1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_SHARED_GENERATION_HPP
  26 #define SHARE_GC_SHARED_GENERATION_HPP
  27 
  28 #include "gc/shared/collectorCounters.hpp"
  29 #include "gc/shared/referenceProcessor.hpp"
  30 #include "logging/log.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/memRegion.hpp"
  33 #include "memory/virtualspace.hpp"
  34 #include "runtime/mutex.hpp"
  35 #include "runtime/perfData.hpp"
  36 
  37 // A Generation models a heap area for similarly-aged objects.
  38 // It will contain one ore more spaces holding the actual objects.
  39 //
  40 // The Generation class hierarchy:
  41 //
  42 // Generation                      - abstract base class
  43 // - DefNewGeneration              - allocation area (copy collected)
  44 // - CardGeneration                 - abstract class adding offset array behavior
  45 //   - TenuredGeneration             - tenured (old object) space (markSweepCompact)
  46 //
  47 // The system configuration currently allowed is:
  48 //
  49 //   DefNewGeneration + TenuredGeneration
  50 //
  51 
  52 class DefNewGeneration;
  53 class GCMemoryManager;
  54 class GenerationSpec;
  55 class CompactibleSpace;
  56 class ContiguousSpace;
  57 class CompactPoint;
  58 class OopsInGenClosure;
  59 class OopClosure;
  60 class FastScanClosure;
  61 class GenCollectedHeap;
  62 class GCStats;
  63 
  64 // A "ScratchBlock" represents a block of memory in one generation usable by
  65 // another.  It represents "num_words" free words, starting at and including
  66 // the address of "this".
  67 struct ScratchBlock {
  68   ScratchBlock* next;
  69   size_t num_words;
  70   HeapWord scratch_space[1];  // Actually, of size "num_words-2" (assuming
  71                               // first two fields are word-sized.)
  72 };
  73 
  74 class Generation: public CHeapObj<mtGC> {
  75   friend class VMStructs;
  76  private:
  77   MemRegion _prev_used_region; // for collectors that want to "remember" a value for
  78                                // used region at some specific point during collection.
  79 
  80   GCMemoryManager* _gc_manager;
  81 
  82  protected:
  83   // Minimum and maximum addresses for memory reserved (not necessarily
  84   // committed) for generation.
  85   // Used by card marking code. Must not overlap with address ranges of
  86   // other generations.
  87   MemRegion _reserved;
  88 
  89   // Memory area reserved for generation
  90   VirtualSpace _virtual_space;
  91 
  92   // ("Weak") Reference processing support
  93   SpanSubjectToDiscoveryClosure _span_based_discoverer;
  94   ReferenceProcessor* _ref_processor;
  95 
  96   // Performance Counters
  97   CollectorCounters* _gc_counters;
  98 
  99   // Statistics for garbage collection
 100   GCStats* _gc_stats;
 101 
 102   // Initialize the generation.
 103   Generation(ReservedSpace rs, size_t initial_byte_size);
 104 
 105   // Apply "cl->do_oop" to (the address of) (exactly) all the ref fields in
 106   // "sp" that point into younger generations.
 107   // The iteration is only over objects allocated at the start of the
 108   // iterations; objects allocated as a result of applying the closure are
 109   // not included.
 110   void younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl, uint n_threads);
 111 
 112  public:
 113   // The set of possible generation kinds.
 114   enum Name {
 115     DefNew,
 116     MarkSweepCompact,
 117     Other
 118   };
 119 
 120   enum SomePublicConstants {
 121     // Generations are GenGrain-aligned and have size that are multiples of
 122     // GenGrain.
 123     // Note: on ARM we add 1 bit for card_table_base to be properly aligned
 124     // (we expect its low byte to be zero - see implementation of post_barrier)
 125     LogOfGenGrain = 16 ARM32_ONLY(+1),
 126     GenGrain = 1 << LogOfGenGrain
 127   };
 128 
 129   // allocate and initialize ("weak") refs processing support
 130   virtual void ref_processor_init();
 131   void set_ref_processor(ReferenceProcessor* rp) {
 132     assert(_ref_processor == NULL, "clobbering existing _ref_processor");
 133     _ref_processor = rp;
 134   }
 135 
 136   virtual Generation::Name kind() { return Generation::Other; }
 137 
 138   // This properly belongs in the collector, but for now this
 139   // will do.
 140   virtual bool refs_discovery_is_atomic() const { return true;  }
 141   virtual bool refs_discovery_is_mt()     const { return false; }
 142 
 143   // Space inquiries (results in bytes)
 144   size_t initial_size();
 145   virtual size_t capacity() const = 0;  // The maximum number of object bytes the
 146                                         // generation can currently hold.
 147   virtual size_t used() const = 0;      // The number of used bytes in the gen.
 148   virtual size_t free() const = 0;      // The number of free bytes in the gen.
 149 
 150   // Support for java.lang.Runtime.maxMemory(); see CollectedHeap.
 151   // Returns the total number of bytes  available in a generation
 152   // for the allocation of objects.
 153   virtual size_t max_capacity() const;
 154 
 155   // If this is a young generation, the maximum number of bytes that can be
 156   // allocated in this generation before a GC is triggered.
 157   virtual size_t capacity_before_gc() const { return 0; }
 158 
 159   // The largest number of contiguous free bytes in the generation,
 160   // including expansion  (Assumes called at a safepoint.)
 161   virtual size_t contiguous_available() const = 0;
 162   // The largest number of contiguous free bytes in this or any higher generation.
 163   virtual size_t max_contiguous_available() const;
 164 
 165   // Returns true if promotions of the specified amount are
 166   // likely to succeed without a promotion failure.
 167   // Promotion of the full amount is not guaranteed but
 168   // might be attempted in the worst case.
 169   virtual bool promotion_attempt_is_safe(size_t max_promotion_in_bytes) const;
 170 
 171   // For a non-young generation, this interface can be used to inform a
 172   // generation that a promotion attempt into that generation failed.
 173   // Typically used to enable diagnostic output for post-mortem analysis,
 174   // but other uses of the interface are not ruled out.
 175   virtual void promotion_failure_occurred() { /* does nothing */ }
 176 
 177   // Return an estimate of the maximum allocation that could be performed
 178   // in the generation without triggering any collection or expansion
 179   // activity.  It is "unsafe" because no locks are taken; the result
 180   // should be treated as an approximation, not a guarantee, for use in
 181   // heuristic resizing decisions.
 182   virtual size_t unsafe_max_alloc_nogc() const = 0;
 183 
 184   // Returns true if this generation cannot be expanded further
 185   // without a GC. Override as appropriate.
 186   virtual bool is_maximal_no_gc() const {
 187     return _virtual_space.uncommitted_size() == 0;
 188   }
 189 
 190   MemRegion reserved() const { return _reserved; }
 191 
 192   // Returns a region guaranteed to contain all the objects in the
 193   // generation.
 194   virtual MemRegion used_region() const { return _reserved; }
 195 
 196   MemRegion prev_used_region() const { return _prev_used_region; }
 197   virtual void  save_used_region()   { _prev_used_region = used_region(); }
 198 
 199   // Returns "TRUE" iff "p" points into the committed areas in the generation.
 200   // For some kinds of generations, this may be an expensive operation.
 201   // To avoid performance problems stemming from its inadvertent use in
 202   // product jvm's, we restrict its use to assertion checking or
 203   // verification only.
 204   virtual bool is_in(const void* p) const;
 205 
 206   /* Returns "TRUE" iff "p" points into the reserved area of the generation. */
 207   bool is_in_reserved(const void* p) const {
 208     return _reserved.contains(p);
 209   }
 210 
 211   // If some space in the generation contains the given "addr", return a
 212   // pointer to that space, else return "NULL".
 213   virtual Space* space_containing(const void* addr) const;
 214 
 215   // Iteration - do not use for time critical operations
 216   virtual void space_iterate(SpaceClosure* blk, bool usedOnly = false) = 0;
 217 
 218   // Returns the first space, if any, in the generation that can participate
 219   // in compaction, or else "NULL".
 220   virtual CompactibleSpace* first_compaction_space() const = 0;
 221 
 222   // Returns "true" iff this generation should be used to allocate an
 223   // object of the given size.  Young generations might
 224   // wish to exclude very large objects, for example, since, if allocated
 225   // often, they would greatly increase the frequency of young-gen
 226   // collection.
 227   virtual bool should_allocate(size_t word_size, bool is_tlab) {
 228     bool result = false;
 229     size_t overflow_limit = (size_t)1 << (BitsPerSize_t - LogHeapWordSize);
 230     if (!is_tlab || supports_tlab_allocation()) {
 231       result = (word_size > 0) && (word_size < overflow_limit);
 232     }
 233     return result;
 234   }
 235 
 236   // Allocate and returns a block of the requested size, or returns "NULL".
 237   // Assumes the caller has done any necessary locking.
 238   virtual HeapWord* allocate(size_t word_size, bool is_tlab) = 0;
 239 
 240   // Like "allocate", but performs any necessary locking internally.
 241   virtual HeapWord* par_allocate(size_t word_size, bool is_tlab) = 0;
 242 
 243   // Some generation may offer a region for shared, contiguous allocation,
 244   // via inlined code (by exporting the address of the top and end fields
 245   // defining the extent of the contiguous allocation region.)
 246 
 247   // This function returns "true" iff the heap supports this kind of
 248   // allocation.  (More precisely, this means the style of allocation that
 249   // increments *top_addr()" with a CAS.) (Default is "no".)
 250   // A generation that supports this allocation style must use lock-free
 251   // allocation for *all* allocation, since there are times when lock free
 252   // allocation will be concurrent with plain "allocate" calls.
 253   virtual bool supports_inline_contig_alloc() const { return false; }
 254 
 255   // These functions return the addresses of the fields that define the
 256   // boundaries of the contiguous allocation area.  (These fields should be
 257   // physically near to one another.)
 258   virtual HeapWord* volatile* top_addr() const { return NULL; }
 259   virtual HeapWord** end_addr() const { return NULL; }
 260 
 261   // Thread-local allocation buffers
 262   virtual bool supports_tlab_allocation() const { return false; }
 263   virtual size_t tlab_capacity() const {
 264     guarantee(false, "Generation doesn't support thread local allocation buffers");
 265     return 0;
 266   }
 267   virtual size_t tlab_used() const {
 268     guarantee(false, "Generation doesn't support thread local allocation buffers");
 269     return 0;
 270   }
 271   virtual size_t unsafe_max_tlab_alloc() const {
 272     guarantee(false, "Generation doesn't support thread local allocation buffers");
 273     return 0;
 274   }
 275 
 276   // "obj" is the address of an object in a younger generation.  Allocate space
 277   // for "obj" in the current (or some higher) generation, and copy "obj" into
 278   // the newly allocated space, if possible, returning the result (or NULL if
 279   // the allocation failed).
 280   //
 281   // The "obj_size" argument is just obj->size(), passed along so the caller can
 282   // avoid repeating the virtual call to retrieve it.
 283   virtual oop promote(oop obj, size_t obj_size);
 284 
 285   // Thread "thread_num" (0 <= i < ParalleGCThreads) wants to promote
 286   // object "obj", whose original mark word was "m", and whose size is
 287   // "word_sz".  If possible, allocate space for "obj", copy obj into it
 288   // (taking care to copy "m" into the mark word when done, since the mark
 289   // word of "obj" may have been overwritten with a forwarding pointer, and
 290   // also taking care to copy the klass pointer *last*.  Returns the new
 291   // object if successful, or else NULL.
 292   virtual oop par_promote(int thread_num, oop obj, markWord m, size_t word_sz);
 293 
 294   // Informs the current generation that all par_promote_alloc's in the
 295   // collection have been completed; any supporting data structures can be
 296   // reset.  Default is to do nothing.
 297   virtual void par_promote_alloc_done(int thread_num) {}
 298 
 299   // Informs the current generation that all oop_since_save_marks_iterates
 300   // performed by "thread_num" in the current collection, if any, have been
 301   // completed; any supporting data structures can be reset.  Default is to
 302   // do nothing.
 303   virtual void par_oop_since_save_marks_iterate_done(int thread_num) {}
 304 
 305   // Returns "true" iff collect() should subsequently be called on this
 306   // this generation. See comment below.
 307   // This is a generic implementation which can be overridden.
 308   //
 309   // Note: in the current (1.4) implementation, when genCollectedHeap's
 310   // incremental_collection_will_fail flag is set, all allocations are
 311   // slow path (the only fast-path place to allocate is DefNew, which
 312   // will be full if the flag is set).
 313   // Thus, older generations which collect younger generations should
 314   // test this flag and collect if it is set.
 315   virtual bool should_collect(bool   full,
 316                               size_t word_size,
 317                               bool   is_tlab) {
 318     return (full || should_allocate(word_size, is_tlab));
 319   }
 320 
 321   // Returns true if the collection is likely to be safely
 322   // completed. Even if this method returns true, a collection
 323   // may not be guaranteed to succeed, and the system should be
 324   // able to safely unwind and recover from that failure, albeit
 325   // at some additional cost.
 326   virtual bool collection_attempt_is_safe() {
 327     guarantee(false, "Are you sure you want to call this method?");
 328     return true;
 329   }
 330 
 331   // Perform a garbage collection.
 332   // If full is true attempt a full garbage collection of this generation.
 333   // Otherwise, attempting to (at least) free enough space to support an
 334   // allocation of the given "word_size".
 335   virtual void collect(bool   full,
 336                        bool   clear_all_soft_refs,
 337                        size_t word_size,
 338                        bool   is_tlab) = 0;
 339 
 340   // Perform a heap collection, attempting to create (at least) enough
 341   // space to support an allocation of the given "word_size".  If
 342   // successful, perform the allocation and return the resulting
 343   // "oop" (initializing the allocated block). If the allocation is
 344   // still unsuccessful, return "NULL".
 345   virtual HeapWord* expand_and_allocate(size_t word_size,
 346                                         bool is_tlab,
 347                                         bool parallel = false) = 0;
 348 
 349   // Some generations may require some cleanup or preparation actions before
 350   // allowing a collection.  The default is to do nothing.
 351   virtual void gc_prologue(bool full) {}
 352 
 353   // Some generations may require some cleanup actions after a collection.
 354   // The default is to do nothing.
 355   virtual void gc_epilogue(bool full) {}
 356 
 357   // Save the high water marks for the used space in a generation.
 358   virtual void record_spaces_top() {}
 359 
 360   // Some generations may need to be "fixed-up" after some allocation
 361   // activity to make them parsable again. The default is to do nothing.
 362   virtual void ensure_parsability() {}
 363 
 364   // Generations may keep statistics about collection. This method
 365   // updates those statistics. current_generation is the generation
 366   // that was most recently collected. This allows the generation to
 367   // decide what statistics are valid to collect. For example, the
 368   // generation can decide to gather the amount of promoted data if
 369   // the collection of the young generation has completed.
 370   GCStats* gc_stats() const { return _gc_stats; }
 371   virtual void update_gc_stats(Generation* current_generation, bool full) {}
 372 
 373 #if INCLUDE_SERIALGC
 374   // Mark sweep support phase2
 375   virtual void prepare_for_compaction(CompactPoint* cp);
 376   // Mark sweep support phase3
 377   virtual void adjust_pointers();
 378   // Mark sweep support phase4
 379   virtual void compact();
 380   virtual void post_compact() { ShouldNotReachHere(); }
 381 #endif
 382 
 383   // Support for CMS's rescan. In this general form we return a pointer
 384   // to an abstract object that can be used, based on specific previously
 385   // decided protocols, to exchange information between generations,
 386   // information that may be useful for speeding up certain types of
 387   // garbage collectors. A NULL value indicates to the client that
 388   // no data recording is expected by the provider. The data-recorder is
 389   // expected to be GC worker thread-local, with the worker index
 390   // indicated by "thr_num".
 391   virtual void* get_data_recorder(int thr_num) { return NULL; }
 392   virtual void sample_eden_chunk() {}
 393 
 394   // Some generations may require some cleanup actions before allowing
 395   // a verification.
 396   virtual void prepare_for_verify() {}
 397 
 398   // Accessing "marks".
 399 
 400   // This function gives a generation a chance to note a point between
 401   // collections.  For example, a contiguous generation might note the
 402   // beginning allocation point post-collection, which might allow some later
 403   // operations to be optimized.
 404   virtual void save_marks() {}
 405 
 406   // This function allows generations to initialize any "saved marks".  That
 407   // is, should only be called when the generation is empty.
 408   virtual void reset_saved_marks() {}
 409 
 410   // This function is "true" iff any no allocations have occurred in the
 411   // generation since the last call to "save_marks".
 412   virtual bool no_allocs_since_save_marks() = 0;
 413 
 414   // The "requestor" generation is performing some garbage collection
 415   // action for which it would be useful to have scratch space.  If
 416   // the target is not the requestor, no gc actions will be required
 417   // of the target.  The requestor promises to allocate no more than
 418   // "max_alloc_words" in the target generation (via promotion say,
 419   // if the requestor is a young generation and the target is older).
 420   // If the target generation can provide any scratch space, it adds
 421   // it to "list", leaving "list" pointing to the head of the
 422   // augmented list.  The default is to offer no space.
 423   virtual void contribute_scratch(ScratchBlock*& list, Generation* requestor,
 424                                   size_t max_alloc_words) {}
 425 
 426   // Give each generation an opportunity to do clean up for any
 427   // contributed scratch.
 428   virtual void reset_scratch() {}
 429 
 430   // When an older generation has been collected, and perhaps resized,
 431   // this method will be invoked on all younger generations (from older to
 432   // younger), allowing them to resize themselves as appropriate.
 433   virtual void compute_new_size() = 0;
 434 
 435   // Printing
 436   virtual const char* name() const = 0;
 437   virtual const char* short_name() const = 0;
 438 
 439   // Reference Processing accessor
 440   ReferenceProcessor* const ref_processor() { return _ref_processor; }
 441 
 442   // Iteration.
 443 
 444   // Iterate over all the ref-containing fields of all objects in the
 445   // generation, calling "cl.do_oop" on each.
 446   virtual void oop_iterate(OopIterateClosure* cl);
 447 
 448   // Iterate over all objects in the generation, calling "cl.do_object" on
 449   // each.
 450   virtual void object_iterate(ObjectClosure* cl);
 451 
 452   // Apply "cl->do_oop" to (the address of) all and only all the ref fields
 453   // in the current generation that contain pointers to objects in younger
 454   // generations. Objects allocated since the last "save_marks" call are
 455   // excluded.
 456   virtual void younger_refs_iterate(OopsInGenClosure* cl, uint n_threads) = 0;
 457 
 458   // Inform a generation that it longer contains references to objects
 459   // in any younger generation.    [e.g. Because younger gens are empty,
 460   // clear the card table.]
 461   virtual void clear_remembered_set() { }
 462 
 463   // Inform a generation that some of its objects have moved.  [e.g. The
 464   // generation's spaces were compacted, invalidating the card table.]
 465   virtual void invalidate_remembered_set() { }
 466 
 467   // Block abstraction.
 468 
 469   // Returns the address of the start of the "block" that contains the
 470   // address "addr".  We say "blocks" instead of "object" since some heaps
 471   // may not pack objects densely; a chunk may either be an object or a
 472   // non-object.
 473   virtual HeapWord* block_start(const void* addr) const;
 474 
 475   // Requires "addr" to be the start of a chunk, and returns its size.
 476   // "addr + size" is required to be the start of a new chunk, or the end
 477   // of the active area of the heap.
 478   virtual size_t block_size(const HeapWord* addr) const ;
 479 
 480   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 481   // the block is an object.
 482   virtual bool block_is_obj(const HeapWord* addr) const;
 483 
 484   void print_heap_change(size_t prev_used) const;
 485 
 486   virtual void print() const;
 487   virtual void print_on(outputStream* st) const;
 488 
 489   virtual void verify() = 0;
 490 
 491   struct StatRecord {
 492     int invocations;
 493     elapsedTimer accumulated_time;
 494     StatRecord() :
 495       invocations(0),
 496       accumulated_time(elapsedTimer()) {}
 497   };
 498 private:
 499   StatRecord _stat_record;
 500 public:
 501   StatRecord* stat_record() { return &_stat_record; }
 502 
 503   virtual void print_summary_info_on(outputStream* st);
 504 
 505   // Performance Counter support
 506   virtual void update_counters() = 0;
 507   virtual CollectorCounters* counters() { return _gc_counters; }
 508 
 509   GCMemoryManager* gc_manager() const {
 510     assert(_gc_manager != NULL, "not initialized yet");
 511     return _gc_manager;
 512   }
 513 
 514   void set_gc_manager(GCMemoryManager* gc_manager) {
 515     _gc_manager = gc_manager;
 516   }
 517 
 518 };
 519 
 520 #endif // SHARE_GC_SHARED_GENERATION_HPP