1 /*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "aot/aotLoader.hpp"
27 #include "code/codeBlob.hpp"
28 #include "code/codeCache.hpp"
29 #include "code/codeHeapState.hpp"
30 #include "code/compiledIC.hpp"
31 #include "code/dependencies.hpp"
32 #include "code/dependencyContext.hpp"
33 #include "code/icBuffer.hpp"
34 #include "code/nmethod.hpp"
35 #include "code/pcDesc.hpp"
36 #include "compiler/compilationPolicy.hpp"
37 #include "compiler/compileBroker.hpp"
38 #include "jfr/jfrEvents.hpp"
39 #include "logging/log.hpp"
40 #include "logging/logStream.hpp"
41 #include "memory/allocation.inline.hpp"
42 #include "memory/iterator.hpp"
43 #include "memory/resourceArea.hpp"
44 #include "memory/universe.hpp"
45 #include "oops/method.inline.hpp"
46 #include "oops/objArrayOop.hpp"
47 #include "oops/oop.inline.hpp"
48 #include "oops/verifyOopClosure.hpp"
49 #include "runtime/arguments.hpp"
50 #include "runtime/deoptimization.hpp"
51 #include "runtime/handles.inline.hpp"
52 #include "runtime/icache.hpp"
53 #include "runtime/java.hpp"
54 #include "runtime/mutexLocker.hpp"
55 #include "runtime/safepointVerifiers.hpp"
56 #include "runtime/sweeper.hpp"
57 #include "runtime/vmThread.hpp"
58 #include "services/memoryService.hpp"
59 #include "utilities/align.hpp"
60 #include "utilities/vmError.hpp"
61 #include "utilities/xmlstream.hpp"
62 #ifdef COMPILER1
63 #include "c1/c1_Compilation.hpp"
64 #include "c1/c1_Compiler.hpp"
65 #endif
66 #ifdef COMPILER2
67 #include "opto/c2compiler.hpp"
68 #include "opto/compile.hpp"
69 #include "opto/node.hpp"
70 #endif
71
72 // Helper class for printing in CodeCache
73 class CodeBlob_sizes {
74 private:
75 int count;
76 int total_size;
77 int header_size;
78 int code_size;
79 int stub_size;
80 int relocation_size;
81 int scopes_oop_size;
82 int scopes_metadata_size;
83 int scopes_data_size;
84 int scopes_pcs_size;
85
86 public:
87 CodeBlob_sizes() {
88 count = 0;
89 total_size = 0;
90 header_size = 0;
91 code_size = 0;
92 stub_size = 0;
93 relocation_size = 0;
94 scopes_oop_size = 0;
95 scopes_metadata_size = 0;
96 scopes_data_size = 0;
97 scopes_pcs_size = 0;
98 }
99
100 int total() { return total_size; }
101 bool is_empty() { return count == 0; }
102
103 void print(const char* title) {
104 tty->print_cr(" #%d %s = %dK (hdr %d%%, loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
105 count,
106 title,
107 (int)(total() / K),
108 header_size * 100 / total_size,
109 relocation_size * 100 / total_size,
110 code_size * 100 / total_size,
111 stub_size * 100 / total_size,
112 scopes_oop_size * 100 / total_size,
113 scopes_metadata_size * 100 / total_size,
114 scopes_data_size * 100 / total_size,
115 scopes_pcs_size * 100 / total_size);
116 }
117
118 void add(CodeBlob* cb) {
119 count++;
120 total_size += cb->size();
121 header_size += cb->header_size();
122 relocation_size += cb->relocation_size();
123 if (cb->is_nmethod()) {
124 nmethod* nm = cb->as_nmethod_or_null();
125 code_size += nm->insts_size();
126 stub_size += nm->stub_size();
127
128 scopes_oop_size += nm->oops_size();
129 scopes_metadata_size += nm->metadata_size();
130 scopes_data_size += nm->scopes_data_size();
131 scopes_pcs_size += nm->scopes_pcs_size();
132 } else {
133 code_size += cb->code_size();
134 }
135 }
136 };
137
138 // Iterate over all CodeHeaps
139 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
140 #define FOR_ALL_NMETHOD_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _nmethod_heaps->begin(); heap != _nmethod_heaps->end(); ++heap)
141 #define FOR_ALL_ALLOCABLE_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _allocable_heaps->begin(); heap != _allocable_heaps->end(); ++heap)
142
143 // Iterate over all CodeBlobs (cb) on the given CodeHeap
144 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
145
146 address CodeCache::_low_bound = 0;
147 address CodeCache::_high_bound = 0;
148 int CodeCache::_number_of_nmethods_with_dependencies = 0;
149 ExceptionCache* volatile CodeCache::_exception_cache_purge_list = NULL;
150
151 // Initialize arrays of CodeHeap subsets
152 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
153 GrowableArray<CodeHeap*>* CodeCache::_compiled_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
154 GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
155 GrowableArray<CodeHeap*>* CodeCache::_allocable_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
156
157 void CodeCache::check_heap_sizes(size_t non_nmethod_size, size_t profiled_size, size_t non_profiled_size, size_t cache_size, bool all_set) {
158 size_t total_size = non_nmethod_size + profiled_size + non_profiled_size;
159 // Prepare error message
160 const char* error = "Invalid code heap sizes";
161 err_msg message("NonNMethodCodeHeapSize (" SIZE_FORMAT "K) + ProfiledCodeHeapSize (" SIZE_FORMAT "K)"
162 " + NonProfiledCodeHeapSize (" SIZE_FORMAT "K) = " SIZE_FORMAT "K",
163 non_nmethod_size/K, profiled_size/K, non_profiled_size/K, total_size/K);
164
165 if (total_size > cache_size) {
166 // Some code heap sizes were explicitly set: total_size must be <= cache_size
167 message.append(" is greater than ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
168 vm_exit_during_initialization(error, message);
169 } else if (all_set && total_size != cache_size) {
170 // All code heap sizes were explicitly set: total_size must equal cache_size
171 message.append(" is not equal to ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
172 vm_exit_during_initialization(error, message);
173 }
174 }
175
176 void CodeCache::initialize_heaps() {
177 bool non_nmethod_set = FLAG_IS_CMDLINE(NonNMethodCodeHeapSize);
178 bool profiled_set = FLAG_IS_CMDLINE(ProfiledCodeHeapSize);
179 bool non_profiled_set = FLAG_IS_CMDLINE(NonProfiledCodeHeapSize);
180 size_t min_size = os::vm_page_size();
181 size_t cache_size = ReservedCodeCacheSize;
182 size_t non_nmethod_size = NonNMethodCodeHeapSize;
183 size_t profiled_size = ProfiledCodeHeapSize;
184 size_t non_profiled_size = NonProfiledCodeHeapSize;
185 // Check if total size set via command line flags exceeds the reserved size
186 check_heap_sizes((non_nmethod_set ? non_nmethod_size : min_size),
187 (profiled_set ? profiled_size : min_size),
188 (non_profiled_set ? non_profiled_size : min_size),
189 cache_size,
190 non_nmethod_set && profiled_set && non_profiled_set);
191
192 // Determine size of compiler buffers
193 size_t code_buffers_size = 0;
194 #ifdef COMPILER1
195 // C1 temporary code buffers (see Compiler::init_buffer_blob())
196 const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
197 code_buffers_size += c1_count * Compiler::code_buffer_size();
198 #endif
199 #ifdef COMPILER2
200 // C2 scratch buffers (see Compile::init_scratch_buffer_blob())
201 const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
202 // Initial size of constant table (this may be increased if a compiled method needs more space)
203 code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
204 #endif
205
206 // Increase default non_nmethod_size to account for compiler buffers
207 if (!non_nmethod_set) {
208 non_nmethod_size += code_buffers_size;
209 }
210 // Calculate default CodeHeap sizes if not set by user
211 if (!non_nmethod_set && !profiled_set && !non_profiled_set) {
212 // Check if we have enough space for the non-nmethod code heap
213 if (cache_size > non_nmethod_size) {
214 // Use the default value for non_nmethod_size and one half of the
215 // remaining size for non-profiled and one half for profiled methods
216 size_t remaining_size = cache_size - non_nmethod_size;
217 profiled_size = remaining_size / 2;
218 non_profiled_size = remaining_size - profiled_size;
219 } else {
220 // Use all space for the non-nmethod heap and set other heaps to minimal size
221 non_nmethod_size = cache_size - 2 * min_size;
222 profiled_size = min_size;
223 non_profiled_size = min_size;
224 }
225 } else if (!non_nmethod_set || !profiled_set || !non_profiled_set) {
226 // The user explicitly set some code heap sizes. Increase or decrease the (default)
227 // sizes of the other code heaps accordingly. First adapt non-profiled and profiled
228 // code heap sizes and then only change non-nmethod code heap size if still necessary.
229 intx diff_size = cache_size - (non_nmethod_size + profiled_size + non_profiled_size);
230 if (non_profiled_set) {
231 if (!profiled_set) {
232 // Adapt size of profiled code heap
233 if (diff_size < 0 && ((intx)profiled_size + diff_size) <= 0) {
234 // Not enough space available, set to minimum size
235 diff_size += profiled_size - min_size;
236 profiled_size = min_size;
237 } else {
238 profiled_size += diff_size;
239 diff_size = 0;
240 }
241 }
242 } else if (profiled_set) {
243 // Adapt size of non-profiled code heap
244 if (diff_size < 0 && ((intx)non_profiled_size + diff_size) <= 0) {
245 // Not enough space available, set to minimum size
246 diff_size += non_profiled_size - min_size;
247 non_profiled_size = min_size;
248 } else {
249 non_profiled_size += diff_size;
250 diff_size = 0;
251 }
252 } else if (non_nmethod_set) {
253 // Distribute remaining size between profiled and non-profiled code heaps
254 diff_size = cache_size - non_nmethod_size;
255 profiled_size = diff_size / 2;
256 non_profiled_size = diff_size - profiled_size;
257 diff_size = 0;
258 }
259 if (diff_size != 0) {
260 // Use non-nmethod code heap for remaining space requirements
261 assert(!non_nmethod_set && ((intx)non_nmethod_size + diff_size) > 0, "sanity");
262 non_nmethod_size += diff_size;
263 }
264 }
265
266 // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
267 if (!heap_available(CodeBlobType::MethodProfiled)) {
268 non_profiled_size += profiled_size;
269 profiled_size = 0;
270 }
271 // We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
272 if (!heap_available(CodeBlobType::MethodNonProfiled)) {
273 non_nmethod_size += non_profiled_size;
274 non_profiled_size = 0;
275 }
276 // Make sure we have enough space for VM internal code
277 uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
278 if (non_nmethod_size < min_code_cache_size) {
279 vm_exit_during_initialization(err_msg(
280 "Not enough space in non-nmethod code heap to run VM: " SIZE_FORMAT "K < " SIZE_FORMAT "K",
281 non_nmethod_size/K, min_code_cache_size/K));
282 }
283
284 // Verify sizes and update flag values
285 assert(non_profiled_size + profiled_size + non_nmethod_size == cache_size, "Invalid code heap sizes");
286 FLAG_SET_ERGO(NonNMethodCodeHeapSize, non_nmethod_size);
287 FLAG_SET_ERGO(ProfiledCodeHeapSize, profiled_size);
288 FLAG_SET_ERGO(NonProfiledCodeHeapSize, non_profiled_size);
289
290 // If large page support is enabled, align code heaps according to large
291 // page size to make sure that code cache is covered by large pages.
292 const size_t alignment = MAX2(page_size(false, 8), (size_t) os::vm_allocation_granularity());
293 non_nmethod_size = align_up(non_nmethod_size, alignment);
294 profiled_size = align_down(profiled_size, alignment);
295
296 // Reserve one continuous chunk of memory for CodeHeaps and split it into
297 // parts for the individual heaps. The memory layout looks like this:
298 // ---------- high -----------
299 // Non-profiled nmethods
300 // Profiled nmethods
301 // Non-nmethods
302 // ---------- low ------------
303 ReservedCodeSpace rs = reserve_heap_memory(cache_size);
304 ReservedSpace non_method_space = rs.first_part(non_nmethod_size);
305 ReservedSpace rest = rs.last_part(non_nmethod_size);
306 ReservedSpace profiled_space = rest.first_part(profiled_size);
307 ReservedSpace non_profiled_space = rest.last_part(profiled_size);
308
309 // Non-nmethods (stubs, adapters, ...)
310 add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
311 // Tier 2 and tier 3 (profiled) methods
312 add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
313 // Tier 1 and tier 4 (non-profiled) methods and native methods
314 add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
315 }
316
317 size_t CodeCache::page_size(bool aligned, size_t min_pages) {
318 if (os::can_execute_large_page_memory()) {
319 if (InitialCodeCacheSize < ReservedCodeCacheSize) {
320 // Make sure that the page size allows for an incremental commit of the reserved space
321 min_pages = MAX2(min_pages, (size_t)8);
322 }
323 return aligned ? os::page_size_for_region_aligned(ReservedCodeCacheSize, min_pages) :
324 os::page_size_for_region_unaligned(ReservedCodeCacheSize, min_pages);
325 } else {
326 return os::vm_page_size();
327 }
328 }
329
330 ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
331 // Align and reserve space for code cache
332 const size_t rs_ps = page_size();
333 const size_t rs_align = MAX2(rs_ps, (size_t) os::vm_allocation_granularity());
334 const size_t rs_size = align_up(size, rs_align);
335 ReservedCodeSpace rs(rs_size, rs_align, rs_ps > (size_t) os::vm_page_size());
336 if (!rs.is_reserved()) {
337 vm_exit_during_initialization(err_msg("Could not reserve enough space for code cache (" SIZE_FORMAT "K)",
338 rs_size/K));
339 }
340
341 // Initialize bounds
342 _low_bound = (address)rs.base();
343 _high_bound = _low_bound + rs.size();
344 return rs;
345 }
346
347 // Heaps available for allocation
348 bool CodeCache::heap_available(int code_blob_type) {
349 if (!SegmentedCodeCache) {
350 // No segmentation: use a single code heap
351 return (code_blob_type == CodeBlobType::All);
352 } else if (Arguments::is_interpreter_only()) {
353 // Interpreter only: we don't need any method code heaps
354 return (code_blob_type == CodeBlobType::NonNMethod);
355 } else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
356 // Tiered compilation: use all code heaps
357 return (code_blob_type < CodeBlobType::All);
358 } else {
359 // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
360 return (code_blob_type == CodeBlobType::NonNMethod) ||
361 (code_blob_type == CodeBlobType::MethodNonProfiled);
362 }
363 }
364
365 const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
366 switch(code_blob_type) {
367 case CodeBlobType::NonNMethod:
368 return "NonNMethodCodeHeapSize";
369 break;
370 case CodeBlobType::MethodNonProfiled:
371 return "NonProfiledCodeHeapSize";
372 break;
373 case CodeBlobType::MethodProfiled:
374 return "ProfiledCodeHeapSize";
375 break;
376 }
377 ShouldNotReachHere();
378 return NULL;
379 }
380
381 int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) {
382 if (lhs->code_blob_type() == rhs->code_blob_type()) {
383 return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0);
384 } else {
385 return lhs->code_blob_type() - rhs->code_blob_type();
386 }
387 }
388
389 void CodeCache::add_heap(CodeHeap* heap) {
390 assert(!Universe::is_fully_initialized(), "late heap addition?");
391
392 _heaps->insert_sorted<code_heap_compare>(heap);
393
394 int type = heap->code_blob_type();
395 if (code_blob_type_accepts_compiled(type)) {
396 _compiled_heaps->insert_sorted<code_heap_compare>(heap);
397 }
398 if (code_blob_type_accepts_nmethod(type)) {
399 _nmethod_heaps->insert_sorted<code_heap_compare>(heap);
400 }
401 if (code_blob_type_accepts_allocable(type)) {
402 _allocable_heaps->insert_sorted<code_heap_compare>(heap);
403 }
404 }
405
406 void CodeCache::add_heap(ReservedSpace rs, const char* name, int code_blob_type) {
407 // Check if heap is needed
408 if (!heap_available(code_blob_type)) {
409 return;
410 }
411
412 // Create CodeHeap
413 CodeHeap* heap = new CodeHeap(name, code_blob_type);
414 add_heap(heap);
415
416 // Reserve Space
417 size_t size_initial = MIN2((size_t)InitialCodeCacheSize, rs.size());
418 size_initial = align_up(size_initial, os::vm_page_size());
419 if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
420 vm_exit_during_initialization(err_msg("Could not reserve enough space in %s (" SIZE_FORMAT "K)",
421 heap->name(), size_initial/K));
422 }
423
424 // Register the CodeHeap
425 MemoryService::add_code_heap_memory_pool(heap, name);
426 }
427
428 CodeHeap* CodeCache::get_code_heap_containing(void* start) {
429 FOR_ALL_HEAPS(heap) {
430 if ((*heap)->contains(start)) {
431 return *heap;
432 }
433 }
434 return NULL;
435 }
436
437 CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
438 assert(cb != NULL, "CodeBlob is null");
439 FOR_ALL_HEAPS(heap) {
440 if ((*heap)->contains_blob(cb)) {
441 return *heap;
442 }
443 }
444 ShouldNotReachHere();
445 return NULL;
446 }
447
448 CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
449 FOR_ALL_HEAPS(heap) {
450 if ((*heap)->accepts(code_blob_type)) {
451 return *heap;
452 }
453 }
454 return NULL;
455 }
456
457 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
458 assert_locked_or_safepoint(CodeCache_lock);
459 assert(heap != NULL, "heap is null");
460 return (CodeBlob*)heap->first();
461 }
462
463 CodeBlob* CodeCache::first_blob(int code_blob_type) {
464 if (heap_available(code_blob_type)) {
465 return first_blob(get_code_heap(code_blob_type));
466 } else {
467 return NULL;
468 }
469 }
470
471 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
472 assert_locked_or_safepoint(CodeCache_lock);
473 assert(heap != NULL, "heap is null");
474 return (CodeBlob*)heap->next(cb);
475 }
476
477 /**
478 * Do not seize the CodeCache lock here--if the caller has not
479 * already done so, we are going to lose bigtime, since the code
480 * cache will contain a garbage CodeBlob until the caller can
481 * run the constructor for the CodeBlob subclass he is busy
482 * instantiating.
483 */
484 CodeBlob* CodeCache::allocate(int size, int code_blob_type, int orig_code_blob_type) {
485 // Possibly wakes up the sweeper thread.
486 NMethodSweeper::notify(code_blob_type);
487 assert_locked_or_safepoint(CodeCache_lock);
488 assert(size > 0, "Code cache allocation request must be > 0 but is %d", size);
489 if (size <= 0) {
490 return NULL;
491 }
492 CodeBlob* cb = NULL;
493
494 // Get CodeHeap for the given CodeBlobType
495 CodeHeap* heap = get_code_heap(code_blob_type);
496 assert(heap != NULL, "heap is null");
497
498 while (true) {
499 cb = (CodeBlob*)heap->allocate(size);
500 if (cb != NULL) break;
501 if (!heap->expand_by(CodeCacheExpansionSize)) {
502 // Save original type for error reporting
503 if (orig_code_blob_type == CodeBlobType::All) {
504 orig_code_blob_type = code_blob_type;
505 }
506 // Expansion failed
507 if (SegmentedCodeCache) {
508 // Fallback solution: Try to store code in another code heap.
509 // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled)
510 // Note that in the sweeper, we check the reverse_free_ratio of the code heap
511 // and force stack scanning if less than 10% of the code heap are free.
512 int type = code_blob_type;
513 switch (type) {
514 case CodeBlobType::NonNMethod:
515 type = CodeBlobType::MethodNonProfiled;
516 break;
517 case CodeBlobType::MethodNonProfiled:
518 type = CodeBlobType::MethodProfiled;
519 break;
520 case CodeBlobType::MethodProfiled:
521 // Avoid loop if we already tried that code heap
522 if (type == orig_code_blob_type) {
523 type = CodeBlobType::MethodNonProfiled;
524 }
525 break;
526 }
527 if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) {
528 if (PrintCodeCacheExtension) {
529 tty->print_cr("Extension of %s failed. Trying to allocate in %s.",
530 heap->name(), get_code_heap(type)->name());
531 }
532 return allocate(size, type, orig_code_blob_type);
533 }
534 }
535 MutexUnlocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
536 CompileBroker::handle_full_code_cache(orig_code_blob_type);
537 return NULL;
538 }
539 if (PrintCodeCacheExtension) {
540 ResourceMark rm;
541 if (_nmethod_heaps->length() >= 1) {
542 tty->print("%s", heap->name());
543 } else {
544 tty->print("CodeCache");
545 }
546 tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
547 (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
548 (address)heap->high() - (address)heap->low_boundary());
549 }
550 }
551 print_trace("allocation", cb, size);
552 return cb;
553 }
554
555 void CodeCache::free(CodeBlob* cb) {
556 assert_locked_or_safepoint(CodeCache_lock);
557 CodeHeap* heap = get_code_heap(cb);
558 print_trace("free", cb);
559 if (cb->is_nmethod()) {
560 heap->set_nmethod_count(heap->nmethod_count() - 1);
561 if (((nmethod *)cb)->has_dependencies()) {
562 _number_of_nmethods_with_dependencies--;
563 }
564 }
565 if (cb->is_adapter_blob()) {
566 heap->set_adapter_count(heap->adapter_count() - 1);
567 }
568
569 // Get heap for given CodeBlob and deallocate
570 get_code_heap(cb)->deallocate(cb);
571
572 assert(heap->blob_count() >= 0, "sanity check");
573 }
574
575 void CodeCache::free_unused_tail(CodeBlob* cb, size_t used) {
576 assert_locked_or_safepoint(CodeCache_lock);
577 guarantee(cb->is_buffer_blob() && strncmp("Interpreter", cb->name(), 11) == 0, "Only possible for interpreter!");
578 print_trace("free_unused_tail", cb);
579
580 // We also have to account for the extra space (i.e. header) used by the CodeBlob
581 // which provides the memory (see BufferBlob::create() in codeBlob.cpp).
582 used += CodeBlob::align_code_offset(cb->header_size());
583
584 // Get heap for given CodeBlob and deallocate its unused tail
585 get_code_heap(cb)->deallocate_tail(cb, used);
586 // Adjust the sizes of the CodeBlob
587 cb->adjust_size(used);
588 }
589
590 void CodeCache::commit(CodeBlob* cb) {
591 // this is called by nmethod::nmethod, which must already own CodeCache_lock
592 assert_locked_or_safepoint(CodeCache_lock);
593 CodeHeap* heap = get_code_heap(cb);
594 if (cb->is_nmethod()) {
595 heap->set_nmethod_count(heap->nmethod_count() + 1);
596 if (((nmethod *)cb)->has_dependencies()) {
597 _number_of_nmethods_with_dependencies++;
598 }
599 }
600 if (cb->is_adapter_blob()) {
601 heap->set_adapter_count(heap->adapter_count() + 1);
602 }
603
604 // flush the hardware I-cache
605 ICache::invalidate_range(cb->content_begin(), cb->content_size());
606 }
607
608 bool CodeCache::contains(void *p) {
609 // S390 uses contains() in current_frame(), which is used before
610 // code cache initialization if NativeMemoryTracking=detail is set.
611 S390_ONLY(if (_heaps == NULL) return false;)
612 // It should be ok to call contains without holding a lock.
613 FOR_ALL_HEAPS(heap) {
614 if ((*heap)->contains(p)) {
615 return true;
616 }
617 }
618 return false;
619 }
620
621 bool CodeCache::contains(nmethod *nm) {
622 return contains((void *)nm);
623 }
624
625 // This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
626 // looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
627 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
628 CodeBlob* CodeCache::find_blob(void* start) {
629 CodeBlob* result = find_blob_unsafe(start);
630 // We could potentially look up non_entrant methods
631 guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || VMError::is_error_reported(), "unsafe access to zombie method");
632 return result;
633 }
634
635 // Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
636 // what you are doing)
637 CodeBlob* CodeCache::find_blob_unsafe(void* start) {
638 // NMT can walk the stack before code cache is created
639 if (_heaps != NULL) {
640 CodeHeap* heap = get_code_heap_containing(start);
641 if (heap != NULL) {
642 return heap->find_blob_unsafe(start);
643 }
644 }
645 return NULL;
646 }
647
648 nmethod* CodeCache::find_nmethod(void* start) {
649 CodeBlob* cb = find_blob(start);
650 assert(cb->is_nmethod(), "did not find an nmethod");
651 return (nmethod*)cb;
652 }
653
654 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
655 assert_locked_or_safepoint(CodeCache_lock);
656 FOR_ALL_HEAPS(heap) {
657 FOR_ALL_BLOBS(cb, *heap) {
658 f(cb);
659 }
660 }
661 }
662
663 void CodeCache::nmethods_do(void f(nmethod* nm)) {
664 assert_locked_or_safepoint(CodeCache_lock);
665 NMethodIterator iter(NMethodIterator::all_blobs);
666 while(iter.next()) {
667 f(iter.method());
668 }
669 }
670
671 void CodeCache::metadata_do(MetadataClosure* f) {
672 assert_locked_or_safepoint(CodeCache_lock);
673 NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
674 while(iter.next()) {
675 iter.method()->metadata_do(f);
676 }
677 AOTLoader::metadata_do(f);
678 }
679
680 int CodeCache::alignment_unit() {
681 return (int)_heaps->first()->alignment_unit();
682 }
683
684 int CodeCache::alignment_offset() {
685 return (int)_heaps->first()->alignment_offset();
686 }
687
688 // Mark nmethods for unloading if they contain otherwise unreachable oops.
689 void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
690 assert_locked_or_safepoint(CodeCache_lock);
691 UnloadingScope scope(is_alive);
692 CompiledMethodIterator iter(CompiledMethodIterator::only_alive);
693 while(iter.next()) {
694 iter.method()->do_unloading(unloading_occurred);
695 }
696 }
697
698 void CodeCache::blobs_do(CodeBlobClosure* f) {
699 assert_locked_or_safepoint(CodeCache_lock);
700 FOR_ALL_ALLOCABLE_HEAPS(heap) {
701 FOR_ALL_BLOBS(cb, *heap) {
702 if (cb->is_alive()) {
703 f->do_code_blob(cb);
704 #ifdef ASSERT
705 if (cb->is_nmethod()) {
706 Universe::heap()->verify_nmethod((nmethod*)cb);
707 }
708 #endif //ASSERT
709 }
710 }
711 }
712 }
713
714 void CodeCache::verify_clean_inline_caches() {
715 #ifdef ASSERT
716 NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
717 while(iter.next()) {
718 nmethod* nm = iter.method();
719 assert(!nm->is_unloaded(), "Tautology");
720 nm->verify_clean_inline_caches();
721 nm->verify();
722 }
723 #endif
724 }
725
726 void CodeCache::verify_icholder_relocations() {
727 #ifdef ASSERT
728 // make sure that we aren't leaking icholders
729 int count = 0;
730 FOR_ALL_HEAPS(heap) {
731 FOR_ALL_BLOBS(cb, *heap) {
732 CompiledMethod *nm = cb->as_compiled_method_or_null();
733 if (nm != NULL) {
734 count += nm->verify_icholder_relocations();
735 }
736 }
737 }
738 assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
739 CompiledICHolder::live_count(), "must agree");
740 #endif
741 }
742
743 // Defer freeing of concurrently cleaned ExceptionCache entries until
744 // after a global handshake operation.
745 void CodeCache::release_exception_cache(ExceptionCache* entry) {
746 if (SafepointSynchronize::is_at_safepoint()) {
747 delete entry;
748 } else {
749 for (;;) {
750 ExceptionCache* purge_list_head = Atomic::load(&_exception_cache_purge_list);
751 entry->set_purge_list_next(purge_list_head);
752 if (Atomic::cmpxchg(&_exception_cache_purge_list, purge_list_head, entry) == purge_list_head) {
753 break;
754 }
755 }
756 }
757 }
758
759 // Delete exception caches that have been concurrently unlinked,
760 // followed by a global handshake operation.
761 void CodeCache::purge_exception_caches() {
762 ExceptionCache* curr = _exception_cache_purge_list;
763 while (curr != NULL) {
764 ExceptionCache* next = curr->purge_list_next();
765 delete curr;
766 curr = next;
767 }
768 _exception_cache_purge_list = NULL;
769 }
770
771 uint8_t CodeCache::_unloading_cycle = 1;
772
773 void CodeCache::increment_unloading_cycle() {
774 // 2-bit value (see IsUnloadingState in nmethod.cpp for details)
775 // 0 is reserved for new methods.
776 _unloading_cycle = (_unloading_cycle + 1) % 4;
777 if (_unloading_cycle == 0) {
778 _unloading_cycle = 1;
779 }
780 }
781
782 CodeCache::UnloadingScope::UnloadingScope(BoolObjectClosure* is_alive)
783 : _is_unloading_behaviour(is_alive)
784 {
785 _saved_behaviour = IsUnloadingBehaviour::current();
786 IsUnloadingBehaviour::set_current(&_is_unloading_behaviour);
787 increment_unloading_cycle();
788 DependencyContext::cleaning_start();
789 }
790
791 CodeCache::UnloadingScope::~UnloadingScope() {
792 IsUnloadingBehaviour::set_current(_saved_behaviour);
793 DependencyContext::cleaning_end();
794 }
795
796 void CodeCache::verify_oops() {
797 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
798 VerifyOopClosure voc;
799 NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
800 while(iter.next()) {
801 nmethod* nm = iter.method();
802 nm->oops_do(&voc);
803 nm->verify_oop_relocations();
804 }
805 }
806
807 int CodeCache::blob_count(int code_blob_type) {
808 CodeHeap* heap = get_code_heap(code_blob_type);
809 return (heap != NULL) ? heap->blob_count() : 0;
810 }
811
812 int CodeCache::blob_count() {
813 int count = 0;
814 FOR_ALL_HEAPS(heap) {
815 count += (*heap)->blob_count();
816 }
817 return count;
818 }
819
820 int CodeCache::nmethod_count(int code_blob_type) {
821 CodeHeap* heap = get_code_heap(code_blob_type);
822 return (heap != NULL) ? heap->nmethod_count() : 0;
823 }
824
825 int CodeCache::nmethod_count() {
826 int count = 0;
827 FOR_ALL_NMETHOD_HEAPS(heap) {
828 count += (*heap)->nmethod_count();
829 }
830 return count;
831 }
832
833 int CodeCache::adapter_count(int code_blob_type) {
834 CodeHeap* heap = get_code_heap(code_blob_type);
835 return (heap != NULL) ? heap->adapter_count() : 0;
836 }
837
838 int CodeCache::adapter_count() {
839 int count = 0;
840 FOR_ALL_HEAPS(heap) {
841 count += (*heap)->adapter_count();
842 }
843 return count;
844 }
845
846 address CodeCache::low_bound(int code_blob_type) {
847 CodeHeap* heap = get_code_heap(code_blob_type);
848 return (heap != NULL) ? (address)heap->low_boundary() : NULL;
849 }
850
851 address CodeCache::high_bound(int code_blob_type) {
852 CodeHeap* heap = get_code_heap(code_blob_type);
853 return (heap != NULL) ? (address)heap->high_boundary() : NULL;
854 }
855
856 size_t CodeCache::capacity() {
857 size_t cap = 0;
858 FOR_ALL_ALLOCABLE_HEAPS(heap) {
859 cap += (*heap)->capacity();
860 }
861 return cap;
862 }
863
864 size_t CodeCache::unallocated_capacity(int code_blob_type) {
865 CodeHeap* heap = get_code_heap(code_blob_type);
866 return (heap != NULL) ? heap->unallocated_capacity() : 0;
867 }
868
869 size_t CodeCache::unallocated_capacity() {
870 size_t unallocated_cap = 0;
871 FOR_ALL_ALLOCABLE_HEAPS(heap) {
872 unallocated_cap += (*heap)->unallocated_capacity();
873 }
874 return unallocated_cap;
875 }
876
877 size_t CodeCache::max_capacity() {
878 size_t max_cap = 0;
879 FOR_ALL_ALLOCABLE_HEAPS(heap) {
880 max_cap += (*heap)->max_capacity();
881 }
882 return max_cap;
883 }
884
885 /**
886 * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
887 * is free, reverse_free_ratio() returns 4.
888 */
889 double CodeCache::reverse_free_ratio(int code_blob_type) {
890 CodeHeap* heap = get_code_heap(code_blob_type);
891 if (heap == NULL) {
892 return 0;
893 }
894
895 double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
896 double max_capacity = (double)heap->max_capacity();
897 double result = max_capacity / unallocated_capacity;
898 assert (max_capacity >= unallocated_capacity, "Must be");
899 assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
900 return result;
901 }
902
903 size_t CodeCache::bytes_allocated_in_freelists() {
904 size_t allocated_bytes = 0;
905 FOR_ALL_ALLOCABLE_HEAPS(heap) {
906 allocated_bytes += (*heap)->allocated_in_freelist();
907 }
908 return allocated_bytes;
909 }
910
911 int CodeCache::allocated_segments() {
912 int number_of_segments = 0;
913 FOR_ALL_ALLOCABLE_HEAPS(heap) {
914 number_of_segments += (*heap)->allocated_segments();
915 }
916 return number_of_segments;
917 }
918
919 size_t CodeCache::freelists_length() {
920 size_t length = 0;
921 FOR_ALL_ALLOCABLE_HEAPS(heap) {
922 length += (*heap)->freelist_length();
923 }
924 return length;
925 }
926
927 void icache_init();
928
929 void CodeCache::initialize() {
930 assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
931 #ifdef COMPILER2
932 assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment, "CodeCacheSegmentSize must be large enough to align inner loops");
933 #endif
934 assert(CodeCacheSegmentSize >= sizeof(jdouble), "CodeCacheSegmentSize must be large enough to align constants");
935 // This was originally just a check of the alignment, causing failure, instead, round
936 // the code cache to the page size. In particular, Solaris is moving to a larger
937 // default page size.
938 CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size());
939
940 if (SegmentedCodeCache) {
941 // Use multiple code heaps
942 initialize_heaps();
943 } else {
944 // Use a single code heap
945 FLAG_SET_ERGO(NonNMethodCodeHeapSize, 0);
946 FLAG_SET_ERGO(ProfiledCodeHeapSize, 0);
947 FLAG_SET_ERGO(NonProfiledCodeHeapSize, 0);
948 ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
949 add_heap(rs, "CodeCache", CodeBlobType::All);
950 }
951
952 // Initialize ICache flush mechanism
953 // This service is needed for os::register_code_area
954 icache_init();
955
956 // Give OS a chance to register generated code area.
957 // This is used on Windows 64 bit platforms to register
958 // Structured Exception Handlers for our generated code.
959 os::register_code_area((char*)low_bound(), (char*)high_bound());
960 }
961
962 void codeCache_init() {
963 CodeCache::initialize();
964 // Load AOT libraries and add AOT code heaps.
965 AOTLoader::initialize();
966 }
967
968 //------------------------------------------------------------------------------------------------
969
970 int CodeCache::number_of_nmethods_with_dependencies() {
971 return _number_of_nmethods_with_dependencies;
972 }
973
974 void CodeCache::clear_inline_caches() {
975 assert_locked_or_safepoint(CodeCache_lock);
976 CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
977 while(iter.next()) {
978 iter.method()->clear_inline_caches();
979 }
980 }
981
982 void CodeCache::cleanup_inline_caches() {
983 assert_locked_or_safepoint(CodeCache_lock);
984 NMethodIterator iter(NMethodIterator::only_alive_and_not_unloading);
985 while(iter.next()) {
986 iter.method()->cleanup_inline_caches(/*clean_all=*/true);
987 }
988 }
989
990 // Keeps track of time spent for checking dependencies
991 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
992
993 int CodeCache::mark_for_deoptimization(KlassDepChange& changes) {
994 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
995 int number_of_marked_CodeBlobs = 0;
996
997 // search the hierarchy looking for nmethods which are affected by the loading of this class
998
999 // then search the interfaces this class implements looking for nmethods
1000 // which might be dependent of the fact that an interface only had one
1001 // implementor.
1002 // nmethod::check_all_dependencies works only correctly, if no safepoint
1003 // can happen
1004 NoSafepointVerifier nsv;
1005 for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
1006 Klass* d = str.klass();
1007 number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
1008 }
1009
1010 #ifndef PRODUCT
1011 if (VerifyDependencies) {
1012 // Object pointers are used as unique identifiers for dependency arguments. This
1013 // is only possible if no safepoint, i.e., GC occurs during the verification code.
1014 dependentCheckTime.start();
1015 nmethod::check_all_dependencies(changes);
1016 dependentCheckTime.stop();
1017 }
1018 #endif
1019
1020 return number_of_marked_CodeBlobs;
1021 }
1022
1023 CompiledMethod* CodeCache::find_compiled(void* start) {
1024 CodeBlob *cb = find_blob(start);
1025 assert(cb == NULL || cb->is_compiled(), "did not find an compiled_method");
1026 return (CompiledMethod*)cb;
1027 }
1028
1029 bool CodeCache::is_far_target(address target) {
1030 #if INCLUDE_AOT
1031 return NativeCall::is_far_call(_low_bound, target) ||
1032 NativeCall::is_far_call(_high_bound, target);
1033 #else
1034 return false;
1035 #endif
1036 }
1037
1038 #ifdef INCLUDE_JVMTI
1039 // RedefineClasses support for unloading nmethods that are dependent on "old" methods.
1040 // We don't really expect this table to grow very large. If it does, it can become a hashtable.
1041 static GrowableArray<CompiledMethod*>* old_compiled_method_table = NULL;
1042
1043 static void add_to_old_table(CompiledMethod* c) {
1044 if (old_compiled_method_table == NULL) {
1045 old_compiled_method_table = new (ResourceObj::C_HEAP, mtCode) GrowableArray<CompiledMethod*>(100, true);
1046 }
1047 old_compiled_method_table->push(c);
1048 }
1049
1050 static void reset_old_method_table() {
1051 if (old_compiled_method_table != NULL) {
1052 delete old_compiled_method_table;
1053 old_compiled_method_table = NULL;
1054 }
1055 }
1056
1057 // Remove this method when zombied or unloaded.
1058 void CodeCache::unregister_old_nmethod(CompiledMethod* c) {
1059 assert_lock_strong(CodeCache_lock);
1060 if (old_compiled_method_table != NULL) {
1061 int index = old_compiled_method_table->find(c);
1062 if (index != -1) {
1063 old_compiled_method_table->delete_at(index);
1064 }
1065 }
1066 }
1067
1068 void CodeCache::old_nmethods_do(MetadataClosure* f) {
1069 // Walk old method table and mark those on stack.
1070 int length = 0;
1071 if (old_compiled_method_table != NULL) {
1072 length = old_compiled_method_table->length();
1073 for (int i = 0; i < length; i++) {
1074 CompiledMethod* cm = old_compiled_method_table->at(i);
1075 // Only walk alive nmethods, the dead ones will get removed by the sweeper.
1076 if (cm->is_alive()) {
1077 old_compiled_method_table->at(i)->metadata_do(f);
1078 }
1079 }
1080 }
1081 log_debug(redefine, class, nmethod)("Walked %d nmethods for mark_on_stack", length);
1082 }
1083
1084 // Just marks the methods in this class as needing deoptimization
1085 void CodeCache::mark_for_evol_deoptimization(InstanceKlass* dependee) {
1086 assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1087
1088 // Mark dependent AOT nmethods, which are only found via the class redefined.
1089 // TODO: add dependencies to aotCompiledMethod's metadata section so this isn't
1090 // needed.
1091 AOTLoader::mark_evol_dependent_methods(dependee);
1092 }
1093
1094
1095 // Walk compiled methods and mark dependent methods for deoptimization.
1096 int CodeCache::mark_dependents_for_evol_deoptimization() {
1097 assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1098 // Each redefinition creates a new set of nmethods that have references to "old" Methods
1099 // So delete old method table and create a new one.
1100 reset_old_method_table();
1101
1102 int number_of_marked_CodeBlobs = 0;
1103 CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1104 while(iter.next()) {
1105 CompiledMethod* nm = iter.method();
1106 // Walk all alive nmethods to check for old Methods.
1107 // This includes methods whose inline caches point to old methods, so
1108 // inline cache clearing is unnecessary.
1109 if (nm->has_evol_metadata()) {
1110 nm->mark_for_deoptimization();
1111 add_to_old_table(nm);
1112 number_of_marked_CodeBlobs++;
1113 }
1114 }
1115
1116 // return total count of nmethods marked for deoptimization, if zero the caller
1117 // can skip deoptimization
1118 return number_of_marked_CodeBlobs;
1119 }
1120
1121 void CodeCache::mark_all_nmethods_for_evol_deoptimization() {
1122 assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1123 CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1124 while(iter.next()) {
1125 CompiledMethod* nm = iter.method();
1126 if (!nm->method()->is_method_handle_intrinsic()) {
1127 nm->mark_for_deoptimization();
1128 if (nm->has_evol_metadata()) {
1129 add_to_old_table(nm);
1130 }
1131 }
1132 }
1133 }
1134
1135 // Flushes compiled methods dependent on redefined classes, that have already been
1136 // marked for deoptimization.
1137 void CodeCache::flush_evol_dependents() {
1138 assert(SafepointSynchronize::is_at_safepoint(), "Can only do this at a safepoint!");
1139
1140 // CodeCache can only be updated by a thread_in_VM and they will all be
1141 // stopped during the safepoint so CodeCache will be safe to update without
1142 // holding the CodeCache_lock.
1143
1144 // At least one nmethod has been marked for deoptimization
1145
1146 Deoptimization::deoptimize_all_marked();
1147 }
1148 #endif // INCLUDE_JVMTI
1149
1150 // Mark methods for deopt (if safe or possible).
1151 void CodeCache::mark_all_nmethods_for_deoptimization() {
1152 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1153 CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1154 while(iter.next()) {
1155 CompiledMethod* nm = iter.method();
1156 if (!nm->is_native_method()) {
1157 nm->mark_for_deoptimization();
1158 }
1159 }
1160 }
1161
1162 int CodeCache::mark_for_deoptimization(Method* dependee) {
1163 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1164 int number_of_marked_CodeBlobs = 0;
1165
1166 CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1167 while(iter.next()) {
1168 CompiledMethod* nm = iter.method();
1169 if (nm->is_dependent_on_method(dependee)) {
1170 ResourceMark rm;
1171 nm->mark_for_deoptimization();
1172 number_of_marked_CodeBlobs++;
1173 }
1174 }
1175
1176 return number_of_marked_CodeBlobs;
1177 }
1178
1179 void CodeCache::make_marked_nmethods_not_entrant() {
1180 assert_locked_or_safepoint(CodeCache_lock);
1181 CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1182 while(iter.next()) {
1183 CompiledMethod* nm = iter.method();
1184 if (nm->is_marked_for_deoptimization()) {
1185 nm->make_not_entrant();
1186 }
1187 }
1188 }
1189
1190 // Flushes compiled methods dependent on dependee.
1191 void CodeCache::flush_dependents_on(InstanceKlass* dependee) {
1192 assert_lock_strong(Compile_lock);
1193
1194 if (number_of_nmethods_with_dependencies() == 0) return;
1195
1196 KlassDepChange changes(dependee);
1197
1198 // Compute the dependent nmethods
1199 if (mark_for_deoptimization(changes) > 0) {
1200 // At least one nmethod has been marked for deoptimization
1201 Deoptimization::deoptimize_all_marked();
1202 }
1203 }
1204
1205 // Flushes compiled methods dependent on dependee
1206 void CodeCache::flush_dependents_on_method(const methodHandle& m_h) {
1207 // --- Compile_lock is not held. However we are at a safepoint.
1208 assert_locked_or_safepoint(Compile_lock);
1209
1210 // Compute the dependent nmethods
1211 if (mark_for_deoptimization(m_h()) > 0) {
1212 Deoptimization::deoptimize_all_marked();
1213 }
1214 }
1215
1216 void CodeCache::verify() {
1217 assert_locked_or_safepoint(CodeCache_lock);
1218 FOR_ALL_HEAPS(heap) {
1219 (*heap)->verify();
1220 FOR_ALL_BLOBS(cb, *heap) {
1221 if (cb->is_alive()) {
1222 cb->verify();
1223 }
1224 }
1225 }
1226 }
1227
1228 // A CodeHeap is full. Print out warning and report event.
1229 PRAGMA_DIAG_PUSH
1230 PRAGMA_FORMAT_NONLITERAL_IGNORED
1231 void CodeCache::report_codemem_full(int code_blob_type, bool print) {
1232 // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1233 CodeHeap* heap = get_code_heap(code_blob_type);
1234 assert(heap != NULL, "heap is null");
1235
1236 if ((heap->full_count() == 0) || print) {
1237 // Not yet reported for this heap, report
1238 if (SegmentedCodeCache) {
1239 ResourceMark rm;
1240 stringStream msg1_stream, msg2_stream;
1241 msg1_stream.print("%s is full. Compiler has been disabled.",
1242 get_code_heap_name(code_blob_type));
1243 msg2_stream.print("Try increasing the code heap size using -XX:%s=",
1244 get_code_heap_flag_name(code_blob_type));
1245 const char *msg1 = msg1_stream.as_string();
1246 const char *msg2 = msg2_stream.as_string();
1247
1248 log_warning(codecache)("%s", msg1);
1249 log_warning(codecache)("%s", msg2);
1250 warning("%s", msg1);
1251 warning("%s", msg2);
1252 } else {
1253 const char *msg1 = "CodeCache is full. Compiler has been disabled.";
1254 const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize=";
1255
1256 log_warning(codecache)("%s", msg1);
1257 log_warning(codecache)("%s", msg2);
1258 warning("%s", msg1);
1259 warning("%s", msg2);
1260 }
1261 ResourceMark rm;
1262 stringStream s;
1263 // Dump code cache into a buffer before locking the tty.
1264 {
1265 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1266 print_summary(&s);
1267 }
1268 {
1269 ttyLocker ttyl;
1270 tty->print("%s", s.as_string());
1271 }
1272
1273 if (heap->full_count() == 0) {
1274 if (PrintCodeHeapAnalytics) {
1275 CompileBroker::print_heapinfo(tty, "all", 4096); // details, may be a lot!
1276 }
1277 }
1278 }
1279
1280 heap->report_full();
1281
1282 EventCodeCacheFull event;
1283 if (event.should_commit()) {
1284 event.set_codeBlobType((u1)code_blob_type);
1285 event.set_startAddress((u8)heap->low_boundary());
1286 event.set_commitedTopAddress((u8)heap->high());
1287 event.set_reservedTopAddress((u8)heap->high_boundary());
1288 event.set_entryCount(heap->blob_count());
1289 event.set_methodCount(heap->nmethod_count());
1290 event.set_adaptorCount(heap->adapter_count());
1291 event.set_unallocatedCapacity(heap->unallocated_capacity());
1292 event.set_fullCount(heap->full_count());
1293 event.commit();
1294 }
1295 }
1296 PRAGMA_DIAG_POP
1297
1298 void CodeCache::print_memory_overhead() {
1299 size_t wasted_bytes = 0;
1300 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1301 CodeHeap* curr_heap = *heap;
1302 for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
1303 HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1304 wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1305 }
1306 }
1307 // Print bytes that are allocated in the freelist
1308 ttyLocker ttl;
1309 tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT, freelists_length());
1310 tty->print_cr("Allocated in freelist: " SSIZE_FORMAT "kB", bytes_allocated_in_freelists()/K);
1311 tty->print_cr("Unused bytes in CodeBlobs: " SSIZE_FORMAT "kB", (wasted_bytes/K));
1312 tty->print_cr("Segment map size: " SSIZE_FORMAT "kB", allocated_segments()/K); // 1 byte per segment
1313 }
1314
1315 //------------------------------------------------------------------------------------------------
1316 // Non-product version
1317
1318 #ifndef PRODUCT
1319
1320 void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
1321 if (PrintCodeCache2) { // Need to add a new flag
1322 ResourceMark rm;
1323 if (size == 0) size = cb->size();
1324 tty->print_cr("CodeCache %s: addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1325 }
1326 }
1327
1328 void CodeCache::print_internals() {
1329 int nmethodCount = 0;
1330 int runtimeStubCount = 0;
1331 int adapterCount = 0;
1332 int deoptimizationStubCount = 0;
1333 int uncommonTrapStubCount = 0;
1334 int bufferBlobCount = 0;
1335 int total = 0;
1336 int nmethodAlive = 0;
1337 int nmethodNotEntrant = 0;
1338 int nmethodZombie = 0;
1339 int nmethodUnloaded = 0;
1340 int nmethodJava = 0;
1341 int nmethodNative = 0;
1342 int max_nm_size = 0;
1343 ResourceMark rm;
1344
1345 int i = 0;
1346 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1347 if ((_nmethod_heaps->length() >= 1) && Verbose) {
1348 tty->print_cr("-- %s --", (*heap)->name());
1349 }
1350 FOR_ALL_BLOBS(cb, *heap) {
1351 total++;
1352 if (cb->is_nmethod()) {
1353 nmethod* nm = (nmethod*)cb;
1354
1355 if (Verbose && nm->method() != NULL) {
1356 ResourceMark rm;
1357 char *method_name = nm->method()->name_and_sig_as_C_string();
1358 tty->print("%s", method_name);
1359 if(nm->is_alive()) { tty->print_cr(" alive"); }
1360 if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1361 if(nm->is_zombie()) { tty->print_cr(" zombie"); }
1362 }
1363
1364 nmethodCount++;
1365
1366 if(nm->is_alive()) { nmethodAlive++; }
1367 if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1368 if(nm->is_zombie()) { nmethodZombie++; }
1369 if(nm->is_unloaded()) { nmethodUnloaded++; }
1370 if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
1371
1372 if(nm->method() != NULL && nm->is_java_method()) {
1373 nmethodJava++;
1374 max_nm_size = MAX2(max_nm_size, nm->size());
1375 }
1376 } else if (cb->is_runtime_stub()) {
1377 runtimeStubCount++;
1378 } else if (cb->is_deoptimization_stub()) {
1379 deoptimizationStubCount++;
1380 } else if (cb->is_uncommon_trap_stub()) {
1381 uncommonTrapStubCount++;
1382 } else if (cb->is_adapter_blob()) {
1383 adapterCount++;
1384 } else if (cb->is_buffer_blob()) {
1385 bufferBlobCount++;
1386 }
1387 }
1388 }
1389
1390 int bucketSize = 512;
1391 int bucketLimit = max_nm_size / bucketSize + 1;
1392 int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1393 memset(buckets, 0, sizeof(int) * bucketLimit);
1394
1395 NMethodIterator iter(NMethodIterator::all_blobs);
1396 while(iter.next()) {
1397 nmethod* nm = iter.method();
1398 if(nm->method() != NULL && nm->is_java_method()) {
1399 buckets[nm->size() / bucketSize]++;
1400 }
1401 }
1402
1403 tty->print_cr("Code Cache Entries (total of %d)",total);
1404 tty->print_cr("-------------------------------------------------");
1405 tty->print_cr("nmethods: %d",nmethodCount);
1406 tty->print_cr("\talive: %d",nmethodAlive);
1407 tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1408 tty->print_cr("\tzombie: %d",nmethodZombie);
1409 tty->print_cr("\tunloaded: %d",nmethodUnloaded);
1410 tty->print_cr("\tjava: %d",nmethodJava);
1411 tty->print_cr("\tnative: %d",nmethodNative);
1412 tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1413 tty->print_cr("adapters: %d",adapterCount);
1414 tty->print_cr("buffer blobs: %d",bufferBlobCount);
1415 tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1416 tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1417 tty->print_cr("\nnmethod size distribution (non-zombie java)");
1418 tty->print_cr("-------------------------------------------------");
1419
1420 for(int i=0; i<bucketLimit; i++) {
1421 if(buckets[i] != 0) {
1422 tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1423 tty->fill_to(40);
1424 tty->print_cr("%d",buckets[i]);
1425 }
1426 }
1427
1428 FREE_C_HEAP_ARRAY(int, buckets);
1429 print_memory_overhead();
1430 }
1431
1432 #endif // !PRODUCT
1433
1434 void CodeCache::print() {
1435 print_summary(tty);
1436
1437 #ifndef PRODUCT
1438 if (!Verbose) return;
1439
1440 CodeBlob_sizes live;
1441 CodeBlob_sizes dead;
1442
1443 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1444 FOR_ALL_BLOBS(cb, *heap) {
1445 if (!cb->is_alive()) {
1446 dead.add(cb);
1447 } else {
1448 live.add(cb);
1449 }
1450 }
1451 }
1452
1453 tty->print_cr("CodeCache:");
1454 tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1455
1456 if (!live.is_empty()) {
1457 live.print("live");
1458 }
1459 if (!dead.is_empty()) {
1460 dead.print("dead");
1461 }
1462
1463 if (WizardMode) {
1464 // print the oop_map usage
1465 int code_size = 0;
1466 int number_of_blobs = 0;
1467 int number_of_oop_maps = 0;
1468 int map_size = 0;
1469 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1470 FOR_ALL_BLOBS(cb, *heap) {
1471 if (cb->is_alive()) {
1472 number_of_blobs++;
1473 code_size += cb->code_size();
1474 ImmutableOopMapSet* set = cb->oop_maps();
1475 if (set != NULL) {
1476 number_of_oop_maps += set->count();
1477 map_size += set->nr_of_bytes();
1478 }
1479 }
1480 }
1481 }
1482 tty->print_cr("OopMaps");
1483 tty->print_cr(" #blobs = %d", number_of_blobs);
1484 tty->print_cr(" code size = %d", code_size);
1485 tty->print_cr(" #oop_maps = %d", number_of_oop_maps);
1486 tty->print_cr(" map size = %d", map_size);
1487 }
1488
1489 #endif // !PRODUCT
1490 }
1491
1492 void CodeCache::print_summary(outputStream* st, bool detailed) {
1493 int full_count = 0;
1494 FOR_ALL_HEAPS(heap_iterator) {
1495 CodeHeap* heap = (*heap_iterator);
1496 size_t total = (heap->high_boundary() - heap->low_boundary());
1497 if (_heaps->length() >= 1) {
1498 st->print("%s:", heap->name());
1499 } else {
1500 st->print("CodeCache:");
1501 }
1502 st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1503 "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1504 total/K, (total - heap->unallocated_capacity())/K,
1505 heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
1506
1507 if (detailed) {
1508 st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1509 p2i(heap->low_boundary()),
1510 p2i(heap->high()),
1511 p2i(heap->high_boundary()));
1512
1513 full_count += get_codemem_full_count(heap->code_blob_type());
1514 }
1515 }
1516
1517 if (detailed) {
1518 st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
1519 " adapters=" UINT32_FORMAT,
1520 blob_count(), nmethod_count(), adapter_count());
1521 st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
1522 "enabled" : Arguments::mode() == Arguments::_int ?
1523 "disabled (interpreter mode)" :
1524 "disabled (not enough contiguous free space left)");
1525 st->print_cr(" stopped_count=%d, restarted_count=%d",
1526 CompileBroker::get_total_compiler_stopped_count(),
1527 CompileBroker::get_total_compiler_restarted_count());
1528 st->print_cr(" full_count=%d", full_count);
1529 }
1530 }
1531
1532 void CodeCache::print_codelist(outputStream* st) {
1533 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1534
1535 CompiledMethodIterator iter(CompiledMethodIterator::only_alive_and_not_unloading);
1536 while (iter.next()) {
1537 CompiledMethod* cm = iter.method();
1538 ResourceMark rm;
1539 char* method_name = cm->method()->name_and_sig_as_C_string();
1540 st->print_cr("%d %d %d %s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
1541 cm->compile_id(), cm->comp_level(), cm->get_state(),
1542 method_name,
1543 (intptr_t)cm->header_begin(), (intptr_t)cm->code_begin(), (intptr_t)cm->code_end());
1544 }
1545 }
1546
1547 void CodeCache::print_layout(outputStream* st) {
1548 MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1549 ResourceMark rm;
1550 print_summary(st, true);
1551 }
1552
1553 void CodeCache::log_state(outputStream* st) {
1554 st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1555 " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1556 blob_count(), nmethod_count(), adapter_count(),
1557 unallocated_capacity());
1558 }
1559
1560 //---< BEGIN >--- CodeHeap State Analytics.
1561
1562 void CodeCache::aggregate(outputStream *out, size_t granularity) {
1563 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1564 CodeHeapState::aggregate(out, (*heap), granularity);
1565 }
1566 }
1567
1568 void CodeCache::discard(outputStream *out) {
1569 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1570 CodeHeapState::discard(out, (*heap));
1571 }
1572 }
1573
1574 void CodeCache::print_usedSpace(outputStream *out) {
1575 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1576 CodeHeapState::print_usedSpace(out, (*heap));
1577 }
1578 }
1579
1580 void CodeCache::print_freeSpace(outputStream *out) {
1581 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1582 CodeHeapState::print_freeSpace(out, (*heap));
1583 }
1584 }
1585
1586 void CodeCache::print_count(outputStream *out) {
1587 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1588 CodeHeapState::print_count(out, (*heap));
1589 }
1590 }
1591
1592 void CodeCache::print_space(outputStream *out) {
1593 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1594 CodeHeapState::print_space(out, (*heap));
1595 }
1596 }
1597
1598 void CodeCache::print_age(outputStream *out) {
1599 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1600 CodeHeapState::print_age(out, (*heap));
1601 }
1602 }
1603
1604 void CodeCache::print_names(outputStream *out) {
1605 FOR_ALL_ALLOCABLE_HEAPS(heap) {
1606 CodeHeapState::print_names(out, (*heap));
1607 }
1608 }
1609 //---< END >--- CodeHeap State Analytics.
--- EOF ---