1 /*
   2  * Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/classLoaderDataGraph.hpp"
  28 #include "classfile/javaClasses.inline.hpp"
  29 #include "classfile/stringTable.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "gc/parallel/parallelArguments.hpp"
  34 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  35 #include "gc/parallel/parMarkBitMap.inline.hpp"
  36 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  37 #include "gc/parallel/psCompactionManager.inline.hpp"
  38 #include "gc/parallel/psOldGen.hpp"
  39 #include "gc/parallel/psParallelCompact.inline.hpp"
  40 #include "gc/parallel/psPromotionManager.inline.hpp"
  41 #include "gc/parallel/psRootType.hpp"
  42 #include "gc/parallel/psScavenge.hpp"
  43 #include "gc/parallel/psYoungGen.hpp"
  44 #include "gc/shared/gcCause.hpp"
  45 #include "gc/shared/gcHeapSummary.hpp"
  46 #include "gc/shared/gcId.hpp"
  47 #include "gc/shared/gcLocker.hpp"
  48 #include "gc/shared/gcTimer.hpp"
  49 #include "gc/shared/gcTrace.hpp"
  50 #include "gc/shared/gcTraceTime.inline.hpp"
  51 #include "gc/shared/isGCActiveMark.hpp"
  52 #include "gc/shared/oopStorage.inline.hpp"
  53 #include "gc/shared/oopStorageSet.inline.hpp"
  54 #include "gc/shared/oopStorageSetParState.inline.hpp"
  55 #include "gc/shared/referencePolicy.hpp"
  56 #include "gc/shared/referenceProcessor.hpp"
  57 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  58 #include "gc/shared/spaceDecorator.inline.hpp"
  59 #include "gc/shared/taskTerminator.hpp"
  60 #include "gc/shared/weakProcessor.hpp"
  61 #include "gc/shared/workerPolicy.hpp"
  62 #include "gc/shared/workgroup.hpp"
  63 #include "logging/log.hpp"
  64 #include "memory/iterator.inline.hpp"
  65 #include "memory/resourceArea.hpp"
  66 #include "memory/universe.hpp"
  67 #include "oops/access.inline.hpp"
  68 #include "oops/instanceClassLoaderKlass.inline.hpp"
  69 #include "oops/instanceKlass.inline.hpp"
  70 #include "oops/instanceMirrorKlass.inline.hpp"
  71 #include "oops/methodData.hpp"
  72 #include "oops/objArrayKlass.inline.hpp"
  73 #include "oops/oop.inline.hpp"
  74 #include "runtime/atomic.hpp"
  75 #include "runtime/handles.inline.hpp"
  76 #include "runtime/safepoint.hpp"
  77 #include "runtime/vmThread.hpp"
  78 #include "services/management.hpp"
  79 #include "services/memTracker.hpp"
  80 #include "services/memoryService.hpp"
  81 #include "utilities/align.hpp"
  82 #include "utilities/debug.hpp"
  83 #include "utilities/events.hpp"
  84 #include "utilities/formatBuffer.hpp"
  85 #include "utilities/macros.hpp"
  86 #include "utilities/stack.inline.hpp"
  87 #if INCLUDE_JVMCI
  88 #include "jvmci/jvmci.hpp"
  89 #endif
  90 
  91 #include <math.h>
  92 
  93 // All sizes are in HeapWords.
  94 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  95 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  96 const size_t ParallelCompactData::RegionSizeBytes =
  97   RegionSize << LogHeapWordSize;
  98 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  99 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
 100 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
 101 
 102 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
 103 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
 104 const size_t ParallelCompactData::BlockSizeBytes  =
 105   BlockSize << LogHeapWordSize;
 106 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
 107 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
 108 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
 109 
 110 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
 111 const size_t ParallelCompactData::Log2BlocksPerRegion =
 112   Log2RegionSize - Log2BlockSize;
 113 
 114 const ParallelCompactData::RegionData::region_sz_t
 115 ParallelCompactData::RegionData::dc_shift = 27;
 116 
 117 const ParallelCompactData::RegionData::region_sz_t
 118 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
 119 
 120 const ParallelCompactData::RegionData::region_sz_t
 121 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
 122 
 123 const ParallelCompactData::RegionData::region_sz_t
 124 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 125 
 126 const ParallelCompactData::RegionData::region_sz_t
 127 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 128 
 129 const ParallelCompactData::RegionData::region_sz_t
 130 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 131 
 132 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 133 
 134 SpanSubjectToDiscoveryClosure PSParallelCompact::_span_based_discoverer;
 135 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 136 
 137 double PSParallelCompact::_dwl_mean;
 138 double PSParallelCompact::_dwl_std_dev;
 139 double PSParallelCompact::_dwl_first_term;
 140 double PSParallelCompact::_dwl_adjustment;
 141 #ifdef  ASSERT
 142 bool   PSParallelCompact::_dwl_initialized = false;
 143 #endif  // #ifdef ASSERT
 144 
 145 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 146                        HeapWord* destination)
 147 {
 148   assert(src_region_idx != 0, "invalid src_region_idx");
 149   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 150   assert(destination != NULL, "invalid destination argument");
 151 
 152   _src_region_idx = src_region_idx;
 153   _partial_obj_size = partial_obj_size;
 154   _destination = destination;
 155 
 156   // These fields may not be updated below, so make sure they're clear.
 157   assert(_dest_region_addr == NULL, "should have been cleared");
 158   assert(_first_src_addr == NULL, "should have been cleared");
 159 
 160   // Determine the number of destination regions for the partial object.
 161   HeapWord* const last_word = destination + partial_obj_size - 1;
 162   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 163   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 164   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 165 
 166   if (beg_region_addr == end_region_addr) {
 167     // One destination region.
 168     _destination_count = 1;
 169     if (end_region_addr == destination) {
 170       // The destination falls on a region boundary, thus the first word of the
 171       // partial object will be the first word copied to the destination region.
 172       _dest_region_addr = end_region_addr;
 173       _first_src_addr = sd.region_to_addr(src_region_idx);
 174     }
 175   } else {
 176     // Two destination regions.  When copied, the partial object will cross a
 177     // destination region boundary, so a word somewhere within the partial
 178     // object will be the first word copied to the second destination region.
 179     _destination_count = 2;
 180     _dest_region_addr = end_region_addr;
 181     const size_t ofs = pointer_delta(end_region_addr, destination);
 182     assert(ofs < _partial_obj_size, "sanity");
 183     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 184   }
 185 }
 186 
 187 void SplitInfo::clear()
 188 {
 189   _src_region_idx = 0;
 190   _partial_obj_size = 0;
 191   _destination = NULL;
 192   _destination_count = 0;
 193   _dest_region_addr = NULL;
 194   _first_src_addr = NULL;
 195   assert(!is_valid(), "sanity");
 196 }
 197 
 198 #ifdef  ASSERT
 199 void SplitInfo::verify_clear()
 200 {
 201   assert(_src_region_idx == 0, "not clear");
 202   assert(_partial_obj_size == 0, "not clear");
 203   assert(_destination == NULL, "not clear");
 204   assert(_destination_count == 0, "not clear");
 205   assert(_dest_region_addr == NULL, "not clear");
 206   assert(_first_src_addr == NULL, "not clear");
 207 }
 208 #endif  // #ifdef ASSERT
 209 
 210 
 211 void PSParallelCompact::print_on_error(outputStream* st) {
 212   _mark_bitmap.print_on_error(st);
 213 }
 214 
 215 #ifndef PRODUCT
 216 const char* PSParallelCompact::space_names[] = {
 217   "old ", "eden", "from", "to  "
 218 };
 219 
 220 void PSParallelCompact::print_region_ranges() {
 221   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 222     return;
 223   }
 224   Log(gc, compaction) log;
 225   ResourceMark rm;
 226   LogStream ls(log.trace());
 227   Universe::print_on(&ls);
 228   log.trace("space  bottom     top        end        new_top");
 229   log.trace("------ ---------- ---------- ---------- ----------");
 230 
 231   for (unsigned int id = 0; id < last_space_id; ++id) {
 232     const MutableSpace* space = _space_info[id].space();
 233     log.trace("%u %s "
 234               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 235               SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 236               id, space_names[id],
 237               summary_data().addr_to_region_idx(space->bottom()),
 238               summary_data().addr_to_region_idx(space->top()),
 239               summary_data().addr_to_region_idx(space->end()),
 240               summary_data().addr_to_region_idx(_space_info[id].new_top()));
 241   }
 242 }
 243 
 244 void
 245 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 246 {
 247 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 248 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 249 
 250   ParallelCompactData& sd = PSParallelCompact::summary_data();
 251   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 252   log_develop_trace(gc, compaction)(
 253       REGION_IDX_FORMAT " " PTR_FORMAT " "
 254       REGION_IDX_FORMAT " " PTR_FORMAT " "
 255       REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 256       REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 257       i, p2i(c->data_location()), dci, p2i(c->destination()),
 258       c->partial_obj_size(), c->live_obj_size(),
 259       c->data_size(), c->source_region(), c->destination_count());
 260 
 261 #undef  REGION_IDX_FORMAT
 262 #undef  REGION_DATA_FORMAT
 263 }
 264 
 265 void
 266 print_generic_summary_data(ParallelCompactData& summary_data,
 267                            HeapWord* const beg_addr,
 268                            HeapWord* const end_addr)
 269 {
 270   size_t total_words = 0;
 271   size_t i = summary_data.addr_to_region_idx(beg_addr);
 272   const size_t last = summary_data.addr_to_region_idx(end_addr);
 273   HeapWord* pdest = 0;
 274 
 275   while (i < last) {
 276     ParallelCompactData::RegionData* c = summary_data.region(i);
 277     if (c->data_size() != 0 || c->destination() != pdest) {
 278       print_generic_summary_region(i, c);
 279       total_words += c->data_size();
 280       pdest = c->destination();
 281     }
 282     ++i;
 283   }
 284 
 285   log_develop_trace(gc, compaction)("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 286 }
 287 
 288 void
 289 PSParallelCompact::print_generic_summary_data(ParallelCompactData& summary_data,
 290                                               HeapWord* const beg_addr,
 291                                               HeapWord* const end_addr) {
 292   ::print_generic_summary_data(summary_data,beg_addr, end_addr);
 293 }
 294 
 295 void
 296 print_generic_summary_data(ParallelCompactData& summary_data,
 297                            SpaceInfo* space_info)
 298 {
 299   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 300     return;
 301   }
 302 
 303   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 304     const MutableSpace* space = space_info[id].space();
 305     print_generic_summary_data(summary_data, space->bottom(),
 306                                MAX2(space->top(), space_info[id].new_top()));
 307   }
 308 }
 309 
 310 void
 311 print_initial_summary_data(ParallelCompactData& summary_data,
 312                            const MutableSpace* space) {
 313   if (space->top() == space->bottom()) {
 314     return;
 315   }
 316 
 317   const size_t region_size = ParallelCompactData::RegionSize;
 318   typedef ParallelCompactData::RegionData RegionData;
 319   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 320   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 321   const RegionData* c = summary_data.region(end_region - 1);
 322   HeapWord* end_addr = c->destination() + c->data_size();
 323   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 324 
 325   // Print (and count) the full regions at the beginning of the space.
 326   size_t full_region_count = 0;
 327   size_t i = summary_data.addr_to_region_idx(space->bottom());
 328   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 329     ParallelCompactData::RegionData* c = summary_data.region(i);
 330     log_develop_trace(gc, compaction)(
 331         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 332         i, p2i(c->destination()),
 333         c->partial_obj_size(), c->live_obj_size(),
 334         c->data_size(), c->source_region(), c->destination_count());
 335     ++full_region_count;
 336     ++i;
 337   }
 338 
 339   size_t live_to_right = live_in_space - full_region_count * region_size;
 340 
 341   double max_reclaimed_ratio = 0.0;
 342   size_t max_reclaimed_ratio_region = 0;
 343   size_t max_dead_to_right = 0;
 344   size_t max_live_to_right = 0;
 345 
 346   // Print the 'reclaimed ratio' for regions while there is something live in
 347   // the region or to the right of it.  The remaining regions are empty (and
 348   // uninteresting), and computing the ratio will result in division by 0.
 349   while (i < end_region && live_to_right > 0) {
 350     c = summary_data.region(i);
 351     HeapWord* const region_addr = summary_data.region_to_addr(i);
 352     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 353     const size_t dead_to_right = used_to_right - live_to_right;
 354     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 355 
 356     if (reclaimed_ratio > max_reclaimed_ratio) {
 357             max_reclaimed_ratio = reclaimed_ratio;
 358             max_reclaimed_ratio_region = i;
 359             max_dead_to_right = dead_to_right;
 360             max_live_to_right = live_to_right;
 361     }
 362 
 363     ParallelCompactData::RegionData* c = summary_data.region(i);
 364     log_develop_trace(gc, compaction)(
 365         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d"
 366         "%12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 367         i, p2i(c->destination()),
 368         c->partial_obj_size(), c->live_obj_size(),
 369         c->data_size(), c->source_region(), c->destination_count(),
 370         reclaimed_ratio, dead_to_right, live_to_right);
 371 
 372 
 373     live_to_right -= c->data_size();
 374     ++i;
 375   }
 376 
 377   // Any remaining regions are empty.  Print one more if there is one.
 378   if (i < end_region) {
 379     ParallelCompactData::RegionData* c = summary_data.region(i);
 380     log_develop_trace(gc, compaction)(
 381         SIZE_FORMAT_W(5) " " PTR_FORMAT " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 382          i, p2i(c->destination()),
 383          c->partial_obj_size(), c->live_obj_size(),
 384          c->data_size(), c->source_region(), c->destination_count());
 385   }
 386 
 387   log_develop_trace(gc, compaction)("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 388                                     max_reclaimed_ratio_region, max_dead_to_right, max_live_to_right, max_reclaimed_ratio);
 389 }
 390 
 391 void
 392 print_initial_summary_data(ParallelCompactData& summary_data,
 393                            SpaceInfo* space_info) {
 394   if (!log_develop_is_enabled(Trace, gc, compaction)) {
 395     return;
 396   }
 397 
 398   unsigned int id = PSParallelCompact::old_space_id;
 399   const MutableSpace* space;
 400   do {
 401     space = space_info[id].space();
 402     print_initial_summary_data(summary_data, space);
 403   } while (++id < PSParallelCompact::eden_space_id);
 404 
 405   do {
 406     space = space_info[id].space();
 407     print_generic_summary_data(summary_data, space->bottom(), space->top());
 408   } while (++id < PSParallelCompact::last_space_id);
 409 }
 410 #endif  // #ifndef PRODUCT
 411 
 412 #ifdef  ASSERT
 413 size_t add_obj_count;
 414 size_t add_obj_size;
 415 size_t mark_bitmap_count;
 416 size_t mark_bitmap_size;
 417 #endif  // #ifdef ASSERT
 418 
 419 ParallelCompactData::ParallelCompactData() :
 420   _region_start(NULL),
 421   DEBUG_ONLY(_region_end(NULL) COMMA)
 422   _region_vspace(NULL),
 423   _reserved_byte_size(0),
 424   _region_data(NULL),
 425   _region_count(0),
 426   _block_vspace(NULL),
 427   _block_data(NULL),
 428   _block_count(0) {}
 429 
 430 bool ParallelCompactData::initialize(MemRegion covered_region)
 431 {
 432   _region_start = covered_region.start();
 433   const size_t region_size = covered_region.word_size();
 434   DEBUG_ONLY(_region_end = _region_start + region_size;)
 435 
 436   assert(region_align_down(_region_start) == _region_start,
 437          "region start not aligned");
 438   assert((region_size & RegionSizeOffsetMask) == 0,
 439          "region size not a multiple of RegionSize");
 440 
 441   bool result = initialize_region_data(region_size) && initialize_block_data();
 442   return result;
 443 }
 444 
 445 PSVirtualSpace*
 446 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 447 {
 448   const size_t raw_bytes = count * element_size;
 449   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 450   const size_t granularity = os::vm_allocation_granularity();
 451   _reserved_byte_size = align_up(raw_bytes, MAX2(page_sz, granularity));
 452 
 453   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 454     MAX2(page_sz, granularity);
 455   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 456   os::trace_page_sizes("Parallel Compact Data", raw_bytes, raw_bytes, page_sz, rs.base(),
 457                        rs.size());
 458 
 459   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 460 
 461   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 462   if (vspace != 0) {
 463     if (vspace->expand_by(_reserved_byte_size)) {
 464       return vspace;
 465     }
 466     delete vspace;
 467     // Release memory reserved in the space.
 468     rs.release();
 469   }
 470 
 471   return 0;
 472 }
 473 
 474 bool ParallelCompactData::initialize_region_data(size_t region_size)
 475 {
 476   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 477   _region_vspace = create_vspace(count, sizeof(RegionData));
 478   if (_region_vspace != 0) {
 479     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 480     _region_count = count;
 481     return true;
 482   }
 483   return false;
 484 }
 485 
 486 bool ParallelCompactData::initialize_block_data()
 487 {
 488   assert(_region_count != 0, "region data must be initialized first");
 489   const size_t count = _region_count << Log2BlocksPerRegion;
 490   _block_vspace = create_vspace(count, sizeof(BlockData));
 491   if (_block_vspace != 0) {
 492     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 493     _block_count = count;
 494     return true;
 495   }
 496   return false;
 497 }
 498 
 499 void ParallelCompactData::clear()
 500 {
 501   memset(_region_data, 0, _region_vspace->committed_size());
 502   memset(_block_data, 0, _block_vspace->committed_size());
 503 }
 504 
 505 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 506   assert(beg_region <= _region_count, "beg_region out of range");
 507   assert(end_region <= _region_count, "end_region out of range");
 508   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 509 
 510   const size_t region_cnt = end_region - beg_region;
 511   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 512 
 513   const size_t beg_block = beg_region * BlocksPerRegion;
 514   const size_t block_cnt = region_cnt * BlocksPerRegion;
 515   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 516 }
 517 
 518 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 519 {
 520   const RegionData* cur_cp = region(region_idx);
 521   const RegionData* const end_cp = region(region_count() - 1);
 522 
 523   HeapWord* result = region_to_addr(region_idx);
 524   if (cur_cp < end_cp) {
 525     do {
 526       result += cur_cp->partial_obj_size();
 527     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 528   }
 529   return result;
 530 }
 531 
 532 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 533 {
 534   const size_t obj_ofs = pointer_delta(addr, _region_start);
 535   const size_t beg_region = obj_ofs >> Log2RegionSize;
 536   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 537 
 538   DEBUG_ONLY(Atomic::inc(&add_obj_count);)
 539   DEBUG_ONLY(Atomic::add(&add_obj_size, len);)
 540 
 541   if (beg_region == end_region) {
 542     // All in one region.
 543     _region_data[beg_region].add_live_obj(len);
 544     return;
 545   }
 546 
 547   // First region.
 548   const size_t beg_ofs = region_offset(addr);
 549   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 550 
 551   Klass* klass = ((oop)addr)->klass();
 552   // Middle regions--completely spanned by this object.
 553   for (size_t region = beg_region + 1; region < end_region; ++region) {
 554     _region_data[region].set_partial_obj_size(RegionSize);
 555     _region_data[region].set_partial_obj_addr(addr);
 556   }
 557 
 558   // Last region.
 559   const size_t end_ofs = region_offset(addr + len - 1);
 560   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 561   _region_data[end_region].set_partial_obj_addr(addr);
 562 }
 563 
 564 void
 565 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 566 {
 567   assert(region_offset(beg) == 0, "not RegionSize aligned");
 568   assert(region_offset(end) == 0, "not RegionSize aligned");
 569 
 570   size_t cur_region = addr_to_region_idx(beg);
 571   const size_t end_region = addr_to_region_idx(end);
 572   HeapWord* addr = beg;
 573   while (cur_region < end_region) {
 574     _region_data[cur_region].set_destination(addr);
 575     _region_data[cur_region].set_destination_count(0);
 576     _region_data[cur_region].set_source_region(cur_region);
 577     _region_data[cur_region].set_data_location(addr);
 578 
 579     // Update live_obj_size so the region appears completely full.
 580     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 581     _region_data[cur_region].set_live_obj_size(live_size);
 582 
 583     ++cur_region;
 584     addr += RegionSize;
 585   }
 586 }
 587 
 588 // Find the point at which a space can be split and, if necessary, record the
 589 // split point.
 590 //
 591 // If the current src region (which overflowed the destination space) doesn't
 592 // have a partial object, the split point is at the beginning of the current src
 593 // region (an "easy" split, no extra bookkeeping required).
 594 //
 595 // If the current src region has a partial object, the split point is in the
 596 // region where that partial object starts (call it the split_region).  If
 597 // split_region has a partial object, then the split point is just after that
 598 // partial object (a "hard" split where we have to record the split data and
 599 // zero the partial_obj_size field).  With a "hard" split, we know that the
 600 // partial_obj ends within split_region because the partial object that caused
 601 // the overflow starts in split_region.  If split_region doesn't have a partial
 602 // obj, then the split is at the beginning of split_region (another "easy"
 603 // split).
 604 HeapWord*
 605 ParallelCompactData::summarize_split_space(size_t src_region,
 606                                            SplitInfo& split_info,
 607                                            HeapWord* destination,
 608                                            HeapWord* target_end,
 609                                            HeapWord** target_next)
 610 {
 611   assert(destination <= target_end, "sanity");
 612   assert(destination + _region_data[src_region].data_size() > target_end,
 613     "region should not fit into target space");
 614   assert(is_region_aligned(target_end), "sanity");
 615 
 616   size_t split_region = src_region;
 617   HeapWord* split_destination = destination;
 618   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 619 
 620   if (destination + partial_obj_size > target_end) {
 621     // The split point is just after the partial object (if any) in the
 622     // src_region that contains the start of the object that overflowed the
 623     // destination space.
 624     //
 625     // Find the start of the "overflow" object and set split_region to the
 626     // region containing it.
 627     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 628     split_region = addr_to_region_idx(overflow_obj);
 629 
 630     // Clear the source_region field of all destination regions whose first word
 631     // came from data after the split point (a non-null source_region field
 632     // implies a region must be filled).
 633     //
 634     // An alternative to the simple loop below:  clear during post_compact(),
 635     // which uses memcpy instead of individual stores, and is easy to
 636     // parallelize.  (The downside is that it clears the entire RegionData
 637     // object as opposed to just one field.)
 638     //
 639     // post_compact() would have to clear the summary data up to the highest
 640     // address that was written during the summary phase, which would be
 641     //
 642     //         max(top, max(new_top, clear_top))
 643     //
 644     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 645     // to target_end.
 646     const RegionData* const sr = region(split_region);
 647     const size_t beg_idx =
 648       addr_to_region_idx(region_align_up(sr->destination() +
 649                                          sr->partial_obj_size()));
 650     const size_t end_idx = addr_to_region_idx(target_end);
 651 
 652     log_develop_trace(gc, compaction)("split:  clearing source_region field in [" SIZE_FORMAT ", " SIZE_FORMAT ")", beg_idx, end_idx);
 653     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 654       _region_data[idx].set_source_region(0);
 655     }
 656 
 657     // Set split_destination and partial_obj_size to reflect the split region.
 658     split_destination = sr->destination();
 659     partial_obj_size = sr->partial_obj_size();
 660   }
 661 
 662   // The split is recorded only if a partial object extends onto the region.
 663   if (partial_obj_size != 0) {
 664     _region_data[split_region].set_partial_obj_size(0);
 665     split_info.record(split_region, partial_obj_size, split_destination);
 666   }
 667 
 668   // Setup the continuation addresses.
 669   *target_next = split_destination + partial_obj_size;
 670   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 671 
 672   if (log_develop_is_enabled(Trace, gc, compaction)) {
 673     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 674     log_develop_trace(gc, compaction)("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT " pos=" SIZE_FORMAT,
 675                                       split_type, p2i(source_next), split_region, partial_obj_size);
 676     log_develop_trace(gc, compaction)("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT " tn=" PTR_FORMAT,
 677                                       split_type, p2i(split_destination),
 678                                       addr_to_region_idx(split_destination),
 679                                       p2i(*target_next));
 680 
 681     if (partial_obj_size != 0) {
 682       HeapWord* const po_beg = split_info.destination();
 683       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 684       log_develop_trace(gc, compaction)("%s split:  po_beg=" PTR_FORMAT " " SIZE_FORMAT " po_end=" PTR_FORMAT " " SIZE_FORMAT,
 685                                         split_type,
 686                                         p2i(po_beg), addr_to_region_idx(po_beg),
 687                                         p2i(po_end), addr_to_region_idx(po_end));
 688     }
 689   }
 690 
 691   return source_next;
 692 }
 693 
 694 bool ParallelCompactData::summarize(SplitInfo& split_info,
 695                                     HeapWord* source_beg, HeapWord* source_end,
 696                                     HeapWord** source_next,
 697                                     HeapWord* target_beg, HeapWord* target_end,
 698                                     HeapWord** target_next)
 699 {
 700   HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 701   log_develop_trace(gc, compaction)(
 702       "sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 703       "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 704       p2i(source_beg), p2i(source_end), p2i(source_next_val),
 705       p2i(target_beg), p2i(target_end), p2i(*target_next));
 706 
 707   size_t cur_region = addr_to_region_idx(source_beg);
 708   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 709 
 710   HeapWord *dest_addr = target_beg;
 711   while (cur_region < end_region) {
 712     // The destination must be set even if the region has no data.
 713     _region_data[cur_region].set_destination(dest_addr);
 714 
 715     size_t words = _region_data[cur_region].data_size();
 716     if (words > 0) {
 717       // If cur_region does not fit entirely into the target space, find a point
 718       // at which the source space can be 'split' so that part is copied to the
 719       // target space and the rest is copied elsewhere.
 720       if (dest_addr + words > target_end) {
 721         assert(source_next != NULL, "source_next is NULL when splitting");
 722         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 723                                              target_end, target_next);
 724         return false;
 725       }
 726 
 727       // Compute the destination_count for cur_region, and if necessary, update
 728       // source_region for a destination region.  The source_region field is
 729       // updated if cur_region is the first (left-most) region to be copied to a
 730       // destination region.
 731       //
 732       // The destination_count calculation is a bit subtle.  A region that has
 733       // data that compacts into itself does not count itself as a destination.
 734       // This maintains the invariant that a zero count means the region is
 735       // available and can be claimed and then filled.
 736       uint destination_count = 0;
 737       if (split_info.is_split(cur_region)) {
 738         // The current region has been split:  the partial object will be copied
 739         // to one destination space and the remaining data will be copied to
 740         // another destination space.  Adjust the initial destination_count and,
 741         // if necessary, set the source_region field if the partial object will
 742         // cross a destination region boundary.
 743         destination_count = split_info.destination_count();
 744         if (destination_count == 2) {
 745           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 746           _region_data[dest_idx].set_source_region(cur_region);
 747         }
 748       }
 749 
 750       HeapWord* const last_addr = dest_addr + words - 1;
 751       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 752       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 753 
 754       // Initially assume that the destination regions will be the same and
 755       // adjust the value below if necessary.  Under this assumption, if
 756       // cur_region == dest_region_2, then cur_region will be compacted
 757       // completely into itself.
 758       destination_count += cur_region == dest_region_2 ? 0 : 1;
 759       if (dest_region_1 != dest_region_2) {
 760         // Destination regions differ; adjust destination_count.
 761         destination_count += 1;
 762         // Data from cur_region will be copied to the start of dest_region_2.
 763         _region_data[dest_region_2].set_source_region(cur_region);
 764       } else if (region_offset(dest_addr) == 0) {
 765         // Data from cur_region will be copied to the start of the destination
 766         // region.
 767         _region_data[dest_region_1].set_source_region(cur_region);
 768       }
 769 
 770       _region_data[cur_region].set_destination_count(destination_count);
 771       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 772       dest_addr += words;
 773     }
 774 
 775     ++cur_region;
 776   }
 777 
 778   *target_next = dest_addr;
 779   return true;
 780 }
 781 
 782 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr, ParCompactionManager* cm) {
 783   assert(addr != NULL, "Should detect NULL oop earlier");
 784   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 785   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 786 
 787   // Region covering the object.
 788   RegionData* const region_ptr = addr_to_region_ptr(addr);
 789   HeapWord* result = region_ptr->destination();
 790 
 791   // If the entire Region is live, the new location is region->destination + the
 792   // offset of the object within in the Region.
 793 
 794   // Run some performance tests to determine if this special case pays off.  It
 795   // is worth it for pointers into the dense prefix.  If the optimization to
 796   // avoid pointer updates in regions that only point to the dense prefix is
 797   // ever implemented, this should be revisited.
 798   if (region_ptr->data_size() == RegionSize) {
 799     result += region_offset(addr);
 800     return result;
 801   }
 802 
 803   // Otherwise, the new location is region->destination + block offset + the
 804   // number of live words in the Block that are (a) to the left of addr and (b)
 805   // due to objects that start in the Block.
 806 
 807   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 808   // threads may fill the block table for a region (harmless, since it is
 809   // idempotent).
 810   if (!region_ptr->blocks_filled()) {
 811     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 812     region_ptr->set_blocks_filled();
 813   }
 814 
 815   HeapWord* const search_start = block_align_down(addr);
 816   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 817 
 818   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 819   const size_t live = bitmap->live_words_in_range(cm, search_start, oop(addr));
 820   result += block_offset + live;
 821   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 822   return result;
 823 }
 824 
 825 #ifdef ASSERT
 826 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 827 {
 828   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 829   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 830   for (const size_t* p = beg; p < end; ++p) {
 831     assert(*p == 0, "not zero");
 832   }
 833 }
 834 
 835 void ParallelCompactData::verify_clear()
 836 {
 837   verify_clear(_region_vspace);
 838   verify_clear(_block_vspace);
 839 }
 840 #endif  // #ifdef ASSERT
 841 
 842 STWGCTimer          PSParallelCompact::_gc_timer;
 843 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 844 elapsedTimer        PSParallelCompact::_accumulated_time;
 845 unsigned int        PSParallelCompact::_total_invocations = 0;
 846 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 847 jlong               PSParallelCompact::_time_of_last_gc = 0;
 848 CollectorCounters*  PSParallelCompact::_counters = NULL;
 849 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 850 ParallelCompactData PSParallelCompact::_summary_data;
 851 
 852 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 853 
 854 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 855 
 856 class PCReferenceProcessor: public ReferenceProcessor {
 857 public:
 858   PCReferenceProcessor(
 859     BoolObjectClosure* is_subject_to_discovery,
 860     BoolObjectClosure* is_alive_non_header) :
 861       ReferenceProcessor(is_subject_to_discovery,
 862       ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 863       ParallelGCThreads,   // mt processing degree
 864       true,                // mt discovery
 865       ParallelGCThreads,   // mt discovery degree
 866       true,                // atomic_discovery
 867       is_alive_non_header) {
 868   }
 869 
 870   template<typename T> bool discover(oop obj, ReferenceType type) {
 871     T* referent_addr = (T*) java_lang_ref_Reference::referent_addr_raw(obj);
 872     T heap_oop = RawAccess<>::oop_load(referent_addr);
 873     oop referent = CompressedOops::decode_not_null(heap_oop);
 874     return PSParallelCompact::mark_bitmap()->is_unmarked(referent)
 875         && ReferenceProcessor::discover_reference(obj, type);
 876   }
 877   virtual bool discover_reference(oop obj, ReferenceType type) {
 878     if (UseCompressedOops) {
 879       return discover<narrowOop>(obj, type);
 880     } else {
 881       return discover<oop>(obj, type);
 882     }
 883   }
 884 };
 885 
 886 void PSParallelCompact::post_initialize() {
 887   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 888   _span_based_discoverer.set_span(heap->reserved_region());
 889   _ref_processor =
 890     new PCReferenceProcessor(&_span_based_discoverer,
 891                              &_is_alive_closure); // non-header is alive closure
 892 
 893   _counters = new CollectorCounters("Parallel full collection pauses", 1);
 894 
 895   // Initialize static fields in ParCompactionManager.
 896   ParCompactionManager::initialize(mark_bitmap());
 897 }
 898 
 899 bool PSParallelCompact::initialize() {
 900   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 901   MemRegion mr = heap->reserved_region();
 902 
 903   // Was the old gen get allocated successfully?
 904   if (!heap->old_gen()->is_allocated()) {
 905     return false;
 906   }
 907 
 908   initialize_space_info();
 909   initialize_dead_wood_limiter();
 910 
 911   if (!_mark_bitmap.initialize(mr)) {
 912     vm_shutdown_during_initialization(
 913       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 914       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 915       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 916     return false;
 917   }
 918 
 919   if (!_summary_data.initialize(mr)) {
 920     vm_shutdown_during_initialization(
 921       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 922       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 923       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 924     return false;
 925   }
 926 
 927   return true;
 928 }
 929 
 930 void PSParallelCompact::initialize_space_info()
 931 {
 932   memset(&_space_info, 0, sizeof(_space_info));
 933 
 934   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 935   PSYoungGen* young_gen = heap->young_gen();
 936 
 937   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 938   _space_info[eden_space_id].set_space(young_gen->eden_space());
 939   _space_info[from_space_id].set_space(young_gen->from_space());
 940   _space_info[to_space_id].set_space(young_gen->to_space());
 941 
 942   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 943 }
 944 
 945 void PSParallelCompact::initialize_dead_wood_limiter()
 946 {
 947   const size_t max = 100;
 948   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 949   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 950   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 951   DEBUG_ONLY(_dwl_initialized = true;)
 952   _dwl_adjustment = normal_distribution(1.0);
 953 }
 954 
 955 void
 956 PSParallelCompact::clear_data_covering_space(SpaceId id)
 957 {
 958   // At this point, top is the value before GC, new_top() is the value that will
 959   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 960   // should be marked above top.  The summary data is cleared to the larger of
 961   // top & new_top.
 962   MutableSpace* const space = _space_info[id].space();
 963   HeapWord* const bot = space->bottom();
 964   HeapWord* const top = space->top();
 965   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 966 
 967   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 968   const idx_t end_bit = _mark_bitmap.align_range_end(_mark_bitmap.addr_to_bit(top));
 969   _mark_bitmap.clear_range(beg_bit, end_bit);
 970 
 971   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 972   const size_t end_region =
 973     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 974   _summary_data.clear_range(beg_region, end_region);
 975 
 976   // Clear the data used to 'split' regions.
 977   SplitInfo& split_info = _space_info[id].split_info();
 978   if (split_info.is_valid()) {
 979     split_info.clear();
 980   }
 981   DEBUG_ONLY(split_info.verify_clear();)
 982 }
 983 
 984 void PSParallelCompact::pre_compact()
 985 {
 986   // Update the from & to space pointers in space_info, since they are swapped
 987   // at each young gen gc.  Do the update unconditionally (even though a
 988   // promotion failure does not swap spaces) because an unknown number of young
 989   // collections will have swapped the spaces an unknown number of times.
 990   GCTraceTime(Debug, gc, phases) tm("Pre Compact", &_gc_timer);
 991   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 992   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 993   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 994 
 995   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 996   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 997 
 998   // Increment the invocation count
 999   heap->increment_total_collections(true);
1000 
1001   // We need to track unique mark sweep invocations as well.
1002   _total_invocations++;
1003 
1004   heap->print_heap_before_gc();
1005   heap->trace_heap_before_gc(&_gc_tracer);
1006 
1007   // Fill in TLABs
1008   heap->ensure_parsability(true);  // retire TLABs
1009 
1010   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
1011     HandleMark hm;  // Discard invalid handles created during verification
1012     Universe::verify("Before GC");
1013   }
1014 
1015   // Verify object start arrays
1016   if (VerifyObjectStartArray &&
1017       VerifyBeforeGC) {
1018     heap->old_gen()->verify_object_start_array();
1019   }
1020 
1021   DEBUG_ONLY(mark_bitmap()->verify_clear();)
1022   DEBUG_ONLY(summary_data().verify_clear();)
1023 
1024   ParCompactionManager::reset_all_bitmap_query_caches();
1025 }
1026 
1027 void PSParallelCompact::post_compact()
1028 {
1029   GCTraceTime(Info, gc, phases) tm("Post Compact", &_gc_timer);
1030   ParCompactionManager::remove_all_shadow_regions();
1031 
1032   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1033     // Clear the marking bitmap, summary data and split info.
1034     clear_data_covering_space(SpaceId(id));
1035     // Update top().  Must be done after clearing the bitmap and summary data.
1036     _space_info[id].publish_new_top();
1037   }
1038 
1039   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1040   MutableSpace* const from_space = _space_info[from_space_id].space();
1041   MutableSpace* const to_space   = _space_info[to_space_id].space();
1042 
1043   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1044   bool eden_empty = eden_space->is_empty();
1045 
1046   // Update heap occupancy information which is used as input to the soft ref
1047   // clearing policy at the next gc.
1048   Universe::update_heap_info_at_gc();
1049 
1050   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1051     to_space->is_empty();
1052 
1053   PSCardTable* ct = heap->card_table();
1054   MemRegion old_mr = heap->old_gen()->reserved();
1055   if (young_gen_empty) {
1056     ct->clear(MemRegion(old_mr.start(), old_mr.end()));
1057   } else {
1058     ct->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1059   }
1060 
1061   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1062   ClassLoaderDataGraph::purge();
1063   MetaspaceUtils::verify_metrics();
1064 
1065   heap->prune_scavengable_nmethods();
1066 
1067 #if COMPILER2_OR_JVMCI
1068   DerivedPointerTable::update_pointers();
1069 #endif
1070 
1071   if (ZapUnusedHeapArea) {
1072     heap->gen_mangle_unused_area();
1073   }
1074 
1075   // Update time of last GC
1076   reset_millis_since_last_gc();
1077 }
1078 
1079 HeapWord*
1080 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1081                                                     bool maximum_compaction)
1082 {
1083   const size_t region_size = ParallelCompactData::RegionSize;
1084   const ParallelCompactData& sd = summary_data();
1085 
1086   const MutableSpace* const space = _space_info[id].space();
1087   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1088   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1089   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1090 
1091   // Skip full regions at the beginning of the space--they are necessarily part
1092   // of the dense prefix.
1093   size_t full_count = 0;
1094   const RegionData* cp;
1095   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1096     ++full_count;
1097   }
1098 
1099   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1100   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1101   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1102   if (maximum_compaction || cp == end_cp || interval_ended) {
1103     _maximum_compaction_gc_num = total_invocations();
1104     return sd.region_to_addr(cp);
1105   }
1106 
1107   HeapWord* const new_top = _space_info[id].new_top();
1108   const size_t space_live = pointer_delta(new_top, space->bottom());
1109   const size_t space_used = space->used_in_words();
1110   const size_t space_capacity = space->capacity_in_words();
1111 
1112   const double cur_density = double(space_live) / space_capacity;
1113   const double deadwood_density =
1114     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1115   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1116 
1117   log_develop_debug(gc, compaction)(
1118       "cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1119       cur_density, deadwood_density, deadwood_goal);
1120   log_develop_debug(gc, compaction)(
1121       "space_live=" SIZE_FORMAT " space_used=" SIZE_FORMAT " "
1122       "space_cap=" SIZE_FORMAT,
1123       space_live, space_used,
1124       space_capacity);
1125 
1126   // XXX - Use binary search?
1127   HeapWord* dense_prefix = sd.region_to_addr(cp);
1128   const RegionData* full_cp = cp;
1129   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1130   while (cp < end_cp) {
1131     HeapWord* region_destination = cp->destination();
1132     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1133 
1134     log_develop_trace(gc, compaction)(
1135         "c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1136         "dp=" PTR_FORMAT " cdw=" SIZE_FORMAT_W(8),
1137         sd.region(cp), p2i(region_destination),
1138         p2i(dense_prefix), cur_deadwood);
1139 
1140     if (cur_deadwood >= deadwood_goal) {
1141       // Found the region that has the correct amount of deadwood to the left.
1142       // This typically occurs after crossing a fairly sparse set of regions, so
1143       // iterate backwards over those sparse regions, looking for the region
1144       // that has the lowest density of live objects 'to the right.'
1145       size_t space_to_left = sd.region(cp) * region_size;
1146       size_t live_to_left = space_to_left - cur_deadwood;
1147       size_t space_to_right = space_capacity - space_to_left;
1148       size_t live_to_right = space_live - live_to_left;
1149       double density_to_right = double(live_to_right) / space_to_right;
1150       while (cp > full_cp) {
1151         --cp;
1152         const size_t prev_region_live_to_right = live_to_right -
1153           cp->data_size();
1154         const size_t prev_region_space_to_right = space_to_right + region_size;
1155         double prev_region_density_to_right =
1156           double(prev_region_live_to_right) / prev_region_space_to_right;
1157         if (density_to_right <= prev_region_density_to_right) {
1158           return dense_prefix;
1159         }
1160 
1161         log_develop_trace(gc, compaction)(
1162             "backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1163             "pc_d2r=%10.8f",
1164             sd.region(cp), density_to_right,
1165             prev_region_density_to_right);
1166 
1167         dense_prefix -= region_size;
1168         live_to_right = prev_region_live_to_right;
1169         space_to_right = prev_region_space_to_right;
1170         density_to_right = prev_region_density_to_right;
1171       }
1172       return dense_prefix;
1173     }
1174 
1175     dense_prefix += region_size;
1176     ++cp;
1177   }
1178 
1179   return dense_prefix;
1180 }
1181 
1182 #ifndef PRODUCT
1183 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1184                                                  const SpaceId id,
1185                                                  const bool maximum_compaction,
1186                                                  HeapWord* const addr)
1187 {
1188   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1189   RegionData* const cp = summary_data().region(region_idx);
1190   const MutableSpace* const space = _space_info[id].space();
1191   HeapWord* const new_top = _space_info[id].new_top();
1192 
1193   const size_t space_live = pointer_delta(new_top, space->bottom());
1194   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1195   const size_t space_cap = space->capacity_in_words();
1196   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1197   const size_t live_to_right = new_top - cp->destination();
1198   const size_t dead_to_right = space->top() - addr - live_to_right;
1199 
1200   log_develop_debug(gc, compaction)(
1201       "%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1202       "spl=" SIZE_FORMAT " "
1203       "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1204       "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT " "
1205       "ratio=%10.8f",
1206       algorithm, p2i(addr), region_idx,
1207       space_live,
1208       dead_to_left, dead_to_left_pct,
1209       dead_to_right, live_to_right,
1210       double(dead_to_right) / live_to_right);
1211 }
1212 #endif  // #ifndef PRODUCT
1213 
1214 // Return a fraction indicating how much of the generation can be treated as
1215 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1216 // based on the density of live objects in the generation to determine a limit,
1217 // which is then adjusted so the return value is min_percent when the density is
1218 // 1.
1219 //
1220 // The following table shows some return values for a different values of the
1221 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1222 // min_percent is 1.
1223 //
1224 //                          fraction allowed as dead wood
1225 //         -----------------------------------------------------------------
1226 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1227 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1228 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1229 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1230 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1231 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1232 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1233 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1234 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1235 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1236 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1237 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1238 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1239 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1240 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1241 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1242 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1243 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1244 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1245 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1246 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1247 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1248 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1249 
1250 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1251 {
1252   assert(_dwl_initialized, "uninitialized");
1253 
1254   // The raw limit is the value of the normal distribution at x = density.
1255   const double raw_limit = normal_distribution(density);
1256 
1257   // Adjust the raw limit so it becomes the minimum when the density is 1.
1258   //
1259   // First subtract the adjustment value (which is simply the precomputed value
1260   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1261   // Then add the minimum value, so the minimum is returned when the density is
1262   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1263   const double min = double(min_percent) / 100.0;
1264   const double limit = raw_limit - _dwl_adjustment + min;
1265   return MAX2(limit, 0.0);
1266 }
1267 
1268 ParallelCompactData::RegionData*
1269 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1270                                            const RegionData* end)
1271 {
1272   const size_t region_size = ParallelCompactData::RegionSize;
1273   ParallelCompactData& sd = summary_data();
1274   size_t left = sd.region(beg);
1275   size_t right = end > beg ? sd.region(end) - 1 : left;
1276 
1277   // Binary search.
1278   while (left < right) {
1279     // Equivalent to (left + right) / 2, but does not overflow.
1280     const size_t middle = left + (right - left) / 2;
1281     RegionData* const middle_ptr = sd.region(middle);
1282     HeapWord* const dest = middle_ptr->destination();
1283     HeapWord* const addr = sd.region_to_addr(middle);
1284     assert(dest != NULL, "sanity");
1285     assert(dest <= addr, "must move left");
1286 
1287     if (middle > left && dest < addr) {
1288       right = middle - 1;
1289     } else if (middle < right && middle_ptr->data_size() == region_size) {
1290       left = middle + 1;
1291     } else {
1292       return middle_ptr;
1293     }
1294   }
1295   return sd.region(left);
1296 }
1297 
1298 ParallelCompactData::RegionData*
1299 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1300                                           const RegionData* end,
1301                                           size_t dead_words)
1302 {
1303   ParallelCompactData& sd = summary_data();
1304   size_t left = sd.region(beg);
1305   size_t right = end > beg ? sd.region(end) - 1 : left;
1306 
1307   // Binary search.
1308   while (left < right) {
1309     // Equivalent to (left + right) / 2, but does not overflow.
1310     const size_t middle = left + (right - left) / 2;
1311     RegionData* const middle_ptr = sd.region(middle);
1312     HeapWord* const dest = middle_ptr->destination();
1313     HeapWord* const addr = sd.region_to_addr(middle);
1314     assert(dest != NULL, "sanity");
1315     assert(dest <= addr, "must move left");
1316 
1317     const size_t dead_to_left = pointer_delta(addr, dest);
1318     if (middle > left && dead_to_left > dead_words) {
1319       right = middle - 1;
1320     } else if (middle < right && dead_to_left < dead_words) {
1321       left = middle + 1;
1322     } else {
1323       return middle_ptr;
1324     }
1325   }
1326   return sd.region(left);
1327 }
1328 
1329 // The result is valid during the summary phase, after the initial summarization
1330 // of each space into itself, and before final summarization.
1331 inline double
1332 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1333                                    HeapWord* const bottom,
1334                                    HeapWord* const top,
1335                                    HeapWord* const new_top)
1336 {
1337   ParallelCompactData& sd = summary_data();
1338 
1339   assert(cp != NULL, "sanity");
1340   assert(bottom != NULL, "sanity");
1341   assert(top != NULL, "sanity");
1342   assert(new_top != NULL, "sanity");
1343   assert(top >= new_top, "summary data problem?");
1344   assert(new_top > bottom, "space is empty; should not be here");
1345   assert(new_top >= cp->destination(), "sanity");
1346   assert(top >= sd.region_to_addr(cp), "sanity");
1347 
1348   HeapWord* const destination = cp->destination();
1349   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1350   const size_t compacted_region_live = pointer_delta(new_top, destination);
1351   const size_t compacted_region_used = pointer_delta(top,
1352                                                      sd.region_to_addr(cp));
1353   const size_t reclaimable = compacted_region_used - compacted_region_live;
1354 
1355   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1356   return double(reclaimable) / divisor;
1357 }
1358 
1359 // Return the address of the end of the dense prefix, a.k.a. the start of the
1360 // compacted region.  The address is always on a region boundary.
1361 //
1362 // Completely full regions at the left are skipped, since no compaction can
1363 // occur in those regions.  Then the maximum amount of dead wood to allow is
1364 // computed, based on the density (amount live / capacity) of the generation;
1365 // the region with approximately that amount of dead space to the left is
1366 // identified as the limit region.  Regions between the last completely full
1367 // region and the limit region are scanned and the one that has the best
1368 // (maximum) reclaimed_ratio() is selected.
1369 HeapWord*
1370 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1371                                         bool maximum_compaction)
1372 {
1373   const size_t region_size = ParallelCompactData::RegionSize;
1374   const ParallelCompactData& sd = summary_data();
1375 
1376   const MutableSpace* const space = _space_info[id].space();
1377   HeapWord* const top = space->top();
1378   HeapWord* const top_aligned_up = sd.region_align_up(top);
1379   HeapWord* const new_top = _space_info[id].new_top();
1380   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1381   HeapWord* const bottom = space->bottom();
1382   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1383   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1384   const RegionData* const new_top_cp =
1385     sd.addr_to_region_ptr(new_top_aligned_up);
1386 
1387   // Skip full regions at the beginning of the space--they are necessarily part
1388   // of the dense prefix.
1389   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1390   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1391          space->is_empty(), "no dead space allowed to the left");
1392   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1393          "region must have dead space");
1394 
1395   // The gc number is saved whenever a maximum compaction is done, and used to
1396   // determine when the maximum compaction interval has expired.  This avoids
1397   // successive max compactions for different reasons.
1398   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1399   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1400   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1401     total_invocations() == HeapFirstMaximumCompactionCount;
1402   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1403     _maximum_compaction_gc_num = total_invocations();
1404     return sd.region_to_addr(full_cp);
1405   }
1406 
1407   const size_t space_live = pointer_delta(new_top, bottom);
1408   const size_t space_used = space->used_in_words();
1409   const size_t space_capacity = space->capacity_in_words();
1410 
1411   const double density = double(space_live) / double(space_capacity);
1412   const size_t min_percent_free = MarkSweepDeadRatio;
1413   const double limiter = dead_wood_limiter(density, min_percent_free);
1414   const size_t dead_wood_max = space_used - space_live;
1415   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1416                                       dead_wood_max);
1417 
1418   log_develop_debug(gc, compaction)(
1419       "space_live=" SIZE_FORMAT " space_used=" SIZE_FORMAT " "
1420       "space_cap=" SIZE_FORMAT,
1421       space_live, space_used,
1422       space_capacity);
1423   log_develop_debug(gc, compaction)(
1424       "dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1425       "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1426       density, min_percent_free, limiter,
1427       dead_wood_max, dead_wood_limit);
1428 
1429   // Locate the region with the desired amount of dead space to the left.
1430   const RegionData* const limit_cp =
1431     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1432 
1433   // Scan from the first region with dead space to the limit region and find the
1434   // one with the best (largest) reclaimed ratio.
1435   double best_ratio = 0.0;
1436   const RegionData* best_cp = full_cp;
1437   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1438     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1439     if (tmp_ratio > best_ratio) {
1440       best_cp = cp;
1441       best_ratio = tmp_ratio;
1442     }
1443   }
1444 
1445   return sd.region_to_addr(best_cp);
1446 }
1447 
1448 void PSParallelCompact::summarize_spaces_quick()
1449 {
1450   for (unsigned int i = 0; i < last_space_id; ++i) {
1451     const MutableSpace* space = _space_info[i].space();
1452     HeapWord** nta = _space_info[i].new_top_addr();
1453     bool result = _summary_data.summarize(_space_info[i].split_info(),
1454                                           space->bottom(), space->top(), NULL,
1455                                           space->bottom(), space->end(), nta);
1456     assert(result, "space must fit into itself");
1457     _space_info[i].set_dense_prefix(space->bottom());
1458   }
1459 }
1460 
1461 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1462 {
1463   HeapWord* const dense_prefix_end = dense_prefix(id);
1464   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1465   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1466   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1467     // Only enough dead space is filled so that any remaining dead space to the
1468     // left is larger than the minimum filler object.  (The remainder is filled
1469     // during the copy/update phase.)
1470     //
1471     // The size of the dead space to the right of the boundary is not a
1472     // concern, since compaction will be able to use whatever space is
1473     // available.
1474     //
1475     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1476     // surrounds the space to be filled with an object.
1477     //
1478     // In the 32-bit VM, each bit represents two 32-bit words:
1479     //                              +---+
1480     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1481     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1482     //                              +---+
1483     //
1484     // In the 64-bit VM, each bit represents one 64-bit word:
1485     //                              +------------+
1486     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1487     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1488     //                              +------------+
1489     //                          +-------+
1490     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1491     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1492     //                          +-------+
1493     //                      +-----------+
1494     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1495     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1496     //                      +-----------+
1497     //                          +-------+
1498     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1499     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1500     //                          +-------+
1501 
1502     // Initially assume case a, c or e will apply.
1503     size_t obj_len = CollectedHeap::min_fill_size();
1504     HeapWord* obj_beg = dense_prefix_end - obj_len;
1505 
1506 #ifdef  _LP64
1507     if (MinObjAlignment > 1) { // object alignment > heap word size
1508       // Cases a, c or e.
1509     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1510       // Case b above.
1511       obj_beg = dense_prefix_end - 1;
1512     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1513                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1514       // Case d above.
1515       obj_beg = dense_prefix_end - 3;
1516       obj_len = 3;
1517     }
1518 #endif  // #ifdef _LP64
1519 
1520     CollectedHeap::fill_with_object(obj_beg, obj_len);
1521     _mark_bitmap.mark_obj(obj_beg, obj_len);
1522     _summary_data.add_obj(obj_beg, obj_len);
1523     assert(start_array(id) != NULL, "sanity");
1524     start_array(id)->allocate_block(obj_beg);
1525   }
1526 }
1527 
1528 void
1529 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1530 {
1531   assert(id < last_space_id, "id out of range");
1532   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1533          "should have been reset in summarize_spaces_quick()");
1534 
1535   const MutableSpace* space = _space_info[id].space();
1536   if (_space_info[id].new_top() != space->bottom()) {
1537     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1538     _space_info[id].set_dense_prefix(dense_prefix_end);
1539 
1540 #ifndef PRODUCT
1541     if (log_is_enabled(Debug, gc, compaction)) {
1542       print_dense_prefix_stats("ratio", id, maximum_compaction,
1543                                dense_prefix_end);
1544       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1545       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1546     }
1547 #endif  // #ifndef PRODUCT
1548 
1549     // Recompute the summary data, taking into account the dense prefix.  If
1550     // every last byte will be reclaimed, then the existing summary data which
1551     // compacts everything can be left in place.
1552     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1553       // If dead space crosses the dense prefix boundary, it is (at least
1554       // partially) filled with a dummy object, marked live and added to the
1555       // summary data.  This simplifies the copy/update phase and must be done
1556       // before the final locations of objects are determined, to prevent
1557       // leaving a fragment of dead space that is too small to fill.
1558       fill_dense_prefix_end(id);
1559 
1560       // Compute the destination of each Region, and thus each object.
1561       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1562       _summary_data.summarize(_space_info[id].split_info(),
1563                               dense_prefix_end, space->top(), NULL,
1564                               dense_prefix_end, space->end(),
1565                               _space_info[id].new_top_addr());
1566     }
1567   }
1568 
1569   if (log_develop_is_enabled(Trace, gc, compaction)) {
1570     const size_t region_size = ParallelCompactData::RegionSize;
1571     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1572     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1573     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1574     HeapWord* const new_top = _space_info[id].new_top();
1575     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1576     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1577     log_develop_trace(gc, compaction)(
1578         "id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1579         "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1580         "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1581         id, space->capacity_in_words(), p2i(dense_prefix_end),
1582         dp_region, dp_words / region_size,
1583         cr_words / region_size, p2i(new_top));
1584   }
1585 }
1586 
1587 #ifndef PRODUCT
1588 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1589                                           HeapWord* dst_beg, HeapWord* dst_end,
1590                                           SpaceId src_space_id,
1591                                           HeapWord* src_beg, HeapWord* src_end)
1592 {
1593   log_develop_trace(gc, compaction)(
1594       "Summarizing %d [%s] into %d [%s]:  "
1595       "src=" PTR_FORMAT "-" PTR_FORMAT " "
1596       SIZE_FORMAT "-" SIZE_FORMAT " "
1597       "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1598       SIZE_FORMAT "-" SIZE_FORMAT,
1599       src_space_id, space_names[src_space_id],
1600       dst_space_id, space_names[dst_space_id],
1601       p2i(src_beg), p2i(src_end),
1602       _summary_data.addr_to_region_idx(src_beg),
1603       _summary_data.addr_to_region_idx(src_end),
1604       p2i(dst_beg), p2i(dst_end),
1605       _summary_data.addr_to_region_idx(dst_beg),
1606       _summary_data.addr_to_region_idx(dst_end));
1607 }
1608 #endif  // #ifndef PRODUCT
1609 
1610 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1611                                       bool maximum_compaction)
1612 {
1613   GCTraceTime(Info, gc, phases) tm("Summary Phase", &_gc_timer);
1614 
1615   log_develop_debug(gc, marking)(
1616       "add_obj_count=" SIZE_FORMAT " "
1617       "add_obj_bytes=" SIZE_FORMAT,
1618       add_obj_count,
1619       add_obj_size * HeapWordSize);
1620   log_develop_debug(gc, marking)(
1621       "mark_bitmap_count=" SIZE_FORMAT " "
1622       "mark_bitmap_bytes=" SIZE_FORMAT,
1623       mark_bitmap_count,
1624       mark_bitmap_size * HeapWordSize);
1625 
1626   // Quick summarization of each space into itself, to see how much is live.
1627   summarize_spaces_quick();
1628 
1629   log_develop_trace(gc, compaction)("summary phase:  after summarizing each space to self");
1630   NOT_PRODUCT(print_region_ranges());
1631   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1632 
1633   // The amount of live data that will end up in old space (assuming it fits).
1634   size_t old_space_total_live = 0;
1635   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1636     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1637                                           _space_info[id].space()->bottom());
1638   }
1639 
1640   MutableSpace* const old_space = _space_info[old_space_id].space();
1641   const size_t old_capacity = old_space->capacity_in_words();
1642   if (old_space_total_live > old_capacity) {
1643     // XXX - should also try to expand
1644     maximum_compaction = true;
1645   }
1646 
1647   // Old generations.
1648   summarize_space(old_space_id, maximum_compaction);
1649 
1650   // Summarize the remaining spaces in the young gen.  The initial target space
1651   // is the old gen.  If a space does not fit entirely into the target, then the
1652   // remainder is compacted into the space itself and that space becomes the new
1653   // target.
1654   SpaceId dst_space_id = old_space_id;
1655   HeapWord* dst_space_end = old_space->end();
1656   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1657   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1658     const MutableSpace* space = _space_info[id].space();
1659     const size_t live = pointer_delta(_space_info[id].new_top(),
1660                                       space->bottom());
1661     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1662 
1663     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1664                                   SpaceId(id), space->bottom(), space->top());)
1665     if (live > 0 && live <= available) {
1666       // All the live data will fit.
1667       bool done = _summary_data.summarize(_space_info[id].split_info(),
1668                                           space->bottom(), space->top(),
1669                                           NULL,
1670                                           *new_top_addr, dst_space_end,
1671                                           new_top_addr);
1672       assert(done, "space must fit into old gen");
1673 
1674       // Reset the new_top value for the space.
1675       _space_info[id].set_new_top(space->bottom());
1676     } else if (live > 0) {
1677       // Attempt to fit part of the source space into the target space.
1678       HeapWord* next_src_addr = NULL;
1679       bool done = _summary_data.summarize(_space_info[id].split_info(),
1680                                           space->bottom(), space->top(),
1681                                           &next_src_addr,
1682                                           *new_top_addr, dst_space_end,
1683                                           new_top_addr);
1684       assert(!done, "space should not fit into old gen");
1685       assert(next_src_addr != NULL, "sanity");
1686 
1687       // The source space becomes the new target, so the remainder is compacted
1688       // within the space itself.
1689       dst_space_id = SpaceId(id);
1690       dst_space_end = space->end();
1691       new_top_addr = _space_info[id].new_top_addr();
1692       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1693                                     space->bottom(), dst_space_end,
1694                                     SpaceId(id), next_src_addr, space->top());)
1695       done = _summary_data.summarize(_space_info[id].split_info(),
1696                                      next_src_addr, space->top(),
1697                                      NULL,
1698                                      space->bottom(), dst_space_end,
1699                                      new_top_addr);
1700       assert(done, "space must fit when compacted into itself");
1701       assert(*new_top_addr <= space->top(), "usage should not grow");
1702     }
1703   }
1704 
1705   log_develop_trace(gc, compaction)("Summary_phase:  after final summarization");
1706   NOT_PRODUCT(print_region_ranges());
1707   NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1708 }
1709 
1710 // This method should contain all heap-specific policy for invoking a full
1711 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1712 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1713 // before full gc, or any other specialized behavior, it needs to be added here.
1714 //
1715 // Note that this method should only be called from the vm_thread while at a
1716 // safepoint.
1717 //
1718 // Note that the all_soft_refs_clear flag in the soft ref policy
1719 // may be true because this method can be called without intervening
1720 // activity.  For example when the heap space is tight and full measure
1721 // are being taken to free space.
1722 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1723   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1724   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1725          "should be in vm thread");
1726 
1727   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1728   GCCause::Cause gc_cause = heap->gc_cause();
1729   assert(!heap->is_gc_active(), "not reentrant");
1730 
1731   PSAdaptiveSizePolicy* policy = heap->size_policy();
1732   IsGCActiveMark mark;
1733 
1734   if (ScavengeBeforeFullGC) {
1735     PSScavenge::invoke_no_policy();
1736   }
1737 
1738   const bool clear_all_soft_refs =
1739     heap->soft_ref_policy()->should_clear_all_soft_refs();
1740 
1741   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1742                                       maximum_heap_compaction);
1743 }
1744 
1745 // This method contains no policy. You should probably
1746 // be calling invoke() instead.
1747 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1748   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1749   assert(ref_processor() != NULL, "Sanity");
1750 
1751   if (GCLocker::check_active_before_gc()) {
1752     return false;
1753   }
1754 
1755   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1756 
1757   GCIdMark gc_id_mark;
1758   _gc_timer.register_gc_start();
1759   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1760 
1761   TimeStamp marking_start;
1762   TimeStamp compaction_start;
1763   TimeStamp collection_exit;
1764 
1765   GCCause::Cause gc_cause = heap->gc_cause();
1766   PSYoungGen* young_gen = heap->young_gen();
1767   PSOldGen* old_gen = heap->old_gen();
1768   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1769 
1770   // The scope of casr should end after code that can change
1771   // SoftRefPolicy::_should_clear_all_soft_refs.
1772   ClearedAllSoftRefs casr(maximum_heap_compaction,
1773                           heap->soft_ref_policy());
1774 
1775   if (ZapUnusedHeapArea) {
1776     // Save information needed to minimize mangling
1777     heap->record_gen_tops_before_GC();
1778   }
1779 
1780   // Make sure data structures are sane, make the heap parsable, and do other
1781   // miscellaneous bookkeeping.
1782   pre_compact();
1783 
1784   const PreGenGCValues pre_gc_values = heap->get_pre_gc_values();
1785 
1786   // Get the compaction manager reserved for the VM thread.
1787   ParCompactionManager* const vmthread_cm =
1788     ParCompactionManager::manager_array(ParallelScavengeHeap::heap()->workers().total_workers());
1789 
1790   {
1791     ResourceMark rm;
1792     HandleMark hm;
1793 
1794     const uint active_workers =
1795       WorkerPolicy::calc_active_workers(ParallelScavengeHeap::heap()->workers().total_workers(),
1796                                         ParallelScavengeHeap::heap()->workers().active_workers(),
1797                                         Threads::number_of_non_daemon_threads());
1798     ParallelScavengeHeap::heap()->workers().update_active_workers(active_workers);
1799 
1800     GCTraceCPUTime tcpu;
1801     GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause, true);
1802 
1803     heap->pre_full_gc_dump(&_gc_timer);
1804 
1805     TraceCollectorStats tcs(counters());
1806     TraceMemoryManagerStats tms(heap->old_gc_manager(), gc_cause);
1807 
1808     if (log_is_enabled(Debug, gc, heap, exit)) {
1809       accumulated_time()->start();
1810     }
1811 
1812     // Let the size policy know we're starting
1813     size_policy->major_collection_begin();
1814 
1815 #if COMPILER2_OR_JVMCI
1816     DerivedPointerTable::clear();
1817 #endif
1818 
1819     ref_processor()->enable_discovery();
1820     ref_processor()->setup_policy(maximum_heap_compaction);
1821 
1822     bool marked_for_unloading = false;
1823 
1824     marking_start.update();
1825     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1826 
1827     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1828       && GCCause::is_user_requested_gc(gc_cause);
1829     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1830 
1831 #if COMPILER2_OR_JVMCI
1832     assert(DerivedPointerTable::is_active(), "Sanity");
1833     DerivedPointerTable::set_active(false);
1834 #endif
1835 
1836     // adjust_roots() updates Universe::_intArrayKlassObj which is
1837     // needed by the compaction for filling holes in the dense prefix.
1838     adjust_roots(vmthread_cm);
1839 
1840     compaction_start.update();
1841     compact();
1842 
1843     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1844     // done before resizing.
1845     post_compact();
1846 
1847     // Let the size policy know we're done
1848     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1849 
1850     if (UseAdaptiveSizePolicy) {
1851       log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
1852       log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,
1853                           old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1854 
1855       // Don't check if the size_policy is ready here.  Let
1856       // the size_policy check that internally.
1857       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1858           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1859         // Swap the survivor spaces if from_space is empty. The
1860         // resize_young_gen() called below is normally used after
1861         // a successful young GC and swapping of survivor spaces;
1862         // otherwise, it will fail to resize the young gen with
1863         // the current implementation.
1864         if (young_gen->from_space()->is_empty()) {
1865           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1866           young_gen->swap_spaces();
1867         }
1868 
1869         // Calculate optimal free space amounts
1870         assert(young_gen->max_gen_size() >
1871           young_gen->from_space()->capacity_in_bytes() +
1872           young_gen->to_space()->capacity_in_bytes(),
1873           "Sizes of space in young gen are out-of-bounds");
1874 
1875         size_t young_live = young_gen->used_in_bytes();
1876         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1877         size_t old_live = old_gen->used_in_bytes();
1878         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1879         size_t max_old_gen_size = old_gen->max_gen_size();
1880         size_t max_eden_size = young_gen->max_gen_size() -
1881           young_gen->from_space()->capacity_in_bytes() -
1882           young_gen->to_space()->capacity_in_bytes();
1883 
1884         // Used for diagnostics
1885         size_policy->clear_generation_free_space_flags();
1886 
1887         size_policy->compute_generations_free_space(young_live,
1888                                                     eden_live,
1889                                                     old_live,
1890                                                     cur_eden,
1891                                                     max_old_gen_size,
1892                                                     max_eden_size,
1893                                                     true /* full gc*/);
1894 
1895         size_policy->check_gc_overhead_limit(eden_live,
1896                                              max_old_gen_size,
1897                                              max_eden_size,
1898                                              true /* full gc*/,
1899                                              gc_cause,
1900                                              heap->soft_ref_policy());
1901 
1902         size_policy->decay_supplemental_growth(true /* full gc*/);
1903 
1904         heap->resize_old_gen(
1905           size_policy->calculated_old_free_size_in_bytes());
1906 
1907         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1908                                size_policy->calculated_survivor_size_in_bytes());
1909       }
1910 
1911       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());
1912     }
1913 
1914     if (UsePerfData) {
1915       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1916       counters->update_counters();
1917       counters->update_old_capacity(old_gen->capacity_in_bytes());
1918       counters->update_young_capacity(young_gen->capacity_in_bytes());
1919     }
1920 
1921     heap->resize_all_tlabs();
1922 
1923     // Resize the metaspace capacity after a collection
1924     MetaspaceGC::compute_new_size();
1925 
1926     if (log_is_enabled(Debug, gc, heap, exit)) {
1927       accumulated_time()->stop();
1928     }
1929 
1930     heap->print_heap_change(pre_gc_values);
1931 
1932     // Track memory usage and detect low memory
1933     MemoryService::track_memory_usage();
1934     heap->update_counters();
1935 
1936     heap->post_full_gc_dump(&_gc_timer);
1937   }
1938 
1939 #ifdef ASSERT
1940   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1941     ParCompactionManager* const cm =
1942       ParCompactionManager::manager_array(int(i));
1943     assert(cm->marking_stack()->is_empty(),       "should be empty");
1944     assert(cm->region_stack()->is_empty(), "Region stack " SIZE_FORMAT " is not empty", i);
1945   }
1946 #endif // ASSERT
1947 
1948   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1949     HandleMark hm;  // Discard invalid handles created during verification
1950     Universe::verify("After GC");
1951   }
1952 
1953   // Re-verify object start arrays
1954   if (VerifyObjectStartArray &&
1955       VerifyAfterGC) {
1956     old_gen->verify_object_start_array();
1957   }
1958 
1959   if (ZapUnusedHeapArea) {
1960     old_gen->object_space()->check_mangled_unused_area_complete();
1961   }
1962 
1963   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1964 
1965   collection_exit.update();
1966 
1967   heap->print_heap_after_gc();
1968   heap->trace_heap_after_gc(&_gc_tracer);
1969 
1970   log_debug(gc, task, time)("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " " JLONG_FORMAT,
1971                          marking_start.ticks(), compaction_start.ticks(),
1972                          collection_exit.ticks());
1973 
1974   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
1975 
1976   _gc_timer.register_gc_end();
1977 
1978   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
1979   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
1980 
1981   return true;
1982 }
1983 
1984 class PCAddThreadRootsMarkingTaskClosure : public ThreadClosure {
1985 private:
1986   uint _worker_id;
1987 
1988 public:
1989   PCAddThreadRootsMarkingTaskClosure(uint worker_id) : _worker_id(worker_id) { }
1990   void do_thread(Thread* thread) {
1991     assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
1992 
1993     ResourceMark rm;
1994 
1995     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(_worker_id);
1996 
1997     PCMarkAndPushClosure mark_and_push_closure(cm);
1998     MarkingCodeBlobClosure mark_and_push_in_blobs(&mark_and_push_closure, !CodeBlobToOopClosure::FixRelocations);
1999 
2000     thread->oops_do(&mark_and_push_closure, &mark_and_push_in_blobs);
2001 
2002     // Do the real work
2003     cm->follow_marking_stacks();
2004   }
2005 };
2006 
2007 static void mark_from_roots_work(ParallelRootType::Value root_type, uint worker_id) {
2008   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
2009 
2010   ParCompactionManager* cm =
2011     ParCompactionManager::gc_thread_compaction_manager(worker_id);
2012   PCMarkAndPushClosure mark_and_push_closure(cm);
2013 
2014   switch (root_type) {
2015     case ParallelRootType::universe:
2016       Universe::oops_do(&mark_and_push_closure);
2017       break;
2018 
2019     case ParallelRootType::object_synchronizer:
2020       ObjectSynchronizer::oops_do(&mark_and_push_closure);
2021       break;
2022 
2023     case ParallelRootType::management:
2024       Management::oops_do(&mark_and_push_closure);
2025       break;
2026 
2027     case ParallelRootType::jvmti:
2028       JvmtiExport::oops_do(&mark_and_push_closure);
2029       break;
2030 
2031     case ParallelRootType::class_loader_data:
2032       {
2033         CLDToOopClosure cld_closure(&mark_and_push_closure, ClassLoaderData::_claim_strong);
2034         ClassLoaderDataGraph::always_strong_cld_do(&cld_closure);
2035       }
2036       break;
2037 
2038     case ParallelRootType::code_cache:
2039       // Do not treat nmethods as strong roots for mark/sweep, since we can unload them.
2040       //ScavengableNMethods::scavengable_nmethods_do(CodeBlobToOopClosure(&mark_and_push_closure));
2041       AOTLoader::oops_do(&mark_and_push_closure);
2042       break;
2043 
2044     case ParallelRootType::sentinel:
2045     DEBUG_ONLY(default:) // DEBUG_ONLY hack will create compile error on release builds (-Wswitch) and runtime check on debug builds
2046       fatal("Bad enumeration value: %u", root_type);
2047       break;
2048   }
2049 
2050   // Do the real work
2051   cm->follow_marking_stacks();
2052 }
2053 
2054 static void steal_marking_work(TaskTerminator& terminator, uint worker_id) {
2055   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
2056 
2057   ParCompactionManager* cm =
2058     ParCompactionManager::gc_thread_compaction_manager(worker_id);
2059 
2060   oop obj = NULL;
2061   ObjArrayTask task;
2062   do {
2063     while (ParCompactionManager::steal_objarray(worker_id,  task)) {
2064       cm->follow_array((objArrayOop)task.obj(), task.index());
2065       cm->follow_marking_stacks();
2066     }
2067     while (ParCompactionManager::steal(worker_id, obj)) {
2068       cm->follow_contents(obj);
2069       cm->follow_marking_stacks();
2070     }
2071   } while (!terminator.offer_termination());
2072 }
2073 
2074 class MarkFromRootsTask : public AbstractGangTask {
2075   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2076   StrongRootsScope _strong_roots_scope; // needed for Threads::possibly_parallel_threads_do
2077   OopStorageSetStrongParState<false /* concurrent */, false /* is_const */> _oop_storage_set_par_state;
2078   SequentialSubTasksDone _subtasks;
2079   TaskTerminator _terminator;
2080   uint _active_workers;
2081 
2082 public:
2083   MarkFromRootsTask(uint active_workers) :
2084       AbstractGangTask("MarkFromRootsTask"),
2085       _strong_roots_scope(active_workers),
2086       _subtasks(),
2087       _terminator(active_workers, ParCompactionManager::oop_task_queues()),
2088       _active_workers(active_workers) {
2089     _subtasks.set_n_threads(active_workers);
2090     _subtasks.set_n_tasks(ParallelRootType::sentinel);
2091   }
2092 
2093   virtual void work(uint worker_id) {
2094     for (uint task = 0; _subtasks.try_claim_task(task); /*empty*/ ) {
2095       mark_from_roots_work(static_cast<ParallelRootType::Value>(task), worker_id);
2096     }
2097     _subtasks.all_tasks_completed();
2098 
2099     PCAddThreadRootsMarkingTaskClosure closure(worker_id);
2100     Threads::possibly_parallel_threads_do(true /*parallel */, &closure);
2101 
2102     // Mark from OopStorages
2103     {
2104       ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
2105       PCMarkAndPushClosure closure(cm);
2106       _oop_storage_set_par_state.oops_do(&closure);
2107       // Do the real work
2108       cm->follow_marking_stacks();
2109     }
2110 
2111     if (_active_workers > 1) {
2112       steal_marking_work(_terminator, worker_id);
2113     }
2114   }
2115 };
2116 
2117 class PCRefProcTask : public AbstractGangTask {
2118   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2119   ProcessTask& _task;
2120   uint _ergo_workers;
2121   TaskTerminator _terminator;
2122 
2123 public:
2124   PCRefProcTask(ProcessTask& task, uint ergo_workers) :
2125       AbstractGangTask("PCRefProcTask"),
2126       _task(task),
2127       _ergo_workers(ergo_workers),
2128       _terminator(_ergo_workers, ParCompactionManager::oop_task_queues()) {
2129   }
2130 
2131   virtual void work(uint worker_id) {
2132     ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2133     assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
2134 
2135     ParCompactionManager* cm =
2136       ParCompactionManager::gc_thread_compaction_manager(worker_id);
2137     PCMarkAndPushClosure mark_and_push_closure(cm);
2138     ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2139     _task.work(worker_id, *PSParallelCompact::is_alive_closure(),
2140                mark_and_push_closure, follow_stack_closure);
2141 
2142     steal_marking_work(_terminator, worker_id);
2143   }
2144 };
2145 
2146 class RefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2147   void execute(ProcessTask& process_task, uint ergo_workers) {
2148     assert(ParallelScavengeHeap::heap()->workers().active_workers() == ergo_workers,
2149            "Ergonomically chosen workers (%u) must be equal to active workers (%u)",
2150            ergo_workers, ParallelScavengeHeap::heap()->workers().active_workers());
2151 
2152     PCRefProcTask task(process_task, ergo_workers);
2153     ParallelScavengeHeap::heap()->workers().run_task(&task);
2154   }
2155 };
2156 
2157 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2158                                       bool maximum_heap_compaction,
2159                                       ParallelOldTracer *gc_tracer) {
2160   // Recursively traverse all live objects and mark them
2161   GCTraceTime(Info, gc, phases) tm("Marking Phase", &_gc_timer);
2162 
2163   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2164   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
2165 
2166   PCMarkAndPushClosure mark_and_push_closure(cm);
2167   ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2168 
2169   // Need new claim bits before marking starts.
2170   ClassLoaderDataGraph::clear_claimed_marks();
2171 
2172   {
2173     GCTraceTime(Debug, gc, phases) tm("Par Mark", &_gc_timer);
2174 
2175     MarkFromRootsTask task(active_gc_threads);
2176     ParallelScavengeHeap::heap()->workers().run_task(&task);
2177   }
2178 
2179   // Process reference objects found during marking
2180   {
2181     GCTraceTime(Debug, gc, phases) tm("Reference Processing", &_gc_timer);
2182 
2183     ReferenceProcessorStats stats;
2184     ReferenceProcessorPhaseTimes pt(&_gc_timer, ref_processor()->max_num_queues());
2185 
2186     if (ref_processor()->processing_is_mt()) {
2187       ref_processor()->set_active_mt_degree(active_gc_threads);
2188 
2189       RefProcTaskExecutor task_executor;
2190       stats = ref_processor()->process_discovered_references(
2191         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2192         &task_executor, &pt);
2193     } else {
2194       stats = ref_processor()->process_discovered_references(
2195         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2196         &pt);
2197     }
2198 
2199     gc_tracer->report_gc_reference_stats(stats);
2200     pt.print_all_references();
2201   }
2202 
2203   // This is the point where the entire marking should have completed.
2204   assert(cm->marking_stacks_empty(), "Marking should have completed");
2205 
2206   {
2207     GCTraceTime(Debug, gc, phases) tm("Weak Processing", &_gc_timer);
2208     WeakProcessor::weak_oops_do(is_alive_closure(), &do_nothing_cl);
2209   }
2210 
2211   {
2212     GCTraceTime(Debug, gc, phases) tm_m("Class Unloading", &_gc_timer);
2213 
2214     // Follow system dictionary roots and unload classes.
2215     bool purged_class = SystemDictionary::do_unloading(&_gc_timer);
2216 
2217     // Unload nmethods.
2218     CodeCache::do_unloading(is_alive_closure(), purged_class);
2219 
2220     // Prune dead klasses from subklass/sibling/implementor lists.
2221     Klass::clean_weak_klass_links(purged_class);
2222 
2223     // Clean JVMCI metadata handles.
2224     JVMCI_ONLY(JVMCI::do_unloading(purged_class));
2225   }
2226 
2227   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2228 }
2229 
2230 void PSParallelCompact::adjust_roots(ParCompactionManager* cm) {
2231   // Adjust the pointers to reflect the new locations
2232   GCTraceTime(Info, gc, phases) tm("Adjust Roots", &_gc_timer);
2233 
2234   // Need new claim bits when tracing through and adjusting pointers.
2235   ClassLoaderDataGraph::clear_claimed_marks();
2236 
2237   PCAdjustPointerClosure oop_closure(cm);
2238 
2239   // General strong roots.
2240   Universe::oops_do(&oop_closure);
2241   Threads::oops_do(&oop_closure, NULL);
2242   ObjectSynchronizer::oops_do(&oop_closure);
2243   Management::oops_do(&oop_closure);
2244   JvmtiExport::oops_do(&oop_closure);
2245   OopStorageSet::strong_oops_do(&oop_closure);
2246   CLDToOopClosure cld_closure(&oop_closure, ClassLoaderData::_claim_strong);
2247   ClassLoaderDataGraph::cld_do(&cld_closure);
2248 
2249   // Now adjust pointers in remaining weak roots.  (All of which should
2250   // have been cleared if they pointed to non-surviving objects.)
2251   WeakProcessor::oops_do(&oop_closure);
2252 
2253   CodeBlobToOopClosure adjust_from_blobs(&oop_closure, CodeBlobToOopClosure::FixRelocations);
2254   CodeCache::blobs_do(&adjust_from_blobs);
2255   AOT_ONLY(AOTLoader::oops_do(&oop_closure);)
2256 
2257   ref_processor()->weak_oops_do(&oop_closure);
2258   // Roots were visited so references into the young gen in roots
2259   // may have been scanned.  Process them also.
2260   // Should the reference processor have a span that excludes
2261   // young gen objects?
2262   PSScavenge::reference_processor()->weak_oops_do(&oop_closure);
2263 }
2264 
2265 // Helper class to print 8 region numbers per line and then print the total at the end.
2266 class FillableRegionLogger : public StackObj {
2267 private:
2268   Log(gc, compaction) log;
2269   static const int LineLength = 8;
2270   size_t _regions[LineLength];
2271   int _next_index;
2272   bool _enabled;
2273   size_t _total_regions;
2274 public:
2275   FillableRegionLogger() : _next_index(0), _enabled(log_develop_is_enabled(Trace, gc, compaction)), _total_regions(0) { }
2276   ~FillableRegionLogger() {
2277     log.trace(SIZE_FORMAT " initially fillable regions", _total_regions);
2278   }
2279 
2280   void print_line() {
2281     if (!_enabled || _next_index == 0) {
2282       return;
2283     }
2284     FormatBuffer<> line("Fillable: ");
2285     for (int i = 0; i < _next_index; i++) {
2286       line.append(" " SIZE_FORMAT_W(7), _regions[i]);
2287     }
2288     log.trace("%s", line.buffer());
2289     _next_index = 0;
2290   }
2291 
2292   void handle(size_t region) {
2293     if (!_enabled) {
2294       return;
2295     }
2296     _regions[_next_index++] = region;
2297     if (_next_index == LineLength) {
2298       print_line();
2299     }
2300     _total_regions++;
2301   }
2302 };
2303 
2304 void PSParallelCompact::prepare_region_draining_tasks(uint parallel_gc_threads)
2305 {
2306   GCTraceTime(Trace, gc, phases) tm("Drain Task Setup", &_gc_timer);
2307 
2308   // Find the threads that are active
2309   uint worker_id = 0;
2310 
2311   // Find all regions that are available (can be filled immediately) and
2312   // distribute them to the thread stacks.  The iteration is done in reverse
2313   // order (high to low) so the regions will be removed in ascending order.
2314 
2315   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2316 
2317   // id + 1 is used to test termination so unsigned  can
2318   // be used with an old_space_id == 0.
2319   FillableRegionLogger region_logger;
2320   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2321     SpaceInfo* const space_info = _space_info + id;
2322     MutableSpace* const space = space_info->space();
2323     HeapWord* const new_top = space_info->new_top();
2324 
2325     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2326     const size_t end_region =
2327       sd.addr_to_region_idx(sd.region_align_up(new_top));
2328 
2329     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2330       if (sd.region(cur)->claim_unsafe()) {
2331         ParCompactionManager* cm = ParCompactionManager::manager_array(worker_id);
2332         bool result = sd.region(cur)->mark_normal();
2333         assert(result, "Must succeed at this point.");
2334         cm->region_stack()->push(cur);
2335         region_logger.handle(cur);
2336         // Assign regions to tasks in round-robin fashion.
2337         if (++worker_id == parallel_gc_threads) {
2338           worker_id = 0;
2339         }
2340       }
2341     }
2342     region_logger.print_line();
2343   }
2344 }
2345 
2346 class TaskQueue : StackObj {
2347   volatile uint _counter;
2348   uint _size;
2349   uint _insert_index;
2350   PSParallelCompact::UpdateDensePrefixTask* _backing_array;
2351 public:
2352   explicit TaskQueue(uint size) : _counter(0), _size(size), _insert_index(0), _backing_array(NULL) {
2353     _backing_array = NEW_C_HEAP_ARRAY(PSParallelCompact::UpdateDensePrefixTask, _size, mtGC);
2354   }
2355   ~TaskQueue() {
2356     assert(_counter >= _insert_index, "not all queue elements were claimed");
2357     FREE_C_HEAP_ARRAY(T, _backing_array);
2358   }
2359 
2360   void push(const PSParallelCompact::UpdateDensePrefixTask& value) {
2361     assert(_insert_index < _size, "too small backing array");
2362     _backing_array[_insert_index++] = value;
2363   }
2364 
2365   bool try_claim(PSParallelCompact::UpdateDensePrefixTask& reference) {
2366     uint claimed = Atomic::fetch_and_add(&_counter, 1u);
2367     if (claimed < _insert_index) {
2368       reference = _backing_array[claimed];
2369       return true;
2370     } else {
2371       return false;
2372     }
2373   }
2374 };
2375 
2376 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2377 
2378 void PSParallelCompact::enqueue_dense_prefix_tasks(TaskQueue& task_queue,
2379                                                    uint parallel_gc_threads) {
2380   GCTraceTime(Trace, gc, phases) tm("Dense Prefix Task Setup", &_gc_timer);
2381 
2382   ParallelCompactData& sd = PSParallelCompact::summary_data();
2383 
2384   // Iterate over all the spaces adding tasks for updating
2385   // regions in the dense prefix.  Assume that 1 gc thread
2386   // will work on opening the gaps and the remaining gc threads
2387   // will work on the dense prefix.
2388   unsigned int space_id;
2389   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2390     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2391     const MutableSpace* const space = _space_info[space_id].space();
2392 
2393     if (dense_prefix_end == space->bottom()) {
2394       // There is no dense prefix for this space.
2395       continue;
2396     }
2397 
2398     // The dense prefix is before this region.
2399     size_t region_index_end_dense_prefix =
2400         sd.addr_to_region_idx(dense_prefix_end);
2401     RegionData* const dense_prefix_cp =
2402       sd.region(region_index_end_dense_prefix);
2403     assert(dense_prefix_end == space->end() ||
2404            dense_prefix_cp->available() ||
2405            dense_prefix_cp->claimed(),
2406            "The region after the dense prefix should always be ready to fill");
2407 
2408     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2409 
2410     // Is there dense prefix work?
2411     size_t total_dense_prefix_regions =
2412       region_index_end_dense_prefix - region_index_start;
2413     // How many regions of the dense prefix should be given to
2414     // each thread?
2415     if (total_dense_prefix_regions > 0) {
2416       uint tasks_for_dense_prefix = 1;
2417       if (total_dense_prefix_regions <=
2418           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2419         // Don't over partition.  This assumes that
2420         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2421         // so there are not many regions to process.
2422         tasks_for_dense_prefix = parallel_gc_threads;
2423       } else {
2424         // Over partition
2425         tasks_for_dense_prefix = parallel_gc_threads *
2426           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2427       }
2428       size_t regions_per_thread = total_dense_prefix_regions /
2429         tasks_for_dense_prefix;
2430       // Give each thread at least 1 region.
2431       if (regions_per_thread == 0) {
2432         regions_per_thread = 1;
2433       }
2434 
2435       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2436         if (region_index_start >= region_index_end_dense_prefix) {
2437           break;
2438         }
2439         // region_index_end is not processed
2440         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2441                                        region_index_end_dense_prefix);
2442         task_queue.push(UpdateDensePrefixTask(SpaceId(space_id),
2443                                               region_index_start,
2444                                               region_index_end));
2445         region_index_start = region_index_end;
2446       }
2447     }
2448     // This gets any part of the dense prefix that did not
2449     // fit evenly.
2450     if (region_index_start < region_index_end_dense_prefix) {
2451       task_queue.push(UpdateDensePrefixTask(SpaceId(space_id),
2452                                             region_index_start,
2453                                             region_index_end_dense_prefix));
2454     }
2455   }
2456 }
2457 
2458 #ifdef ASSERT
2459 // Write a histogram of the number of times the block table was filled for a
2460 // region.
2461 void PSParallelCompact::write_block_fill_histogram()
2462 {
2463   if (!log_develop_is_enabled(Trace, gc, compaction)) {
2464     return;
2465   }
2466 
2467   Log(gc, compaction) log;
2468   ResourceMark rm;
2469   LogStream ls(log.trace());
2470   outputStream* out = &ls;
2471 
2472   typedef ParallelCompactData::RegionData rd_t;
2473   ParallelCompactData& sd = summary_data();
2474 
2475   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2476     MutableSpace* const spc = _space_info[id].space();
2477     if (spc->bottom() != spc->top()) {
2478       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2479       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2480       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2481 
2482       size_t histo[5] = { 0, 0, 0, 0, 0 };
2483       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2484       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2485 
2486       for (const rd_t* cur = beg; cur < end; ++cur) {
2487         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2488       }
2489       out->print("Block fill histogram: %u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2490       for (size_t i = 0; i < histo_len; ++i) {
2491         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2492                    histo[i], 100.0 * histo[i] / region_cnt);
2493       }
2494       out->cr();
2495     }
2496   }
2497 }
2498 #endif // #ifdef ASSERT
2499 
2500 static void compaction_with_stealing_work(TaskTerminator* terminator, uint worker_id) {
2501   assert(ParallelScavengeHeap::heap()->is_gc_active(), "called outside gc");
2502 
2503   ParCompactionManager* cm =
2504     ParCompactionManager::gc_thread_compaction_manager(worker_id);
2505 
2506   // Drain the stacks that have been preloaded with regions
2507   // that are ready to fill.
2508 
2509   cm->drain_region_stacks();
2510 
2511   guarantee(cm->region_stack()->is_empty(), "Not empty");
2512 
2513   size_t region_index = 0;
2514 
2515   while (true) {
2516     if (ParCompactionManager::steal(worker_id, region_index)) {
2517       PSParallelCompact::fill_and_update_region(cm, region_index);
2518       cm->drain_region_stacks();
2519     } else if (PSParallelCompact::steal_unavailable_region(cm, region_index)) {
2520       // Fill and update an unavailable region with the help of a shadow region
2521       PSParallelCompact::fill_and_update_shadow_region(cm, region_index);
2522       cm->drain_region_stacks();
2523     } else {
2524       if (terminator->offer_termination()) {
2525         break;
2526       }
2527       // Go around again.
2528     }
2529   }
2530   return;
2531 }
2532 
2533 class UpdateDensePrefixAndCompactionTask: public AbstractGangTask {
2534   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2535   TaskQueue& _tq;
2536   TaskTerminator _terminator;
2537   uint _active_workers;
2538 
2539 public:
2540   UpdateDensePrefixAndCompactionTask(TaskQueue& tq, uint active_workers) :
2541       AbstractGangTask("UpdateDensePrefixAndCompactionTask"),
2542       _tq(tq),
2543       _terminator(active_workers, ParCompactionManager::region_task_queues()),
2544       _active_workers(active_workers) {
2545   }
2546   virtual void work(uint worker_id) {
2547     ParCompactionManager* cm = ParCompactionManager::gc_thread_compaction_manager(worker_id);
2548 
2549     for (PSParallelCompact::UpdateDensePrefixTask task; _tq.try_claim(task); /* empty */) {
2550       PSParallelCompact::update_and_deadwood_in_dense_prefix(cm,
2551                                                              task._space_id,
2552                                                              task._region_index_start,
2553                                                              task._region_index_end);
2554     }
2555 
2556     // Once a thread has drained it's stack, it should try to steal regions from
2557     // other threads.
2558     compaction_with_stealing_work(&_terminator, worker_id);
2559   }
2560 };
2561 
2562 void PSParallelCompact::compact() {
2563   GCTraceTime(Info, gc, phases) tm("Compaction Phase", &_gc_timer);
2564 
2565   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2566   PSOldGen* old_gen = heap->old_gen();
2567   old_gen->start_array()->reset();
2568   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
2569 
2570   // for [0..last_space_id)
2571   //     for [0..active_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)
2572   //         push
2573   //     push
2574   //
2575   // max push count is thus: last_space_id * (active_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING + 1)
2576   TaskQueue task_queue(last_space_id * (active_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING + 1));
2577   initialize_shadow_regions(active_gc_threads);
2578   prepare_region_draining_tasks(active_gc_threads);
2579   enqueue_dense_prefix_tasks(task_queue, active_gc_threads);
2580 
2581   {
2582     GCTraceTime(Trace, gc, phases) tm("Par Compact", &_gc_timer);
2583 
2584     UpdateDensePrefixAndCompactionTask task(task_queue, active_gc_threads);
2585     ParallelScavengeHeap::heap()->workers().run_task(&task);
2586 
2587 #ifdef  ASSERT
2588     // Verify that all regions have been processed before the deferred updates.
2589     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2590       verify_complete(SpaceId(id));
2591     }
2592 #endif
2593   }
2594 
2595   {
2596     // Update the deferred objects, if any.  Any compaction manager can be used.
2597     GCTraceTime(Trace, gc, phases) tm("Deferred Updates", &_gc_timer);
2598     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2599     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2600       update_deferred_objects(cm, SpaceId(id));
2601     }
2602   }
2603 
2604   DEBUG_ONLY(write_block_fill_histogram());
2605 }
2606 
2607 #ifdef  ASSERT
2608 void PSParallelCompact::verify_complete(SpaceId space_id) {
2609   // All Regions between space bottom() to new_top() should be marked as filled
2610   // and all Regions between new_top() and top() should be available (i.e.,
2611   // should have been emptied).
2612   ParallelCompactData& sd = summary_data();
2613   SpaceInfo si = _space_info[space_id];
2614   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2615   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2616   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2617   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2618   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2619 
2620   bool issued_a_warning = false;
2621 
2622   size_t cur_region;
2623   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2624     const RegionData* const c = sd.region(cur_region);
2625     if (!c->completed()) {
2626       log_warning(gc)("region " SIZE_FORMAT " not filled: destination_count=%u",
2627                       cur_region, c->destination_count());
2628       issued_a_warning = true;
2629     }
2630   }
2631 
2632   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2633     const RegionData* const c = sd.region(cur_region);
2634     if (!c->available()) {
2635       log_warning(gc)("region " SIZE_FORMAT " not empty: destination_count=%u",
2636                       cur_region, c->destination_count());
2637       issued_a_warning = true;
2638     }
2639   }
2640 
2641   if (issued_a_warning) {
2642     print_region_ranges();
2643   }
2644 }
2645 #endif  // #ifdef ASSERT
2646 
2647 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2648   _start_array->allocate_block(addr);
2649   compaction_manager()->update_contents(oop(addr));
2650 }
2651 
2652 // Update interior oops in the ranges of regions [beg_region, end_region).
2653 void
2654 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2655                                                        SpaceId space_id,
2656                                                        size_t beg_region,
2657                                                        size_t end_region) {
2658   ParallelCompactData& sd = summary_data();
2659   ParMarkBitMap* const mbm = mark_bitmap();
2660 
2661   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2662   HeapWord* const end_addr = sd.region_to_addr(end_region);
2663   assert(beg_region <= end_region, "bad region range");
2664   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2665 
2666 #ifdef  ASSERT
2667   // Claim the regions to avoid triggering an assert when they are marked as
2668   // filled.
2669   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2670     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2671   }
2672 #endif  // #ifdef ASSERT
2673 
2674   if (beg_addr != space(space_id)->bottom()) {
2675     // Find the first live object or block of dead space that *starts* in this
2676     // range of regions.  If a partial object crosses onto the region, skip it;
2677     // it will be marked for 'deferred update' when the object head is
2678     // processed.  If dead space crosses onto the region, it is also skipped; it
2679     // will be filled when the prior region is processed.  If neither of those
2680     // apply, the first word in the region is the start of a live object or dead
2681     // space.
2682     assert(beg_addr > space(space_id)->bottom(), "sanity");
2683     const RegionData* const cp = sd.region(beg_region);
2684     if (cp->partial_obj_size() != 0) {
2685       beg_addr = sd.partial_obj_end(beg_region);
2686     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2687       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2688     }
2689   }
2690 
2691   if (beg_addr < end_addr) {
2692     // A live object or block of dead space starts in this range of Regions.
2693      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2694 
2695     // Create closures and iterate.
2696     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2697     FillClosure fill_closure(cm, space_id);
2698     ParMarkBitMap::IterationStatus status;
2699     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2700                           dense_prefix_end);
2701     if (status == ParMarkBitMap::incomplete) {
2702       update_closure.do_addr(update_closure.source());
2703     }
2704   }
2705 
2706   // Mark the regions as filled.
2707   RegionData* const beg_cp = sd.region(beg_region);
2708   RegionData* const end_cp = sd.region(end_region);
2709   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2710     cp->set_completed();
2711   }
2712 }
2713 
2714 // Return the SpaceId for the space containing addr.  If addr is not in the
2715 // heap, last_space_id is returned.  In debug mode it expects the address to be
2716 // in the heap and asserts such.
2717 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2718   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2719 
2720   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2721     if (_space_info[id].space()->contains(addr)) {
2722       return SpaceId(id);
2723     }
2724   }
2725 
2726   assert(false, "no space contains the addr");
2727   return last_space_id;
2728 }
2729 
2730 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2731                                                 SpaceId id) {
2732   assert(id < last_space_id, "bad space id");
2733 
2734   ParallelCompactData& sd = summary_data();
2735   const SpaceInfo* const space_info = _space_info + id;
2736   ObjectStartArray* const start_array = space_info->start_array();
2737 
2738   const MutableSpace* const space = space_info->space();
2739   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2740   HeapWord* const beg_addr = space_info->dense_prefix();
2741   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2742 
2743   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2744   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2745   const RegionData* cur_region;
2746   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2747     HeapWord* const addr = cur_region->deferred_obj_addr();
2748     if (addr != NULL) {
2749       if (start_array != NULL) {
2750         start_array->allocate_block(addr);
2751       }
2752       cm->update_contents(oop(addr));
2753       assert(oopDesc::is_oop_or_null(oop(addr)), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2754     }
2755   }
2756 }
2757 
2758 // Skip over count live words starting from beg, and return the address of the
2759 // next live word.  Unless marked, the word corresponding to beg is assumed to
2760 // be dead.  Callers must either ensure beg does not correspond to the middle of
2761 // an object, or account for those live words in some other way.  Callers must
2762 // also ensure that there are enough live words in the range [beg, end) to skip.
2763 HeapWord*
2764 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2765 {
2766   assert(count > 0, "sanity");
2767 
2768   ParMarkBitMap* m = mark_bitmap();
2769   idx_t bits_to_skip = m->words_to_bits(count);
2770   idx_t cur_beg = m->addr_to_bit(beg);
2771   const idx_t search_end = m->align_range_end(m->addr_to_bit(end));
2772 
2773   do {
2774     cur_beg = m->find_obj_beg(cur_beg, search_end);
2775     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2776     const size_t obj_bits = cur_end - cur_beg + 1;
2777     if (obj_bits > bits_to_skip) {
2778       return m->bit_to_addr(cur_beg + bits_to_skip);
2779     }
2780     bits_to_skip -= obj_bits;
2781     cur_beg = cur_end + 1;
2782   } while (bits_to_skip > 0);
2783 
2784   // Skipping the desired number of words landed just past the end of an object.
2785   // Find the start of the next object.
2786   cur_beg = m->find_obj_beg(cur_beg, search_end);
2787   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2788   return m->bit_to_addr(cur_beg);
2789 }
2790 
2791 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2792                                             SpaceId src_space_id,
2793                                             size_t src_region_idx)
2794 {
2795   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2796 
2797   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2798   if (split_info.dest_region_addr() == dest_addr) {
2799     // The partial object ending at the split point contains the first word to
2800     // be copied to dest_addr.
2801     return split_info.first_src_addr();
2802   }
2803 
2804   const ParallelCompactData& sd = summary_data();
2805   ParMarkBitMap* const bitmap = mark_bitmap();
2806   const size_t RegionSize = ParallelCompactData::RegionSize;
2807 
2808   assert(sd.is_region_aligned(dest_addr), "not aligned");
2809   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2810   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2811   HeapWord* const src_region_destination = src_region_ptr->destination();
2812 
2813   assert(dest_addr >= src_region_destination, "wrong src region");
2814   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2815 
2816   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2817   HeapWord* const src_region_end = src_region_beg + RegionSize;
2818 
2819   HeapWord* addr = src_region_beg;
2820   if (dest_addr == src_region_destination) {
2821     // Return the first live word in the source region.
2822     if (partial_obj_size == 0) {
2823       addr = bitmap->find_obj_beg(addr, src_region_end);
2824       assert(addr < src_region_end, "no objects start in src region");
2825     }
2826     return addr;
2827   }
2828 
2829   // Must skip some live data.
2830   size_t words_to_skip = dest_addr - src_region_destination;
2831   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2832 
2833   if (partial_obj_size >= words_to_skip) {
2834     // All the live words to skip are part of the partial object.
2835     addr += words_to_skip;
2836     if (partial_obj_size == words_to_skip) {
2837       // Find the first live word past the partial object.
2838       addr = bitmap->find_obj_beg(addr, src_region_end);
2839       assert(addr < src_region_end, "wrong src region");
2840     }
2841     return addr;
2842   }
2843 
2844   // Skip over the partial object (if any).
2845   if (partial_obj_size != 0) {
2846     words_to_skip -= partial_obj_size;
2847     addr += partial_obj_size;
2848   }
2849 
2850   // Skip over live words due to objects that start in the region.
2851   addr = skip_live_words(addr, src_region_end, words_to_skip);
2852   assert(addr < src_region_end, "wrong src region");
2853   return addr;
2854 }
2855 
2856 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2857                                                      SpaceId src_space_id,
2858                                                      size_t beg_region,
2859                                                      HeapWord* end_addr)
2860 {
2861   ParallelCompactData& sd = summary_data();
2862 
2863 #ifdef ASSERT
2864   MutableSpace* const src_space = _space_info[src_space_id].space();
2865   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2866   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2867          "src_space_id does not match beg_addr");
2868   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2869          "src_space_id does not match end_addr");
2870 #endif // #ifdef ASSERT
2871 
2872   RegionData* const beg = sd.region(beg_region);
2873   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2874 
2875   // Regions up to new_top() are enqueued if they become available.
2876   HeapWord* const new_top = _space_info[src_space_id].new_top();
2877   RegionData* const enqueue_end =
2878     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2879 
2880   for (RegionData* cur = beg; cur < end; ++cur) {
2881     assert(cur->data_size() > 0, "region must have live data");
2882     cur->decrement_destination_count();
2883     if (cur < enqueue_end && cur->available() && cur->claim()) {
2884       if (cur->mark_normal()) {
2885         cm->push_region(sd.region(cur));
2886       } else if (cur->mark_copied()) {
2887         // Try to copy the content of the shadow region back to its corresponding
2888         // heap region if the shadow region is filled. Otherwise, the GC thread
2889         // fills the shadow region will copy the data back (see
2890         // MoveAndUpdateShadowClosure::complete_region).
2891         copy_back(sd.region_to_addr(cur->shadow_region()), sd.region_to_addr(cur));
2892         ParCompactionManager::push_shadow_region_mt_safe(cur->shadow_region());
2893         cur->set_completed();
2894       }
2895     }
2896   }
2897 }
2898 
2899 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2900                                           SpaceId& src_space_id,
2901                                           HeapWord*& src_space_top,
2902                                           HeapWord* end_addr)
2903 {
2904   typedef ParallelCompactData::RegionData RegionData;
2905 
2906   ParallelCompactData& sd = PSParallelCompact::summary_data();
2907   const size_t region_size = ParallelCompactData::RegionSize;
2908 
2909   size_t src_region_idx = 0;
2910 
2911   // Skip empty regions (if any) up to the top of the space.
2912   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2913   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2914   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2915   const RegionData* const top_region_ptr =
2916     sd.addr_to_region_ptr(top_aligned_up);
2917   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2918     ++src_region_ptr;
2919   }
2920 
2921   if (src_region_ptr < top_region_ptr) {
2922     // The next source region is in the current space.  Update src_region_idx
2923     // and the source address to match src_region_ptr.
2924     src_region_idx = sd.region(src_region_ptr);
2925     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2926     if (src_region_addr > closure.source()) {
2927       closure.set_source(src_region_addr);
2928     }
2929     return src_region_idx;
2930   }
2931 
2932   // Switch to a new source space and find the first non-empty region.
2933   unsigned int space_id = src_space_id + 1;
2934   assert(space_id < last_space_id, "not enough spaces");
2935 
2936   HeapWord* const destination = closure.destination();
2937 
2938   do {
2939     MutableSpace* space = _space_info[space_id].space();
2940     HeapWord* const bottom = space->bottom();
2941     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2942 
2943     // Iterate over the spaces that do not compact into themselves.
2944     if (bottom_cp->destination() != bottom) {
2945       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2946       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2947 
2948       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2949         if (src_cp->live_obj_size() > 0) {
2950           // Found it.
2951           assert(src_cp->destination() == destination,
2952                  "first live obj in the space must match the destination");
2953           assert(src_cp->partial_obj_size() == 0,
2954                  "a space cannot begin with a partial obj");
2955 
2956           src_space_id = SpaceId(space_id);
2957           src_space_top = space->top();
2958           const size_t src_region_idx = sd.region(src_cp);
2959           closure.set_source(sd.region_to_addr(src_region_idx));
2960           return src_region_idx;
2961         } else {
2962           assert(src_cp->data_size() == 0, "sanity");
2963         }
2964       }
2965     }
2966   } while (++space_id < last_space_id);
2967 
2968   assert(false, "no source region was found");
2969   return 0;
2970 }
2971 
2972 void PSParallelCompact::fill_region(ParCompactionManager* cm, MoveAndUpdateClosure& closure, size_t region_idx)
2973 {
2974   typedef ParMarkBitMap::IterationStatus IterationStatus;
2975   ParMarkBitMap* const bitmap = mark_bitmap();
2976   ParallelCompactData& sd = summary_data();
2977   RegionData* const region_ptr = sd.region(region_idx);
2978 
2979   // Get the source region and related info.
2980   size_t src_region_idx = region_ptr->source_region();
2981   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2982   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2983   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2984 
2985   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2986 
2987   // Adjust src_region_idx to prepare for decrementing destination counts (the
2988   // destination count is not decremented when a region is copied to itself).
2989   if (src_region_idx == region_idx) {
2990     src_region_idx += 1;
2991   }
2992 
2993   if (bitmap->is_unmarked(closure.source())) {
2994     // The first source word is in the middle of an object; copy the remainder
2995     // of the object or as much as will fit.  The fact that pointer updates were
2996     // deferred will be noted when the object header is processed.
2997     HeapWord* const old_src_addr = closure.source();
2998     closure.copy_partial_obj();
2999     if (closure.is_full()) {
3000       decrement_destination_counts(cm, src_space_id, src_region_idx,
3001                                    closure.source());
3002       region_ptr->set_deferred_obj_addr(NULL);
3003       closure.complete_region(cm, dest_addr, region_ptr);
3004       return;
3005     }
3006 
3007     HeapWord* const end_addr = sd.region_align_down(closure.source());
3008     if (sd.region_align_down(old_src_addr) != end_addr) {
3009       // The partial object was copied from more than one source region.
3010       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3011 
3012       // Move to the next source region, possibly switching spaces as well.  All
3013       // args except end_addr may be modified.
3014       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3015                                        end_addr);
3016     }
3017   }
3018 
3019   do {
3020     HeapWord* const cur_addr = closure.source();
3021     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
3022                                     src_space_top);
3023     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
3024 
3025     if (status == ParMarkBitMap::incomplete) {
3026       // The last obj that starts in the source region does not end in the
3027       // region.
3028       assert(closure.source() < end_addr, "sanity");
3029       HeapWord* const obj_beg = closure.source();
3030       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
3031                                        src_space_top);
3032       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
3033       if (obj_end < range_end) {
3034         // The end was found; the entire object will fit.
3035         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
3036         assert(status != ParMarkBitMap::would_overflow, "sanity");
3037       } else {
3038         // The end was not found; the object will not fit.
3039         assert(range_end < src_space_top, "obj cannot cross space boundary");
3040         status = ParMarkBitMap::would_overflow;
3041       }
3042     }
3043 
3044     if (status == ParMarkBitMap::would_overflow) {
3045       // The last object did not fit.  Note that interior oop updates were
3046       // deferred, then copy enough of the object to fill the region.
3047       region_ptr->set_deferred_obj_addr(closure.destination());
3048       status = closure.copy_until_full(); // copies from closure.source()
3049 
3050       decrement_destination_counts(cm, src_space_id, src_region_idx,
3051                                    closure.source());
3052       closure.complete_region(cm, dest_addr, region_ptr);
3053       return;
3054     }
3055 
3056     if (status == ParMarkBitMap::full) {
3057       decrement_destination_counts(cm, src_space_id, src_region_idx,
3058                                    closure.source());
3059       region_ptr->set_deferred_obj_addr(NULL);
3060       closure.complete_region(cm, dest_addr, region_ptr);
3061       return;
3062     }
3063 
3064     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
3065 
3066     // Move to the next source region, possibly switching spaces as well.  All
3067     // args except end_addr may be modified.
3068     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
3069                                      end_addr);
3070   } while (true);
3071 }
3072 
3073 void PSParallelCompact::fill_and_update_region(ParCompactionManager* cm, size_t region_idx)
3074 {
3075   MoveAndUpdateClosure cl(mark_bitmap(), cm, region_idx);
3076   fill_region(cm, cl, region_idx);
3077 }
3078 
3079 void PSParallelCompact::fill_and_update_shadow_region(ParCompactionManager* cm, size_t region_idx)
3080 {
3081   // Get a shadow region first
3082   ParallelCompactData& sd = summary_data();
3083   RegionData* const region_ptr = sd.region(region_idx);
3084   size_t shadow_region = ParCompactionManager::pop_shadow_region_mt_safe(region_ptr);
3085   // The InvalidShadow return value indicates the corresponding heap region is available,
3086   // so use MoveAndUpdateClosure to fill the normal region. Otherwise, use
3087   // MoveAndUpdateShadowClosure to fill the acquired shadow region.
3088   if (shadow_region == ParCompactionManager::InvalidShadow) {
3089     MoveAndUpdateClosure cl(mark_bitmap(), cm, region_idx);
3090     region_ptr->shadow_to_normal();
3091     return fill_region(cm, cl, region_idx);
3092   } else {
3093     MoveAndUpdateShadowClosure cl(mark_bitmap(), cm, region_idx, shadow_region);
3094     return fill_region(cm, cl, region_idx);
3095   }
3096 }
3097 
3098 void PSParallelCompact::copy_back(HeapWord *shadow_addr, HeapWord *region_addr)
3099 {
3100   Copy::aligned_conjoint_words(shadow_addr, region_addr, _summary_data.RegionSize);
3101 }
3102 
3103 bool PSParallelCompact::steal_unavailable_region(ParCompactionManager* cm, size_t &region_idx)
3104 {
3105   size_t next = cm->next_shadow_region();
3106   ParallelCompactData& sd = summary_data();
3107   size_t old_new_top = sd.addr_to_region_idx(_space_info[old_space_id].new_top());
3108   uint active_gc_threads = ParallelScavengeHeap::heap()->workers().active_workers();
3109 
3110   while (next < old_new_top) {
3111     if (sd.region(next)->mark_shadow()) {
3112       region_idx = next;
3113       return true;
3114     }
3115     next = cm->move_next_shadow_region_by(active_gc_threads);
3116   }
3117 
3118   return false;
3119 }
3120 
3121 // The shadow region is an optimization to address region dependencies in full GC. The basic
3122 // idea is making more regions available by temporally storing their live objects in empty
3123 // shadow regions to resolve dependencies between them and the destination regions. Therefore,
3124 // GC threads need not wait destination regions to be available before processing sources.
3125 //
3126 // A typical workflow would be:
3127 // After draining its own stack and failing to steal from others, a GC worker would pick an
3128 // unavailable region (destination count > 0) and get a shadow region. Then the worker fills
3129 // the shadow region by copying live objects from source regions of the unavailable one. Once
3130 // the unavailable region becomes available, the data in the shadow region will be copied back.
3131 // Shadow regions are empty regions in the to-space and regions between top and end of other spaces.
3132 //
3133 // For more details, please refer to ยง4.2 of the VEE'19 paper:
3134 // Haoyu Li, Mingyu Wu, Binyu Zang, and Haibo Chen. 2019. ScissorGC: scalable and efficient
3135 // compaction for Java full garbage collection. In Proceedings of the 15th ACM SIGPLAN/SIGOPS
3136 // International Conference on Virtual Execution Environments (VEE 2019). ACM, New York, NY, USA,
3137 // 108-121. DOI: https://doi.org/10.1145/3313808.3313820
3138 void PSParallelCompact::initialize_shadow_regions(uint parallel_gc_threads)
3139 {
3140   const ParallelCompactData& sd = PSParallelCompact::summary_data();
3141 
3142   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
3143     SpaceInfo* const space_info = _space_info + id;
3144     MutableSpace* const space = space_info->space();
3145 
3146     const size_t beg_region =
3147       sd.addr_to_region_idx(sd.region_align_up(MAX2(space_info->new_top(), space->top())));
3148     const size_t end_region =
3149       sd.addr_to_region_idx(sd.region_align_down(space->end()));
3150 
3151     for (size_t cur = beg_region; cur < end_region; ++cur) {
3152       ParCompactionManager::push_shadow_region(cur);
3153     }
3154   }
3155 
3156   size_t beg_region = sd.addr_to_region_idx(_space_info[old_space_id].dense_prefix());
3157   for (uint i = 0; i < parallel_gc_threads; i++) {
3158     ParCompactionManager *cm = ParCompactionManager::manager_array(i);
3159     cm->set_next_shadow_region(beg_region + i);
3160   }
3161 }
3162 
3163 void PSParallelCompact::fill_blocks(size_t region_idx)
3164 {
3165   // Fill in the block table elements for the specified region.  Each block
3166   // table element holds the number of live words in the region that are to the
3167   // left of the first object that starts in the block.  Thus only blocks in
3168   // which an object starts need to be filled.
3169   //
3170   // The algorithm scans the section of the bitmap that corresponds to the
3171   // region, keeping a running total of the live words.  When an object start is
3172   // found, if it's the first to start in the block that contains it, the
3173   // current total is written to the block table element.
3174   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
3175   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
3176   const size_t RegionSize = ParallelCompactData::RegionSize;
3177 
3178   ParallelCompactData& sd = summary_data();
3179   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
3180   if (partial_obj_size >= RegionSize) {
3181     return; // No objects start in this region.
3182   }
3183 
3184   // Ensure the first loop iteration decides that the block has changed.
3185   size_t cur_block = sd.block_count();
3186 
3187   const ParMarkBitMap* const bitmap = mark_bitmap();
3188 
3189   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
3190   assert((size_t)1 << Log2BitsPerBlock ==
3191          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
3192 
3193   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
3194   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
3195   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
3196   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
3197   while (beg_bit < range_end) {
3198     const size_t new_block = beg_bit >> Log2BitsPerBlock;
3199     if (new_block != cur_block) {
3200       cur_block = new_block;
3201       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
3202     }
3203 
3204     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
3205     if (end_bit < range_end - 1) {
3206       live_bits += end_bit - beg_bit + 1;
3207       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
3208     } else {
3209       return;
3210     }
3211   }
3212 }
3213 
3214 jlong PSParallelCompact::millis_since_last_gc() {
3215   // We need a monotonically non-decreasing time in ms but
3216   // os::javaTimeMillis() does not guarantee monotonicity.
3217   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3218   jlong ret_val = now - _time_of_last_gc;
3219   // XXX See note in genCollectedHeap::millis_since_last_gc().
3220   if (ret_val < 0) {
3221     NOT_PRODUCT(log_warning(gc)("time warp: " JLONG_FORMAT, ret_val);)
3222     return 0;
3223   }
3224   return ret_val;
3225 }
3226 
3227 void PSParallelCompact::reset_millis_since_last_gc() {
3228   // We need a monotonically non-decreasing time in ms but
3229   // os::javaTimeMillis() does not guarantee monotonicity.
3230   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3231 }
3232 
3233 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3234 {
3235   if (source() != copy_destination()) {
3236     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3237     Copy::aligned_conjoint_words(source(), copy_destination(), words_remaining());
3238   }
3239   update_state(words_remaining());
3240   assert(is_full(), "sanity");
3241   return ParMarkBitMap::full;
3242 }
3243 
3244 void MoveAndUpdateClosure::copy_partial_obj()
3245 {
3246   size_t words = words_remaining();
3247 
3248   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3249   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3250   if (end_addr < range_end) {
3251     words = bitmap()->obj_size(source(), end_addr);
3252   }
3253 
3254   // This test is necessary; if omitted, the pointer updates to a partial object
3255   // that crosses the dense prefix boundary could be overwritten.
3256   if (source() != copy_destination()) {
3257     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3258     Copy::aligned_conjoint_words(source(), copy_destination(), words);
3259   }
3260   update_state(words);
3261 }
3262 
3263 void MoveAndUpdateClosure::complete_region(ParCompactionManager *cm, HeapWord *dest_addr,
3264                                            PSParallelCompact::RegionData *region_ptr) {
3265   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::NormalRegion, "Region should be finished");
3266   region_ptr->set_completed();
3267 }
3268 
3269 ParMarkBitMapClosure::IterationStatus
3270 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3271   assert(destination() != NULL, "sanity");
3272   assert(bitmap()->obj_size(addr) == words, "bad size");
3273 
3274   _source = addr;
3275   assert(PSParallelCompact::summary_data().calc_new_pointer(source(), compaction_manager()) ==
3276          destination(), "wrong destination");
3277 
3278   if (words > words_remaining()) {
3279     return ParMarkBitMap::would_overflow;
3280   }
3281 
3282   // The start_array must be updated even if the object is not moving.
3283   if (_start_array != NULL) {
3284     _start_array->allocate_block(destination());
3285   }
3286 
3287   if (copy_destination() != source()) {
3288     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3289     Copy::aligned_conjoint_words(source(), copy_destination(), words);
3290   }
3291 
3292   oop moved_oop = (oop) copy_destination();
3293   compaction_manager()->update_contents(moved_oop);
3294   assert(oopDesc::is_oop_or_null(moved_oop), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3295 
3296   update_state(words);
3297   assert(copy_destination() == cast_from_oop<HeapWord*>(moved_oop) + moved_oop->size(), "sanity");
3298   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3299 }
3300 
3301 void MoveAndUpdateShadowClosure::complete_region(ParCompactionManager *cm, HeapWord *dest_addr,
3302                                                  PSParallelCompact::RegionData *region_ptr) {
3303   assert(region_ptr->shadow_state() == ParallelCompactData::RegionData::ShadowRegion, "Region should be shadow");
3304   // Record the shadow region index
3305   region_ptr->set_shadow_region(_shadow);
3306   // Mark the shadow region as filled to indicate the data is ready to be
3307   // copied back
3308   region_ptr->mark_filled();
3309   // Try to copy the content of the shadow region back to its corresponding
3310   // heap region if available; the GC thread that decreases the destination
3311   // count to zero will do the copying otherwise (see
3312   // PSParallelCompact::decrement_destination_counts).
3313   if (((region_ptr->available() && region_ptr->claim()) || region_ptr->claimed()) && region_ptr->mark_copied()) {
3314     region_ptr->set_completed();
3315     PSParallelCompact::copy_back(PSParallelCompact::summary_data().region_to_addr(_shadow), dest_addr);
3316     ParCompactionManager::push_shadow_region_mt_safe(_shadow);
3317   }
3318 }
3319 
3320 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3321                                      ParCompactionManager* cm,
3322                                      PSParallelCompact::SpaceId space_id) :
3323   ParMarkBitMapClosure(mbm, cm),
3324   _space_id(space_id),
3325   _start_array(PSParallelCompact::start_array(space_id))
3326 {
3327 }
3328 
3329 // Updates the references in the object to their new values.
3330 ParMarkBitMapClosure::IterationStatus
3331 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3332   do_addr(addr);
3333   return ParMarkBitMap::incomplete;
3334 }
3335 
3336 FillClosure::FillClosure(ParCompactionManager* cm, PSParallelCompact::SpaceId space_id) :
3337   ParMarkBitMapClosure(PSParallelCompact::mark_bitmap(), cm),
3338   _start_array(PSParallelCompact::start_array(space_id))
3339 {
3340   assert(space_id == PSParallelCompact::old_space_id,
3341          "cannot use FillClosure in the young gen");
3342 }
3343 
3344 ParMarkBitMapClosure::IterationStatus
3345 FillClosure::do_addr(HeapWord* addr, size_t size) {
3346   CollectedHeap::fill_with_objects(addr, size);
3347   HeapWord* const end = addr + size;
3348   do {
3349     _start_array->allocate_block(addr);
3350     addr += oop(addr)->size();
3351   } while (addr < end);
3352   return ParMarkBitMap::incomplete;
3353 }