1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_MEMORY_ALLOCATION_INLINE_HPP
  26 #define SHARE_MEMORY_ALLOCATION_INLINE_HPP
  27 
  28 #include "runtime/atomic.hpp"
  29 #include "runtime/globals.hpp"
  30 #include "runtime/os.hpp"
  31 #include "services/memTracker.hpp"
  32 #include "utilities/align.hpp"
  33 #include "utilities/globalDefinitions.hpp"
  34 
  35 // Explicit C-heap memory management
  36 
  37 #ifndef PRODUCT
  38 // Increments unsigned long value for statistics (not atomic on MP, but avoids word-tearing on 32 bit).
  39 inline void inc_stat_counter(volatile julong* dest, julong add_value) {
  40 #ifdef _LP64
  41   *dest += add_value;
  42 #else
  43   julong value = Atomic::load(dest);
  44   Atomic::store(value + add_value, dest);
  45 #endif
  46 }
  47 #endif
  48 
  49 template <class E>
  50 size_t MmapArrayAllocator<E>::size_for(size_t length) {
  51   size_t size = length * sizeof(E);
  52   int alignment = os::vm_allocation_granularity();
  53   return align_up(size, alignment);
  54 }
  55 
  56 template <class E>
  57 E* MmapArrayAllocator<E>::allocate_or_null(size_t length, MEMFLAGS flags) {
  58   size_t size = size_for(length);
  59   int alignment = os::vm_allocation_granularity();
  60 
  61   char* addr = os::reserve_memory(size, NULL, alignment, flags);
  62   if (addr == NULL) {
  63     return NULL;
  64   }
  65 
  66   if (os::commit_memory(addr, size, !ExecMem)) {
  67     return (E*)addr;
  68   } else {
  69     os::release_memory(addr, size);
  70     return NULL;
  71   }
  72 }
  73 
  74 template <class E>
  75 E* MmapArrayAllocator<E>::allocate(size_t length, MEMFLAGS flags) {
  76   size_t size = size_for(length);
  77   int alignment = os::vm_allocation_granularity();
  78 
  79   char* addr = os::reserve_memory(size, NULL, alignment, flags);
  80   if (addr == NULL) {
  81     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "Allocator (reserve)");
  82   }
  83 
  84   os::commit_memory_or_exit(addr, size, !ExecMem, "Allocator (commit)");
  85 
  86   return (E*)addr;
  87 }
  88 
  89 template <class E>
  90 void MmapArrayAllocator<E>::free(E* addr, size_t length) {
  91   bool result = os::release_memory((char*)addr, size_for(length));
  92   assert(result, "Failed to release memory");
  93 }
  94 
  95 template <class E>
  96 size_t MallocArrayAllocator<E>::size_for(size_t length) {
  97   return length * sizeof(E);
  98 }
  99 
 100 template <class E>
 101 E* MallocArrayAllocator<E>::allocate(size_t length, MEMFLAGS flags) {
 102   return (E*)AllocateHeap(size_for(length), flags);
 103 }
 104 
 105 template<class E>
 106 void MallocArrayAllocator<E>::free(E* addr) {
 107   FreeHeap(addr);
 108 }
 109 
 110 template <class E>
 111 bool ArrayAllocator<E>::should_use_malloc(size_t length) {
 112   return MallocArrayAllocator<E>::size_for(length) < ArrayAllocatorMallocLimit;
 113 }
 114 
 115 template <class E>
 116 E* ArrayAllocator<E>::allocate_malloc(size_t length, MEMFLAGS flags) {
 117   return MallocArrayAllocator<E>::allocate(length, flags);
 118 }
 119 
 120 template <class E>
 121 E* ArrayAllocator<E>::allocate_mmap(size_t length, MEMFLAGS flags) {
 122   return MmapArrayAllocator<E>::allocate(length, flags);
 123 }
 124 
 125 template <class E>
 126 E* ArrayAllocator<E>::allocate(size_t length, MEMFLAGS flags) {
 127   if (should_use_malloc(length)) {
 128     return allocate_malloc(length, flags);
 129   }
 130 
 131   return allocate_mmap(length, flags);
 132 }
 133 
 134 template <class E>
 135 E* ArrayAllocator<E>::reallocate(E* old_addr, size_t old_length, size_t new_length, MEMFLAGS flags) {
 136   E* new_addr = (new_length > 0)
 137       ? allocate(new_length, flags)
 138       : NULL;
 139 
 140   if (new_addr != NULL && old_addr != NULL) {
 141     memcpy(new_addr, old_addr, MIN2(old_length, new_length) * sizeof(E));
 142   }
 143 
 144   if (old_addr != NULL) {
 145     free(old_addr, old_length);
 146   }
 147 
 148   return new_addr;
 149 }
 150 
 151 template<class E>
 152 void ArrayAllocator<E>::free_malloc(E* addr, size_t length) {
 153   MallocArrayAllocator<E>::free(addr);
 154 }
 155 
 156 template<class E>
 157 void ArrayAllocator<E>::free_mmap(E* addr, size_t length) {
 158   MmapArrayAllocator<E>::free(addr, length);
 159 }
 160 
 161 template<class E>
 162 void ArrayAllocator<E>::free(E* addr, size_t length) {
 163   if (addr != NULL) {
 164     if (should_use_malloc(length)) {
 165       free_malloc(addr, length);
 166     } else {
 167       free_mmap(addr, length);
 168     }
 169   }
 170 }
 171 
 172 #endif // SHARE_MEMORY_ALLOCATION_INLINE_HPP