< prev index next >

src/hotspot/share/gc/shared/ptrQueue.cpp

Print this page




 133   }
 134 }
 135 
 136 size_t BufferNode::Allocator::free_count() const {
 137   return Atomic::load(&_free_count);
 138 }
 139 
 140 BufferNode* BufferNode::Allocator::allocate() {
 141   BufferNode* node;
 142   {
 143     // Protect against ABA; see release().
 144     GlobalCounter::CriticalSection cs(Thread::current());
 145     node = _free_list.pop();
 146   }
 147   if (node == NULL) {
 148     node = BufferNode::allocate(_buffer_size);
 149   } else {
 150     // Decrement count after getting buffer from free list.  This, along
 151     // with incrementing count before adding to free list, ensures count
 152     // never underflows.
 153     size_t count = Atomic::sub(1u, &_free_count);
 154     assert((count + 1) != 0, "_free_count underflow");
 155   }
 156   return node;
 157 }
 158 
 159 // To solve the ABA problem for lock-free stack pop, allocate does the
 160 // pop inside a critical section, and release synchronizes on the
 161 // critical sections before adding to the _free_list.  But we don't
 162 // want to make every release have to do a synchronize.  Instead, we
 163 // initially place released nodes on the _pending_list, and transfer
 164 // them to the _free_list in batches.  Only one transfer at a time is
 165 // permitted, with a lock bit to control access to that phase.  A
 166 // transfer takes all the nodes from the _pending_list, synchronizes on
 167 // the _free_list pops, and then adds the former pending nodes to the
 168 // _free_list.  While that's happening, other threads might be adding
 169 // other nodes to the _pending_list, to be dealt with by some later
 170 // transfer.
 171 void BufferNode::Allocator::release(BufferNode* node) {
 172   assert(node != NULL, "precondition");
 173   assert(node->next() == NULL, "precondition");
 174 
 175   // Desired minimum transfer batch size.  There is relatively little
 176   // importance to the specific number.  It shouldn't be too big, else
 177   // we're wasting space when the release rate is low.  If the release
 178   // rate is high, we might accumulate more than this before being
 179   // able to start a new transfer, but that's okay.  Also note that
 180   // the allocation rate and the release rate are going to be fairly
 181   // similar, due to how the buffers are used.
 182   const size_t trigger_transfer = 10;
 183 
 184   // Add to pending list. Update count first so no underflow in transfer.
 185   size_t pending_count = Atomic::add(1u, &_pending_count);
 186   _pending_list.push(*node);
 187   if (pending_count > trigger_transfer) {
 188     try_transfer_pending();
 189   }
 190 }
 191 
 192 // Try to transfer nodes from _pending_list to _free_list, with a
 193 // synchronization delay for any in-progress pops from the _free_list,
 194 // to solve ABA there.  Return true if performed a (possibly empty)
 195 // transfer, false if blocked from doing so by some other thread's
 196 // in-progress transfer.
 197 bool BufferNode::Allocator::try_transfer_pending() {
 198   // Attempt to claim the lock.
 199   if (Atomic::load(&_transfer_lock) || // Skip CAS if likely to fail.
 200       Atomic::cmpxchg(true, &_transfer_lock, false)) {
 201     return false;
 202   }
 203   // Have the lock; perform the transfer.
 204 
 205   // Claim all the pending nodes.
 206   BufferNode* first = _pending_list.pop_all();
 207   if (first != NULL) {
 208     // Prepare to add the claimed nodes, and update _pending_count.
 209     BufferNode* last = first;
 210     size_t count = 1;
 211     for (BufferNode* next = first->next(); next != NULL; next = next->next()) {
 212       last = next;
 213       ++count;
 214     }
 215     Atomic::sub(count, &_pending_count);
 216 
 217     // Wait for any in-progress pops, to avoid ABA for them.
 218     GlobalCounter::write_synchronize();
 219 
 220     // Add synchronized nodes to _free_list.
 221     // Update count first so no underflow in allocate().
 222     Atomic::add(count, &_free_count);
 223     _free_list.prepend(*first, *last);
 224     log_trace(gc, ptrqueue, freelist)
 225              ("Transferred %s pending to free: " SIZE_FORMAT, name(), count);
 226   }
 227   Atomic::release_store(&_transfer_lock, false);
 228   return true;
 229 }
 230 
 231 size_t BufferNode::Allocator::reduce_free_list(size_t remove_goal) {
 232   try_transfer_pending();
 233   size_t removed = 0;
 234   for ( ; removed < remove_goal; ++removed) {
 235     BufferNode* node = _free_list.pop();
 236     if (node == NULL) break;
 237     BufferNode::deallocate(node);
 238   }
 239   size_t new_count = Atomic::sub(removed, &_free_count);
 240   log_debug(gc, ptrqueue, freelist)
 241            ("Reduced %s free list by " SIZE_FORMAT " to " SIZE_FORMAT,
 242             name(), removed, new_count);
 243   return removed;
 244 }
 245 
 246 PtrQueueSet::PtrQueueSet(BufferNode::Allocator* allocator) :
 247   _allocator(allocator),
 248   _all_active(false)
 249 {}
 250 
 251 PtrQueueSet::~PtrQueueSet() {}
 252 
 253 void** PtrQueueSet::allocate_buffer() {
 254   BufferNode* node = _allocator->allocate();
 255   return BufferNode::make_buffer_from_node(node);
 256 }
 257 
 258 void PtrQueueSet::deallocate_buffer(BufferNode* node) {
 259   _allocator->release(node);
 260 }
 261 


 133   }
 134 }
 135 
 136 size_t BufferNode::Allocator::free_count() const {
 137   return Atomic::load(&_free_count);
 138 }
 139 
 140 BufferNode* BufferNode::Allocator::allocate() {
 141   BufferNode* node;
 142   {
 143     // Protect against ABA; see release().
 144     GlobalCounter::CriticalSection cs(Thread::current());
 145     node = _free_list.pop();
 146   }
 147   if (node == NULL) {
 148     node = BufferNode::allocate(_buffer_size);
 149   } else {
 150     // Decrement count after getting buffer from free list.  This, along
 151     // with incrementing count before adding to free list, ensures count
 152     // never underflows.
 153     size_t count = Atomic::sub(&_free_count, 1u);
 154     assert((count + 1) != 0, "_free_count underflow");
 155   }
 156   return node;
 157 }
 158 
 159 // To solve the ABA problem for lock-free stack pop, allocate does the
 160 // pop inside a critical section, and release synchronizes on the
 161 // critical sections before adding to the _free_list.  But we don't
 162 // want to make every release have to do a synchronize.  Instead, we
 163 // initially place released nodes on the _pending_list, and transfer
 164 // them to the _free_list in batches.  Only one transfer at a time is
 165 // permitted, with a lock bit to control access to that phase.  A
 166 // transfer takes all the nodes from the _pending_list, synchronizes on
 167 // the _free_list pops, and then adds the former pending nodes to the
 168 // _free_list.  While that's happening, other threads might be adding
 169 // other nodes to the _pending_list, to be dealt with by some later
 170 // transfer.
 171 void BufferNode::Allocator::release(BufferNode* node) {
 172   assert(node != NULL, "precondition");
 173   assert(node->next() == NULL, "precondition");
 174 
 175   // Desired minimum transfer batch size.  There is relatively little
 176   // importance to the specific number.  It shouldn't be too big, else
 177   // we're wasting space when the release rate is low.  If the release
 178   // rate is high, we might accumulate more than this before being
 179   // able to start a new transfer, but that's okay.  Also note that
 180   // the allocation rate and the release rate are going to be fairly
 181   // similar, due to how the buffers are used.
 182   const size_t trigger_transfer = 10;
 183 
 184   // Add to pending list. Update count first so no underflow in transfer.
 185   size_t pending_count = Atomic::add(&_pending_count, 1u);
 186   _pending_list.push(*node);
 187   if (pending_count > trigger_transfer) {
 188     try_transfer_pending();
 189   }
 190 }
 191 
 192 // Try to transfer nodes from _pending_list to _free_list, with a
 193 // synchronization delay for any in-progress pops from the _free_list,
 194 // to solve ABA there.  Return true if performed a (possibly empty)
 195 // transfer, false if blocked from doing so by some other thread's
 196 // in-progress transfer.
 197 bool BufferNode::Allocator::try_transfer_pending() {
 198   // Attempt to claim the lock.
 199   if (Atomic::load(&_transfer_lock) || // Skip CAS if likely to fail.
 200       Atomic::cmpxchg(&_transfer_lock, false, true)) {
 201     return false;
 202   }
 203   // Have the lock; perform the transfer.
 204 
 205   // Claim all the pending nodes.
 206   BufferNode* first = _pending_list.pop_all();
 207   if (first != NULL) {
 208     // Prepare to add the claimed nodes, and update _pending_count.
 209     BufferNode* last = first;
 210     size_t count = 1;
 211     for (BufferNode* next = first->next(); next != NULL; next = next->next()) {
 212       last = next;
 213       ++count;
 214     }
 215     Atomic::sub(&_pending_count, count);
 216 
 217     // Wait for any in-progress pops, to avoid ABA for them.
 218     GlobalCounter::write_synchronize();
 219 
 220     // Add synchronized nodes to _free_list.
 221     // Update count first so no underflow in allocate().
 222     Atomic::add(&_free_count, count);
 223     _free_list.prepend(*first, *last);
 224     log_trace(gc, ptrqueue, freelist)
 225              ("Transferred %s pending to free: " SIZE_FORMAT, name(), count);
 226   }
 227   Atomic::release_store(&_transfer_lock, false);
 228   return true;
 229 }
 230 
 231 size_t BufferNode::Allocator::reduce_free_list(size_t remove_goal) {
 232   try_transfer_pending();
 233   size_t removed = 0;
 234   for ( ; removed < remove_goal; ++removed) {
 235     BufferNode* node = _free_list.pop();
 236     if (node == NULL) break;
 237     BufferNode::deallocate(node);
 238   }
 239   size_t new_count = Atomic::sub(&_free_count, removed);
 240   log_debug(gc, ptrqueue, freelist)
 241            ("Reduced %s free list by " SIZE_FORMAT " to " SIZE_FORMAT,
 242             name(), removed, new_count);
 243   return removed;
 244 }
 245 
 246 PtrQueueSet::PtrQueueSet(BufferNode::Allocator* allocator) :
 247   _allocator(allocator),
 248   _all_active(false)
 249 {}
 250 
 251 PtrQueueSet::~PtrQueueSet() {}
 252 
 253 void** PtrQueueSet::allocate_buffer() {
 254   BufferNode* node = _allocator->allocate();
 255   return BufferNode::make_buffer_from_node(node);
 256 }
 257 
 258 void PtrQueueSet::deallocate_buffer(BufferNode* node) {
 259   _allocator->release(node);
 260 }

< prev index next >