/* * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_GC_SHARED_GENCOLLECTEDHEAP_HPP #define SHARE_GC_SHARED_GENCOLLECTEDHEAP_HPP #include "gc/shared/collectedHeap.hpp" #include "gc/shared/generation.hpp" #include "gc/shared/oopStorageParState.hpp" #include "gc/shared/preGCValues.hpp" #include "gc/shared/softRefGenPolicy.hpp" class AdaptiveSizePolicy; class CardTableRS; class GCPolicyCounters; class GenerationSpec; class StrongRootsScope; class SubTasksDone; class WorkGang; // A "GenCollectedHeap" is a CollectedHeap that uses generational // collection. It has two generations, young and old. class GenCollectedHeap : public CollectedHeap { friend class Generation; friend class DefNewGeneration; friend class TenuredGeneration; friend class GenMarkSweep; friend class VM_GenCollectForAllocation; friend class VM_GenCollectFull; friend class VM_GenCollectFullConcurrent; friend class VM_GC_HeapInspection; friend class VM_HeapDumper; friend class HeapInspection; friend class GCCauseSetter; friend class VMStructs; public: friend class VM_PopulateDumpSharedSpace; enum GenerationType { YoungGen, OldGen }; protected: Generation* _young_gen; Generation* _old_gen; private: GenerationSpec* _young_gen_spec; GenerationSpec* _old_gen_spec; // The singleton CardTable Remembered Set. CardTableRS* _rem_set; SoftRefGenPolicy _soft_ref_gen_policy; // The sizing of the heap is controlled by a sizing policy. AdaptiveSizePolicy* _size_policy; GCPolicyCounters* _gc_policy_counters; // Indicates that the most recent previous incremental collection failed. // The flag is cleared when an action is taken that might clear the // condition that caused that incremental collection to fail. bool _incremental_collection_failed; // In support of ExplicitGCInvokesConcurrent functionality unsigned int _full_collections_completed; // Collects the given generation. void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab, bool run_verification, bool clear_soft_refs, bool restore_marks_for_biased_locking); // Reserve aligned space for the heap as needed by the contained generations. ReservedHeapSpace allocate(size_t alignment); // Initialize ("weak") refs processing support void ref_processing_init(); PreGenGCValues get_pre_gc_values() const; protected: // The set of potentially parallel tasks in root scanning. enum GCH_strong_roots_tasks { GCH_PS_ObjectSynchronizer_oops_do, GCH_PS_OopStorageSet_oops_do, GCH_PS_ClassLoaderDataGraph_oops_do, GCH_PS_CodeCache_oops_do, AOT_ONLY(GCH_PS_aot_oops_do COMMA) GCH_PS_younger_gens, // Leave this one last. GCH_PS_NumElements }; // Data structure for claiming the (potentially) parallel tasks in // (gen-specific) roots processing. SubTasksDone* _process_strong_tasks; GCMemoryManager* _young_manager; GCMemoryManager* _old_manager; // Helper functions for allocation HeapWord* attempt_allocation(size_t size, bool is_tlab, bool first_only); // Helper function for two callbacks below. // Considers collection of the first max_level+1 generations. void do_collection(bool full, bool clear_all_soft_refs, size_t size, bool is_tlab, GenerationType max_generation); // Callback from VM_GenCollectForAllocation operation. // This function does everything necessary/possible to satisfy an // allocation request that failed in the youngest generation that should // have handled it (including collection, expansion, etc.) HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab); // Callback from VM_GenCollectFull operation. // Perform a full collection of the first max_level+1 generations. virtual void do_full_collection(bool clear_all_soft_refs); void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation); // Does the "cause" of GC indicate that // we absolutely __must__ clear soft refs? bool must_clear_all_soft_refs(); GenCollectedHeap(Generation::Name young, Generation::Name old, const char* policy_counters_name); public: // Returns JNI_OK on success virtual jint initialize(); virtual CardTableRS* create_rem_set(const MemRegion& reserved_region); void initialize_size_policy(size_t init_eden_size, size_t init_promo_size, size_t init_survivor_size); // Does operations required after initialization has been done. void post_initialize(); Generation* young_gen() const { return _young_gen; } Generation* old_gen() const { return _old_gen; } bool is_young_gen(const Generation* gen) const { return gen == _young_gen; } bool is_old_gen(const Generation* gen) const { return gen == _old_gen; } MemRegion reserved_region() const { return _reserved; } bool is_in_reserved(const void* addr) const { return _reserved.contains(addr); } GenerationSpec* young_gen_spec() const; GenerationSpec* old_gen_spec() const; virtual SoftRefPolicy* soft_ref_policy() { return &_soft_ref_gen_policy; } // Adaptive size policy virtual AdaptiveSizePolicy* size_policy() { return _size_policy; } // Performance Counter support GCPolicyCounters* counters() { return _gc_policy_counters; } size_t capacity() const; size_t used() const; // Save the "used_region" for both generations. void save_used_regions(); size_t max_capacity() const; HeapWord* mem_allocate(size_t size, bool* gc_overhead_limit_was_exceeded); // We may support a shared contiguous allocation area, if the youngest // generation does. bool supports_inline_contig_alloc() const; HeapWord* volatile* top_addr() const; HeapWord** end_addr() const; // Perform a full collection of the heap; intended for use in implementing // "System.gc". This implies as full a collection as the CollectedHeap // supports. Caller does not hold the Heap_lock on entry. virtual void collect(GCCause::Cause cause); // The same as above but assume that the caller holds the Heap_lock. void collect_locked(GCCause::Cause cause); // Perform a full collection of generations up to and including max_generation. // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry. void collect(GCCause::Cause cause, GenerationType max_generation); // Returns "TRUE" iff "p" points into the committed areas of the heap. // The methods is_in() and is_in_youngest() may be expensive to compute // in general, so, to prevent their inadvertent use in product jvm's, we // restrict their use to assertion checking or verification only. bool is_in(const void* p) const; // Returns true if the reference is to an object in the reserved space // for the young generation. // Assumes the the young gen address range is less than that of the old gen. bool is_in_young(oop p); #ifdef ASSERT bool is_in_partial_collection(const void* p); #endif // Optimized nmethod scanning support routines virtual void register_nmethod(nmethod* nm); virtual void unregister_nmethod(nmethod* nm); virtual void verify_nmethod(nmethod* nm); virtual void flush_nmethod(nmethod* nm); void prune_scavengable_nmethods(); // Iteration functions. void oop_iterate(OopIterateClosure* cl); void object_iterate(ObjectClosure* cl); Space* space_containing(const void* addr) const; // A CollectedHeap is divided into a dense sequence of "blocks"; that is, // each address in the (reserved) heap is a member of exactly // one block. The defining characteristic of a block is that it is // possible to find its size, and thus to progress forward to the next // block. (Blocks may be of different sizes.) Thus, blocks may // represent Java objects, or they might be free blocks in a // free-list-based heap (or subheap), as long as the two kinds are // distinguishable and the size of each is determinable. // Returns the address of the start of the "block" that contains the // address "addr". We say "blocks" instead of "object" since some heaps // may not pack objects densely; a chunk may either be an object or a // non-object. HeapWord* block_start(const void* addr) const; // Requires "addr" to be the start of a block, and returns "TRUE" iff // the block is an object. Assumes (and verifies in non-product // builds) that addr is in the allocated part of the heap and is // the start of a chunk. bool block_is_obj(const HeapWord* addr) const; // Section on TLAB's. virtual bool supports_tlab_allocation() const; virtual size_t tlab_capacity(Thread* thr) const; virtual size_t tlab_used(Thread* thr) const; virtual size_t unsafe_max_tlab_alloc(Thread* thr) const; virtual HeapWord* allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size); // The "requestor" generation is performing some garbage collection // action for which it would be useful to have scratch space. The // requestor promises to allocate no more than "max_alloc_words" in any // older generation (via promotion say.) Any blocks of space that can // be provided are returned as a list of ScratchBlocks, sorted by // decreasing size. ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words); // Allow each generation to reset any scratch space that it has // contributed as it needs. void release_scratch(); // Ensure parsability: override virtual void ensure_parsability(bool retire_tlabs); // Total number of full collections completed. unsigned int total_full_collections_completed() { assert(_full_collections_completed <= _total_full_collections, "Can't complete more collections than were started"); return _full_collections_completed; } // Update above counter, as appropriate, at the end of a stop-world GC cycle unsigned int update_full_collections_completed(); // Update above counter, as appropriate, at the end of a concurrent GC cycle unsigned int update_full_collections_completed(unsigned int count); // Update the gc statistics for each generation. void update_gc_stats(Generation* current_generation, bool full) { _old_gen->update_gc_stats(current_generation, full); } bool no_gc_in_progress() { return !is_gc_active(); } // Override. void prepare_for_verify(); // Override. void verify(VerifyOption option); // Override. virtual void print_on(outputStream* st) const; virtual void gc_threads_do(ThreadClosure* tc) const; virtual void print_tracing_info() const; // Used to print information about locations in the hs_err file. virtual bool print_location(outputStream* st, void* addr) const; void print_heap_change(const PreGenGCValues& pre_gc_values) const; // The functions below are helper functions that a subclass of // "CollectedHeap" can use in the implementation of its virtual // functions. class GenClosure : public StackObj { public: virtual void do_generation(Generation* gen) = 0; }; // Apply "cl.do_generation" to all generations in the heap // If "old_to_young" determines the order. void generation_iterate(GenClosure* cl, bool old_to_young); // Return "true" if all generations have reached the // maximal committed limit that they can reach, without a garbage // collection. virtual bool is_maximal_no_gc() const; // This function returns the CardTableRS object that allows us to scan // generations in a fully generational heap. CardTableRS* rem_set() { return _rem_set; } // Convenience function to be used in situations where the heap type can be // asserted to be this type. static GenCollectedHeap* heap(); // The ScanningOption determines which of the roots // the closure is applied to: // "SO_None" does none; enum ScanningOption { SO_None = 0x0, SO_AllCodeCache = 0x8, SO_ScavengeCodeCache = 0x10 }; protected: void process_roots(StrongRootsScope* scope, ScanningOption so, OopClosure* strong_roots, CLDClosure* strong_cld_closure, CLDClosure* weak_cld_closure, CodeBlobToOopClosure* code_roots); virtual void gc_prologue(bool full); virtual void gc_epilogue(bool full); public: void full_process_roots(StrongRootsScope* scope, bool is_adjust_phase, ScanningOption so, bool only_strong_roots, OopClosure* root_closure, CLDClosure* cld_closure); // Apply "root_closure" to all the weak roots of the system. // These include JNI weak roots, string table, // and referents of reachable weak refs. void gen_process_weak_roots(OopClosure* root_closure); // Set the saved marks of generations, if that makes sense. // In particular, if any generation might iterate over the oops // in other generations, it should call this method. void save_marks(); // Returns "true" iff no allocations have occurred since the last // call to "save_marks". bool no_allocs_since_save_marks(); // Returns true if an incremental collection is likely to fail. // We optionally consult the young gen, if asked to do so; // otherwise we base our answer on whether the previous incremental // collection attempt failed with no corrective action as of yet. bool incremental_collection_will_fail(bool consult_young) { // The first disjunct remembers if an incremental collection failed, even // when we thought (second disjunct) that it would not. return incremental_collection_failed() || (consult_young && !_young_gen->collection_attempt_is_safe()); } // If a generation bails out of an incremental collection, // it sets this flag. bool incremental_collection_failed() const { return _incremental_collection_failed; } void set_incremental_collection_failed() { _incremental_collection_failed = true; } void clear_incremental_collection_failed() { _incremental_collection_failed = false; } // Promotion of obj into gen failed. Try to promote obj to higher // gens in ascending order; return the new location of obj if successful. // Otherwise, try expand-and-allocate for obj in both the young and old // generation; return the new location of obj if successful. Otherwise, return NULL. oop handle_failed_promotion(Generation* old_gen, oop obj, size_t obj_size); private: // Return true if an allocation should be attempted in the older generation // if it fails in the younger generation. Return false, otherwise. bool should_try_older_generation_allocation(size_t word_size) const; // Try to allocate space by expanding the heap. HeapWord* expand_heap_and_allocate(size_t size, bool is_tlab); HeapWord* mem_allocate_work(size_t size, bool is_tlab, bool* gc_overhead_limit_was_exceeded); #if INCLUDE_SERIALGC // For use by mark-sweep. As implemented, mark-sweep-compact is global // in an essential way: compaction is performed across generations, by // iterating over spaces. void prepare_for_compaction(); #endif // Perform a full collection of the generations up to and including max_generation. // This is the low level interface used by the public versions of // collect() and collect_locked(). Caller holds the Heap_lock on entry. void collect_locked(GCCause::Cause cause, GenerationType max_generation); // Save the tops of the spaces in all generations void record_gen_tops_before_GC() PRODUCT_RETURN; // Return true if we need to perform full collection. bool should_do_full_collection(size_t size, bool full, bool is_tlab, GenerationType max_gen) const; }; #endif // SHARE_GC_SHARED_GENCOLLECTEDHEAP_HPP