/* * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_MEMORY_ITERATOR_HPP #define SHARE_MEMORY_ITERATOR_HPP #include "memory/allocation.hpp" #include "memory/memRegion.hpp" #include "oops/oopsHierarchy.hpp" class CodeBlob; class nmethod; class ReferenceDiscoverer; class DataLayout; class KlassClosure; class ClassLoaderData; class Symbol; class Metadata; class Thread; // The following classes are C++ `closures` for iterating over objects, roots and spaces class Closure : public StackObj { }; // Thread iterator class ThreadClosure: public Closure { public: virtual void do_thread(Thread* thread) = 0; }; // OopClosure is used for iterating through references to Java objects. class OopClosure : public Closure { public: virtual void do_oop(oop* o) = 0; virtual void do_oop(narrowOop* o) = 0; }; class DoNothingClosure : public OopClosure { public: virtual void do_oop(oop* p) {} virtual void do_oop(narrowOop* p) {} }; extern DoNothingClosure do_nothing_cl; // OopIterateClosure adds extra code to be run during oop iterations. // This is needed by the GC and is extracted to a separate type to not // pollute the OopClosure interface. class OopIterateClosure : public OopClosure { private: ReferenceDiscoverer* _ref_discoverer; protected: OopIterateClosure(ReferenceDiscoverer* rd) : _ref_discoverer(rd) { } OopIterateClosure() : _ref_discoverer(NULL) { } ~OopIterateClosure() { } void set_ref_discoverer_internal(ReferenceDiscoverer* rd) { _ref_discoverer = rd; } public: ReferenceDiscoverer* ref_discoverer() const { return _ref_discoverer; } // Iteration of InstanceRefKlasses differ depending on the closure, // the below enum describes the different alternatives. enum ReferenceIterationMode { DO_DISCOVERY, // Apply closure and discover references DO_DISCOVERED_AND_DISCOVERY, // Apply closure to discovered field and do discovery DO_FIELDS, // Apply closure to all fields DO_FIELDS_EXCEPT_REFERENT // Apply closure to all fields except the referent field }; // The default iteration mode is to do discovery. virtual ReferenceIterationMode reference_iteration_mode() { return DO_DISCOVERY; } // If the do_metadata functions return "true", // we invoke the following when running oop_iterate(): // // 1) do_klass on the header klass pointer. // 2) do_klass on the klass pointer in the mirrors. // 3) do_cld on the class loader data in class loaders. virtual bool do_metadata() = 0; virtual void do_klass(Klass* k) = 0; virtual void do_cld(ClassLoaderData* cld) = 0; }; // An OopIterateClosure that can be used when there's no need to visit the Metadata. class BasicOopIterateClosure : public OopIterateClosure { public: BasicOopIterateClosure(ReferenceDiscoverer* rd = NULL) : OopIterateClosure(rd) {} virtual bool do_metadata() { return false; } virtual void do_klass(Klass* k) { ShouldNotReachHere(); } virtual void do_cld(ClassLoaderData* cld) { ShouldNotReachHere(); } }; class KlassClosure : public Closure { public: virtual void do_klass(Klass* k) = 0; }; class CLDClosure : public Closure { public: virtual void do_cld(ClassLoaderData* cld) = 0; }; class MetadataClosure : public Closure { public: virtual void do_metadata(Metadata* md) = 0; }; class CLDToOopClosure : public CLDClosure { OopClosure* _oop_closure; int _cld_claim; public: CLDToOopClosure(OopClosure* oop_closure, int cld_claim) : _oop_closure(oop_closure), _cld_claim(cld_claim) {} void do_cld(ClassLoaderData* cld); }; class ClaimMetadataVisitingOopIterateClosure : public OopIterateClosure { protected: const int _claim; public: ClaimMetadataVisitingOopIterateClosure(int claim, ReferenceDiscoverer* rd = NULL) : OopIterateClosure(rd), _claim(claim) { } virtual bool do_metadata() { return true; } virtual void do_klass(Klass* k); virtual void do_cld(ClassLoaderData* cld); }; // The base class for all concurrent marking closures, // that participates in class unloading. // It's used to proxy through the metadata to the oops defined in them. class MetadataVisitingOopIterateClosure: public ClaimMetadataVisitingOopIterateClosure { public: MetadataVisitingOopIterateClosure(ReferenceDiscoverer* rd = NULL); }; // ObjectClosure is used for iterating through an object space class ObjectClosure : public Closure { public: // Called for each object. virtual void do_object(oop obj) = 0; }; class BoolObjectClosure : public Closure { public: virtual bool do_object_b(oop obj) = 0; }; class AlwaysTrueClosure: public BoolObjectClosure { public: bool do_object_b(oop p) { return true; } }; class AlwaysFalseClosure : public BoolObjectClosure { public: bool do_object_b(oop p) { return false; } }; // Applies an oop closure to all ref fields in objects iterated over in an // object iteration. class ObjectToOopClosure: public ObjectClosure { OopIterateClosure* _cl; public: void do_object(oop obj); ObjectToOopClosure(OopIterateClosure* cl) : _cl(cl) {} }; // SpaceClosure is used for iterating over spaces class Space; class CompactibleSpace; class SpaceClosure : public StackObj { public: // Called for each space virtual void do_space(Space* s) = 0; }; class CompactibleSpaceClosure : public StackObj { public: // Called for each compactible space virtual void do_space(CompactibleSpace* s) = 0; }; // CodeBlobClosure is used for iterating through code blobs // in the code cache or on thread stacks class CodeBlobClosure : public Closure { public: // Called for each code blob. virtual void do_code_blob(CodeBlob* cb) = 0; }; // Applies an oop closure to all ref fields in code blobs // iterated over in an object iteration. class CodeBlobToOopClosure : public CodeBlobClosure { OopClosure* _cl; bool _fix_relocations; protected: void do_nmethod(nmethod* nm); public: // If fix_relocations(), then cl must copy objects to their new location immediately to avoid // patching nmethods with the old locations. CodeBlobToOopClosure(OopClosure* cl, bool fix_relocations) : _cl(cl), _fix_relocations(fix_relocations) {} virtual void do_code_blob(CodeBlob* cb); bool fix_relocations() const { return _fix_relocations; } const static bool FixRelocations = true; }; class MarkingCodeBlobClosure : public CodeBlobToOopClosure { public: MarkingCodeBlobClosure(OopClosure* cl, bool fix_relocations) : CodeBlobToOopClosure(cl, fix_relocations) {} // Called for each code blob, but at most once per unique blob. virtual void do_code_blob(CodeBlob* cb); }; class NMethodClosure : public Closure { public: virtual void do_nmethod(nmethod* n) = 0; }; // MonitorClosure is used for iterating over monitors in the monitors cache class ObjectMonitor; class MonitorClosure : public StackObj { public: // called for each monitor in cache virtual void do_monitor(ObjectMonitor* m) = 0; }; // A closure that is applied without any arguments. class VoidClosure : public StackObj { public: // I would have liked to declare this a pure virtual, but that breaks // in mysterious ways, for unknown reasons. virtual void do_void(); }; // YieldClosure is intended for use by iteration loops // to incrementalize their work, allowing interleaving // of an interruptable task so as to allow other // threads to run (which may not otherwise be able to access // exclusive resources, for instance). Additionally, the // closure also allows for aborting an ongoing iteration // by means of checking the return value from the polling // call. class YieldClosure : public StackObj { public: virtual bool should_return() = 0; // Yield on a fine-grain level. The check in case of not yielding should be very fast. virtual bool should_return_fine_grain() { return false; } }; // Abstract closure for serializing data (read or write). class SerializeClosure : public Closure { public: // Return bool indicating whether closure implements read or write. virtual bool reading() const = 0; // Read/write the void pointer pointed to by p. virtual void do_ptr(void** p) = 0; // Read/write the 32-bit unsigned integer pointed to by p. virtual void do_u4(u4* p) = 0; // Read/write the bool pointed to by p. virtual void do_bool(bool* p) = 0; // Read/write the region specified. virtual void do_region(u_char* start, size_t size) = 0; // Check/write the tag. If reading, then compare the tag against // the passed in value and fail is they don't match. This allows // for verification that sections of the serialized data are of the // correct length. virtual void do_tag(int tag) = 0; // Read/write the oop virtual void do_oop(oop* o) = 0; bool writing() { return !reading(); } }; class SymbolClosure : public StackObj { public: virtual void do_symbol(Symbol**) = 0; // Clear LSB in symbol address; it can be set by CPSlot. static Symbol* load_symbol(Symbol** p) { return (Symbol*)(intptr_t(*p) & ~1); } // Store symbol, adjusting new pointer if the original pointer was adjusted // (symbol references in constant pool slots have their LSB set to 1). static void store_symbol(Symbol** p, Symbol* sym) { *p = (Symbol*)(intptr_t(sym) | (intptr_t(*p) & 1)); } }; // Dispatches to the non-virtual functions if OopClosureType has // a concrete implementation, otherwise a virtual call is taken. class Devirtualizer { public: template static void do_oop(OopClosureType* closure, T* p); template static void do_klass(OopClosureType* closure, Klass* k); template static void do_cld(OopClosureType* closure, ClassLoaderData* cld); template static bool do_metadata(OopClosureType* closure); }; class OopIteratorClosureDispatch { public: template static void oop_oop_iterate(OopClosureType* cl, oop obj, Klass* klass); template static void oop_oop_iterate(OopClosureType* cl, oop obj, Klass* klass, MemRegion mr); template static void oop_oop_iterate_backwards(OopClosureType* cl, oop obj, Klass* klass); }; #endif // SHARE_MEMORY_ITERATOR_HPP