1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeHeapState.hpp"
  32 #include "code/dependencyContext.hpp"
  33 #include "compiler/compilationPolicy.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "compiler/compilerOracle.hpp"
  37 #include "compiler/directivesParser.hpp"
  38 #include "interpreter/linkResolver.hpp"
  39 #include "jfr/jfrEvents.hpp"
  40 #include "logging/log.hpp"
  41 #include "logging/logStream.hpp"
  42 #include "memory/allocation.inline.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.hpp"
  45 #include "oops/methodData.hpp"
  46 #include "oops/method.inline.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "prims/nativeLookup.hpp"
  49 #include "prims/whitebox.hpp"
  50 #include "runtime/arguments.hpp"
  51 #include "runtime/atomic.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/init.hpp"
  54 #include "runtime/interfaceSupport.inline.hpp"
  55 #include "runtime/javaCalls.hpp"
  56 #include "runtime/jniHandles.inline.hpp"
  57 #include "runtime/os.hpp"
  58 #include "runtime/safepointVerifiers.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/sweeper.hpp"
  61 #include "runtime/timerTrace.hpp"
  62 #include "runtime/vframe.inline.hpp"
  63 #include "utilities/debug.hpp"
  64 #include "utilities/dtrace.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/formatBuffer.hpp"
  67 #include "utilities/macros.hpp"
  68 #ifdef COMPILER1
  69 #include "c1/c1_Compiler.hpp"
  70 #endif
  71 #if INCLUDE_JVMCI
  72 #include "jvmci/jvmciEnv.hpp"
  73 #include "jvmci/jvmciRuntime.hpp"
  74 #endif
  75 #ifdef COMPILER2
  76 #include "opto/c2compiler.hpp"
  77 #endif
  78 
  79 #ifdef DTRACE_ENABLED
  80 
  81 // Only bother with this argument setup if dtrace is available
  82 
  83 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
  84   {                                                                      \
  85     Symbol* klass_name = (method)->klass_name();                         \
  86     Symbol* name = (method)->name();                                     \
  87     Symbol* signature = (method)->signature();                           \
  88     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
  89       (char *) comp_name, strlen(comp_name),                             \
  90       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
  91       (char *) name->bytes(), name->utf8_length(),                       \
  92       (char *) signature->bytes(), signature->utf8_length());            \
  93   }
  94 
  95 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
  96   {                                                                      \
  97     Symbol* klass_name = (method)->klass_name();                         \
  98     Symbol* name = (method)->name();                                     \
  99     Symbol* signature = (method)->signature();                           \
 100     HOTSPOT_METHOD_COMPILE_END(                                          \
 101       (char *) comp_name, strlen(comp_name),                             \
 102       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 103       (char *) name->bytes(), name->utf8_length(),                       \
 104       (char *) signature->bytes(), signature->utf8_length(), (success)); \
 105   }
 106 
 107 #else //  ndef DTRACE_ENABLED
 108 
 109 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
 110 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
 111 
 112 #endif // ndef DTRACE_ENABLED
 113 
 114 bool CompileBroker::_initialized = false;
 115 volatile bool CompileBroker::_should_block = false;
 116 volatile int  CompileBroker::_print_compilation_warning = 0;
 117 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
 118 
 119 // The installed compiler(s)
 120 AbstractCompiler* CompileBroker::_compilers[2];
 121 
 122 // The maximum numbers of compiler threads to be determined during startup.
 123 int CompileBroker::_c1_count = 0;
 124 int CompileBroker::_c2_count = 0;
 125 
 126 // An array of compiler names as Java String objects
 127 jobject* CompileBroker::_compiler1_objects = NULL;
 128 jobject* CompileBroker::_compiler2_objects = NULL;
 129 
 130 CompileLog** CompileBroker::_compiler1_logs = NULL;
 131 CompileLog** CompileBroker::_compiler2_logs = NULL;
 132 
 133 // These counters are used to assign an unique ID to each compilation.
 134 volatile jint CompileBroker::_compilation_id     = 0;
 135 volatile jint CompileBroker::_osr_compilation_id = 0;
 136 
 137 // Performance counters
 138 PerfCounter* CompileBroker::_perf_total_compilation = NULL;
 139 PerfCounter* CompileBroker::_perf_osr_compilation = NULL;
 140 PerfCounter* CompileBroker::_perf_standard_compilation = NULL;
 141 
 142 PerfCounter* CompileBroker::_perf_total_bailout_count = NULL;
 143 PerfCounter* CompileBroker::_perf_total_invalidated_count = NULL;
 144 PerfCounter* CompileBroker::_perf_total_compile_count = NULL;
 145 PerfCounter* CompileBroker::_perf_total_osr_compile_count = NULL;
 146 PerfCounter* CompileBroker::_perf_total_standard_compile_count = NULL;
 147 
 148 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = NULL;
 149 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = NULL;
 150 PerfCounter* CompileBroker::_perf_sum_nmethod_size = NULL;
 151 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = NULL;
 152 
 153 PerfStringVariable* CompileBroker::_perf_last_method = NULL;
 154 PerfStringVariable* CompileBroker::_perf_last_failed_method = NULL;
 155 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = NULL;
 156 PerfVariable*       CompileBroker::_perf_last_compile_type = NULL;
 157 PerfVariable*       CompileBroker::_perf_last_compile_size = NULL;
 158 PerfVariable*       CompileBroker::_perf_last_failed_type = NULL;
 159 PerfVariable*       CompileBroker::_perf_last_invalidated_type = NULL;
 160 
 161 // Timers and counters for generating statistics
 162 elapsedTimer CompileBroker::_t_total_compilation;
 163 elapsedTimer CompileBroker::_t_osr_compilation;
 164 elapsedTimer CompileBroker::_t_standard_compilation;
 165 elapsedTimer CompileBroker::_t_invalidated_compilation;
 166 elapsedTimer CompileBroker::_t_bailedout_compilation;
 167 
 168 int CompileBroker::_total_bailout_count            = 0;
 169 int CompileBroker::_total_invalidated_count        = 0;
 170 int CompileBroker::_total_compile_count            = 0;
 171 int CompileBroker::_total_osr_compile_count        = 0;
 172 int CompileBroker::_total_standard_compile_count   = 0;
 173 int CompileBroker::_total_compiler_stopped_count   = 0;
 174 int CompileBroker::_total_compiler_restarted_count = 0;
 175 
 176 int CompileBroker::_sum_osr_bytes_compiled         = 0;
 177 int CompileBroker::_sum_standard_bytes_compiled    = 0;
 178 int CompileBroker::_sum_nmethod_size               = 0;
 179 int CompileBroker::_sum_nmethod_code_size          = 0;
 180 
 181 long CompileBroker::_peak_compilation_time         = 0;
 182 
 183 CompileQueue* CompileBroker::_c2_compile_queue     = NULL;
 184 CompileQueue* CompileBroker::_c1_compile_queue     = NULL;
 185 
 186 
 187 
 188 class CompilationLog : public StringEventLog {
 189  public:
 190   CompilationLog() : StringEventLog("Compilation events", "jit") {
 191   }
 192 
 193   void log_compile(JavaThread* thread, CompileTask* task) {
 194     StringLogMessage lm;
 195     stringStream sstr(lm.buffer(), lm.size());
 196     // msg.time_stamp().update_to(tty->time_stamp().ticks());
 197     task->print(&sstr, NULL, true, false);
 198     log(thread, "%s", (const char*)lm);
 199   }
 200 
 201   void log_nmethod(JavaThread* thread, nmethod* nm) {
 202     log(thread, "nmethod %d%s " INTPTR_FORMAT " code [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",
 203         nm->compile_id(), nm->is_osr_method() ? "%" : "",
 204         p2i(nm), p2i(nm->code_begin()), p2i(nm->code_end()));
 205   }
 206 
 207   void log_failure(JavaThread* thread, CompileTask* task, const char* reason, const char* retry_message) {
 208     StringLogMessage lm;
 209     lm.print("%4d   COMPILE SKIPPED: %s", task->compile_id(), reason);
 210     if (retry_message != NULL) {
 211       lm.append(" (%s)", retry_message);
 212     }
 213     lm.print("\n");
 214     log(thread, "%s", (const char*)lm);
 215   }
 216 
 217   void log_metaspace_failure(const char* reason) {
 218     ResourceMark rm;
 219     StringLogMessage lm;
 220     lm.print("%4d   COMPILE PROFILING SKIPPED: %s", -1, reason);
 221     lm.print("\n");
 222     log(JavaThread::current(), "%s", (const char*)lm);
 223   }
 224 };
 225 
 226 static CompilationLog* _compilation_log = NULL;
 227 
 228 bool compileBroker_init() {
 229   if (LogEvents) {
 230     _compilation_log = new CompilationLog();
 231   }
 232 
 233   // init directives stack, adding default directive
 234   DirectivesStack::init();
 235 
 236   if (DirectivesParser::has_file()) {
 237     return DirectivesParser::parse_from_flag();
 238   } else if (CompilerDirectivesPrint) {
 239     // Print default directive even when no other was added
 240     DirectivesStack::print(tty);
 241   }
 242 
 243   return true;
 244 }
 245 
 246 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
 247   CompilerThread* thread = CompilerThread::current();
 248   thread->set_task(task);
 249 #if INCLUDE_JVMCI
 250   if (task->is_blocking() && CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 251     task->set_jvmci_compiler_thread(thread);
 252   }
 253 #endif
 254   CompileLog*     log  = thread->log();
 255   if (log != NULL && !task->is_unloaded())  task->log_task_start(log);
 256 }
 257 
 258 CompileTaskWrapper::~CompileTaskWrapper() {
 259   CompilerThread* thread = CompilerThread::current();
 260   CompileTask* task = thread->task();
 261   CompileLog*  log  = thread->log();
 262   if (log != NULL && !task->is_unloaded())  task->log_task_done(log);
 263   thread->set_task(NULL);
 264   task->set_code_handle(NULL);
 265   thread->set_env(NULL);
 266   if (task->is_blocking()) {
 267     bool free_task = false;
 268     {
 269       MutexLocker notifier(task->lock(), thread);
 270       task->mark_complete();
 271 #if INCLUDE_JVMCI
 272       if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 273         if (!task->has_waiter()) {
 274           // The waiting thread timed out and thus did not free the task.
 275           free_task = true;
 276         }
 277         task->set_jvmci_compiler_thread(NULL);
 278       }
 279 #endif
 280       if (!free_task) {
 281         // Notify the waiting thread that the compilation has completed
 282         // so that it can free the task.
 283         task->lock()->notify_all();
 284       }
 285     }
 286     if (free_task) {
 287       // The task can only be freed once the task lock is released.
 288       CompileTask::free(task);
 289     }
 290   } else {
 291     task->mark_complete();
 292 
 293     // By convention, the compiling thread is responsible for
 294     // recycling a non-blocking CompileTask.
 295     CompileTask::free(task);
 296   }
 297 }
 298 
 299 /**
 300  * Check if a CompilerThread can be removed and update count if requested.
 301  */
 302 bool CompileBroker::can_remove(CompilerThread *ct, bool do_it) {
 303   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
 304   if (!ReduceNumberOfCompilerThreads) return false;
 305 
 306   AbstractCompiler *compiler = ct->compiler();
 307   int compiler_count = compiler->num_compiler_threads();
 308   bool c1 = compiler->is_c1();
 309 
 310   // Keep at least 1 compiler thread of each type.
 311   if (compiler_count < 2) return false;
 312 
 313   // Keep thread alive for at least some time.
 314   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
 315 
 316 #if INCLUDE_JVMCI
 317   if (compiler->is_jvmci()) {
 318     // Handles for JVMCI thread objects may get released concurrently.
 319     if (do_it) {
 320       assert(CompileThread_lock->owner() == ct, "must be holding lock");
 321     } else {
 322       // Skip check if it's the last thread and let caller check again.
 323       return true;
 324     }
 325   }
 326 #endif
 327 
 328   // We only allow the last compiler thread of each type to get removed.
 329   jobject last_compiler = c1 ? compiler1_object(compiler_count - 1)
 330                              : compiler2_object(compiler_count - 1);
 331   if (ct->threadObj() == JNIHandles::resolve_non_null(last_compiler)) {
 332     if (do_it) {
 333       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
 334       compiler->set_num_compiler_threads(compiler_count - 1);
 335 #if INCLUDE_JVMCI
 336       if (compiler->is_jvmci()) {
 337         // Old j.l.Thread object can die when no longer referenced elsewhere.
 338         JNIHandles::destroy_global(compiler2_object(compiler_count - 1));
 339         _compiler2_objects[compiler_count - 1] = NULL;
 340       }
 341 #endif
 342     }
 343     return true;
 344   }
 345   return false;
 346 }
 347 
 348 /**
 349  * Add a CompileTask to a CompileQueue.
 350  */
 351 void CompileQueue::add(CompileTask* task) {
 352   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 353 
 354   task->set_next(NULL);
 355   task->set_prev(NULL);
 356 
 357   if (_last == NULL) {
 358     // The compile queue is empty.
 359     assert(_first == NULL, "queue is empty");
 360     _first = task;
 361     _last = task;
 362   } else {
 363     // Append the task to the queue.
 364     assert(_last->next() == NULL, "not last");
 365     _last->set_next(task);
 366     task->set_prev(_last);
 367     _last = task;
 368   }
 369   ++_size;
 370 
 371   // Mark the method as being in the compile queue.
 372   task->method()->set_queued_for_compilation();
 373 
 374   if (CIPrintCompileQueue) {
 375     print_tty();
 376   }
 377 
 378   if (LogCompilation && xtty != NULL) {
 379     task->log_task_queued();
 380   }
 381 
 382   // Notify CompilerThreads that a task is available.
 383   MethodCompileQueue_lock->notify_all();
 384 }
 385 
 386 /**
 387  * Empties compilation queue by putting all compilation tasks onto
 388  * a freelist. Furthermore, the method wakes up all threads that are
 389  * waiting on a compilation task to finish. This can happen if background
 390  * compilation is disabled.
 391  */
 392 void CompileQueue::free_all() {
 393   MutexLocker mu(MethodCompileQueue_lock);
 394   CompileTask* next = _first;
 395 
 396   // Iterate over all tasks in the compile queue
 397   while (next != NULL) {
 398     CompileTask* current = next;
 399     next = current->next();
 400     {
 401       // Wake up thread that blocks on the compile task.
 402       MutexLocker ct_lock(current->lock());
 403       current->lock()->notify();
 404     }
 405     // Put the task back on the freelist.
 406     CompileTask::free(current);
 407   }
 408   _first = NULL;
 409 
 410   // Wake up all threads that block on the queue.
 411   MethodCompileQueue_lock->notify_all();
 412 }
 413 
 414 /**
 415  * Get the next CompileTask from a CompileQueue
 416  */
 417 CompileTask* CompileQueue::get() {
 418   // save methods from RedefineClasses across safepoint
 419   // across MethodCompileQueue_lock below.
 420   methodHandle save_method;
 421   methodHandle save_hot_method;
 422 
 423   MonitorLocker locker(MethodCompileQueue_lock);
 424   // If _first is NULL we have no more compile jobs. There are two reasons for
 425   // having no compile jobs: First, we compiled everything we wanted. Second,
 426   // we ran out of code cache so compilation has been disabled. In the latter
 427   // case we perform code cache sweeps to free memory such that we can re-enable
 428   // compilation.
 429   while (_first == NULL) {
 430     // Exit loop if compilation is disabled forever
 431     if (CompileBroker::is_compilation_disabled_forever()) {
 432       return NULL;
 433     }
 434 
 435     // If there are no compilation tasks and we can compile new jobs
 436     // (i.e., there is enough free space in the code cache) there is
 437     // no need to invoke the sweeper. As a result, the hotness of methods
 438     // remains unchanged. This behavior is desired, since we want to keep
 439     // the stable state, i.e., we do not want to evict methods from the
 440     // code cache if it is unnecessary.
 441     // We need a timed wait here, since compiler threads can exit if compilation
 442     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
 443     // is not critical and we do not want idle compiler threads to wake up too often.
 444     locker.wait(5*1000);
 445 
 446     if (UseDynamicNumberOfCompilerThreads && _first == NULL) {
 447       // Still nothing to compile. Give caller a chance to stop this thread.
 448       if (CompileBroker::can_remove(CompilerThread::current(), false)) return NULL;
 449     }
 450   }
 451 
 452   if (CompileBroker::is_compilation_disabled_forever()) {
 453     return NULL;
 454   }
 455 
 456   CompileTask* task;
 457   {
 458     NoSafepointVerifier nsv;
 459     task = CompilationPolicy::policy()->select_task(this);
 460     if (task != NULL) {
 461       task = task->select_for_compilation();
 462     }
 463   }
 464 
 465   if (task != NULL) {
 466     // Save method pointers across unlock safepoint.  The task is removed from
 467     // the compilation queue, which is walked during RedefineClasses.
 468     Thread* thread = Thread::current();
 469     save_method = methodHandle(thread, task->method());
 470     save_hot_method = methodHandle(thread, task->hot_method());
 471 
 472     remove(task);
 473   }
 474   purge_stale_tasks(); // may temporarily release MCQ lock
 475   return task;
 476 }
 477 
 478 // Clean & deallocate stale compile tasks.
 479 // Temporarily releases MethodCompileQueue lock.
 480 void CompileQueue::purge_stale_tasks() {
 481   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 482   if (_first_stale != NULL) {
 483     // Stale tasks are purged when MCQ lock is released,
 484     // but _first_stale updates are protected by MCQ lock.
 485     // Once task processing starts and MCQ lock is released,
 486     // other compiler threads can reuse _first_stale.
 487     CompileTask* head = _first_stale;
 488     _first_stale = NULL;
 489     {
 490       MutexUnlocker ul(MethodCompileQueue_lock);
 491       for (CompileTask* task = head; task != NULL; ) {
 492         CompileTask* next_task = task->next();
 493         CompileTaskWrapper ctw(task); // Frees the task
 494         task->set_failure_reason("stale task");
 495         task = next_task;
 496       }
 497     }
 498   }
 499 }
 500 
 501 void CompileQueue::remove(CompileTask* task) {
 502   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 503   if (task->prev() != NULL) {
 504     task->prev()->set_next(task->next());
 505   } else {
 506     // max is the first element
 507     assert(task == _first, "Sanity");
 508     _first = task->next();
 509   }
 510 
 511   if (task->next() != NULL) {
 512     task->next()->set_prev(task->prev());
 513   } else {
 514     // max is the last element
 515     assert(task == _last, "Sanity");
 516     _last = task->prev();
 517   }
 518   --_size;
 519 }
 520 
 521 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
 522   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 523   remove(task);
 524 
 525   // Enqueue the task for reclamation (should be done outside MCQ lock)
 526   task->set_next(_first_stale);
 527   task->set_prev(NULL);
 528   _first_stale = task;
 529 }
 530 
 531 // methods in the compile queue need to be marked as used on the stack
 532 // so that they don't get reclaimed by Redefine Classes
 533 void CompileQueue::mark_on_stack() {
 534   CompileTask* task = _first;
 535   while (task != NULL) {
 536     task->mark_on_stack();
 537     task = task->next();
 538   }
 539 }
 540 
 541 
 542 CompileQueue* CompileBroker::compile_queue(int comp_level) {
 543   if (is_c2_compile(comp_level)) return _c2_compile_queue;
 544   if (is_c1_compile(comp_level)) return _c1_compile_queue;
 545   return NULL;
 546 }
 547 
 548 void CompileBroker::print_compile_queues(outputStream* st) {
 549   st->print_cr("Current compiles: ");
 550 
 551   char buf[2000];
 552   int buflen = sizeof(buf);
 553   Threads::print_threads_compiling(st, buf, buflen, /* short_form = */ true);
 554 
 555   st->cr();
 556   if (_c1_compile_queue != NULL) {
 557     _c1_compile_queue->print(st);
 558   }
 559   if (_c2_compile_queue != NULL) {
 560     _c2_compile_queue->print(st);
 561   }
 562 }
 563 
 564 void CompileQueue::print(outputStream* st) {
 565   assert_locked_or_safepoint(MethodCompileQueue_lock);
 566   st->print_cr("%s:", name());
 567   CompileTask* task = _first;
 568   if (task == NULL) {
 569     st->print_cr("Empty");
 570   } else {
 571     while (task != NULL) {
 572       task->print(st, NULL, true, true);
 573       task = task->next();
 574     }
 575   }
 576   st->cr();
 577 }
 578 
 579 void CompileQueue::print_tty() {
 580   ResourceMark rm;
 581   stringStream ss;
 582   // Dump the compile queue into a buffer before locking the tty
 583   print(&ss);
 584   {
 585     ttyLocker ttyl;
 586     tty->print("%s", ss.as_string());
 587   }
 588 }
 589 
 590 CompilerCounters::CompilerCounters() {
 591   _current_method[0] = '\0';
 592   _compile_type = CompileBroker::no_compile;
 593 }
 594 
 595 // ------------------------------------------------------------------
 596 // CompileBroker::compilation_init
 597 //
 598 // Initialize the Compilation object
 599 void CompileBroker::compilation_init_phase1(Thread* THREAD) {
 600   // No need to initialize compilation system if we do not use it.
 601   if (!UseCompiler) {
 602     return;
 603   }
 604   // Set the interface to the current compiler(s).
 605   _c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 606   _c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 607 
 608 #if INCLUDE_JVMCI
 609   if (EnableJVMCI) {
 610     // This is creating a JVMCICompiler singleton.
 611     JVMCICompiler* jvmci = new JVMCICompiler();
 612 
 613     if (UseJVMCICompiler) {
 614       _compilers[1] = jvmci;
 615       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
 616         if (BootstrapJVMCI) {
 617           // JVMCI will bootstrap so give it more threads
 618           _c2_count = MIN2(32, os::active_processor_count());
 619         }
 620       } else {
 621         _c2_count = JVMCIThreads;
 622       }
 623       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
 624       } else {
 625         _c1_count = JVMCIHostThreads;
 626       }
 627     }
 628   }
 629 #endif // INCLUDE_JVMCI
 630 
 631 #ifdef COMPILER1
 632   if (_c1_count > 0) {
 633     _compilers[0] = new Compiler();
 634   }
 635 #endif // COMPILER1
 636 
 637 #ifdef COMPILER2
 638   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
 639     if (_c2_count > 0) {
 640       _compilers[1] = new C2Compiler();
 641     }
 642   }
 643 #endif // COMPILER2
 644 
 645   // Start the compiler thread(s) and the sweeper thread
 646   init_compiler_sweeper_threads();
 647   // totalTime performance counter is always created as it is required
 648   // by the implementation of java.lang.management.CompilationMBean.
 649   {
 650     // Ensure OOM leads to vm_exit_during_initialization.
 651     EXCEPTION_MARK;
 652     _perf_total_compilation =
 653                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
 654                                                  PerfData::U_Ticks, CHECK);
 655   }
 656 
 657   if (UsePerfData) {
 658 
 659     EXCEPTION_MARK;
 660 
 661     // create the jvmstat performance counters
 662     _perf_osr_compilation =
 663                  PerfDataManager::create_counter(SUN_CI, "osrTime",
 664                                                  PerfData::U_Ticks, CHECK);
 665 
 666     _perf_standard_compilation =
 667                  PerfDataManager::create_counter(SUN_CI, "standardTime",
 668                                                  PerfData::U_Ticks, CHECK);
 669 
 670     _perf_total_bailout_count =
 671                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
 672                                                  PerfData::U_Events, CHECK);
 673 
 674     _perf_total_invalidated_count =
 675                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
 676                                                  PerfData::U_Events, CHECK);
 677 
 678     _perf_total_compile_count =
 679                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
 680                                                  PerfData::U_Events, CHECK);
 681     _perf_total_osr_compile_count =
 682                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
 683                                                  PerfData::U_Events, CHECK);
 684 
 685     _perf_total_standard_compile_count =
 686                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
 687                                                  PerfData::U_Events, CHECK);
 688 
 689     _perf_sum_osr_bytes_compiled =
 690                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
 691                                                  PerfData::U_Bytes, CHECK);
 692 
 693     _perf_sum_standard_bytes_compiled =
 694                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
 695                                                  PerfData::U_Bytes, CHECK);
 696 
 697     _perf_sum_nmethod_size =
 698                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
 699                                                  PerfData::U_Bytes, CHECK);
 700 
 701     _perf_sum_nmethod_code_size =
 702                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
 703                                                  PerfData::U_Bytes, CHECK);
 704 
 705     _perf_last_method =
 706                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
 707                                        CompilerCounters::cmname_buffer_length,
 708                                        "", CHECK);
 709 
 710     _perf_last_failed_method =
 711             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
 712                                        CompilerCounters::cmname_buffer_length,
 713                                        "", CHECK);
 714 
 715     _perf_last_invalidated_method =
 716         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
 717                                      CompilerCounters::cmname_buffer_length,
 718                                      "", CHECK);
 719 
 720     _perf_last_compile_type =
 721              PerfDataManager::create_variable(SUN_CI, "lastType",
 722                                               PerfData::U_None,
 723                                               (jlong)CompileBroker::no_compile,
 724                                               CHECK);
 725 
 726     _perf_last_compile_size =
 727              PerfDataManager::create_variable(SUN_CI, "lastSize",
 728                                               PerfData::U_Bytes,
 729                                               (jlong)CompileBroker::no_compile,
 730                                               CHECK);
 731 
 732 
 733     _perf_last_failed_type =
 734              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
 735                                               PerfData::U_None,
 736                                               (jlong)CompileBroker::no_compile,
 737                                               CHECK);
 738 
 739     _perf_last_invalidated_type =
 740          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
 741                                           PerfData::U_None,
 742                                           (jlong)CompileBroker::no_compile,
 743                                           CHECK);
 744   }
 745 }
 746 
 747 // Completes compiler initialization. Compilation requests submitted
 748 // prior to this will be silently ignored.
 749 void CompileBroker::compilation_init_phase2() {
 750   _initialized = true;
 751 }
 752 
 753 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
 754   Handle string = java_lang_String::create_from_str(name, CHECK_NH);
 755   Handle thread_group(THREAD, Universe::system_thread_group());
 756   return JavaCalls::construct_new_instance(
 757                        SystemDictionary::Thread_klass(),
 758                        vmSymbols::threadgroup_string_void_signature(),
 759                        thread_group,
 760                        string,
 761                        CHECK_NH);
 762 }
 763 
 764 
 765 JavaThread* CompileBroker::make_thread(jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, Thread* THREAD) {
 766   JavaThread* new_thread = NULL;
 767   {
 768     MutexLocker mu(Threads_lock, THREAD);
 769     if (comp != NULL) {
 770       if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
 771         CompilerCounters* counters = new CompilerCounters();
 772         new_thread = new CompilerThread(queue, counters);
 773       }
 774     } else {
 775       new_thread = new CodeCacheSweeperThread();
 776     }
 777     // At this point the new CompilerThread data-races with this startup
 778     // thread (which I believe is the primoridal thread and NOT the VM
 779     // thread).  This means Java bytecodes being executed at startup can
 780     // queue compile jobs which will run at whatever default priority the
 781     // newly created CompilerThread runs at.
 782 
 783 
 784     // At this point it may be possible that no osthread was created for the
 785     // JavaThread due to lack of memory. We would have to throw an exception
 786     // in that case. However, since this must work and we do not allow
 787     // exceptions anyway, check and abort if this fails. But first release the
 788     // lock.
 789 
 790     if (new_thread != NULL && new_thread->osthread() != NULL) {
 791 
 792       java_lang_Thread::set_thread(JNIHandles::resolve_non_null(thread_handle), new_thread);
 793 
 794       // Note that this only sets the JavaThread _priority field, which by
 795       // definition is limited to Java priorities and not OS priorities.
 796       // The os-priority is set in the CompilerThread startup code itself
 797 
 798       java_lang_Thread::set_priority(JNIHandles::resolve_non_null(thread_handle), NearMaxPriority);
 799 
 800       // Note that we cannot call os::set_priority because it expects Java
 801       // priorities and we are *explicitly* using OS priorities so that it's
 802       // possible to set the compiler thread priority higher than any Java
 803       // thread.
 804 
 805       int native_prio = CompilerThreadPriority;
 806       if (native_prio == -1) {
 807         if (UseCriticalCompilerThreadPriority) {
 808           native_prio = os::java_to_os_priority[CriticalPriority];
 809         } else {
 810           native_prio = os::java_to_os_priority[NearMaxPriority];
 811         }
 812       }
 813       os::set_native_priority(new_thread, native_prio);
 814 
 815       java_lang_Thread::set_daemon(JNIHandles::resolve_non_null(thread_handle));
 816 
 817       new_thread->set_threadObj(JNIHandles::resolve_non_null(thread_handle));
 818       if (comp != NULL) {
 819         new_thread->as_CompilerThread()->set_compiler(comp);
 820       }
 821       Threads::add(new_thread);
 822       Thread::start(new_thread);
 823     }
 824   }
 825 
 826   // First release lock before aborting VM.
 827   if (new_thread == NULL || new_thread->osthread() == NULL) {
 828     if (UseDynamicNumberOfCompilerThreads && comp != NULL && comp->num_compiler_threads() > 0) {
 829       if (new_thread != NULL) {
 830         new_thread->smr_delete();
 831       }
 832       return NULL;
 833     }
 834     vm_exit_during_initialization("java.lang.OutOfMemoryError",
 835                                   os::native_thread_creation_failed_msg());
 836   }
 837 
 838   // Let go of Threads_lock before yielding
 839   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
 840 
 841   return new_thread;
 842 }
 843 
 844 
 845 void CompileBroker::init_compiler_sweeper_threads() {
 846   // Ensure any exceptions lead to vm_exit_during_initialization.
 847   EXCEPTION_MARK;
 848 #if !defined(ZERO)
 849   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
 850 #endif // !ZERO
 851   // Initialize the compilation queue
 852   if (_c2_count > 0) {
 853     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
 854     _c2_compile_queue  = new CompileQueue(name);
 855     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
 856     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
 857   }
 858   if (_c1_count > 0) {
 859     _c1_compile_queue  = new CompileQueue("C1 compile queue");
 860     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
 861     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
 862   }
 863 
 864   char name_buffer[256];
 865 
 866   for (int i = 0; i < _c2_count; i++) {
 867     jobject thread_handle = NULL;
 868     // Create all j.l.Thread objects for C1 and C2 threads here, but only one
 869     // for JVMCI compiler which can create further ones on demand.
 870     JVMCI_ONLY(if (!UseJVMCICompiler || !UseDynamicNumberOfCompilerThreads || i == 0) {)
 871     // Create a name for our thread.
 872     sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
 873     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 874     thread_handle = JNIHandles::make_global(thread_oop);
 875     JVMCI_ONLY(})
 876     _compiler2_objects[i] = thread_handle;
 877     _compiler2_logs[i] = NULL;
 878 
 879     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 880       JavaThread *ct = make_thread(thread_handle, _c2_compile_queue, _compilers[1], THREAD);
 881       assert(ct != NULL, "should have been handled for initial thread");
 882       _compilers[1]->set_num_compiler_threads(i + 1);
 883       if (TraceCompilerThreads) {
 884         ResourceMark rm;
 885         MutexLocker mu(Threads_lock);
 886         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
 887       }
 888     }
 889   }
 890 
 891   for (int i = 0; i < _c1_count; i++) {
 892     // Create a name for our thread.
 893     sprintf(name_buffer, "C1 CompilerThread%d", i);
 894     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 895     jobject thread_handle = JNIHandles::make_global(thread_oop);
 896     _compiler1_objects[i] = thread_handle;
 897     _compiler1_logs[i] = NULL;
 898 
 899     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 900       JavaThread *ct = make_thread(thread_handle, _c1_compile_queue, _compilers[0], THREAD);
 901       assert(ct != NULL, "should have been handled for initial thread");
 902       _compilers[0]->set_num_compiler_threads(i + 1);
 903       if (TraceCompilerThreads) {
 904         ResourceMark rm;
 905         MutexLocker mu(Threads_lock);
 906         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
 907       }
 908     }
 909   }
 910 
 911   if (UsePerfData) {
 912     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
 913   }
 914 
 915   if (MethodFlushing) {
 916     // Initialize the sweeper thread
 917     Handle thread_oop = create_thread_oop("Sweeper thread", CHECK);
 918     jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
 919     make_thread(thread_handle, NULL, NULL, THREAD);
 920   }
 921 }
 922 
 923 void CompileBroker::possibly_add_compiler_threads(Thread* THREAD) {
 924 
 925   julong available_memory = os::available_memory();
 926   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
 927   size_t available_cc_np  = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
 928          available_cc_p   = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
 929 
 930   // Only do attempt to start additional threads if the lock is free.
 931   if (!CompileThread_lock->try_lock()) return;
 932 
 933   if (_c2_compile_queue != NULL) {
 934     int old_c2_count = _compilers[1]->num_compiler_threads();
 935     int new_c2_count = MIN4(_c2_count,
 936         _c2_compile_queue->size() / 2,
 937         (int)(available_memory / (200*M)),
 938         (int)(available_cc_np / (128*K)));
 939 
 940     for (int i = old_c2_count; i < new_c2_count; i++) {
 941 #if INCLUDE_JVMCI
 942       if (UseJVMCICompiler) {
 943         // Native compiler threads as used in C1/C2 can reuse the j.l.Thread
 944         // objects as their existence is completely hidden from the rest of
 945         // the VM (and those compiler threads can't call Java code to do the
 946         // creation anyway). For JVMCI we have to create new j.l.Thread objects
 947         // as they are visible and we can see unexpected thread lifecycle
 948         // transitions if we bind them to new JavaThreads.
 949         if (!THREAD->can_call_java()) break;
 950         char name_buffer[256];
 951         sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
 952         Handle thread_oop;
 953         {
 954           // We have to give up the lock temporarily for the Java calls.
 955           MutexUnlocker mu(CompileThread_lock);
 956           thread_oop = create_thread_oop(name_buffer, THREAD);
 957         }
 958         if (HAS_PENDING_EXCEPTION) {
 959           if (TraceCompilerThreads) {
 960             ResourceMark rm;
 961             tty->print_cr("JVMCI compiler thread creation failed:");
 962             PENDING_EXCEPTION->print();
 963           }
 964           CLEAR_PENDING_EXCEPTION;
 965           break;
 966         }
 967         // Check if another thread has beaten us during the Java calls.
 968         if (_compilers[1]->num_compiler_threads() != i) break;
 969         jobject thread_handle = JNIHandles::make_global(thread_oop);
 970         assert(compiler2_object(i) == NULL, "Old one must be released!");
 971         _compiler2_objects[i] = thread_handle;
 972       }
 973 #endif
 974       JavaThread *ct = make_thread(compiler2_object(i), _c2_compile_queue, _compilers[1], THREAD);
 975       if (ct == NULL) break;
 976       _compilers[1]->set_num_compiler_threads(i + 1);
 977       if (TraceCompilerThreads) {
 978         ResourceMark rm;
 979         MutexLocker mu(Threads_lock);
 980         tty->print_cr("Added compiler thread %s (available memory: %dMB, available non-profiled code cache: %dMB)",
 981                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_np/M));
 982       }
 983     }
 984   }
 985 
 986   if (_c1_compile_queue != NULL) {
 987     int old_c1_count = _compilers[0]->num_compiler_threads();
 988     int new_c1_count = MIN4(_c1_count,
 989         _c1_compile_queue->size() / 4,
 990         (int)(available_memory / (100*M)),
 991         (int)(available_cc_p / (128*K)));
 992 
 993     for (int i = old_c1_count; i < new_c1_count; i++) {
 994       JavaThread *ct = make_thread(compiler1_object(i), _c1_compile_queue, _compilers[0], THREAD);
 995       if (ct == NULL) break;
 996       _compilers[0]->set_num_compiler_threads(i + 1);
 997       if (TraceCompilerThreads) {
 998         ResourceMark rm;
 999         MutexLocker mu(Threads_lock);
1000         tty->print_cr("Added compiler thread %s (available memory: %dMB, available profiled code cache: %dMB)",
1001                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_p/M));
1002       }
1003     }
1004   }
1005 
1006   CompileThread_lock->unlock();
1007 }
1008 
1009 
1010 /**
1011  * Set the methods on the stack as on_stack so that redefine classes doesn't
1012  * reclaim them. This method is executed at a safepoint.
1013  */
1014 void CompileBroker::mark_on_stack() {
1015   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
1016   // Since we are at a safepoint, we do not need a lock to access
1017   // the compile queues.
1018   if (_c2_compile_queue != NULL) {
1019     _c2_compile_queue->mark_on_stack();
1020   }
1021   if (_c1_compile_queue != NULL) {
1022     _c1_compile_queue->mark_on_stack();
1023   }
1024 }
1025 
1026 // ------------------------------------------------------------------
1027 // CompileBroker::compile_method
1028 //
1029 // Request compilation of a method.
1030 void CompileBroker::compile_method_base(const methodHandle& method,
1031                                         int osr_bci,
1032                                         int comp_level,
1033                                         const methodHandle& hot_method,
1034                                         int hot_count,
1035                                         CompileTask::CompileReason compile_reason,
1036                                         bool blocking,
1037                                         Thread* thread) {
1038   guarantee(!method->is_abstract(), "cannot compile abstract methods");
1039   assert(method->method_holder()->is_instance_klass(),
1040          "sanity check");
1041   assert(!method->method_holder()->is_not_initialized(),
1042          "method holder must be initialized");
1043   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
1044 
1045   if (CIPrintRequests) {
1046     tty->print("request: ");
1047     method->print_short_name(tty);
1048     if (osr_bci != InvocationEntryBci) {
1049       tty->print(" osr_bci: %d", osr_bci);
1050     }
1051     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
1052     if (!hot_method.is_null()) {
1053       tty->print(" hot: ");
1054       if (hot_method() != method()) {
1055           hot_method->print_short_name(tty);
1056       } else {
1057         tty->print("yes");
1058       }
1059     }
1060     tty->cr();
1061   }
1062 
1063   // A request has been made for compilation.  Before we do any
1064   // real work, check to see if the method has been compiled
1065   // in the meantime with a definitive result.
1066   if (compilation_is_complete(method, osr_bci, comp_level)) {
1067     return;
1068   }
1069 
1070 #ifndef PRODUCT
1071   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1072     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1073       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1074       return;
1075     }
1076   }
1077 #endif
1078 
1079   // If this method is already in the compile queue, then
1080   // we do not block the current thread.
1081   if (compilation_is_in_queue(method)) {
1082     // We may want to decay our counter a bit here to prevent
1083     // multiple denied requests for compilation.  This is an
1084     // open compilation policy issue. Note: The other possibility,
1085     // in the case that this is a blocking compile request, is to have
1086     // all subsequent blocking requesters wait for completion of
1087     // ongoing compiles. Note that in this case we'll need a protocol
1088     // for freeing the associated compile tasks. [Or we could have
1089     // a single static monitor on which all these waiters sleep.]
1090     return;
1091   }
1092 
1093   if (TieredCompilation) {
1094     // Tiered policy requires MethodCounters to exist before adding a method to
1095     // the queue. Create if we don't have them yet.
1096     method->get_method_counters(thread);
1097   }
1098 
1099   // Outputs from the following MutexLocker block:
1100   CompileTask* task     = NULL;
1101   CompileQueue* queue  = compile_queue(comp_level);
1102 
1103   // Acquire our lock.
1104   {
1105     MutexLocker locker(MethodCompileQueue_lock, thread);
1106 
1107     // Make sure the method has not slipped into the queues since
1108     // last we checked; note that those checks were "fast bail-outs".
1109     // Here we need to be more careful, see 14012000 below.
1110     if (compilation_is_in_queue(method)) {
1111       return;
1112     }
1113 
1114     // We need to check again to see if the compilation has
1115     // completed.  A previous compilation may have registered
1116     // some result.
1117     if (compilation_is_complete(method, osr_bci, comp_level)) {
1118       return;
1119     }
1120 
1121     // We now know that this compilation is not pending, complete,
1122     // or prohibited.  Assign a compile_id to this compilation
1123     // and check to see if it is in our [Start..Stop) range.
1124     int compile_id = assign_compile_id(method, osr_bci);
1125     if (compile_id == 0) {
1126       // The compilation falls outside the allowed range.
1127       return;
1128     }
1129 
1130 #if INCLUDE_JVMCI
1131     if (UseJVMCICompiler && blocking) {
1132       // Don't allow blocking compiles for requests triggered by JVMCI.
1133       if (thread->is_Compiler_thread()) {
1134         blocking = false;
1135       }
1136 
1137       if (!UseJVMCINativeLibrary) {
1138         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1139         vframeStream vfst((JavaThread*) thread);
1140         for (; !vfst.at_end(); vfst.next()) {
1141           if (vfst.method()->is_static_initializer() ||
1142               (vfst.method()->method_holder()->is_subclass_of(SystemDictionary::ClassLoader_klass()) &&
1143                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1144             blocking = false;
1145             break;
1146           }
1147         }
1148       }
1149 
1150       // Don't allow blocking compilation requests to JVMCI
1151       // if JVMCI itself is not yet initialized
1152       if (!JVMCI::is_compiler_initialized() && compiler(comp_level)->is_jvmci()) {
1153         blocking = false;
1154       }
1155 
1156       // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1157       // to avoid deadlock between compiler thread(s) and threads run at shutdown
1158       // such as the DestroyJavaVM thread.
1159       if (JVMCI::shutdown_called()) {
1160         blocking = false;
1161       }
1162     }
1163 #endif // INCLUDE_JVMCI
1164 
1165     // We will enter the compilation in the queue.
1166     // 14012000: Note that this sets the queued_for_compile bits in
1167     // the target method. We can now reason that a method cannot be
1168     // queued for compilation more than once, as follows:
1169     // Before a thread queues a task for compilation, it first acquires
1170     // the compile queue lock, then checks if the method's queued bits
1171     // are set or it has already been compiled. Thus there can not be two
1172     // instances of a compilation task for the same method on the
1173     // compilation queue. Consider now the case where the compilation
1174     // thread has already removed a task for that method from the queue
1175     // and is in the midst of compiling it. In this case, the
1176     // queued_for_compile bits must be set in the method (and these
1177     // will be visible to the current thread, since the bits were set
1178     // under protection of the compile queue lock, which we hold now.
1179     // When the compilation completes, the compiler thread first sets
1180     // the compilation result and then clears the queued_for_compile
1181     // bits. Neither of these actions are protected by a barrier (or done
1182     // under the protection of a lock), so the only guarantee we have
1183     // (on machines with TSO (Total Store Order)) is that these values
1184     // will update in that order. As a result, the only combinations of
1185     // these bits that the current thread will see are, in temporal order:
1186     // <RESULT, QUEUE> :
1187     //     <0, 1> : in compile queue, but not yet compiled
1188     //     <1, 1> : compiled but queue bit not cleared
1189     //     <1, 0> : compiled and queue bit cleared
1190     // Because we first check the queue bits then check the result bits,
1191     // we are assured that we cannot introduce a duplicate task.
1192     // Note that if we did the tests in the reverse order (i.e. check
1193     // result then check queued bit), we could get the result bit before
1194     // the compilation completed, and the queue bit after the compilation
1195     // completed, and end up introducing a "duplicate" (redundant) task.
1196     // In that case, the compiler thread should first check if a method
1197     // has already been compiled before trying to compile it.
1198     // NOTE: in the event that there are multiple compiler threads and
1199     // there is de-optimization/recompilation, things will get hairy,
1200     // and in that case it's best to protect both the testing (here) of
1201     // these bits, and their updating (here and elsewhere) under a
1202     // common lock.
1203     task = create_compile_task(queue,
1204                                compile_id, method,
1205                                osr_bci, comp_level,
1206                                hot_method, hot_count, compile_reason,
1207                                blocking);
1208   }
1209 
1210   if (blocking) {
1211     wait_for_completion(task);
1212   }
1213 }
1214 
1215 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1216                                        int comp_level,
1217                                        const methodHandle& hot_method, int hot_count,
1218                                        CompileTask::CompileReason compile_reason,
1219                                        Thread* THREAD) {
1220   // Do nothing if compilebroker is not initalized or compiles are submitted on level none
1221   if (!_initialized || comp_level == CompLevel_none) {
1222     return NULL;
1223   }
1224 
1225   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1226   assert(comp != NULL, "Ensure we have a compiler");
1227 
1228   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1229   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD);
1230   DirectivesStack::release(directive);
1231   return nm;
1232 }
1233 
1234 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1235                                          int comp_level,
1236                                          const methodHandle& hot_method, int hot_count,
1237                                          CompileTask::CompileReason compile_reason,
1238                                          DirectiveSet* directive,
1239                                          Thread* THREAD) {
1240 
1241   // make sure arguments make sense
1242   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1243   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1244   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1245   assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
1246   assert(!TieredCompilation || comp_level <= TieredStopAtLevel, "Invalid compilation level");
1247   // allow any levels for WhiteBox
1248   assert(WhiteBoxAPI || TieredCompilation || comp_level == CompLevel_highest_tier, "only CompLevel_highest_tier must be used in non-tiered");
1249   // return quickly if possible
1250 
1251   // lock, make sure that the compilation
1252   // isn't prohibited in a straightforward way.
1253   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1254   if (comp == NULL || !comp->can_compile_method(method) ||
1255       compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1256     return NULL;
1257   }
1258 
1259 #if INCLUDE_JVMCI
1260   if (comp->is_jvmci() && !JVMCI::can_initialize_JVMCI()) {
1261     return NULL;
1262   }
1263 #endif
1264 
1265   if (osr_bci == InvocationEntryBci) {
1266     // standard compilation
1267     CompiledMethod* method_code = method->code();
1268     if (method_code != NULL && method_code->is_nmethod()) {
1269       if (compilation_is_complete(method, osr_bci, comp_level)) {
1270         return (nmethod*) method_code;
1271       }
1272     }
1273     if (method->is_not_compilable(comp_level)) {
1274       return NULL;
1275     }
1276   } else {
1277     // osr compilation
1278 #ifndef TIERED
1279     // seems like an assert of dubious value
1280     assert(comp_level == CompLevel_highest_tier,
1281            "all OSR compiles are assumed to be at a single compilation level");
1282 #endif // TIERED
1283     // We accept a higher level osr method
1284     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1285     if (nm != NULL) return nm;
1286     if (method->is_not_osr_compilable(comp_level)) return NULL;
1287   }
1288 
1289   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1290   // some prerequisites that are compiler specific
1291   if (comp->is_c2()) {
1292     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NULL);
1293     // Resolve all classes seen in the signature of the method
1294     // we are compiling.
1295     Method::load_signature_classes(method, CHECK_AND_CLEAR_NULL);
1296   }
1297 
1298   // If the method is native, do the lookup in the thread requesting
1299   // the compilation. Native lookups can load code, which is not
1300   // permitted during compilation.
1301   //
1302   // Note: A native method implies non-osr compilation which is
1303   //       checked with an assertion at the entry of this method.
1304   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1305     bool in_base_library;
1306     address adr = NativeLookup::lookup(method, in_base_library, THREAD);
1307     if (HAS_PENDING_EXCEPTION) {
1308       // In case of an exception looking up the method, we just forget
1309       // about it. The interpreter will kick-in and throw the exception.
1310       method->set_not_compilable("NativeLookup::lookup failed"); // implies is_not_osr_compilable()
1311       CLEAR_PENDING_EXCEPTION;
1312       return NULL;
1313     }
1314     assert(method->has_native_function(), "must have native code by now");
1315   }
1316 
1317   // RedefineClasses() has replaced this method; just return
1318   if (method->is_old()) {
1319     return NULL;
1320   }
1321 
1322   // JVMTI -- post_compile_event requires jmethod_id() that may require
1323   // a lock the compiling thread can not acquire. Prefetch it here.
1324   if (JvmtiExport::should_post_compiled_method_load()) {
1325     method->jmethod_id();
1326   }
1327 
1328   // do the compilation
1329   if (method->is_native()) {
1330     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1331       // The following native methods:
1332       //
1333       // java.lang.Float.intBitsToFloat
1334       // java.lang.Float.floatToRawIntBits
1335       // java.lang.Double.longBitsToDouble
1336       // java.lang.Double.doubleToRawLongBits
1337       //
1338       // are called through the interpreter even if interpreter native stubs
1339       // are not preferred (i.e., calling through adapter handlers is preferred).
1340       // The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved
1341       // if the version of the methods from the native libraries is called.
1342       // As the interpreter and the C2-intrinsified version of the methods preserves
1343       // sNaNs, that would result in an inconsistent way of handling of sNaNs.
1344       if ((UseSSE >= 1 &&
1345           (method->intrinsic_id() == vmIntrinsics::_intBitsToFloat ||
1346            method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) ||
1347           (UseSSE >= 2 &&
1348            (method->intrinsic_id() == vmIntrinsics::_longBitsToDouble ||
1349             method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) {
1350         return NULL;
1351       }
1352 
1353       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1354       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1355       //
1356       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1357       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1358       AdapterHandlerLibrary::create_native_wrapper(method);
1359     } else {
1360       return NULL;
1361     }
1362   } else {
1363     // If the compiler is shut off due to code cache getting full
1364     // fail out now so blocking compiles dont hang the java thread
1365     if (!should_compile_new_jobs()) {
1366       CompilationPolicy::policy()->delay_compilation(method());
1367       return NULL;
1368     }
1369     bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles;
1370     compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD);
1371   }
1372 
1373   // return requested nmethod
1374   // We accept a higher level osr method
1375   if (osr_bci == InvocationEntryBci) {
1376     CompiledMethod* code = method->code();
1377     if (code == NULL) {
1378       return (nmethod*) code;
1379     } else {
1380       return code->as_nmethod_or_null();
1381     }
1382   }
1383   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1384 }
1385 
1386 
1387 // ------------------------------------------------------------------
1388 // CompileBroker::compilation_is_complete
1389 //
1390 // See if compilation of this method is already complete.
1391 bool CompileBroker::compilation_is_complete(const methodHandle& method,
1392                                             int                 osr_bci,
1393                                             int                 comp_level) {
1394   bool is_osr = (osr_bci != standard_entry_bci);
1395   if (is_osr) {
1396     if (method->is_not_osr_compilable(comp_level)) {
1397       return true;
1398     } else {
1399       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1400       return (result != NULL);
1401     }
1402   } else {
1403     if (method->is_not_compilable(comp_level)) {
1404       return true;
1405     } else {
1406       CompiledMethod* result = method->code();
1407       if (result == NULL) return false;
1408       return comp_level == result->comp_level();
1409     }
1410   }
1411 }
1412 
1413 
1414 /**
1415  * See if this compilation is already requested.
1416  *
1417  * Implementation note: there is only a single "is in queue" bit
1418  * for each method.  This means that the check below is overly
1419  * conservative in the sense that an osr compilation in the queue
1420  * will block a normal compilation from entering the queue (and vice
1421  * versa).  This can be remedied by a full queue search to disambiguate
1422  * cases.  If it is deemed profitable, this may be done.
1423  */
1424 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1425   return method->queued_for_compilation();
1426 }
1427 
1428 // ------------------------------------------------------------------
1429 // CompileBroker::compilation_is_prohibited
1430 //
1431 // See if this compilation is not allowed.
1432 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1433   bool is_native = method->is_native();
1434   // Some compilers may not support the compilation of natives.
1435   AbstractCompiler *comp = compiler(comp_level);
1436   if (is_native &&
1437       (!CICompileNatives || comp == NULL || !comp->supports_native())) {
1438     method->set_not_compilable_quietly("native methods not supported", comp_level);
1439     return true;
1440   }
1441 
1442   bool is_osr = (osr_bci != standard_entry_bci);
1443   // Some compilers may not support on stack replacement.
1444   if (is_osr &&
1445       (!CICompileOSR || comp == NULL || !comp->supports_osr())) {
1446     method->set_not_osr_compilable("OSR not supported", comp_level);
1447     return true;
1448   }
1449 
1450   // The method may be explicitly excluded by the user.
1451   double scale;
1452   if (excluded || (CompilerOracle::has_option_value(method, "CompileThresholdScaling", scale) && scale == 0)) {
1453     bool quietly = CompilerOracle::should_exclude_quietly();
1454     if (PrintCompilation && !quietly) {
1455       // This does not happen quietly...
1456       ResourceMark rm;
1457       tty->print("### Excluding %s:%s",
1458                  method->is_native() ? "generation of native wrapper" : "compile",
1459                  (method->is_static() ? " static" : ""));
1460       method->print_short_name(tty);
1461       tty->cr();
1462     }
1463     method->set_not_compilable("excluded by CompileCommand", comp_level, !quietly);
1464   }
1465 
1466   return false;
1467 }
1468 
1469 /**
1470  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1471  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1472  * The function also allows to generate separate compilation IDs for OSR compilations.
1473  */
1474 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1475 #ifdef ASSERT
1476   bool is_osr = (osr_bci != standard_entry_bci);
1477   int id;
1478   if (method->is_native()) {
1479     assert(!is_osr, "can't be osr");
1480     // Adapters, native wrappers and method handle intrinsics
1481     // should be generated always.
1482     return Atomic::add(1, &_compilation_id);
1483   } else if (CICountOSR && is_osr) {
1484     id = Atomic::add(1, &_osr_compilation_id);
1485     if (CIStartOSR <= id && id < CIStopOSR) {
1486       return id;
1487     }
1488   } else {
1489     id = Atomic::add(1, &_compilation_id);
1490     if (CIStart <= id && id < CIStop) {
1491       return id;
1492     }
1493   }
1494 
1495   // Method was not in the appropriate compilation range.
1496   method->set_not_compilable_quietly("Not in requested compile id range");
1497   return 0;
1498 #else
1499   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1500   // only _compilation_id is incremented.
1501   return Atomic::add(1, &_compilation_id);
1502 #endif
1503 }
1504 
1505 // ------------------------------------------------------------------
1506 // CompileBroker::assign_compile_id_unlocked
1507 //
1508 // Public wrapper for assign_compile_id that acquires the needed locks
1509 uint CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1510   MutexLocker locker(MethodCompileQueue_lock, thread);
1511   return assign_compile_id(method, osr_bci);
1512 }
1513 
1514 // ------------------------------------------------------------------
1515 // CompileBroker::create_compile_task
1516 //
1517 // Create a CompileTask object representing the current request for
1518 // compilation.  Add this task to the queue.
1519 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1520                                                 int                 compile_id,
1521                                                 const methodHandle& method,
1522                                                 int                 osr_bci,
1523                                                 int                 comp_level,
1524                                                 const methodHandle& hot_method,
1525                                                 int                 hot_count,
1526                                                 CompileTask::CompileReason compile_reason,
1527                                                 bool                blocking) {
1528   CompileTask* new_task = CompileTask::allocate();
1529   new_task->initialize(compile_id, method, osr_bci, comp_level,
1530                        hot_method, hot_count, compile_reason,
1531                        blocking);
1532   queue->add(new_task);
1533   return new_task;
1534 }
1535 
1536 #if INCLUDE_JVMCI
1537 // The number of milliseconds to wait before checking if
1538 // JVMCI compilation has made progress.
1539 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1540 
1541 // The number of JVMCI compilation progress checks that must fail
1542 // before unblocking a thread waiting for a blocking compilation.
1543 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1544 
1545 /**
1546  * Waits for a JVMCI compiler to complete a given task. This thread
1547  * waits until either the task completes or it sees no JVMCI compilation
1548  * progress for N consecutive milliseconds where N is
1549  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1550  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1551  *
1552  * @return true if this thread needs to free/recycle the task
1553  */
1554 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1555   MonitorLocker ml(task->lock(), thread);
1556   int progress_wait_attempts = 0;
1557   int methods_compiled = jvmci->methods_compiled();
1558   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1559          ml.wait(JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1560     CompilerThread* jvmci_compiler_thread = task->jvmci_compiler_thread();
1561 
1562     bool progress;
1563     if (jvmci_compiler_thread != NULL) {
1564       // If the JVMCI compiler thread is not blocked or suspended, we deem it to be making progress.
1565       progress = jvmci_compiler_thread->thread_state() != _thread_blocked &&
1566         !jvmci_compiler_thread->is_external_suspend();
1567     } else {
1568       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1569       // that all JVMCI compiler threads are blocked on. We use the counter for
1570       // successful JVMCI compilations to determine whether JVMCI compilation
1571       // is still making progress through the JVMCI compiler queue.
1572       progress = jvmci->methods_compiled() != methods_compiled;
1573     }
1574 
1575     if (!progress) {
1576       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1577         if (PrintCompilation) {
1578           task->print(tty, "wait for blocking compilation timed out");
1579         }
1580         break;
1581       }
1582     } else {
1583       progress_wait_attempts = 0;
1584       if (jvmci_compiler_thread == NULL) {
1585         methods_compiled = jvmci->methods_compiled();
1586       }
1587     }
1588   }
1589   task->clear_waiter();
1590   return task->is_complete();
1591 }
1592 #endif
1593 
1594 /**
1595  *  Wait for the compilation task to complete.
1596  */
1597 void CompileBroker::wait_for_completion(CompileTask* task) {
1598   if (CIPrintCompileQueue) {
1599     ttyLocker ttyl;
1600     tty->print_cr("BLOCKING FOR COMPILE");
1601   }
1602 
1603   assert(task->is_blocking(), "can only wait on blocking task");
1604 
1605   JavaThread* thread = JavaThread::current();
1606 
1607   methodHandle method(thread, task->method());
1608   bool free_task;
1609 #if INCLUDE_JVMCI
1610   AbstractCompiler* comp = compiler(task->comp_level());
1611   if (comp->is_jvmci()) {
1612     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1613   } else
1614 #endif
1615   {
1616     MonitorLocker ml(task->lock(), thread);
1617     free_task = true;
1618     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1619       ml.wait();
1620     }
1621   }
1622 
1623   if (free_task) {
1624     if (is_compilation_disabled_forever()) {
1625       CompileTask::free(task);
1626       return;
1627     }
1628 
1629     // It is harmless to check this status without the lock, because
1630     // completion is a stable property (until the task object is recycled).
1631     assert(task->is_complete(), "Compilation should have completed");
1632     assert(task->code_handle() == NULL, "must be reset");
1633 
1634     // By convention, the waiter is responsible for recycling a
1635     // blocking CompileTask. Since there is only one waiter ever
1636     // waiting on a CompileTask, we know that no one else will
1637     // be using this CompileTask; we can free it.
1638     CompileTask::free(task);
1639   }
1640 }
1641 
1642 /**
1643  * Initialize compiler thread(s) + compiler object(s). The postcondition
1644  * of this function is that the compiler runtimes are initialized and that
1645  * compiler threads can start compiling.
1646  */
1647 bool CompileBroker::init_compiler_runtime() {
1648   CompilerThread* thread = CompilerThread::current();
1649   AbstractCompiler* comp = thread->compiler();
1650   // Final sanity check - the compiler object must exist
1651   guarantee(comp != NULL, "Compiler object must exist");
1652 
1653   {
1654     // Must switch to native to allocate ci_env
1655     ThreadToNativeFromVM ttn(thread);
1656     ciEnv ci_env((CompileTask*)NULL);
1657     // Cache Jvmti state
1658     ci_env.cache_jvmti_state();
1659     // Cache DTrace flags
1660     ci_env.cache_dtrace_flags();
1661 
1662     // Switch back to VM state to do compiler initialization
1663     ThreadInVMfromNative tv(thread);
1664     ResetNoHandleMark rnhm;
1665 
1666     // Perform per-thread and global initializations
1667     comp->initialize();
1668   }
1669 
1670   if (comp->is_failed()) {
1671     disable_compilation_forever();
1672     // If compiler initialization failed, no compiler thread that is specific to a
1673     // particular compiler runtime will ever start to compile methods.
1674     shutdown_compiler_runtime(comp, thread);
1675     return false;
1676   }
1677 
1678   // C1 specific check
1679   if (comp->is_c1() && (thread->get_buffer_blob() == NULL)) {
1680     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
1681     return false;
1682   }
1683 
1684   return true;
1685 }
1686 
1687 /**
1688  * If C1 and/or C2 initialization failed, we shut down all compilation.
1689  * We do this to keep things simple. This can be changed if it ever turns
1690  * out to be a problem.
1691  */
1692 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
1693   // Free buffer blob, if allocated
1694   if (thread->get_buffer_blob() != NULL) {
1695     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1696     CodeCache::free(thread->get_buffer_blob());
1697   }
1698 
1699   if (comp->should_perform_shutdown()) {
1700     // There are two reasons for shutting down the compiler
1701     // 1) compiler runtime initialization failed
1702     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
1703     warning("%s initialization failed. Shutting down all compilers", comp->name());
1704 
1705     // Only one thread per compiler runtime object enters here
1706     // Set state to shut down
1707     comp->set_shut_down();
1708 
1709     // Delete all queued compilation tasks to make compiler threads exit faster.
1710     if (_c1_compile_queue != NULL) {
1711       _c1_compile_queue->free_all();
1712     }
1713 
1714     if (_c2_compile_queue != NULL) {
1715       _c2_compile_queue->free_all();
1716     }
1717 
1718     // Set flags so that we continue execution with using interpreter only.
1719     UseCompiler    = false;
1720     UseInterpreter = true;
1721 
1722     // We could delete compiler runtimes also. However, there are references to
1723     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
1724     // fail. This can be done later if necessary.
1725   }
1726 }
1727 
1728 /**
1729  * Helper function to create new or reuse old CompileLog.
1730  */
1731 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
1732   if (!LogCompilation) return NULL;
1733 
1734   AbstractCompiler *compiler = ct->compiler();
1735   bool c1 = compiler->is_c1();
1736   jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
1737   assert(compiler_objects != NULL, "must be initialized at this point");
1738   CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
1739   assert(logs != NULL, "must be initialized at this point");
1740   int count = c1 ? _c1_count : _c2_count;
1741 
1742   // Find Compiler number by its threadObj.
1743   oop compiler_obj = ct->threadObj();
1744   int compiler_number = 0;
1745   bool found = false;
1746   for (; compiler_number < count; compiler_number++) {
1747     if (JNIHandles::resolve_non_null(compiler_objects[compiler_number]) == compiler_obj) {
1748       found = true;
1749       break;
1750     }
1751   }
1752   assert(found, "Compiler must exist at this point");
1753 
1754   // Determine pointer for this thread's log.
1755   CompileLog** log_ptr = &logs[compiler_number];
1756 
1757   // Return old one if it exists.
1758   CompileLog* log = *log_ptr;
1759   if (log != NULL) {
1760     ct->init_log(log);
1761     return log;
1762   }
1763 
1764   // Create a new one and remember it.
1765   init_compiler_thread_log();
1766   log = ct->log();
1767   *log_ptr = log;
1768   return log;
1769 }
1770 
1771 // ------------------------------------------------------------------
1772 // CompileBroker::compiler_thread_loop
1773 //
1774 // The main loop run by a CompilerThread.
1775 void CompileBroker::compiler_thread_loop() {
1776   CompilerThread* thread = CompilerThread::current();
1777   CompileQueue* queue = thread->queue();
1778   // For the thread that initializes the ciObjectFactory
1779   // this resource mark holds all the shared objects
1780   ResourceMark rm;
1781 
1782   // First thread to get here will initialize the compiler interface
1783 
1784   {
1785     ASSERT_IN_VM;
1786     MutexLocker only_one (CompileThread_lock, thread);
1787     if (!ciObjectFactory::is_initialized()) {
1788       ciObjectFactory::initialize();
1789     }
1790   }
1791 
1792   // Open a log.
1793   CompileLog* log = get_log(thread);
1794   if (log != NULL) {
1795     log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'",
1796                     thread->name(),
1797                     os::current_thread_id(),
1798                     os::current_process_id());
1799     log->stamp();
1800     log->end_elem();
1801   }
1802 
1803   // If compiler thread/runtime initialization fails, exit the compiler thread
1804   if (!init_compiler_runtime()) {
1805     return;
1806   }
1807 
1808   thread->start_idle_timer();
1809 
1810   // Poll for new compilation tasks as long as the JVM runs. Compilation
1811   // should only be disabled if something went wrong while initializing the
1812   // compiler runtimes. This, in turn, should not happen. The only known case
1813   // when compiler runtime initialization fails is if there is not enough free
1814   // space in the code cache to generate the necessary stubs, etc.
1815   while (!is_compilation_disabled_forever()) {
1816     // We need this HandleMark to avoid leaking VM handles.
1817     HandleMark hm(thread);
1818 
1819     CompileTask* task = queue->get();
1820     if (task == NULL) {
1821       if (UseDynamicNumberOfCompilerThreads) {
1822         // Access compiler_count under lock to enforce consistency.
1823         MutexLocker only_one(CompileThread_lock);
1824         if (can_remove(thread, true)) {
1825           if (TraceCompilerThreads) {
1826             tty->print_cr("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
1827                           thread->name(), thread->idle_time_millis());
1828           }
1829           // Free buffer blob, if allocated
1830           if (thread->get_buffer_blob() != NULL) {
1831             MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1832             CodeCache::free(thread->get_buffer_blob());
1833           }
1834           return; // Stop this thread.
1835         }
1836       }
1837     } else {
1838       // Assign the task to the current thread.  Mark this compilation
1839       // thread as active for the profiler.
1840       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
1841       // occurs after fetching the compile task off the queue.
1842       CompileTaskWrapper ctw(task);
1843       nmethodLocker result_handle;  // (handle for the nmethod produced by this task)
1844       task->set_code_handle(&result_handle);
1845       methodHandle method(thread, task->method());
1846 
1847       // Never compile a method if breakpoints are present in it
1848       if (method()->number_of_breakpoints() == 0) {
1849         // Compile the method.
1850         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
1851           invoke_compiler_on_method(task);
1852           thread->start_idle_timer();
1853         } else {
1854           // After compilation is disabled, remove remaining methods from queue
1855           method->clear_queued_for_compilation();
1856           task->set_failure_reason("compilation is disabled");
1857         }
1858       }
1859 
1860       if (UseDynamicNumberOfCompilerThreads) {
1861         possibly_add_compiler_threads(thread);
1862         assert(!thread->has_pending_exception(), "should have been handled");
1863       }
1864     }
1865   }
1866 
1867   // Shut down compiler runtime
1868   shutdown_compiler_runtime(thread->compiler(), thread);
1869 }
1870 
1871 // ------------------------------------------------------------------
1872 // CompileBroker::init_compiler_thread_log
1873 //
1874 // Set up state required by +LogCompilation.
1875 void CompileBroker::init_compiler_thread_log() {
1876     CompilerThread* thread = CompilerThread::current();
1877     char  file_name[4*K];
1878     FILE* fp = NULL;
1879     intx thread_id = os::current_thread_id();
1880     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
1881       const char* dir = (try_temp_dir ? os::get_temp_directory() : NULL);
1882       if (dir == NULL) {
1883         jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log",
1884                      thread_id, os::current_process_id());
1885       } else {
1886         jio_snprintf(file_name, sizeof(file_name),
1887                      "%s%shs_c" UINTX_FORMAT "_pid%u.log", dir,
1888                      os::file_separator(), thread_id, os::current_process_id());
1889       }
1890 
1891       fp = fopen(file_name, "wt");
1892       if (fp != NULL) {
1893         if (LogCompilation && Verbose) {
1894           tty->print_cr("Opening compilation log %s", file_name);
1895         }
1896         CompileLog* log = new(ResourceObj::C_HEAP, mtCompiler) CompileLog(file_name, fp, thread_id);
1897         if (log == NULL) {
1898           fclose(fp);
1899           return;
1900         }
1901         thread->init_log(log);
1902 
1903         if (xtty != NULL) {
1904           ttyLocker ttyl;
1905           // Record any per thread log files
1906           xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name);
1907         }
1908         return;
1909       }
1910     }
1911     warning("Cannot open log file: %s", file_name);
1912 }
1913 
1914 void CompileBroker::log_metaspace_failure() {
1915   const char* message = "some methods may not be compiled because metaspace "
1916                         "is out of memory";
1917   if (_compilation_log != NULL) {
1918     _compilation_log->log_metaspace_failure(message);
1919   }
1920   if (PrintCompilation) {
1921     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
1922   }
1923 }
1924 
1925 
1926 // ------------------------------------------------------------------
1927 // CompileBroker::set_should_block
1928 //
1929 // Set _should_block.
1930 // Call this from the VM, with Threads_lock held and a safepoint requested.
1931 void CompileBroker::set_should_block() {
1932   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
1933   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
1934 #ifndef PRODUCT
1935   if (PrintCompilation && (Verbose || WizardMode))
1936     tty->print_cr("notifying compiler thread pool to block");
1937 #endif
1938   _should_block = true;
1939 }
1940 
1941 // ------------------------------------------------------------------
1942 // CompileBroker::maybe_block
1943 //
1944 // Call this from the compiler at convenient points, to poll for _should_block.
1945 void CompileBroker::maybe_block() {
1946   if (_should_block) {
1947 #ifndef PRODUCT
1948     if (PrintCompilation && (Verbose || WizardMode))
1949       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
1950 #endif
1951     ThreadInVMfromNative tivfn(JavaThread::current());
1952   }
1953 }
1954 
1955 // wrapper for CodeCache::print_summary()
1956 static void codecache_print(bool detailed)
1957 {
1958   ResourceMark rm;
1959   stringStream s;
1960   // Dump code cache  into a buffer before locking the tty,
1961   {
1962     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1963     CodeCache::print_summary(&s, detailed);
1964   }
1965   ttyLocker ttyl;
1966   tty->print("%s", s.as_string());
1967 }
1968 
1969 // wrapper for CodeCache::print_summary() using outputStream
1970 static void codecache_print(outputStream* out, bool detailed) {
1971   ResourceMark rm;
1972   stringStream s;
1973 
1974   // Dump code cache into a buffer
1975   {
1976     MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1977     CodeCache::print_summary(&s, detailed);
1978   }
1979 
1980   char* remaining_log = s.as_string();
1981   while (*remaining_log != '\0') {
1982     char* eol = strchr(remaining_log, '\n');
1983     if (eol == NULL) {
1984       out->print_cr("%s", remaining_log);
1985       remaining_log = remaining_log + strlen(remaining_log);
1986     } else {
1987       *eol = '\0';
1988       out->print_cr("%s", remaining_log);
1989       remaining_log = eol + 1;
1990     }
1991   }
1992 }
1993 
1994 void CompileBroker::post_compile(CompilerThread* thread, CompileTask* task, bool success, ciEnv* ci_env,
1995                                  int compilable, const char* failure_reason) {
1996   if (success) {
1997     task->mark_success();
1998     if (ci_env != NULL) {
1999       task->set_num_inlined_bytecodes(ci_env->num_inlined_bytecodes());
2000     }
2001     if (_compilation_log != NULL) {
2002       nmethod* code = task->code();
2003       if (code != NULL) {
2004         _compilation_log->log_nmethod(thread, code);
2005       }
2006     }
2007   } else if (AbortVMOnCompilationFailure) {
2008     if (compilable == ciEnv::MethodCompilable_not_at_tier) {
2009       fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
2010     }
2011     if (compilable == ciEnv::MethodCompilable_never) {
2012       fatal("Never compilable: %s", failure_reason);
2013     }
2014   }
2015   // simulate crash during compilation
2016   assert(task->compile_id() != CICrashAt, "just as planned");
2017 }
2018 
2019 static void post_compilation_event(EventCompilation* event, CompileTask* task) {
2020   assert(event != NULL, "invariant");
2021   assert(event->should_commit(), "invariant");
2022   event->set_method(task->method());
2023   event->set_compileId(task->compile_id());
2024   event->set_compileLevel(task->comp_level());
2025   event->set_succeded(task->is_success());
2026   event->set_isOsr(task->osr_bci() != CompileBroker::standard_entry_bci);
2027   event->set_codeSize((task->code() == NULL) ? 0 : task->code()->total_size());
2028   event->set_inlinedBytes(task->num_inlined_bytecodes());
2029   event->commit();
2030 }
2031 
2032 int DirectivesStack::_depth = 0;
2033 CompilerDirectives* DirectivesStack::_top = NULL;
2034 CompilerDirectives* DirectivesStack::_bottom = NULL;
2035 
2036 // ------------------------------------------------------------------
2037 // CompileBroker::invoke_compiler_on_method
2038 //
2039 // Compile a method.
2040 //
2041 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
2042   task->print_ul();
2043   if (PrintCompilation) {
2044     ResourceMark rm;
2045     task->print_tty();
2046   }
2047   elapsedTimer time;
2048 
2049   CompilerThread* thread = CompilerThread::current();
2050   ResourceMark rm(thread);
2051 
2052   if (LogEvents) {
2053     _compilation_log->log_compile(thread, task);
2054   }
2055 
2056   // Common flags.
2057   uint compile_id = task->compile_id();
2058   int osr_bci = task->osr_bci();
2059   bool is_osr = (osr_bci != standard_entry_bci);
2060   bool should_log = (thread->log() != NULL);
2061   bool should_break = false;
2062   const int task_level = task->comp_level();
2063   AbstractCompiler* comp = task->compiler();
2064 
2065   DirectiveSet* directive;
2066   {
2067     // create the handle inside it's own block so it can't
2068     // accidentally be referenced once the thread transitions to
2069     // native.  The NoHandleMark before the transition should catch
2070     // any cases where this occurs in the future.
2071     methodHandle method(thread, task->method());
2072     assert(!method->is_native(), "no longer compile natives");
2073 
2074     // Look up matching directives
2075     directive = DirectivesStack::getMatchingDirective(method, comp);
2076 
2077     // Update compile information when using perfdata.
2078     if (UsePerfData) {
2079       update_compile_perf_data(thread, method, is_osr);
2080     }
2081 
2082     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2083   }
2084 
2085   should_break = directive->BreakAtExecuteOption || task->check_break_at_flags();
2086   if (should_log && !directive->LogOption) {
2087     should_log = false;
2088   }
2089 
2090   // Allocate a new set of JNI handles.
2091   push_jni_handle_block();
2092   Method* target_handle = task->method();
2093   int compilable = ciEnv::MethodCompilable;
2094   const char* failure_reason = NULL;
2095   bool failure_reason_on_C_heap = false;
2096   const char* retry_message = NULL;
2097 
2098 #if INCLUDE_JVMCI
2099   if (UseJVMCICompiler && comp != NULL && comp->is_jvmci()) {
2100     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2101 
2102     TraceTime t1("compilation", &time);
2103     EventCompilation event;
2104 
2105     // Skip redefined methods
2106     if (target_handle->is_old()) {
2107       failure_reason = "redefined method";
2108       retry_message = "not retryable";
2109       compilable = ciEnv::MethodCompilable_never;
2110     } else {
2111       JVMCICompileState compile_state(task);
2112       JVMCIEnv env(thread, &compile_state, __FILE__, __LINE__);
2113       methodHandle method(thread, target_handle);
2114       env.runtime()->compile_method(&env, jvmci, method, osr_bci);
2115 
2116       failure_reason = compile_state.failure_reason();
2117       failure_reason_on_C_heap = compile_state.failure_reason_on_C_heap();
2118       if (!compile_state.retryable()) {
2119         retry_message = "not retryable";
2120         compilable = ciEnv::MethodCompilable_not_at_tier;
2121       }
2122       if (task->code() == NULL) {
2123         assert(failure_reason != NULL, "must specify failure_reason");
2124       }
2125     }
2126     post_compile(thread, task, task->code() != NULL, NULL, compilable, failure_reason);
2127     if (event.should_commit()) {
2128       post_compilation_event(&event, task);
2129     }
2130 
2131   } else
2132 #endif // INCLUDE_JVMCI
2133   {
2134     NoHandleMark  nhm;
2135     ThreadToNativeFromVM ttn(thread);
2136 
2137     ciEnv ci_env(task);
2138     if (should_break) {
2139       ci_env.set_break_at_compile(true);
2140     }
2141     if (should_log) {
2142       ci_env.set_log(thread->log());
2143     }
2144     assert(thread->env() == &ci_env, "set by ci_env");
2145     // The thread-env() field is cleared in ~CompileTaskWrapper.
2146 
2147     // Cache Jvmti state
2148     ci_env.cache_jvmti_state();
2149 
2150     // Cache DTrace flags
2151     ci_env.cache_dtrace_flags();
2152 
2153     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2154 
2155     TraceTime t1("compilation", &time);
2156     EventCompilation event;
2157 
2158     if (comp == NULL) {
2159       ci_env.record_method_not_compilable("no compiler", !TieredCompilation);
2160     } else {
2161       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2162         MonitorLocker locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2163         while (WhiteBox::compilation_locked) {
2164           locker.wait();
2165         }
2166       }
2167       comp->compile_method(&ci_env, target, osr_bci, directive);
2168     }
2169 
2170     if (!ci_env.failing() && task->code() == NULL) {
2171       //assert(false, "compiler should always document failure");
2172       // The compiler elected, without comment, not to register a result.
2173       // Do not attempt further compilations of this method.
2174       ci_env.record_method_not_compilable("compile failed", !TieredCompilation);
2175     }
2176 
2177     // Copy this bit to the enclosing block:
2178     compilable = ci_env.compilable();
2179 
2180     if (ci_env.failing()) {
2181       failure_reason = ci_env.failure_reason();
2182       retry_message = ci_env.retry_message();
2183       ci_env.report_failure(failure_reason);
2184     }
2185 
2186     post_compile(thread, task, !ci_env.failing(), &ci_env, compilable, failure_reason);
2187     if (event.should_commit()) {
2188       post_compilation_event(&event, task);
2189     }
2190   }
2191   // Remove the JNI handle block after the ciEnv destructor has run in
2192   // the previous block.
2193   pop_jni_handle_block();
2194 
2195   if (failure_reason != NULL) {
2196     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2197     if (_compilation_log != NULL) {
2198       _compilation_log->log_failure(thread, task, failure_reason, retry_message);
2199     }
2200     if (PrintCompilation) {
2201       FormatBufferResource msg = retry_message != NULL ?
2202         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2203         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2204       task->print(tty, msg);
2205     }
2206   }
2207 
2208   methodHandle method(thread, task->method());
2209 
2210   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2211 
2212   collect_statistics(thread, time, task);
2213 
2214   nmethod* nm = task->code();
2215   if (nm != NULL) {
2216     nm->maybe_print_nmethod(directive);
2217   }
2218   DirectivesStack::release(directive);
2219 
2220   if (PrintCompilation && PrintCompilation2) {
2221     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2222     tty->print("%4d ", compile_id);    // print compilation number
2223     tty->print("%s ", (is_osr ? "%" : " "));
2224     if (task->code() != NULL) {
2225       tty->print("size: %d(%d) ", task->code()->total_size(), task->code()->insts_size());
2226     }
2227     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2228   }
2229 
2230   Log(compilation, codecache) log;
2231   if (log.is_debug()) {
2232     LogStream ls(log.debug());
2233     codecache_print(&ls, /* detailed= */ false);
2234   }
2235   if (PrintCodeCacheOnCompilation) {
2236     codecache_print(/* detailed= */ false);
2237   }
2238   // Disable compilation, if required.
2239   switch (compilable) {
2240   case ciEnv::MethodCompilable_never:
2241     if (is_osr)
2242       method->set_not_osr_compilable_quietly("MethodCompilable_never");
2243     else
2244       method->set_not_compilable_quietly("MethodCompilable_never");
2245     break;
2246   case ciEnv::MethodCompilable_not_at_tier:
2247     if (is_osr)
2248       method->set_not_osr_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2249     else
2250       method->set_not_compilable_quietly("MethodCompilable_not_at_tier", task_level);
2251     break;
2252   }
2253 
2254   // Note that the queued_for_compilation bits are cleared without
2255   // protection of a mutex. [They were set by the requester thread,
2256   // when adding the task to the compile queue -- at which time the
2257   // compile queue lock was held. Subsequently, we acquired the compile
2258   // queue lock to get this task off the compile queue; thus (to belabour
2259   // the point somewhat) our clearing of the bits must be occurring
2260   // only after the setting of the bits. See also 14012000 above.
2261   method->clear_queued_for_compilation();
2262 }
2263 
2264 /**
2265  * The CodeCache is full. Print warning and disable compilation.
2266  * Schedule code cache cleaning so compilation can continue later.
2267  * This function needs to be called only from CodeCache::allocate(),
2268  * since we currently handle a full code cache uniformly.
2269  */
2270 void CompileBroker::handle_full_code_cache(int code_blob_type) {
2271   UseInterpreter = true;
2272   if (UseCompiler || AlwaysCompileLoopMethods ) {
2273     if (xtty != NULL) {
2274       ResourceMark rm;
2275       stringStream s;
2276       // Dump code cache state into a buffer before locking the tty,
2277       // because log_state() will use locks causing lock conflicts.
2278       CodeCache::log_state(&s);
2279       // Lock to prevent tearing
2280       ttyLocker ttyl;
2281       xtty->begin_elem("code_cache_full");
2282       xtty->print("%s", s.as_string());
2283       xtty->stamp();
2284       xtty->end_elem();
2285     }
2286 
2287 #ifndef PRODUCT
2288     if (ExitOnFullCodeCache) {
2289       codecache_print(/* detailed= */ true);
2290       before_exit(JavaThread::current());
2291       exit_globals(); // will delete tty
2292       vm_direct_exit(1);
2293     }
2294 #endif
2295     if (UseCodeCacheFlushing) {
2296       // Since code cache is full, immediately stop new compiles
2297       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2298         NMethodSweeper::log_sweep("disable_compiler");
2299       }
2300     } else {
2301       disable_compilation_forever();
2302     }
2303 
2304     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2305   }
2306 }
2307 
2308 // ------------------------------------------------------------------
2309 // CompileBroker::update_compile_perf_data
2310 //
2311 // Record this compilation for debugging purposes.
2312 void CompileBroker::update_compile_perf_data(CompilerThread* thread, const methodHandle& method, bool is_osr) {
2313   ResourceMark rm;
2314   char* method_name = method->name()->as_C_string();
2315   char current_method[CompilerCounters::cmname_buffer_length];
2316   size_t maxLen = CompilerCounters::cmname_buffer_length;
2317 
2318   const char* class_name = method->method_holder()->name()->as_C_string();
2319 
2320   size_t s1len = strlen(class_name);
2321   size_t s2len = strlen(method_name);
2322 
2323   // check if we need to truncate the string
2324   if (s1len + s2len + 2 > maxLen) {
2325 
2326     // the strategy is to lop off the leading characters of the
2327     // class name and the trailing characters of the method name.
2328 
2329     if (s2len + 2 > maxLen) {
2330       // lop of the entire class name string, let snprintf handle
2331       // truncation of the method name.
2332       class_name += s1len; // null string
2333     }
2334     else {
2335       // lop off the extra characters from the front of the class name
2336       class_name += ((s1len + s2len + 2) - maxLen);
2337     }
2338   }
2339 
2340   jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2341 
2342   int last_compile_type = normal_compile;
2343   if (CICountOSR && is_osr) {
2344     last_compile_type = osr_compile;
2345   }
2346 
2347   CompilerCounters* counters = thread->counters();
2348   counters->set_current_method(current_method);
2349   counters->set_compile_type((jlong) last_compile_type);
2350 }
2351 
2352 // ------------------------------------------------------------------
2353 // CompileBroker::push_jni_handle_block
2354 //
2355 // Push on a new block of JNI handles.
2356 void CompileBroker::push_jni_handle_block() {
2357   JavaThread* thread = JavaThread::current();
2358 
2359   // Allocate a new block for JNI handles.
2360   // Inlined code from jni_PushLocalFrame()
2361   JNIHandleBlock* java_handles = thread->active_handles();
2362   JNIHandleBlock* compile_handles = JNIHandleBlock::allocate_block(thread);
2363   assert(compile_handles != NULL && java_handles != NULL, "should not be NULL");
2364   compile_handles->set_pop_frame_link(java_handles);  // make sure java handles get gc'd.
2365   thread->set_active_handles(compile_handles);
2366 }
2367 
2368 
2369 // ------------------------------------------------------------------
2370 // CompileBroker::pop_jni_handle_block
2371 //
2372 // Pop off the current block of JNI handles.
2373 void CompileBroker::pop_jni_handle_block() {
2374   JavaThread* thread = JavaThread::current();
2375 
2376   // Release our JNI handle block
2377   JNIHandleBlock* compile_handles = thread->active_handles();
2378   JNIHandleBlock* java_handles = compile_handles->pop_frame_link();
2379   thread->set_active_handles(java_handles);
2380   compile_handles->set_pop_frame_link(NULL);
2381   JNIHandleBlock::release_block(compile_handles, thread); // may block
2382 }
2383 
2384 // ------------------------------------------------------------------
2385 // CompileBroker::collect_statistics
2386 //
2387 // Collect statistics about the compilation.
2388 
2389 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2390   bool success = task->is_success();
2391   methodHandle method (thread, task->method());
2392   uint compile_id = task->compile_id();
2393   bool is_osr = (task->osr_bci() != standard_entry_bci);
2394   nmethod* code = task->code();
2395   CompilerCounters* counters = thread->counters();
2396 
2397   assert(code == NULL || code->is_locked_by_vm(), "will survive the MutexLocker");
2398   MutexLocker locker(CompileStatistics_lock);
2399 
2400   // _perf variables are production performance counters which are
2401   // updated regardless of the setting of the CITime and CITimeEach flags
2402   //
2403 
2404   // account all time, including bailouts and failures in this counter;
2405   // C1 and C2 counters are counting both successful and unsuccessful compiles
2406   _t_total_compilation.add(time);
2407 
2408   if (!success) {
2409     _total_bailout_count++;
2410     if (UsePerfData) {
2411       _perf_last_failed_method->set_value(counters->current_method());
2412       _perf_last_failed_type->set_value(counters->compile_type());
2413       _perf_total_bailout_count->inc();
2414     }
2415     _t_bailedout_compilation.add(time);
2416   } else if (code == NULL) {
2417     if (UsePerfData) {
2418       _perf_last_invalidated_method->set_value(counters->current_method());
2419       _perf_last_invalidated_type->set_value(counters->compile_type());
2420       _perf_total_invalidated_count->inc();
2421     }
2422     _total_invalidated_count++;
2423     _t_invalidated_compilation.add(time);
2424   } else {
2425     // Compilation succeeded
2426 
2427     // update compilation ticks - used by the implementation of
2428     // java.lang.management.CompilationMBean
2429     _perf_total_compilation->inc(time.ticks());
2430     _peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time;
2431 
2432     if (CITime) {
2433       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2434       if (is_osr) {
2435         _t_osr_compilation.add(time);
2436         _sum_osr_bytes_compiled += bytes_compiled;
2437       } else {
2438         _t_standard_compilation.add(time);
2439         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2440       }
2441 
2442 #if INCLUDE_JVMCI
2443       AbstractCompiler* comp = compiler(task->comp_level());
2444       if (comp) {
2445         CompilerStatistics* stats = comp->stats();
2446         if (stats) {
2447           if (is_osr) {
2448             stats->_osr.update(time, bytes_compiled);
2449           } else {
2450             stats->_standard.update(time, bytes_compiled);
2451           }
2452           stats->_nmethods_size += code->total_size();
2453           stats->_nmethods_code_size += code->insts_size();
2454         } else { // if (!stats)
2455           assert(false, "Compiler statistics object must exist");
2456         }
2457       } else { // if (!comp)
2458         assert(false, "Compiler object must exist");
2459       }
2460 #endif // INCLUDE_JVMCI
2461     }
2462 
2463     if (UsePerfData) {
2464       // save the name of the last method compiled
2465       _perf_last_method->set_value(counters->current_method());
2466       _perf_last_compile_type->set_value(counters->compile_type());
2467       _perf_last_compile_size->set_value(method->code_size() +
2468                                          task->num_inlined_bytecodes());
2469       if (is_osr) {
2470         _perf_osr_compilation->inc(time.ticks());
2471         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2472       } else {
2473         _perf_standard_compilation->inc(time.ticks());
2474         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2475       }
2476     }
2477 
2478     if (CITimeEach) {
2479       float bytes_per_sec = 1.0 * (method->code_size() + task->num_inlined_bytecodes()) / time.seconds();
2480       tty->print_cr("%3d   seconds: %f bytes/sec : %f (bytes %d + %d inlined)",
2481                     compile_id, time.seconds(), bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2482     }
2483 
2484     // Collect counts of successful compilations
2485     _sum_nmethod_size      += code->total_size();
2486     _sum_nmethod_code_size += code->insts_size();
2487     _total_compile_count++;
2488 
2489     if (UsePerfData) {
2490       _perf_sum_nmethod_size->inc(     code->total_size());
2491       _perf_sum_nmethod_code_size->inc(code->insts_size());
2492       _perf_total_compile_count->inc();
2493     }
2494 
2495     if (is_osr) {
2496       if (UsePerfData) _perf_total_osr_compile_count->inc();
2497       _total_osr_compile_count++;
2498     } else {
2499       if (UsePerfData) _perf_total_standard_compile_count->inc();
2500       _total_standard_compile_count++;
2501     }
2502   }
2503   // set the current method for the thread to null
2504   if (UsePerfData) counters->set_current_method("");
2505 }
2506 
2507 const char* CompileBroker::compiler_name(int comp_level) {
2508   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2509   if (comp == NULL) {
2510     return "no compiler";
2511   } else {
2512     return (comp->name());
2513   }
2514 }
2515 
2516 #if INCLUDE_JVMCI
2517 void CompileBroker::print_times(AbstractCompiler* comp) {
2518   CompilerStatistics* stats = comp->stats();
2519   if (stats) {
2520     tty->print_cr("  %s {speed: %d bytes/s; standard: %6.3f s, %d bytes, %d methods; osr: %6.3f s, %d bytes, %d methods; nmethods_size: %d bytes; nmethods_code_size: %d bytes}",
2521                 comp->name(), stats->bytes_per_second(),
2522                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2523                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2524                 stats->_nmethods_size, stats->_nmethods_code_size);
2525   } else { // if (!stats)
2526     assert(false, "Compiler statistics object must exist");
2527   }
2528   comp->print_timers();
2529 }
2530 #endif // INCLUDE_JVMCI
2531 
2532 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
2533 #if INCLUDE_JVMCI
2534   elapsedTimer standard_compilation;
2535   elapsedTimer total_compilation;
2536   elapsedTimer osr_compilation;
2537 
2538   int standard_bytes_compiled = 0;
2539   int osr_bytes_compiled = 0;
2540 
2541   int standard_compile_count = 0;
2542   int osr_compile_count = 0;
2543   int total_compile_count = 0;
2544 
2545   int nmethods_size = 0;
2546   int nmethods_code_size = 0;
2547   bool printedHeader = false;
2548 
2549   for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
2550     AbstractCompiler* comp = _compilers[i];
2551     if (comp != NULL) {
2552       if (per_compiler && aggregate && !printedHeader) {
2553         printedHeader = true;
2554         tty->cr();
2555         tty->print_cr("Individual compiler times (for compiled methods only)");
2556         tty->print_cr("------------------------------------------------");
2557         tty->cr();
2558       }
2559       CompilerStatistics* stats = comp->stats();
2560 
2561       if (stats) {
2562         standard_compilation.add(stats->_standard._time);
2563         osr_compilation.add(stats->_osr._time);
2564 
2565         standard_bytes_compiled += stats->_standard._bytes;
2566         osr_bytes_compiled += stats->_osr._bytes;
2567 
2568         standard_compile_count += stats->_standard._count;
2569         osr_compile_count += stats->_osr._count;
2570 
2571         nmethods_size += stats->_nmethods_size;
2572         nmethods_code_size += stats->_nmethods_code_size;
2573       } else { // if (!stats)
2574         assert(false, "Compiler statistics object must exist");
2575       }
2576 
2577       if (per_compiler) {
2578         print_times(comp);
2579       }
2580     }
2581   }
2582   total_compile_count = osr_compile_count + standard_compile_count;
2583   total_compilation.add(osr_compilation);
2584   total_compilation.add(standard_compilation);
2585 
2586   // In hosted mode, print the JVMCI compiler specific counters manually.
2587   if (!UseJVMCICompiler) {
2588     JVMCICompiler::print_compilation_timers();
2589   }
2590 #else // INCLUDE_JVMCI
2591   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
2592   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
2593   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
2594 
2595   int standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
2596   int osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
2597 
2598   int standard_compile_count = CompileBroker::_total_standard_compile_count;
2599   int osr_compile_count = CompileBroker::_total_osr_compile_count;
2600   int total_compile_count = CompileBroker::_total_compile_count;
2601 
2602   int nmethods_size = CompileBroker::_sum_nmethod_code_size;
2603   int nmethods_code_size = CompileBroker::_sum_nmethod_size;
2604 #endif // INCLUDE_JVMCI
2605 
2606   if (!aggregate) {
2607     return;
2608   }
2609   tty->cr();
2610   tty->print_cr("Accumulated compiler times");
2611   tty->print_cr("----------------------------------------------------------");
2612                //0000000000111111111122222222223333333333444444444455555555556666666666
2613                //0123456789012345678901234567890123456789012345678901234567890123456789
2614   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
2615   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
2616                 standard_compilation.seconds(),
2617                 standard_compilation.seconds() / standard_compile_count);
2618   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
2619                 CompileBroker::_t_bailedout_compilation.seconds(),
2620                 CompileBroker::_t_bailedout_compilation.seconds() / CompileBroker::_total_bailout_count);
2621   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
2622                 osr_compilation.seconds(),
2623                 osr_compilation.seconds() / osr_compile_count);
2624   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
2625                 CompileBroker::_t_invalidated_compilation.seconds(),
2626                 CompileBroker::_t_invalidated_compilation.seconds() / CompileBroker::_total_invalidated_count);
2627 
2628   AbstractCompiler *comp = compiler(CompLevel_simple);
2629   if (comp != NULL) {
2630     tty->cr();
2631     comp->print_timers();
2632   }
2633   comp = compiler(CompLevel_full_optimization);
2634   if (comp != NULL) {
2635     tty->cr();
2636     comp->print_timers();
2637   }
2638   tty->cr();
2639   tty->print_cr("  Total compiled methods    : %8d methods", total_compile_count);
2640   tty->print_cr("    Standard compilation    : %8d methods", standard_compile_count);
2641   tty->print_cr("    On stack replacement    : %8d methods", osr_compile_count);
2642   int tcb = osr_bytes_compiled + standard_bytes_compiled;
2643   tty->print_cr("  Total compiled bytecodes  : %8d bytes", tcb);
2644   tty->print_cr("    Standard compilation    : %8d bytes", standard_bytes_compiled);
2645   tty->print_cr("    On stack replacement    : %8d bytes", osr_bytes_compiled);
2646   double tcs = total_compilation.seconds();
2647   int bps = tcs == 0.0 ? 0 : (int)(tcb / tcs);
2648   tty->print_cr("  Average compilation speed : %8d bytes/s", bps);
2649   tty->cr();
2650   tty->print_cr("  nmethod code size         : %8d bytes", nmethods_code_size);
2651   tty->print_cr("  nmethod total size        : %8d bytes", nmethods_size);
2652 }
2653 
2654 // Print general/accumulated JIT information.
2655 void CompileBroker::print_info(outputStream *out) {
2656   if (out == NULL) out = tty;
2657   out->cr();
2658   out->print_cr("======================");
2659   out->print_cr("   General JIT info   ");
2660   out->print_cr("======================");
2661   out->cr();
2662   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
2663   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
2664   out->cr();
2665   out->print_cr("CodeCache overview");
2666   out->print_cr("--------------------------------------------------------");
2667   out->cr();
2668   out->print_cr("         Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K);
2669   out->print_cr("        Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K);
2670   out->print_cr("  Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K);
2671   out->cr();
2672 
2673   out->cr();
2674   out->print_cr("CodeCache cleaning overview");
2675   out->print_cr("--------------------------------------------------------");
2676   out->cr();
2677   NMethodSweeper::print(out);
2678   out->print_cr("--------------------------------------------------------");
2679   out->cr();
2680 }
2681 
2682 // Note: tty_lock must not be held upon entry to this function.
2683 //       Print functions called from herein do "micro-locking" on tty_lock.
2684 //       That's a tradeoff which keeps together important blocks of output.
2685 //       At the same time, continuous tty_lock hold time is kept in check,
2686 //       preventing concurrently printing threads from stalling a long time.
2687 void CompileBroker::print_heapinfo(outputStream* out, const char* function, size_t granularity) {
2688   TimeStamp ts_total;
2689   TimeStamp ts_global;
2690   TimeStamp ts;
2691 
2692   bool allFun = !strcmp(function, "all");
2693   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
2694   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
2695   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
2696   bool methodCount = !strcmp(function, "MethodCount") || allFun;
2697   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
2698   bool methodAge = !strcmp(function, "MethodAge") || allFun;
2699   bool methodNames = !strcmp(function, "MethodNames") || allFun;
2700   bool discard = !strcmp(function, "discard") || allFun;
2701 
2702   if (out == NULL) {
2703     out = tty;
2704   }
2705 
2706   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
2707     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
2708     out->cr();
2709     return;
2710   }
2711 
2712   ts_total.update(); // record starting point
2713 
2714   if (aggregate) {
2715     print_info(out);
2716   }
2717 
2718   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
2719   // That prevents another thread from destroying our view on the CodeHeap.
2720   // When we request individual parts of the analysis via the jcmd interface, it is possible
2721   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
2722   // updated the aggregated data. That's a tolerable tradeoff because we can't hold a lock
2723   // across user interaction.
2724   // Acquire this lock before acquiring the CodeCache_lock.
2725   // CodeHeapStateAnalytics_lock could be held by a concurrent thread for a long time,
2726   // leading to an unnecessarily long hold time of the CodeCache_lock.
2727   ts.update(); // record starting point
2728   MutexLocker mu1(CodeHeapStateAnalytics_lock, Mutex::_no_safepoint_check_flag);
2729   out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
2730 
2731   // If we serve an "allFun" call, it is beneficial to hold the CodeCache_lock
2732   // for the entire duration of aggregation and printing. That makes sure
2733   // we see a consistent picture and do not run into issues caused by
2734   // the CodeHeap being altered concurrently.
2735   Mutex* global_lock   = allFun ? CodeCache_lock : NULL;
2736   Mutex* function_lock = allFun ? NULL : CodeCache_lock;
2737   ts_global.update(); // record starting point
2738   MutexLocker mu2(global_lock, Mutex::_no_safepoint_check_flag);
2739   if (global_lock != NULL) {
2740     out->print_cr("\n__ CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
2741     ts_global.update(); // record starting point
2742   }
2743 
2744   if (aggregate) {
2745     ts.update(); // record starting point
2746     MutexLocker mu3(function_lock, Mutex::_no_safepoint_check_flag);
2747     if (function_lock != NULL) {
2748       out->print_cr("\n__ CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
2749     }
2750 
2751     ts.update(); // record starting point
2752     CodeCache::aggregate(out, granularity);
2753     if (function_lock != NULL) {
2754       out->print_cr("\n__ CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
2755     }
2756   }
2757 
2758   if (usedSpace) CodeCache::print_usedSpace(out);
2759   if (freeSpace) CodeCache::print_freeSpace(out);
2760   if (methodCount) CodeCache::print_count(out);
2761   if (methodSpace) CodeCache::print_space(out);
2762   if (methodAge) CodeCache::print_age(out);
2763   if (methodNames) {
2764     // print_names() has shown to be sensitive to concurrent CodeHeap modifications.
2765     // Therefore, request  the CodeCache_lock before calling...
2766     MutexLocker mu3(function_lock, Mutex::_no_safepoint_check_flag);
2767     CodeCache::print_names(out);
2768   }
2769   if (discard) CodeCache::discard(out);
2770 
2771   if (global_lock != NULL) {
2772     out->print_cr("\n__ CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
2773   }
2774   out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
2775 }
--- EOF ---