaspace object, you
1998   // must add this field to MethodData::metaspace_pointers_do().
1999 
2000   // Back pointer to the Method*
2001   Method* _method;
2002 
2003   // Size of this oop in bytes
2004   int _size;
2005 
2006   // Cached hint for bci_to_dp and bci_to_data
2007   int _hint_di;
2008 
2009   Mutex _extra_data_lock;
2010 
2011   MethodData(const methodHandle& method, int size, TRAPS);
2012 public:
2013   static MethodData* allocate(ClassLoaderData* loader_data, const methodHandle& method, TRAPS);
2014   MethodData() : _extra_data_lock(Mutex::leaf, "MDO extra data lock") {}; // For ciMethodData
2015 
2016   bool is_methodData() const volatile { return true; }
2017   void initialize();
2018 
2019   // Whole-method sticky bits and flags
2020   enum {
2021     _trap_hist_limit    = 25 JVMCI_ONLY(+5),   // decoupled from Deoptimization::Reason_LIMIT
2022     _trap_hist_mask     = max_jubyte,
2023     _extra_data_count   = 4     // extra DataLayout headers, for trap history
2024   }; // Public flag values
2025 private:
2026   uint _nof_decompiles;             // count of all nmethod removals
2027   uint _nof_overflow_recompiles;    // recompile count, excluding recomp. bits
2028   uint _nof_overflow_traps;         // trap count, excluding _trap_hist
2029   union {
2030     intptr_t _align;
2031     u1 _array[JVMCI_ONLY(2 *) _trap_hist_limit];
2032   } _trap_hist;
2033 
2034   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2035   intx              _eflags;          // flags on escape information
2036   intx              _arg_local;       // bit set of non-escaping arguments
2037   intx              _arg_stack;       // bit set of stack-allocatable arguments
2038   intx              _arg_returned;    // bit set of returned arguments
2039 
2040   int _creation_mileage;              // method mileage at MDO creation
2041 
2042   // How many invocations has this MDO seen?
2043   // These counters are used to determine the exact age of MDO.
2044   // We need those because in tiered a method can be concurrently
2045   // executed at different levels.
2046   InvocationCounter _invocation_counter;
2047   // Same for backedges.
2048   InvocationCounter _backedge_counter;
2049   // Counter values at the time profiling started.
2050   int               _invocation_counter_start;
2051   int               _backedge_counter_start;
2052   uint              _tenure_traps;
2053   int               _invoke_mask;      // per-method Tier0InvokeNotifyFreqLog
2054   int               _backedge_mask;    // per-method Tier0BackedgeNotifyFreqLog
2055 
2056 #if INCLUDE_RTM_OPT
2057   // State of RTM code generation during compilation of the method
2058   int               _rtm_state;
2059 #endif
2060 
2061   // Number of loops and blocks is computed when compiling the first
2062   // time with C1. It is used to determine if method is trivial.
2063   short             _num_loops;
2064   short             _num_blocks;
2065   // Does this method contain anything worth profiling?
2066   enum WouldProfile {unknown, no_profile, profile};
2067   WouldProfile      _would_profile;
2068 
2069 #if INCLUDE_JVMCI
2070   // Support for HotSpotMethodData.setCompiledIRSize(int)
2071   int                _jvmci_ir_size;
2072   FailedSpeculation* _failed_speculations;
2073 #endif
2074 
2075   // Size of _data array in bytes.  (Excludes header and extra_data fields.)
2076   int _data_size;
2077 
2078   // data index for the area dedicated to parameters. -1 if no
2079   // parameter profiling.
2080   enum { no_parameters = -2, parameters_uninitialized = -1 };
2081   int _parameters_type_data_di;
2082   int parameters_size_in_bytes() const {
2083     ParametersTypeData* param = parameters_type_data();
2084     return param == NULL ? 0 : param->size_in_bytes();
2085   }
2086 
2087   // Beginning of the data entries
2088   intptr_t _data[1];
2089 
2090   // Helper for size computation
2091   static int compute_data_size(BytecodeStream* stream);
2092   static int bytecode_cell_count(Bytecodes::Code code);
2093   static bool is_speculative_trap_bytecode(Bytecodes::Code code);
2094   enum { no_profile_data = -1, variable_cell_count = -2 };
2095 
2096   // Helper for initialization
2097   DataLayout* data_layout_at(int data_index) const {
2098     assert(data_index % sizeof(intptr_t) == 0, "unaligned");
2099     return (DataLayout*) (((address)_data) + data_index);
2100   }
2101 
2102   // Initialize an individual data segment.  Returns the size of
2103   // the segment in bytes.
2104   int initialize_data(BytecodeStream* stream, int data_index);
2105 
2106   // Helper for data_at
2107   DataLayout* limit_data_position() const {
2108     return data_layout_at(_data_size);
2109   }
2110   bool out_of_bounds(int data_index) const {
2111     return data_index >= data_size();
2112   }
2113 
2114   // Give each of the data entries a chance to perform specific
2115   // data initialization.
2116   void post_initialize(BytecodeStream* stream);
2117 
2118   // hint accessors
2119   int      hint_di() const  { return _hint_di; }
2120   void set_hint_di(int di)  {
2121     assert(!out_of_bounds(di), "hint_di out of bounds");
2122     _hint_di = di;
2123   }
2124   ProfileData* data_before(int bci) {
2125     // avoid SEGV on this edge case
2126     if (data_size() == 0)
2127       return NULL;
2128     int hint = hint_di();
2129     if (data_layout_at(hint)->bci() <= bci)
2130       return data_at(hint);
2131     return first_data();
2132   }
2133 
2134   // What is the index of the first data entry?
2135   int first_di() const { return 0; }
2136 
2137   ProfileData* bci_to_extra_data_helper(int bci, Method* m, DataLayout*& dp, bool concurrent);
2138   // Find or create an extra ProfileData:
2139   ProfileData* bci_to_extra_data(int bci, Method* m, bool create_if_missing);
2140 
2141   // return the argument info cell
2142   ArgInfoData *arg_info();
2143 
2144   enum {
2145     no_type_profile = 0,
2146     type_profile_jsr292 = 1,
2147     type_profile_all = 2
2148   };
2149 
2150   static bool profile_jsr292(const methodHandle& m, int bci);
2151   static bool profile_unsafe(const methodHandle& m, int bci);
2152   static int profile_arguments_flag();
2153   static bool profile_all_arguments();
2154   static bool profile_arguments_for_invoke(const methodHandle& m, int bci);
2155   static int profile_return_flag();
2156   static bool profile_all_return();
2157   static bool profile_return_for_invoke(const methodHandle& m, int bci);
2158   static int profile_parameters_flag();
2159   static bool profile_parameters_jsr292_only();
2160   static bool profile_all_parameters();
2161 
2162   void clean_extra_data_helper(DataLayout* dp, int shift, bool reset = false);
2163   void verify_extra_data_clean(CleanExtraDataClosure* cl);
2164 
2165 public:
2166   void clean_extra_data(CleanExtraDataClosure* cl);
2167 
2168   static int header_size() {
2169     return sizeof(MethodData)/wordSize;
2170   }
2171 
2172   // Compute the size of a MethodData* before it is created.
2173   static int compute_allocation_size_in_bytes(const methodHandle& method);
2174   static int compute_allocation_size_in_words(const methodHandle& method);
2175   static int compute_extra_data_count(int data_size, int empty_bc_count, bool needs_speculative_traps);
2176 
2177   // Determine if a given bytecode can have profile information.
2178   static bool bytecode_has_profile(Bytecodes::Code code) {
2179     return bytecode_cell_count(code) != no_profile_data;
2180   }
2181 
2182   // reset into original state
2183   void init();
2184 
2185   // My size
2186   int size_in_bytes() const { return _size; }
2187   int size() const    { return align_metadata_size(align_up(_size, BytesPerWord)/BytesPerWord); }
2188 #if INCLUDE_SERVICES
2189   void collect_statistics(KlassSizeStats *sz) const;
2190 #endif
2191 
2192   int      creation_mileage() const  { return _creation_mileage; }
2193   void set_creation_mileage(int x)   { _creation_mileage = x; }
2194 
2195   int invocation_count() {
2196     if (invocation_counter()->carry()) {
2197       return InvocationCounter::count_limit;
2198     }
2199     return invocation_counter()->count();
2200   }
2201   int backedge_count() {
2202     if (backedge_counter()->carry()) {
2203       return InvocationCounter::count_limit;
2204     }
2205     return backedge_counter()->count();
2206   }
2207 
2208   int invocation_count_start() {
2209     if (invocation_counter()->carry()) {
2210       return 0;
2211     }
2212     return _invocation_counter_start;
2213   }
2214 
2215   int backedge_count_start() {
2216     if (backedge_counter()->carry()) {
2217       return 0;
2218     }
2219     return _backedge_counter_start;
2220   }
2221 
2222   int invocation_count_delta() { return invocation_count() - invocation_count_start(); }
2223   int backedge_count_delta()   { return backedge_count()   - backedge_count_start();   }
2224 
2225   void reset_start_counters() {
2226     _invocation_counter_start = invocation_count();
2227     _backedge_counter_start = backedge_count();
2228   }
2229 
2230   InvocationCounter* invocation_counter()     { return &_invocation_counter; }
2231   InvocationCounter* backedge_counter()       { return &_backedge_counter;   }
2232 
2233 #if INCLUDE_JVMCI
2234   FailedSpeculation** get_failed_speculations_address() {
2235     return &_failed_speculations;
2236   }
2237 #endif
2238 
2239 #if INCLUDE_RTM_OPT
2240   int rtm_state() const {
2241     return _rtm_state;
2242   }
2243   void set_rtm_state(RTMState rstate) {
2244     _rtm_state = (int)rstate;
2245   }
2246   void atomic_set_rtm_state(RTMState rstate) {
2247     Atomic::store(&_rtm_state, (int)rstate);
2248   }
2249 
2250   static int rtm_state_offset_in_bytes() {
2251     return offset_of(MethodData, _rtm_state);
2252   }
2253 #endif
2254 
2255   void set_would_profile(bool p)              { _would_profile = p ? profile : no_profile; }
2256   bool would_profile() const                  { return _would_profile != no_profile; }
2257 
2258   int num_loops() const                       { return _num_loops;  }
2259   void set_num_loops(int n)                   { _num_loops = n;     }
2260   int num_blocks() const                      { return _num_blocks; }
2261   void set_num_blocks(int n)                  { _num_blocks = n;    }
2262 
2263   bool is_mature() const;  // consult mileage and ProfileMaturityPercentage
2264   static int mileage_of(Method* m);
2265 
2266   // Support for interprocedural escape analysis, from Thomas Kotzmann.
2267   enum EscapeFlag {
2268     estimated    = 1 << 0,
2269     return_local = 1 << 1,
2270     return_allocated = 1 << 2,
2271     allocated_escapes = 1 << 3,
2272     unknown_modified = 1 << 4
2273   };
2274 
2275   intx eflags()                                  { return _eflags; }
2276   intx arg_local()                               { return _arg_local; }
2277   intx arg_stack()                               { return _arg_stack; }
2278   intx arg_returned()                            { return _arg_returned; }
2279   uint arg_modified(int a)                       { ArgInfoData *aid = arg_info();
2280                                                    assert(aid != NULL, "arg_info must be not null");
2281                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2282                                                    return aid->arg_modified(a); }
2283 
2284   void set_eflags(intx v)                        { _eflags = v; }
2285   void set_arg_local(intx v)                     { _arg_local = v; }
2286   void set_arg_stack(intx v)                     { _arg_stack = v; }
2287   void set_arg_returned(intx v)                  { _arg_returned = v; }
2288   void set_arg_modified(int a, uint v)           { ArgInfoData *aid = arg_info();
2289                                                    assert(aid != NULL, "arg_info must be not null");
2290                                                    assert(a >= 0 && a < aid->number_of_args(), "valid argument number");
2291                                                    aid->set_arg_modified(a, v); }
2292 
2293   void clear_escape_info()                       { _eflags = _arg_local = _arg_stack = _arg_returned = 0; }
2294 
2295   // Location and size of data area
2296   address data_base() const {
2297     return (address) _data;
2298   }
2299   int data_size() const {
2300     return _data_size;
2301   }
2302 
2303   // Accessors
2304   Method* method() const { return _method; }
2305 
2306   // Get the data at an arbitrary (sort of) data index.
2307   ProfileData* data_at(int data_index) const;
2308 
2309   // Walk through the data in order.
2310   ProfileData* first_data() const { return data_at(first_di()); }
2311   ProfileData* next_data(ProfileData* current) const;
2312   bool is_valid(ProfileData* current) const { return current != NULL; }
2313 
2314   // Convert a dp (data pointer) to a di (data index).
2315   int dp_to_di(address dp) const {
2316     return dp - ((address)_data);
2317   }
2318 
2319   // bci to di/dp conversion.
2320   address bci_to_dp(int bci);
2321   int bci_to_di(int bci) {
2322     return dp_to_di(bci_to_dp(bci));
2323   }
2324 
2325   // Get the data at an arbitrary bci, or NULL if there is none.
2326   ProfileData* bci_to_data(int bci);
2327 
2328   // Same, but try to create an extra_data record if one is needed:
2329   ProfileData* allocate_bci_to_data(int bci, Method* m) {
2330     ProfileData* data = NULL;
2331     // If m not NULL, try to allocate a SpeculativeTrapData entry
2332     if (m == NULL) {
2333       data = bci_to_data(bci);
2334     }
2335     if (data != NULL) {
2336       return data;
2337     }
2338     data = bci_to_extra_data(bci, m, true);
2339     if (data != NULL) {
2340       return data;
2341     }
2342     // If SpeculativeTrapData allocation fails try to allocate a
2343     // regular entry
2344     data = bci_to_data(bci);
2345     if (data != NULL) {
2346       return data;
2347     }
2348     return bci_to_extra_data(bci, NULL, true);
2349   }
2350 
2351   // Add a handful of extra data records, for trap tracking.
2352   DataLayout* extra_data_base() const  { return limit_data_position(); }
2353   DataLayout* extra_data_limit() const { return (DataLayout*)((address)this + size_in_bytes()); }
2354   DataLayout* args_data_limit() const  { return (DataLayout*)((address)this + size_in_bytes() -
2355                                                               parameters_size_in_bytes()); }
2356   int extra_data_size() const          { return (address)extra_data_limit() - (address)extra_data_base(); }
2357   static DataLayout* next_extra(DataLayout* dp);
2358 
2359   // Return (uint)-1 for overflow.
2360   uint trap_count(int reason) const {
2361     assert((uint)reason < JVMCI_ONLY(2*) _trap_hist_limit, "oob");
2362     return (int)((_trap_hist._array[reason]+1) & _trap_hist_mask) - 1;
2363   }
2364   // For loops:
2365   static uint trap_reason_limit() { return _trap_hist_limit; }
2366   static uint trap_count_limit()  { return _trap_hist_mask; }
2367   uint inc_trap_count(int reason) {
2368     // Count another trap, anywhere in this method.
2369     assert(reason >= 0, "must be single trap");
2370     assert((uint)reason < JVMCI_ONLY(2*) _trap_hist_limit, "oob");
2371     uint cnt1 = 1 + _trap_hist._array[reason];
2372     if ((cnt1 & _trap_hist_mask) != 0) {  // if no counter overflow...
2373       _trap_hist._array[reason] = cnt1;
2374       return cnt1;
2375     } else {
2376       return _trap_hist_mask + (++_nof_overflow_traps);
2377     }
2378   }
2379 
2380   uint overflow_trap_count() const {
2381     return _nof_overflow_traps;
2382   }
2383   uint overflow_recompile_count() const {
2384     return _nof_overflow_recompiles;
2385   }
2386   void inc_overflow_recompile_count() {
2387     _nof_overflow_recompiles += 1;
2388   }
2389   uint decompile_count() const {
2390     return _nof_decompiles;
2391   }
2392   void inc_decompile_count() {
2393     _nof_decompiles += 1;
2394     if (decompile_count() > (uint)PerMethodRecompilationCutoff) {
2395       method()->set_not_compilable("decompile_count > PerMethodRecompilationCutoff", CompLevel_full_optimization);
2396     }
2397   }
2398   uint tenure_traps() const {
2399     return _tenure_traps;
2400   }
2401   void inc_tenure_traps() {
2402     _tenure_traps += 1;
2403   }
2404 
2405   // Return pointer to area dedicated to parameters in MDO
2406   ParametersTypeData* parameters_type_data() const {
2407     assert(_parameters_type_data_di != parameters_uninitialized, "called too early");
2408     return _parameters_type_data_di != no_parameters ? data_layout_at(_parameters_type_data_di)->data_in()->as_ParametersTypeData() : NULL;
2409   }
2410 
2411   int parameters_type_data_di() const {
2412     assert(_parameters_type_data_di != parameters_uninitialized && _parameters_type_data_di != no_parameters, "no args type data");
2413     return _parameters_type_data_di;
2414   }
2415 
2416   // Support for code generation
2417   static ByteSize data_offset() {
2418     return byte_offset_of(MethodData, _data[0]);
2419   }
2420 
2421   static ByteSize trap_history_offset() {
2422     return byte_offset_of(MethodData, _trap_hist._array);
2423   }
2424 
2425   static ByteSize invocation_counter_offset() {
2426     return byte_offset_of(MethodData, _invocation_counter);
2427   }
2428 
2429   static ByteSize backedge_counter_offset() {
2430     return byte_offset_of(MethodData, _backedge_counter);
2431   }
2432 
2433   static ByteSize invoke_mask_offset() {
2434     return byte_offset_of(MethodData, _invoke_mask);
2435   }
2436 
2437   static ByteSize backedge_mask_offset() {
2438     return byte_offset_of(MethodData, _backedge_mask);
2439   }
2440 
2441   static ByteSize parameters_type_data_di_offset() {
2442     return byte_offset_of(MethodData, _parameters_type_data_di);
2443   }
2444 
2445   virtual void metaspace_pointers_do(MetaspaceClosure* iter);
2446   virtual MetaspaceObj::Type type() const { return MethodDataType; }
2447 
2448   // Deallocation support - no metaspace pointer fields to deallocate
2449   void deallocate_contents(ClassLoaderData* loader_data) {}
2450 
2451   // GC support
2452   void set_size(int object_size_in_bytes) { _size = object_size_in_bytes; }
2453 
2454   // Printing
2455   void print_on      (outputStream* st) const;
2456   void print_value_on(outputStream* st) const;
2457 
2458   // printing support for method data
2459   void print_data_on(outputStream* st) const;
2460 
2461   const char* internal_name() const { return "{method data}"; }
2462 
2463   // verification
2464   void verify_on(outputStream* st);
2465   void verify_data_on(outputStream* st);
2466 
2467   static bool profile_parameters_for_method(const methodHandle& m);
2468   static bool profile_arguments();
2469   static bool profile_arguments_jsr292_only();
2470   static bool profile_return();
2471   static bool profile_parameters();
2472   static bool profile_return_jsr292_only();
2473 
2474   void clean_method_data(bool always_clean);
2475   void clean_weak_method_links();
2476   DEBUG_ONLY(void verify_clean_weak_method_links();)
2477   Mutex* extra_data_lock() { return &_extra_data_lock; }
2478 };
2479 
2480 #endif // SHARE_OOPS_METHODDATA_HPP