1 /*
   2  * Copyright (c) 2013, 2020, Red Hat, Inc. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.hpp"
  27 #include "memory/universe.hpp"
  28 
  29 #include "gc/shared/gcArguments.hpp"
  30 #include "gc/shared/gcTimer.hpp"
  31 #include "gc/shared/gcTraceTime.inline.hpp"
  32 #include "gc/shared/locationPrinter.inline.hpp"
  33 #include "gc/shared/memAllocator.hpp"
  34 #include "gc/shared/plab.hpp"
  35 
  36 #include "gc/shenandoah/shenandoahBarrierSet.hpp"
  37 #include "gc/shenandoah/shenandoahClosures.inline.hpp"
  38 #include "gc/shenandoah/shenandoahCollectionSet.hpp"
  39 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp"
  40 #include "gc/shenandoah/shenandoahConcurrentMark.inline.hpp"
  41 #include "gc/shenandoah/shenandoahConcurrentRoots.hpp"
  42 #include "gc/shenandoah/shenandoahControlThread.hpp"
  43 #include "gc/shenandoah/shenandoahFreeSet.hpp"
  44 #include "gc/shenandoah/shenandoahPhaseTimings.hpp"
  45 #include "gc/shenandoah/shenandoahHeap.inline.hpp"
  46 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp"
  47 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp"
  48 #include "gc/shenandoah/shenandoahInitLogger.hpp"
  49 #include "gc/shenandoah/shenandoahMarkCompact.hpp"
  50 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp"
  51 #include "gc/shenandoah/shenandoahMemoryPool.hpp"
  52 #include "gc/shenandoah/shenandoahMetrics.hpp"
  53 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp"
  54 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp"
  55 #include "gc/shenandoah/shenandoahPacer.inline.hpp"
  56 #include "gc/shenandoah/shenandoahPadding.hpp"
  57 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp"
  58 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp"
  59 #include "gc/shenandoah/shenandoahStringDedup.hpp"
  60 #include "gc/shenandoah/shenandoahTaskqueue.hpp"
  61 #include "gc/shenandoah/shenandoahUtils.hpp"
  62 #include "gc/shenandoah/shenandoahVerifier.hpp"
  63 #include "gc/shenandoah/shenandoahCodeRoots.hpp"
  64 #include "gc/shenandoah/shenandoahVMOperations.hpp"
  65 #include "gc/shenandoah/shenandoahWorkGroup.hpp"
  66 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp"
  67 #include "gc/shenandoah/mode/shenandoahIUMode.hpp"
  68 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp"
  69 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp"
  70 #if INCLUDE_JFR
  71 #include "gc/shenandoah/shenandoahJfrSupport.hpp"
  72 #endif
  73 
  74 #include "memory/metaspace.hpp"
  75 #include "oops/compressedOops.inline.hpp"
  76 #include "runtime/atomic.hpp"
  77 #include "runtime/globals.hpp"
  78 #include "runtime/interfaceSupport.inline.hpp"
  79 #include "runtime/orderAccess.hpp"
  80 #include "runtime/safepointMechanism.hpp"
  81 #include "runtime/vmThread.hpp"
  82 #include "services/mallocTracker.hpp"
  83 #include "utilities/powerOfTwo.hpp"
  84 
  85 class ShenandoahPretouchHeapTask : public AbstractGangTask {
  86 private:
  87   ShenandoahRegionIterator _regions;
  88   const size_t _page_size;
  89 public:
  90   ShenandoahPretouchHeapTask(size_t page_size) :
  91     AbstractGangTask("Shenandoah Pretouch Heap"),
  92     _page_size(page_size) {}
  93 
  94   virtual void work(uint worker_id) {
  95     ShenandoahHeapRegion* r = _regions.next();
  96     while (r != NULL) {
  97       if (r->is_committed()) {
  98         os::pretouch_memory(r->bottom(), r->end(), _page_size);
  99       }
 100       r = _regions.next();
 101     }
 102   }
 103 };
 104 
 105 class ShenandoahPretouchBitmapTask : public AbstractGangTask {
 106 private:
 107   ShenandoahRegionIterator _regions;
 108   char* _bitmap_base;
 109   const size_t _bitmap_size;
 110   const size_t _page_size;
 111 public:
 112   ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) :
 113     AbstractGangTask("Shenandoah Pretouch Bitmap"),
 114     _bitmap_base(bitmap_base),
 115     _bitmap_size(bitmap_size),
 116     _page_size(page_size) {}
 117 
 118   virtual void work(uint worker_id) {
 119     ShenandoahHeapRegion* r = _regions.next();
 120     while (r != NULL) {
 121       size_t start = r->index()       * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 122       size_t end   = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor();
 123       assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size);
 124 
 125       if (r->is_committed()) {
 126         os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size);
 127       }
 128 
 129       r = _regions.next();
 130     }
 131   }
 132 };
 133 
 134 jint ShenandoahHeap::initialize() {
 135   //
 136   // Figure out heap sizing
 137   //
 138 
 139   size_t init_byte_size = InitialHeapSize;
 140   size_t min_byte_size  = MinHeapSize;
 141   size_t max_byte_size  = MaxHeapSize;
 142   size_t heap_alignment = HeapAlignment;
 143 
 144   size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes();
 145 
 146   Universe::check_alignment(max_byte_size,  reg_size_bytes, "Shenandoah heap");
 147   Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap");
 148 
 149   _num_regions = ShenandoahHeapRegion::region_count();
 150 
 151   // Now we know the number of regions, initialize the heuristics.
 152   initialize_heuristics();
 153 
 154   size_t num_committed_regions = init_byte_size / reg_size_bytes;
 155   num_committed_regions = MIN2(num_committed_regions, _num_regions);
 156   assert(num_committed_regions <= _num_regions, "sanity");
 157   _initial_size = num_committed_regions * reg_size_bytes;
 158 
 159   size_t num_min_regions = min_byte_size / reg_size_bytes;
 160   num_min_regions = MIN2(num_min_regions, _num_regions);
 161   assert(num_min_regions <= _num_regions, "sanity");
 162   _minimum_size = num_min_regions * reg_size_bytes;
 163 
 164   _committed = _initial_size;
 165 
 166   size_t heap_page_size   = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
 167   size_t bitmap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
 168   size_t region_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size();
 169 
 170   //
 171   // Reserve and commit memory for heap
 172   //
 173 
 174   ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment);
 175   initialize_reserved_region(heap_rs);
 176   _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize);
 177   _heap_region_special = heap_rs.special();
 178 
 179   assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0,
 180          "Misaligned heap: " PTR_FORMAT, p2i(base()));
 181 
 182 #if SHENANDOAH_OPTIMIZED_OBJTASK
 183   // The optimized ObjArrayChunkedTask takes some bits away from the full object bits.
 184   // Fail if we ever attempt to address more than we can.
 185   if ((uintptr_t)heap_rs.end() >= ObjArrayChunkedTask::max_addressable()) {
 186     FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n"
 187                           "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n"
 188                           "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).",
 189                 p2i(heap_rs.base()), p2i(heap_rs.end()), ObjArrayChunkedTask::max_addressable());
 190     vm_exit_during_initialization("Fatal Error", buf);
 191   }
 192 #endif
 193 
 194   ReservedSpace sh_rs = heap_rs.first_part(max_byte_size);
 195   if (!_heap_region_special) {
 196     os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false,
 197                               "Cannot commit heap memory");
 198   }
 199 
 200   //
 201   // Reserve and commit memory for bitmap(s)
 202   //
 203 
 204   _bitmap_size = MarkBitMap::compute_size(heap_rs.size());
 205   _bitmap_size = align_up(_bitmap_size, bitmap_page_size);
 206 
 207   size_t bitmap_bytes_per_region = reg_size_bytes / MarkBitMap::heap_map_factor();
 208 
 209   guarantee(bitmap_bytes_per_region != 0,
 210             "Bitmap bytes per region should not be zero");
 211   guarantee(is_power_of_2(bitmap_bytes_per_region),
 212             "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region);
 213 
 214   if (bitmap_page_size > bitmap_bytes_per_region) {
 215     _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region;
 216     _bitmap_bytes_per_slice = bitmap_page_size;
 217   } else {
 218     _bitmap_regions_per_slice = 1;
 219     _bitmap_bytes_per_slice = bitmap_bytes_per_region;
 220   }
 221 
 222   guarantee(_bitmap_regions_per_slice >= 1,
 223             "Should have at least one region per slice: " SIZE_FORMAT,
 224             _bitmap_regions_per_slice);
 225 
 226   guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0,
 227             "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT,
 228             _bitmap_bytes_per_slice, bitmap_page_size);
 229 
 230   ReservedSpace bitmap(_bitmap_size, bitmap_page_size);
 231   MemTracker::record_virtual_memory_type(bitmap.base(), mtGC);
 232   _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize);
 233   _bitmap_region_special = bitmap.special();
 234 
 235   size_t bitmap_init_commit = _bitmap_bytes_per_slice *
 236                               align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice;
 237   bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit);
 238   if (!_bitmap_region_special) {
 239     os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false,
 240                               "Cannot commit bitmap memory");
 241   }
 242 
 243   _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions);
 244 
 245   if (ShenandoahVerify) {
 246     ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size);
 247     if (!verify_bitmap.special()) {
 248       os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false,
 249                                 "Cannot commit verification bitmap memory");
 250     }
 251     MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC);
 252     MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize);
 253     _verification_bit_map.initialize(_heap_region, verify_bitmap_region);
 254     _verifier = new ShenandoahVerifier(this, &_verification_bit_map);
 255   }
 256 
 257   // Reserve aux bitmap for use in object_iterate(). We don't commit it here.
 258   ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size);
 259   MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC);
 260   _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize);
 261   _aux_bitmap_region_special = aux_bitmap.special();
 262   _aux_bit_map.initialize(_heap_region, _aux_bitmap_region);
 263 
 264   //
 265   // Create regions and region sets
 266   //
 267   size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE);
 268   size_t region_storage_size = align_up(region_align * _num_regions, region_page_size);
 269   region_storage_size = align_up(region_storage_size, os::vm_allocation_granularity());
 270 
 271   ReservedSpace region_storage(region_storage_size, region_page_size);
 272   MemTracker::record_virtual_memory_type(region_storage.base(), mtGC);
 273   if (!region_storage.special()) {
 274     os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false,
 275                               "Cannot commit region memory");
 276   }
 277 
 278   // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks.
 279   // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there.
 280   // If not successful, bite a bullet and allocate at whatever address.
 281   {
 282     size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity());
 283     size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align);
 284 
 285     uintptr_t min = round_up_power_of_2(cset_align);
 286     uintptr_t max = (1u << 30u);
 287 
 288     for (uintptr_t addr = min; addr <= max; addr <<= 1u) {
 289       char* req_addr = (char*)addr;
 290       assert(is_aligned(req_addr, cset_align), "Should be aligned");
 291       ReservedSpace cset_rs(cset_size, cset_align, false, req_addr);
 292       if (cset_rs.is_reserved()) {
 293         assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr);
 294         _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 295         break;
 296       }
 297     }
 298 
 299     if (_collection_set == NULL) {
 300       ReservedSpace cset_rs(cset_size, cset_align, false);
 301       _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base());
 302     }
 303   }
 304 
 305   _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC);
 306   _free_set = new ShenandoahFreeSet(this, _num_regions);
 307 
 308   {
 309     ShenandoahHeapLocker locker(lock());
 310 
 311     for (size_t i = 0; i < _num_regions; i++) {
 312       HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i;
 313       bool is_committed = i < num_committed_regions;
 314       void* loc = region_storage.base() + i * region_align;
 315 
 316       ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed);
 317       assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity");
 318 
 319       _marking_context->initialize_top_at_mark_start(r);
 320       _regions[i] = r;
 321       assert(!collection_set()->is_in(i), "New region should not be in collection set");
 322     }
 323 
 324     // Initialize to complete
 325     _marking_context->mark_complete();
 326 
 327     _free_set->rebuild();
 328   }
 329 
 330   if (AlwaysPreTouch) {
 331     // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads,
 332     // before initialize() below zeroes it with initializing thread. For any given region,
 333     // we touch the region and the corresponding bitmaps from the same thread.
 334     ShenandoahPushWorkerScope scope(workers(), _max_workers, false);
 335 
 336     _pretouch_heap_page_size = heap_page_size;
 337     _pretouch_bitmap_page_size = bitmap_page_size;
 338 
 339 #ifdef LINUX
 340     // UseTransparentHugePages would madvise that backing memory can be coalesced into huge
 341     // pages. But, the kernel needs to know that every small page is used, in order to coalesce
 342     // them into huge one. Therefore, we need to pretouch with smaller pages.
 343     if (UseTransparentHugePages) {
 344       _pretouch_heap_page_size = (size_t)os::vm_page_size();
 345       _pretouch_bitmap_page_size = (size_t)os::vm_page_size();
 346     }
 347 #endif
 348 
 349     // OS memory managers may want to coalesce back-to-back pages. Make their jobs
 350     // simpler by pre-touching continuous spaces (heap and bitmap) separately.
 351 
 352     ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size);
 353     _workers->run_task(&bcl);
 354 
 355     ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size);
 356     _workers->run_task(&hcl);
 357   }
 358 
 359   //
 360   // Initialize the rest of GC subsystems
 361   //
 362 
 363   _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC);
 364   for (uint worker = 0; worker < _max_workers; worker++) {
 365     _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC);
 366     Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData));
 367   }
 368 
 369   // There should probably be Shenandoah-specific options for these,
 370   // just as there are G1-specific options.
 371   {
 372     ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set();
 373     satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold
 374     satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent
 375   }
 376 
 377   _monitoring_support = new ShenandoahMonitoringSupport(this);
 378   _phase_timings = new ShenandoahPhaseTimings(max_workers());
 379   ShenandoahStringDedup::initialize();
 380   ShenandoahCodeRoots::initialize();
 381 
 382   if (ShenandoahPacing) {
 383     _pacer = new ShenandoahPacer(this);
 384     _pacer->setup_for_idle();
 385   } else {
 386     _pacer = NULL;
 387   }
 388 
 389   _control_thread = new ShenandoahControlThread();
 390 
 391   _ref_proc_mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
 392   _ref_proc_mt_discovery = _max_workers > 1;
 393 
 394   ShenandoahInitLogger::print();
 395 
 396   return JNI_OK;
 397 }
 398 
 399 void ShenandoahHeap::initialize_heuristics() {
 400   if (ShenandoahGCMode != NULL) {
 401     if (strcmp(ShenandoahGCMode, "satb") == 0) {
 402       _gc_mode = new ShenandoahSATBMode();
 403     } else if (strcmp(ShenandoahGCMode, "iu") == 0) {
 404       _gc_mode = new ShenandoahIUMode();
 405     } else if (strcmp(ShenandoahGCMode, "passive") == 0) {
 406       _gc_mode = new ShenandoahPassiveMode();
 407     } else {
 408       vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option");
 409     }
 410   } else {
 411     ShouldNotReachHere();
 412   }
 413   _gc_mode->initialize_flags();
 414   if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 415     vm_exit_during_initialization(
 416             err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 417                     _gc_mode->name()));
 418   }
 419   if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) {
 420     vm_exit_during_initialization(
 421             err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 422                     _gc_mode->name()));
 423   }
 424 
 425   _heuristics = _gc_mode->initialize_heuristics();
 426 
 427   if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) {
 428     vm_exit_during_initialization(
 429             err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.",
 430                     _heuristics->name()));
 431   }
 432   if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) {
 433     vm_exit_during_initialization(
 434             err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.",
 435                     _heuristics->name()));
 436   }
 437 }
 438 
 439 #ifdef _MSC_VER
 440 #pragma warning( push )
 441 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 442 #endif
 443 
 444 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) :
 445   CollectedHeap(),
 446   _initial_size(0),
 447   _used(0),
 448   _committed(0),
 449   _bytes_allocated_since_gc_start(0),
 450   _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)),
 451   _workers(NULL),
 452   _safepoint_workers(NULL),
 453   _heap_region_special(false),
 454   _num_regions(0),
 455   _regions(NULL),
 456   _update_refs_iterator(this),
 457   _control_thread(NULL),
 458   _shenandoah_policy(policy),
 459   _heuristics(NULL),
 460   _free_set(NULL),
 461   _scm(new ShenandoahConcurrentMark()),
 462   _full_gc(new ShenandoahMarkCompact()),
 463   _pacer(NULL),
 464   _verifier(NULL),
 465   _phase_timings(NULL),
 466   _monitoring_support(NULL),
 467   _memory_pool(NULL),
 468   _stw_memory_manager("Shenandoah Pauses", "end of GC pause"),
 469   _cycle_memory_manager("Shenandoah Cycles", "end of GC cycle"),
 470   _gc_timer(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 471   _soft_ref_policy(),
 472   _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes),
 473   _ref_processor(NULL),
 474   _marking_context(NULL),
 475   _bitmap_size(0),
 476   _bitmap_regions_per_slice(0),
 477   _bitmap_bytes_per_slice(0),
 478   _bitmap_region_special(false),
 479   _aux_bitmap_region_special(false),
 480   _liveness_cache(NULL),
 481   _collection_set(NULL)
 482 {
 483   BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this));
 484 
 485   _max_workers = MAX2(_max_workers, 1U);
 486   _workers = new ShenandoahWorkGang("Shenandoah GC Threads", _max_workers,
 487                             /* are_GC_task_threads */ true,
 488                             /* are_ConcurrentGC_threads */ true);
 489   if (_workers == NULL) {
 490     vm_exit_during_initialization("Failed necessary allocation.");
 491   } else {
 492     _workers->initialize_workers();
 493   }
 494 
 495   if (ParallelGCThreads > 1) {
 496     _safepoint_workers = new ShenandoahWorkGang("Safepoint Cleanup Thread",
 497                                                 ParallelGCThreads,
 498                       /* are_GC_task_threads */ false,
 499                  /* are_ConcurrentGC_threads */ false);
 500     _safepoint_workers->initialize_workers();
 501   }
 502 }
 503 
 504 #ifdef _MSC_VER
 505 #pragma warning( pop )
 506 #endif
 507 
 508 class ShenandoahResetBitmapTask : public AbstractGangTask {
 509 private:
 510   ShenandoahRegionIterator _regions;
 511 
 512 public:
 513   ShenandoahResetBitmapTask() :
 514     AbstractGangTask("Parallel Reset Bitmap Task") {}
 515 
 516   void work(uint worker_id) {
 517     ShenandoahHeapRegion* region = _regions.next();
 518     ShenandoahHeap* heap = ShenandoahHeap::heap();
 519     ShenandoahMarkingContext* const ctx = heap->marking_context();
 520     while (region != NULL) {
 521       if (heap->is_bitmap_slice_committed(region)) {
 522         ctx->clear_bitmap(region);
 523       }
 524       region = _regions.next();
 525     }
 526   }
 527 };
 528 
 529 void ShenandoahHeap::reset_mark_bitmap() {
 530   assert_gc_workers(_workers->active_workers());
 531   mark_incomplete_marking_context();
 532 
 533   ShenandoahResetBitmapTask task;
 534   _workers->run_task(&task);
 535 }
 536 
 537 void ShenandoahHeap::print_on(outputStream* st) const {
 538   st->print_cr("Shenandoah Heap");
 539   st->print_cr(" " SIZE_FORMAT "%s total, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used",
 540                byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()),
 541                byte_size_in_proper_unit(committed()),    proper_unit_for_byte_size(committed()),
 542                byte_size_in_proper_unit(used()),         proper_unit_for_byte_size(used()));
 543   st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions",
 544                num_regions(),
 545                byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()),
 546                proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes()));
 547 
 548   st->print("Status: ");
 549   if (has_forwarded_objects())                 st->print("has forwarded objects, ");
 550   if (is_concurrent_mark_in_progress())        st->print("marking, ");
 551   if (is_evacuation_in_progress())             st->print("evacuating, ");
 552   if (is_update_refs_in_progress())            st->print("updating refs, ");
 553   if (is_degenerated_gc_in_progress())         st->print("degenerated gc, ");
 554   if (is_full_gc_in_progress())                st->print("full gc, ");
 555   if (is_full_gc_move_in_progress())           st->print("full gc move, ");
 556   if (is_concurrent_weak_root_in_progress())   st->print("concurrent weak roots, ");
 557   if (is_concurrent_strong_root_in_progress() &&
 558       !is_concurrent_weak_root_in_progress())  st->print("concurrent strong roots, ");
 559 
 560   if (cancelled_gc()) {
 561     st->print("cancelled");
 562   } else {
 563     st->print("not cancelled");
 564   }
 565   st->cr();
 566 
 567   st->print_cr("Reserved region:");
 568   st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ",
 569                p2i(reserved_region().start()),
 570                p2i(reserved_region().end()));
 571 
 572   ShenandoahCollectionSet* cset = collection_set();
 573   st->print_cr("Collection set:");
 574   if (cset != NULL) {
 575     st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address()));
 576     st->print_cr(" - map (biased):  " PTR_FORMAT, p2i(cset->biased_map_address()));
 577   } else {
 578     st->print_cr(" (NULL)");
 579   }
 580 
 581   st->cr();
 582   MetaspaceUtils::print_on(st);
 583 
 584   if (Verbose) {
 585     print_heap_regions_on(st);
 586   }
 587 }
 588 
 589 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure {
 590 public:
 591   void do_thread(Thread* thread) {
 592     assert(thread != NULL, "Sanity");
 593     assert(thread->is_Worker_thread(), "Only worker thread expected");
 594     ShenandoahThreadLocalData::initialize_gclab(thread);
 595   }
 596 };
 597 
 598 void ShenandoahHeap::post_initialize() {
 599   CollectedHeap::post_initialize();
 600   MutexLocker ml(Threads_lock);
 601 
 602   ShenandoahInitWorkerGCLABClosure init_gclabs;
 603   _workers->threads_do(&init_gclabs);
 604 
 605   // gclab can not be initialized early during VM startup, as it can not determinate its max_size.
 606   // Now, we will let WorkGang to initialize gclab when new worker is created.
 607   _workers->set_initialize_gclab();
 608 
 609   _scm->initialize(_max_workers);
 610   _full_gc->initialize(_gc_timer);
 611 
 612   ref_processing_init();
 613 
 614   _heuristics->initialize();
 615 
 616   JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers());
 617 }
 618 
 619 size_t ShenandoahHeap::used() const {
 620   return Atomic::load_acquire(&_used);
 621 }
 622 
 623 size_t ShenandoahHeap::committed() const {
 624   OrderAccess::acquire();
 625   return _committed;
 626 }
 627 
 628 void ShenandoahHeap::increase_committed(size_t bytes) {
 629   shenandoah_assert_heaplocked_or_safepoint();
 630   _committed += bytes;
 631 }
 632 
 633 void ShenandoahHeap::decrease_committed(size_t bytes) {
 634   shenandoah_assert_heaplocked_or_safepoint();
 635   _committed -= bytes;
 636 }
 637 
 638 void ShenandoahHeap::increase_used(size_t bytes) {
 639   Atomic::add(&_used, bytes);
 640 }
 641 
 642 void ShenandoahHeap::set_used(size_t bytes) {
 643   Atomic::release_store_fence(&_used, bytes);
 644 }
 645 
 646 void ShenandoahHeap::decrease_used(size_t bytes) {
 647   assert(used() >= bytes, "never decrease heap size by more than we've left");
 648   Atomic::sub(&_used, bytes);
 649 }
 650 
 651 void ShenandoahHeap::increase_allocated(size_t bytes) {
 652   Atomic::add(&_bytes_allocated_since_gc_start, bytes);
 653 }
 654 
 655 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) {
 656   size_t bytes = words * HeapWordSize;
 657   if (!waste) {
 658     increase_used(bytes);
 659   }
 660   increase_allocated(bytes);
 661   if (ShenandoahPacing) {
 662     control_thread()->pacing_notify_alloc(words);
 663     if (waste) {
 664       pacer()->claim_for_alloc(words, true);
 665     }
 666   }
 667 }
 668 
 669 size_t ShenandoahHeap::capacity() const {
 670   return committed();
 671 }
 672 
 673 size_t ShenandoahHeap::max_capacity() const {
 674   return _num_regions * ShenandoahHeapRegion::region_size_bytes();
 675 }
 676 
 677 size_t ShenandoahHeap::min_capacity() const {
 678   return _minimum_size;
 679 }
 680 
 681 size_t ShenandoahHeap::initial_capacity() const {
 682   return _initial_size;
 683 }
 684 
 685 bool ShenandoahHeap::is_in(const void* p) const {
 686   HeapWord* heap_base = (HeapWord*) base();
 687   HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions();
 688   return p >= heap_base && p < last_region_end;
 689 }
 690 
 691 void ShenandoahHeap::op_uncommit(double shrink_before) {
 692   assert (ShenandoahUncommit, "should be enabled");
 693 
 694   // Application allocates from the beginning of the heap, and GC allocates at
 695   // the end of it. It is more efficient to uncommit from the end, so that applications
 696   // could enjoy the near committed regions. GC allocations are much less frequent,
 697   // and therefore can accept the committing costs.
 698 
 699   size_t count = 0;
 700   for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow
 701     ShenandoahHeapRegion* r = get_region(i - 1);
 702     if (r->is_empty_committed() && (r->empty_time() < shrink_before)) {
 703       ShenandoahHeapLocker locker(lock());
 704       if (r->is_empty_committed()) {
 705         // Do not uncommit below minimal capacity
 706         if (committed() < min_capacity() + ShenandoahHeapRegion::region_size_bytes()) {
 707           break;
 708         }
 709 
 710         r->make_uncommitted();
 711         count++;
 712       }
 713     }
 714     SpinPause(); // allow allocators to take the lock
 715   }
 716 
 717   if (count > 0) {
 718     control_thread()->notify_heap_changed();
 719   }
 720 }
 721 
 722 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) {
 723   // New object should fit the GCLAB size
 724   size_t min_size = MAX2(size, PLAB::min_size());
 725 
 726   // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively.
 727   size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2;
 728   new_size = MIN2(new_size, PLAB::max_size());
 729   new_size = MAX2(new_size, PLAB::min_size());
 730 
 731   // Record new heuristic value even if we take any shortcut. This captures
 732   // the case when moderately-sized objects always take a shortcut. At some point,
 733   // heuristics should catch up with them.
 734   ShenandoahThreadLocalData::set_gclab_size(thread, new_size);
 735 
 736   if (new_size < size) {
 737     // New size still does not fit the object. Fall back to shared allocation.
 738     // This avoids retiring perfectly good GCLABs, when we encounter a large object.
 739     return NULL;
 740   }
 741 
 742   // Retire current GCLAB, and allocate a new one.
 743   PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
 744   gclab->retire();
 745 
 746   size_t actual_size = 0;
 747   HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size);
 748   if (gclab_buf == NULL) {
 749     return NULL;
 750   }
 751 
 752   assert (size <= actual_size, "allocation should fit");
 753 
 754   if (ZeroTLAB) {
 755     // ..and clear it.
 756     Copy::zero_to_words(gclab_buf, actual_size);
 757   } else {
 758     // ...and zap just allocated object.
 759 #ifdef ASSERT
 760     // Skip mangling the space corresponding to the object header to
 761     // ensure that the returned space is not considered parsable by
 762     // any concurrent GC thread.
 763     size_t hdr_size = oopDesc::header_size();
 764     Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal);
 765 #endif // ASSERT
 766   }
 767   gclab->set_buf(gclab_buf, actual_size);
 768   return gclab->allocate(size);
 769 }
 770 
 771 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size,
 772                                             size_t requested_size,
 773                                             size_t* actual_size) {
 774   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size);
 775   HeapWord* res = allocate_memory(req);
 776   if (res != NULL) {
 777     *actual_size = req.actual_size();
 778   } else {
 779     *actual_size = 0;
 780   }
 781   return res;
 782 }
 783 
 784 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size,
 785                                              size_t word_size,
 786                                              size_t* actual_size) {
 787   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size);
 788   HeapWord* res = allocate_memory(req);
 789   if (res != NULL) {
 790     *actual_size = req.actual_size();
 791   } else {
 792     *actual_size = 0;
 793   }
 794   return res;
 795 }
 796 
 797 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) {
 798   intptr_t pacer_epoch = 0;
 799   bool in_new_region = false;
 800   HeapWord* result = NULL;
 801 
 802   if (req.is_mutator_alloc()) {
 803     if (ShenandoahPacing) {
 804       pacer()->pace_for_alloc(req.size());
 805       pacer_epoch = pacer()->epoch();
 806     }
 807 
 808     if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) {
 809       result = allocate_memory_under_lock(req, in_new_region);
 810     }
 811 
 812     // Allocation failed, block until control thread reacted, then retry allocation.
 813     //
 814     // It might happen that one of the threads requesting allocation would unblock
 815     // way later after GC happened, only to fail the second allocation, because
 816     // other threads have already depleted the free storage. In this case, a better
 817     // strategy is to try again, as long as GC makes progress.
 818     //
 819     // Then, we need to make sure the allocation was retried after at least one
 820     // Full GC, which means we want to try more than ShenandoahFullGCThreshold times.
 821 
 822     size_t tries = 0;
 823 
 824     while (result == NULL && _progress_last_gc.is_set()) {
 825       tries++;
 826       control_thread()->handle_alloc_failure(req);
 827       result = allocate_memory_under_lock(req, in_new_region);
 828     }
 829 
 830     while (result == NULL && tries <= ShenandoahFullGCThreshold) {
 831       tries++;
 832       control_thread()->handle_alloc_failure(req);
 833       result = allocate_memory_under_lock(req, in_new_region);
 834     }
 835 
 836   } else {
 837     assert(req.is_gc_alloc(), "Can only accept GC allocs here");
 838     result = allocate_memory_under_lock(req, in_new_region);
 839     // Do not call handle_alloc_failure() here, because we cannot block.
 840     // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac().
 841   }
 842 
 843   if (in_new_region) {
 844     control_thread()->notify_heap_changed();
 845   }
 846 
 847   if (result != NULL) {
 848     size_t requested = req.size();
 849     size_t actual = req.actual_size();
 850 
 851     assert (req.is_lab_alloc() || (requested == actual),
 852             "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT,
 853             ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual);
 854 
 855     if (req.is_mutator_alloc()) {
 856       notify_mutator_alloc_words(actual, false);
 857 
 858       // If we requested more than we were granted, give the rest back to pacer.
 859       // This only matters if we are in the same pacing epoch: do not try to unpace
 860       // over the budget for the other phase.
 861       if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) {
 862         pacer()->unpace_for_alloc(pacer_epoch, requested - actual);
 863       }
 864     } else {
 865       increase_used(actual*HeapWordSize);
 866     }
 867   }
 868 
 869   return result;
 870 }
 871 
 872 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) {
 873   ShenandoahHeapLocker locker(lock());
 874   return _free_set->allocate(req, in_new_region);
 875 }
 876 
 877 HeapWord* ShenandoahHeap::mem_allocate(size_t size,
 878                                         bool*  gc_overhead_limit_was_exceeded) {
 879   ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size);
 880   return allocate_memory(req);
 881 }
 882 
 883 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 884                                                              size_t size,
 885                                                              Metaspace::MetadataType mdtype) {
 886   MetaWord* result;
 887 
 888   // Inform metaspace OOM to GC heuristics if class unloading is possible.
 889   if (heuristics()->can_unload_classes()) {
 890     ShenandoahHeuristics* h = heuristics();
 891     h->record_metaspace_oom();
 892   }
 893 
 894   // Expand and retry allocation
 895   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 896   if (result != NULL) {
 897     return result;
 898   }
 899 
 900   // Start full GC
 901   collect(GCCause::_metadata_GC_clear_soft_refs);
 902 
 903   // Retry allocation
 904   result = loader_data->metaspace_non_null()->allocate(size, mdtype);
 905   if (result != NULL) {
 906     return result;
 907   }
 908 
 909   // Expand and retry allocation
 910   result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype);
 911   if (result != NULL) {
 912     return result;
 913   }
 914 
 915   // Out of memory
 916   return NULL;
 917 }
 918 
 919 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure {
 920 private:
 921   ShenandoahHeap* const _heap;
 922   Thread* const _thread;
 923 public:
 924   ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) :
 925     _heap(heap), _thread(Thread::current()) {}
 926 
 927   void do_object(oop p) {
 928     shenandoah_assert_marked(NULL, p);
 929     if (!p->is_forwarded()) {
 930       _heap->evacuate_object(p, _thread);
 931     }
 932   }
 933 };
 934 
 935 class ShenandoahEvacuationTask : public AbstractGangTask {
 936 private:
 937   ShenandoahHeap* const _sh;
 938   ShenandoahCollectionSet* const _cs;
 939   bool _concurrent;
 940 public:
 941   ShenandoahEvacuationTask(ShenandoahHeap* sh,
 942                            ShenandoahCollectionSet* cs,
 943                            bool concurrent) :
 944     AbstractGangTask("Parallel Evacuation Task"),
 945     _sh(sh),
 946     _cs(cs),
 947     _concurrent(concurrent)
 948   {}
 949 
 950   void work(uint worker_id) {
 951     if (_concurrent) {
 952       ShenandoahConcurrentWorkerSession worker_session(worker_id);
 953       ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
 954       ShenandoahEvacOOMScope oom_evac_scope;
 955       do_work();
 956     } else {
 957       ShenandoahParallelWorkerSession worker_session(worker_id);
 958       ShenandoahEvacOOMScope oom_evac_scope;
 959       do_work();
 960     }
 961   }
 962 
 963 private:
 964   void do_work() {
 965     ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh);
 966     ShenandoahHeapRegion* r;
 967     while ((r =_cs->claim_next()) != NULL) {
 968       assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index());
 969       _sh->marked_object_iterate(r, &cl);
 970 
 971       if (ShenandoahPacing) {
 972         _sh->pacer()->report_evac(r->used() >> LogHeapWordSize);
 973       }
 974 
 975       if (_sh->check_cancelled_gc_and_yield(_concurrent)) {
 976         break;
 977       }
 978     }
 979   }
 980 };
 981 
 982 void ShenandoahHeap::trash_cset_regions() {
 983   ShenandoahHeapLocker locker(lock());
 984 
 985   ShenandoahCollectionSet* set = collection_set();
 986   ShenandoahHeapRegion* r;
 987   set->clear_current_index();
 988   while ((r = set->next()) != NULL) {
 989     r->make_trash();
 990   }
 991   collection_set()->clear();
 992 }
 993 
 994 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const {
 995   st->print_cr("Heap Regions:");
 996   st->print_cr("EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HC=humongous continuation, CS=collection set, T=trash, P=pinned");
 997   st->print_cr("BTE=bottom/top/end, U=used, T=TLAB allocs, G=GCLAB allocs, S=shared allocs, L=live data");
 998   st->print_cr("R=root, CP=critical pins, TAMS=top-at-mark-start, UWM=update watermark");
 999   st->print_cr("SN=alloc sequence number");
1000 
1001   for (size_t i = 0; i < num_regions(); i++) {
1002     get_region(i)->print_on(st);
1003   }
1004 }
1005 
1006 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) {
1007   assert(start->is_humongous_start(), "reclaim regions starting with the first one");
1008 
1009   oop humongous_obj = oop(start->bottom());
1010   size_t size = humongous_obj->size();
1011   size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize);
1012   size_t index = start->index() + required_regions - 1;
1013 
1014   assert(!start->has_live(), "liveness must be zero");
1015 
1016   for(size_t i = 0; i < required_regions; i++) {
1017     // Reclaim from tail. Otherwise, assertion fails when printing region to trace log,
1018     // as it expects that every region belongs to a humongous region starting with a humongous start region.
1019     ShenandoahHeapRegion* region = get_region(index --);
1020 
1021     assert(region->is_humongous(), "expect correct humongous start or continuation");
1022     assert(!region->is_cset(), "Humongous region should not be in collection set");
1023 
1024     region->make_trash_immediate();
1025   }
1026 }
1027 
1028 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure {
1029 public:
1030   ShenandoahCheckCleanGCLABClosure() {}
1031   void do_thread(Thread* thread) {
1032     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1033     assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name());
1034     assert(gclab->words_remaining() == 0, "GCLAB should not need retirement");
1035   }
1036 };
1037 
1038 class ShenandoahRetireGCLABClosure : public ThreadClosure {
1039 private:
1040   bool const _resize;
1041 public:
1042   ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {}
1043   void do_thread(Thread* thread) {
1044     PLAB* gclab = ShenandoahThreadLocalData::gclab(thread);
1045     assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name());
1046     gclab->retire();
1047     if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) {
1048       ShenandoahThreadLocalData::set_gclab_size(thread, 0);
1049     }
1050   }
1051 };
1052 
1053 void ShenandoahHeap::labs_make_parsable() {
1054   assert(UseTLAB, "Only call with UseTLAB");
1055 
1056   ShenandoahRetireGCLABClosure cl(false);
1057 
1058   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1059     ThreadLocalAllocBuffer& tlab = t->tlab();
1060     tlab.make_parsable();
1061     cl.do_thread(t);
1062   }
1063 
1064   workers()->threads_do(&cl);
1065 }
1066 
1067 void ShenandoahHeap::tlabs_retire(bool resize) {
1068   assert(UseTLAB, "Only call with UseTLAB");
1069   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1070 
1071   ThreadLocalAllocStats stats;
1072 
1073   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1074     ThreadLocalAllocBuffer& tlab = t->tlab();
1075     tlab.retire(&stats);
1076     if (resize) {
1077       tlab.resize();
1078     }
1079   }
1080 
1081   stats.publish();
1082 
1083 #ifdef ASSERT
1084   ShenandoahCheckCleanGCLABClosure cl;
1085   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1086     cl.do_thread(t);
1087   }
1088   workers()->threads_do(&cl);
1089 #endif
1090 }
1091 
1092 void ShenandoahHeap::gclabs_retire(bool resize) {
1093   assert(UseTLAB, "Only call with UseTLAB");
1094   assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled");
1095 
1096   ShenandoahRetireGCLABClosure cl(resize);
1097   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
1098     cl.do_thread(t);
1099   }
1100   workers()->threads_do(&cl);
1101 }
1102 
1103 class ShenandoahEvacuateUpdateRootsTask : public AbstractGangTask {
1104 private:
1105   ShenandoahRootEvacuator* _rp;
1106 
1107 public:
1108   ShenandoahEvacuateUpdateRootsTask(ShenandoahRootEvacuator* rp) :
1109     AbstractGangTask("Shenandoah evacuate and update roots"),
1110     _rp(rp) {}
1111 
1112   void work(uint worker_id) {
1113     ShenandoahParallelWorkerSession worker_session(worker_id);
1114     ShenandoahEvacOOMScope oom_evac_scope;
1115     ShenandoahEvacuateUpdateRootsClosure<> cl;
1116     MarkingCodeBlobClosure blobsCl(&cl, CodeBlobToOopClosure::FixRelocations);
1117     _rp->roots_do(worker_id, &cl);
1118   }
1119 };
1120 
1121 void ShenandoahHeap::evacuate_and_update_roots() {
1122 #if COMPILER2_OR_JVMCI
1123   DerivedPointerTable::clear();
1124 #endif
1125   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only iterate roots while world is stopped");
1126   {
1127     // Include concurrent roots if current cycle can not process those roots concurrently
1128     ShenandoahRootEvacuator rp(workers()->active_workers(),
1129                                ShenandoahPhaseTimings::init_evac,
1130                                !ShenandoahConcurrentRoots::should_do_concurrent_roots(),
1131                                !ShenandoahConcurrentRoots::should_do_concurrent_class_unloading());
1132     ShenandoahEvacuateUpdateRootsTask roots_task(&rp);
1133     workers()->run_task(&roots_task);
1134   }
1135 
1136 #if COMPILER2_OR_JVMCI
1137   DerivedPointerTable::update_pointers();
1138 #endif
1139 }
1140 
1141 // Returns size in bytes
1142 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const {
1143   if (ShenandoahElasticTLAB) {
1144     // With Elastic TLABs, return the max allowed size, and let the allocation path
1145     // figure out the safe size for current allocation.
1146     return ShenandoahHeapRegion::max_tlab_size_bytes();
1147   } else {
1148     return MIN2(_free_set->unsafe_peek_free(), ShenandoahHeapRegion::max_tlab_size_bytes());
1149   }
1150 }
1151 
1152 size_t ShenandoahHeap::max_tlab_size() const {
1153   // Returns size in words
1154   return ShenandoahHeapRegion::max_tlab_size_words();
1155 }
1156 
1157 void ShenandoahHeap::collect(GCCause::Cause cause) {
1158   control_thread()->request_gc(cause);
1159 }
1160 
1161 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) {
1162   //assert(false, "Shouldn't need to do full collections");
1163 }
1164 
1165 HeapWord* ShenandoahHeap::block_start(const void* addr) const {
1166   ShenandoahHeapRegion* r = heap_region_containing(addr);
1167   if (r != NULL) {
1168     return r->block_start(addr);
1169   }
1170   return NULL;
1171 }
1172 
1173 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const {
1174   ShenandoahHeapRegion* r = heap_region_containing(addr);
1175   return r->block_is_obj(addr);
1176 }
1177 
1178 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const {
1179   return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr);
1180 }
1181 
1182 void ShenandoahHeap::prepare_for_verify() {
1183   if (SafepointSynchronize::is_at_safepoint() && UseTLAB) {
1184     labs_make_parsable();
1185   }
1186 }
1187 
1188 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const {
1189   workers()->threads_do(tcl);
1190   if (_safepoint_workers != NULL) {
1191     _safepoint_workers->threads_do(tcl);
1192   }
1193   if (ShenandoahStringDedup::is_enabled()) {
1194     ShenandoahStringDedup::threads_do(tcl);
1195   }
1196 }
1197 
1198 void ShenandoahHeap::run_task(AbstractGangTask* task) {
1199   workers()->run_task(task, workers()->active_workers());
1200 }
1201 
1202 void ShenandoahHeap::print_tracing_info() const {
1203   LogTarget(Info, gc, stats) lt;
1204   if (lt.is_enabled()) {
1205     ResourceMark rm;
1206     LogStream ls(lt);
1207 
1208     phase_timings()->print_global_on(&ls);
1209 
1210     ls.cr();
1211     ls.cr();
1212 
1213     shenandoah_policy()->print_gc_stats(&ls);
1214 
1215     ls.cr();
1216     ls.cr();
1217   }
1218 }
1219 
1220 void ShenandoahHeap::verify(VerifyOption vo) {
1221   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
1222     if (ShenandoahVerify) {
1223       verifier()->verify_generic(vo);
1224     } else {
1225       // TODO: Consider allocating verification bitmaps on demand,
1226       // and turn this on unconditionally.
1227     }
1228   }
1229 }
1230 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const {
1231   return _free_set->capacity();
1232 }
1233 
1234 class ObjectIterateScanRootClosure : public BasicOopIterateClosure {
1235 private:
1236   MarkBitMap* _bitmap;
1237   Stack<oop,mtGC>* _oop_stack;
1238   ShenandoahHeap* const _heap;
1239   ShenandoahMarkingContext* const _marking_context;
1240 
1241   template <class T>
1242   void do_oop_work(T* p) {
1243     T o = RawAccess<>::oop_load(p);
1244     if (!CompressedOops::is_null(o)) {
1245       oop obj = CompressedOops::decode_not_null(o);
1246       if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) {
1247         // There may be dead oops in weak roots in concurrent root phase, do not touch them.
1248         return;
1249       }
1250       obj = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
1251 
1252       assert(oopDesc::is_oop(obj), "must be a valid oop");
1253       if (!_bitmap->is_marked(obj)) {
1254         _bitmap->mark(obj);
1255         _oop_stack->push(obj);
1256       }
1257     }
1258   }
1259 public:
1260   ObjectIterateScanRootClosure(MarkBitMap* bitmap, Stack<oop,mtGC>* oop_stack) :
1261     _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()),
1262     _marking_context(_heap->marking_context()) {}
1263   void do_oop(oop* p)       { do_oop_work(p); }
1264   void do_oop(narrowOop* p) { do_oop_work(p); }
1265 };
1266 
1267 /*
1268  * This is public API, used in preparation of object_iterate().
1269  * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't
1270  * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can
1271  * control, we call SH::tlabs_retire, SH::gclabs_retire.
1272  */
1273 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) {
1274   // No-op.
1275 }
1276 
1277 /*
1278  * Iterates objects in the heap. This is public API, used for, e.g., heap dumping.
1279  *
1280  * We cannot safely iterate objects by doing a linear scan at random points in time. Linear
1281  * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g.
1282  * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear
1283  * scanning therefore depends on having a valid marking bitmap to support it. However, we only
1284  * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid
1285  * marking bitmap during marking, after aborted marking or during/after cleanup (when we just
1286  * wiped the bitmap in preparation for next marking).
1287  *
1288  * For all those reasons, we implement object iteration as a single marking traversal, reporting
1289  * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap
1290  * is allowed to report dead objects, but is not required to do so.
1291  */
1292 void ShenandoahHeap::object_iterate(ObjectClosure* cl) {
1293   assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints");
1294   if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) {
1295     log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration");
1296     return;
1297   }
1298 
1299   // Reset bitmap
1300   _aux_bit_map.clear();
1301 
1302   Stack<oop,mtGC> oop_stack;
1303 
1304   ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack);
1305 
1306   {
1307     // First, we process GC roots according to current GC cycle.
1308     // This populates the work stack with initial objects.
1309     // It is important to relinquish the associated locks before diving
1310     // into heap dumper.
1311     ShenandoahHeapIterationRootScanner rp;
1312     rp.roots_do(&oops);
1313   }
1314 
1315   // Work through the oop stack to traverse heap.
1316   while (! oop_stack.is_empty()) {
1317     oop obj = oop_stack.pop();
1318     assert(oopDesc::is_oop(obj), "must be a valid oop");
1319     cl->do_object(obj);
1320     obj->oop_iterate(&oops);
1321   }
1322 
1323   assert(oop_stack.is_empty(), "should be empty");
1324 
1325   if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) {
1326     log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration");
1327   }
1328 }
1329 
1330 // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
1331 void ShenandoahHeap::keep_alive(oop obj) {
1332   if (is_concurrent_mark_in_progress() && (obj != NULL)) {
1333     ShenandoahBarrierSet::barrier_set()->enqueue(obj);
1334   }
1335 }
1336 
1337 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1338   for (size_t i = 0; i < num_regions(); i++) {
1339     ShenandoahHeapRegion* current = get_region(i);
1340     blk->heap_region_do(current);
1341   }
1342 }
1343 
1344 class ShenandoahParallelHeapRegionTask : public AbstractGangTask {
1345 private:
1346   ShenandoahHeap* const _heap;
1347   ShenandoahHeapRegionClosure* const _blk;
1348 
1349   shenandoah_padding(0);
1350   volatile size_t _index;
1351   shenandoah_padding(1);
1352 
1353 public:
1354   ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) :
1355           AbstractGangTask("Parallel Region Task"),
1356           _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {}
1357 
1358   void work(uint worker_id) {
1359     ShenandoahParallelWorkerSession worker_session(worker_id);
1360     size_t stride = ShenandoahParallelRegionStride;
1361 
1362     size_t max = _heap->num_regions();
1363     while (_index < max) {
1364       size_t cur = Atomic::fetch_and_add(&_index, stride);
1365       size_t start = cur;
1366       size_t end = MIN2(cur + stride, max);
1367       if (start >= max) break;
1368 
1369       for (size_t i = cur; i < end; i++) {
1370         ShenandoahHeapRegion* current = _heap->get_region(i);
1371         _blk->heap_region_do(current);
1372       }
1373     }
1374   }
1375 };
1376 
1377 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const {
1378   assert(blk->is_thread_safe(), "Only thread-safe closures here");
1379   if (num_regions() > ShenandoahParallelRegionStride) {
1380     ShenandoahParallelHeapRegionTask task(blk);
1381     workers()->run_task(&task);
1382   } else {
1383     heap_region_iterate(blk);
1384   }
1385 }
1386 
1387 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1388 private:
1389   ShenandoahMarkingContext* const _ctx;
1390 public:
1391   ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1392 
1393   void heap_region_do(ShenandoahHeapRegion* r) {
1394     assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1395     if (r->is_active()) {
1396       // Check if region needs updating its TAMS. We have updated it already during concurrent
1397       // reset, so it is very likely we don't need to do another write here.
1398       if (_ctx->top_at_mark_start(r) != r->top()) {
1399         _ctx->capture_top_at_mark_start(r);
1400       }
1401     } else {
1402       assert(_ctx->top_at_mark_start(r) == r->top(),
1403              "Region " SIZE_FORMAT " should already have correct TAMS", r->index());
1404     }
1405   }
1406 
1407   bool is_thread_safe() { return true; }
1408 };
1409 
1410 void ShenandoahHeap::op_init_mark() {
1411   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should be at safepoint");
1412   assert(Thread::current()->is_VM_thread(), "can only do this in VMThread");
1413 
1414   assert(marking_context()->is_bitmap_clear(), "need clear marking bitmap");
1415   assert(!marking_context()->is_complete(), "should not be complete");
1416   assert(!has_forwarded_objects(), "No forwarded objects on this path");
1417 
1418   if (ShenandoahVerify) {
1419     verifier()->verify_before_concmark();
1420   }
1421 
1422   if (VerifyBeforeGC) {
1423     Universe::verify();
1424   }
1425 
1426   set_concurrent_mark_in_progress(true);
1427 
1428   // We need to reset all TLABs because they might be below the TAMS, and we need to mark
1429   // the objects in them. Do not let mutators allocate any new objects in their current TLABs.
1430   // It is also a good place to resize the TLAB sizes for future allocations.
1431   if (UseTLAB) {
1432     ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_manage_tlabs);
1433     tlabs_retire(ResizeTLAB);
1434   }
1435 
1436   {
1437     ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_update_region_states);
1438     ShenandoahInitMarkUpdateRegionStateClosure cl;
1439     parallel_heap_region_iterate(&cl);
1440   }
1441 
1442   // Make above changes visible to worker threads
1443   OrderAccess::fence();
1444 
1445   concurrent_mark()->mark_roots(ShenandoahPhaseTimings::scan_roots);
1446 
1447   if (ShenandoahPacing) {
1448     pacer()->setup_for_mark();
1449   }
1450 
1451   // Arm nmethods for concurrent marking. When a nmethod is about to be executed,
1452   // we need to make sure that all its metadata are marked. alternative is to remark
1453   // thread roots at final mark pause, but it can be potential latency killer.
1454   if (ShenandoahConcurrentRoots::should_do_concurrent_class_unloading()) {
1455     ShenandoahCodeRoots::arm_nmethods();
1456   }
1457 }
1458 
1459 void ShenandoahHeap::op_mark() {
1460   concurrent_mark()->mark_from_roots();
1461 }
1462 
1463 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1464 private:
1465   ShenandoahMarkingContext* const _ctx;
1466   ShenandoahHeapLock* const _lock;
1467 
1468 public:
1469   ShenandoahFinalMarkUpdateRegionStateClosure() :
1470     _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {}
1471 
1472   void heap_region_do(ShenandoahHeapRegion* r) {
1473     if (r->is_active()) {
1474       // All allocations past TAMS are implicitly live, adjust the region data.
1475       // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap.
1476       HeapWord *tams = _ctx->top_at_mark_start(r);
1477       HeapWord *top = r->top();
1478       if (top > tams) {
1479         r->increase_live_data_alloc_words(pointer_delta(top, tams));
1480       }
1481 
1482       // We are about to select the collection set, make sure it knows about
1483       // current pinning status. Also, this allows trashing more regions that
1484       // now have their pinning status dropped.
1485       if (r->is_pinned()) {
1486         if (r->pin_count() == 0) {
1487           ShenandoahHeapLocker locker(_lock);
1488           r->make_unpinned();
1489         }
1490       } else {
1491         if (r->pin_count() > 0) {
1492           ShenandoahHeapLocker locker(_lock);
1493           r->make_pinned();
1494         }
1495       }
1496 
1497       // Remember limit for updating refs. It's guaranteed that we get no
1498       // from-space-refs written from here on.
1499       r->set_update_watermark_at_safepoint(r->top());
1500     } else {
1501       assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index());
1502       assert(_ctx->top_at_mark_start(r) == r->top(),
1503              "Region " SIZE_FORMAT " should have correct TAMS", r->index());
1504     }
1505   }
1506 
1507   bool is_thread_safe() { return true; }
1508 };
1509 
1510 void ShenandoahHeap::op_final_mark() {
1511   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should be at safepoint");
1512   assert(!has_forwarded_objects(), "No forwarded objects on this path");
1513 
1514   // It is critical that we
1515   // evacuate roots right after finishing marking, so that we don't
1516   // get unmarked objects in the roots.
1517 
1518   if (!cancelled_gc()) {
1519     concurrent_mark()->finish_mark_from_roots(/* full_gc = */ false);
1520 
1521     // Marking is completed, deactivate SATB barrier
1522     set_concurrent_mark_in_progress(false);
1523     mark_complete_marking_context();
1524 
1525     parallel_cleaning(false /* full gc*/);
1526 
1527     if (ShenandoahVerify) {
1528       verifier()->verify_roots_no_forwarded();
1529     }
1530 
1531     {
1532       ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_update_region_states);
1533       ShenandoahFinalMarkUpdateRegionStateClosure cl;
1534       parallel_heap_region_iterate(&cl);
1535 
1536       assert_pinned_region_status();
1537     }
1538 
1539     // Retire the TLABs, which will force threads to reacquire their TLABs after the pause.
1540     // This is needed for two reasons. Strong one: new allocations would be with new freeset,
1541     // which would be outside the collection set, so no cset writes would happen there.
1542     // Weaker one: new allocations would happen past update watermark, and so less work would
1543     // be needed for reference updates (would update the large filler instead).
1544     if (UseTLAB) {
1545       ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_manage_labs);
1546       tlabs_retire(false);
1547     }
1548 
1549     {
1550       ShenandoahGCPhase phase(ShenandoahPhaseTimings::choose_cset);
1551       ShenandoahHeapLocker locker(lock());
1552       _collection_set->clear();
1553       heuristics()->choose_collection_set(_collection_set);
1554     }
1555 
1556     {
1557       ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_rebuild_freeset);
1558       ShenandoahHeapLocker locker(lock());
1559       _free_set->rebuild();
1560     }
1561 
1562     if (!is_degenerated_gc_in_progress()) {
1563       prepare_concurrent_roots();
1564       prepare_concurrent_unloading();
1565     }
1566 
1567     // If collection set has candidates, start evacuation.
1568     // Otherwise, bypass the rest of the cycle.
1569     if (!collection_set()->is_empty()) {
1570       ShenandoahGCPhase init_evac(ShenandoahPhaseTimings::init_evac);
1571 
1572       if (ShenandoahVerify) {
1573         verifier()->verify_before_evacuation();
1574       }
1575 
1576       set_evacuation_in_progress(true);
1577       // From here on, we need to update references.
1578       set_has_forwarded_objects(true);
1579 
1580       if (!is_degenerated_gc_in_progress()) {
1581         if (ShenandoahConcurrentRoots::should_do_concurrent_class_unloading()) {
1582           ShenandoahCodeRoots::arm_nmethods();
1583         }
1584         evacuate_and_update_roots();
1585       }
1586 
1587       if (ShenandoahPacing) {
1588         pacer()->setup_for_evac();
1589       }
1590 
1591       if (ShenandoahVerify) {
1592         // If OOM while evacuating/updating of roots, there is no guarantee of their consistencies
1593         if (!cancelled_gc()) {
1594           ShenandoahRootVerifier::RootTypes types = ShenandoahRootVerifier::None;
1595           if (ShenandoahConcurrentRoots::should_do_concurrent_roots()) {
1596             types = ShenandoahRootVerifier::combine(ShenandoahRootVerifier::JNIHandleRoots, ShenandoahRootVerifier::WeakRoots);
1597             types = ShenandoahRootVerifier::combine(types, ShenandoahRootVerifier::CLDGRoots);
1598             types = ShenandoahRootVerifier::combine(types, ShenandoahRootVerifier::StringDedupRoots);
1599           }
1600 
1601           if (ShenandoahConcurrentRoots::should_do_concurrent_class_unloading()) {
1602             types = ShenandoahRootVerifier::combine(types, ShenandoahRootVerifier::CodeRoots);
1603           }
1604           verifier()->verify_roots_no_forwarded_except(types);
1605         }
1606         verifier()->verify_during_evacuation();
1607       }
1608     } else {
1609       if (ShenandoahVerify) {
1610         verifier()->verify_after_concmark();
1611       }
1612 
1613       if (VerifyAfterGC) {
1614         Universe::verify();
1615       }
1616     }
1617 
1618   } else {
1619     // If this cycle was updating references, we need to keep the has_forwarded_objects
1620     // flag on, for subsequent phases to deal with it.
1621     concurrent_mark()->cancel();
1622     set_concurrent_mark_in_progress(false);
1623 
1624     if (process_references()) {
1625       // Abandon reference processing right away: pre-cleaning must have failed.
1626       ReferenceProcessor *rp = ref_processor();
1627       rp->disable_discovery();
1628       rp->abandon_partial_discovery();
1629       rp->verify_no_references_recorded();
1630     }
1631   }
1632 }
1633 
1634 void ShenandoahHeap::op_conc_evac() {
1635   ShenandoahEvacuationTask task(this, _collection_set, true);
1636   workers()->run_task(&task);
1637 }
1638 
1639 void ShenandoahHeap::op_stw_evac() {
1640   ShenandoahEvacuationTask task(this, _collection_set, false);
1641   workers()->run_task(&task);
1642 }
1643 
1644 void ShenandoahHeap::op_updaterefs() {
1645   update_heap_references(true);
1646 }
1647 
1648 void ShenandoahHeap::op_cleanup_early() {
1649   free_set()->recycle_trash();
1650 }
1651 
1652 void ShenandoahHeap::op_cleanup_complete() {
1653   free_set()->recycle_trash();
1654 }
1655 
1656 class ShenandoahConcurrentRootsEvacUpdateTask : public AbstractGangTask {
1657 private:
1658   ShenandoahVMRoots<true /*concurrent*/>        _vm_roots;
1659   ShenandoahClassLoaderDataRoots<true /*concurrent*/, false /*single threaded*/> _cld_roots;
1660 
1661 public:
1662   ShenandoahConcurrentRootsEvacUpdateTask(ShenandoahPhaseTimings::Phase phase) :
1663     AbstractGangTask("Shenandoah Evacuate/Update Concurrent Strong Roots Task"),
1664     _vm_roots(phase),
1665     _cld_roots(phase, ShenandoahHeap::heap()->workers()->active_workers()) {}
1666 
1667   void work(uint worker_id) {
1668     ShenandoahConcurrentWorkerSession worker_session(worker_id);
1669     ShenandoahEvacOOMScope oom;
1670     {
1671       // vm_roots and weak_roots are OopStorage backed roots, concurrent iteration
1672       // may race against OopStorage::release() calls.
1673       ShenandoahEvacUpdateOopStorageRootsClosure cl;
1674       _vm_roots.oops_do<ShenandoahEvacUpdateOopStorageRootsClosure>(&cl, worker_id);
1675     }
1676 
1677     {
1678       ShenandoahEvacuateUpdateRootsClosure<> cl;
1679       CLDToOopClosure clds(&cl, ClassLoaderData::_claim_strong);
1680       _cld_roots.cld_do(&clds, worker_id);
1681     }
1682   }
1683 };
1684 
1685 class ShenandoahEvacUpdateCleanupOopStorageRootsClosure : public BasicOopIterateClosure {
1686 private:
1687   ShenandoahHeap* const _heap;
1688   ShenandoahMarkingContext* const _mark_context;
1689   bool  _evac_in_progress;
1690   Thread* const _thread;
1691 
1692 public:
1693   ShenandoahEvacUpdateCleanupOopStorageRootsClosure();
1694   void do_oop(oop* p);
1695   void do_oop(narrowOop* p);
1696 };
1697 
1698 ShenandoahEvacUpdateCleanupOopStorageRootsClosure::ShenandoahEvacUpdateCleanupOopStorageRootsClosure() :
1699   _heap(ShenandoahHeap::heap()),
1700   _mark_context(ShenandoahHeap::heap()->marking_context()),
1701   _evac_in_progress(ShenandoahHeap::heap()->is_evacuation_in_progress()),
1702   _thread(Thread::current()) {
1703 }
1704 
1705 void ShenandoahEvacUpdateCleanupOopStorageRootsClosure::do_oop(oop* p) {
1706   const oop obj = RawAccess<>::oop_load(p);
1707   if (!CompressedOops::is_null(obj)) {
1708     if (!_mark_context->is_marked(obj)) {
1709       shenandoah_assert_correct(p, obj);
1710       Atomic::cmpxchg(p, obj, oop(NULL));
1711     } else if (_evac_in_progress && _heap->in_collection_set(obj)) {
1712       oop resolved = ShenandoahBarrierSet::resolve_forwarded_not_null(obj);
1713       if (resolved == obj) {
1714         resolved = _heap->evacuate_object(obj, _thread);
1715       }
1716       Atomic::cmpxchg(p, obj, resolved);
1717       assert(_heap->cancelled_gc() ||
1718              _mark_context->is_marked(resolved) && !_heap->in_collection_set(resolved),
1719              "Sanity");
1720     }
1721   }
1722 }
1723 
1724 void ShenandoahEvacUpdateCleanupOopStorageRootsClosure::do_oop(narrowOop* p) {
1725   ShouldNotReachHere();
1726 }
1727 
1728 class ShenandoahIsCLDAliveClosure : public CLDClosure {
1729 public:
1730   void do_cld(ClassLoaderData* cld) {
1731     cld->is_alive();
1732   }
1733 };
1734 
1735 class ShenandoahIsNMethodAliveClosure: public NMethodClosure {
1736 public:
1737   void do_nmethod(nmethod* n) {
1738     n->is_unloading();
1739   }
1740 };
1741 
1742 // This task not only evacuates/updates marked weak roots, but also "NULL"
1743 // dead weak roots.
1744 class ShenandoahConcurrentWeakRootsEvacUpdateTask : public AbstractGangTask {
1745 private:
1746   ShenandoahVMWeakRoots<true /*concurrent*/> _vm_roots;
1747 
1748   // Roots related to concurrent class unloading
1749   ShenandoahClassLoaderDataRoots<true /* concurrent */, false /* single thread*/>
1750                                              _cld_roots;
1751   ShenandoahConcurrentNMethodIterator        _nmethod_itr;
1752   ShenandoahConcurrentStringDedupRoots       _dedup_roots;
1753   bool                                       _concurrent_class_unloading;
1754 
1755 public:
1756   ShenandoahConcurrentWeakRootsEvacUpdateTask(ShenandoahPhaseTimings::Phase phase) :
1757     AbstractGangTask("Shenandoah Concurrent Weak Root Task"),
1758     _vm_roots(phase),
1759     _cld_roots(phase, ShenandoahHeap::heap()->workers()->active_workers()),
1760     _nmethod_itr(ShenandoahCodeRoots::table()),
1761     _dedup_roots(phase),
1762     _concurrent_class_unloading(ShenandoahConcurrentRoots::should_do_concurrent_class_unloading()) {
1763     if (_concurrent_class_unloading) {
1764       MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1765       _nmethod_itr.nmethods_do_begin();
1766     }
1767   }
1768 
1769   ~ShenandoahConcurrentWeakRootsEvacUpdateTask() {
1770     if (_concurrent_class_unloading) {
1771       MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1772       _nmethod_itr.nmethods_do_end();
1773     }
1774     // Notify runtime data structures of potentially dead oops
1775     _vm_roots.report_num_dead();
1776   }
1777 
1778   void work(uint worker_id) {
1779     ShenandoahConcurrentWorkerSession worker_session(worker_id);
1780     {
1781       ShenandoahEvacOOMScope oom;
1782       // jni_roots and weak_roots are OopStorage backed roots, concurrent iteration
1783       // may race against OopStorage::release() calls.
1784       ShenandoahEvacUpdateCleanupOopStorageRootsClosure cl;
1785       _vm_roots.oops_do(&cl, worker_id);
1786 
1787       // String dedup weak roots
1788       ShenandoahForwardedIsAliveClosure is_alive;
1789       ShenandoahEvacuateUpdateRootsClosure<MO_RELEASE> keep_alive;
1790       _dedup_roots.oops_do(&is_alive, &keep_alive, worker_id);
1791     }
1792 
1793     // If we are going to perform concurrent class unloading later on, we need to
1794     // cleanup the weak oops in CLD and determinate nmethod's unloading state, so that we
1795     // can cleanup immediate garbage sooner.
1796     if (_concurrent_class_unloading) {
1797       // Applies ShenandoahIsCLDAlive closure to CLDs, native barrier will either NULL the
1798       // CLD's holder or evacuate it.
1799       ShenandoahIsCLDAliveClosure is_cld_alive;
1800       _cld_roots.cld_do(&is_cld_alive, worker_id);
1801 
1802       // Applies ShenandoahIsNMethodAliveClosure to registered nmethods.
1803       // The closure calls nmethod->is_unloading(). The is_unloading
1804       // state is cached, therefore, during concurrent class unloading phase,
1805       // we will not touch the metadata of unloading nmethods
1806       ShenandoahIsNMethodAliveClosure is_nmethod_alive;
1807       _nmethod_itr.nmethods_do(&is_nmethod_alive);
1808     }
1809   }
1810 };
1811 
1812 void ShenandoahHeap::op_weak_roots() {
1813   if (is_concurrent_weak_root_in_progress()) {
1814     // Concurrent weak root processing
1815     {
1816       ShenandoahTimingsTracker t(ShenandoahPhaseTimings::conc_weak_roots_work);
1817       ShenandoahGCWorkerPhase worker_phase(ShenandoahPhaseTimings::conc_weak_roots_work);
1818       ShenandoahConcurrentWeakRootsEvacUpdateTask task(ShenandoahPhaseTimings::conc_weak_roots_work);
1819       workers()->run_task(&task);
1820       if (!ShenandoahConcurrentRoots::should_do_concurrent_class_unloading()) {
1821         set_concurrent_weak_root_in_progress(false);
1822       }
1823     }
1824 
1825     // Perform handshake to flush out dead oops
1826     {
1827       ShenandoahTimingsTracker t(ShenandoahPhaseTimings::conc_weak_roots_rendezvous);
1828       ShenandoahRendezvousClosure cl;
1829       Handshake::execute(&cl);
1830     }
1831   }
1832 }
1833 
1834 void ShenandoahHeap::op_class_unloading() {
1835   assert (is_concurrent_weak_root_in_progress() &&
1836           ShenandoahConcurrentRoots::should_do_concurrent_class_unloading(),
1837           "Checked by caller");
1838   _unloader.unload();
1839   set_concurrent_weak_root_in_progress(false);
1840 }
1841 
1842 void ShenandoahHeap::op_strong_roots() {
1843   assert(is_concurrent_strong_root_in_progress(), "Checked by caller");
1844   ShenandoahConcurrentRootsEvacUpdateTask task(ShenandoahPhaseTimings::conc_strong_roots);
1845   workers()->run_task(&task);
1846   set_concurrent_strong_root_in_progress(false);
1847 }
1848 
1849 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
1850 private:
1851   ShenandoahMarkingContext* const _ctx;
1852 public:
1853   ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {}
1854 
1855   void heap_region_do(ShenandoahHeapRegion* r) {
1856     if (r->is_active()) {
1857       // Reset live data and set TAMS optimistically. We would recheck these under the pause
1858       // anyway to capture any updates that happened since now.
1859       r->clear_live_data();
1860       _ctx->capture_top_at_mark_start(r);
1861     }
1862   }
1863 
1864   bool is_thread_safe() { return true; }
1865 };
1866 
1867 void ShenandoahHeap::op_reset() {
1868   if (ShenandoahPacing) {
1869     pacer()->setup_for_reset();
1870   }
1871   reset_mark_bitmap();
1872 
1873   ShenandoahResetUpdateRegionStateClosure cl;
1874   parallel_heap_region_iterate(&cl);
1875 }
1876 
1877 void ShenandoahHeap::op_preclean() {
1878   if (ShenandoahPacing) {
1879     pacer()->setup_for_preclean();
1880   }
1881   concurrent_mark()->preclean_weak_refs();
1882 }
1883 
1884 void ShenandoahHeap::op_full(GCCause::Cause cause) {
1885   ShenandoahMetricsSnapshot metrics;
1886   metrics.snap_before();
1887 
1888   full_gc()->do_it(cause);
1889 
1890   metrics.snap_after();
1891 
1892   if (metrics.is_good_progress()) {
1893     _progress_last_gc.set();
1894   } else {
1895     // Nothing to do. Tell the allocation path that we have failed to make
1896     // progress, and it can finally fail.
1897     _progress_last_gc.unset();
1898   }
1899 }
1900 
1901 void ShenandoahHeap::op_degenerated(ShenandoahDegenPoint point) {
1902   // Degenerated GC is STW, but it can also fail. Current mechanics communicates
1903   // GC failure via cancelled_concgc() flag. So, if we detect the failure after
1904   // some phase, we have to upgrade the Degenerate GC to Full GC.
1905 
1906   clear_cancelled_gc();
1907 
1908   ShenandoahMetricsSnapshot metrics;
1909   metrics.snap_before();
1910 
1911   switch (point) {
1912     // The cases below form the Duff's-like device: it describes the actual GC cycle,
1913     // but enters it at different points, depending on which concurrent phase had
1914     // degenerated.
1915 
1916     case _degenerated_outside_cycle:
1917       // We have degenerated from outside the cycle, which means something is bad with
1918       // the heap, most probably heavy humongous fragmentation, or we are very low on free
1919       // space. It makes little sense to wait for Full GC to reclaim as much as it can, when
1920       // we can do the most aggressive degen cycle, which includes processing references and
1921       // class unloading, unless those features are explicitly disabled.
1922       //
1923       // Note that we can only do this for "outside-cycle" degens, otherwise we would risk
1924       // changing the cycle parameters mid-cycle during concurrent -> degenerated handover.
1925       set_process_references(heuristics()->can_process_references());
1926       set_unload_classes(heuristics()->can_unload_classes());
1927 
1928       op_reset();
1929 
1930       op_init_mark();
1931       if (cancelled_gc()) {
1932         op_degenerated_fail();
1933         return;
1934       }
1935 
1936     case _degenerated_mark:
1937       op_final_mark();
1938       if (cancelled_gc()) {
1939         op_degenerated_fail();
1940         return;
1941       }
1942 
1943       if (!has_forwarded_objects() && ShenandoahConcurrentRoots::can_do_concurrent_class_unloading()) {
1944         // Disarm nmethods that armed for concurrent mark. On normal cycle, it would
1945         // be disarmed while conc-roots phase is running.
1946         // TODO: Call op_conc_roots() here instead
1947         ShenandoahCodeRoots::disarm_nmethods();
1948       }
1949 
1950       op_cleanup_early();
1951 
1952     case _degenerated_evac:
1953       // If heuristics thinks we should do the cycle, this flag would be set,
1954       // and we can do evacuation. Otherwise, it would be the shortcut cycle.
1955       if (is_evacuation_in_progress()) {
1956 
1957         // Degeneration under oom-evac protocol might have left some objects in
1958         // collection set un-evacuated. Restart evacuation from the beginning to
1959         // capture all objects. For all the objects that are already evacuated,
1960         // it would be a simple check, which is supposed to be fast. This is also
1961         // safe to do even without degeneration, as CSet iterator is at beginning
1962         // in preparation for evacuation anyway.
1963         //
1964         // Before doing that, we need to make sure we never had any cset-pinned
1965         // regions. This may happen if allocation failure happened when evacuating
1966         // the about-to-be-pinned object, oom-evac protocol left the object in
1967         // the collection set, and then the pin reached the cset region. If we continue
1968         // the cycle here, we would trash the cset and alive objects in it. To avoid
1969         // it, we fail degeneration right away and slide into Full GC to recover.
1970 
1971         {
1972           sync_pinned_region_status();
1973           collection_set()->clear_current_index();
1974 
1975           ShenandoahHeapRegion* r;
1976           while ((r = collection_set()->next()) != NULL) {
1977             if (r->is_pinned()) {
1978               cancel_gc(GCCause::_shenandoah_upgrade_to_full_gc);
1979               op_degenerated_fail();
1980               return;
1981             }
1982           }
1983 
1984           collection_set()->clear_current_index();
1985         }
1986 
1987         op_stw_evac();
1988         if (cancelled_gc()) {
1989           op_degenerated_fail();
1990           return;
1991         }
1992       }
1993 
1994       // If heuristics thinks we should do the cycle, this flag would be set,
1995       // and we need to do update-refs. Otherwise, it would be the shortcut cycle.
1996       if (has_forwarded_objects()) {
1997         op_init_updaterefs();
1998         if (cancelled_gc()) {
1999           op_degenerated_fail();
2000           return;
2001         }
2002       }
2003 
2004     case _degenerated_updaterefs:
2005       if (has_forwarded_objects()) {
2006         op_final_updaterefs();
2007         if (cancelled_gc()) {
2008           op_degenerated_fail();
2009           return;
2010         }
2011       }
2012 
2013       op_cleanup_complete();
2014       break;
2015 
2016     default:
2017       ShouldNotReachHere();
2018   }
2019 
2020   if (ShenandoahVerify) {
2021     verifier()->verify_after_degenerated();
2022   }
2023 
2024   if (VerifyAfterGC) {
2025     Universe::verify();
2026   }
2027 
2028   metrics.snap_after();
2029 
2030   // Check for futility and fail. There is no reason to do several back-to-back Degenerated cycles,
2031   // because that probably means the heap is overloaded and/or fragmented.
2032   if (!metrics.is_good_progress()) {
2033     _progress_last_gc.unset();
2034     cancel_gc(GCCause::_shenandoah_upgrade_to_full_gc);
2035     op_degenerated_futile();
2036   } else {
2037     _progress_last_gc.set();
2038   }
2039 }
2040 
2041 void ShenandoahHeap::op_degenerated_fail() {
2042   log_info(gc)("Cannot finish degeneration, upgrading to Full GC");
2043   shenandoah_policy()->record_degenerated_upgrade_to_full();
2044   op_full(GCCause::_shenandoah_upgrade_to_full_gc);
2045 }
2046 
2047 void ShenandoahHeap::op_degenerated_futile() {
2048   shenandoah_policy()->record_degenerated_upgrade_to_full();
2049   op_full(GCCause::_shenandoah_upgrade_to_full_gc);
2050 }
2051 
2052 void ShenandoahHeap::force_satb_flush_all_threads() {
2053   if (!is_concurrent_mark_in_progress()) {
2054     // No need to flush SATBs
2055     return;
2056   }
2057 
2058   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
2059     ShenandoahThreadLocalData::set_force_satb_flush(t, true);
2060   }
2061   // The threads are not "acquiring" their thread-local data, but it does not
2062   // hurt to "release" the updates here anyway.
2063   OrderAccess::fence();
2064 }
2065 
2066 void ShenandoahHeap::set_gc_state_all_threads(char state) {
2067   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) {
2068     ShenandoahThreadLocalData::set_gc_state(t, state);
2069   }
2070 }
2071 
2072 void ShenandoahHeap::set_gc_state_mask(uint mask, bool value) {
2073   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should really be Shenandoah safepoint");
2074   _gc_state.set_cond(mask, value);
2075   set_gc_state_all_threads(_gc_state.raw_value());
2076 }
2077 
2078 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) {
2079   if (has_forwarded_objects()) {
2080     set_gc_state_mask(MARKING | UPDATEREFS, in_progress);
2081   } else {
2082     set_gc_state_mask(MARKING, in_progress);
2083   }
2084   ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress);
2085 }
2086 
2087 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) {
2088   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint");
2089   set_gc_state_mask(EVACUATION, in_progress);
2090 }
2091 
2092 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) {
2093   assert(ShenandoahConcurrentRoots::can_do_concurrent_roots(), "Why set the flag?");
2094   if (in_progress) {
2095     _concurrent_strong_root_in_progress.set();
2096   } else {
2097     _concurrent_strong_root_in_progress.unset();
2098   }
2099 }
2100 
2101 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool in_progress) {
2102   assert(ShenandoahConcurrentRoots::can_do_concurrent_roots(), "Why set the flag?");
2103   if (in_progress) {
2104     _concurrent_weak_root_in_progress.set();
2105   } else {
2106     _concurrent_weak_root_in_progress.unset();
2107   }
2108 }
2109 
2110 void ShenandoahHeap::ref_processing_init() {
2111   assert(_max_workers > 0, "Sanity");
2112 
2113   _ref_processor =
2114     new ReferenceProcessor(&_subject_to_discovery,  // is_subject_to_discovery
2115                            _ref_proc_mt_processing, // MT processing
2116                            _max_workers,            // Degree of MT processing
2117                            _ref_proc_mt_discovery,  // MT discovery
2118                            _max_workers,            // Degree of MT discovery
2119                            false,                   // Reference discovery is not atomic
2120                            NULL,                    // No closure, should be installed before use
2121                            true);                   // Scale worker threads
2122 
2123   shenandoah_assert_rp_isalive_not_installed();
2124 }
2125 
2126 GCTracer* ShenandoahHeap::tracer() {
2127   return shenandoah_policy()->tracer();
2128 }
2129 
2130 size_t ShenandoahHeap::tlab_used(Thread* thread) const {
2131   return _free_set->used();
2132 }
2133 
2134 bool ShenandoahHeap::try_cancel_gc() {
2135   while (true) {
2136     jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE);
2137     if (prev == CANCELLABLE) return true;
2138     else if (prev == CANCELLED) return false;
2139     assert(ShenandoahSuspendibleWorkers, "should not get here when not using suspendible workers");
2140     assert(prev == NOT_CANCELLED, "must be NOT_CANCELLED");
2141     if (Thread::current()->is_Java_thread()) {
2142       // We need to provide a safepoint here, otherwise we might
2143       // spin forever if a SP is pending.
2144       ThreadBlockInVM sp(JavaThread::current());
2145       SpinPause();
2146     }
2147   }
2148 }
2149 
2150 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) {
2151   if (try_cancel_gc()) {
2152     FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause));
2153     log_info(gc)("%s", msg.buffer());
2154     Events::log(Thread::current(), "%s", msg.buffer());
2155   }
2156 }
2157 
2158 uint ShenandoahHeap::max_workers() {
2159   return _max_workers;
2160 }
2161 
2162 void ShenandoahHeap::stop() {
2163   // The shutdown sequence should be able to terminate when GC is running.
2164 
2165   // Step 0. Notify policy to disable event recording.
2166   _shenandoah_policy->record_shutdown();
2167 
2168   // Step 1. Notify control thread that we are in shutdown.
2169   // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown.
2170   // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below.
2171   control_thread()->prepare_for_graceful_shutdown();
2172 
2173   // Step 2. Notify GC workers that we are cancelling GC.
2174   cancel_gc(GCCause::_shenandoah_stop_vm);
2175 
2176   // Step 3. Wait until GC worker exits normally.
2177   control_thread()->stop();
2178 
2179   // Step 4. Stop String Dedup thread if it is active
2180   if (ShenandoahStringDedup::is_enabled()) {
2181     ShenandoahStringDedup::stop();
2182   }
2183 }
2184 
2185 void ShenandoahHeap::stw_unload_classes(bool full_gc) {
2186   if (!unload_classes()) return;
2187 
2188   // Unload classes and purge SystemDictionary.
2189   {
2190     ShenandoahGCPhase phase(full_gc ?
2191                             ShenandoahPhaseTimings::full_gc_purge_class_unload :
2192                             ShenandoahPhaseTimings::purge_class_unload);
2193     bool purged_class = SystemDictionary::do_unloading(gc_timer());
2194 
2195     ShenandoahIsAliveSelector is_alive;
2196     uint num_workers = _workers->active_workers();
2197     ShenandoahClassUnloadingTask unlink_task(is_alive.is_alive_closure(), num_workers, purged_class);
2198     _workers->run_task(&unlink_task);
2199   }
2200 
2201   {
2202     ShenandoahGCPhase phase(full_gc ?
2203                             ShenandoahPhaseTimings::full_gc_purge_cldg :
2204                             ShenandoahPhaseTimings::purge_cldg);
2205     ClassLoaderDataGraph::purge();
2206   }
2207   // Resize and verify metaspace
2208   MetaspaceGC::compute_new_size();
2209   MetaspaceUtils::verify_metrics();
2210 }
2211 
2212 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs),
2213 // so they should not have forwarded oops.
2214 // However, we do need to "null" dead oops in the roots, if can not be done
2215 // in concurrent cycles.
2216 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) {
2217   ShenandoahGCPhase root_phase(full_gc ?
2218                                ShenandoahPhaseTimings::full_gc_purge :
2219                                ShenandoahPhaseTimings::purge);
2220   uint num_workers = _workers->active_workers();
2221   ShenandoahPhaseTimings::Phase timing_phase = full_gc ?
2222                                                ShenandoahPhaseTimings::full_gc_purge_weak_par :
2223                                                ShenandoahPhaseTimings::purge_weak_par;
2224   ShenandoahGCPhase phase(timing_phase);
2225   ShenandoahGCWorkerPhase worker_phase(timing_phase);
2226 
2227   // Cleanup weak roots
2228   if (has_forwarded_objects()) {
2229     ShenandoahForwardedIsAliveClosure is_alive;
2230     ShenandoahUpdateRefsClosure keep_alive;
2231     ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure>
2232       cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers, !ShenandoahConcurrentRoots::should_do_concurrent_class_unloading());
2233     _workers->run_task(&cleaning_task);
2234   } else {
2235     ShenandoahIsAliveClosure is_alive;
2236 #ifdef ASSERT
2237     ShenandoahAssertNotForwardedClosure verify_cl;
2238     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure>
2239       cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers, !ShenandoahConcurrentRoots::should_do_concurrent_class_unloading());
2240 #else
2241     ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure>
2242       cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers, !ShenandoahConcurrentRoots::should_do_concurrent_class_unloading());
2243 #endif
2244     _workers->run_task(&cleaning_task);
2245   }
2246 }
2247 
2248 void ShenandoahHeap::parallel_cleaning(bool full_gc) {
2249   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2250   stw_process_weak_roots(full_gc);
2251   if (!ShenandoahConcurrentRoots::should_do_concurrent_class_unloading()) {
2252     stw_unload_classes(full_gc);
2253   }
2254 }
2255 
2256 void ShenandoahHeap::set_has_forwarded_objects(bool cond) {
2257   set_gc_state_mask(HAS_FORWARDED, cond);
2258 }
2259 
2260 void ShenandoahHeap::set_process_references(bool pr) {
2261   _process_references.set_cond(pr);
2262 }
2263 
2264 void ShenandoahHeap::set_unload_classes(bool uc) {
2265   _unload_classes.set_cond(uc);
2266 }
2267 
2268 bool ShenandoahHeap::process_references() const {
2269   return _process_references.is_set();
2270 }
2271 
2272 bool ShenandoahHeap::unload_classes() const {
2273   return _unload_classes.is_set();
2274 }
2275 
2276 address ShenandoahHeap::in_cset_fast_test_addr() {
2277   ShenandoahHeap* heap = ShenandoahHeap::heap();
2278   assert(heap->collection_set() != NULL, "Sanity");
2279   return (address) heap->collection_set()->biased_map_address();
2280 }
2281 
2282 address ShenandoahHeap::cancelled_gc_addr() {
2283   return (address) ShenandoahHeap::heap()->_cancelled_gc.addr_of();
2284 }
2285 
2286 address ShenandoahHeap::gc_state_addr() {
2287   return (address) ShenandoahHeap::heap()->_gc_state.addr_of();
2288 }
2289 
2290 size_t ShenandoahHeap::bytes_allocated_since_gc_start() {
2291   return Atomic::load_acquire(&_bytes_allocated_since_gc_start);
2292 }
2293 
2294 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() {
2295   Atomic::release_store_fence(&_bytes_allocated_since_gc_start, (size_t)0);
2296 }
2297 
2298 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) {
2299   _degenerated_gc_in_progress.set_cond(in_progress);
2300 }
2301 
2302 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) {
2303   _full_gc_in_progress.set_cond(in_progress);
2304 }
2305 
2306 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) {
2307   assert (is_full_gc_in_progress(), "should be");
2308   _full_gc_move_in_progress.set_cond(in_progress);
2309 }
2310 
2311 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) {
2312   set_gc_state_mask(UPDATEREFS, in_progress);
2313 }
2314 
2315 void ShenandoahHeap::register_nmethod(nmethod* nm) {
2316   ShenandoahCodeRoots::register_nmethod(nm);
2317 }
2318 
2319 void ShenandoahHeap::unregister_nmethod(nmethod* nm) {
2320   ShenandoahCodeRoots::unregister_nmethod(nm);
2321 }
2322 
2323 void ShenandoahHeap::flush_nmethod(nmethod* nm) {
2324   ShenandoahCodeRoots::flush_nmethod(nm);
2325 }
2326 
2327 oop ShenandoahHeap::pin_object(JavaThread* thr, oop o) {
2328   heap_region_containing(o)->record_pin();
2329   return o;
2330 }
2331 
2332 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) {
2333   heap_region_containing(o)->record_unpin();
2334 }
2335 
2336 void ShenandoahHeap::sync_pinned_region_status() {
2337   ShenandoahHeapLocker locker(lock());
2338 
2339   for (size_t i = 0; i < num_regions(); i++) {
2340     ShenandoahHeapRegion *r = get_region(i);
2341     if (r->is_active()) {
2342       if (r->is_pinned()) {
2343         if (r->pin_count() == 0) {
2344           r->make_unpinned();
2345         }
2346       } else {
2347         if (r->pin_count() > 0) {
2348           r->make_pinned();
2349         }
2350       }
2351     }
2352   }
2353 
2354   assert_pinned_region_status();
2355 }
2356 
2357 #ifdef ASSERT
2358 void ShenandoahHeap::assert_pinned_region_status() {
2359   for (size_t i = 0; i < num_regions(); i++) {
2360     ShenandoahHeapRegion* r = get_region(i);
2361     assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0),
2362            "Region " SIZE_FORMAT " pinning status is inconsistent", i);
2363   }
2364 }
2365 #endif
2366 
2367 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const {
2368   return _gc_timer;
2369 }
2370 
2371 void ShenandoahHeap::prepare_concurrent_roots() {
2372   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2373   if (ShenandoahConcurrentRoots::should_do_concurrent_roots()) {
2374     set_concurrent_strong_root_in_progress(!collection_set()->is_empty());
2375     set_concurrent_weak_root_in_progress(true);
2376   }
2377 }
2378 
2379 void ShenandoahHeap::prepare_concurrent_unloading() {
2380   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2381   if (ShenandoahConcurrentRoots::should_do_concurrent_class_unloading()) {
2382     _unloader.prepare();
2383   }
2384 }
2385 
2386 void ShenandoahHeap::finish_concurrent_unloading() {
2387   assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint");
2388   if (ShenandoahConcurrentRoots::should_do_concurrent_class_unloading()) {
2389     _unloader.finish();
2390   }
2391 }
2392 
2393 #ifdef ASSERT
2394 void ShenandoahHeap::assert_gc_workers(uint nworkers) {
2395   assert(nworkers > 0 && nworkers <= max_workers(), "Sanity");
2396 
2397   if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) {
2398     if (UseDynamicNumberOfGCThreads) {
2399       assert(nworkers <= ParallelGCThreads, "Cannot use more than it has");
2400     } else {
2401       // Use ParallelGCThreads inside safepoints
2402       assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints");
2403     }
2404   } else {
2405     if (UseDynamicNumberOfGCThreads) {
2406       assert(nworkers <= ConcGCThreads, "Cannot use more than it has");
2407     } else {
2408       // Use ConcGCThreads outside safepoints
2409       assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints");
2410     }
2411   }
2412 }
2413 #endif
2414 
2415 ShenandoahVerifier* ShenandoahHeap::verifier() {
2416   guarantee(ShenandoahVerify, "Should be enabled");
2417   assert (_verifier != NULL, "sanity");
2418   return _verifier;
2419 }
2420 
2421 template<class T>
2422 class ShenandoahUpdateHeapRefsTask : public AbstractGangTask {
2423 private:
2424   T cl;
2425   ShenandoahHeap* _heap;
2426   ShenandoahRegionIterator* _regions;
2427   bool _concurrent;
2428 public:
2429   ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions, bool concurrent) :
2430     AbstractGangTask("Concurrent Update References Task"),
2431     cl(T()),
2432     _heap(ShenandoahHeap::heap()),
2433     _regions(regions),
2434     _concurrent(concurrent) {
2435   }
2436 
2437   void work(uint worker_id) {
2438     if (_concurrent) {
2439       ShenandoahConcurrentWorkerSession worker_session(worker_id);
2440       ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers);
2441       do_work();
2442     } else {
2443       ShenandoahParallelWorkerSession worker_session(worker_id);
2444       do_work();
2445     }
2446   }
2447 
2448 private:
2449   void do_work() {
2450     ShenandoahHeapRegion* r = _regions->next();
2451     ShenandoahMarkingContext* const ctx = _heap->complete_marking_context();
2452     while (r != NULL) {
2453       HeapWord* update_watermark = r->get_update_watermark();
2454       assert (update_watermark >= r->bottom(), "sanity");
2455       if (r->is_active() && !r->is_cset()) {
2456         _heap->marked_object_oop_iterate(r, &cl, update_watermark);
2457       }
2458       if (ShenandoahPacing) {
2459         _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom()));
2460       }
2461       if (_heap->check_cancelled_gc_and_yield(_concurrent)) {
2462         return;
2463       }
2464       r = _regions->next();
2465     }
2466   }
2467 };
2468 
2469 void ShenandoahHeap::update_heap_references(bool concurrent) {
2470   ShenandoahUpdateHeapRefsTask<ShenandoahUpdateHeapRefsClosure> task(&_update_refs_iterator, concurrent);
2471   workers()->run_task(&task);
2472 }
2473 
2474 void ShenandoahHeap::op_init_updaterefs() {
2475   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
2476 
2477   set_evacuation_in_progress(false);
2478 
2479   // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to
2480   // make them parsable for update code to work correctly. Plus, we can compute new sizes
2481   // for future GCLABs here.
2482   if (UseTLAB) {
2483     ShenandoahGCPhase phase(ShenandoahPhaseTimings::init_update_refs_manage_gclabs);
2484     gclabs_retire(ResizeTLAB);
2485   }
2486 
2487   if (ShenandoahVerify) {
2488     if (!is_degenerated_gc_in_progress()) {
2489       verifier()->verify_roots_in_to_space_except(ShenandoahRootVerifier::ThreadRoots);
2490     }
2491     verifier()->verify_before_updaterefs();
2492   }
2493 
2494   set_update_refs_in_progress(true);
2495 
2496   _update_refs_iterator.reset();
2497 
2498   if (ShenandoahPacing) {
2499     pacer()->setup_for_updaterefs();
2500   }
2501 }
2502 
2503 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure {
2504 private:
2505   ShenandoahHeapLock* const _lock;
2506 
2507 public:
2508   ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {}
2509 
2510   void heap_region_do(ShenandoahHeapRegion* r) {
2511     // Drop unnecessary "pinned" state from regions that does not have CP marks
2512     // anymore, as this would allow trashing them.
2513 
2514     if (r->is_active()) {
2515       if (r->is_pinned()) {
2516         if (r->pin_count() == 0) {
2517           ShenandoahHeapLocker locker(_lock);
2518           r->make_unpinned();
2519         }
2520       } else {
2521         if (r->pin_count() > 0) {
2522           ShenandoahHeapLocker locker(_lock);
2523           r->make_pinned();
2524         }
2525       }
2526     }
2527   }
2528 
2529   bool is_thread_safe() { return true; }
2530 };
2531 
2532 void ShenandoahHeap::op_final_updaterefs() {
2533   assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint");
2534 
2535   finish_concurrent_unloading();
2536 
2537   // Check if there is left-over work, and finish it
2538   if (_update_refs_iterator.has_next()) {
2539     ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_update_refs_finish_work);
2540 
2541     // Finish updating references where we left off.
2542     clear_cancelled_gc();
2543     update_heap_references(false);
2544   }
2545 
2546   // Clear cancelled GC, if set. On cancellation path, the block before would handle
2547   // everything. On degenerated paths, cancelled gc would not be set anyway.
2548   if (cancelled_gc()) {
2549     clear_cancelled_gc();
2550   }
2551   assert(!cancelled_gc(), "Should have been done right before");
2552 
2553   if (ShenandoahVerify && !is_degenerated_gc_in_progress()) {
2554     verifier()->verify_roots_in_to_space_except(ShenandoahRootVerifier::ThreadRoots);
2555   }
2556 
2557   if (is_degenerated_gc_in_progress()) {
2558     concurrent_mark()->update_roots(ShenandoahPhaseTimings::degen_gc_update_roots);
2559   } else {
2560     concurrent_mark()->update_thread_roots(ShenandoahPhaseTimings::final_update_refs_roots);
2561   }
2562 
2563   // Has to be done before cset is clear
2564   if (ShenandoahVerify) {
2565     verifier()->verify_roots_in_to_space();
2566   }
2567 
2568   {
2569     ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_update_refs_update_region_states);
2570     ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl;
2571     parallel_heap_region_iterate(&cl);
2572 
2573     assert_pinned_region_status();
2574   }
2575 
2576   {
2577     ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_update_refs_trash_cset);
2578     trash_cset_regions();
2579   }
2580 
2581   set_has_forwarded_objects(false);
2582   set_update_refs_in_progress(false);
2583 
2584   if (ShenandoahVerify) {
2585     verifier()->verify_after_updaterefs();
2586   }
2587 
2588   if (VerifyAfterGC) {
2589     Universe::verify();
2590   }
2591 
2592   {
2593     ShenandoahGCPhase phase(ShenandoahPhaseTimings::final_update_refs_rebuild_freeset);
2594     ShenandoahHeapLocker locker(lock());
2595     _free_set->rebuild();
2596   }
2597 }
2598 
2599 void ShenandoahHeap::print_extended_on(outputStream *st) const {
2600   print_on(st);
2601   print_heap_regions_on(st);
2602 }
2603 
2604 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) {
2605   size_t slice = r->index() / _bitmap_regions_per_slice;
2606 
2607   size_t regions_from = _bitmap_regions_per_slice * slice;
2608   size_t regions_to   = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1));
2609   for (size_t g = regions_from; g < regions_to; g++) {
2610     assert (g / _bitmap_regions_per_slice == slice, "same slice");
2611     if (skip_self && g == r->index()) continue;
2612     if (get_region(g)->is_committed()) {
2613       return true;
2614     }
2615   }
2616   return false;
2617 }
2618 
2619 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) {
2620   shenandoah_assert_heaplocked();
2621 
2622   // Bitmaps in special regions do not need commits
2623   if (_bitmap_region_special) {
2624     return true;
2625   }
2626 
2627   if (is_bitmap_slice_committed(r, true)) {
2628     // Some other region from the group is already committed, meaning the bitmap
2629     // slice is already committed, we exit right away.
2630     return true;
2631   }
2632 
2633   // Commit the bitmap slice:
2634   size_t slice = r->index() / _bitmap_regions_per_slice;
2635   size_t off = _bitmap_bytes_per_slice * slice;
2636   size_t len = _bitmap_bytes_per_slice;
2637   char* start = (char*) _bitmap_region.start() + off;
2638 
2639   if (!os::commit_memory(start, len, false)) {
2640     return false;
2641   }
2642 
2643   if (AlwaysPreTouch) {
2644     os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size);
2645   }
2646 
2647   return true;
2648 }
2649 
2650 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) {
2651   shenandoah_assert_heaplocked();
2652 
2653   // Bitmaps in special regions do not need uncommits
2654   if (_bitmap_region_special) {
2655     return true;
2656   }
2657 
2658   if (is_bitmap_slice_committed(r, true)) {
2659     // Some other region from the group is still committed, meaning the bitmap
2660     // slice is should stay committed, exit right away.
2661     return true;
2662   }
2663 
2664   // Uncommit the bitmap slice:
2665   size_t slice = r->index() / _bitmap_regions_per_slice;
2666   size_t off = _bitmap_bytes_per_slice * slice;
2667   size_t len = _bitmap_bytes_per_slice;
2668   if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) {
2669     return false;
2670   }
2671   return true;
2672 }
2673 
2674 void ShenandoahHeap::safepoint_synchronize_begin() {
2675   if (ShenandoahSuspendibleWorkers || UseStringDeduplication) {
2676     SuspendibleThreadSet::synchronize();
2677   }
2678 }
2679 
2680 void ShenandoahHeap::safepoint_synchronize_end() {
2681   if (ShenandoahSuspendibleWorkers || UseStringDeduplication) {
2682     SuspendibleThreadSet::desynchronize();
2683   }
2684 }
2685 
2686 void ShenandoahHeap::vmop_entry_init_mark() {
2687   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2688   ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::init_mark_gross);
2689 
2690   try_inject_alloc_failure();
2691   VM_ShenandoahInitMark op;
2692   VMThread::execute(&op); // jump to entry_init_mark() under safepoint
2693 }
2694 
2695 void ShenandoahHeap::vmop_entry_final_mark() {
2696   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2697   ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::final_mark_gross);
2698 
2699   try_inject_alloc_failure();
2700   VM_ShenandoahFinalMarkStartEvac op;
2701   VMThread::execute(&op); // jump to entry_final_mark under safepoint
2702 }
2703 
2704 void ShenandoahHeap::vmop_entry_init_updaterefs() {
2705   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2706   ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::init_update_refs_gross);
2707 
2708   try_inject_alloc_failure();
2709   VM_ShenandoahInitUpdateRefs op;
2710   VMThread::execute(&op);
2711 }
2712 
2713 void ShenandoahHeap::vmop_entry_final_updaterefs() {
2714   TraceCollectorStats tcs(monitoring_support()->stw_collection_counters());
2715   ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::final_update_refs_gross);
2716 
2717   try_inject_alloc_failure();
2718   VM_ShenandoahFinalUpdateRefs op;
2719   VMThread::execute(&op);
2720 }
2721 
2722 void ShenandoahHeap::vmop_entry_full(GCCause::Cause cause) {
2723   TraceCollectorStats tcs(monitoring_support()->full_stw_collection_counters());
2724   ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::full_gc_gross);
2725 
2726   try_inject_alloc_failure();
2727   VM_ShenandoahFullGC op(cause);
2728   VMThread::execute(&op);
2729 }
2730 
2731 void ShenandoahHeap::vmop_degenerated(ShenandoahDegenPoint point) {
2732   TraceCollectorStats tcs(monitoring_support()->full_stw_collection_counters());
2733   ShenandoahTimingsTracker timing(ShenandoahPhaseTimings::degen_gc_gross);
2734 
2735   VM_ShenandoahDegeneratedGC degenerated_gc((int)point);
2736   VMThread::execute(&degenerated_gc);
2737 }
2738 
2739 void ShenandoahHeap::entry_init_mark() {
2740   const char* msg = init_mark_event_message();
2741   ShenandoahPausePhase gc_phase(msg, ShenandoahPhaseTimings::init_mark);
2742   EventMark em("%s", msg);
2743 
2744   ShenandoahWorkerScope scope(workers(),
2745                               ShenandoahWorkerPolicy::calc_workers_for_init_marking(),
2746                               "init marking");
2747 
2748   op_init_mark();
2749 }
2750 
2751 void ShenandoahHeap::entry_final_mark() {
2752   const char* msg = final_mark_event_message();
2753   ShenandoahPausePhase gc_phase(msg, ShenandoahPhaseTimings::final_mark);
2754   EventMark em("%s", msg);
2755 
2756   ShenandoahWorkerScope scope(workers(),
2757                               ShenandoahWorkerPolicy::calc_workers_for_final_marking(),
2758                               "final marking");
2759 
2760   op_final_mark();
2761 }
2762 
2763 void ShenandoahHeap::entry_init_updaterefs() {
2764   static const char* msg = "Pause Init Update Refs";
2765   ShenandoahPausePhase gc_phase(msg, ShenandoahPhaseTimings::init_update_refs);
2766   EventMark em("%s", msg);
2767 
2768   // No workers used in this phase, no setup required
2769 
2770   op_init_updaterefs();
2771 }
2772 
2773 void ShenandoahHeap::entry_final_updaterefs() {
2774   static const char* msg = "Pause Final Update Refs";
2775   ShenandoahPausePhase gc_phase(msg, ShenandoahPhaseTimings::final_update_refs);
2776   EventMark em("%s", msg);
2777 
2778   ShenandoahWorkerScope scope(workers(),
2779                               ShenandoahWorkerPolicy::calc_workers_for_final_update_ref(),
2780                               "final reference update");
2781 
2782   op_final_updaterefs();
2783 }
2784 
2785 void ShenandoahHeap::entry_full(GCCause::Cause cause) {
2786   static const char* msg = "Pause Full";
2787   ShenandoahPausePhase gc_phase(msg, ShenandoahPhaseTimings::full_gc, true /* log_heap_usage */);
2788   EventMark em("%s", msg);
2789 
2790   ShenandoahWorkerScope scope(workers(),
2791                               ShenandoahWorkerPolicy::calc_workers_for_fullgc(),
2792                               "full gc");
2793 
2794   op_full(cause);
2795 }
2796 
2797 void ShenandoahHeap::entry_degenerated(int point) {
2798   ShenandoahDegenPoint dpoint = (ShenandoahDegenPoint)point;
2799   const char* msg = degen_event_message(dpoint);
2800   ShenandoahPausePhase gc_phase(msg, ShenandoahPhaseTimings::degen_gc, true /* log_heap_usage */);
2801   EventMark em("%s", msg);
2802 
2803   ShenandoahWorkerScope scope(workers(),
2804                               ShenandoahWorkerPolicy::calc_workers_for_stw_degenerated(),
2805                               "stw degenerated gc");
2806 
2807   set_degenerated_gc_in_progress(true);
2808   op_degenerated(dpoint);
2809   set_degenerated_gc_in_progress(false);
2810 }
2811 
2812 void ShenandoahHeap::entry_mark() {
2813   TraceCollectorStats tcs(monitoring_support()->concurrent_collection_counters());
2814 
2815   const char* msg = conc_mark_event_message();
2816   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_mark);
2817   EventMark em("%s", msg);
2818 
2819   ShenandoahWorkerScope scope(workers(),
2820                               ShenandoahWorkerPolicy::calc_workers_for_conc_marking(),
2821                               "concurrent marking");
2822 
2823   try_inject_alloc_failure();
2824   op_mark();
2825 }
2826 
2827 void ShenandoahHeap::entry_evac() {
2828   TraceCollectorStats tcs(monitoring_support()->concurrent_collection_counters());
2829 
2830   static const char* msg = "Concurrent evacuation";
2831   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_evac);
2832   EventMark em("%s", msg);
2833 
2834   ShenandoahWorkerScope scope(workers(),
2835                               ShenandoahWorkerPolicy::calc_workers_for_conc_evac(),
2836                               "concurrent evacuation");
2837 
2838   try_inject_alloc_failure();
2839   op_conc_evac();
2840 }
2841 
2842 void ShenandoahHeap::entry_updaterefs() {
2843   static const char* msg = "Concurrent update references";
2844   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_update_refs);
2845   EventMark em("%s", msg);
2846 
2847   ShenandoahWorkerScope scope(workers(),
2848                               ShenandoahWorkerPolicy::calc_workers_for_conc_update_ref(),
2849                               "concurrent reference update");
2850 
2851   try_inject_alloc_failure();
2852   op_updaterefs();
2853 }
2854 
2855 void ShenandoahHeap::entry_weak_roots() {
2856   static const char* msg = "Concurrent weak roots";
2857   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_weak_roots);
2858   EventMark em("%s", msg);
2859 
2860   ShenandoahWorkerScope scope(workers(),
2861                               ShenandoahWorkerPolicy::calc_workers_for_conc_root_processing(),
2862                               "concurrent weak root");
2863 
2864   try_inject_alloc_failure();
2865   op_weak_roots();
2866 }
2867 
2868 void ShenandoahHeap::entry_class_unloading() {
2869   static const char* msg = "Concurrent class unloading";
2870   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_class_unload);
2871   EventMark em("%s", msg);
2872 
2873   ShenandoahWorkerScope scope(workers(),
2874                               ShenandoahWorkerPolicy::calc_workers_for_conc_root_processing(),
2875                               "concurrent class unloading");
2876 
2877   try_inject_alloc_failure();
2878   op_class_unloading();
2879 }
2880 
2881 void ShenandoahHeap::entry_strong_roots() {
2882   static const char* msg = "Concurrent strong roots";
2883   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_strong_roots);
2884   EventMark em("%s", msg);
2885 
2886   ShenandoahGCWorkerPhase worker_phase(ShenandoahPhaseTimings::conc_strong_roots);
2887 
2888   ShenandoahWorkerScope scope(workers(),
2889                               ShenandoahWorkerPolicy::calc_workers_for_conc_root_processing(),
2890                               "concurrent strong root");
2891 
2892   try_inject_alloc_failure();
2893   op_strong_roots();
2894 }
2895 
2896 void ShenandoahHeap::entry_cleanup_early() {
2897   static const char* msg = "Concurrent cleanup";
2898   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_cleanup_early, true /* log_heap_usage */);
2899   EventMark em("%s", msg);
2900 
2901   // This phase does not use workers, no need for setup
2902 
2903   try_inject_alloc_failure();
2904   op_cleanup_early();
2905 }
2906 
2907 void ShenandoahHeap::entry_cleanup_complete() {
2908   static const char* msg = "Concurrent cleanup";
2909   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_cleanup_complete, true /* log_heap_usage */);
2910   EventMark em("%s", msg);
2911 
2912   // This phase does not use workers, no need for setup
2913 
2914   try_inject_alloc_failure();
2915   op_cleanup_complete();
2916 }
2917 
2918 void ShenandoahHeap::entry_reset() {
2919   static const char* msg = "Concurrent reset";
2920   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_reset);
2921   EventMark em("%s", msg);
2922 
2923   ShenandoahWorkerScope scope(workers(),
2924                               ShenandoahWorkerPolicy::calc_workers_for_conc_reset(),
2925                               "concurrent reset");
2926 
2927   try_inject_alloc_failure();
2928   op_reset();
2929 }
2930 
2931 void ShenandoahHeap::entry_preclean() {
2932   if (ShenandoahPreclean && process_references()) {
2933     static const char* msg = "Concurrent precleaning";
2934     ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_preclean);
2935     EventMark em("%s", msg);
2936 
2937     ShenandoahWorkerScope scope(workers(),
2938                                 ShenandoahWorkerPolicy::calc_workers_for_conc_preclean(),
2939                                 "concurrent preclean",
2940                                 /* check_workers = */ false);
2941 
2942     try_inject_alloc_failure();
2943     op_preclean();
2944   }
2945 }
2946 
2947 void ShenandoahHeap::entry_uncommit(double shrink_before) {
2948   static const char *msg = "Concurrent uncommit";
2949   ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */);
2950   EventMark em("%s", msg);
2951 
2952   op_uncommit(shrink_before);
2953 }
2954 
2955 void ShenandoahHeap::try_inject_alloc_failure() {
2956   if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) {
2957     _inject_alloc_failure.set();
2958     os::naked_short_sleep(1);
2959     if (cancelled_gc()) {
2960       log_info(gc)("Allocation failure was successfully injected");
2961     }
2962   }
2963 }
2964 
2965 bool ShenandoahHeap::should_inject_alloc_failure() {
2966   return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset();
2967 }
2968 
2969 void ShenandoahHeap::initialize_serviceability() {
2970   _memory_pool = new ShenandoahMemoryPool(this);
2971   _cycle_memory_manager.add_pool(_memory_pool);
2972   _stw_memory_manager.add_pool(_memory_pool);
2973 }
2974 
2975 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() {
2976   GrowableArray<GCMemoryManager*> memory_managers(2);
2977   memory_managers.append(&_cycle_memory_manager);
2978   memory_managers.append(&_stw_memory_manager);
2979   return memory_managers;
2980 }
2981 
2982 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() {
2983   GrowableArray<MemoryPool*> memory_pools(1);
2984   memory_pools.append(_memory_pool);
2985   return memory_pools;
2986 }
2987 
2988 MemoryUsage ShenandoahHeap::memory_usage() {
2989   return _memory_pool->get_memory_usage();
2990 }
2991 
2992 ShenandoahRegionIterator::ShenandoahRegionIterator() :
2993   _heap(ShenandoahHeap::heap()),
2994   _index(0) {}
2995 
2996 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) :
2997   _heap(heap),
2998   _index(0) {}
2999 
3000 void ShenandoahRegionIterator::reset() {
3001   _index = 0;
3002 }
3003 
3004 bool ShenandoahRegionIterator::has_next() const {
3005   return _index < _heap->num_regions();
3006 }
3007 
3008 char ShenandoahHeap::gc_state() const {
3009   return _gc_state.raw_value();
3010 }
3011 
3012 void ShenandoahHeap::deduplicate_string(oop str) {
3013   assert(java_lang_String::is_instance(str), "invariant");
3014 
3015   if (ShenandoahStringDedup::is_enabled()) {
3016     ShenandoahStringDedup::deduplicate(str);
3017   }
3018 }
3019 
3020 const char* ShenandoahHeap::init_mark_event_message() const {
3021   assert(!has_forwarded_objects(), "Should not have forwarded objects here");
3022 
3023   bool proc_refs = process_references();
3024   bool unload_cls = unload_classes();
3025 
3026   if (proc_refs && unload_cls) {
3027     return "Pause Init Mark (process weakrefs) (unload classes)";
3028   } else if (proc_refs) {
3029     return "Pause Init Mark (process weakrefs)";
3030   } else if (unload_cls) {
3031     return "Pause Init Mark (unload classes)";
3032   } else {
3033     return "Pause Init Mark";
3034   }
3035 }
3036 
3037 const char* ShenandoahHeap::final_mark_event_message() const {
3038   assert(!has_forwarded_objects(), "Should not have forwarded objects here");
3039 
3040   bool proc_refs = process_references();
3041   bool unload_cls = unload_classes();
3042 
3043   if (proc_refs && unload_cls) {
3044     return "Pause Final Mark (process weakrefs) (unload classes)";
3045   } else if (proc_refs) {
3046     return "Pause Final Mark (process weakrefs)";
3047   } else if (unload_cls) {
3048     return "Pause Final Mark (unload classes)";
3049   } else {
3050     return "Pause Final Mark";
3051   }
3052 }
3053 
3054 const char* ShenandoahHeap::conc_mark_event_message() const {
3055   assert(!has_forwarded_objects(), "Should not have forwarded objects here");
3056 
3057   bool proc_refs = process_references();
3058   bool unload_cls = unload_classes();
3059 
3060   if (proc_refs && unload_cls) {
3061     return "Concurrent marking (process weakrefs) (unload classes)";
3062   } else if (proc_refs) {
3063     return "Concurrent marking (process weakrefs)";
3064   } else if (unload_cls) {
3065     return "Concurrent marking (unload classes)";
3066   } else {
3067     return "Concurrent marking";
3068   }
3069 }
3070 
3071 const char* ShenandoahHeap::degen_event_message(ShenandoahDegenPoint point) const {
3072   switch (point) {
3073     case _degenerated_unset:
3074       return "Pause Degenerated GC (<UNSET>)";
3075     case _degenerated_outside_cycle:
3076       return "Pause Degenerated GC (Outside of Cycle)";
3077     case _degenerated_mark:
3078       return "Pause Degenerated GC (Mark)";
3079     case _degenerated_evac:
3080       return "Pause Degenerated GC (Evacuation)";
3081     case _degenerated_updaterefs:
3082       return "Pause Degenerated GC (Update Refs)";
3083     default:
3084       ShouldNotReachHere();
3085       return "ERROR";
3086   }
3087 }
3088 
3089 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) {
3090 #ifdef ASSERT
3091   assert(_liveness_cache != NULL, "sanity");
3092   assert(worker_id < _max_workers, "sanity");
3093   for (uint i = 0; i < num_regions(); i++) {
3094     assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty");
3095   }
3096 #endif
3097   return _liveness_cache[worker_id];
3098 }
3099 
3100 void ShenandoahHeap::flush_liveness_cache(uint worker_id) {
3101   assert(worker_id < _max_workers, "sanity");
3102   assert(_liveness_cache != NULL, "sanity");
3103   ShenandoahLiveData* ld = _liveness_cache[worker_id];
3104   for (uint i = 0; i < num_regions(); i++) {
3105     ShenandoahLiveData live = ld[i];
3106     if (live > 0) {
3107       ShenandoahHeapRegion* r = get_region(i);
3108       r->increase_live_data_gc_words(live);
3109       ld[i] = 0;
3110     }
3111   }
3112 }