/* * Copyright (c) 2015, 2019, Red Hat, Inc. All rights reserved. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP #define SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP #include "classfile/javaClasses.inline.hpp" #include "gc/shared/markBitMap.inline.hpp" #include "gc/shared/threadLocalAllocBuffer.inline.hpp" #include "gc/shared/suspendibleThreadSet.hpp" #include "gc/shenandoah/shenandoahAsserts.hpp" #include "gc/shenandoah/shenandoahBarrierSet.inline.hpp" #include "gc/shenandoah/shenandoahCollectionSet.inline.hpp" #include "gc/shenandoah/shenandoahForwarding.inline.hpp" #include "gc/shenandoah/shenandoahWorkGroup.hpp" #include "gc/shenandoah/shenandoahHeap.hpp" #include "gc/shenandoah/shenandoahHeapRegionSet.inline.hpp" #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" #include "gc/shenandoah/shenandoahControlThread.hpp" #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" #include "gc/shenandoah/shenandoahThreadLocalData.hpp" #include "oops/compressedOops.inline.hpp" #include "oops/oop.inline.hpp" #include "runtime/atomic.hpp" #include "runtime/prefetch.inline.hpp" #include "runtime/thread.hpp" #include "utilities/copy.hpp" #include "utilities/globalDefinitions.hpp" inline ShenandoahHeapRegion* ShenandoahRegionIterator::next() { size_t new_index = Atomic::add(&_index, (size_t) 1); // get_region() provides the bounds-check and returns NULL on OOB. return _heap->get_region(new_index - 1); } inline bool ShenandoahHeap::has_forwarded_objects() const { return _gc_state.is_set(HAS_FORWARDED); } inline WorkGang* ShenandoahHeap::workers() const { return _workers; } inline WorkGang* ShenandoahHeap::get_safepoint_workers() { return _safepoint_workers; } inline size_t ShenandoahHeap::heap_region_index_containing(const void* addr) const { uintptr_t region_start = ((uintptr_t) addr); uintptr_t index = (region_start - (uintptr_t) base()) >> ShenandoahHeapRegion::region_size_bytes_shift(); assert(index < num_regions(), "Region index is in bounds: " PTR_FORMAT, p2i(addr)); return index; } inline ShenandoahHeapRegion* const ShenandoahHeap::heap_region_containing(const void* addr) const { size_t index = heap_region_index_containing(addr); ShenandoahHeapRegion* const result = get_region(index); assert(addr >= result->bottom() && addr < result->end(), "Heap region contains the address: " PTR_FORMAT, p2i(addr)); return result; } template inline oop ShenandoahHeap::update_with_forwarded_not_null(T* p, oop obj) { if (in_collection_set(obj)) { shenandoah_assert_forwarded_except(p, obj, is_full_gc_in_progress() || cancelled_gc() || is_degenerated_gc_in_progress()); obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj); RawAccess::oop_store(p, obj); } #ifdef ASSERT else { shenandoah_assert_not_forwarded(p, obj); } #endif return obj; } template inline oop ShenandoahHeap::maybe_update_with_forwarded(T* p) { T o = RawAccess<>::oop_load(p); if (!CompressedOops::is_null(o)) { oop obj = CompressedOops::decode_not_null(o); return maybe_update_with_forwarded_not_null(p, obj); } else { return NULL; } } template inline oop ShenandoahHeap::evac_update_with_forwarded(T* p) { T o = RawAccess<>::oop_load(p); if (!CompressedOops::is_null(o)) { oop heap_oop = CompressedOops::decode_not_null(o); if (in_collection_set(heap_oop)) { oop forwarded_oop = ShenandoahBarrierSet::resolve_forwarded_not_null(heap_oop); if (forwarded_oop == heap_oop) { forwarded_oop = evacuate_object(heap_oop, Thread::current()); } oop prev = cas_oop(forwarded_oop, p, heap_oop); if (prev == heap_oop) { return forwarded_oop; } else { return NULL; } } return heap_oop; } else { return NULL; } } inline oop ShenandoahHeap::cas_oop(oop n, oop* addr, oop c) { assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr)); return (oop) Atomic::cmpxchg(n, addr, c); } inline oop ShenandoahHeap::cas_oop(oop n, narrowOop* addr, narrowOop c) { assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); narrowOop val = CompressedOops::encode(n); return CompressedOops::decode((narrowOop) Atomic::cmpxchg(val, addr, c)); } inline oop ShenandoahHeap::cas_oop(oop n, narrowOop* addr, oop c) { assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); narrowOop cmp = CompressedOops::encode(c); narrowOop val = CompressedOops::encode(n); return CompressedOops::decode((narrowOop) Atomic::cmpxchg(val, addr, cmp)); } template inline oop ShenandoahHeap::maybe_update_with_forwarded_not_null(T* p, oop heap_oop) { shenandoah_assert_not_in_cset_loc_except(p, !is_in(p) || is_full_gc_in_progress() || is_degenerated_gc_in_progress()); shenandoah_assert_correct(p, heap_oop); if (in_collection_set(heap_oop)) { oop forwarded_oop = ShenandoahBarrierSet::resolve_forwarded_not_null(heap_oop); if (forwarded_oop == heap_oop) { // E.g. during evacuation. return forwarded_oop; } shenandoah_assert_forwarded_except(p, heap_oop, is_full_gc_in_progress() || is_degenerated_gc_in_progress()); shenandoah_assert_not_forwarded(p, forwarded_oop); shenandoah_assert_not_in_cset_except(p, forwarded_oop, cancelled_gc()); // If this fails, another thread wrote to p before us, it will be logged in SATB and the // reference be updated later. oop witness = cas_oop(forwarded_oop, p, heap_oop); if (witness != heap_oop) { // CAS failed, someone had beat us to it. Normally, we would return the failure witness, // because that would be the proper write of to-space object, enforced by strong barriers. // However, there is a corner case with arraycopy. It can happen that a Java thread // beats us with an arraycopy, which first copies the array, which potentially contains // from-space refs, and only afterwards updates all from-space refs to to-space refs, // which leaves a short window where the new array elements can be from-space. // In this case, we can just resolve the result again. As we resolve, we need to consider // the contended write might have been NULL. oop result = ShenandoahBarrierSet::resolve_forwarded(witness); shenandoah_assert_not_forwarded_except(p, result, (result == NULL)); shenandoah_assert_not_in_cset_except(p, result, (result == NULL) || cancelled_gc()); return result; } else { // Success! We have updated with known to-space copy. We have already asserted it is sane. return forwarded_oop; } } else { shenandoah_assert_not_forwarded(p, heap_oop); return heap_oop; } } inline bool ShenandoahHeap::cancelled_gc() const { return _cancelled_gc.get() == CANCELLED; } inline bool ShenandoahHeap::check_cancelled_gc_and_yield(bool sts_active) { if (! (sts_active && ShenandoahSuspendibleWorkers)) { return cancelled_gc(); } jbyte prev = _cancelled_gc.cmpxchg(NOT_CANCELLED, CANCELLABLE); if (prev == CANCELLABLE || prev == NOT_CANCELLED) { if (SuspendibleThreadSet::should_yield()) { SuspendibleThreadSet::yield(); } // Back to CANCELLABLE. The thread that poked NOT_CANCELLED first gets // to restore to CANCELLABLE. if (prev == CANCELLABLE) { _cancelled_gc.set(CANCELLABLE); } return false; } else { return true; } } inline void ShenandoahHeap::clear_cancelled_gc() { _cancelled_gc.set(CANCELLABLE); _oom_evac_handler.clear(); } inline HeapWord* ShenandoahHeap::allocate_from_gclab(Thread* thread, size_t size) { assert(UseTLAB, "TLABs should be enabled"); PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); if (gclab == NULL) { assert(!thread->is_Java_thread() && !thread->is_Worker_thread(), "Performance: thread should have GCLAB: %s", thread->name()); // No GCLABs in this thread, fallback to shared allocation return NULL; } HeapWord* obj = gclab->allocate(size); if (obj != NULL) { return obj; } // Otherwise... return allocate_from_gclab_slow(thread, size); } inline oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { if (ShenandoahThreadLocalData::is_oom_during_evac(Thread::current())) { // This thread went through the OOM during evac protocol and it is safe to return // the forward pointer. It must not attempt to evacuate any more. return ShenandoahBarrierSet::resolve_forwarded(p); } assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); size_t size = p->size(); assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects"); bool alloc_from_gclab = true; HeapWord* copy = NULL; #ifdef ASSERT if (ShenandoahOOMDuringEvacALot && (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call copy = NULL; } else { #endif if (UseTLAB) { copy = allocate_from_gclab(thread, size); } if (copy == NULL) { ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size); copy = allocate_memory(req); alloc_from_gclab = false; } #ifdef ASSERT } #endif if (copy == NULL) { control_thread()->handle_alloc_failure_evac(size); _oom_evac_handler.handle_out_of_memory_during_evacuation(); return ShenandoahBarrierSet::resolve_forwarded(p); } // Copy the object: Copy::aligned_disjoint_words((HeapWord*) p, copy, size); // Try to install the new forwarding pointer. oop copy_val = oop(copy); oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); if (result == copy_val) { // Successfully evacuated. Our copy is now the public one! shenandoah_assert_correct(NULL, copy_val); return copy_val; } else { // Failed to evacuate. We need to deal with the object that is left behind. Since this // new allocation is certainly after TAMS, it will be considered live in the next cycle. // But if it happens to contain references to evacuated regions, those references would // not get updated for this stale copy during this cycle, and we will crash while scanning // it the next cycle. // // For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next // object will overwrite this stale copy, or the filler object on LAB retirement will // do this. For non-GCLAB allocations, we have no way to retract the allocation, and // have to explicitly overwrite the copy with the filler object. With that overwrite, // we have to keep the fwdptr initialized and pointing to our (stale) copy. if (alloc_from_gclab) { ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); } else { fill_with_object(copy, size); shenandoah_assert_correct(NULL, copy_val); } shenandoah_assert_correct(NULL, result); return result; } } template inline bool ShenandoahHeap::requires_marking(const void* entry) const { oop obj = oop(entry); if (RESOLVE) { obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj); } return !_marking_context->is_marked(obj); } template inline bool ShenandoahHeap::in_collection_set(T p) const { HeapWord* obj = (HeapWord*) p; assert(collection_set() != NULL, "Sanity"); assert(is_in(obj), "should be in heap"); return collection_set()->is_in(obj); } inline bool ShenandoahHeap::is_stable() const { return _gc_state.is_clear(); } inline bool ShenandoahHeap::is_idle() const { return _gc_state.is_unset(MARKING | EVACUATION | UPDATEREFS | TRAVERSAL); } inline bool ShenandoahHeap::is_concurrent_mark_in_progress() const { return _gc_state.is_set(MARKING); } inline bool ShenandoahHeap::is_concurrent_traversal_in_progress() const { return _gc_state.is_set(TRAVERSAL); } inline bool ShenandoahHeap::is_evacuation_in_progress() const { return _gc_state.is_set(EVACUATION); } inline bool ShenandoahHeap::is_gc_in_progress_mask(uint mask) const { return _gc_state.is_set(mask); } inline bool ShenandoahHeap::is_degenerated_gc_in_progress() const { return _degenerated_gc_in_progress.is_set(); } inline bool ShenandoahHeap::is_full_gc_in_progress() const { return _full_gc_in_progress.is_set(); } inline bool ShenandoahHeap::is_full_gc_move_in_progress() const { return _full_gc_move_in_progress.is_set(); } inline bool ShenandoahHeap::is_update_refs_in_progress() const { return _gc_state.is_set(UPDATEREFS); } template inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl) { marked_object_iterate(region, cl, region->top()); } template inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* limit) { assert(! region->is_humongous_continuation(), "no humongous continuation regions here"); ShenandoahMarkingContext* const ctx = complete_marking_context(); assert(ctx->is_complete(), "sanity"); MarkBitMap* mark_bit_map = ctx->mark_bit_map(); HeapWord* tams = ctx->top_at_mark_start(region); size_t skip_bitmap_delta = 1; HeapWord* start = region->bottom(); HeapWord* end = MIN2(tams, region->end()); // Step 1. Scan below the TAMS based on bitmap data. HeapWord* limit_bitmap = MIN2(limit, tams); // Try to scan the initial candidate. If the candidate is above the TAMS, it would // fail the subsequent "< limit_bitmap" checks, and fall through to Step 2. HeapWord* cb = mark_bit_map->get_next_marked_addr(start, end); intx dist = ShenandoahMarkScanPrefetch; if (dist > 0) { // Batched scan that prefetches the oop data, anticipating the access to // either header, oop field, or forwarding pointer. Not that we cannot // touch anything in oop, while it still being prefetched to get enough // time for prefetch to work. This is why we try to scan the bitmap linearly, // disregarding the object size. However, since we know forwarding pointer // preceeds the object, we can skip over it. Once we cannot trust the bitmap, // there is no point for prefetching the oop contents, as oop->size() will // touch it prematurely. // No variable-length arrays in standard C++, have enough slots to fit // the prefetch distance. static const int SLOT_COUNT = 256; guarantee(dist <= SLOT_COUNT, "adjust slot count"); HeapWord* slots[SLOT_COUNT]; int avail; do { avail = 0; for (int c = 0; (c < dist) && (cb < limit_bitmap); c++) { Prefetch::read(cb, oopDesc::mark_offset_in_bytes()); slots[avail++] = cb; cb += skip_bitmap_delta; if (cb < limit_bitmap) { cb = mark_bit_map->get_next_marked_addr(cb, limit_bitmap); } } for (int c = 0; c < avail; c++) { assert (slots[c] < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(tams)); assert (slots[c] < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(limit)); oop obj = oop(slots[c]); assert(oopDesc::is_oop(obj), "sanity"); assert(ctx->is_marked(obj), "object expected to be marked"); cl->do_object(obj); } } while (avail > 0); } else { while (cb < limit_bitmap) { assert (cb < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(tams)); assert (cb < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(limit)); oop obj = oop(cb); assert(oopDesc::is_oop(obj), "sanity"); assert(ctx->is_marked(obj), "object expected to be marked"); cl->do_object(obj); cb += skip_bitmap_delta; if (cb < limit_bitmap) { cb = mark_bit_map->get_next_marked_addr(cb, limit_bitmap); } } } // Step 2. Accurate size-based traversal, happens past the TAMS. // This restarts the scan at TAMS, which makes sure we traverse all objects, // regardless of what happened at Step 1. HeapWord* cs = tams; while (cs < limit) { assert (cs >= tams, "only objects past TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(tams)); assert (cs < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(limit)); oop obj = oop(cs); assert(oopDesc::is_oop(obj), "sanity"); assert(ctx->is_marked(obj), "object expected to be marked"); int size = obj->size(); cl->do_object(obj); cs += size; } } template class ShenandoahObjectToOopClosure : public ObjectClosure { T* _cl; public: ShenandoahObjectToOopClosure(T* cl) : _cl(cl) {} void do_object(oop obj) { obj->oop_iterate(_cl); } }; template class ShenandoahObjectToOopBoundedClosure : public ObjectClosure { T* _cl; MemRegion _bounds; public: ShenandoahObjectToOopBoundedClosure(T* cl, HeapWord* bottom, HeapWord* top) : _cl(cl), _bounds(bottom, top) {} void do_object(oop obj) { obj->oop_iterate(_cl, _bounds); } }; template inline void ShenandoahHeap::marked_object_oop_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* top) { if (region->is_humongous()) { HeapWord* bottom = region->bottom(); if (top > bottom) { region = region->humongous_start_region(); ShenandoahObjectToOopBoundedClosure objs(cl, bottom, top); marked_object_iterate(region, &objs); } } else { ShenandoahObjectToOopClosure objs(cl); marked_object_iterate(region, &objs, top); } } inline ShenandoahHeapRegion* const ShenandoahHeap::get_region(size_t region_idx) const { if (region_idx < _num_regions) { return _regions[region_idx]; } else { return NULL; } } inline void ShenandoahHeap::mark_complete_marking_context() { _marking_context->mark_complete(); } inline void ShenandoahHeap::mark_incomplete_marking_context() { _marking_context->mark_incomplete(); } inline ShenandoahMarkingContext* ShenandoahHeap::complete_marking_context() const { assert (_marking_context->is_complete()," sanity"); return _marking_context; } inline ShenandoahMarkingContext* ShenandoahHeap::marking_context() const { return _marking_context; } #endif // SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP