/* * Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #include "precompiled.hpp" #include "classfile/javaClasses.inline.hpp" #include "gc/shared/referencePolicy.hpp" #include "gc/shared/referenceProcessorStats.hpp" #include "gc/z/zHeap.inline.hpp" #include "gc/z/zOopClosures.inline.hpp" #include "gc/z/zReferenceProcessor.hpp" #include "gc/z/zStat.hpp" #include "gc/z/zTask.hpp" #include "gc/z/zTracer.inline.hpp" #include "gc/z/zUtils.inline.hpp" #include "gc/z/zValue.inline.hpp" #include "memory/universe.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/os.hpp" static const ZStatSubPhase ZSubPhaseConcurrentReferencesProcess("Concurrent References Process"); static const ZStatSubPhase ZSubPhaseConcurrentReferencesEnqueue("Concurrent References Enqueue"); static ReferenceType reference_type(oop reference) { return InstanceKlass::cast(reference->klass())->reference_type(); } static const char* reference_type_name(ReferenceType type) { switch (type) { case REF_SOFT: return "Soft"; case REF_WEAK: return "Weak"; case REF_FINAL: return "Final"; case REF_PHANTOM: return "Phantom"; default: ShouldNotReachHere(); return NULL; } } static volatile oop* reference_referent_addr(oop reference) { return (volatile oop*)java_lang_ref_Reference::referent_addr_raw(reference); } static oop reference_referent(oop reference) { return *reference_referent_addr(reference); } static void reference_set_referent(oop reference, oop referent) { java_lang_ref_Reference::set_referent_raw(reference, referent); } static oop* reference_discovered_addr(oop reference) { return (oop*)java_lang_ref_Reference::discovered_addr_raw(reference); } static oop reference_discovered(oop reference) { return *reference_discovered_addr(reference); } static void reference_set_discovered(oop reference, oop discovered) { java_lang_ref_Reference::set_discovered_raw(reference, discovered); } static oop* reference_next_addr(oop reference) { return (oop*)java_lang_ref_Reference::next_addr_raw(reference); } static oop reference_next(oop reference) { return *reference_next_addr(reference); } static void reference_set_next(oop reference, oop next) { java_lang_ref_Reference::set_next_raw(reference, next); } static void soft_reference_update_clock() { const jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC; java_lang_ref_SoftReference::set_clock(now); } ZReferenceProcessor::ZReferenceProcessor(ZWorkers* workers) : _workers(workers), _soft_reference_policy(NULL), _encountered_count(), _discovered_count(), _enqueued_count(), _discovered_list(NULL), _pending_list(NULL), _pending_list_tail(_pending_list.addr()) {} void ZReferenceProcessor::set_soft_reference_policy(bool clear) { static AlwaysClearPolicy always_clear_policy; static LRUMaxHeapPolicy lru_max_heap_policy; if (clear) { log_info(gc, ref)("Clearing All SoftReferences"); _soft_reference_policy = &always_clear_policy; } else { _soft_reference_policy = &lru_max_heap_policy; } _soft_reference_policy->setup(); } bool ZReferenceProcessor::is_inactive(oop reference, oop referent, ReferenceType type) const { if (type == REF_FINAL) { // A FinalReference is inactive if its next field is non-null. An application can't // call enqueue() or clear() on a FinalReference. return reference_next(reference) != NULL; } else { // A non-FinalReference is inactive if the referent is null. The referent can only // be null if the application called Reference.enqueue() or Reference.clear(). return referent == NULL; } } bool ZReferenceProcessor::is_strongly_live(oop referent) const { return ZHeap::heap()->is_object_strongly_live(ZOop::to_address(referent)); } bool ZReferenceProcessor::is_softly_live(oop reference, ReferenceType type) const { if (type != REF_SOFT) { // Not a SoftReference return false; } // Ask SoftReference policy const jlong clock = java_lang_ref_SoftReference::clock(); assert(clock != 0, "Clock not initialized"); assert(_soft_reference_policy != NULL, "Policy not initialized"); return !_soft_reference_policy->should_clear_reference(reference, clock); } bool ZReferenceProcessor::should_discover(oop reference, ReferenceType type) const { volatile oop* const referent_addr = reference_referent_addr(reference); const oop referent = ZBarrier::weak_load_barrier_on_oop_field(referent_addr); if (is_inactive(reference, referent, type)) { return false; } if (is_strongly_live(referent)) { return false; } if (is_softly_live(reference, type)) { return false; } // PhantomReferences with finalizable marked referents should technically not have // to be discovered. However, InstanceRefKlass::oop_oop_iterate_ref_processing() // does not know about the finalizable mark concept, and will therefore mark // referents in non-discovered PhantomReferences as strongly live. To prevent // this, we always discover PhantomReferences with finalizable marked referents. // They will automatically be dropped during the reference processing phase. return true; } bool ZReferenceProcessor::should_drop(oop reference, ReferenceType type) const { // This check is racing with a call to Reference.clear() from the application. // If the application clears the reference after this check it will still end // up on the pending list, and there's nothing we can do about that without // changing the Reference.clear() API. This check is also racing with a call // to Reference.enqueue() from the application, which is unproblematic, since // the application wants the reference to be enqueued anyway. const oop referent = reference_referent(reference); if (referent == NULL) { // Reference has been cleared, by a call to Reference.enqueue() // or Reference.clear() from the application, which means we // should drop the reference. return true; } // Check if the referent is still alive, in which case we should // drop the reference. if (type == REF_PHANTOM) { return ZBarrier::is_alive_barrier_on_phantom_oop(referent); } else { return ZBarrier::is_alive_barrier_on_weak_oop(referent); } } void ZReferenceProcessor::keep_alive(oop reference, ReferenceType type) const { volatile oop* const p = reference_referent_addr(reference); if (type == REF_PHANTOM) { ZBarrier::keep_alive_barrier_on_phantom_oop_field(p); } else { ZBarrier::keep_alive_barrier_on_weak_oop_field(p); } } void ZReferenceProcessor::make_inactive(oop reference, ReferenceType type) const { if (type == REF_FINAL) { // Don't clear referent. It is needed by the Finalizer thread to make the call // to finalize(). A FinalReference is instead made inactive by self-looping the // next field. An application can't call FinalReference.enqueue(), so there is // no race to worry about when setting the next field. assert(reference_next(reference) == NULL, "Already inactive"); reference_set_next(reference, reference); } else { // Clear referent reference_set_referent(reference, NULL); } } void ZReferenceProcessor::discover(oop reference, ReferenceType type) { log_trace(gc, ref)("Discovered Reference: " PTR_FORMAT " (%s)", p2i(reference), reference_type_name(type)); // Update statistics _discovered_count.get()[type]++; if (type == REF_FINAL) { // Mark referent (and its reachable subgraph) finalizable. This avoids // the problem of later having to mark those objects if the referent is // still final reachable during processing. volatile oop* const referent_addr = reference_referent_addr(reference); ZBarrier::mark_barrier_on_oop_field(referent_addr, true /* finalizable */); } // Add reference to discovered list assert(reference_discovered(reference) == NULL, "Already discovered"); oop* const list = _discovered_list.addr(); reference_set_discovered(reference, *list); *list = reference; } bool ZReferenceProcessor::discover_reference(oop reference, ReferenceType type) { if (!RegisterReferences) { // Reference processing disabled return false; } log_trace(gc, ref)("Encountered Reference: " PTR_FORMAT " (%s)", p2i(reference), reference_type_name(type)); // Update statistics _encountered_count.get()[type]++; if (!should_discover(reference, type)) { // Not discovered return false; } discover(reference, type); // Discovered return true; } oop ZReferenceProcessor::drop(oop reference, ReferenceType type) { log_trace(gc, ref)("Dropped Reference: " PTR_FORMAT " (%s)", p2i(reference), reference_type_name(type)); // Keep referent alive keep_alive(reference, type); // Unlink and return next in list const oop next = reference_discovered(reference); reference_set_discovered(reference, NULL); return next; } oop* ZReferenceProcessor::keep(oop reference, ReferenceType type) { log_trace(gc, ref)("Enqueued Reference: " PTR_FORMAT " (%s)", p2i(reference), reference_type_name(type)); // Update statistics _enqueued_count.get()[type]++; // Make reference inactive make_inactive(reference, type); // Return next in list return reference_discovered_addr(reference); } void ZReferenceProcessor::work() { // Process discovered references oop* const list = _discovered_list.addr(); oop* p = list; while (*p != NULL) { const oop reference = *p; const ReferenceType type = reference_type(reference); if (should_drop(reference, type)) { *p = drop(reference, type); } else { p = keep(reference, type); } } // Prepend discovered references to internal pending list if (*list != NULL) { *p = Atomic::xchg(_pending_list.addr(), *list); if (*p == NULL) { // First to prepend to list, record tail _pending_list_tail = p; } // Clear discovered list *list = NULL; } } bool ZReferenceProcessor::is_empty() const { ZPerWorkerConstIterator iter(&_discovered_list); for (const oop* list; iter.next(&list);) { if (*list != NULL) { return false; } } if (_pending_list.get() != NULL) { return false; } return true; } void ZReferenceProcessor::reset_statistics() { assert(is_empty(), "Should be empty"); // Reset encountered ZPerWorkerIterator iter_encountered(&_encountered_count); for (Counters* counters; iter_encountered.next(&counters);) { for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { (*counters)[i] = 0; } } // Reset discovered ZPerWorkerIterator iter_discovered(&_discovered_count); for (Counters* counters; iter_discovered.next(&counters);) { for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { (*counters)[i] = 0; } } // Reset enqueued ZPerWorkerIterator iter_enqueued(&_enqueued_count); for (Counters* counters; iter_enqueued.next(&counters);) { for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { (*counters)[i] = 0; } } } void ZReferenceProcessor::collect_statistics() { Counters encountered = {}; Counters discovered = {}; Counters enqueued = {}; // Sum encountered ZPerWorkerConstIterator iter_encountered(&_encountered_count); for (const Counters* counters; iter_encountered.next(&counters);) { for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { encountered[i] += (*counters)[i]; } } // Sum discovered ZPerWorkerConstIterator iter_discovered(&_discovered_count); for (const Counters* counters; iter_discovered.next(&counters);) { for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { discovered[i] += (*counters)[i]; } } // Sum enqueued ZPerWorkerConstIterator iter_enqueued(&_enqueued_count); for (const Counters* counters; iter_enqueued.next(&counters);) { for (int i = REF_SOFT; i <= REF_PHANTOM; i++) { enqueued[i] += (*counters)[i]; } } // Update statistics ZStatReferences::set_soft(encountered[REF_SOFT], discovered[REF_SOFT], enqueued[REF_SOFT]); ZStatReferences::set_weak(encountered[REF_WEAK], discovered[REF_WEAK], enqueued[REF_WEAK]); ZStatReferences::set_final(encountered[REF_FINAL], discovered[REF_FINAL], enqueued[REF_FINAL]); ZStatReferences::set_phantom(encountered[REF_PHANTOM], discovered[REF_PHANTOM], enqueued[REF_PHANTOM]); // Trace statistics const ReferenceProcessorStats stats(discovered[REF_SOFT], discovered[REF_WEAK], discovered[REF_FINAL], discovered[REF_PHANTOM]); ZTracer::tracer()->report_gc_reference_stats(stats); } class ZReferenceProcessorTask : public ZTask { private: ZReferenceProcessor* const _reference_processor; public: ZReferenceProcessorTask(ZReferenceProcessor* reference_processor) : ZTask("ZReferenceProcessorTask"), _reference_processor(reference_processor) {} virtual void work() { _reference_processor->work(); } }; void ZReferenceProcessor::process_references() { ZStatTimer timer(ZSubPhaseConcurrentReferencesProcess); // Process discovered lists ZReferenceProcessorTask task(this); _workers->run_concurrent(&task); // Update SoftReference clock soft_reference_update_clock(); // Collect, log and trace statistics collect_statistics(); } void ZReferenceProcessor::enqueue_references() { ZStatTimer timer(ZSubPhaseConcurrentReferencesEnqueue); if (_pending_list.get() == NULL) { // Nothing to enqueue return; } { // Heap_lock protects external pending list MonitorLocker ml(Heap_lock); // Prepend internal pending list to external pending list *_pending_list_tail = Universe::swap_reference_pending_list(_pending_list.get()); // Notify ReferenceHandler thread ml.notify_all(); } // Reset internal pending list _pending_list.set(NULL); _pending_list_tail = _pending_list.addr(); }