1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "gc/shared/blockOffsetTable.inline.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/genCollectedHeap.hpp"
  31 #include "gc/shared/genOopClosures.inline.hpp"
  32 #include "gc/shared/space.hpp"
  33 #include "gc/shared/space.inline.hpp"
  34 #include "gc/shared/spaceDecorator.inline.hpp"
  35 #include "memory/iterator.inline.hpp"
  36 #include "memory/universe.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/atomic.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/orderAccess.hpp"
  41 #include "runtime/prefetch.inline.hpp"
  42 #include "runtime/safepoint.hpp"
  43 #include "utilities/align.hpp"
  44 #include "utilities/copy.hpp"
  45 #include "utilities/globalDefinitions.hpp"
  46 #include "utilities/macros.hpp"
  47 #if INCLUDE_SERIALGC
  48 #include "gc/serial/defNewGeneration.hpp"
  49 #endif
  50 
  51 HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top,
  52                                                 HeapWord* top_obj) {
  53   if (top_obj != NULL) {
  54     if (_sp->block_is_obj(top_obj)) {
  55       if (_precision == CardTable::ObjHeadPreciseArray) {
  56         if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
  57           // An arrayOop is starting on the dirty card - since we do exact
  58           // store checks for objArrays we are done.
  59         } else {
  60           // Otherwise, it is possible that the object starting on the dirty
  61           // card spans the entire card, and that the store happened on a
  62           // later card.  Figure out where the object ends.
  63           // Use the block_size() method of the space over which
  64           // the iteration is being done.  That space (e.g. CMS) may have
  65           // specific requirements on object sizes which will
  66           // be reflected in the block_size() method.
  67           top = top_obj + oop(top_obj)->size();
  68         }
  69       }
  70     } else {
  71       top = top_obj;
  72     }
  73   } else {
  74     assert(top == _sp->end(), "only case where top_obj == NULL");
  75   }
  76   return top;
  77 }
  78 
  79 void DirtyCardToOopClosure::walk_mem_region(MemRegion mr,
  80                                             HeapWord* bottom,
  81                                             HeapWord* top) {
  82   // 1. Blocks may or may not be objects.
  83   // 2. Even when a block_is_obj(), it may not entirely
  84   //    occupy the block if the block quantum is larger than
  85   //    the object size.
  86   // We can and should try to optimize by calling the non-MemRegion
  87   // version of oop_iterate() for all but the extremal objects
  88   // (for which we need to call the MemRegion version of
  89   // oop_iterate()) To be done post-beta XXX
  90   for (; bottom < top; bottom += _sp->block_size(bottom)) {
  91     // As in the case of contiguous space above, we'd like to
  92     // just use the value returned by oop_iterate to increment the
  93     // current pointer; unfortunately, that won't work in CMS because
  94     // we'd need an interface change (it seems) to have the space
  95     // "adjust the object size" (for instance pad it up to its
  96     // block alignment or minimum block size restrictions. XXX
  97     if (_sp->block_is_obj(bottom) &&
  98         !_sp->obj_allocated_since_save_marks(oop(bottom))) {
  99       oop(bottom)->oop_iterate(_cl, mr);
 100     }
 101   }
 102 }
 103 
 104 // We get called with "mr" representing the dirty region
 105 // that we want to process. Because of imprecise marking,
 106 // we may need to extend the incoming "mr" to the right,
 107 // and scan more. However, because we may already have
 108 // scanned some of that extended region, we may need to
 109 // trim its right-end back some so we do not scan what
 110 // we (or another worker thread) may already have scanned
 111 // or planning to scan.
 112 void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) {
 113   HeapWord* bottom = mr.start();
 114   HeapWord* last = mr.last();
 115   HeapWord* top = mr.end();
 116   HeapWord* bottom_obj;
 117   HeapWord* top_obj;
 118 
 119   assert(_precision == CardTable::ObjHeadPreciseArray ||
 120          _precision == CardTable::Precise,
 121          "Only ones we deal with for now.");
 122 
 123   assert(_precision != CardTable::ObjHeadPreciseArray ||
 124          _last_bottom == NULL || top <= _last_bottom,
 125          "Not decreasing");
 126   NOT_PRODUCT(_last_bottom = mr.start());
 127 
 128   bottom_obj = _sp->block_start(bottom);
 129   top_obj    = _sp->block_start(last);
 130 
 131   assert(bottom_obj <= bottom, "just checking");
 132   assert(top_obj    <= top,    "just checking");
 133 
 134   // Given what we think is the top of the memory region and
 135   // the start of the object at the top, get the actual
 136   // value of the top.
 137   top = get_actual_top(top, top_obj);
 138 
 139   // If the previous call did some part of this region, don't redo.
 140   if (_precision == CardTable::ObjHeadPreciseArray &&
 141       _min_done != NULL &&
 142       _min_done < top) {
 143     top = _min_done;
 144   }
 145 
 146   // Top may have been reset, and in fact may be below bottom,
 147   // e.g. the dirty card region is entirely in a now free object
 148   // -- something that could happen with a concurrent sweeper.
 149   bottom = MIN2(bottom, top);
 150   MemRegion extended_mr = MemRegion(bottom, top);
 151   assert(bottom <= top &&
 152          (_precision != CardTable::ObjHeadPreciseArray ||
 153           _min_done == NULL ||
 154           top <= _min_done),
 155          "overlap!");
 156 
 157   // Walk the region if it is not empty; otherwise there is nothing to do.
 158   if (!extended_mr.is_empty()) {
 159     walk_mem_region(extended_mr, bottom_obj, top);
 160   }
 161 
 162   _min_done = bottom;
 163 }
 164 
 165 DirtyCardToOopClosure* Space::new_dcto_cl(OopIterateClosure* cl,
 166                                           CardTable::PrecisionStyle precision,
 167                                           HeapWord* boundary,
 168                                           bool parallel) {
 169   return new DirtyCardToOopClosure(this, cl, precision, boundary);
 170 }
 171 
 172 HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top,
 173                                                HeapWord* top_obj) {
 174   if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) {
 175     if (_precision == CardTable::ObjHeadPreciseArray) {
 176       if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) {
 177         // An arrayOop is starting on the dirty card - since we do exact
 178         // store checks for objArrays we are done.
 179       } else {
 180         // Otherwise, it is possible that the object starting on the dirty
 181         // card spans the entire card, and that the store happened on a
 182         // later card.  Figure out where the object ends.
 183         assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(),
 184           "Block size and object size mismatch");
 185         top = top_obj + oop(top_obj)->size();
 186       }
 187     }
 188   } else {
 189     top = (_sp->toContiguousSpace())->top();
 190   }
 191   return top;
 192 }
 193 
 194 void FilteringDCTOC::walk_mem_region(MemRegion mr,
 195                                      HeapWord* bottom,
 196                                      HeapWord* top) {
 197   // Note that this assumption won't hold if we have a concurrent
 198   // collector in this space, which may have freed up objects after
 199   // they were dirtied and before the stop-the-world GC that is
 200   // examining cards here.
 201   assert(bottom < top, "ought to be at least one obj on a dirty card.");
 202 
 203   if (_boundary != NULL) {
 204     // We have a boundary outside of which we don't want to look
 205     // at objects, so create a filtering closure around the
 206     // oop closure before walking the region.
 207     FilteringClosure filter(_boundary, _cl);
 208     walk_mem_region_with_cl(mr, bottom, top, &filter);
 209   } else {
 210     // No boundary, simply walk the heap with the oop closure.
 211     walk_mem_region_with_cl(mr, bottom, top, _cl);
 212   }
 213 
 214 }
 215 
 216 // We must replicate this so that the static type of "FilteringClosure"
 217 // (see above) is apparent at the oop_iterate calls.
 218 #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \
 219 void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr,        \
 220                                                    HeapWord* bottom,    \
 221                                                    HeapWord* top,       \
 222                                                    ClosureType* cl) {   \
 223   bottom += oop(bottom)->oop_iterate_size(cl, mr);                      \
 224   if (bottom < top) {                                                   \
 225     HeapWord* next_obj = bottom + oop(bottom)->size();                  \
 226     while (next_obj < top) {                                            \
 227       /* Bottom lies entirely below top, so we can call the */          \
 228       /* non-memRegion version of oop_iterate below. */                 \
 229       oop(bottom)->oop_iterate(cl);                                     \
 230       bottom = next_obj;                                                \
 231       next_obj = bottom + oop(bottom)->size();                          \
 232     }                                                                   \
 233     /* Last object. */                                                  \
 234     oop(bottom)->oop_iterate(cl, mr);                                   \
 235   }                                                                     \
 236 }
 237 
 238 // (There are only two of these, rather than N, because the split is due
 239 // only to the introduction of the FilteringClosure, a local part of the
 240 // impl of this abstraction.)
 241 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(OopIterateClosure)
 242 ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure)
 243 
 244 DirtyCardToOopClosure*
 245 ContiguousSpace::new_dcto_cl(OopIterateClosure* cl,
 246                              CardTable::PrecisionStyle precision,
 247                              HeapWord* boundary,
 248                              bool parallel) {
 249   return new ContiguousSpaceDCTOC(this, cl, precision, boundary);
 250 }
 251 
 252 void Space::initialize(MemRegion mr,
 253                        bool clear_space,
 254                        bool mangle_space) {
 255   HeapWord* bottom = mr.start();
 256   HeapWord* end    = mr.end();
 257   assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end),
 258          "invalid space boundaries");
 259   set_bottom(bottom);
 260   set_end(end);
 261   if (clear_space) clear(mangle_space);
 262 }
 263 
 264 void Space::clear(bool mangle_space) {
 265   if (ZapUnusedHeapArea && mangle_space) {
 266     mangle_unused_area();
 267   }
 268 }
 269 
 270 ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL),
 271     _concurrent_iteration_safe_limit(NULL) {
 272   _mangler = new GenSpaceMangler(this);
 273 }
 274 
 275 ContiguousSpace::~ContiguousSpace() {
 276   delete _mangler;
 277 }
 278 
 279 void ContiguousSpace::initialize(MemRegion mr,
 280                                  bool clear_space,
 281                                  bool mangle_space)
 282 {
 283   CompactibleSpace::initialize(mr, clear_space, mangle_space);
 284   set_concurrent_iteration_safe_limit(top());
 285 }
 286 
 287 void ContiguousSpace::clear(bool mangle_space) {
 288   set_top(bottom());
 289   set_saved_mark();
 290   CompactibleSpace::clear(mangle_space);
 291 }
 292 
 293 bool ContiguousSpace::is_free_block(const HeapWord* p) const {
 294   return p >= _top;
 295 }
 296 
 297 void OffsetTableContigSpace::clear(bool mangle_space) {
 298   ContiguousSpace::clear(mangle_space);
 299   _offsets.initialize_threshold();
 300 }
 301 
 302 void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 303   Space::set_bottom(new_bottom);
 304   _offsets.set_bottom(new_bottom);
 305 }
 306 
 307 void OffsetTableContigSpace::set_end(HeapWord* new_end) {
 308   // Space should not advertise an increase in size
 309   // until after the underlying offset table has been enlarged.
 310   _offsets.resize(pointer_delta(new_end, bottom()));
 311   Space::set_end(new_end);
 312 }
 313 
 314 #ifndef PRODUCT
 315 
 316 void ContiguousSpace::set_top_for_allocations(HeapWord* v) {
 317   mangler()->set_top_for_allocations(v);
 318 }
 319 void ContiguousSpace::set_top_for_allocations() {
 320   mangler()->set_top_for_allocations(top());
 321 }
 322 void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) {
 323   mangler()->check_mangled_unused_area(limit);
 324 }
 325 
 326 void ContiguousSpace::check_mangled_unused_area_complete() {
 327   mangler()->check_mangled_unused_area_complete();
 328 }
 329 
 330 // Mangled only the unused space that has not previously
 331 // been mangled and that has not been allocated since being
 332 // mangled.
 333 void ContiguousSpace::mangle_unused_area() {
 334   mangler()->mangle_unused_area();
 335 }
 336 void ContiguousSpace::mangle_unused_area_complete() {
 337   mangler()->mangle_unused_area_complete();
 338 }
 339 #endif  // NOT_PRODUCT
 340 
 341 void CompactibleSpace::initialize(MemRegion mr,
 342                                   bool clear_space,
 343                                   bool mangle_space) {
 344   Space::initialize(mr, clear_space, mangle_space);
 345   set_compaction_top(bottom());
 346   _next_compaction_space = NULL;
 347 }
 348 
 349 void CompactibleSpace::clear(bool mangle_space) {
 350   Space::clear(mangle_space);
 351   _compaction_top = bottom();
 352 }
 353 
 354 HeapWord* CompactibleSpace::forward(oop q, size_t size,
 355                                     CompactPoint* cp, HeapWord* compact_top) {
 356   // q is alive
 357   // First check if we should switch compaction space
 358   assert(this == cp->space, "'this' should be current compaction space.");
 359   size_t compaction_max_size = pointer_delta(end(), compact_top);
 360   while (size > compaction_max_size) {
 361     // switch to next compaction space
 362     cp->space->set_compaction_top(compact_top);
 363     cp->space = cp->space->next_compaction_space();
 364     if (cp->space == NULL) {
 365       cp->gen = GenCollectedHeap::heap()->young_gen();
 366       assert(cp->gen != NULL, "compaction must succeed");
 367       cp->space = cp->gen->first_compaction_space();
 368       assert(cp->space != NULL, "generation must have a first compaction space");
 369     }
 370     compact_top = cp->space->bottom();
 371     cp->space->set_compaction_top(compact_top);
 372     cp->threshold = cp->space->initialize_threshold();
 373     compaction_max_size = pointer_delta(cp->space->end(), compact_top);
 374   }
 375 
 376   // store the forwarding pointer into the mark word
 377   if ((HeapWord*)q != compact_top) {
 378     q->forward_to(oop(compact_top));
 379     assert(q->is_gc_marked(), "encoding the pointer should preserve the mark");
 380   } else {
 381     // if the object isn't moving we can just set the mark to the default
 382     // mark and handle it specially later on.
 383     q->init_mark_raw();
 384     assert(q->forwardee() == NULL, "should be forwarded to NULL");
 385   }
 386 
 387   compact_top += size;
 388 
 389   // we need to update the offset table so that the beginnings of objects can be
 390   // found during scavenge.  Note that we are updating the offset table based on
 391   // where the object will be once the compaction phase finishes.
 392   if (compact_top > cp->threshold)
 393     cp->threshold =
 394       cp->space->cross_threshold(compact_top - size, compact_top);
 395   return compact_top;
 396 }
 397 
 398 #if INCLUDE_SERIALGC
 399 
 400 void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) {
 401   scan_and_forward(this, cp);
 402 }
 403 
 404 void CompactibleSpace::adjust_pointers() {
 405   // Check first is there is any work to do.
 406   if (used() == 0) {
 407     return;   // Nothing to do.
 408   }
 409 
 410   scan_and_adjust_pointers(this);
 411 }
 412 
 413 void CompactibleSpace::compact() {
 414   scan_and_compact(this);
 415 }
 416 
 417 #endif // INCLUDE_SERIALGC
 418 
 419 void Space::print_short() const { print_short_on(tty); }
 420 
 421 void Space::print_short_on(outputStream* st) const {
 422   st->print(" space " SIZE_FORMAT "K, %3d%% used", capacity() / K,
 423               (int) ((double) used() * 100 / capacity()));
 424 }
 425 
 426 void Space::print() const { print_on(tty); }
 427 
 428 void Space::print_on(outputStream* st) const {
 429   print_short_on(st);
 430   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 431                 p2i(bottom()), p2i(end()));
 432 }
 433 
 434 void ContiguousSpace::print_on(outputStream* st) const {
 435   print_short_on(st);
 436   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 437                 p2i(bottom()), p2i(top()), p2i(end()));
 438 }
 439 
 440 void OffsetTableContigSpace::print_on(outputStream* st) const {
 441   print_short_on(st);
 442   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 443                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 444               p2i(bottom()), p2i(top()), p2i(_offsets.threshold()), p2i(end()));
 445 }
 446 
 447 void ContiguousSpace::verify() const {
 448   HeapWord* p = bottom();
 449   HeapWord* t = top();
 450   HeapWord* prev_p = NULL;
 451   while (p < t) {
 452     oopDesc::verify(oop(p));
 453     prev_p = p;
 454     p += oop(p)->size();
 455   }
 456   guarantee(p == top(), "end of last object must match end of space");
 457   if (top() != end()) {
 458     guarantee(top() == block_start_const(end()-1) &&
 459               top() == block_start_const(top()),
 460               "top should be start of unallocated block, if it exists");
 461   }
 462 }
 463 
 464 void Space::oop_iterate(OopIterateClosure* blk) {
 465   ObjectToOopClosure blk2(blk);
 466   object_iterate(&blk2);
 467 }
 468 
 469 bool Space::obj_is_alive(const HeapWord* p) const {
 470   assert (block_is_obj(p), "The address should point to an object");
 471   return true;
 472 }
 473 
 474 void ContiguousSpace::oop_iterate(OopIterateClosure* blk) {
 475   if (is_empty()) return;
 476   HeapWord* obj_addr = bottom();
 477   HeapWord* t = top();
 478   // Could call objects iterate, but this is easier.
 479   while (obj_addr < t) {
 480     obj_addr += oop(obj_addr)->oop_iterate_size(blk);
 481   }
 482 }
 483 
 484 void ContiguousSpace::object_iterate(ObjectClosure* blk) {
 485   if (is_empty()) return;
 486   object_iterate_from(bottom(), blk);
 487 }
 488 
 489 void ContiguousSpace::object_iterate_from(HeapWord* mark, ObjectClosure* blk) {
 490   while (mark < top()) {
 491     blk->do_object(oop(mark));
 492     mark += oop(mark)->size();
 493   }
 494 }
 495 
 496 // Very general, slow implementation.
 497 HeapWord* ContiguousSpace::block_start_const(const void* p) const {
 498   assert(MemRegion(bottom(), end()).contains(p),
 499          "p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
 500          p2i(p), p2i(bottom()), p2i(end()));
 501   if (p >= top()) {
 502     return top();
 503   } else {
 504     HeapWord* last = bottom();
 505     HeapWord* cur = last;
 506     while (cur <= p) {
 507       last = cur;
 508       cur += oop(cur)->size();
 509     }
 510     assert(oopDesc::is_oop(oop(last)), PTR_FORMAT " should be an object start", p2i(last));
 511     return last;
 512   }
 513 }
 514 
 515 size_t ContiguousSpace::block_size(const HeapWord* p) const {
 516   assert(MemRegion(bottom(), end()).contains(p),
 517          "p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")",
 518          p2i(p), p2i(bottom()), p2i(end()));
 519   HeapWord* current_top = top();
 520   assert(p <= current_top,
 521          "p > current top - p: " PTR_FORMAT ", current top: " PTR_FORMAT,
 522          p2i(p), p2i(current_top));
 523   assert(p == current_top || oopDesc::is_oop(oop(p)),
 524          "p (" PTR_FORMAT ") is not a block start - "
 525          "current_top: " PTR_FORMAT ", is_oop: %s",
 526          p2i(p), p2i(current_top), BOOL_TO_STR(oopDesc::is_oop(oop(p))));
 527   if (p < current_top) {
 528     return oop(p)->size();
 529   } else {
 530     assert(p == current_top, "just checking");
 531     return pointer_delta(end(), (HeapWord*) p);
 532   }
 533 }
 534 
 535 // This version requires locking.
 536 inline HeapWord* ContiguousSpace::allocate_impl(size_t size) {
 537   assert(Heap_lock->owned_by_self() ||
 538          (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()),
 539          "not locked");
 540   HeapWord* obj = top();
 541   if (pointer_delta(end(), obj) >= size) {
 542     HeapWord* new_top = obj + size;
 543     set_top(new_top);
 544     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 545     return obj;
 546   } else {
 547     return NULL;
 548   }
 549 }
 550 
 551 // This version is lock-free.
 552 inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size) {
 553   do {
 554     HeapWord* obj = top();
 555     if (pointer_delta(end(), obj) >= size) {
 556       HeapWord* new_top = obj + size;
 557       HeapWord* result = Atomic::cmpxchg(new_top, top_addr(), obj);
 558       // result can be one of two:
 559       //  the old top value: the exchange succeeded
 560       //  otherwise: the new value of the top is returned.
 561       if (result == obj) {
 562         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
 563         return obj;
 564       }
 565     } else {
 566       return NULL;
 567     }
 568   } while (true);
 569 }
 570 
 571 HeapWord* ContiguousSpace::allocate_aligned(size_t size) {
 572   assert(Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()), "not locked");
 573   HeapWord* end_value = end();
 574 
 575   HeapWord* obj = CollectedHeap::align_allocation_or_fail(top(), end_value, SurvivorAlignmentInBytes);
 576   if (obj == NULL) {
 577     return NULL;
 578   }
 579 
 580   if (pointer_delta(end_value, obj) >= size) {
 581     HeapWord* new_top = obj + size;
 582     set_top(new_top);
 583     assert(::is_aligned(obj, SurvivorAlignmentInBytes) && is_aligned(new_top),
 584       "checking alignment");
 585     return obj;
 586   } else {
 587     set_top(obj);
 588     return NULL;
 589   }
 590 }
 591 
 592 // Requires locking.
 593 HeapWord* ContiguousSpace::allocate(size_t size) {
 594   return allocate_impl(size);
 595 }
 596 
 597 // Lock-free.
 598 HeapWord* ContiguousSpace::par_allocate(size_t size) {
 599   return par_allocate_impl(size);
 600 }
 601 
 602 void ContiguousSpace::allocate_temporary_filler(int factor) {
 603   // allocate temporary type array decreasing free size with factor 'factor'
 604   assert(factor >= 0, "just checking");
 605   size_t size = pointer_delta(end(), top());
 606 
 607   // if space is full, return
 608   if (size == 0) return;
 609 
 610   if (factor > 0) {
 611     size -= size/factor;
 612   }
 613   size = align_object_size(size);
 614 
 615   const size_t array_header_size = typeArrayOopDesc::header_size(T_INT);
 616   if (size >= align_object_size(array_header_size)) {
 617     size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint));
 618     // allocate uninitialized int array
 619     typeArrayOop t = (typeArrayOop) allocate(size);
 620     assert(t != NULL, "allocation should succeed");
 621     t->set_mark_raw(markWord::prototype());
 622     t->set_klass(Universe::intArrayKlassObj());
 623     t->set_length((int)length);
 624   } else {
 625     assert(size == CollectedHeap::min_fill_size(),
 626            "size for smallest fake object doesn't match");
 627     instanceOop obj = (instanceOop) allocate(size);
 628     obj->set_mark_raw(markWord::prototype());
 629     obj->set_klass_gap(0);
 630     obj->set_klass(SystemDictionary::Object_klass());
 631   }
 632 }
 633 
 634 HeapWord* OffsetTableContigSpace::initialize_threshold() {
 635   return _offsets.initialize_threshold();
 636 }
 637 
 638 HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) {
 639   _offsets.alloc_block(start, end);
 640   return _offsets.threshold();
 641 }
 642 
 643 OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray,
 644                                                MemRegion mr) :
 645   _offsets(sharedOffsetArray, mr),
 646   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true)
 647 {
 648   _offsets.set_contig_space(this);
 649   initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 650 }
 651 
 652 #define OBJ_SAMPLE_INTERVAL 0
 653 #define BLOCK_SAMPLE_INTERVAL 100
 654 
 655 void OffsetTableContigSpace::verify() const {
 656   HeapWord* p = bottom();
 657   HeapWord* prev_p = NULL;
 658   int objs = 0;
 659   int blocks = 0;
 660 
 661   if (VerifyObjectStartArray) {
 662     _offsets.verify();
 663   }
 664 
 665   while (p < top()) {
 666     size_t size = oop(p)->size();
 667     // For a sampling of objects in the space, find it using the
 668     // block offset table.
 669     if (blocks == BLOCK_SAMPLE_INTERVAL) {
 670       guarantee(p == block_start_const(p + (size/2)),
 671                 "check offset computation");
 672       blocks = 0;
 673     } else {
 674       blocks++;
 675     }
 676 
 677     if (objs == OBJ_SAMPLE_INTERVAL) {
 678       oopDesc::verify(oop(p));
 679       objs = 0;
 680     } else {
 681       objs++;
 682     }
 683     prev_p = p;
 684     p += size;
 685   }
 686   guarantee(p == top(), "end of last object must match end of space");
 687 }
 688 
 689 
 690 size_t TenuredSpace::allowed_dead_ratio() const {
 691   return MarkSweepDeadRatio;
 692 }