1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  45 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  46 #include "gc_implementation/g1/heapRegion.hpp"
  47 #endif // INCLUDE_ALL_GCS
  48 
  49 #ifdef PRODUCT
  50 #define BLOCK_COMMENT(str) /* nothing */
  51 #define STOP(error) stop(error)
  52 #else
  53 #define BLOCK_COMMENT(str) block_comment(str)
  54 #define STOP(error) block_comment(error); stop(error)
  55 #endif
  56 
  57 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  58 
  59 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  60 
  61 #ifdef ASSERT
  62 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  63 #endif
  64 
  65 static Assembler::Condition reverse[] = {
  66     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  67     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  68     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  69     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  70     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  71     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  72     Assembler::above          /* belowEqual    = 0x6 */ ,
  73     Assembler::belowEqual     /* above         = 0x7 */ ,
  74     Assembler::positive       /* negative      = 0x8 */ ,
  75     Assembler::negative       /* positive      = 0x9 */ ,
  76     Assembler::noParity       /* parity        = 0xa */ ,
  77     Assembler::parity         /* noParity      = 0xb */ ,
  78     Assembler::greaterEqual   /* less          = 0xc */ ,
  79     Assembler::less           /* greaterEqual  = 0xd */ ,
  80     Assembler::greater        /* lessEqual     = 0xe */ ,
  81     Assembler::lessEqual      /* greater       = 0xf, */
  82 
  83 };
  84 
  85 
  86 // Implementation of MacroAssembler
  87 
  88 // First all the versions that have distinct versions depending on 32/64 bit
  89 // Unless the difference is trivial (1 line or so).
  90 
  91 #ifndef _LP64
  92 
  93 // 32bit versions
  94 
  95 Address MacroAssembler::as_Address(AddressLiteral adr) {
  96   return Address(adr.target(), adr.rspec());
  97 }
  98 
  99 Address MacroAssembler::as_Address(ArrayAddress adr) {
 100   return Address::make_array(adr);
 101 }
 102 
 103 void MacroAssembler::call_VM_leaf_base(address entry_point,
 104                                        int number_of_arguments) {
 105   call(RuntimeAddress(entry_point));
 106   increment(rsp, number_of_arguments * wordSize);
 107 }
 108 
 109 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 110   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 111 }
 112 
 113 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 114   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 115 }
 116 
 117 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 118   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 119 }
 120 
 121 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 122   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 123 }
 124 
 125 void MacroAssembler::extend_sign(Register hi, Register lo) {
 126   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 127   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 128     cdql();
 129   } else {
 130     movl(hi, lo);
 131     sarl(hi, 31);
 132   }
 133 }
 134 
 135 void MacroAssembler::jC2(Register tmp, Label& L) {
 136   // set parity bit if FPU flag C2 is set (via rax)
 137   save_rax(tmp);
 138   fwait(); fnstsw_ax();
 139   sahf();
 140   restore_rax(tmp);
 141   // branch
 142   jcc(Assembler::parity, L);
 143 }
 144 
 145 void MacroAssembler::jnC2(Register tmp, Label& L) {
 146   // set parity bit if FPU flag C2 is set (via rax)
 147   save_rax(tmp);
 148   fwait(); fnstsw_ax();
 149   sahf();
 150   restore_rax(tmp);
 151   // branch
 152   jcc(Assembler::noParity, L);
 153 }
 154 
 155 // 32bit can do a case table jump in one instruction but we no longer allow the base
 156 // to be installed in the Address class
 157 void MacroAssembler::jump(ArrayAddress entry) {
 158   jmp(as_Address(entry));
 159 }
 160 
 161 // Note: y_lo will be destroyed
 162 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 163   // Long compare for Java (semantics as described in JVM spec.)
 164   Label high, low, done;
 165 
 166   cmpl(x_hi, y_hi);
 167   jcc(Assembler::less, low);
 168   jcc(Assembler::greater, high);
 169   // x_hi is the return register
 170   xorl(x_hi, x_hi);
 171   cmpl(x_lo, y_lo);
 172   jcc(Assembler::below, low);
 173   jcc(Assembler::equal, done);
 174 
 175   bind(high);
 176   xorl(x_hi, x_hi);
 177   increment(x_hi);
 178   jmp(done);
 179 
 180   bind(low);
 181   xorl(x_hi, x_hi);
 182   decrementl(x_hi);
 183 
 184   bind(done);
 185 }
 186 
 187 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 188     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 189 }
 190 
 191 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 192   // leal(dst, as_Address(adr));
 193   // see note in movl as to why we must use a move
 194   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 195 }
 196 
 197 void MacroAssembler::leave() {
 198   mov(rsp, rbp);
 199   pop(rbp);
 200 }
 201 
 202 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 203   // Multiplication of two Java long values stored on the stack
 204   // as illustrated below. Result is in rdx:rax.
 205   //
 206   // rsp ---> [  ??  ] \               \
 207   //            ....    | y_rsp_offset  |
 208   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 209   //          [ y_hi ]                  | (in bytes)
 210   //            ....                    |
 211   //          [ x_lo ]                 /
 212   //          [ x_hi ]
 213   //            ....
 214   //
 215   // Basic idea: lo(result) = lo(x_lo * y_lo)
 216   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 217   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 218   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 219   Label quick;
 220   // load x_hi, y_hi and check if quick
 221   // multiplication is possible
 222   movl(rbx, x_hi);
 223   movl(rcx, y_hi);
 224   movl(rax, rbx);
 225   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 226   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 227   // do full multiplication
 228   // 1st step
 229   mull(y_lo);                                    // x_hi * y_lo
 230   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 231   // 2nd step
 232   movl(rax, x_lo);
 233   mull(rcx);                                     // x_lo * y_hi
 234   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 235   // 3rd step
 236   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 237   movl(rax, x_lo);
 238   mull(y_lo);                                    // x_lo * y_lo
 239   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 240 }
 241 
 242 void MacroAssembler::lneg(Register hi, Register lo) {
 243   negl(lo);
 244   adcl(hi, 0);
 245   negl(hi);
 246 }
 247 
 248 void MacroAssembler::lshl(Register hi, Register lo) {
 249   // Java shift left long support (semantics as described in JVM spec., p.305)
 250   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 251   // shift value is in rcx !
 252   assert(hi != rcx, "must not use rcx");
 253   assert(lo != rcx, "must not use rcx");
 254   const Register s = rcx;                        // shift count
 255   const int      n = BitsPerWord;
 256   Label L;
 257   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 258   cmpl(s, n);                                    // if (s < n)
 259   jcc(Assembler::less, L);                       // else (s >= n)
 260   movl(hi, lo);                                  // x := x << n
 261   xorl(lo, lo);
 262   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 263   bind(L);                                       // s (mod n) < n
 264   shldl(hi, lo);                                 // x := x << s
 265   shll(lo);
 266 }
 267 
 268 
 269 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 270   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 271   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 272   assert(hi != rcx, "must not use rcx");
 273   assert(lo != rcx, "must not use rcx");
 274   const Register s = rcx;                        // shift count
 275   const int      n = BitsPerWord;
 276   Label L;
 277   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 278   cmpl(s, n);                                    // if (s < n)
 279   jcc(Assembler::less, L);                       // else (s >= n)
 280   movl(lo, hi);                                  // x := x >> n
 281   if (sign_extension) sarl(hi, 31);
 282   else                xorl(hi, hi);
 283   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 284   bind(L);                                       // s (mod n) < n
 285   shrdl(lo, hi);                                 // x := x >> s
 286   if (sign_extension) sarl(hi);
 287   else                shrl(hi);
 288 }
 289 
 290 void MacroAssembler::movoop(Register dst, jobject obj) {
 291   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 292 }
 293 
 294 void MacroAssembler::movoop(Address dst, jobject obj) {
 295   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 296 }
 297 
 298 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 299   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 300 }
 301 
 302 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 303   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 304 }
 305 
 306 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 307   // scratch register is not used,
 308   // it is defined to match parameters of 64-bit version of this method.
 309   if (src.is_lval()) {
 310     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 311   } else {
 312     movl(dst, as_Address(src));
 313   }
 314 }
 315 
 316 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 317   movl(as_Address(dst), src);
 318 }
 319 
 320 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 321   movl(dst, as_Address(src));
 322 }
 323 
 324 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 325 void MacroAssembler::movptr(Address dst, intptr_t src) {
 326   movl(dst, src);
 327 }
 328 
 329 
 330 void MacroAssembler::pop_callee_saved_registers() {
 331   pop(rcx);
 332   pop(rdx);
 333   pop(rdi);
 334   pop(rsi);
 335 }
 336 
 337 void MacroAssembler::pop_fTOS() {
 338   fld_d(Address(rsp, 0));
 339   addl(rsp, 2 * wordSize);
 340 }
 341 
 342 void MacroAssembler::push_callee_saved_registers() {
 343   push(rsi);
 344   push(rdi);
 345   push(rdx);
 346   push(rcx);
 347 }
 348 
 349 void MacroAssembler::push_fTOS() {
 350   subl(rsp, 2 * wordSize);
 351   fstp_d(Address(rsp, 0));
 352 }
 353 
 354 
 355 void MacroAssembler::pushoop(jobject obj) {
 356   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 357 }
 358 
 359 void MacroAssembler::pushklass(Metadata* obj) {
 360   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 361 }
 362 
 363 void MacroAssembler::pushptr(AddressLiteral src) {
 364   if (src.is_lval()) {
 365     push_literal32((int32_t)src.target(), src.rspec());
 366   } else {
 367     pushl(as_Address(src));
 368   }
 369 }
 370 
 371 void MacroAssembler::set_word_if_not_zero(Register dst) {
 372   xorl(dst, dst);
 373   set_byte_if_not_zero(dst);
 374 }
 375 
 376 static void pass_arg0(MacroAssembler* masm, Register arg) {
 377   masm->push(arg);
 378 }
 379 
 380 static void pass_arg1(MacroAssembler* masm, Register arg) {
 381   masm->push(arg);
 382 }
 383 
 384 static void pass_arg2(MacroAssembler* masm, Register arg) {
 385   masm->push(arg);
 386 }
 387 
 388 static void pass_arg3(MacroAssembler* masm, Register arg) {
 389   masm->push(arg);
 390 }
 391 
 392 #ifndef PRODUCT
 393 extern "C" void findpc(intptr_t x);
 394 #endif
 395 
 396 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 397   // In order to get locks to work, we need to fake a in_VM state
 398   JavaThread* thread = JavaThread::current();
 399   JavaThreadState saved_state = thread->thread_state();
 400   thread->set_thread_state(_thread_in_vm);
 401   if (ShowMessageBoxOnError) {
 402     JavaThread* thread = JavaThread::current();
 403     JavaThreadState saved_state = thread->thread_state();
 404     thread->set_thread_state(_thread_in_vm);
 405     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 406       ttyLocker ttyl;
 407       BytecodeCounter::print();
 408     }
 409     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 410     // This is the value of eip which points to where verify_oop will return.
 411     if (os::message_box(msg, "Execution stopped, print registers?")) {
 412       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 413       BREAKPOINT;
 414     }
 415   } else {
 416     ttyLocker ttyl;
 417     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 418   }
 419   // Don't assert holding the ttyLock
 420     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 421   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 422 }
 423 
 424 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 425   ttyLocker ttyl;
 426   FlagSetting fs(Debugging, true);
 427   tty->print_cr("eip = 0x%08x", eip);
 428 #ifndef PRODUCT
 429   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 430     tty->cr();
 431     findpc(eip);
 432     tty->cr();
 433   }
 434 #endif
 435 #define PRINT_REG(rax) \
 436   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 437   PRINT_REG(rax);
 438   PRINT_REG(rbx);
 439   PRINT_REG(rcx);
 440   PRINT_REG(rdx);
 441   PRINT_REG(rdi);
 442   PRINT_REG(rsi);
 443   PRINT_REG(rbp);
 444   PRINT_REG(rsp);
 445 #undef PRINT_REG
 446   // Print some words near top of staack.
 447   int* dump_sp = (int*) rsp;
 448   for (int col1 = 0; col1 < 8; col1++) {
 449     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 450     os::print_location(tty, *dump_sp++);
 451   }
 452   for (int row = 0; row < 16; row++) {
 453     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 454     for (int col = 0; col < 8; col++) {
 455       tty->print(" 0x%08x", *dump_sp++);
 456     }
 457     tty->cr();
 458   }
 459   // Print some instructions around pc:
 460   Disassembler::decode((address)eip-64, (address)eip);
 461   tty->print_cr("--------");
 462   Disassembler::decode((address)eip, (address)eip+32);
 463 }
 464 
 465 void MacroAssembler::stop(const char* msg) {
 466   ExternalAddress message((address)msg);
 467   // push address of message
 468   pushptr(message.addr());
 469   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 470   pusha();                                            // push registers
 471   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 472   hlt();
 473 }
 474 
 475 void MacroAssembler::warn(const char* msg) {
 476   push_CPU_state();
 477 
 478   ExternalAddress message((address) msg);
 479   // push address of message
 480   pushptr(message.addr());
 481 
 482   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 483   addl(rsp, wordSize);       // discard argument
 484   pop_CPU_state();
 485 }
 486 
 487 void MacroAssembler::print_state() {
 488   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 489   pusha();                                            // push registers
 490 
 491   push_CPU_state();
 492   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 493   pop_CPU_state();
 494 
 495   popa();
 496   addl(rsp, wordSize);
 497 }
 498 
 499 #else // _LP64
 500 
 501 // 64 bit versions
 502 
 503 Address MacroAssembler::as_Address(AddressLiteral adr) {
 504   // amd64 always does this as a pc-rel
 505   // we can be absolute or disp based on the instruction type
 506   // jmp/call are displacements others are absolute
 507   assert(!adr.is_lval(), "must be rval");
 508   assert(reachable(adr), "must be");
 509   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 510 
 511 }
 512 
 513 Address MacroAssembler::as_Address(ArrayAddress adr) {
 514   AddressLiteral base = adr.base();
 515   lea(rscratch1, base);
 516   Address index = adr.index();
 517   assert(index._disp == 0, "must not have disp"); // maybe it can?
 518   Address array(rscratch1, index._index, index._scale, index._disp);
 519   return array;
 520 }
 521 
 522 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 523   Label L, E;
 524 
 525 #ifdef _WIN64
 526   // Windows always allocates space for it's register args
 527   assert(num_args <= 4, "only register arguments supported");
 528   subq(rsp,  frame::arg_reg_save_area_bytes);
 529 #endif
 530 
 531   // Align stack if necessary
 532   testl(rsp, 15);
 533   jcc(Assembler::zero, L);
 534 
 535   subq(rsp, 8);
 536   {
 537     call(RuntimeAddress(entry_point));
 538   }
 539   addq(rsp, 8);
 540   jmp(E);
 541 
 542   bind(L);
 543   {
 544     call(RuntimeAddress(entry_point));
 545   }
 546 
 547   bind(E);
 548 
 549 #ifdef _WIN64
 550   // restore stack pointer
 551   addq(rsp, frame::arg_reg_save_area_bytes);
 552 #endif
 553 
 554 }
 555 
 556 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 557   assert(!src2.is_lval(), "should use cmpptr");
 558 
 559   if (reachable(src2)) {
 560     cmpq(src1, as_Address(src2));
 561   } else {
 562     lea(rscratch1, src2);
 563     Assembler::cmpq(src1, Address(rscratch1, 0));
 564   }
 565 }
 566 
 567 int MacroAssembler::corrected_idivq(Register reg) {
 568   // Full implementation of Java ldiv and lrem; checks for special
 569   // case as described in JVM spec., p.243 & p.271.  The function
 570   // returns the (pc) offset of the idivl instruction - may be needed
 571   // for implicit exceptions.
 572   //
 573   //         normal case                           special case
 574   //
 575   // input : rax: dividend                         min_long
 576   //         reg: divisor   (may not be eax/edx)   -1
 577   //
 578   // output: rax: quotient  (= rax idiv reg)       min_long
 579   //         rdx: remainder (= rax irem reg)       0
 580   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 581   static const int64_t min_long = 0x8000000000000000;
 582   Label normal_case, special_case;
 583 
 584   // check for special case
 585   cmp64(rax, ExternalAddress((address) &min_long));
 586   jcc(Assembler::notEqual, normal_case);
 587   xorl(rdx, rdx); // prepare rdx for possible special case (where
 588                   // remainder = 0)
 589   cmpq(reg, -1);
 590   jcc(Assembler::equal, special_case);
 591 
 592   // handle normal case
 593   bind(normal_case);
 594   cdqq();
 595   int idivq_offset = offset();
 596   idivq(reg);
 597 
 598   // normal and special case exit
 599   bind(special_case);
 600 
 601   return idivq_offset;
 602 }
 603 
 604 void MacroAssembler::decrementq(Register reg, int value) {
 605   if (value == min_jint) { subq(reg, value); return; }
 606   if (value <  0) { incrementq(reg, -value); return; }
 607   if (value == 0) {                        ; return; }
 608   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 609   /* else */      { subq(reg, value)       ; return; }
 610 }
 611 
 612 void MacroAssembler::decrementq(Address dst, int value) {
 613   if (value == min_jint) { subq(dst, value); return; }
 614   if (value <  0) { incrementq(dst, -value); return; }
 615   if (value == 0) {                        ; return; }
 616   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 617   /* else */      { subq(dst, value)       ; return; }
 618 }
 619 
 620 void MacroAssembler::incrementq(AddressLiteral dst) {
 621   if (reachable(dst)) {
 622     incrementq(as_Address(dst));
 623   } else {
 624     lea(rscratch1, dst);
 625     incrementq(Address(rscratch1, 0));
 626   }
 627 }
 628 
 629 void MacroAssembler::incrementq(Register reg, int value) {
 630   if (value == min_jint) { addq(reg, value); return; }
 631   if (value <  0) { decrementq(reg, -value); return; }
 632   if (value == 0) {                        ; return; }
 633   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 634   /* else */      { addq(reg, value)       ; return; }
 635 }
 636 
 637 void MacroAssembler::incrementq(Address dst, int value) {
 638   if (value == min_jint) { addq(dst, value); return; }
 639   if (value <  0) { decrementq(dst, -value); return; }
 640   if (value == 0) {                        ; return; }
 641   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 642   /* else */      { addq(dst, value)       ; return; }
 643 }
 644 
 645 // 32bit can do a case table jump in one instruction but we no longer allow the base
 646 // to be installed in the Address class
 647 void MacroAssembler::jump(ArrayAddress entry) {
 648   lea(rscratch1, entry.base());
 649   Address dispatch = entry.index();
 650   assert(dispatch._base == noreg, "must be");
 651   dispatch._base = rscratch1;
 652   jmp(dispatch);
 653 }
 654 
 655 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 656   ShouldNotReachHere(); // 64bit doesn't use two regs
 657   cmpq(x_lo, y_lo);
 658 }
 659 
 660 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 661     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 662 }
 663 
 664 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 665   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 666   movptr(dst, rscratch1);
 667 }
 668 
 669 void MacroAssembler::leave() {
 670   // %%% is this really better? Why not on 32bit too?
 671   emit_int8((unsigned char)0xC9); // LEAVE
 672 }
 673 
 674 void MacroAssembler::lneg(Register hi, Register lo) {
 675   ShouldNotReachHere(); // 64bit doesn't use two regs
 676   negq(lo);
 677 }
 678 
 679 void MacroAssembler::movoop(Register dst, jobject obj) {
 680   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 681 }
 682 
 683 void MacroAssembler::movoop(Address dst, jobject obj) {
 684   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 685   movq(dst, rscratch1);
 686 }
 687 
 688 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 689   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 690 }
 691 
 692 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 693   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 694   movq(dst, rscratch1);
 695 }
 696 
 697 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 698   if (src.is_lval()) {
 699     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 700   } else {
 701     if (reachable(src)) {
 702       movq(dst, as_Address(src));
 703     } else {
 704       lea(scratch, src);
 705       movq(dst, Address(scratch, 0));
 706     }
 707   }
 708 }
 709 
 710 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 711   movq(as_Address(dst), src);
 712 }
 713 
 714 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 715   movq(dst, as_Address(src));
 716 }
 717 
 718 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 719 void MacroAssembler::movptr(Address dst, intptr_t src) {
 720   mov64(rscratch1, src);
 721   movq(dst, rscratch1);
 722 }
 723 
 724 // These are mostly for initializing NULL
 725 void MacroAssembler::movptr(Address dst, int32_t src) {
 726   movslq(dst, src);
 727 }
 728 
 729 void MacroAssembler::movptr(Register dst, int32_t src) {
 730   mov64(dst, (intptr_t)src);
 731 }
 732 
 733 void MacroAssembler::pushoop(jobject obj) {
 734   movoop(rscratch1, obj);
 735   push(rscratch1);
 736 }
 737 
 738 void MacroAssembler::pushklass(Metadata* obj) {
 739   mov_metadata(rscratch1, obj);
 740   push(rscratch1);
 741 }
 742 
 743 void MacroAssembler::pushptr(AddressLiteral src) {
 744   lea(rscratch1, src);
 745   if (src.is_lval()) {
 746     push(rscratch1);
 747   } else {
 748     pushq(Address(rscratch1, 0));
 749   }
 750 }
 751 
 752 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 753                                            bool clear_pc) {
 754   // we must set sp to zero to clear frame
 755   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 756   // must clear fp, so that compiled frames are not confused; it is
 757   // possible that we need it only for debugging
 758   if (clear_fp) {
 759     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 760   }
 761 
 762   if (clear_pc) {
 763     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 764   }
 765 }
 766 
 767 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 768                                          Register last_java_fp,
 769                                          address  last_java_pc) {
 770   // determine last_java_sp register
 771   if (!last_java_sp->is_valid()) {
 772     last_java_sp = rsp;
 773   }
 774 
 775   // last_java_fp is optional
 776   if (last_java_fp->is_valid()) {
 777     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 778            last_java_fp);
 779   }
 780 
 781   // last_java_pc is optional
 782   if (last_java_pc != NULL) {
 783     Address java_pc(r15_thread,
 784                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 785     lea(rscratch1, InternalAddress(last_java_pc));
 786     movptr(java_pc, rscratch1);
 787   }
 788 
 789   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 790 }
 791 
 792 static void pass_arg0(MacroAssembler* masm, Register arg) {
 793   if (c_rarg0 != arg ) {
 794     masm->mov(c_rarg0, arg);
 795   }
 796 }
 797 
 798 static void pass_arg1(MacroAssembler* masm, Register arg) {
 799   if (c_rarg1 != arg ) {
 800     masm->mov(c_rarg1, arg);
 801   }
 802 }
 803 
 804 static void pass_arg2(MacroAssembler* masm, Register arg) {
 805   if (c_rarg2 != arg ) {
 806     masm->mov(c_rarg2, arg);
 807   }
 808 }
 809 
 810 static void pass_arg3(MacroAssembler* masm, Register arg) {
 811   if (c_rarg3 != arg ) {
 812     masm->mov(c_rarg3, arg);
 813   }
 814 }
 815 
 816 void MacroAssembler::stop(const char* msg) {
 817   address rip = pc();
 818   pusha(); // get regs on stack
 819   lea(c_rarg0, ExternalAddress((address) msg));
 820   lea(c_rarg1, InternalAddress(rip));
 821   movq(c_rarg2, rsp); // pass pointer to regs array
 822   andq(rsp, -16); // align stack as required by ABI
 823   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 824   hlt();
 825 }
 826 
 827 void MacroAssembler::warn(const char* msg) {
 828   push(rbp);
 829   movq(rbp, rsp);
 830   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 831   push_CPU_state();   // keeps alignment at 16 bytes
 832   lea(c_rarg0, ExternalAddress((address) msg));
 833   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 834   pop_CPU_state();
 835   mov(rsp, rbp);
 836   pop(rbp);
 837 }
 838 
 839 void MacroAssembler::print_state() {
 840   address rip = pc();
 841   pusha();            // get regs on stack
 842   push(rbp);
 843   movq(rbp, rsp);
 844   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 845   push_CPU_state();   // keeps alignment at 16 bytes
 846 
 847   lea(c_rarg0, InternalAddress(rip));
 848   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 849   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 850 
 851   pop_CPU_state();
 852   mov(rsp, rbp);
 853   pop(rbp);
 854   popa();
 855 }
 856 
 857 #ifndef PRODUCT
 858 extern "C" void findpc(intptr_t x);
 859 #endif
 860 
 861 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 862   // In order to get locks to work, we need to fake a in_VM state
 863   if (ShowMessageBoxOnError) {
 864     JavaThread* thread = JavaThread::current();
 865     JavaThreadState saved_state = thread->thread_state();
 866     thread->set_thread_state(_thread_in_vm);
 867 #ifndef PRODUCT
 868     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 869       ttyLocker ttyl;
 870       BytecodeCounter::print();
 871     }
 872 #endif
 873     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 874     // XXX correct this offset for amd64
 875     // This is the value of eip which points to where verify_oop will return.
 876     if (os::message_box(msg, "Execution stopped, print registers?")) {
 877       print_state64(pc, regs);
 878       BREAKPOINT;
 879       assert(false, "start up GDB");
 880     }
 881     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 882   } else {
 883     ttyLocker ttyl;
 884     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 885                     msg);
 886     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 887   }
 888 }
 889 
 890 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 891   ttyLocker ttyl;
 892   FlagSetting fs(Debugging, true);
 893   tty->print_cr("rip = 0x%016lx", pc);
 894 #ifndef PRODUCT
 895   tty->cr();
 896   findpc(pc);
 897   tty->cr();
 898 #endif
 899 #define PRINT_REG(rax, value) \
 900   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 901   PRINT_REG(rax, regs[15]);
 902   PRINT_REG(rbx, regs[12]);
 903   PRINT_REG(rcx, regs[14]);
 904   PRINT_REG(rdx, regs[13]);
 905   PRINT_REG(rdi, regs[8]);
 906   PRINT_REG(rsi, regs[9]);
 907   PRINT_REG(rbp, regs[10]);
 908   PRINT_REG(rsp, regs[11]);
 909   PRINT_REG(r8 , regs[7]);
 910   PRINT_REG(r9 , regs[6]);
 911   PRINT_REG(r10, regs[5]);
 912   PRINT_REG(r11, regs[4]);
 913   PRINT_REG(r12, regs[3]);
 914   PRINT_REG(r13, regs[2]);
 915   PRINT_REG(r14, regs[1]);
 916   PRINT_REG(r15, regs[0]);
 917 #undef PRINT_REG
 918   // Print some words near top of staack.
 919   int64_t* rsp = (int64_t*) regs[11];
 920   int64_t* dump_sp = rsp;
 921   for (int col1 = 0; col1 < 8; col1++) {
 922     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 923     os::print_location(tty, *dump_sp++);
 924   }
 925   for (int row = 0; row < 25; row++) {
 926     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 927     for (int col = 0; col < 4; col++) {
 928       tty->print(" 0x%016lx", *dump_sp++);
 929     }
 930     tty->cr();
 931   }
 932   // Print some instructions around pc:
 933   Disassembler::decode((address)pc-64, (address)pc);
 934   tty->print_cr("--------");
 935   Disassembler::decode((address)pc, (address)pc+32);
 936 }
 937 
 938 #endif // _LP64
 939 
 940 // Now versions that are common to 32/64 bit
 941 
 942 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 943   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 944 }
 945 
 946 void MacroAssembler::addptr(Register dst, Register src) {
 947   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 948 }
 949 
 950 void MacroAssembler::addptr(Address dst, Register src) {
 951   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 952 }
 953 
 954 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 955   if (reachable(src)) {
 956     Assembler::addsd(dst, as_Address(src));
 957   } else {
 958     lea(rscratch1, src);
 959     Assembler::addsd(dst, Address(rscratch1, 0));
 960   }
 961 }
 962 
 963 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 964   if (reachable(src)) {
 965     addss(dst, as_Address(src));
 966   } else {
 967     lea(rscratch1, src);
 968     addss(dst, Address(rscratch1, 0));
 969   }
 970 }
 971 
 972 void MacroAssembler::align(int modulus) {
 973   if (offset() % modulus != 0) {
 974     nop(modulus - (offset() % modulus));
 975   }
 976 }
 977 
 978 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 979   // Used in sign-masking with aligned address.
 980   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 981   if (reachable(src)) {
 982     Assembler::andpd(dst, as_Address(src));
 983   } else {
 984     lea(rscratch1, src);
 985     Assembler::andpd(dst, Address(rscratch1, 0));
 986   }
 987 }
 988 
 989 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
 990   // Used in sign-masking with aligned address.
 991   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 992   if (reachable(src)) {
 993     Assembler::andps(dst, as_Address(src));
 994   } else {
 995     lea(rscratch1, src);
 996     Assembler::andps(dst, Address(rscratch1, 0));
 997   }
 998 }
 999 
1000 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1001   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1002 }
1003 
1004 void MacroAssembler::atomic_incl(Address counter_addr) {
1005   if (os::is_MP())
1006     lock();
1007   incrementl(counter_addr);
1008 }
1009 
1010 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1011   if (reachable(counter_addr)) {
1012     atomic_incl(as_Address(counter_addr));
1013   } else {
1014     lea(scr, counter_addr);
1015     atomic_incl(Address(scr, 0));
1016   }
1017 }
1018 
1019 #ifdef _LP64
1020 void MacroAssembler::atomic_incq(Address counter_addr) {
1021   if (os::is_MP())
1022     lock();
1023   incrementq(counter_addr);
1024 }
1025 
1026 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1027   if (reachable(counter_addr)) {
1028     atomic_incq(as_Address(counter_addr));
1029   } else {
1030     lea(scr, counter_addr);
1031     atomic_incq(Address(scr, 0));
1032   }
1033 }
1034 #endif
1035 
1036 // Writes to stack successive pages until offset reached to check for
1037 // stack overflow + shadow pages.  This clobbers tmp.
1038 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1039   movptr(tmp, rsp);
1040   // Bang stack for total size given plus shadow page size.
1041   // Bang one page at a time because large size can bang beyond yellow and
1042   // red zones.
1043   Label loop;
1044   bind(loop);
1045   movl(Address(tmp, (-os::vm_page_size())), size );
1046   subptr(tmp, os::vm_page_size());
1047   subl(size, os::vm_page_size());
1048   jcc(Assembler::greater, loop);
1049 
1050   // Bang down shadow pages too.
1051   // At this point, (tmp-0) is the last address touched, so don't
1052   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1053   // was post-decremented.)  Skip this address by starting at i=1, and
1054   // touch a few more pages below.  N.B.  It is important to touch all
1055   // the way down to and including i=StackShadowPages.
1056   for (int i = 1; i < StackShadowPages; i++) {
1057     // this could be any sized move but this is can be a debugging crumb
1058     // so the bigger the better.
1059     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1060   }
1061 }
1062 
1063 int MacroAssembler::biased_locking_enter(Register lock_reg,
1064                                          Register obj_reg,
1065                                          Register swap_reg,
1066                                          Register tmp_reg,
1067                                          bool swap_reg_contains_mark,
1068                                          Label& done,
1069                                          Label* slow_case,
1070                                          BiasedLockingCounters* counters) {
1071   assert(UseBiasedLocking, "why call this otherwise?");
1072   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1073   LP64_ONLY( assert(tmp_reg != noreg, "tmp_reg must be supplied"); )
1074   bool need_tmp_reg = false;
1075   if (tmp_reg == noreg) {
1076     need_tmp_reg = true;
1077     tmp_reg = lock_reg;
1078     assert_different_registers(lock_reg, obj_reg, swap_reg);
1079   } else {
1080     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1081   }
1082   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1083   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1084   Address saved_mark_addr(lock_reg, 0);
1085 
1086   if (PrintBiasedLockingStatistics && counters == NULL) {
1087     counters = BiasedLocking::counters();
1088   }
1089   // Biased locking
1090   // See whether the lock is currently biased toward our thread and
1091   // whether the epoch is still valid
1092   // Note that the runtime guarantees sufficient alignment of JavaThread
1093   // pointers to allow age to be placed into low bits
1094   // First check to see whether biasing is even enabled for this object
1095   Label cas_label;
1096   int null_check_offset = -1;
1097   if (!swap_reg_contains_mark) {
1098     null_check_offset = offset();
1099     movptr(swap_reg, mark_addr);
1100   }
1101   if (need_tmp_reg) {
1102     push(tmp_reg);
1103   }
1104   movptr(tmp_reg, swap_reg);
1105   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1106   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1107   if (need_tmp_reg) {
1108     pop(tmp_reg);
1109   }
1110   jcc(Assembler::notEqual, cas_label);
1111   // The bias pattern is present in the object's header. Need to check
1112   // whether the bias owner and the epoch are both still current.
1113 #ifndef _LP64
1114   // Note that because there is no current thread register on x86_32 we
1115   // need to store off the mark word we read out of the object to
1116   // avoid reloading it and needing to recheck invariants below. This
1117   // store is unfortunate but it makes the overall code shorter and
1118   // simpler.
1119   movptr(saved_mark_addr, swap_reg);
1120 #endif
1121   if (need_tmp_reg) {
1122     push(tmp_reg);
1123   }
1124   if (swap_reg_contains_mark) {
1125     null_check_offset = offset();
1126   }
1127   load_prototype_header(tmp_reg, obj_reg);
1128 #ifdef _LP64
1129   orptr(tmp_reg, r15_thread);
1130   xorptr(tmp_reg, swap_reg);
1131   Register header_reg = tmp_reg;
1132 #else
1133   xorptr(tmp_reg, swap_reg);
1134   get_thread(swap_reg);
1135   xorptr(swap_reg, tmp_reg);
1136   Register header_reg = swap_reg;
1137 #endif
1138   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1139   if (need_tmp_reg) {
1140     pop(tmp_reg);
1141   }
1142   if (counters != NULL) {
1143     cond_inc32(Assembler::zero,
1144                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1145   }
1146   jcc(Assembler::equal, done);
1147 
1148   Label try_revoke_bias;
1149   Label try_rebias;
1150 
1151   // At this point we know that the header has the bias pattern and
1152   // that we are not the bias owner in the current epoch. We need to
1153   // figure out more details about the state of the header in order to
1154   // know what operations can be legally performed on the object's
1155   // header.
1156 
1157   // If the low three bits in the xor result aren't clear, that means
1158   // the prototype header is no longer biased and we have to revoke
1159   // the bias on this object.
1160   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1161   jccb(Assembler::notZero, try_revoke_bias);
1162 
1163   // Biasing is still enabled for this data type. See whether the
1164   // epoch of the current bias is still valid, meaning that the epoch
1165   // bits of the mark word are equal to the epoch bits of the
1166   // prototype header. (Note that the prototype header's epoch bits
1167   // only change at a safepoint.) If not, attempt to rebias the object
1168   // toward the current thread. Note that we must be absolutely sure
1169   // that the current epoch is invalid in order to do this because
1170   // otherwise the manipulations it performs on the mark word are
1171   // illegal.
1172   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1173   jccb(Assembler::notZero, try_rebias);
1174 
1175   // The epoch of the current bias is still valid but we know nothing
1176   // about the owner; it might be set or it might be clear. Try to
1177   // acquire the bias of the object using an atomic operation. If this
1178   // fails we will go in to the runtime to revoke the object's bias.
1179   // Note that we first construct the presumed unbiased header so we
1180   // don't accidentally blow away another thread's valid bias.
1181   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1182   andptr(swap_reg,
1183          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1184   if (need_tmp_reg) {
1185     push(tmp_reg);
1186   }
1187 #ifdef _LP64
1188   movptr(tmp_reg, swap_reg);
1189   orptr(tmp_reg, r15_thread);
1190 #else
1191   get_thread(tmp_reg);
1192   orptr(tmp_reg, swap_reg);
1193 #endif
1194   if (os::is_MP()) {
1195     lock();
1196   }
1197   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1198   if (need_tmp_reg) {
1199     pop(tmp_reg);
1200   }
1201   // If the biasing toward our thread failed, this means that
1202   // another thread succeeded in biasing it toward itself and we
1203   // need to revoke that bias. The revocation will occur in the
1204   // interpreter runtime in the slow case.
1205   if (counters != NULL) {
1206     cond_inc32(Assembler::zero,
1207                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1208   }
1209   if (slow_case != NULL) {
1210     jcc(Assembler::notZero, *slow_case);
1211   }
1212   jmp(done);
1213 
1214   bind(try_rebias);
1215   // At this point we know the epoch has expired, meaning that the
1216   // current "bias owner", if any, is actually invalid. Under these
1217   // circumstances _only_, we are allowed to use the current header's
1218   // value as the comparison value when doing the cas to acquire the
1219   // bias in the current epoch. In other words, we allow transfer of
1220   // the bias from one thread to another directly in this situation.
1221   //
1222   // FIXME: due to a lack of registers we currently blow away the age
1223   // bits in this situation. Should attempt to preserve them.
1224   if (need_tmp_reg) {
1225     push(tmp_reg);
1226   }
1227   load_prototype_header(tmp_reg, obj_reg);
1228 #ifdef _LP64
1229   orptr(tmp_reg, r15_thread);
1230 #else
1231   get_thread(swap_reg);
1232   orptr(tmp_reg, swap_reg);
1233   movptr(swap_reg, saved_mark_addr);
1234 #endif
1235   if (os::is_MP()) {
1236     lock();
1237   }
1238   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1239   if (need_tmp_reg) {
1240     pop(tmp_reg);
1241   }
1242   // If the biasing toward our thread failed, then another thread
1243   // succeeded in biasing it toward itself and we need to revoke that
1244   // bias. The revocation will occur in the runtime in the slow case.
1245   if (counters != NULL) {
1246     cond_inc32(Assembler::zero,
1247                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1248   }
1249   if (slow_case != NULL) {
1250     jcc(Assembler::notZero, *slow_case);
1251   }
1252   jmp(done);
1253 
1254   bind(try_revoke_bias);
1255   // The prototype mark in the klass doesn't have the bias bit set any
1256   // more, indicating that objects of this data type are not supposed
1257   // to be biased any more. We are going to try to reset the mark of
1258   // this object to the prototype value and fall through to the
1259   // CAS-based locking scheme. Note that if our CAS fails, it means
1260   // that another thread raced us for the privilege of revoking the
1261   // bias of this particular object, so it's okay to continue in the
1262   // normal locking code.
1263   //
1264   // FIXME: due to a lack of registers we currently blow away the age
1265   // bits in this situation. Should attempt to preserve them.
1266   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1267   if (need_tmp_reg) {
1268     push(tmp_reg);
1269   }
1270   load_prototype_header(tmp_reg, obj_reg);
1271   if (os::is_MP()) {
1272     lock();
1273   }
1274   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1275   if (need_tmp_reg) {
1276     pop(tmp_reg);
1277   }
1278   // Fall through to the normal CAS-based lock, because no matter what
1279   // the result of the above CAS, some thread must have succeeded in
1280   // removing the bias bit from the object's header.
1281   if (counters != NULL) {
1282     cond_inc32(Assembler::zero,
1283                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1284   }
1285 
1286   bind(cas_label);
1287 
1288   return null_check_offset;
1289 }
1290 
1291 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1292   assert(UseBiasedLocking, "why call this otherwise?");
1293 
1294   // Check for biased locking unlock case, which is a no-op
1295   // Note: we do not have to check the thread ID for two reasons.
1296   // First, the interpreter checks for IllegalMonitorStateException at
1297   // a higher level. Second, if the bias was revoked while we held the
1298   // lock, the object could not be rebiased toward another thread, so
1299   // the bias bit would be clear.
1300   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1301   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1302   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1303   jcc(Assembler::equal, done);
1304 }
1305 
1306 #ifdef COMPILER2
1307 
1308 #if INCLUDE_RTM_OPT
1309 
1310 // Update rtm_counters based on abort status
1311 // input: abort_status
1312 //        rtm_counters (RTMLockingCounters*)
1313 // flags are killed
1314 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1315 
1316   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1317   if (PrintPreciseRTMLockingStatistics) {
1318     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1319       Label check_abort;
1320       testl(abort_status, (1<<i));
1321       jccb(Assembler::equal, check_abort);
1322       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1323       bind(check_abort);
1324     }
1325   }
1326 }
1327 
1328 // Branch if (random & (count-1) != 0), count is 2^n
1329 // tmp, scr and flags are killed
1330 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1331   assert(tmp == rax, "");
1332   assert(scr == rdx, "");
1333   rdtsc(); // modifies EDX:EAX
1334   andptr(tmp, count-1);
1335   jccb(Assembler::notZero, brLabel);
1336 }
1337 
1338 // Perform abort ratio calculation, set no_rtm bit if high ratio
1339 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1340 // tmpReg, rtm_counters_Reg and flags are killed
1341 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1342                                                  Register rtm_counters_Reg,
1343                                                  RTMLockingCounters* rtm_counters,
1344                                                  Metadata* method_data) {
1345   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1346 
1347   if (RTMLockingCalculationDelay > 0) {
1348     // Delay calculation
1349     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1350     testptr(tmpReg, tmpReg);
1351     jccb(Assembler::equal, L_done);
1352   }
1353   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1354   //   Aborted transactions = abort_count * 100
1355   //   All transactions = total_count *  RTMTotalCountIncrRate
1356   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1357 
1358   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1359   cmpptr(tmpReg, RTMAbortThreshold);
1360   jccb(Assembler::below, L_check_always_rtm2);
1361   imulptr(tmpReg, tmpReg, 100);
1362 
1363   Register scrReg = rtm_counters_Reg;
1364   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1365   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1366   imulptr(scrReg, scrReg, RTMAbortRatio);
1367   cmpptr(tmpReg, scrReg);
1368   jccb(Assembler::below, L_check_always_rtm1);
1369   if (method_data != NULL) {
1370     // set rtm_state to "no rtm" in MDO
1371     mov_metadata(tmpReg, method_data);
1372     if (os::is_MP()) {
1373       lock();
1374     }
1375     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1376   }
1377   jmpb(L_done);
1378   bind(L_check_always_rtm1);
1379   // Reload RTMLockingCounters* address
1380   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1381   bind(L_check_always_rtm2);
1382   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1383   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1384   jccb(Assembler::below, L_done);
1385   if (method_data != NULL) {
1386     // set rtm_state to "always rtm" in MDO
1387     mov_metadata(tmpReg, method_data);
1388     if (os::is_MP()) {
1389       lock();
1390     }
1391     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1392   }
1393   bind(L_done);
1394 }
1395 
1396 // Update counters and perform abort ratio calculation
1397 // input:  abort_status_Reg
1398 // rtm_counters_Reg, flags are killed
1399 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1400                                    Register rtm_counters_Reg,
1401                                    RTMLockingCounters* rtm_counters,
1402                                    Metadata* method_data,
1403                                    bool profile_rtm) {
1404 
1405   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1406   // update rtm counters based on rax value at abort
1407   // reads abort_status_Reg, updates flags
1408   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1409   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1410   if (profile_rtm) {
1411     // Save abort status because abort_status_Reg is used by following code.
1412     if (RTMRetryCount > 0) {
1413       push(abort_status_Reg);
1414     }
1415     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1416     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1417     // restore abort status
1418     if (RTMRetryCount > 0) {
1419       pop(abort_status_Reg);
1420     }
1421   }
1422 }
1423 
1424 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1425 // inputs: retry_count_Reg
1426 //       : abort_status_Reg
1427 // output: retry_count_Reg decremented by 1
1428 // flags are killed
1429 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1430   Label doneRetry;
1431   assert(abort_status_Reg == rax, "");
1432   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1433   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1434   // if reason is in 0x6 and retry count != 0 then retry
1435   andptr(abort_status_Reg, 0x6);
1436   jccb(Assembler::zero, doneRetry);
1437   testl(retry_count_Reg, retry_count_Reg);
1438   jccb(Assembler::zero, doneRetry);
1439   pause();
1440   decrementl(retry_count_Reg);
1441   jmp(retryLabel);
1442   bind(doneRetry);
1443 }
1444 
1445 // Spin and retry if lock is busy,
1446 // inputs: box_Reg (monitor address)
1447 //       : retry_count_Reg
1448 // output: retry_count_Reg decremented by 1
1449 //       : clear z flag if retry count exceeded
1450 // tmp_Reg, scr_Reg, flags are killed
1451 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1452                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1453   Label SpinLoop, SpinExit, doneRetry;
1454   // Clean monitor_value bit to get valid pointer
1455   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
1456 
1457   testl(retry_count_Reg, retry_count_Reg);
1458   jccb(Assembler::zero, doneRetry);
1459   decrementl(retry_count_Reg);
1460   movptr(scr_Reg, RTMSpinLoopCount);
1461 
1462   bind(SpinLoop);
1463   pause();
1464   decrementl(scr_Reg);
1465   jccb(Assembler::lessEqual, SpinExit);
1466   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1467   testptr(tmp_Reg, tmp_Reg);
1468   jccb(Assembler::notZero, SpinLoop);
1469 
1470   bind(SpinExit);
1471   jmp(retryLabel);
1472   bind(doneRetry);
1473   incrementl(retry_count_Reg); // clear z flag
1474 }
1475 
1476 // Use RTM for normal stack locks
1477 // Input: objReg (object to lock)
1478 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1479                                        Register retry_on_abort_count_Reg,
1480                                        RTMLockingCounters* stack_rtm_counters,
1481                                        Metadata* method_data, bool profile_rtm,
1482                                        Label& DONE_LABEL, Label& IsInflated) {
1483   assert(UseRTMForStackLocks, "why call this otherwise?");
1484   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1485   assert(tmpReg == rax, "");
1486   assert(scrReg == rdx, "");
1487   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1488 
1489   if (RTMRetryCount > 0) {
1490     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1491     bind(L_rtm_retry);
1492   }
1493   movptr(tmpReg, Address(objReg, 0));
1494   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1495   jcc(Assembler::notZero, IsInflated);
1496 
1497   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1498     Label L_noincrement;
1499     if (RTMTotalCountIncrRate > 1) {
1500       // tmpReg, scrReg and flags are killed
1501       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1502     }
1503     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1504     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1505     bind(L_noincrement);
1506   }
1507   xbegin(L_on_abort);
1508   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1509   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1510   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1511   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1512 
1513   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1514   if (UseRTMXendForLockBusy) {
1515     xend();
1516     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1517     jmp(L_decrement_retry);
1518   }
1519   else {
1520     xabort(0);
1521   }
1522   bind(L_on_abort);
1523   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1524     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1525   }
1526   bind(L_decrement_retry);
1527   if (RTMRetryCount > 0) {
1528     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1529     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1530   }
1531 }
1532 
1533 // Use RTM for inflating locks
1534 // inputs: objReg (object to lock)
1535 //         boxReg (on-stack box address (displaced header location) - KILLED)
1536 //         tmpReg (ObjectMonitor address + 2(monitor_value))
1537 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1538                                           Register scrReg, Register retry_on_busy_count_Reg,
1539                                           Register retry_on_abort_count_Reg,
1540                                           RTMLockingCounters* rtm_counters,
1541                                           Metadata* method_data, bool profile_rtm,
1542                                           Label& DONE_LABEL) {
1543   assert(UseRTMLocking, "why call this otherwise?");
1544   assert(tmpReg == rax, "");
1545   assert(scrReg == rdx, "");
1546   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1547   // Clean monitor_value bit to get valid pointer
1548   int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
1549 
1550   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1551   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1552   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1553 
1554   if (RTMRetryCount > 0) {
1555     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1556     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1557     bind(L_rtm_retry);
1558   }
1559   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1560     Label L_noincrement;
1561     if (RTMTotalCountIncrRate > 1) {
1562       // tmpReg, scrReg and flags are killed
1563       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1564     }
1565     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1566     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1567     bind(L_noincrement);
1568   }
1569   xbegin(L_on_abort);
1570   movptr(tmpReg, Address(objReg, 0));
1571   movptr(tmpReg, Address(tmpReg, owner_offset));
1572   testptr(tmpReg, tmpReg);
1573   jcc(Assembler::zero, DONE_LABEL);
1574   if (UseRTMXendForLockBusy) {
1575     xend();
1576     jmp(L_decrement_retry);
1577   }
1578   else {
1579     xabort(0);
1580   }
1581   bind(L_on_abort);
1582   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1583   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1584     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1585   }
1586   if (RTMRetryCount > 0) {
1587     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1588     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1589   }
1590 
1591   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1592   testptr(tmpReg, tmpReg) ;
1593   jccb(Assembler::notZero, L_decrement_retry) ;
1594 
1595   // Appears unlocked - try to swing _owner from null to non-null.
1596   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1597 #ifdef _LP64
1598   Register threadReg = r15_thread;
1599 #else
1600   get_thread(scrReg);
1601   Register threadReg = scrReg;
1602 #endif
1603   if (os::is_MP()) {
1604     lock();
1605   }
1606   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1607 
1608   if (RTMRetryCount > 0) {
1609     // success done else retry
1610     jccb(Assembler::equal, DONE_LABEL) ;
1611     bind(L_decrement_retry);
1612     // Spin and retry if lock is busy.
1613     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1614   }
1615   else {
1616     bind(L_decrement_retry);
1617   }
1618 }
1619 
1620 #endif //  INCLUDE_RTM_OPT
1621 
1622 // Fast_Lock and Fast_Unlock used by C2
1623 
1624 // Because the transitions from emitted code to the runtime
1625 // monitorenter/exit helper stubs are so slow it's critical that
1626 // we inline both the stack-locking fast-path and the inflated fast path.
1627 //
1628 // See also: cmpFastLock and cmpFastUnlock.
1629 //
1630 // What follows is a specialized inline transliteration of the code
1631 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1632 // another option would be to emit TrySlowEnter and TrySlowExit methods
1633 // at startup-time.  These methods would accept arguments as
1634 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1635 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1636 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1637 // In practice, however, the # of lock sites is bounded and is usually small.
1638 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1639 // if the processor uses simple bimodal branch predictors keyed by EIP
1640 // Since the helper routines would be called from multiple synchronization
1641 // sites.
1642 //
1643 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1644 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1645 // to those specialized methods.  That'd give us a mostly platform-independent
1646 // implementation that the JITs could optimize and inline at their pleasure.
1647 // Done correctly, the only time we'd need to cross to native could would be
1648 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1649 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1650 // (b) explicit barriers or fence operations.
1651 //
1652 // TODO:
1653 //
1654 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1655 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1656 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1657 //    the lock operators would typically be faster than reifying Self.
1658 //
1659 // *  Ideally I'd define the primitives as:
1660 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1661 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1662 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1663 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1664 //    Furthermore the register assignments are overconstrained, possibly resulting in
1665 //    sub-optimal code near the synchronization site.
1666 //
1667 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1668 //    Alternately, use a better sp-proximity test.
1669 //
1670 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1671 //    Either one is sufficient to uniquely identify a thread.
1672 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1673 //
1674 // *  Intrinsify notify() and notifyAll() for the common cases where the
1675 //    object is locked by the calling thread but the waitlist is empty.
1676 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1677 //
1678 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1679 //    But beware of excessive branch density on AMD Opterons.
1680 //
1681 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1682 //    or failure of the fast-path.  If the fast-path fails then we pass
1683 //    control to the slow-path, typically in C.  In Fast_Lock and
1684 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1685 //    will emit a conditional branch immediately after the node.
1686 //    So we have branches to branches and lots of ICC.ZF games.
1687 //    Instead, it might be better to have C2 pass a "FailureLabel"
1688 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1689 //    will drop through the node.  ICC.ZF is undefined at exit.
1690 //    In the case of failure, the node will branch directly to the
1691 //    FailureLabel
1692 
1693 
1694 // obj: object to lock
1695 // box: on-stack box address (displaced header location) - KILLED
1696 // rax,: tmp -- KILLED
1697 // scr: tmp -- KILLED
1698 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1699                                Register scrReg, Register cx1Reg, Register cx2Reg,
1700                                BiasedLockingCounters* counters,
1701                                RTMLockingCounters* rtm_counters,
1702                                RTMLockingCounters* stack_rtm_counters,
1703                                Metadata* method_data,
1704                                bool use_rtm, bool profile_rtm) {
1705   // Ensure the register assignents are disjoint
1706   assert(tmpReg == rax, "");
1707 
1708   if (use_rtm) {
1709     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1710   } else {
1711     assert(cx1Reg == noreg, "");
1712     assert(cx2Reg == noreg, "");
1713     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1714   }
1715 
1716   if (counters != NULL) {
1717     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1718   }
1719   if (EmitSync & 1) {
1720       // set box->dhw = unused_mark (3)
1721       // Force all sync thru slow-path: slow_enter() and slow_exit()
1722       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1723       cmpptr (rsp, (int32_t)NULL_WORD);
1724   } else
1725   if (EmitSync & 2) {
1726       Label DONE_LABEL ;
1727       if (UseBiasedLocking) {
1728          // Note: tmpReg maps to the swap_reg argument and scrReg to the tmp_reg argument.
1729          biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1730       }
1731 
1732       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1733       orptr (tmpReg, 0x1);
1734       movptr(Address(boxReg, 0), tmpReg);           // Anticipate successful CAS
1735       if (os::is_MP()) {
1736         lock();
1737       }
1738       cmpxchgptr(boxReg, Address(objReg, 0));       // Updates tmpReg
1739       jccb(Assembler::equal, DONE_LABEL);
1740       // Recursive locking
1741       subptr(tmpReg, rsp);
1742       andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1743       movptr(Address(boxReg, 0), tmpReg);
1744       bind(DONE_LABEL);
1745   } else {
1746     // Possible cases that we'll encounter in fast_lock
1747     // ------------------------------------------------
1748     // * Inflated
1749     //    -- unlocked
1750     //    -- Locked
1751     //       = by self
1752     //       = by other
1753     // * biased
1754     //    -- by Self
1755     //    -- by other
1756     // * neutral
1757     // * stack-locked
1758     //    -- by self
1759     //       = sp-proximity test hits
1760     //       = sp-proximity test generates false-negative
1761     //    -- by other
1762     //
1763 
1764     Label IsInflated, DONE_LABEL;
1765 
1766     // it's stack-locked, biased or neutral
1767     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1768     // order to reduce the number of conditional branches in the most common cases.
1769     // Beware -- there's a subtle invariant that fetch of the markword
1770     // at [FETCH], below, will never observe a biased encoding (*101b).
1771     // If this invariant is not held we risk exclusion (safety) failure.
1772     if (UseBiasedLocking && !UseOptoBiasInlining) {
1773       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, true, DONE_LABEL, NULL, counters);
1774     }
1775 
1776 #if INCLUDE_RTM_OPT
1777     if (UseRTMForStackLocks && use_rtm) {
1778       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1779                         stack_rtm_counters, method_data, profile_rtm,
1780                         DONE_LABEL, IsInflated);
1781     }
1782 #endif // INCLUDE_RTM_OPT
1783 
1784     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1785     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1786     jccb(Assembler::notZero, IsInflated);
1787 
1788     // Attempt stack-locking ...
1789     orptr (tmpReg, markOopDesc::unlocked_value);
1790     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1791     if (os::is_MP()) {
1792       lock();
1793     }
1794     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1795     if (counters != NULL) {
1796       cond_inc32(Assembler::equal,
1797                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1798     }
1799     jcc(Assembler::equal, DONE_LABEL);           // Success
1800 
1801     // Recursive locking.
1802     // The object is stack-locked: markword contains stack pointer to BasicLock.
1803     // Locked by current thread if difference with current SP is less than one page.
1804     subptr(tmpReg, rsp);
1805     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1806     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1807     movptr(Address(boxReg, 0), tmpReg);
1808     if (counters != NULL) {
1809       cond_inc32(Assembler::equal,
1810                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1811     }
1812     jmp(DONE_LABEL);
1813 
1814     bind(IsInflated);
1815     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + 2(monitor_value)
1816 
1817 #if INCLUDE_RTM_OPT
1818     // Use the same RTM locking code in 32- and 64-bit VM.
1819     if (use_rtm) {
1820       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1821                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1822     } else {
1823 #endif // INCLUDE_RTM_OPT
1824 
1825 #ifndef _LP64
1826     // The object is inflated.
1827     //
1828     // TODO-FIXME: eliminate the ugly use of manifest constants:
1829     //   Use markOopDesc::monitor_value instead of "2".
1830     //   use markOop::unused_mark() instead of "3".
1831     // The tmpReg value is an objectMonitor reference ORed with
1832     // markOopDesc::monitor_value (2).   We can either convert tmpReg to an
1833     // objectmonitor pointer by masking off the "2" bit or we can just
1834     // use tmpReg as an objectmonitor pointer but bias the objectmonitor
1835     // field offsets with "-2" to compensate for and annul the low-order tag bit.
1836     //
1837     // I use the latter as it avoids AGI stalls.
1838     // As such, we write "mov r, [tmpReg+OFFSETOF(Owner)-2]"
1839     // instead of "mov r, [tmpReg+OFFSETOF(Owner)]".
1840     //
1841     #define OFFSET_SKEWED(f) ((ObjectMonitor::f ## _offset_in_bytes())-2)
1842 
1843     // boxReg refers to the on-stack BasicLock in the current frame.
1844     // We'd like to write:
1845     //   set box->_displaced_header = markOop::unused_mark().  Any non-0 value suffices.
1846     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1847     // additional latency as we have another ST in the store buffer that must drain.
1848 
1849     if (EmitSync & 8192) {
1850        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1851        get_thread (scrReg);
1852        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1853        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1854        if (os::is_MP()) {
1855          lock();
1856        }
1857        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1858     } else
1859     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1860        movptr(scrReg, boxReg);
1861        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1862 
1863        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1864        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1865           // prefetchw [eax + Offset(_owner)-2]
1866           prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
1867        }
1868 
1869        if ((EmitSync & 64) == 0) {
1870          // Optimistic form: consider XORL tmpReg,tmpReg
1871          movptr(tmpReg, NULL_WORD);
1872        } else {
1873          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1874          // Test-And-CAS instead of CAS
1875          movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
1876          testptr(tmpReg, tmpReg);                   // Locked ?
1877          jccb  (Assembler::notZero, DONE_LABEL);
1878        }
1879 
1880        // Appears unlocked - try to swing _owner from null to non-null.
1881        // Ideally, I'd manifest "Self" with get_thread and then attempt
1882        // to CAS the register containing Self into m->Owner.
1883        // But we don't have enough registers, so instead we can either try to CAS
1884        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1885        // we later store "Self" into m->Owner.  Transiently storing a stack address
1886        // (rsp or the address of the box) into  m->owner is harmless.
1887        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1888        if (os::is_MP()) {
1889          lock();
1890        }
1891        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1892        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1893        jccb  (Assembler::notZero, DONE_LABEL);
1894        get_thread (scrReg);                    // beware: clobbers ICCs
1895        movptr(Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2), scrReg);
1896        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1897 
1898        // If the CAS fails we can either retry or pass control to the slow-path.
1899        // We use the latter tactic.
1900        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1901        // If the CAS was successful ...
1902        //   Self has acquired the lock
1903        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1904        // Intentional fall-through into DONE_LABEL ...
1905     } else {
1906        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1907        movptr(boxReg, tmpReg);
1908 
1909        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1910        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1911           // prefetchw [eax + Offset(_owner)-2]
1912           prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
1913        }
1914 
1915        if ((EmitSync & 64) == 0) {
1916          // Optimistic form
1917          xorptr  (tmpReg, tmpReg);
1918        } else {
1919          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1920          movptr(tmpReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));   // rax, = m->_owner
1921          testptr(tmpReg, tmpReg);                   // Locked ?
1922          jccb  (Assembler::notZero, DONE_LABEL);
1923        }
1924 
1925        // Appears unlocked - try to swing _owner from null to non-null.
1926        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1927        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1928        get_thread (scrReg);
1929        if (os::is_MP()) {
1930          lock();
1931        }
1932        cmpxchgptr(scrReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1933 
1934        // If the CAS fails we can either retry or pass control to the slow-path.
1935        // We use the latter tactic.
1936        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1937        // If the CAS was successful ...
1938        //   Self has acquired the lock
1939        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1940        // Intentional fall-through into DONE_LABEL ...
1941     }
1942 #else // _LP64
1943     // It's inflated
1944 
1945     // TODO: someday avoid the ST-before-CAS penalty by
1946     // relocating (deferring) the following ST.
1947     // We should also think about trying a CAS without having
1948     // fetched _owner.  If the CAS is successful we may
1949     // avoid an RTO->RTS upgrade on the $line.
1950 
1951     // Without cast to int32_t a movptr will destroy r10 which is typically obj
1952     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1953 
1954     movptr (boxReg, tmpReg);
1955     movptr (tmpReg, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1956     testptr(tmpReg, tmpReg);
1957     jccb   (Assembler::notZero, DONE_LABEL);
1958 
1959     // It's inflated and appears unlocked
1960     if (os::is_MP()) {
1961       lock();
1962     }
1963     cmpxchgptr(r15_thread, Address(boxReg, ObjectMonitor::owner_offset_in_bytes()-2));
1964     // Intentional fall-through into DONE_LABEL ...
1965 #endif // _LP64
1966 
1967 #if INCLUDE_RTM_OPT
1968     } // use_rtm()
1969 #endif
1970     // DONE_LABEL is a hot target - we'd really like to place it at the
1971     // start of cache line by padding with NOPs.
1972     // See the AMD and Intel software optimization manuals for the
1973     // most efficient "long" NOP encodings.
1974     // Unfortunately none of our alignment mechanisms suffice.
1975     bind(DONE_LABEL);
1976 
1977     // At DONE_LABEL the icc ZFlag is set as follows ...
1978     // Fast_Unlock uses the same protocol.
1979     // ZFlag == 1 -> Success
1980     // ZFlag == 0 -> Failure - force control through the slow-path
1981   }
1982 }
1983 
1984 // obj: object to unlock
1985 // box: box address (displaced header location), killed.  Must be EAX.
1986 // tmp: killed, cannot be obj nor box.
1987 //
1988 // Some commentary on balanced locking:
1989 //
1990 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1991 // Methods that don't have provably balanced locking are forced to run in the
1992 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1993 // The interpreter provides two properties:
1994 // I1:  At return-time the interpreter automatically and quietly unlocks any
1995 //      objects acquired the current activation (frame).  Recall that the
1996 //      interpreter maintains an on-stack list of locks currently held by
1997 //      a frame.
1998 // I2:  If a method attempts to unlock an object that is not held by the
1999 //      the frame the interpreter throws IMSX.
2000 //
2001 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
2002 // B() doesn't have provably balanced locking so it runs in the interpreter.
2003 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
2004 // is still locked by A().
2005 //
2006 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
2007 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
2008 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
2009 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
2010 
2011 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
2012   assert(boxReg == rax, "");
2013   assert_different_registers(objReg, boxReg, tmpReg);
2014 
2015   if (EmitSync & 4) {
2016     // Disable - inhibit all inlining.  Force control through the slow-path
2017     cmpptr (rsp, 0);
2018   } else
2019   if (EmitSync & 8) {
2020     Label DONE_LABEL;
2021     if (UseBiasedLocking) {
2022        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
2023     }
2024     // Classic stack-locking code ...
2025     // Check whether the displaced header is 0
2026     //(=> recursive unlock)
2027     movptr(tmpReg, Address(boxReg, 0));
2028     testptr(tmpReg, tmpReg);
2029     jccb(Assembler::zero, DONE_LABEL);
2030     // If not recursive lock, reset the header to displaced header
2031     if (os::is_MP()) {
2032       lock();
2033     }
2034     cmpxchgptr(tmpReg, Address(objReg, 0));   // Uses RAX which is box
2035     bind(DONE_LABEL);
2036   } else {
2037     Label DONE_LABEL, Stacked, CheckSucc;
2038 
2039     // Critically, the biased locking test must have precedence over
2040     // and appear before the (box->dhw == 0) recursive stack-lock test.
2041     if (UseBiasedLocking && !UseOptoBiasInlining) {
2042        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
2043     }
2044 
2045 #if INCLUDE_RTM_OPT
2046     if (UseRTMForStackLocks && use_rtm) {
2047       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
2048       Label L_regular_unlock;
2049       movptr(tmpReg, Address(objReg, 0));           // fetch markword
2050       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
2051       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
2052       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
2053       xend();                                       // otherwise end...
2054       jmp(DONE_LABEL);                              // ... and we're done
2055       bind(L_regular_unlock);
2056     }
2057 #endif
2058 
2059     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
2060     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
2061     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
2062     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2063     jccb  (Assembler::zero, Stacked);
2064 
2065     // It's inflated.
2066 #if INCLUDE_RTM_OPT
2067     if (use_rtm) {
2068       Label L_regular_inflated_unlock;
2069       // Clean monitor_value bit to get valid pointer
2070       int owner_offset = ObjectMonitor::owner_offset_in_bytes() - markOopDesc::monitor_value;
2071       movptr(boxReg, Address(tmpReg, owner_offset));
2072       testptr(boxReg, boxReg);
2073       jccb(Assembler::notZero, L_regular_inflated_unlock);
2074       xend();
2075       jmpb(DONE_LABEL);
2076       bind(L_regular_inflated_unlock);
2077     }
2078 #endif
2079 
2080     // Despite our balanced locking property we still check that m->_owner == Self
2081     // as java routines or native JNI code called by this thread might
2082     // have released the lock.
2083     // Refer to the comments in synchronizer.cpp for how we might encode extra
2084     // state in _succ so we can avoid fetching EntryList|cxq.
2085     //
2086     // I'd like to add more cases in fast_lock() and fast_unlock() --
2087     // such as recursive enter and exit -- but we have to be wary of
2088     // I$ bloat, T$ effects and BP$ effects.
2089     //
2090     // If there's no contention try a 1-0 exit.  That is, exit without
2091     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2092     // we detect and recover from the race that the 1-0 exit admits.
2093     //
2094     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2095     // before it STs null into _owner, releasing the lock.  Updates
2096     // to data protected by the critical section must be visible before
2097     // we drop the lock (and thus before any other thread could acquire
2098     // the lock and observe the fields protected by the lock).
2099     // IA32's memory-model is SPO, so STs are ordered with respect to
2100     // each other and there's no need for an explicit barrier (fence).
2101     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2102 #ifndef _LP64
2103     get_thread (boxReg);
2104     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2105       // prefetchw [ebx + Offset(_owner)-2]
2106       prefetchw(Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2107     }
2108 
2109     // Note that we could employ various encoding schemes to reduce
2110     // the number of loads below (currently 4) to just 2 or 3.
2111     // Refer to the comments in synchronizer.cpp.
2112     // In practice the chain of fetches doesn't seem to impact performance, however.
2113     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2114        // Attempt to reduce branch density - AMD's branch predictor.
2115        xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2116        orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
2117        orptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
2118        orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
2119        jccb  (Assembler::notZero, DONE_LABEL);
2120        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
2121        jmpb  (DONE_LABEL);
2122     } else {
2123        xorptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2124        orptr(boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
2125        jccb  (Assembler::notZero, DONE_LABEL);
2126        movptr(boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
2127        orptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
2128        jccb  (Assembler::notZero, CheckSucc);
2129        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
2130        jmpb  (DONE_LABEL);
2131     }
2132 
2133     // The Following code fragment (EmitSync & 65536) improves the performance of
2134     // contended applications and contended synchronization microbenchmarks.
2135     // Unfortunately the emission of the code - even though not executed - causes regressions
2136     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2137     // with an equal number of never-executed NOPs results in the same regression.
2138     // We leave it off by default.
2139 
2140     if ((EmitSync & 65536) != 0) {
2141        Label LSuccess, LGoSlowPath ;
2142 
2143        bind  (CheckSucc);
2144 
2145        // Optional pre-test ... it's safe to elide this
2146        if ((EmitSync & 16) == 0) {
2147           cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
2148           jccb  (Assembler::zero, LGoSlowPath);
2149        }
2150 
2151        // We have a classic Dekker-style idiom:
2152        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2153        // There are a number of ways to implement the barrier:
2154        // (1) lock:andl &m->_owner, 0
2155        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2156        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2157        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2158        // (2) If supported, an explicit MFENCE is appealing.
2159        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2160        //     particularly if the write-buffer is full as might be the case if
2161        //     if stores closely precede the fence or fence-equivalent instruction.
2162        //     In more modern implementations MFENCE appears faster, however.
2163        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2164        //     The $lines underlying the top-of-stack should be in M-state.
2165        //     The locked add instruction is serializing, of course.
2166        // (4) Use xchg, which is serializing
2167        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2168        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2169        //     The integer condition codes will tell us if succ was 0.
2170        //     Since _succ and _owner should reside in the same $line and
2171        //     we just stored into _owner, it's likely that the $line
2172        //     remains in M-state for the lock:orl.
2173        //
2174        // We currently use (3), although it's likely that switching to (2)
2175        // is correct for the future.
2176 
2177        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), NULL_WORD);
2178        if (os::is_MP()) {
2179           if (VM_Version::supports_sse2() && 1 == FenceInstruction) {
2180             mfence();
2181           } else {
2182             lock (); addptr(Address(rsp, 0), 0);
2183           }
2184        }
2185        // Ratify _succ remains non-null
2186        cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), 0);
2187        jccb  (Assembler::notZero, LSuccess);
2188 
2189        xorptr(boxReg, boxReg);                  // box is really EAX
2190        if (os::is_MP()) { lock(); }
2191        cmpxchgptr(rsp, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2192        jccb  (Assembler::notEqual, LSuccess);
2193        // Since we're low on registers we installed rsp as a placeholding in _owner.
2194        // Now install Self over rsp.  This is safe as we're transitioning from
2195        // non-null to non=null
2196        get_thread (boxReg);
2197        movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), boxReg);
2198        // Intentional fall-through into LGoSlowPath ...
2199 
2200        bind  (LGoSlowPath);
2201        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2202        jmpb  (DONE_LABEL);
2203 
2204        bind  (LSuccess);
2205        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2206        jmpb  (DONE_LABEL);
2207     }
2208 
2209     bind (Stacked);
2210     // It's not inflated and it's not recursively stack-locked and it's not biased.
2211     // It must be stack-locked.
2212     // Try to reset the header to displaced header.
2213     // The "box" value on the stack is stable, so we can reload
2214     // and be assured we observe the same value as above.
2215     movptr(tmpReg, Address(boxReg, 0));
2216     if (os::is_MP()) {
2217       lock();
2218     }
2219     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2220     // Intention fall-thru into DONE_LABEL
2221 
2222     // DONE_LABEL is a hot target - we'd really like to place it at the
2223     // start of cache line by padding with NOPs.
2224     // See the AMD and Intel software optimization manuals for the
2225     // most efficient "long" NOP encodings.
2226     // Unfortunately none of our alignment mechanisms suffice.
2227     if ((EmitSync & 65536) == 0) {
2228        bind (CheckSucc);
2229     }
2230 #else // _LP64
2231     // It's inflated
2232     movptr(boxReg, Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2233     xorptr(boxReg, r15_thread);
2234     orptr (boxReg, Address (tmpReg, ObjectMonitor::recursions_offset_in_bytes()-2));
2235     jccb  (Assembler::notZero, DONE_LABEL);
2236     movptr(boxReg, Address (tmpReg, ObjectMonitor::cxq_offset_in_bytes()-2));
2237     orptr (boxReg, Address (tmpReg, ObjectMonitor::EntryList_offset_in_bytes()-2));
2238     jccb  (Assembler::notZero, CheckSucc);
2239     movptr(Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
2240     jmpb  (DONE_LABEL);
2241 
2242     if ((EmitSync & 65536) == 0) {
2243       Label LSuccess, LGoSlowPath ;
2244       bind  (CheckSucc);
2245       cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
2246       jccb  (Assembler::zero, LGoSlowPath);
2247 
2248       // I'd much rather use lock:andl m->_owner, 0 as it's faster than the
2249       // the explicit ST;MEMBAR combination, but masm doesn't currently support
2250       // "ANDQ M,IMM".  Don't use MFENCE here.  lock:add to TOS, xchg, etc
2251       // are all faster when the write buffer is populated.
2252       movptr (Address (tmpReg, ObjectMonitor::owner_offset_in_bytes()-2), (int32_t)NULL_WORD);
2253       if (os::is_MP()) {
2254          lock (); addl (Address(rsp, 0), 0);
2255       }
2256       cmpptr(Address (tmpReg, ObjectMonitor::succ_offset_in_bytes()-2), (int32_t)NULL_WORD);
2257       jccb  (Assembler::notZero, LSuccess);
2258 
2259       movptr (boxReg, (int32_t)NULL_WORD);                   // box is really EAX
2260       if (os::is_MP()) { lock(); }
2261       cmpxchgptr(r15_thread, Address(tmpReg, ObjectMonitor::owner_offset_in_bytes()-2));
2262       jccb  (Assembler::notEqual, LSuccess);
2263       // Intentional fall-through into slow-path
2264 
2265       bind  (LGoSlowPath);
2266       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2267       jmpb  (DONE_LABEL);
2268 
2269       bind  (LSuccess);
2270       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2271       jmpb  (DONE_LABEL);
2272     }
2273 
2274     bind  (Stacked);
2275     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2276     if (os::is_MP()) { lock(); }
2277     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2278 
2279     if (EmitSync & 65536) {
2280        bind (CheckSucc);
2281     }
2282 #endif
2283     bind(DONE_LABEL);
2284     // Avoid branch to branch on AMD processors
2285     if (EmitSync & 32768) {
2286        nop();
2287     }
2288   }
2289 }
2290 #endif // COMPILER2
2291 
2292 void MacroAssembler::c2bool(Register x) {
2293   // implements x == 0 ? 0 : 1
2294   // note: must only look at least-significant byte of x
2295   //       since C-style booleans are stored in one byte
2296   //       only! (was bug)
2297   andl(x, 0xFF);
2298   setb(Assembler::notZero, x);
2299 }
2300 
2301 // Wouldn't need if AddressLiteral version had new name
2302 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2303   Assembler::call(L, rtype);
2304 }
2305 
2306 void MacroAssembler::call(Register entry) {
2307   Assembler::call(entry);
2308 }
2309 
2310 void MacroAssembler::call(AddressLiteral entry) {
2311   if (reachable(entry)) {
2312     Assembler::call_literal(entry.target(), entry.rspec());
2313   } else {
2314     lea(rscratch1, entry);
2315     Assembler::call(rscratch1);
2316   }
2317 }
2318 
2319 void MacroAssembler::ic_call(address entry) {
2320   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2321   movptr(rax, (intptr_t)Universe::non_oop_word());
2322   call(AddressLiteral(entry, rh));
2323 }
2324 
2325 // Implementation of call_VM versions
2326 
2327 void MacroAssembler::call_VM(Register oop_result,
2328                              address entry_point,
2329                              bool check_exceptions) {
2330   Label C, E;
2331   call(C, relocInfo::none);
2332   jmp(E);
2333 
2334   bind(C);
2335   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2336   ret(0);
2337 
2338   bind(E);
2339 }
2340 
2341 void MacroAssembler::call_VM(Register oop_result,
2342                              address entry_point,
2343                              Register arg_1,
2344                              bool check_exceptions) {
2345   Label C, E;
2346   call(C, relocInfo::none);
2347   jmp(E);
2348 
2349   bind(C);
2350   pass_arg1(this, arg_1);
2351   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2352   ret(0);
2353 
2354   bind(E);
2355 }
2356 
2357 void MacroAssembler::call_VM(Register oop_result,
2358                              address entry_point,
2359                              Register arg_1,
2360                              Register arg_2,
2361                              bool check_exceptions) {
2362   Label C, E;
2363   call(C, relocInfo::none);
2364   jmp(E);
2365 
2366   bind(C);
2367 
2368   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2369 
2370   pass_arg2(this, arg_2);
2371   pass_arg1(this, arg_1);
2372   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2373   ret(0);
2374 
2375   bind(E);
2376 }
2377 
2378 void MacroAssembler::call_VM(Register oop_result,
2379                              address entry_point,
2380                              Register arg_1,
2381                              Register arg_2,
2382                              Register arg_3,
2383                              bool check_exceptions) {
2384   Label C, E;
2385   call(C, relocInfo::none);
2386   jmp(E);
2387 
2388   bind(C);
2389 
2390   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2391   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2392   pass_arg3(this, arg_3);
2393 
2394   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2395   pass_arg2(this, arg_2);
2396 
2397   pass_arg1(this, arg_1);
2398   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2399   ret(0);
2400 
2401   bind(E);
2402 }
2403 
2404 void MacroAssembler::call_VM(Register oop_result,
2405                              Register last_java_sp,
2406                              address entry_point,
2407                              int number_of_arguments,
2408                              bool check_exceptions) {
2409   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2410   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2411 }
2412 
2413 void MacroAssembler::call_VM(Register oop_result,
2414                              Register last_java_sp,
2415                              address entry_point,
2416                              Register arg_1,
2417                              bool check_exceptions) {
2418   pass_arg1(this, arg_1);
2419   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2420 }
2421 
2422 void MacroAssembler::call_VM(Register oop_result,
2423                              Register last_java_sp,
2424                              address entry_point,
2425                              Register arg_1,
2426                              Register arg_2,
2427                              bool check_exceptions) {
2428 
2429   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2430   pass_arg2(this, arg_2);
2431   pass_arg1(this, arg_1);
2432   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2433 }
2434 
2435 void MacroAssembler::call_VM(Register oop_result,
2436                              Register last_java_sp,
2437                              address entry_point,
2438                              Register arg_1,
2439                              Register arg_2,
2440                              Register arg_3,
2441                              bool check_exceptions) {
2442   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2443   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2444   pass_arg3(this, arg_3);
2445   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2446   pass_arg2(this, arg_2);
2447   pass_arg1(this, arg_1);
2448   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2449 }
2450 
2451 void MacroAssembler::super_call_VM(Register oop_result,
2452                                    Register last_java_sp,
2453                                    address entry_point,
2454                                    int number_of_arguments,
2455                                    bool check_exceptions) {
2456   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2457   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2458 }
2459 
2460 void MacroAssembler::super_call_VM(Register oop_result,
2461                                    Register last_java_sp,
2462                                    address entry_point,
2463                                    Register arg_1,
2464                                    bool check_exceptions) {
2465   pass_arg1(this, arg_1);
2466   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2467 }
2468 
2469 void MacroAssembler::super_call_VM(Register oop_result,
2470                                    Register last_java_sp,
2471                                    address entry_point,
2472                                    Register arg_1,
2473                                    Register arg_2,
2474                                    bool check_exceptions) {
2475 
2476   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2477   pass_arg2(this, arg_2);
2478   pass_arg1(this, arg_1);
2479   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2480 }
2481 
2482 void MacroAssembler::super_call_VM(Register oop_result,
2483                                    Register last_java_sp,
2484                                    address entry_point,
2485                                    Register arg_1,
2486                                    Register arg_2,
2487                                    Register arg_3,
2488                                    bool check_exceptions) {
2489   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2490   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2491   pass_arg3(this, arg_3);
2492   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2493   pass_arg2(this, arg_2);
2494   pass_arg1(this, arg_1);
2495   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2496 }
2497 
2498 void MacroAssembler::call_VM_base(Register oop_result,
2499                                   Register java_thread,
2500                                   Register last_java_sp,
2501                                   address  entry_point,
2502                                   int      number_of_arguments,
2503                                   bool     check_exceptions) {
2504   // determine java_thread register
2505   if (!java_thread->is_valid()) {
2506 #ifdef _LP64
2507     java_thread = r15_thread;
2508 #else
2509     java_thread = rdi;
2510     get_thread(java_thread);
2511 #endif // LP64
2512   }
2513   // determine last_java_sp register
2514   if (!last_java_sp->is_valid()) {
2515     last_java_sp = rsp;
2516   }
2517   // debugging support
2518   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2519   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2520 #ifdef ASSERT
2521   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2522   // r12 is the heapbase.
2523   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2524 #endif // ASSERT
2525 
2526   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2527   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2528 
2529   // push java thread (becomes first argument of C function)
2530 
2531   NOT_LP64(push(java_thread); number_of_arguments++);
2532   LP64_ONLY(mov(c_rarg0, r15_thread));
2533 
2534   // set last Java frame before call
2535   assert(last_java_sp != rbp, "can't use ebp/rbp");
2536 
2537   // Only interpreter should have to set fp
2538   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2539 
2540   // do the call, remove parameters
2541   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2542 
2543   // restore the thread (cannot use the pushed argument since arguments
2544   // may be overwritten by C code generated by an optimizing compiler);
2545   // however can use the register value directly if it is callee saved.
2546   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2547     // rdi & rsi (also r15) are callee saved -> nothing to do
2548 #ifdef ASSERT
2549     guarantee(java_thread != rax, "change this code");
2550     push(rax);
2551     { Label L;
2552       get_thread(rax);
2553       cmpptr(java_thread, rax);
2554       jcc(Assembler::equal, L);
2555       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2556       bind(L);
2557     }
2558     pop(rax);
2559 #endif
2560   } else {
2561     get_thread(java_thread);
2562   }
2563   // reset last Java frame
2564   // Only interpreter should have to clear fp
2565   reset_last_Java_frame(java_thread, true, false);
2566 
2567 #ifndef CC_INTERP
2568    // C++ interp handles this in the interpreter
2569   check_and_handle_popframe(java_thread);
2570   check_and_handle_earlyret(java_thread);
2571 #endif /* CC_INTERP */
2572 
2573   if (check_exceptions) {
2574     // check for pending exceptions (java_thread is set upon return)
2575     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2576 #ifndef _LP64
2577     jump_cc(Assembler::notEqual,
2578             RuntimeAddress(StubRoutines::forward_exception_entry()));
2579 #else
2580     // This used to conditionally jump to forward_exception however it is
2581     // possible if we relocate that the branch will not reach. So we must jump
2582     // around so we can always reach
2583 
2584     Label ok;
2585     jcc(Assembler::equal, ok);
2586     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2587     bind(ok);
2588 #endif // LP64
2589   }
2590 
2591   // get oop result if there is one and reset the value in the thread
2592   if (oop_result->is_valid()) {
2593     get_vm_result(oop_result, java_thread);
2594   }
2595 }
2596 
2597 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2598 
2599   // Calculate the value for last_Java_sp
2600   // somewhat subtle. call_VM does an intermediate call
2601   // which places a return address on the stack just under the
2602   // stack pointer as the user finsihed with it. This allows
2603   // use to retrieve last_Java_pc from last_Java_sp[-1].
2604   // On 32bit we then have to push additional args on the stack to accomplish
2605   // the actual requested call. On 64bit call_VM only can use register args
2606   // so the only extra space is the return address that call_VM created.
2607   // This hopefully explains the calculations here.
2608 
2609 #ifdef _LP64
2610   // We've pushed one address, correct last_Java_sp
2611   lea(rax, Address(rsp, wordSize));
2612 #else
2613   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2614 #endif // LP64
2615 
2616   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2617 
2618 }
2619 
2620 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2621   call_VM_leaf_base(entry_point, number_of_arguments);
2622 }
2623 
2624 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2625   pass_arg0(this, arg_0);
2626   call_VM_leaf(entry_point, 1);
2627 }
2628 
2629 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2630 
2631   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2632   pass_arg1(this, arg_1);
2633   pass_arg0(this, arg_0);
2634   call_VM_leaf(entry_point, 2);
2635 }
2636 
2637 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2638   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2639   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2640   pass_arg2(this, arg_2);
2641   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2642   pass_arg1(this, arg_1);
2643   pass_arg0(this, arg_0);
2644   call_VM_leaf(entry_point, 3);
2645 }
2646 
2647 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2648   pass_arg0(this, arg_0);
2649   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2650 }
2651 
2652 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2653 
2654   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2655   pass_arg1(this, arg_1);
2656   pass_arg0(this, arg_0);
2657   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2658 }
2659 
2660 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2661   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2662   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2663   pass_arg2(this, arg_2);
2664   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2665   pass_arg1(this, arg_1);
2666   pass_arg0(this, arg_0);
2667   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2668 }
2669 
2670 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2671   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2672   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2673   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2674   pass_arg3(this, arg_3);
2675   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2676   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2677   pass_arg2(this, arg_2);
2678   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2679   pass_arg1(this, arg_1);
2680   pass_arg0(this, arg_0);
2681   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2682 }
2683 
2684 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2685   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2686   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2687   verify_oop(oop_result, "broken oop in call_VM_base");
2688 }
2689 
2690 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2691   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2692   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2693 }
2694 
2695 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2696 }
2697 
2698 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2699 }
2700 
2701 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2702   if (reachable(src1)) {
2703     cmpl(as_Address(src1), imm);
2704   } else {
2705     lea(rscratch1, src1);
2706     cmpl(Address(rscratch1, 0), imm);
2707   }
2708 }
2709 
2710 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2711   assert(!src2.is_lval(), "use cmpptr");
2712   if (reachable(src2)) {
2713     cmpl(src1, as_Address(src2));
2714   } else {
2715     lea(rscratch1, src2);
2716     cmpl(src1, Address(rscratch1, 0));
2717   }
2718 }
2719 
2720 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2721   Assembler::cmpl(src1, imm);
2722 }
2723 
2724 void MacroAssembler::cmp32(Register src1, Address src2) {
2725   Assembler::cmpl(src1, src2);
2726 }
2727 
2728 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2729   ucomisd(opr1, opr2);
2730 
2731   Label L;
2732   if (unordered_is_less) {
2733     movl(dst, -1);
2734     jcc(Assembler::parity, L);
2735     jcc(Assembler::below , L);
2736     movl(dst, 0);
2737     jcc(Assembler::equal , L);
2738     increment(dst);
2739   } else { // unordered is greater
2740     movl(dst, 1);
2741     jcc(Assembler::parity, L);
2742     jcc(Assembler::above , L);
2743     movl(dst, 0);
2744     jcc(Assembler::equal , L);
2745     decrementl(dst);
2746   }
2747   bind(L);
2748 }
2749 
2750 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2751   ucomiss(opr1, opr2);
2752 
2753   Label L;
2754   if (unordered_is_less) {
2755     movl(dst, -1);
2756     jcc(Assembler::parity, L);
2757     jcc(Assembler::below , L);
2758     movl(dst, 0);
2759     jcc(Assembler::equal , L);
2760     increment(dst);
2761   } else { // unordered is greater
2762     movl(dst, 1);
2763     jcc(Assembler::parity, L);
2764     jcc(Assembler::above , L);
2765     movl(dst, 0);
2766     jcc(Assembler::equal , L);
2767     decrementl(dst);
2768   }
2769   bind(L);
2770 }
2771 
2772 
2773 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2774   if (reachable(src1)) {
2775     cmpb(as_Address(src1), imm);
2776   } else {
2777     lea(rscratch1, src1);
2778     cmpb(Address(rscratch1, 0), imm);
2779   }
2780 }
2781 
2782 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2783 #ifdef _LP64
2784   if (src2.is_lval()) {
2785     movptr(rscratch1, src2);
2786     Assembler::cmpq(src1, rscratch1);
2787   } else if (reachable(src2)) {
2788     cmpq(src1, as_Address(src2));
2789   } else {
2790     lea(rscratch1, src2);
2791     Assembler::cmpq(src1, Address(rscratch1, 0));
2792   }
2793 #else
2794   if (src2.is_lval()) {
2795     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2796   } else {
2797     cmpl(src1, as_Address(src2));
2798   }
2799 #endif // _LP64
2800 }
2801 
2802 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2803   assert(src2.is_lval(), "not a mem-mem compare");
2804 #ifdef _LP64
2805   // moves src2's literal address
2806   movptr(rscratch1, src2);
2807   Assembler::cmpq(src1, rscratch1);
2808 #else
2809   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2810 #endif // _LP64
2811 }
2812 
2813 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2814   if (reachable(adr)) {
2815     if (os::is_MP())
2816       lock();
2817     cmpxchgptr(reg, as_Address(adr));
2818   } else {
2819     lea(rscratch1, adr);
2820     if (os::is_MP())
2821       lock();
2822     cmpxchgptr(reg, Address(rscratch1, 0));
2823   }
2824 }
2825 
2826 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2827   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2828 }
2829 
2830 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2831   if (reachable(src)) {
2832     Assembler::comisd(dst, as_Address(src));
2833   } else {
2834     lea(rscratch1, src);
2835     Assembler::comisd(dst, Address(rscratch1, 0));
2836   }
2837 }
2838 
2839 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2840   if (reachable(src)) {
2841     Assembler::comiss(dst, as_Address(src));
2842   } else {
2843     lea(rscratch1, src);
2844     Assembler::comiss(dst, Address(rscratch1, 0));
2845   }
2846 }
2847 
2848 
2849 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2850   Condition negated_cond = negate_condition(cond);
2851   Label L;
2852   jcc(negated_cond, L);
2853   pushf(); // Preserve flags
2854   atomic_incl(counter_addr);
2855   popf();
2856   bind(L);
2857 }
2858 
2859 int MacroAssembler::corrected_idivl(Register reg) {
2860   // Full implementation of Java idiv and irem; checks for
2861   // special case as described in JVM spec., p.243 & p.271.
2862   // The function returns the (pc) offset of the idivl
2863   // instruction - may be needed for implicit exceptions.
2864   //
2865   //         normal case                           special case
2866   //
2867   // input : rax,: dividend                         min_int
2868   //         reg: divisor   (may not be rax,/rdx)   -1
2869   //
2870   // output: rax,: quotient  (= rax, idiv reg)       min_int
2871   //         rdx: remainder (= rax, irem reg)       0
2872   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2873   const int min_int = 0x80000000;
2874   Label normal_case, special_case;
2875 
2876   // check for special case
2877   cmpl(rax, min_int);
2878   jcc(Assembler::notEqual, normal_case);
2879   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2880   cmpl(reg, -1);
2881   jcc(Assembler::equal, special_case);
2882 
2883   // handle normal case
2884   bind(normal_case);
2885   cdql();
2886   int idivl_offset = offset();
2887   idivl(reg);
2888 
2889   // normal and special case exit
2890   bind(special_case);
2891 
2892   return idivl_offset;
2893 }
2894 
2895 
2896 
2897 void MacroAssembler::decrementl(Register reg, int value) {
2898   if (value == min_jint) {subl(reg, value) ; return; }
2899   if (value <  0) { incrementl(reg, -value); return; }
2900   if (value == 0) {                        ; return; }
2901   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2902   /* else */      { subl(reg, value)       ; return; }
2903 }
2904 
2905 void MacroAssembler::decrementl(Address dst, int value) {
2906   if (value == min_jint) {subl(dst, value) ; return; }
2907   if (value <  0) { incrementl(dst, -value); return; }
2908   if (value == 0) {                        ; return; }
2909   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2910   /* else */      { subl(dst, value)       ; return; }
2911 }
2912 
2913 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2914   assert (shift_value > 0, "illegal shift value");
2915   Label _is_positive;
2916   testl (reg, reg);
2917   jcc (Assembler::positive, _is_positive);
2918   int offset = (1 << shift_value) - 1 ;
2919 
2920   if (offset == 1) {
2921     incrementl(reg);
2922   } else {
2923     addl(reg, offset);
2924   }
2925 
2926   bind (_is_positive);
2927   sarl(reg, shift_value);
2928 }
2929 
2930 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2931   if (reachable(src)) {
2932     Assembler::divsd(dst, as_Address(src));
2933   } else {
2934     lea(rscratch1, src);
2935     Assembler::divsd(dst, Address(rscratch1, 0));
2936   }
2937 }
2938 
2939 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2940   if (reachable(src)) {
2941     Assembler::divss(dst, as_Address(src));
2942   } else {
2943     lea(rscratch1, src);
2944     Assembler::divss(dst, Address(rscratch1, 0));
2945   }
2946 }
2947 
2948 // !defined(COMPILER2) is because of stupid core builds
2949 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
2950 void MacroAssembler::empty_FPU_stack() {
2951   if (VM_Version::supports_mmx()) {
2952     emms();
2953   } else {
2954     for (int i = 8; i-- > 0; ) ffree(i);
2955   }
2956 }
2957 #endif // !LP64 || C1 || !C2
2958 
2959 
2960 // Defines obj, preserves var_size_in_bytes
2961 void MacroAssembler::eden_allocate(Register obj,
2962                                    Register var_size_in_bytes,
2963                                    int con_size_in_bytes,
2964                                    Register t1,
2965                                    Label& slow_case) {
2966   assert(obj == rax, "obj must be in rax, for cmpxchg");
2967   assert_different_registers(obj, var_size_in_bytes, t1);
2968   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
2969     jmp(slow_case);
2970   } else {
2971     Register end = t1;
2972     Label retry;
2973     bind(retry);
2974     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2975     movptr(obj, heap_top);
2976     if (var_size_in_bytes == noreg) {
2977       lea(end, Address(obj, con_size_in_bytes));
2978     } else {
2979       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2980     }
2981     // if end < obj then we wrapped around => object too long => slow case
2982     cmpptr(end, obj);
2983     jcc(Assembler::below, slow_case);
2984     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2985     jcc(Assembler::above, slow_case);
2986     // Compare obj with the top addr, and if still equal, store the new top addr in
2987     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2988     // it otherwise. Use lock prefix for atomicity on MPs.
2989     locked_cmpxchgptr(end, heap_top);
2990     jcc(Assembler::notEqual, retry);
2991   }
2992 }
2993 
2994 void MacroAssembler::enter() {
2995   push(rbp);
2996   mov(rbp, rsp);
2997 }
2998 
2999 // A 5 byte nop that is safe for patching (see patch_verified_entry)
3000 void MacroAssembler::fat_nop() {
3001   if (UseAddressNop) {
3002     addr_nop_5();
3003   } else {
3004     emit_int8(0x26); // es:
3005     emit_int8(0x2e); // cs:
3006     emit_int8(0x64); // fs:
3007     emit_int8(0x65); // gs:
3008     emit_int8((unsigned char)0x90);
3009   }
3010 }
3011 
3012 void MacroAssembler::fcmp(Register tmp) {
3013   fcmp(tmp, 1, true, true);
3014 }
3015 
3016 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
3017   assert(!pop_right || pop_left, "usage error");
3018   if (VM_Version::supports_cmov()) {
3019     assert(tmp == noreg, "unneeded temp");
3020     if (pop_left) {
3021       fucomip(index);
3022     } else {
3023       fucomi(index);
3024     }
3025     if (pop_right) {
3026       fpop();
3027     }
3028   } else {
3029     assert(tmp != noreg, "need temp");
3030     if (pop_left) {
3031       if (pop_right) {
3032         fcompp();
3033       } else {
3034         fcomp(index);
3035       }
3036     } else {
3037       fcom(index);
3038     }
3039     // convert FPU condition into eflags condition via rax,
3040     save_rax(tmp);
3041     fwait(); fnstsw_ax();
3042     sahf();
3043     restore_rax(tmp);
3044   }
3045   // condition codes set as follows:
3046   //
3047   // CF (corresponds to C0) if x < y
3048   // PF (corresponds to C2) if unordered
3049   // ZF (corresponds to C3) if x = y
3050 }
3051 
3052 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3053   fcmp2int(dst, unordered_is_less, 1, true, true);
3054 }
3055 
3056 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3057   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3058   Label L;
3059   if (unordered_is_less) {
3060     movl(dst, -1);
3061     jcc(Assembler::parity, L);
3062     jcc(Assembler::below , L);
3063     movl(dst, 0);
3064     jcc(Assembler::equal , L);
3065     increment(dst);
3066   } else { // unordered is greater
3067     movl(dst, 1);
3068     jcc(Assembler::parity, L);
3069     jcc(Assembler::above , L);
3070     movl(dst, 0);
3071     jcc(Assembler::equal , L);
3072     decrementl(dst);
3073   }
3074   bind(L);
3075 }
3076 
3077 void MacroAssembler::fld_d(AddressLiteral src) {
3078   fld_d(as_Address(src));
3079 }
3080 
3081 void MacroAssembler::fld_s(AddressLiteral src) {
3082   fld_s(as_Address(src));
3083 }
3084 
3085 void MacroAssembler::fld_x(AddressLiteral src) {
3086   Assembler::fld_x(as_Address(src));
3087 }
3088 
3089 void MacroAssembler::fldcw(AddressLiteral src) {
3090   Assembler::fldcw(as_Address(src));
3091 }
3092 
3093 void MacroAssembler::pow_exp_core_encoding() {
3094   // kills rax, rcx, rdx
3095   subptr(rsp,sizeof(jdouble));
3096   // computes 2^X. Stack: X ...
3097   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
3098   // keep it on the thread's stack to compute 2^int(X) later
3099   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
3100   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
3101   fld_s(0);                 // Stack: X X ...
3102   frndint();                // Stack: int(X) X ...
3103   fsuba(1);                 // Stack: int(X) X-int(X) ...
3104   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
3105   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
3106   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
3107   faddp(1);                 // Stack: 2^(X-int(X))
3108   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
3109   // shift int(X)+1023 to exponent position.
3110   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
3111   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
3112   // values so detect them and set result to NaN.
3113   movl(rax,Address(rsp,0));
3114   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
3115   addl(rax, 1023);
3116   movl(rdx,rax);
3117   shll(rax,20);
3118   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
3119   addl(rdx,1);
3120   // Check that 1 < int(X)+1023+1 < 2048
3121   // in 3 steps:
3122   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
3123   // 2- (int(X)+1023+1)&-2048 != 0
3124   // 3- (int(X)+1023+1)&-2048 != 1
3125   // Do 2- first because addl just updated the flags.
3126   cmov32(Assembler::equal,rax,rcx);
3127   cmpl(rdx,1);
3128   cmov32(Assembler::equal,rax,rcx);
3129   testl(rdx,rcx);
3130   cmov32(Assembler::notEqual,rax,rcx);
3131   movl(Address(rsp,4),rax);
3132   movl(Address(rsp,0),0);
3133   fmul_d(Address(rsp,0));   // Stack: 2^X ...
3134   addptr(rsp,sizeof(jdouble));
3135 }
3136 
3137 void MacroAssembler::increase_precision() {
3138   subptr(rsp, BytesPerWord);
3139   fnstcw(Address(rsp, 0));
3140   movl(rax, Address(rsp, 0));
3141   orl(rax, 0x300);
3142   push(rax);
3143   fldcw(Address(rsp, 0));
3144   pop(rax);
3145 }
3146 
3147 void MacroAssembler::restore_precision() {
3148   fldcw(Address(rsp, 0));
3149   addptr(rsp, BytesPerWord);
3150 }
3151 
3152 void MacroAssembler::fast_pow() {
3153   // computes X^Y = 2^(Y * log2(X))
3154   // if fast computation is not possible, result is NaN. Requires
3155   // fallback from user of this macro.
3156   // increase precision for intermediate steps of the computation
3157   BLOCK_COMMENT("fast_pow {");
3158   increase_precision();
3159   fyl2x();                 // Stack: (Y*log2(X)) ...
3160   pow_exp_core_encoding(); // Stack: exp(X) ...
3161   restore_precision();
3162   BLOCK_COMMENT("} fast_pow");
3163 }
3164 
3165 void MacroAssembler::fast_exp() {
3166   // computes exp(X) = 2^(X * log2(e))
3167   // if fast computation is not possible, result is NaN. Requires
3168   // fallback from user of this macro.
3169   // increase precision for intermediate steps of the computation
3170   increase_precision();
3171   fldl2e();                // Stack: log2(e) X ...
3172   fmulp(1);                // Stack: (X*log2(e)) ...
3173   pow_exp_core_encoding(); // Stack: exp(X) ...
3174   restore_precision();
3175 }
3176 
3177 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
3178   // kills rax, rcx, rdx
3179   // pow and exp needs 2 extra registers on the fpu stack.
3180   Label slow_case, done;
3181   Register tmp = noreg;
3182   if (!VM_Version::supports_cmov()) {
3183     // fcmp needs a temporary so preserve rdx,
3184     tmp = rdx;
3185   }
3186   Register tmp2 = rax;
3187   Register tmp3 = rcx;
3188 
3189   if (is_exp) {
3190     // Stack: X
3191     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
3192     fast_exp();                 // Stack: exp(X) X
3193     fcmp(tmp, 0, false, false); // Stack: exp(X) X
3194     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
3195     jcc(Assembler::parity, slow_case);
3196     // get rid of duplicate argument. Stack: exp(X)
3197     if (num_fpu_regs_in_use > 0) {
3198       fxch();
3199       fpop();
3200     } else {
3201       ffree(1);
3202     }
3203     jmp(done);
3204   } else {
3205     // Stack: X Y
3206     Label x_negative, y_odd;
3207 
3208     fldz();                     // Stack: 0 X Y
3209     fcmp(tmp, 1, true, false);  // Stack: X Y
3210     jcc(Assembler::above, x_negative);
3211 
3212     // X >= 0
3213 
3214     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3215     fld_s(1);                   // Stack: X Y X Y
3216     fast_pow();                 // Stack: X^Y X Y
3217     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
3218     // X^Y not equal to itself: X^Y is NaN go to slow case.
3219     jcc(Assembler::parity, slow_case);
3220     // get rid of duplicate arguments. Stack: X^Y
3221     if (num_fpu_regs_in_use > 0) {
3222       fxch(); fpop();
3223       fxch(); fpop();
3224     } else {
3225       ffree(2);
3226       ffree(1);
3227     }
3228     jmp(done);
3229 
3230     // X <= 0
3231     bind(x_negative);
3232 
3233     fld_s(1);                   // Stack: Y X Y
3234     frndint();                  // Stack: int(Y) X Y
3235     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
3236     jcc(Assembler::notEqual, slow_case);
3237 
3238     subptr(rsp, 8);
3239 
3240     // For X^Y, when X < 0, Y has to be an integer and the final
3241     // result depends on whether it's odd or even. We just checked
3242     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
3243     // integer to test its parity. If int(Y) is huge and doesn't fit
3244     // in the 64 bit integer range, the integer indefinite value will
3245     // end up in the gp registers. Huge numbers are all even, the
3246     // integer indefinite number is even so it's fine.
3247 
3248 #ifdef ASSERT
3249     // Let's check we don't end up with an integer indefinite number
3250     // when not expected. First test for huge numbers: check whether
3251     // int(Y)+1 == int(Y) which is true for very large numbers and
3252     // those are all even. A 64 bit integer is guaranteed to not
3253     // overflow for numbers where y+1 != y (when precision is set to
3254     // double precision).
3255     Label y_not_huge;
3256 
3257     fld1();                     // Stack: 1 int(Y) X Y
3258     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
3259 
3260 #ifdef _LP64
3261     // trip to memory to force the precision down from double extended
3262     // precision
3263     fstp_d(Address(rsp, 0));
3264     fld_d(Address(rsp, 0));
3265 #endif
3266 
3267     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
3268 #endif
3269 
3270     // move int(Y) as 64 bit integer to thread's stack
3271     fistp_d(Address(rsp,0));    // Stack: X Y
3272 
3273 #ifdef ASSERT
3274     jcc(Assembler::notEqual, y_not_huge);
3275 
3276     // Y is huge so we know it's even. It may not fit in a 64 bit
3277     // integer and we don't want the debug code below to see the
3278     // integer indefinite value so overwrite int(Y) on the thread's
3279     // stack with 0.
3280     movl(Address(rsp, 0), 0);
3281     movl(Address(rsp, 4), 0);
3282 
3283     bind(y_not_huge);
3284 #endif
3285 
3286     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3287     fld_s(1);                   // Stack: X Y X Y
3288     fabs();                     // Stack: abs(X) Y X Y
3289     fast_pow();                 // Stack: abs(X)^Y X Y
3290     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
3291     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
3292 
3293     pop(tmp2);
3294     NOT_LP64(pop(tmp3));
3295     jcc(Assembler::parity, slow_case);
3296 
3297 #ifdef ASSERT
3298     // Check that int(Y) is not integer indefinite value (int
3299     // overflow). Shouldn't happen because for values that would
3300     // overflow, 1+int(Y)==Y which was tested earlier.
3301 #ifndef _LP64
3302     {
3303       Label integer;
3304       testl(tmp2, tmp2);
3305       jcc(Assembler::notZero, integer);
3306       cmpl(tmp3, 0x80000000);
3307       jcc(Assembler::notZero, integer);
3308       STOP("integer indefinite value shouldn't be seen here");
3309       bind(integer);
3310     }
3311 #else
3312     {
3313       Label integer;
3314       mov(tmp3, tmp2); // preserve tmp2 for parity check below
3315       shlq(tmp3, 1);
3316       jcc(Assembler::carryClear, integer);
3317       jcc(Assembler::notZero, integer);
3318       STOP("integer indefinite value shouldn't be seen here");
3319       bind(integer);
3320     }
3321 #endif
3322 #endif
3323 
3324     // get rid of duplicate arguments. Stack: X^Y
3325     if (num_fpu_regs_in_use > 0) {
3326       fxch(); fpop();
3327       fxch(); fpop();
3328     } else {
3329       ffree(2);
3330       ffree(1);
3331     }
3332 
3333     testl(tmp2, 1);
3334     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
3335     // X <= 0, Y even: X^Y = -abs(X)^Y
3336 
3337     fchs();                     // Stack: -abs(X)^Y Y
3338     jmp(done);
3339   }
3340 
3341   // slow case: runtime call
3342   bind(slow_case);
3343 
3344   fpop();                       // pop incorrect result or int(Y)
3345 
3346   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
3347                       is_exp ? 1 : 2, num_fpu_regs_in_use);
3348 
3349   // Come here with result in F-TOS
3350   bind(done);
3351 }
3352 
3353 void MacroAssembler::fpop() {
3354   ffree();
3355   fincstp();
3356 }
3357 
3358 void MacroAssembler::fremr(Register tmp) {
3359   save_rax(tmp);
3360   { Label L;
3361     bind(L);
3362     fprem();
3363     fwait(); fnstsw_ax();
3364 #ifdef _LP64
3365     testl(rax, 0x400);
3366     jcc(Assembler::notEqual, L);
3367 #else
3368     sahf();
3369     jcc(Assembler::parity, L);
3370 #endif // _LP64
3371   }
3372   restore_rax(tmp);
3373   // Result is in ST0.
3374   // Note: fxch & fpop to get rid of ST1
3375   // (otherwise FPU stack could overflow eventually)
3376   fxch(1);
3377   fpop();
3378 }
3379 
3380 
3381 void MacroAssembler::incrementl(AddressLiteral dst) {
3382   if (reachable(dst)) {
3383     incrementl(as_Address(dst));
3384   } else {
3385     lea(rscratch1, dst);
3386     incrementl(Address(rscratch1, 0));
3387   }
3388 }
3389 
3390 void MacroAssembler::incrementl(ArrayAddress dst) {
3391   incrementl(as_Address(dst));
3392 }
3393 
3394 void MacroAssembler::incrementl(Register reg, int value) {
3395   if (value == min_jint) {addl(reg, value) ; return; }
3396   if (value <  0) { decrementl(reg, -value); return; }
3397   if (value == 0) {                        ; return; }
3398   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3399   /* else */      { addl(reg, value)       ; return; }
3400 }
3401 
3402 void MacroAssembler::incrementl(Address dst, int value) {
3403   if (value == min_jint) {addl(dst, value) ; return; }
3404   if (value <  0) { decrementl(dst, -value); return; }
3405   if (value == 0) {                        ; return; }
3406   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3407   /* else */      { addl(dst, value)       ; return; }
3408 }
3409 
3410 void MacroAssembler::jump(AddressLiteral dst) {
3411   if (reachable(dst)) {
3412     jmp_literal(dst.target(), dst.rspec());
3413   } else {
3414     lea(rscratch1, dst);
3415     jmp(rscratch1);
3416   }
3417 }
3418 
3419 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3420   if (reachable(dst)) {
3421     InstructionMark im(this);
3422     relocate(dst.reloc());
3423     const int short_size = 2;
3424     const int long_size = 6;
3425     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3426     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3427       // 0111 tttn #8-bit disp
3428       emit_int8(0x70 | cc);
3429       emit_int8((offs - short_size) & 0xFF);
3430     } else {
3431       // 0000 1111 1000 tttn #32-bit disp
3432       emit_int8(0x0F);
3433       emit_int8((unsigned char)(0x80 | cc));
3434       emit_int32(offs - long_size);
3435     }
3436   } else {
3437 #ifdef ASSERT
3438     warning("reversing conditional branch");
3439 #endif /* ASSERT */
3440     Label skip;
3441     jccb(reverse[cc], skip);
3442     lea(rscratch1, dst);
3443     Assembler::jmp(rscratch1);
3444     bind(skip);
3445   }
3446 }
3447 
3448 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3449   if (reachable(src)) {
3450     Assembler::ldmxcsr(as_Address(src));
3451   } else {
3452     lea(rscratch1, src);
3453     Assembler::ldmxcsr(Address(rscratch1, 0));
3454   }
3455 }
3456 
3457 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3458   int off;
3459   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3460     off = offset();
3461     movsbl(dst, src); // movsxb
3462   } else {
3463     off = load_unsigned_byte(dst, src);
3464     shll(dst, 24);
3465     sarl(dst, 24);
3466   }
3467   return off;
3468 }
3469 
3470 // Note: load_signed_short used to be called load_signed_word.
3471 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3472 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3473 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3474 int MacroAssembler::load_signed_short(Register dst, Address src) {
3475   int off;
3476   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3477     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3478     // version but this is what 64bit has always done. This seems to imply
3479     // that users are only using 32bits worth.
3480     off = offset();
3481     movswl(dst, src); // movsxw
3482   } else {
3483     off = load_unsigned_short(dst, src);
3484     shll(dst, 16);
3485     sarl(dst, 16);
3486   }
3487   return off;
3488 }
3489 
3490 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3491   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3492   // and "3.9 Partial Register Penalties", p. 22).
3493   int off;
3494   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3495     off = offset();
3496     movzbl(dst, src); // movzxb
3497   } else {
3498     xorl(dst, dst);
3499     off = offset();
3500     movb(dst, src);
3501   }
3502   return off;
3503 }
3504 
3505 // Note: load_unsigned_short used to be called load_unsigned_word.
3506 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3507   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3508   // and "3.9 Partial Register Penalties", p. 22).
3509   int off;
3510   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3511     off = offset();
3512     movzwl(dst, src); // movzxw
3513   } else {
3514     xorl(dst, dst);
3515     off = offset();
3516     movw(dst, src);
3517   }
3518   return off;
3519 }
3520 
3521 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3522   switch (size_in_bytes) {
3523 #ifndef _LP64
3524   case  8:
3525     assert(dst2 != noreg, "second dest register required");
3526     movl(dst,  src);
3527     movl(dst2, src.plus_disp(BytesPerInt));
3528     break;
3529 #else
3530   case  8:  movq(dst, src); break;
3531 #endif
3532   case  4:  movl(dst, src); break;
3533   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3534   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3535   default:  ShouldNotReachHere();
3536   }
3537 }
3538 
3539 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3540   switch (size_in_bytes) {
3541 #ifndef _LP64
3542   case  8:
3543     assert(src2 != noreg, "second source register required");
3544     movl(dst,                        src);
3545     movl(dst.plus_disp(BytesPerInt), src2);
3546     break;
3547 #else
3548   case  8:  movq(dst, src); break;
3549 #endif
3550   case  4:  movl(dst, src); break;
3551   case  2:  movw(dst, src); break;
3552   case  1:  movb(dst, src); break;
3553   default:  ShouldNotReachHere();
3554   }
3555 }
3556 
3557 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3558   if (reachable(dst)) {
3559     movl(as_Address(dst), src);
3560   } else {
3561     lea(rscratch1, dst);
3562     movl(Address(rscratch1, 0), src);
3563   }
3564 }
3565 
3566 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3567   if (reachable(src)) {
3568     movl(dst, as_Address(src));
3569   } else {
3570     lea(rscratch1, src);
3571     movl(dst, Address(rscratch1, 0));
3572   }
3573 }
3574 
3575 // C++ bool manipulation
3576 
3577 void MacroAssembler::movbool(Register dst, Address src) {
3578   if(sizeof(bool) == 1)
3579     movb(dst, src);
3580   else if(sizeof(bool) == 2)
3581     movw(dst, src);
3582   else if(sizeof(bool) == 4)
3583     movl(dst, src);
3584   else
3585     // unsupported
3586     ShouldNotReachHere();
3587 }
3588 
3589 void MacroAssembler::movbool(Address dst, bool boolconst) {
3590   if(sizeof(bool) == 1)
3591     movb(dst, (int) boolconst);
3592   else if(sizeof(bool) == 2)
3593     movw(dst, (int) boolconst);
3594   else if(sizeof(bool) == 4)
3595     movl(dst, (int) boolconst);
3596   else
3597     // unsupported
3598     ShouldNotReachHere();
3599 }
3600 
3601 void MacroAssembler::movbool(Address dst, Register src) {
3602   if(sizeof(bool) == 1)
3603     movb(dst, src);
3604   else if(sizeof(bool) == 2)
3605     movw(dst, src);
3606   else if(sizeof(bool) == 4)
3607     movl(dst, src);
3608   else
3609     // unsupported
3610     ShouldNotReachHere();
3611 }
3612 
3613 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3614   movb(as_Address(dst), src);
3615 }
3616 
3617 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3618   if (reachable(src)) {
3619     movdl(dst, as_Address(src));
3620   } else {
3621     lea(rscratch1, src);
3622     movdl(dst, Address(rscratch1, 0));
3623   }
3624 }
3625 
3626 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3627   if (reachable(src)) {
3628     movq(dst, as_Address(src));
3629   } else {
3630     lea(rscratch1, src);
3631     movq(dst, Address(rscratch1, 0));
3632   }
3633 }
3634 
3635 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3636   if (reachable(src)) {
3637     if (UseXmmLoadAndClearUpper) {
3638       movsd (dst, as_Address(src));
3639     } else {
3640       movlpd(dst, as_Address(src));
3641     }
3642   } else {
3643     lea(rscratch1, src);
3644     if (UseXmmLoadAndClearUpper) {
3645       movsd (dst, Address(rscratch1, 0));
3646     } else {
3647       movlpd(dst, Address(rscratch1, 0));
3648     }
3649   }
3650 }
3651 
3652 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3653   if (reachable(src)) {
3654     movss(dst, as_Address(src));
3655   } else {
3656     lea(rscratch1, src);
3657     movss(dst, Address(rscratch1, 0));
3658   }
3659 }
3660 
3661 void MacroAssembler::movptr(Register dst, Register src) {
3662   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3663 }
3664 
3665 void MacroAssembler::movptr(Register dst, Address src) {
3666   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3667 }
3668 
3669 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3670 void MacroAssembler::movptr(Register dst, intptr_t src) {
3671   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3672 }
3673 
3674 void MacroAssembler::movptr(Address dst, Register src) {
3675   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3676 }
3677 
3678 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3679   if (reachable(src)) {
3680     Assembler::movdqu(dst, as_Address(src));
3681   } else {
3682     lea(rscratch1, src);
3683     Assembler::movdqu(dst, Address(rscratch1, 0));
3684   }
3685 }
3686 
3687 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3688   if (reachable(src)) {
3689     Assembler::movdqa(dst, as_Address(src));
3690   } else {
3691     lea(rscratch1, src);
3692     Assembler::movdqa(dst, Address(rscratch1, 0));
3693   }
3694 }
3695 
3696 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3697   if (reachable(src)) {
3698     Assembler::movsd(dst, as_Address(src));
3699   } else {
3700     lea(rscratch1, src);
3701     Assembler::movsd(dst, Address(rscratch1, 0));
3702   }
3703 }
3704 
3705 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3706   if (reachable(src)) {
3707     Assembler::movss(dst, as_Address(src));
3708   } else {
3709     lea(rscratch1, src);
3710     Assembler::movss(dst, Address(rscratch1, 0));
3711   }
3712 }
3713 
3714 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3715   if (reachable(src)) {
3716     Assembler::mulsd(dst, as_Address(src));
3717   } else {
3718     lea(rscratch1, src);
3719     Assembler::mulsd(dst, Address(rscratch1, 0));
3720   }
3721 }
3722 
3723 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3724   if (reachable(src)) {
3725     Assembler::mulss(dst, as_Address(src));
3726   } else {
3727     lea(rscratch1, src);
3728     Assembler::mulss(dst, Address(rscratch1, 0));
3729   }
3730 }
3731 
3732 void MacroAssembler::null_check(Register reg, int offset) {
3733   if (needs_explicit_null_check(offset)) {
3734     // provoke OS NULL exception if reg = NULL by
3735     // accessing M[reg] w/o changing any (non-CC) registers
3736     // NOTE: cmpl is plenty here to provoke a segv
3737     cmpptr(rax, Address(reg, 0));
3738     // Note: should probably use testl(rax, Address(reg, 0));
3739     //       may be shorter code (however, this version of
3740     //       testl needs to be implemented first)
3741   } else {
3742     // nothing to do, (later) access of M[reg + offset]
3743     // will provoke OS NULL exception if reg = NULL
3744   }
3745 }
3746 
3747 void MacroAssembler::os_breakpoint() {
3748   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3749   // (e.g., MSVC can't call ps() otherwise)
3750   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3751 }
3752 
3753 void MacroAssembler::pop_CPU_state() {
3754   pop_FPU_state();
3755   pop_IU_state();
3756 }
3757 
3758 void MacroAssembler::pop_FPU_state() {
3759   NOT_LP64(frstor(Address(rsp, 0));)
3760   LP64_ONLY(fxrstor(Address(rsp, 0));)
3761   addptr(rsp, FPUStateSizeInWords * wordSize);
3762 }
3763 
3764 void MacroAssembler::pop_IU_state() {
3765   popa();
3766   LP64_ONLY(addq(rsp, 8));
3767   popf();
3768 }
3769 
3770 // Save Integer and Float state
3771 // Warning: Stack must be 16 byte aligned (64bit)
3772 void MacroAssembler::push_CPU_state() {
3773   push_IU_state();
3774   push_FPU_state();
3775 }
3776 
3777 void MacroAssembler::push_FPU_state() {
3778   subptr(rsp, FPUStateSizeInWords * wordSize);
3779 #ifndef _LP64
3780   fnsave(Address(rsp, 0));
3781   fwait();
3782 #else
3783   fxsave(Address(rsp, 0));
3784 #endif // LP64
3785 }
3786 
3787 void MacroAssembler::push_IU_state() {
3788   // Push flags first because pusha kills them
3789   pushf();
3790   // Make sure rsp stays 16-byte aligned
3791   LP64_ONLY(subq(rsp, 8));
3792   pusha();
3793 }
3794 
3795 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3796   // determine java_thread register
3797   if (!java_thread->is_valid()) {
3798     java_thread = rdi;
3799     get_thread(java_thread);
3800   }
3801   // we must set sp to zero to clear frame
3802   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3803   if (clear_fp) {
3804     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3805   }
3806 
3807   if (clear_pc)
3808     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3809 
3810 }
3811 
3812 void MacroAssembler::restore_rax(Register tmp) {
3813   if (tmp == noreg) pop(rax);
3814   else if (tmp != rax) mov(rax, tmp);
3815 }
3816 
3817 void MacroAssembler::round_to(Register reg, int modulus) {
3818   addptr(reg, modulus - 1);
3819   andptr(reg, -modulus);
3820 }
3821 
3822 void MacroAssembler::save_rax(Register tmp) {
3823   if (tmp == noreg) push(rax);
3824   else if (tmp != rax) mov(tmp, rax);
3825 }
3826 
3827 // Write serialization page so VM thread can do a pseudo remote membar.
3828 // We use the current thread pointer to calculate a thread specific
3829 // offset to write to within the page. This minimizes bus traffic
3830 // due to cache line collision.
3831 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3832   movl(tmp, thread);
3833   shrl(tmp, os::get_serialize_page_shift_count());
3834   andl(tmp, (os::vm_page_size() - sizeof(int)));
3835 
3836   Address index(noreg, tmp, Address::times_1);
3837   ExternalAddress page(os::get_memory_serialize_page());
3838 
3839   // Size of store must match masking code above
3840   movl(as_Address(ArrayAddress(page, index)), tmp);
3841 }
3842 
3843 // Calls to C land
3844 //
3845 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3846 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3847 // has to be reset to 0. This is required to allow proper stack traversal.
3848 void MacroAssembler::set_last_Java_frame(Register java_thread,
3849                                          Register last_java_sp,
3850                                          Register last_java_fp,
3851                                          address  last_java_pc) {
3852   // determine java_thread register
3853   if (!java_thread->is_valid()) {
3854     java_thread = rdi;
3855     get_thread(java_thread);
3856   }
3857   // determine last_java_sp register
3858   if (!last_java_sp->is_valid()) {
3859     last_java_sp = rsp;
3860   }
3861 
3862   // last_java_fp is optional
3863 
3864   if (last_java_fp->is_valid()) {
3865     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3866   }
3867 
3868   // last_java_pc is optional
3869 
3870   if (last_java_pc != NULL) {
3871     lea(Address(java_thread,
3872                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3873         InternalAddress(last_java_pc));
3874 
3875   }
3876   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3877 }
3878 
3879 void MacroAssembler::shlptr(Register dst, int imm8) {
3880   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3881 }
3882 
3883 void MacroAssembler::shrptr(Register dst, int imm8) {
3884   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3885 }
3886 
3887 void MacroAssembler::sign_extend_byte(Register reg) {
3888   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3889     movsbl(reg, reg); // movsxb
3890   } else {
3891     shll(reg, 24);
3892     sarl(reg, 24);
3893   }
3894 }
3895 
3896 void MacroAssembler::sign_extend_short(Register reg) {
3897   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3898     movswl(reg, reg); // movsxw
3899   } else {
3900     shll(reg, 16);
3901     sarl(reg, 16);
3902   }
3903 }
3904 
3905 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3906   assert(reachable(src), "Address should be reachable");
3907   testl(dst, as_Address(src));
3908 }
3909 
3910 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3911   if (reachable(src)) {
3912     Assembler::sqrtsd(dst, as_Address(src));
3913   } else {
3914     lea(rscratch1, src);
3915     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3916   }
3917 }
3918 
3919 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3920   if (reachable(src)) {
3921     Assembler::sqrtss(dst, as_Address(src));
3922   } else {
3923     lea(rscratch1, src);
3924     Assembler::sqrtss(dst, Address(rscratch1, 0));
3925   }
3926 }
3927 
3928 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3929   if (reachable(src)) {
3930     Assembler::subsd(dst, as_Address(src));
3931   } else {
3932     lea(rscratch1, src);
3933     Assembler::subsd(dst, Address(rscratch1, 0));
3934   }
3935 }
3936 
3937 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3938   if (reachable(src)) {
3939     Assembler::subss(dst, as_Address(src));
3940   } else {
3941     lea(rscratch1, src);
3942     Assembler::subss(dst, Address(rscratch1, 0));
3943   }
3944 }
3945 
3946 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3947   if (reachable(src)) {
3948     Assembler::ucomisd(dst, as_Address(src));
3949   } else {
3950     lea(rscratch1, src);
3951     Assembler::ucomisd(dst, Address(rscratch1, 0));
3952   }
3953 }
3954 
3955 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3956   if (reachable(src)) {
3957     Assembler::ucomiss(dst, as_Address(src));
3958   } else {
3959     lea(rscratch1, src);
3960     Assembler::ucomiss(dst, Address(rscratch1, 0));
3961   }
3962 }
3963 
3964 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
3965   // Used in sign-bit flipping with aligned address.
3966   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3967   if (reachable(src)) {
3968     Assembler::xorpd(dst, as_Address(src));
3969   } else {
3970     lea(rscratch1, src);
3971     Assembler::xorpd(dst, Address(rscratch1, 0));
3972   }
3973 }
3974 
3975 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
3976   // Used in sign-bit flipping with aligned address.
3977   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3978   if (reachable(src)) {
3979     Assembler::xorps(dst, as_Address(src));
3980   } else {
3981     lea(rscratch1, src);
3982     Assembler::xorps(dst, Address(rscratch1, 0));
3983   }
3984 }
3985 
3986 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3987   // Used in sign-bit flipping with aligned address.
3988   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3989   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3990   if (reachable(src)) {
3991     Assembler::pshufb(dst, as_Address(src));
3992   } else {
3993     lea(rscratch1, src);
3994     Assembler::pshufb(dst, Address(rscratch1, 0));
3995   }
3996 }
3997 
3998 // AVX 3-operands instructions
3999 
4000 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4001   if (reachable(src)) {
4002     vaddsd(dst, nds, as_Address(src));
4003   } else {
4004     lea(rscratch1, src);
4005     vaddsd(dst, nds, Address(rscratch1, 0));
4006   }
4007 }
4008 
4009 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4010   if (reachable(src)) {
4011     vaddss(dst, nds, as_Address(src));
4012   } else {
4013     lea(rscratch1, src);
4014     vaddss(dst, nds, Address(rscratch1, 0));
4015   }
4016 }
4017 
4018 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4019   if (reachable(src)) {
4020     vandpd(dst, nds, as_Address(src), vector256);
4021   } else {
4022     lea(rscratch1, src);
4023     vandpd(dst, nds, Address(rscratch1, 0), vector256);
4024   }
4025 }
4026 
4027 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4028   if (reachable(src)) {
4029     vandps(dst, nds, as_Address(src), vector256);
4030   } else {
4031     lea(rscratch1, src);
4032     vandps(dst, nds, Address(rscratch1, 0), vector256);
4033   }
4034 }
4035 
4036 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4037   if (reachable(src)) {
4038     vdivsd(dst, nds, as_Address(src));
4039   } else {
4040     lea(rscratch1, src);
4041     vdivsd(dst, nds, Address(rscratch1, 0));
4042   }
4043 }
4044 
4045 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4046   if (reachable(src)) {
4047     vdivss(dst, nds, as_Address(src));
4048   } else {
4049     lea(rscratch1, src);
4050     vdivss(dst, nds, Address(rscratch1, 0));
4051   }
4052 }
4053 
4054 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4055   if (reachable(src)) {
4056     vmulsd(dst, nds, as_Address(src));
4057   } else {
4058     lea(rscratch1, src);
4059     vmulsd(dst, nds, Address(rscratch1, 0));
4060   }
4061 }
4062 
4063 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4064   if (reachable(src)) {
4065     vmulss(dst, nds, as_Address(src));
4066   } else {
4067     lea(rscratch1, src);
4068     vmulss(dst, nds, Address(rscratch1, 0));
4069   }
4070 }
4071 
4072 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4073   if (reachable(src)) {
4074     vsubsd(dst, nds, as_Address(src));
4075   } else {
4076     lea(rscratch1, src);
4077     vsubsd(dst, nds, Address(rscratch1, 0));
4078   }
4079 }
4080 
4081 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4082   if (reachable(src)) {
4083     vsubss(dst, nds, as_Address(src));
4084   } else {
4085     lea(rscratch1, src);
4086     vsubss(dst, nds, Address(rscratch1, 0));
4087   }
4088 }
4089 
4090 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4091   if (reachable(src)) {
4092     vxorpd(dst, nds, as_Address(src), vector256);
4093   } else {
4094     lea(rscratch1, src);
4095     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
4096   }
4097 }
4098 
4099 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4100   if (reachable(src)) {
4101     vxorps(dst, nds, as_Address(src), vector256);
4102   } else {
4103     lea(rscratch1, src);
4104     vxorps(dst, nds, Address(rscratch1, 0), vector256);
4105   }
4106 }
4107 
4108 
4109 //////////////////////////////////////////////////////////////////////////////////
4110 #if INCLUDE_ALL_GCS
4111 
4112 void MacroAssembler::g1_write_barrier_pre(Register obj,
4113                                           Register pre_val,
4114                                           Register thread,
4115                                           Register tmp,
4116                                           bool tosca_live,
4117                                           bool expand_call) {
4118 
4119   // If expand_call is true then we expand the call_VM_leaf macro
4120   // directly to skip generating the check by
4121   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
4122 
4123 #ifdef _LP64
4124   assert(thread == r15_thread, "must be");
4125 #endif // _LP64
4126 
4127   Label done;
4128   Label runtime;
4129 
4130   assert(pre_val != noreg, "check this code");
4131 
4132   if (obj != noreg) {
4133     assert_different_registers(obj, pre_val, tmp);
4134     assert(pre_val != rax, "check this code");
4135   }
4136 
4137   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4138                                        PtrQueue::byte_offset_of_active()));
4139   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4140                                        PtrQueue::byte_offset_of_index()));
4141   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4142                                        PtrQueue::byte_offset_of_buf()));
4143 
4144 
4145   // Is marking active?
4146   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4147     cmpl(in_progress, 0);
4148   } else {
4149     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
4150     cmpb(in_progress, 0);
4151   }
4152   jcc(Assembler::equal, done);
4153 
4154   // Do we need to load the previous value?
4155   if (obj != noreg) {
4156     load_heap_oop(pre_val, Address(obj, 0));
4157   }
4158 
4159   // Is the previous value null?
4160   cmpptr(pre_val, (int32_t) NULL_WORD);
4161   jcc(Assembler::equal, done);
4162 
4163   // Can we store original value in the thread's buffer?
4164   // Is index == 0?
4165   // (The index field is typed as size_t.)
4166 
4167   movptr(tmp, index);                   // tmp := *index_adr
4168   cmpptr(tmp, 0);                       // tmp == 0?
4169   jcc(Assembler::equal, runtime);       // If yes, goto runtime
4170 
4171   subptr(tmp, wordSize);                // tmp := tmp - wordSize
4172   movptr(index, tmp);                   // *index_adr := tmp
4173   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
4174 
4175   // Record the previous value
4176   movptr(Address(tmp, 0), pre_val);
4177   jmp(done);
4178 
4179   bind(runtime);
4180   // save the live input values
4181   if(tosca_live) push(rax);
4182 
4183   if (obj != noreg && obj != rax)
4184     push(obj);
4185 
4186   if (pre_val != rax)
4187     push(pre_val);
4188 
4189   // Calling the runtime using the regular call_VM_leaf mechanism generates
4190   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
4191   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
4192   //
4193   // If we care generating the pre-barrier without a frame (e.g. in the
4194   // intrinsified Reference.get() routine) then ebp might be pointing to
4195   // the caller frame and so this check will most likely fail at runtime.
4196   //
4197   // Expanding the call directly bypasses the generation of the check.
4198   // So when we do not have have a full interpreter frame on the stack
4199   // expand_call should be passed true.
4200 
4201   NOT_LP64( push(thread); )
4202 
4203   if (expand_call) {
4204     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
4205     pass_arg1(this, thread);
4206     pass_arg0(this, pre_val);
4207     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
4208   } else {
4209     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
4210   }
4211 
4212   NOT_LP64( pop(thread); )
4213 
4214   // save the live input values
4215   if (pre_val != rax)
4216     pop(pre_val);
4217 
4218   if (obj != noreg && obj != rax)
4219     pop(obj);
4220 
4221   if(tosca_live) pop(rax);
4222 
4223   bind(done);
4224 }
4225 
4226 void MacroAssembler::g1_write_barrier_post(Register store_addr,
4227                                            Register new_val,
4228                                            Register thread,
4229                                            Register tmp,
4230                                            Register tmp2) {
4231 #ifdef _LP64
4232   assert(thread == r15_thread, "must be");
4233 #endif // _LP64
4234 
4235   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4236                                        PtrQueue::byte_offset_of_index()));
4237   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4238                                        PtrQueue::byte_offset_of_buf()));
4239 
4240   BarrierSet* bs = Universe::heap()->barrier_set();
4241   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
4242   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4243 
4244   Label done;
4245   Label runtime;
4246 
4247   // Does store cross heap regions?
4248 
4249   movptr(tmp, store_addr);
4250   xorptr(tmp, new_val);
4251   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
4252   jcc(Assembler::equal, done);
4253 
4254   // crosses regions, storing NULL?
4255 
4256   cmpptr(new_val, (int32_t) NULL_WORD);
4257   jcc(Assembler::equal, done);
4258 
4259   // storing region crossing non-NULL, is card already dirty?
4260 
4261   const Register card_addr = tmp;
4262   const Register cardtable = tmp2;
4263 
4264   movptr(card_addr, store_addr);
4265   shrptr(card_addr, CardTableModRefBS::card_shift);
4266   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
4267   // a valid address and therefore is not properly handled by the relocation code.
4268   movptr(cardtable, (intptr_t)ct->byte_map_base);
4269   addptr(card_addr, cardtable);
4270 
4271   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
4272   jcc(Assembler::equal, done);
4273 
4274   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4275   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4276   jcc(Assembler::equal, done);
4277 
4278 
4279   // storing a region crossing, non-NULL oop, card is clean.
4280   // dirty card and log.
4281 
4282   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4283 
4284   cmpl(queue_index, 0);
4285   jcc(Assembler::equal, runtime);
4286   subl(queue_index, wordSize);
4287   movptr(tmp2, buffer);
4288 #ifdef _LP64
4289   movslq(rscratch1, queue_index);
4290   addq(tmp2, rscratch1);
4291   movq(Address(tmp2, 0), card_addr);
4292 #else
4293   addl(tmp2, queue_index);
4294   movl(Address(tmp2, 0), card_addr);
4295 #endif
4296   jmp(done);
4297 
4298   bind(runtime);
4299   // save the live input values
4300   push(store_addr);
4301   push(new_val);
4302 #ifdef _LP64
4303   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
4304 #else
4305   push(thread);
4306   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
4307   pop(thread);
4308 #endif
4309   pop(new_val);
4310   pop(store_addr);
4311 
4312   bind(done);
4313 }
4314 
4315 #endif // INCLUDE_ALL_GCS
4316 //////////////////////////////////////////////////////////////////////////////////
4317 
4318 
4319 void MacroAssembler::store_check(Register obj) {
4320   // Does a store check for the oop in register obj. The content of
4321   // register obj is destroyed afterwards.
4322   store_check_part_1(obj);
4323   store_check_part_2(obj);
4324 }
4325 
4326 void MacroAssembler::store_check(Register obj, Address dst) {
4327   store_check(obj);
4328 }
4329 
4330 
4331 // split the store check operation so that other instructions can be scheduled inbetween
4332 void MacroAssembler::store_check_part_1(Register obj) {
4333   BarrierSet* bs = Universe::heap()->barrier_set();
4334   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4335   shrptr(obj, CardTableModRefBS::card_shift);
4336 }
4337 
4338 void MacroAssembler::store_check_part_2(Register obj) {
4339   BarrierSet* bs = Universe::heap()->barrier_set();
4340   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4341   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
4342   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4343 
4344   // The calculation for byte_map_base is as follows:
4345   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
4346   // So this essentially converts an address to a displacement and it will
4347   // never need to be relocated. On 64bit however the value may be too
4348   // large for a 32bit displacement.
4349   intptr_t disp = (intptr_t) ct->byte_map_base;
4350   if (is_simm32(disp)) {
4351     Address cardtable(noreg, obj, Address::times_1, disp);
4352     movb(cardtable, 0);
4353   } else {
4354     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
4355     // displacement and done in a single instruction given favorable mapping and a
4356     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
4357     // entry and that entry is not properly handled by the relocation code.
4358     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
4359     Address index(noreg, obj, Address::times_1);
4360     movb(as_Address(ArrayAddress(cardtable, index)), 0);
4361   }
4362 }
4363 
4364 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4365   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4366 }
4367 
4368 // Force generation of a 4 byte immediate value even if it fits into 8bit
4369 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4370   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4371 }
4372 
4373 void MacroAssembler::subptr(Register dst, Register src) {
4374   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4375 }
4376 
4377 // C++ bool manipulation
4378 void MacroAssembler::testbool(Register dst) {
4379   if(sizeof(bool) == 1)
4380     testb(dst, 0xff);
4381   else if(sizeof(bool) == 2) {
4382     // testw implementation needed for two byte bools
4383     ShouldNotReachHere();
4384   } else if(sizeof(bool) == 4)
4385     testl(dst, dst);
4386   else
4387     // unsupported
4388     ShouldNotReachHere();
4389 }
4390 
4391 void MacroAssembler::testptr(Register dst, Register src) {
4392   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4393 }
4394 
4395 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4396 void MacroAssembler::tlab_allocate(Register obj,
4397                                    Register var_size_in_bytes,
4398                                    int con_size_in_bytes,
4399                                    Register t1,
4400                                    Register t2,
4401                                    Label& slow_case) {
4402   assert_different_registers(obj, t1, t2);
4403   assert_different_registers(obj, var_size_in_bytes, t1);
4404   Register end = t2;
4405   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
4406 
4407   verify_tlab();
4408 
4409   NOT_LP64(get_thread(thread));
4410 
4411   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
4412   if (var_size_in_bytes == noreg) {
4413     lea(end, Address(obj, con_size_in_bytes));
4414   } else {
4415     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
4416   }
4417   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
4418   jcc(Assembler::above, slow_case);
4419 
4420   // update the tlab top pointer
4421   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
4422 
4423   // recover var_size_in_bytes if necessary
4424   if (var_size_in_bytes == end) {
4425     subptr(var_size_in_bytes, obj);
4426   }
4427   verify_tlab();
4428 }
4429 
4430 // Preserves rbx, and rdx.
4431 Register MacroAssembler::tlab_refill(Label& retry,
4432                                      Label& try_eden,
4433                                      Label& slow_case) {
4434   Register top = rax;
4435   Register t1  = rcx;
4436   Register t2  = rsi;
4437   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
4438   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
4439   Label do_refill, discard_tlab;
4440 
4441   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
4442     // No allocation in the shared eden.
4443     jmp(slow_case);
4444   }
4445 
4446   NOT_LP64(get_thread(thread_reg));
4447 
4448   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4449   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4450 
4451   // calculate amount of free space
4452   subptr(t1, top);
4453   shrptr(t1, LogHeapWordSize);
4454 
4455   // Retain tlab and allocate object in shared space if
4456   // the amount free in the tlab is too large to discard.
4457   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
4458   jcc(Assembler::lessEqual, discard_tlab);
4459 
4460   // Retain
4461   // %%% yuck as movptr...
4462   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
4463   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
4464   if (TLABStats) {
4465     // increment number of slow_allocations
4466     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
4467   }
4468   jmp(try_eden);
4469 
4470   bind(discard_tlab);
4471   if (TLABStats) {
4472     // increment number of refills
4473     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
4474     // accumulate wastage -- t1 is amount free in tlab
4475     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
4476   }
4477 
4478   // if tlab is currently allocated (top or end != null) then
4479   // fill [top, end + alignment_reserve) with array object
4480   testptr(top, top);
4481   jcc(Assembler::zero, do_refill);
4482 
4483   // set up the mark word
4484   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
4485   // set the length to the remaining space
4486   subptr(t1, typeArrayOopDesc::header_size(T_INT));
4487   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
4488   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
4489   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
4490   // set klass to intArrayKlass
4491   // dubious reloc why not an oop reloc?
4492   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
4493   // store klass last.  concurrent gcs assumes klass length is valid if
4494   // klass field is not null.
4495   store_klass(top, t1);
4496 
4497   movptr(t1, top);
4498   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4499   incr_allocated_bytes(thread_reg, t1, 0);
4500 
4501   // refill the tlab with an eden allocation
4502   bind(do_refill);
4503   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4504   shlptr(t1, LogHeapWordSize);
4505   // allocate new tlab, address returned in top
4506   eden_allocate(top, t1, 0, t2, slow_case);
4507 
4508   // Check that t1 was preserved in eden_allocate.
4509 #ifdef ASSERT
4510   if (UseTLAB) {
4511     Label ok;
4512     Register tsize = rsi;
4513     assert_different_registers(tsize, thread_reg, t1);
4514     push(tsize);
4515     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4516     shlptr(tsize, LogHeapWordSize);
4517     cmpptr(t1, tsize);
4518     jcc(Assembler::equal, ok);
4519     STOP("assert(t1 != tlab size)");
4520     should_not_reach_here();
4521 
4522     bind(ok);
4523     pop(tsize);
4524   }
4525 #endif
4526   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
4527   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
4528   addptr(top, t1);
4529   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
4530   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
4531   verify_tlab();
4532   jmp(retry);
4533 
4534   return thread_reg; // for use by caller
4535 }
4536 
4537 void MacroAssembler::incr_allocated_bytes(Register thread,
4538                                           Register var_size_in_bytes,
4539                                           int con_size_in_bytes,
4540                                           Register t1) {
4541   if (!thread->is_valid()) {
4542 #ifdef _LP64
4543     thread = r15_thread;
4544 #else
4545     assert(t1->is_valid(), "need temp reg");
4546     thread = t1;
4547     get_thread(thread);
4548 #endif
4549   }
4550 
4551 #ifdef _LP64
4552   if (var_size_in_bytes->is_valid()) {
4553     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4554   } else {
4555     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4556   }
4557 #else
4558   if (var_size_in_bytes->is_valid()) {
4559     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4560   } else {
4561     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4562   }
4563   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
4564 #endif
4565 }
4566 
4567 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
4568   pusha();
4569 
4570   // if we are coming from c1, xmm registers may be live
4571   int off = 0;
4572   if (UseSSE == 1)  {
4573     subptr(rsp, sizeof(jdouble)*8);
4574     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
4575     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
4576     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
4577     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
4578     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
4579     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
4580     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
4581     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
4582   } else if (UseSSE >= 2)  {
4583 #ifdef COMPILER2
4584     if (MaxVectorSize > 16) {
4585       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
4586       // Save upper half of YMM registes
4587       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4588       vextractf128h(Address(rsp,  0),xmm0);
4589       vextractf128h(Address(rsp, 16),xmm1);
4590       vextractf128h(Address(rsp, 32),xmm2);
4591       vextractf128h(Address(rsp, 48),xmm3);
4592       vextractf128h(Address(rsp, 64),xmm4);
4593       vextractf128h(Address(rsp, 80),xmm5);
4594       vextractf128h(Address(rsp, 96),xmm6);
4595       vextractf128h(Address(rsp,112),xmm7);
4596 #ifdef _LP64
4597       vextractf128h(Address(rsp,128),xmm8);
4598       vextractf128h(Address(rsp,144),xmm9);
4599       vextractf128h(Address(rsp,160),xmm10);
4600       vextractf128h(Address(rsp,176),xmm11);
4601       vextractf128h(Address(rsp,192),xmm12);
4602       vextractf128h(Address(rsp,208),xmm13);
4603       vextractf128h(Address(rsp,224),xmm14);
4604       vextractf128h(Address(rsp,240),xmm15);
4605 #endif
4606     }
4607 #endif
4608     // Save whole 128bit (16 bytes) XMM regiters
4609     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4610     movdqu(Address(rsp,off++*16),xmm0);
4611     movdqu(Address(rsp,off++*16),xmm1);
4612     movdqu(Address(rsp,off++*16),xmm2);
4613     movdqu(Address(rsp,off++*16),xmm3);
4614     movdqu(Address(rsp,off++*16),xmm4);
4615     movdqu(Address(rsp,off++*16),xmm5);
4616     movdqu(Address(rsp,off++*16),xmm6);
4617     movdqu(Address(rsp,off++*16),xmm7);
4618 #ifdef _LP64
4619     movdqu(Address(rsp,off++*16),xmm8);
4620     movdqu(Address(rsp,off++*16),xmm9);
4621     movdqu(Address(rsp,off++*16),xmm10);
4622     movdqu(Address(rsp,off++*16),xmm11);
4623     movdqu(Address(rsp,off++*16),xmm12);
4624     movdqu(Address(rsp,off++*16),xmm13);
4625     movdqu(Address(rsp,off++*16),xmm14);
4626     movdqu(Address(rsp,off++*16),xmm15);
4627 #endif
4628   }
4629 
4630   // Preserve registers across runtime call
4631   int incoming_argument_and_return_value_offset = -1;
4632   if (num_fpu_regs_in_use > 1) {
4633     // Must preserve all other FPU regs (could alternatively convert
4634     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
4635     // FPU state, but can not trust C compiler)
4636     NEEDS_CLEANUP;
4637     // NOTE that in this case we also push the incoming argument(s) to
4638     // the stack and restore it later; we also use this stack slot to
4639     // hold the return value from dsin, dcos etc.
4640     for (int i = 0; i < num_fpu_regs_in_use; i++) {
4641       subptr(rsp, sizeof(jdouble));
4642       fstp_d(Address(rsp, 0));
4643     }
4644     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
4645     for (int i = nb_args-1; i >= 0; i--) {
4646       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
4647     }
4648   }
4649 
4650   subptr(rsp, nb_args*sizeof(jdouble));
4651   for (int i = 0; i < nb_args; i++) {
4652     fstp_d(Address(rsp, i*sizeof(jdouble)));
4653   }
4654 
4655 #ifdef _LP64
4656   if (nb_args > 0) {
4657     movdbl(xmm0, Address(rsp, 0));
4658   }
4659   if (nb_args > 1) {
4660     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
4661   }
4662   assert(nb_args <= 2, "unsupported number of args");
4663 #endif // _LP64
4664 
4665   // NOTE: we must not use call_VM_leaf here because that requires a
4666   // complete interpreter frame in debug mode -- same bug as 4387334
4667   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
4668   // do proper 64bit abi
4669 
4670   NEEDS_CLEANUP;
4671   // Need to add stack banging before this runtime call if it needs to
4672   // be taken; however, there is no generic stack banging routine at
4673   // the MacroAssembler level
4674 
4675   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
4676 
4677 #ifdef _LP64
4678   movsd(Address(rsp, 0), xmm0);
4679   fld_d(Address(rsp, 0));
4680 #endif // _LP64
4681   addptr(rsp, sizeof(jdouble) * nb_args);
4682   if (num_fpu_regs_in_use > 1) {
4683     // Must save return value to stack and then restore entire FPU
4684     // stack except incoming arguments
4685     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
4686     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
4687       fld_d(Address(rsp, 0));
4688       addptr(rsp, sizeof(jdouble));
4689     }
4690     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
4691     addptr(rsp, sizeof(jdouble) * nb_args);
4692   }
4693 
4694   off = 0;
4695   if (UseSSE == 1)  {
4696     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
4697     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
4698     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
4699     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
4700     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
4701     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
4702     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
4703     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
4704     addptr(rsp, sizeof(jdouble)*8);
4705   } else if (UseSSE >= 2)  {
4706     // Restore whole 128bit (16 bytes) XMM regiters
4707     movdqu(xmm0, Address(rsp,off++*16));
4708     movdqu(xmm1, Address(rsp,off++*16));
4709     movdqu(xmm2, Address(rsp,off++*16));
4710     movdqu(xmm3, Address(rsp,off++*16));
4711     movdqu(xmm4, Address(rsp,off++*16));
4712     movdqu(xmm5, Address(rsp,off++*16));
4713     movdqu(xmm6, Address(rsp,off++*16));
4714     movdqu(xmm7, Address(rsp,off++*16));
4715 #ifdef _LP64
4716     movdqu(xmm8, Address(rsp,off++*16));
4717     movdqu(xmm9, Address(rsp,off++*16));
4718     movdqu(xmm10, Address(rsp,off++*16));
4719     movdqu(xmm11, Address(rsp,off++*16));
4720     movdqu(xmm12, Address(rsp,off++*16));
4721     movdqu(xmm13, Address(rsp,off++*16));
4722     movdqu(xmm14, Address(rsp,off++*16));
4723     movdqu(xmm15, Address(rsp,off++*16));
4724 #endif
4725     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4726 #ifdef COMPILER2
4727     if (MaxVectorSize > 16) {
4728       // Restore upper half of YMM registes.
4729       vinsertf128h(xmm0, Address(rsp,  0));
4730       vinsertf128h(xmm1, Address(rsp, 16));
4731       vinsertf128h(xmm2, Address(rsp, 32));
4732       vinsertf128h(xmm3, Address(rsp, 48));
4733       vinsertf128h(xmm4, Address(rsp, 64));
4734       vinsertf128h(xmm5, Address(rsp, 80));
4735       vinsertf128h(xmm6, Address(rsp, 96));
4736       vinsertf128h(xmm7, Address(rsp,112));
4737 #ifdef _LP64
4738       vinsertf128h(xmm8, Address(rsp,128));
4739       vinsertf128h(xmm9, Address(rsp,144));
4740       vinsertf128h(xmm10, Address(rsp,160));
4741       vinsertf128h(xmm11, Address(rsp,176));
4742       vinsertf128h(xmm12, Address(rsp,192));
4743       vinsertf128h(xmm13, Address(rsp,208));
4744       vinsertf128h(xmm14, Address(rsp,224));
4745       vinsertf128h(xmm15, Address(rsp,240));
4746 #endif
4747       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4748     }
4749 #endif
4750   }
4751   popa();
4752 }
4753 
4754 static const double     pi_4 =  0.7853981633974483;
4755 
4756 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
4757   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
4758   // was attempted in this code; unfortunately it appears that the
4759   // switch to 80-bit precision and back causes this to be
4760   // unprofitable compared with simply performing a runtime call if
4761   // the argument is out of the (-pi/4, pi/4) range.
4762 
4763   Register tmp = noreg;
4764   if (!VM_Version::supports_cmov()) {
4765     // fcmp needs a temporary so preserve rbx,
4766     tmp = rbx;
4767     push(tmp);
4768   }
4769 
4770   Label slow_case, done;
4771 
4772   ExternalAddress pi4_adr = (address)&pi_4;
4773   if (reachable(pi4_adr)) {
4774     // x ?<= pi/4
4775     fld_d(pi4_adr);
4776     fld_s(1);                // Stack:  X  PI/4  X
4777     fabs();                  // Stack: |X| PI/4  X
4778     fcmp(tmp);
4779     jcc(Assembler::above, slow_case);
4780 
4781     // fastest case: -pi/4 <= x <= pi/4
4782     switch(trig) {
4783     case 's':
4784       fsin();
4785       break;
4786     case 'c':
4787       fcos();
4788       break;
4789     case 't':
4790       ftan();
4791       break;
4792     default:
4793       assert(false, "bad intrinsic");
4794       break;
4795     }
4796     jmp(done);
4797   }
4798 
4799   // slow case: runtime call
4800   bind(slow_case);
4801 
4802   switch(trig) {
4803   case 's':
4804     {
4805       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
4806     }
4807     break;
4808   case 'c':
4809     {
4810       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
4811     }
4812     break;
4813   case 't':
4814     {
4815       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
4816     }
4817     break;
4818   default:
4819     assert(false, "bad intrinsic");
4820     break;
4821   }
4822 
4823   // Come here with result in F-TOS
4824   bind(done);
4825 
4826   if (tmp != noreg) {
4827     pop(tmp);
4828   }
4829 }
4830 
4831 
4832 // Look up the method for a megamorphic invokeinterface call.
4833 // The target method is determined by <intf_klass, itable_index>.
4834 // The receiver klass is in recv_klass.
4835 // On success, the result will be in method_result, and execution falls through.
4836 // On failure, execution transfers to the given label.
4837 void MacroAssembler::lookup_interface_method(Register recv_klass,
4838                                              Register intf_klass,
4839                                              RegisterOrConstant itable_index,
4840                                              Register method_result,
4841                                              Register scan_temp,
4842                                              Label& L_no_such_interface) {
4843   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
4844   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4845          "caller must use same register for non-constant itable index as for method");
4846 
4847   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4848   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
4849   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4850   int scan_step   = itableOffsetEntry::size() * wordSize;
4851   int vte_size    = vtableEntry::size() * wordSize;
4852   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4853   assert(vte_size == wordSize, "else adjust times_vte_scale");
4854 
4855   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
4856 
4857   // %%% Could store the aligned, prescaled offset in the klassoop.
4858   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4859   if (HeapWordsPerLong > 1) {
4860     // Round up to align_object_offset boundary
4861     // see code for InstanceKlass::start_of_itable!
4862     round_to(scan_temp, BytesPerLong);
4863   }
4864 
4865   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4866   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4867   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4868 
4869   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4870   //   if (scan->interface() == intf) {
4871   //     result = (klass + scan->offset() + itable_index);
4872   //   }
4873   // }
4874   Label search, found_method;
4875 
4876   for (int peel = 1; peel >= 0; peel--) {
4877     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4878     cmpptr(intf_klass, method_result);
4879 
4880     if (peel) {
4881       jccb(Assembler::equal, found_method);
4882     } else {
4883       jccb(Assembler::notEqual, search);
4884       // (invert the test to fall through to found_method...)
4885     }
4886 
4887     if (!peel)  break;
4888 
4889     bind(search);
4890 
4891     // Check that the previous entry is non-null.  A null entry means that
4892     // the receiver class doesn't implement the interface, and wasn't the
4893     // same as when the caller was compiled.
4894     testptr(method_result, method_result);
4895     jcc(Assembler::zero, L_no_such_interface);
4896     addptr(scan_temp, scan_step);
4897   }
4898 
4899   bind(found_method);
4900 
4901   // Got a hit.
4902   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4903   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4904 }
4905 
4906 
4907 // virtual method calling
4908 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4909                                            RegisterOrConstant vtable_index,
4910                                            Register method_result) {
4911   const int base = InstanceKlass::vtable_start_offset() * wordSize;
4912   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4913   Address vtable_entry_addr(recv_klass,
4914                             vtable_index, Address::times_ptr,
4915                             base + vtableEntry::method_offset_in_bytes());
4916   movptr(method_result, vtable_entry_addr);
4917 }
4918 
4919 
4920 void MacroAssembler::check_klass_subtype(Register sub_klass,
4921                            Register super_klass,
4922                            Register temp_reg,
4923                            Label& L_success) {
4924   Label L_failure;
4925   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4926   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4927   bind(L_failure);
4928 }
4929 
4930 
4931 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4932                                                    Register super_klass,
4933                                                    Register temp_reg,
4934                                                    Label* L_success,
4935                                                    Label* L_failure,
4936                                                    Label* L_slow_path,
4937                                         RegisterOrConstant super_check_offset) {
4938   assert_different_registers(sub_klass, super_klass, temp_reg);
4939   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4940   if (super_check_offset.is_register()) {
4941     assert_different_registers(sub_klass, super_klass,
4942                                super_check_offset.as_register());
4943   } else if (must_load_sco) {
4944     assert(temp_reg != noreg, "supply either a temp or a register offset");
4945   }
4946 
4947   Label L_fallthrough;
4948   int label_nulls = 0;
4949   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4950   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4951   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4952   assert(label_nulls <= 1, "at most one NULL in the batch");
4953 
4954   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4955   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4956   Address super_check_offset_addr(super_klass, sco_offset);
4957 
4958   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4959   // range of a jccb.  If this routine grows larger, reconsider at
4960   // least some of these.
4961 #define local_jcc(assembler_cond, label)                                \
4962   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4963   else                             jcc( assembler_cond, label) /*omit semi*/
4964 
4965   // Hacked jmp, which may only be used just before L_fallthrough.
4966 #define final_jmp(label)                                                \
4967   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4968   else                            jmp(label)                /*omit semi*/
4969 
4970   // If the pointers are equal, we are done (e.g., String[] elements).
4971   // This self-check enables sharing of secondary supertype arrays among
4972   // non-primary types such as array-of-interface.  Otherwise, each such
4973   // type would need its own customized SSA.
4974   // We move this check to the front of the fast path because many
4975   // type checks are in fact trivially successful in this manner,
4976   // so we get a nicely predicted branch right at the start of the check.
4977   cmpptr(sub_klass, super_klass);
4978   local_jcc(Assembler::equal, *L_success);
4979 
4980   // Check the supertype display:
4981   if (must_load_sco) {
4982     // Positive movl does right thing on LP64.
4983     movl(temp_reg, super_check_offset_addr);
4984     super_check_offset = RegisterOrConstant(temp_reg);
4985   }
4986   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4987   cmpptr(super_klass, super_check_addr); // load displayed supertype
4988 
4989   // This check has worked decisively for primary supers.
4990   // Secondary supers are sought in the super_cache ('super_cache_addr').
4991   // (Secondary supers are interfaces and very deeply nested subtypes.)
4992   // This works in the same check above because of a tricky aliasing
4993   // between the super_cache and the primary super display elements.
4994   // (The 'super_check_addr' can address either, as the case requires.)
4995   // Note that the cache is updated below if it does not help us find
4996   // what we need immediately.
4997   // So if it was a primary super, we can just fail immediately.
4998   // Otherwise, it's the slow path for us (no success at this point).
4999 
5000   if (super_check_offset.is_register()) {
5001     local_jcc(Assembler::equal, *L_success);
5002     cmpl(super_check_offset.as_register(), sc_offset);
5003     if (L_failure == &L_fallthrough) {
5004       local_jcc(Assembler::equal, *L_slow_path);
5005     } else {
5006       local_jcc(Assembler::notEqual, *L_failure);
5007       final_jmp(*L_slow_path);
5008     }
5009   } else if (super_check_offset.as_constant() == sc_offset) {
5010     // Need a slow path; fast failure is impossible.
5011     if (L_slow_path == &L_fallthrough) {
5012       local_jcc(Assembler::equal, *L_success);
5013     } else {
5014       local_jcc(Assembler::notEqual, *L_slow_path);
5015       final_jmp(*L_success);
5016     }
5017   } else {
5018     // No slow path; it's a fast decision.
5019     if (L_failure == &L_fallthrough) {
5020       local_jcc(Assembler::equal, *L_success);
5021     } else {
5022       local_jcc(Assembler::notEqual, *L_failure);
5023       final_jmp(*L_success);
5024     }
5025   }
5026 
5027   bind(L_fallthrough);
5028 
5029 #undef local_jcc
5030 #undef final_jmp
5031 }
5032 
5033 
5034 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5035                                                    Register super_klass,
5036                                                    Register temp_reg,
5037                                                    Register temp2_reg,
5038                                                    Label* L_success,
5039                                                    Label* L_failure,
5040                                                    bool set_cond_codes) {
5041   assert_different_registers(sub_klass, super_klass, temp_reg);
5042   if (temp2_reg != noreg)
5043     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5044 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5045 
5046   Label L_fallthrough;
5047   int label_nulls = 0;
5048   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5049   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5050   assert(label_nulls <= 1, "at most one NULL in the batch");
5051 
5052   // a couple of useful fields in sub_klass:
5053   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5054   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5055   Address secondary_supers_addr(sub_klass, ss_offset);
5056   Address super_cache_addr(     sub_klass, sc_offset);
5057 
5058   // Do a linear scan of the secondary super-klass chain.
5059   // This code is rarely used, so simplicity is a virtue here.
5060   // The repne_scan instruction uses fixed registers, which we must spill.
5061   // Don't worry too much about pre-existing connections with the input regs.
5062 
5063   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5064   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5065 
5066   // Get super_klass value into rax (even if it was in rdi or rcx).
5067   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5068   if (super_klass != rax || UseCompressedOops) {
5069     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5070     mov(rax, super_klass);
5071   }
5072   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5073   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5074 
5075 #ifndef PRODUCT
5076   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5077   ExternalAddress pst_counter_addr((address) pst_counter);
5078   NOT_LP64(  incrementl(pst_counter_addr) );
5079   LP64_ONLY( lea(rcx, pst_counter_addr) );
5080   LP64_ONLY( incrementl(Address(rcx, 0)) );
5081 #endif //PRODUCT
5082 
5083   // We will consult the secondary-super array.
5084   movptr(rdi, secondary_supers_addr);
5085   // Load the array length.  (Positive movl does right thing on LP64.)
5086   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5087   // Skip to start of data.
5088   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5089 
5090   // Scan RCX words at [RDI] for an occurrence of RAX.
5091   // Set NZ/Z based on last compare.
5092   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5093   // not change flags (only scas instruction which is repeated sets flags).
5094   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5095 
5096     testptr(rax,rax); // Set Z = 0
5097     repne_scan();
5098 
5099   // Unspill the temp. registers:
5100   if (pushed_rdi)  pop(rdi);
5101   if (pushed_rcx)  pop(rcx);
5102   if (pushed_rax)  pop(rax);
5103 
5104   if (set_cond_codes) {
5105     // Special hack for the AD files:  rdi is guaranteed non-zero.
5106     assert(!pushed_rdi, "rdi must be left non-NULL");
5107     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5108   }
5109 
5110   if (L_failure == &L_fallthrough)
5111         jccb(Assembler::notEqual, *L_failure);
5112   else  jcc(Assembler::notEqual, *L_failure);
5113 
5114   // Success.  Cache the super we found and proceed in triumph.
5115   movptr(super_cache_addr, super_klass);
5116 
5117   if (L_success != &L_fallthrough) {
5118     jmp(*L_success);
5119   }
5120 
5121 #undef IS_A_TEMP
5122 
5123   bind(L_fallthrough);
5124 }
5125 
5126 
5127 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5128   if (VM_Version::supports_cmov()) {
5129     cmovl(cc, dst, src);
5130   } else {
5131     Label L;
5132     jccb(negate_condition(cc), L);
5133     movl(dst, src);
5134     bind(L);
5135   }
5136 }
5137 
5138 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5139   if (VM_Version::supports_cmov()) {
5140     cmovl(cc, dst, src);
5141   } else {
5142     Label L;
5143     jccb(negate_condition(cc), L);
5144     movl(dst, src);
5145     bind(L);
5146   }
5147 }
5148 
5149 void MacroAssembler::verify_oop(Register reg, const char* s) {
5150   if (!VerifyOops) return;
5151 
5152   // Pass register number to verify_oop_subroutine
5153   const char* b = NULL;
5154   {
5155     ResourceMark rm;
5156     stringStream ss;
5157     ss.print("verify_oop: %s: %s", reg->name(), s);
5158     b = code_string(ss.as_string());
5159   }
5160   BLOCK_COMMENT("verify_oop {");
5161 #ifdef _LP64
5162   push(rscratch1);                    // save r10, trashed by movptr()
5163 #endif
5164   push(rax);                          // save rax,
5165   push(reg);                          // pass register argument
5166   ExternalAddress buffer((address) b);
5167   // avoid using pushptr, as it modifies scratch registers
5168   // and our contract is not to modify anything
5169   movptr(rax, buffer.addr());
5170   push(rax);
5171   // call indirectly to solve generation ordering problem
5172   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5173   call(rax);
5174   // Caller pops the arguments (oop, message) and restores rax, r10
5175   BLOCK_COMMENT("} verify_oop");
5176 }
5177 
5178 
5179 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5180                                                       Register tmp,
5181                                                       int offset) {
5182   intptr_t value = *delayed_value_addr;
5183   if (value != 0)
5184     return RegisterOrConstant(value + offset);
5185 
5186   // load indirectly to solve generation ordering problem
5187   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5188 
5189 #ifdef ASSERT
5190   { Label L;
5191     testptr(tmp, tmp);
5192     if (WizardMode) {
5193       const char* buf = NULL;
5194       {
5195         ResourceMark rm;
5196         stringStream ss;
5197         ss.print("DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
5198         buf = code_string(ss.as_string());
5199       }
5200       jcc(Assembler::notZero, L);
5201       STOP(buf);
5202     } else {
5203       jccb(Assembler::notZero, L);
5204       hlt();
5205     }
5206     bind(L);
5207   }
5208 #endif
5209 
5210   if (offset != 0)
5211     addptr(tmp, offset);
5212 
5213   return RegisterOrConstant(tmp);
5214 }
5215 
5216 
5217 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5218                                          int extra_slot_offset) {
5219   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5220   int stackElementSize = Interpreter::stackElementSize;
5221   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5222 #ifdef ASSERT
5223   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5224   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5225 #endif
5226   Register             scale_reg    = noreg;
5227   Address::ScaleFactor scale_factor = Address::no_scale;
5228   if (arg_slot.is_constant()) {
5229     offset += arg_slot.as_constant() * stackElementSize;
5230   } else {
5231     scale_reg    = arg_slot.as_register();
5232     scale_factor = Address::times(stackElementSize);
5233   }
5234   offset += wordSize;           // return PC is on stack
5235   return Address(rsp, scale_reg, scale_factor, offset);
5236 }
5237 
5238 
5239 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5240   if (!VerifyOops) return;
5241 
5242   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5243   // Pass register number to verify_oop_subroutine
5244   const char* b = NULL;
5245   {
5246     ResourceMark rm;
5247     stringStream ss;
5248     ss.print("verify_oop_addr: %s", s);
5249     b = code_string(ss.as_string());
5250   }
5251 #ifdef _LP64
5252   push(rscratch1);                    // save r10, trashed by movptr()
5253 #endif
5254   push(rax);                          // save rax,
5255   // addr may contain rsp so we will have to adjust it based on the push
5256   // we just did (and on 64 bit we do two pushes)
5257   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5258   // stores rax into addr which is backwards of what was intended.
5259   if (addr.uses(rsp)) {
5260     lea(rax, addr);
5261     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5262   } else {
5263     pushptr(addr);
5264   }
5265 
5266   ExternalAddress buffer((address) b);
5267   // pass msg argument
5268   // avoid using pushptr, as it modifies scratch registers
5269   // and our contract is not to modify anything
5270   movptr(rax, buffer.addr());
5271   push(rax);
5272 
5273   // call indirectly to solve generation ordering problem
5274   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5275   call(rax);
5276   // Caller pops the arguments (addr, message) and restores rax, r10.
5277 }
5278 
5279 void MacroAssembler::verify_tlab() {
5280 #ifdef ASSERT
5281   if (UseTLAB && VerifyOops) {
5282     Label next, ok;
5283     Register t1 = rsi;
5284     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5285 
5286     push(t1);
5287     NOT_LP64(push(thread_reg));
5288     NOT_LP64(get_thread(thread_reg));
5289 
5290     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5291     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5292     jcc(Assembler::aboveEqual, next);
5293     STOP("assert(top >= start)");
5294     should_not_reach_here();
5295 
5296     bind(next);
5297     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5298     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5299     jcc(Assembler::aboveEqual, ok);
5300     STOP("assert(top <= end)");
5301     should_not_reach_here();
5302 
5303     bind(ok);
5304     NOT_LP64(pop(thread_reg));
5305     pop(t1);
5306   }
5307 #endif
5308 }
5309 
5310 class ControlWord {
5311  public:
5312   int32_t _value;
5313 
5314   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5315   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5316   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5317   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5318   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5319   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5320   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5321   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5322 
5323   void print() const {
5324     // rounding control
5325     const char* rc;
5326     switch (rounding_control()) {
5327       case 0: rc = "round near"; break;
5328       case 1: rc = "round down"; break;
5329       case 2: rc = "round up  "; break;
5330       case 3: rc = "chop      "; break;
5331     };
5332     // precision control
5333     const char* pc;
5334     switch (precision_control()) {
5335       case 0: pc = "24 bits "; break;
5336       case 1: pc = "reserved"; break;
5337       case 2: pc = "53 bits "; break;
5338       case 3: pc = "64 bits "; break;
5339     };
5340     // flags
5341     char f[9];
5342     f[0] = ' ';
5343     f[1] = ' ';
5344     f[2] = (precision   ()) ? 'P' : 'p';
5345     f[3] = (underflow   ()) ? 'U' : 'u';
5346     f[4] = (overflow    ()) ? 'O' : 'o';
5347     f[5] = (zero_divide ()) ? 'Z' : 'z';
5348     f[6] = (denormalized()) ? 'D' : 'd';
5349     f[7] = (invalid     ()) ? 'I' : 'i';
5350     f[8] = '\x0';
5351     // output
5352     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5353   }
5354 
5355 };
5356 
5357 class StatusWord {
5358  public:
5359   int32_t _value;
5360 
5361   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5362   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5363   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5364   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5365   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5366   int  top() const                     { return  (_value >> 11) & 7      ; }
5367   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5368   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5369   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5370   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5371   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5372   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5373   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5374   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5375 
5376   void print() const {
5377     // condition codes
5378     char c[5];
5379     c[0] = (C3()) ? '3' : '-';
5380     c[1] = (C2()) ? '2' : '-';
5381     c[2] = (C1()) ? '1' : '-';
5382     c[3] = (C0()) ? '0' : '-';
5383     c[4] = '\x0';
5384     // flags
5385     char f[9];
5386     f[0] = (error_status()) ? 'E' : '-';
5387     f[1] = (stack_fault ()) ? 'S' : '-';
5388     f[2] = (precision   ()) ? 'P' : '-';
5389     f[3] = (underflow   ()) ? 'U' : '-';
5390     f[4] = (overflow    ()) ? 'O' : '-';
5391     f[5] = (zero_divide ()) ? 'Z' : '-';
5392     f[6] = (denormalized()) ? 'D' : '-';
5393     f[7] = (invalid     ()) ? 'I' : '-';
5394     f[8] = '\x0';
5395     // output
5396     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5397   }
5398 
5399 };
5400 
5401 class TagWord {
5402  public:
5403   int32_t _value;
5404 
5405   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5406 
5407   void print() const {
5408     printf("%04x", _value & 0xFFFF);
5409   }
5410 
5411 };
5412 
5413 class FPU_Register {
5414  public:
5415   int32_t _m0;
5416   int32_t _m1;
5417   int16_t _ex;
5418 
5419   bool is_indefinite() const           {
5420     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5421   }
5422 
5423   void print() const {
5424     char  sign = (_ex < 0) ? '-' : '+';
5425     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5426     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5427   };
5428 
5429 };
5430 
5431 class FPU_State {
5432  public:
5433   enum {
5434     register_size       = 10,
5435     number_of_registers =  8,
5436     register_mask       =  7
5437   };
5438 
5439   ControlWord  _control_word;
5440   StatusWord   _status_word;
5441   TagWord      _tag_word;
5442   int32_t      _error_offset;
5443   int32_t      _error_selector;
5444   int32_t      _data_offset;
5445   int32_t      _data_selector;
5446   int8_t       _register[register_size * number_of_registers];
5447 
5448   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5449   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5450 
5451   const char* tag_as_string(int tag) const {
5452     switch (tag) {
5453       case 0: return "valid";
5454       case 1: return "zero";
5455       case 2: return "special";
5456       case 3: return "empty";
5457     }
5458     ShouldNotReachHere();
5459     return NULL;
5460   }
5461 
5462   void print() const {
5463     // print computation registers
5464     { int t = _status_word.top();
5465       for (int i = 0; i < number_of_registers; i++) {
5466         int j = (i - t) & register_mask;
5467         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5468         st(j)->print();
5469         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5470       }
5471     }
5472     printf("\n");
5473     // print control registers
5474     printf("ctrl = "); _control_word.print(); printf("\n");
5475     printf("stat = "); _status_word .print(); printf("\n");
5476     printf("tags = "); _tag_word    .print(); printf("\n");
5477   }
5478 
5479 };
5480 
5481 class Flag_Register {
5482  public:
5483   int32_t _value;
5484 
5485   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5486   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5487   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5488   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5489   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5490   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5491   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5492 
5493   void print() const {
5494     // flags
5495     char f[8];
5496     f[0] = (overflow       ()) ? 'O' : '-';
5497     f[1] = (direction      ()) ? 'D' : '-';
5498     f[2] = (sign           ()) ? 'S' : '-';
5499     f[3] = (zero           ()) ? 'Z' : '-';
5500     f[4] = (auxiliary_carry()) ? 'A' : '-';
5501     f[5] = (parity         ()) ? 'P' : '-';
5502     f[6] = (carry          ()) ? 'C' : '-';
5503     f[7] = '\x0';
5504     // output
5505     printf("%08x  flags = %s", _value, f);
5506   }
5507 
5508 };
5509 
5510 class IU_Register {
5511  public:
5512   int32_t _value;
5513 
5514   void print() const {
5515     printf("%08x  %11d", _value, _value);
5516   }
5517 
5518 };
5519 
5520 class IU_State {
5521  public:
5522   Flag_Register _eflags;
5523   IU_Register   _rdi;
5524   IU_Register   _rsi;
5525   IU_Register   _rbp;
5526   IU_Register   _rsp;
5527   IU_Register   _rbx;
5528   IU_Register   _rdx;
5529   IU_Register   _rcx;
5530   IU_Register   _rax;
5531 
5532   void print() const {
5533     // computation registers
5534     printf("rax,  = "); _rax.print(); printf("\n");
5535     printf("rbx,  = "); _rbx.print(); printf("\n");
5536     printf("rcx  = "); _rcx.print(); printf("\n");
5537     printf("rdx  = "); _rdx.print(); printf("\n");
5538     printf("rdi  = "); _rdi.print(); printf("\n");
5539     printf("rsi  = "); _rsi.print(); printf("\n");
5540     printf("rbp,  = "); _rbp.print(); printf("\n");
5541     printf("rsp  = "); _rsp.print(); printf("\n");
5542     printf("\n");
5543     // control registers
5544     printf("flgs = "); _eflags.print(); printf("\n");
5545   }
5546 };
5547 
5548 
5549 class CPU_State {
5550  public:
5551   FPU_State _fpu_state;
5552   IU_State  _iu_state;
5553 
5554   void print() const {
5555     printf("--------------------------------------------------\n");
5556     _iu_state .print();
5557     printf("\n");
5558     _fpu_state.print();
5559     printf("--------------------------------------------------\n");
5560   }
5561 
5562 };
5563 
5564 
5565 static void _print_CPU_state(CPU_State* state) {
5566   state->print();
5567 };
5568 
5569 
5570 void MacroAssembler::print_CPU_state() {
5571   push_CPU_state();
5572   push(rsp);                // pass CPU state
5573   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5574   addptr(rsp, wordSize);       // discard argument
5575   pop_CPU_state();
5576 }
5577 
5578 
5579 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5580   static int counter = 0;
5581   FPU_State* fs = &state->_fpu_state;
5582   counter++;
5583   // For leaf calls, only verify that the top few elements remain empty.
5584   // We only need 1 empty at the top for C2 code.
5585   if( stack_depth < 0 ) {
5586     if( fs->tag_for_st(7) != 3 ) {
5587       printf("FPR7 not empty\n");
5588       state->print();
5589       assert(false, "error");
5590       return false;
5591     }
5592     return true;                // All other stack states do not matter
5593   }
5594 
5595   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5596          "bad FPU control word");
5597 
5598   // compute stack depth
5599   int i = 0;
5600   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5601   int d = i;
5602   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5603   // verify findings
5604   if (i != FPU_State::number_of_registers) {
5605     // stack not contiguous
5606     printf("%s: stack not contiguous at ST%d\n", s, i);
5607     state->print();
5608     assert(false, "error");
5609     return false;
5610   }
5611   // check if computed stack depth corresponds to expected stack depth
5612   if (stack_depth < 0) {
5613     // expected stack depth is -stack_depth or less
5614     if (d > -stack_depth) {
5615       // too many elements on the stack
5616       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5617       state->print();
5618       assert(false, "error");
5619       return false;
5620     }
5621   } else {
5622     // expected stack depth is stack_depth
5623     if (d != stack_depth) {
5624       // wrong stack depth
5625       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5626       state->print();
5627       assert(false, "error");
5628       return false;
5629     }
5630   }
5631   // everything is cool
5632   return true;
5633 }
5634 
5635 
5636 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5637   if (!VerifyFPU) return;
5638   push_CPU_state();
5639   push(rsp);                // pass CPU state
5640   ExternalAddress msg((address) s);
5641   // pass message string s
5642   pushptr(msg.addr());
5643   push(stack_depth);        // pass stack depth
5644   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5645   addptr(rsp, 3 * wordSize);   // discard arguments
5646   // check for error
5647   { Label L;
5648     testl(rax, rax);
5649     jcc(Assembler::notZero, L);
5650     int3();                  // break if error condition
5651     bind(L);
5652   }
5653   pop_CPU_state();
5654 }
5655 
5656 void MacroAssembler::restore_cpu_control_state_after_jni() {
5657   // Either restore the MXCSR register after returning from the JNI Call
5658   // or verify that it wasn't changed (with -Xcheck:jni flag).
5659   if (VM_Version::supports_sse()) {
5660     if (RestoreMXCSROnJNICalls) {
5661       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5662     } else if (CheckJNICalls) {
5663       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5664     }
5665   }
5666   if (VM_Version::supports_avx()) {
5667     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5668     vzeroupper();
5669   }
5670 
5671 #ifndef _LP64
5672   // Either restore the x87 floating pointer control word after returning
5673   // from the JNI call or verify that it wasn't changed.
5674   if (CheckJNICalls) {
5675     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5676   }
5677 #endif // _LP64
5678 }
5679 
5680 
5681 void MacroAssembler::load_klass(Register dst, Register src) {
5682 #ifdef _LP64
5683   if (UseCompressedClassPointers) {
5684     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5685     decode_klass_not_null(dst);
5686   } else
5687 #endif
5688     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5689 }
5690 
5691 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5692   load_klass(dst, src);
5693   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5694 }
5695 
5696 void MacroAssembler::store_klass(Register dst, Register src) {
5697 #ifdef _LP64
5698   if (UseCompressedClassPointers) {
5699     encode_klass_not_null(src);
5700     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5701   } else
5702 #endif
5703     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5704 }
5705 
5706 void MacroAssembler::load_heap_oop(Register dst, Address src) {
5707 #ifdef _LP64
5708   // FIXME: Must change all places where we try to load the klass.
5709   if (UseCompressedOops) {
5710     movl(dst, src);
5711     decode_heap_oop(dst);
5712   } else
5713 #endif
5714     movptr(dst, src);
5715 }
5716 
5717 // Doesn't do verfication, generates fixed size code
5718 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
5719 #ifdef _LP64
5720   if (UseCompressedOops) {
5721     movl(dst, src);
5722     decode_heap_oop_not_null(dst);
5723   } else
5724 #endif
5725     movptr(dst, src);
5726 }
5727 
5728 void MacroAssembler::store_heap_oop(Address dst, Register src) {
5729 #ifdef _LP64
5730   if (UseCompressedOops) {
5731     assert(!dst.uses(src), "not enough registers");
5732     encode_heap_oop(src);
5733     movl(dst, src);
5734   } else
5735 #endif
5736     movptr(dst, src);
5737 }
5738 
5739 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
5740   assert_different_registers(src1, tmp);
5741 #ifdef _LP64
5742   if (UseCompressedOops) {
5743     bool did_push = false;
5744     if (tmp == noreg) {
5745       tmp = rax;
5746       push(tmp);
5747       did_push = true;
5748       assert(!src2.uses(rsp), "can't push");
5749     }
5750     load_heap_oop(tmp, src2);
5751     cmpptr(src1, tmp);
5752     if (did_push)  pop(tmp);
5753   } else
5754 #endif
5755     cmpptr(src1, src2);
5756 }
5757 
5758 // Used for storing NULLs.
5759 void MacroAssembler::store_heap_oop_null(Address dst) {
5760 #ifdef _LP64
5761   if (UseCompressedOops) {
5762     movl(dst, (int32_t)NULL_WORD);
5763   } else {
5764     movslq(dst, (int32_t)NULL_WORD);
5765   }
5766 #else
5767   movl(dst, (int32_t)NULL_WORD);
5768 #endif
5769 }
5770 
5771 #ifdef _LP64
5772 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5773   if (UseCompressedClassPointers) {
5774     // Store to klass gap in destination
5775     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5776   }
5777 }
5778 
5779 #ifdef ASSERT
5780 void MacroAssembler::verify_heapbase(const char* msg) {
5781   assert (UseCompressedOops, "should be compressed");
5782   assert (Universe::heap() != NULL, "java heap should be initialized");
5783   if (CheckCompressedOops) {
5784     Label ok;
5785     push(rscratch1); // cmpptr trashes rscratch1
5786     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5787     jcc(Assembler::equal, ok);
5788     STOP(msg);
5789     bind(ok);
5790     pop(rscratch1);
5791   }
5792 }
5793 #endif
5794 
5795 // Algorithm must match oop.inline.hpp encode_heap_oop.
5796 void MacroAssembler::encode_heap_oop(Register r) {
5797 #ifdef ASSERT
5798   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5799 #endif
5800   verify_oop(r, "broken oop in encode_heap_oop");
5801   if (Universe::narrow_oop_base() == NULL) {
5802     if (Universe::narrow_oop_shift() != 0) {
5803       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5804       shrq(r, LogMinObjAlignmentInBytes);
5805     }
5806     return;
5807   }
5808   testq(r, r);
5809   cmovq(Assembler::equal, r, r12_heapbase);
5810   subq(r, r12_heapbase);
5811   shrq(r, LogMinObjAlignmentInBytes);
5812 }
5813 
5814 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5815 #ifdef ASSERT
5816   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5817   if (CheckCompressedOops) {
5818     Label ok;
5819     testq(r, r);
5820     jcc(Assembler::notEqual, ok);
5821     STOP("null oop passed to encode_heap_oop_not_null");
5822     bind(ok);
5823   }
5824 #endif
5825   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5826   if (Universe::narrow_oop_base() != NULL) {
5827     subq(r, r12_heapbase);
5828   }
5829   if (Universe::narrow_oop_shift() != 0) {
5830     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5831     shrq(r, LogMinObjAlignmentInBytes);
5832   }
5833 }
5834 
5835 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5836 #ifdef ASSERT
5837   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5838   if (CheckCompressedOops) {
5839     Label ok;
5840     testq(src, src);
5841     jcc(Assembler::notEqual, ok);
5842     STOP("null oop passed to encode_heap_oop_not_null2");
5843     bind(ok);
5844   }
5845 #endif
5846   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5847   if (dst != src) {
5848     movq(dst, src);
5849   }
5850   if (Universe::narrow_oop_base() != NULL) {
5851     subq(dst, r12_heapbase);
5852   }
5853   if (Universe::narrow_oop_shift() != 0) {
5854     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5855     shrq(dst, LogMinObjAlignmentInBytes);
5856   }
5857 }
5858 
5859 void  MacroAssembler::decode_heap_oop(Register r) {
5860 #ifdef ASSERT
5861   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5862 #endif
5863   if (Universe::narrow_oop_base() == NULL) {
5864     if (Universe::narrow_oop_shift() != 0) {
5865       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5866       shlq(r, LogMinObjAlignmentInBytes);
5867     }
5868   } else {
5869     Label done;
5870     shlq(r, LogMinObjAlignmentInBytes);
5871     jccb(Assembler::equal, done);
5872     addq(r, r12_heapbase);
5873     bind(done);
5874   }
5875   verify_oop(r, "broken oop in decode_heap_oop");
5876 }
5877 
5878 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5879   // Note: it will change flags
5880   assert (UseCompressedOops, "should only be used for compressed headers");
5881   assert (Universe::heap() != NULL, "java heap should be initialized");
5882   // Cannot assert, unverified entry point counts instructions (see .ad file)
5883   // vtableStubs also counts instructions in pd_code_size_limit.
5884   // Also do not verify_oop as this is called by verify_oop.
5885   if (Universe::narrow_oop_shift() != 0) {
5886     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5887     shlq(r, LogMinObjAlignmentInBytes);
5888     if (Universe::narrow_oop_base() != NULL) {
5889       addq(r, r12_heapbase);
5890     }
5891   } else {
5892     assert (Universe::narrow_oop_base() == NULL, "sanity");
5893   }
5894 }
5895 
5896 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5897   // Note: it will change flags
5898   assert (UseCompressedOops, "should only be used for compressed headers");
5899   assert (Universe::heap() != NULL, "java heap should be initialized");
5900   // Cannot assert, unverified entry point counts instructions (see .ad file)
5901   // vtableStubs also counts instructions in pd_code_size_limit.
5902   // Also do not verify_oop as this is called by verify_oop.
5903   if (Universe::narrow_oop_shift() != 0) {
5904     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5905     if (LogMinObjAlignmentInBytes == Address::times_8) {
5906       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5907     } else {
5908       if (dst != src) {
5909         movq(dst, src);
5910       }
5911       shlq(dst, LogMinObjAlignmentInBytes);
5912       if (Universe::narrow_oop_base() != NULL) {
5913         addq(dst, r12_heapbase);
5914       }
5915     }
5916   } else {
5917     assert (Universe::narrow_oop_base() == NULL, "sanity");
5918     if (dst != src) {
5919       movq(dst, src);
5920     }
5921   }
5922 }
5923 
5924 void MacroAssembler::encode_klass_not_null(Register r) {
5925   if (Universe::narrow_klass_base() != NULL) {
5926     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5927     assert(r != r12_heapbase, "Encoding a klass in r12");
5928     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5929     subq(r, r12_heapbase);
5930   }
5931   if (Universe::narrow_klass_shift() != 0) {
5932     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5933     shrq(r, LogKlassAlignmentInBytes);
5934   }
5935   if (Universe::narrow_klass_base() != NULL) {
5936     reinit_heapbase();
5937   }
5938 }
5939 
5940 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5941   if (dst == src) {
5942     encode_klass_not_null(src);
5943   } else {
5944     if (Universe::narrow_klass_base() != NULL) {
5945       mov64(dst, (int64_t)Universe::narrow_klass_base());
5946       negq(dst);
5947       addq(dst, src);
5948     } else {
5949       movptr(dst, src);
5950     }
5951     if (Universe::narrow_klass_shift() != 0) {
5952       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5953       shrq(dst, LogKlassAlignmentInBytes);
5954     }
5955   }
5956 }
5957 
5958 // Function instr_size_for_decode_klass_not_null() counts the instructions
5959 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5960 // when (Universe::heap() != NULL).  Hence, if the instructions they
5961 // generate change, then this method needs to be updated.
5962 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5963   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5964   if (Universe::narrow_klass_base() != NULL) {
5965     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5966     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
5967   } else {
5968     // longest load decode klass function, mov64, leaq
5969     return 16;
5970   }
5971 }
5972 
5973 // !!! If the instructions that get generated here change then function
5974 // instr_size_for_decode_klass_not_null() needs to get updated.
5975 void  MacroAssembler::decode_klass_not_null(Register r) {
5976   // Note: it will change flags
5977   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5978   assert(r != r12_heapbase, "Decoding a klass in r12");
5979   // Cannot assert, unverified entry point counts instructions (see .ad file)
5980   // vtableStubs also counts instructions in pd_code_size_limit.
5981   // Also do not verify_oop as this is called by verify_oop.
5982   if (Universe::narrow_klass_shift() != 0) {
5983     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5984     shlq(r, LogKlassAlignmentInBytes);
5985   }
5986   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5987   if (Universe::narrow_klass_base() != NULL) {
5988     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5989     addq(r, r12_heapbase);
5990     reinit_heapbase();
5991   }
5992 }
5993 
5994 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5995   // Note: it will change flags
5996   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5997   if (dst == src) {
5998     decode_klass_not_null(dst);
5999   } else {
6000     // Cannot assert, unverified entry point counts instructions (see .ad file)
6001     // vtableStubs also counts instructions in pd_code_size_limit.
6002     // Also do not verify_oop as this is called by verify_oop.
6003     mov64(dst, (int64_t)Universe::narrow_klass_base());
6004     if (Universe::narrow_klass_shift() != 0) {
6005       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6006       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6007       leaq(dst, Address(dst, src, Address::times_8, 0));
6008     } else {
6009       addq(dst, src);
6010     }
6011   }
6012 }
6013 
6014 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6015   assert (UseCompressedOops, "should only be used for compressed headers");
6016   assert (Universe::heap() != NULL, "java heap should be initialized");
6017   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6018   int oop_index = oop_recorder()->find_index(obj);
6019   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6020   mov_narrow_oop(dst, oop_index, rspec);
6021 }
6022 
6023 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6024   assert (UseCompressedOops, "should only be used for compressed headers");
6025   assert (Universe::heap() != NULL, "java heap should be initialized");
6026   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6027   int oop_index = oop_recorder()->find_index(obj);
6028   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6029   mov_narrow_oop(dst, oop_index, rspec);
6030 }
6031 
6032 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6033   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6034   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6035   int klass_index = oop_recorder()->find_index(k);
6036   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6037   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6038 }
6039 
6040 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6041   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6042   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6043   int klass_index = oop_recorder()->find_index(k);
6044   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6045   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6046 }
6047 
6048 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6049   assert (UseCompressedOops, "should only be used for compressed headers");
6050   assert (Universe::heap() != NULL, "java heap should be initialized");
6051   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6052   int oop_index = oop_recorder()->find_index(obj);
6053   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6054   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6055 }
6056 
6057 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6058   assert (UseCompressedOops, "should only be used for compressed headers");
6059   assert (Universe::heap() != NULL, "java heap should be initialized");
6060   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6061   int oop_index = oop_recorder()->find_index(obj);
6062   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6063   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6064 }
6065 
6066 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6067   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6068   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6069   int klass_index = oop_recorder()->find_index(k);
6070   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6071   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6072 }
6073 
6074 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6075   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6076   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6077   int klass_index = oop_recorder()->find_index(k);
6078   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6079   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6080 }
6081 
6082 void MacroAssembler::reinit_heapbase() {
6083   if (UseCompressedOops || UseCompressedClassPointers) {
6084     if (Universe::heap() != NULL) {
6085       if (Universe::narrow_oop_base() == NULL) {
6086         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6087       } else {
6088         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6089       }
6090     } else {
6091       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6092     }
6093   }
6094 }
6095 
6096 #endif // _LP64
6097 
6098 
6099 // C2 compiled method's prolog code.
6100 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6101 
6102   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6103   // NativeJump::patch_verified_entry will be able to patch out the entry
6104   // code safely. The push to verify stack depth is ok at 5 bytes,
6105   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6106   // stack bang then we must use the 6 byte frame allocation even if
6107   // we have no frame. :-(
6108   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6109 
6110   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6111   // Remove word for return addr
6112   framesize -= wordSize;
6113   stack_bang_size -= wordSize;
6114 
6115   // Calls to C2R adapters often do not accept exceptional returns.
6116   // We require that their callers must bang for them.  But be careful, because
6117   // some VM calls (such as call site linkage) can use several kilobytes of
6118   // stack.  But the stack safety zone should account for that.
6119   // See bugs 4446381, 4468289, 4497237.
6120   if (stack_bang_size > 0) {
6121     generate_stack_overflow_check(stack_bang_size);
6122 
6123     // We always push rbp, so that on return to interpreter rbp, will be
6124     // restored correctly and we can correct the stack.
6125     push(rbp);
6126     // Remove word for ebp
6127     framesize -= wordSize;
6128 
6129     // Create frame
6130     if (framesize) {
6131       subptr(rsp, framesize);
6132     }
6133   } else {
6134     // Create frame (force generation of a 4 byte immediate value)
6135     subptr_imm32(rsp, framesize);
6136 
6137     // Save RBP register now.
6138     framesize -= wordSize;
6139     movptr(Address(rsp, framesize), rbp);
6140   }
6141 
6142   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6143     framesize -= wordSize;
6144     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6145   }
6146 
6147 #ifndef _LP64
6148   // If method sets FPU control word do it now
6149   if (fp_mode_24b) {
6150     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6151   }
6152   if (UseSSE >= 2 && VerifyFPU) {
6153     verify_FPU(0, "FPU stack must be clean on entry");
6154   }
6155 #endif
6156 
6157 #ifdef ASSERT
6158   if (VerifyStackAtCalls) {
6159     Label L;
6160     push(rax);
6161     mov(rax, rsp);
6162     andptr(rax, StackAlignmentInBytes-1);
6163     cmpptr(rax, StackAlignmentInBytes-wordSize);
6164     pop(rax);
6165     jcc(Assembler::equal, L);
6166     STOP("Stack is not properly aligned!");
6167     bind(L);
6168   }
6169 #endif
6170 
6171 }
6172 
6173 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
6174   // cnt - number of qwords (8-byte words).
6175   // base - start address, qword aligned.
6176   assert(base==rdi, "base register must be edi for rep stos");
6177   assert(tmp==rax,   "tmp register must be eax for rep stos");
6178   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6179 
6180   xorptr(tmp, tmp);
6181   if (UseFastStosb) {
6182     shlptr(cnt,3); // convert to number of bytes
6183     rep_stosb();
6184   } else {
6185     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
6186     rep_stos();
6187   }
6188 }
6189 
6190 // IndexOf for constant substrings with size >= 8 chars
6191 // which don't need to be loaded through stack.
6192 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6193                                       Register cnt1, Register cnt2,
6194                                       int int_cnt2,  Register result,
6195                                       XMMRegister vec, Register tmp) {
6196   ShortBranchVerifier sbv(this);
6197   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6198 
6199   // This method uses pcmpestri inxtruction with bound registers
6200   //   inputs:
6201   //     xmm - substring
6202   //     rax - substring length (elements count)
6203   //     mem - scanned string
6204   //     rdx - string length (elements count)
6205   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6206   //   outputs:
6207   //     rcx - matched index in string
6208   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6209 
6210   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6211         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6212         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6213 
6214   // Note, inline_string_indexOf() generates checks:
6215   // if (substr.count > string.count) return -1;
6216   // if (substr.count == 0) return 0;
6217   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
6218 
6219   // Load substring.
6220   movdqu(vec, Address(str2, 0));
6221   movl(cnt2, int_cnt2);
6222   movptr(result, str1); // string addr
6223 
6224   if (int_cnt2 > 8) {
6225     jmpb(SCAN_TO_SUBSTR);
6226 
6227     // Reload substr for rescan, this code
6228     // is executed only for large substrings (> 8 chars)
6229     bind(RELOAD_SUBSTR);
6230     movdqu(vec, Address(str2, 0));
6231     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6232 
6233     bind(RELOAD_STR);
6234     // We came here after the beginning of the substring was
6235     // matched but the rest of it was not so we need to search
6236     // again. Start from the next element after the previous match.
6237 
6238     // cnt2 is number of substring reminding elements and
6239     // cnt1 is number of string reminding elements when cmp failed.
6240     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6241     subl(cnt1, cnt2);
6242     addl(cnt1, int_cnt2);
6243     movl(cnt2, int_cnt2); // Now restore cnt2
6244 
6245     decrementl(cnt1);     // Shift to next element
6246     cmpl(cnt1, cnt2);
6247     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6248 
6249     addptr(result, 2);
6250 
6251   } // (int_cnt2 > 8)
6252 
6253   // Scan string for start of substr in 16-byte vectors
6254   bind(SCAN_TO_SUBSTR);
6255   pcmpestri(vec, Address(result, 0), 0x0d);
6256   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6257   subl(cnt1, 8);
6258   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6259   cmpl(cnt1, cnt2);
6260   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6261   addptr(result, 16);
6262   jmpb(SCAN_TO_SUBSTR);
6263 
6264   // Found a potential substr
6265   bind(FOUND_CANDIDATE);
6266   // Matched whole vector if first element matched (tmp(rcx) == 0).
6267   if (int_cnt2 == 8) {
6268     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6269   } else { // int_cnt2 > 8
6270     jccb(Assembler::overflow, FOUND_SUBSTR);
6271   }
6272   // After pcmpestri tmp(rcx) contains matched element index
6273   // Compute start addr of substr
6274   lea(result, Address(result, tmp, Address::times_2));
6275 
6276   // Make sure string is still long enough
6277   subl(cnt1, tmp);
6278   cmpl(cnt1, cnt2);
6279   if (int_cnt2 == 8) {
6280     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6281   } else { // int_cnt2 > 8
6282     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6283   }
6284   // Left less then substring.
6285 
6286   bind(RET_NOT_FOUND);
6287   movl(result, -1);
6288   jmpb(EXIT);
6289 
6290   if (int_cnt2 > 8) {
6291     // This code is optimized for the case when whole substring
6292     // is matched if its head is matched.
6293     bind(MATCH_SUBSTR_HEAD);
6294     pcmpestri(vec, Address(result, 0), 0x0d);
6295     // Reload only string if does not match
6296     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
6297 
6298     Label CONT_SCAN_SUBSTR;
6299     // Compare the rest of substring (> 8 chars).
6300     bind(FOUND_SUBSTR);
6301     // First 8 chars are already matched.
6302     negptr(cnt2);
6303     addptr(cnt2, 8);
6304 
6305     bind(SCAN_SUBSTR);
6306     subl(cnt1, 8);
6307     cmpl(cnt2, -8); // Do not read beyond substring
6308     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6309     // Back-up strings to avoid reading beyond substring:
6310     // cnt1 = cnt1 - cnt2 + 8
6311     addl(cnt1, cnt2); // cnt2 is negative
6312     addl(cnt1, 8);
6313     movl(cnt2, 8); negptr(cnt2);
6314     bind(CONT_SCAN_SUBSTR);
6315     if (int_cnt2 < (int)G) {
6316       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
6317       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
6318     } else {
6319       // calculate index in register to avoid integer overflow (int_cnt2*2)
6320       movl(tmp, int_cnt2);
6321       addptr(tmp, cnt2);
6322       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
6323       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
6324     }
6325     // Need to reload strings pointers if not matched whole vector
6326     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6327     addptr(cnt2, 8);
6328     jcc(Assembler::negative, SCAN_SUBSTR);
6329     // Fall through if found full substring
6330 
6331   } // (int_cnt2 > 8)
6332 
6333   bind(RET_FOUND);
6334   // Found result if we matched full small substring.
6335   // Compute substr offset
6336   subptr(result, str1);
6337   shrl(result, 1); // index
6338   bind(EXIT);
6339 
6340 } // string_indexofC8
6341 
6342 // Small strings are loaded through stack if they cross page boundary.
6343 void MacroAssembler::string_indexof(Register str1, Register str2,
6344                                     Register cnt1, Register cnt2,
6345                                     int int_cnt2,  Register result,
6346                                     XMMRegister vec, Register tmp) {
6347   ShortBranchVerifier sbv(this);
6348   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6349   //
6350   // int_cnt2 is length of small (< 8 chars) constant substring
6351   // or (-1) for non constant substring in which case its length
6352   // is in cnt2 register.
6353   //
6354   // Note, inline_string_indexOf() generates checks:
6355   // if (substr.count > string.count) return -1;
6356   // if (substr.count == 0) return 0;
6357   //
6358   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
6359 
6360   // This method uses pcmpestri inxtruction with bound registers
6361   //   inputs:
6362   //     xmm - substring
6363   //     rax - substring length (elements count)
6364   //     mem - scanned string
6365   //     rdx - string length (elements count)
6366   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6367   //   outputs:
6368   //     rcx - matched index in string
6369   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6370 
6371   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6372         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6373         FOUND_CANDIDATE;
6374 
6375   { //========================================================
6376     // We don't know where these strings are located
6377     // and we can't read beyond them. Load them through stack.
6378     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6379 
6380     movptr(tmp, rsp); // save old SP
6381 
6382     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6383       if (int_cnt2 == 1) {  // One char
6384         load_unsigned_short(result, Address(str2, 0));
6385         movdl(vec, result); // move 32 bits
6386       } else if (int_cnt2 == 2) { // Two chars
6387         movdl(vec, Address(str2, 0)); // move 32 bits
6388       } else if (int_cnt2 == 4) { // Four chars
6389         movq(vec, Address(str2, 0));  // move 64 bits
6390       } else { // cnt2 = { 3, 5, 6, 7 }
6391         // Array header size is 12 bytes in 32-bit VM
6392         // + 6 bytes for 3 chars == 18 bytes,
6393         // enough space to load vec and shift.
6394         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6395         movdqu(vec, Address(str2, (int_cnt2*2)-16));
6396         psrldq(vec, 16-(int_cnt2*2));
6397       }
6398     } else { // not constant substring
6399       cmpl(cnt2, 8);
6400       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6401 
6402       // We can read beyond string if srt+16 does not cross page boundary
6403       // since heaps are aligned and mapped by pages.
6404       assert(os::vm_page_size() < (int)G, "default page should be small");
6405       movl(result, str2); // We need only low 32 bits
6406       andl(result, (os::vm_page_size()-1));
6407       cmpl(result, (os::vm_page_size()-16));
6408       jccb(Assembler::belowEqual, CHECK_STR);
6409 
6410       // Move small strings to stack to allow load 16 bytes into vec.
6411       subptr(rsp, 16);
6412       int stk_offset = wordSize-2;
6413       push(cnt2);
6414 
6415       bind(COPY_SUBSTR);
6416       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
6417       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6418       decrement(cnt2);
6419       jccb(Assembler::notZero, COPY_SUBSTR);
6420 
6421       pop(cnt2);
6422       movptr(str2, rsp);  // New substring address
6423     } // non constant
6424 
6425     bind(CHECK_STR);
6426     cmpl(cnt1, 8);
6427     jccb(Assembler::aboveEqual, BIG_STRINGS);
6428 
6429     // Check cross page boundary.
6430     movl(result, str1); // We need only low 32 bits
6431     andl(result, (os::vm_page_size()-1));
6432     cmpl(result, (os::vm_page_size()-16));
6433     jccb(Assembler::belowEqual, BIG_STRINGS);
6434 
6435     subptr(rsp, 16);
6436     int stk_offset = -2;
6437     if (int_cnt2 < 0) { // not constant
6438       push(cnt2);
6439       stk_offset += wordSize;
6440     }
6441     movl(cnt2, cnt1);
6442 
6443     bind(COPY_STR);
6444     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
6445     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6446     decrement(cnt2);
6447     jccb(Assembler::notZero, COPY_STR);
6448 
6449     if (int_cnt2 < 0) { // not constant
6450       pop(cnt2);
6451     }
6452     movptr(str1, rsp);  // New string address
6453 
6454     bind(BIG_STRINGS);
6455     // Load substring.
6456     if (int_cnt2 < 0) { // -1
6457       movdqu(vec, Address(str2, 0));
6458       push(cnt2);       // substr count
6459       push(str2);       // substr addr
6460       push(str1);       // string addr
6461     } else {
6462       // Small (< 8 chars) constant substrings are loaded already.
6463       movl(cnt2, int_cnt2);
6464     }
6465     push(tmp);  // original SP
6466 
6467   } // Finished loading
6468 
6469   //========================================================
6470   // Start search
6471   //
6472 
6473   movptr(result, str1); // string addr
6474 
6475   if (int_cnt2  < 0) {  // Only for non constant substring
6476     jmpb(SCAN_TO_SUBSTR);
6477 
6478     // SP saved at sp+0
6479     // String saved at sp+1*wordSize
6480     // Substr saved at sp+2*wordSize
6481     // Substr count saved at sp+3*wordSize
6482 
6483     // Reload substr for rescan, this code
6484     // is executed only for large substrings (> 8 chars)
6485     bind(RELOAD_SUBSTR);
6486     movptr(str2, Address(rsp, 2*wordSize));
6487     movl(cnt2, Address(rsp, 3*wordSize));
6488     movdqu(vec, Address(str2, 0));
6489     // We came here after the beginning of the substring was
6490     // matched but the rest of it was not so we need to search
6491     // again. Start from the next element after the previous match.
6492     subptr(str1, result); // Restore counter
6493     shrl(str1, 1);
6494     addl(cnt1, str1);
6495     decrementl(cnt1);   // Shift to next element
6496     cmpl(cnt1, cnt2);
6497     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6498 
6499     addptr(result, 2);
6500   } // non constant
6501 
6502   // Scan string for start of substr in 16-byte vectors
6503   bind(SCAN_TO_SUBSTR);
6504   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6505   pcmpestri(vec, Address(result, 0), 0x0d);
6506   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6507   subl(cnt1, 8);
6508   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6509   cmpl(cnt1, cnt2);
6510   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6511   addptr(result, 16);
6512 
6513   bind(ADJUST_STR);
6514   cmpl(cnt1, 8); // Do not read beyond string
6515   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6516   // Back-up string to avoid reading beyond string.
6517   lea(result, Address(result, cnt1, Address::times_2, -16));
6518   movl(cnt1, 8);
6519   jmpb(SCAN_TO_SUBSTR);
6520 
6521   // Found a potential substr
6522   bind(FOUND_CANDIDATE);
6523   // After pcmpestri tmp(rcx) contains matched element index
6524 
6525   // Make sure string is still long enough
6526   subl(cnt1, tmp);
6527   cmpl(cnt1, cnt2);
6528   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6529   // Left less then substring.
6530 
6531   bind(RET_NOT_FOUND);
6532   movl(result, -1);
6533   jmpb(CLEANUP);
6534 
6535   bind(FOUND_SUBSTR);
6536   // Compute start addr of substr
6537   lea(result, Address(result, tmp, Address::times_2));
6538 
6539   if (int_cnt2 > 0) { // Constant substring
6540     // Repeat search for small substring (< 8 chars)
6541     // from new point without reloading substring.
6542     // Have to check that we don't read beyond string.
6543     cmpl(tmp, 8-int_cnt2);
6544     jccb(Assembler::greater, ADJUST_STR);
6545     // Fall through if matched whole substring.
6546   } else { // non constant
6547     assert(int_cnt2 == -1, "should be != 0");
6548 
6549     addl(tmp, cnt2);
6550     // Found result if we matched whole substring.
6551     cmpl(tmp, 8);
6552     jccb(Assembler::lessEqual, RET_FOUND);
6553 
6554     // Repeat search for small substring (<= 8 chars)
6555     // from new point 'str1' without reloading substring.
6556     cmpl(cnt2, 8);
6557     // Have to check that we don't read beyond string.
6558     jccb(Assembler::lessEqual, ADJUST_STR);
6559 
6560     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6561     // Compare the rest of substring (> 8 chars).
6562     movptr(str1, result);
6563 
6564     cmpl(tmp, cnt2);
6565     // First 8 chars are already matched.
6566     jccb(Assembler::equal, CHECK_NEXT);
6567 
6568     bind(SCAN_SUBSTR);
6569     pcmpestri(vec, Address(str1, 0), 0x0d);
6570     // Need to reload strings pointers if not matched whole vector
6571     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6572 
6573     bind(CHECK_NEXT);
6574     subl(cnt2, 8);
6575     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6576     addptr(str1, 16);
6577     addptr(str2, 16);
6578     subl(cnt1, 8);
6579     cmpl(cnt2, 8); // Do not read beyond substring
6580     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6581     // Back-up strings to avoid reading beyond substring.
6582     lea(str2, Address(str2, cnt2, Address::times_2, -16));
6583     lea(str1, Address(str1, cnt2, Address::times_2, -16));
6584     subl(cnt1, cnt2);
6585     movl(cnt2, 8);
6586     addl(cnt1, 8);
6587     bind(CONT_SCAN_SUBSTR);
6588     movdqu(vec, Address(str2, 0));
6589     jmpb(SCAN_SUBSTR);
6590 
6591     bind(RET_FOUND_LONG);
6592     movptr(str1, Address(rsp, wordSize));
6593   } // non constant
6594 
6595   bind(RET_FOUND);
6596   // Compute substr offset
6597   subptr(result, str1);
6598   shrl(result, 1); // index
6599 
6600   bind(CLEANUP);
6601   pop(rsp); // restore SP
6602 
6603 } // string_indexof
6604 
6605 // Compare strings.
6606 void MacroAssembler::string_compare(Register str1, Register str2,
6607                                     Register cnt1, Register cnt2, Register result,
6608                                     XMMRegister vec1) {
6609   ShortBranchVerifier sbv(this);
6610   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6611 
6612   // Compute the minimum of the string lengths and the
6613   // difference of the string lengths (stack).
6614   // Do the conditional move stuff
6615   movl(result, cnt1);
6616   subl(cnt1, cnt2);
6617   push(cnt1);
6618   cmov32(Assembler::lessEqual, cnt2, result);
6619 
6620   // Is the minimum length zero?
6621   testl(cnt2, cnt2);
6622   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6623 
6624   // Compare first characters
6625   load_unsigned_short(result, Address(str1, 0));
6626   load_unsigned_short(cnt1, Address(str2, 0));
6627   subl(result, cnt1);
6628   jcc(Assembler::notZero,  POP_LABEL);
6629   cmpl(cnt2, 1);
6630   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6631 
6632   // Check if the strings start at the same location.
6633   cmpptr(str1, str2);
6634   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6635 
6636   Address::ScaleFactor scale = Address::times_2;
6637   int stride = 8;
6638 
6639   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6640     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6641     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6642     Label COMPARE_TAIL_LONG;
6643     int pcmpmask = 0x19;
6644 
6645     // Setup to compare 16-chars (32-bytes) vectors,
6646     // start from first character again because it has aligned address.
6647     int stride2 = 16;
6648     int adr_stride  = stride  << scale;
6649     int adr_stride2 = stride2 << scale;
6650 
6651     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6652     // rax and rdx are used by pcmpestri as elements counters
6653     movl(result, cnt2);
6654     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6655     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6656 
6657     // fast path : compare first 2 8-char vectors.
6658     bind(COMPARE_16_CHARS);
6659     movdqu(vec1, Address(str1, 0));
6660     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6661     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6662 
6663     movdqu(vec1, Address(str1, adr_stride));
6664     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6665     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6666     addl(cnt1, stride);
6667 
6668     // Compare the characters at index in cnt1
6669     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
6670     load_unsigned_short(result, Address(str1, cnt1, scale));
6671     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6672     subl(result, cnt2);
6673     jmp(POP_LABEL);
6674 
6675     // Setup the registers to start vector comparison loop
6676     bind(COMPARE_WIDE_VECTORS);
6677     lea(str1, Address(str1, result, scale));
6678     lea(str2, Address(str2, result, scale));
6679     subl(result, stride2);
6680     subl(cnt2, stride2);
6681     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
6682     negptr(result);
6683 
6684     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6685     bind(COMPARE_WIDE_VECTORS_LOOP);
6686     vmovdqu(vec1, Address(str1, result, scale));
6687     vpxor(vec1, Address(str2, result, scale));
6688     vptest(vec1, vec1);
6689     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
6690     addptr(result, stride2);
6691     subl(cnt2, stride2);
6692     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6693     // clean upper bits of YMM registers
6694     vzeroupper();
6695 
6696     // compare wide vectors tail
6697     bind(COMPARE_WIDE_TAIL);
6698     testptr(result, result);
6699     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6700 
6701     movl(result, stride2);
6702     movl(cnt2, result);
6703     negptr(result);
6704     jmpb(COMPARE_WIDE_VECTORS_LOOP);
6705 
6706     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6707     bind(VECTOR_NOT_EQUAL);
6708     // clean upper bits of YMM registers
6709     vzeroupper();
6710     lea(str1, Address(str1, result, scale));
6711     lea(str2, Address(str2, result, scale));
6712     jmp(COMPARE_16_CHARS);
6713 
6714     // Compare tail chars, length between 1 to 15 chars
6715     bind(COMPARE_TAIL_LONG);
6716     movl(cnt2, result);
6717     cmpl(cnt2, stride);
6718     jccb(Assembler::less, COMPARE_SMALL_STR);
6719 
6720     movdqu(vec1, Address(str1, 0));
6721     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6722     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6723     subptr(cnt2, stride);
6724     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6725     lea(str1, Address(str1, result, scale));
6726     lea(str2, Address(str2, result, scale));
6727     negptr(cnt2);
6728     jmpb(WHILE_HEAD_LABEL);
6729 
6730     bind(COMPARE_SMALL_STR);
6731   } else if (UseSSE42Intrinsics) {
6732     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6733     int pcmpmask = 0x19;
6734     // Setup to compare 8-char (16-byte) vectors,
6735     // start from first character again because it has aligned address.
6736     movl(result, cnt2);
6737     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6738     jccb(Assembler::zero, COMPARE_TAIL);
6739 
6740     lea(str1, Address(str1, result, scale));
6741     lea(str2, Address(str2, result, scale));
6742     negptr(result);
6743 
6744     // pcmpestri
6745     //   inputs:
6746     //     vec1- substring
6747     //     rax - negative string length (elements count)
6748     //     mem - scaned string
6749     //     rdx - string length (elements count)
6750     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6751     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6752     //   outputs:
6753     //     rcx - first mismatched element index
6754     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6755 
6756     bind(COMPARE_WIDE_VECTORS);
6757     movdqu(vec1, Address(str1, result, scale));
6758     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6759     // After pcmpestri cnt1(rcx) contains mismatched element index
6760 
6761     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6762     addptr(result, stride);
6763     subptr(cnt2, stride);
6764     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6765 
6766     // compare wide vectors tail
6767     testptr(result, result);
6768     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6769 
6770     movl(cnt2, stride);
6771     movl(result, stride);
6772     negptr(result);
6773     movdqu(vec1, Address(str1, result, scale));
6774     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6775     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6776 
6777     // Mismatched characters in the vectors
6778     bind(VECTOR_NOT_EQUAL);
6779     addptr(cnt1, result);
6780     load_unsigned_short(result, Address(str1, cnt1, scale));
6781     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6782     subl(result, cnt2);
6783     jmpb(POP_LABEL);
6784 
6785     bind(COMPARE_TAIL); // limit is zero
6786     movl(cnt2, result);
6787     // Fallthru to tail compare
6788   }
6789   // Shift str2 and str1 to the end of the arrays, negate min
6790   lea(str1, Address(str1, cnt2, scale));
6791   lea(str2, Address(str2, cnt2, scale));
6792   decrementl(cnt2);  // first character was compared already
6793   negptr(cnt2);
6794 
6795   // Compare the rest of the elements
6796   bind(WHILE_HEAD_LABEL);
6797   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
6798   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
6799   subl(result, cnt1);
6800   jccb(Assembler::notZero, POP_LABEL);
6801   increment(cnt2);
6802   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6803 
6804   // Strings are equal up to min length.  Return the length difference.
6805   bind(LENGTH_DIFF_LABEL);
6806   pop(result);
6807   jmpb(DONE_LABEL);
6808 
6809   // Discard the stored length difference
6810   bind(POP_LABEL);
6811   pop(cnt1);
6812 
6813   // That's it
6814   bind(DONE_LABEL);
6815 }
6816 
6817 // Compare char[] arrays aligned to 4 bytes or substrings.
6818 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
6819                                         Register limit, Register result, Register chr,
6820                                         XMMRegister vec1, XMMRegister vec2) {
6821   ShortBranchVerifier sbv(this);
6822   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
6823 
6824   int length_offset  = arrayOopDesc::length_offset_in_bytes();
6825   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
6826 
6827   // Check the input args
6828   cmpptr(ary1, ary2);
6829   jcc(Assembler::equal, TRUE_LABEL);
6830 
6831   if (is_array_equ) {
6832     // Need additional checks for arrays_equals.
6833     testptr(ary1, ary1);
6834     jcc(Assembler::zero, FALSE_LABEL);
6835     testptr(ary2, ary2);
6836     jcc(Assembler::zero, FALSE_LABEL);
6837 
6838     // Check the lengths
6839     movl(limit, Address(ary1, length_offset));
6840     cmpl(limit, Address(ary2, length_offset));
6841     jcc(Assembler::notEqual, FALSE_LABEL);
6842   }
6843 
6844   // count == 0
6845   testl(limit, limit);
6846   jcc(Assembler::zero, TRUE_LABEL);
6847 
6848   if (is_array_equ) {
6849     // Load array address
6850     lea(ary1, Address(ary1, base_offset));
6851     lea(ary2, Address(ary2, base_offset));
6852   }
6853 
6854   shll(limit, 1);      // byte count != 0
6855   movl(result, limit); // copy
6856 
6857   if (UseAVX >= 2) {
6858     // With AVX2, use 32-byte vector compare
6859     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6860 
6861     // Compare 32-byte vectors
6862     andl(result, 0x0000001e);  //   tail count (in bytes)
6863     andl(limit, 0xffffffe0);   // vector count (in bytes)
6864     jccb(Assembler::zero, COMPARE_TAIL);
6865 
6866     lea(ary1, Address(ary1, limit, Address::times_1));
6867     lea(ary2, Address(ary2, limit, Address::times_1));
6868     negptr(limit);
6869 
6870     bind(COMPARE_WIDE_VECTORS);
6871     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
6872     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
6873     vpxor(vec1, vec2);
6874 
6875     vptest(vec1, vec1);
6876     jccb(Assembler::notZero, FALSE_LABEL);
6877     addptr(limit, 32);
6878     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6879 
6880     testl(result, result);
6881     jccb(Assembler::zero, TRUE_LABEL);
6882 
6883     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6884     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
6885     vpxor(vec1, vec2);
6886 
6887     vptest(vec1, vec1);
6888     jccb(Assembler::notZero, FALSE_LABEL);
6889     jmpb(TRUE_LABEL);
6890 
6891     bind(COMPARE_TAIL); // limit is zero
6892     movl(limit, result);
6893     // Fallthru to tail compare
6894   } else if (UseSSE42Intrinsics) {
6895     // With SSE4.2, use double quad vector compare
6896     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6897 
6898     // Compare 16-byte vectors
6899     andl(result, 0x0000000e);  //   tail count (in bytes)
6900     andl(limit, 0xfffffff0);   // vector count (in bytes)
6901     jccb(Assembler::zero, COMPARE_TAIL);
6902 
6903     lea(ary1, Address(ary1, limit, Address::times_1));
6904     lea(ary2, Address(ary2, limit, Address::times_1));
6905     negptr(limit);
6906 
6907     bind(COMPARE_WIDE_VECTORS);
6908     movdqu(vec1, Address(ary1, limit, Address::times_1));
6909     movdqu(vec2, Address(ary2, limit, Address::times_1));
6910     pxor(vec1, vec2);
6911 
6912     ptest(vec1, vec1);
6913     jccb(Assembler::notZero, FALSE_LABEL);
6914     addptr(limit, 16);
6915     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6916 
6917     testl(result, result);
6918     jccb(Assembler::zero, TRUE_LABEL);
6919 
6920     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
6921     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
6922     pxor(vec1, vec2);
6923 
6924     ptest(vec1, vec1);
6925     jccb(Assembler::notZero, FALSE_LABEL);
6926     jmpb(TRUE_LABEL);
6927 
6928     bind(COMPARE_TAIL); // limit is zero
6929     movl(limit, result);
6930     // Fallthru to tail compare
6931   }
6932 
6933   // Compare 4-byte vectors
6934   andl(limit, 0xfffffffc); // vector count (in bytes)
6935   jccb(Assembler::zero, COMPARE_CHAR);
6936 
6937   lea(ary1, Address(ary1, limit, Address::times_1));
6938   lea(ary2, Address(ary2, limit, Address::times_1));
6939   negptr(limit);
6940 
6941   bind(COMPARE_VECTORS);
6942   movl(chr, Address(ary1, limit, Address::times_1));
6943   cmpl(chr, Address(ary2, limit, Address::times_1));
6944   jccb(Assembler::notEqual, FALSE_LABEL);
6945   addptr(limit, 4);
6946   jcc(Assembler::notZero, COMPARE_VECTORS);
6947 
6948   // Compare trailing char (final 2 bytes), if any
6949   bind(COMPARE_CHAR);
6950   testl(result, 0x2);   // tail  char
6951   jccb(Assembler::zero, TRUE_LABEL);
6952   load_unsigned_short(chr, Address(ary1, 0));
6953   load_unsigned_short(limit, Address(ary2, 0));
6954   cmpl(chr, limit);
6955   jccb(Assembler::notEqual, FALSE_LABEL);
6956 
6957   bind(TRUE_LABEL);
6958   movl(result, 1);   // return true
6959   jmpb(DONE);
6960 
6961   bind(FALSE_LABEL);
6962   xorl(result, result); // return false
6963 
6964   // That's it
6965   bind(DONE);
6966   if (UseAVX >= 2) {
6967     // clean upper bits of YMM registers
6968     vzeroupper();
6969   }
6970 }
6971 
6972 void MacroAssembler::generate_fill(BasicType t, bool aligned,
6973                                    Register to, Register value, Register count,
6974                                    Register rtmp, XMMRegister xtmp) {
6975   ShortBranchVerifier sbv(this);
6976   assert_different_registers(to, value, count, rtmp);
6977   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
6978   Label L_fill_2_bytes, L_fill_4_bytes;
6979 
6980   int shift = -1;
6981   switch (t) {
6982     case T_BYTE:
6983       shift = 2;
6984       break;
6985     case T_SHORT:
6986       shift = 1;
6987       break;
6988     case T_INT:
6989       shift = 0;
6990       break;
6991     default: ShouldNotReachHere();
6992   }
6993 
6994   if (t == T_BYTE) {
6995     andl(value, 0xff);
6996     movl(rtmp, value);
6997     shll(rtmp, 8);
6998     orl(value, rtmp);
6999   }
7000   if (t == T_SHORT) {
7001     andl(value, 0xffff);
7002   }
7003   if (t == T_BYTE || t == T_SHORT) {
7004     movl(rtmp, value);
7005     shll(rtmp, 16);
7006     orl(value, rtmp);
7007   }
7008 
7009   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7010   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7011   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7012     // align source address at 4 bytes address boundary
7013     if (t == T_BYTE) {
7014       // One byte misalignment happens only for byte arrays
7015       testptr(to, 1);
7016       jccb(Assembler::zero, L_skip_align1);
7017       movb(Address(to, 0), value);
7018       increment(to);
7019       decrement(count);
7020       BIND(L_skip_align1);
7021     }
7022     // Two bytes misalignment happens only for byte and short (char) arrays
7023     testptr(to, 2);
7024     jccb(Assembler::zero, L_skip_align2);
7025     movw(Address(to, 0), value);
7026     addptr(to, 2);
7027     subl(count, 1<<(shift-1));
7028     BIND(L_skip_align2);
7029   }
7030   if (UseSSE < 2) {
7031     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7032     // Fill 32-byte chunks
7033     subl(count, 8 << shift);
7034     jcc(Assembler::less, L_check_fill_8_bytes);
7035     align(16);
7036 
7037     BIND(L_fill_32_bytes_loop);
7038 
7039     for (int i = 0; i < 32; i += 4) {
7040       movl(Address(to, i), value);
7041     }
7042 
7043     addptr(to, 32);
7044     subl(count, 8 << shift);
7045     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7046     BIND(L_check_fill_8_bytes);
7047     addl(count, 8 << shift);
7048     jccb(Assembler::zero, L_exit);
7049     jmpb(L_fill_8_bytes);
7050 
7051     //
7052     // length is too short, just fill qwords
7053     //
7054     BIND(L_fill_8_bytes_loop);
7055     movl(Address(to, 0), value);
7056     movl(Address(to, 4), value);
7057     addptr(to, 8);
7058     BIND(L_fill_8_bytes);
7059     subl(count, 1 << (shift + 1));
7060     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7061     // fall through to fill 4 bytes
7062   } else {
7063     Label L_fill_32_bytes;
7064     if (!UseUnalignedLoadStores) {
7065       // align to 8 bytes, we know we are 4 byte aligned to start
7066       testptr(to, 4);
7067       jccb(Assembler::zero, L_fill_32_bytes);
7068       movl(Address(to, 0), value);
7069       addptr(to, 4);
7070       subl(count, 1<<shift);
7071     }
7072     BIND(L_fill_32_bytes);
7073     {
7074       assert( UseSSE >= 2, "supported cpu only" );
7075       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7076       movdl(xtmp, value);
7077       if (UseAVX >= 2 && UseUnalignedLoadStores) {
7078         // Fill 64-byte chunks
7079         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7080         vpbroadcastd(xtmp, xtmp);
7081 
7082         subl(count, 16 << shift);
7083         jcc(Assembler::less, L_check_fill_32_bytes);
7084         align(16);
7085 
7086         BIND(L_fill_64_bytes_loop);
7087         vmovdqu(Address(to, 0), xtmp);
7088         vmovdqu(Address(to, 32), xtmp);
7089         addptr(to, 64);
7090         subl(count, 16 << shift);
7091         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7092 
7093         BIND(L_check_fill_32_bytes);
7094         addl(count, 8 << shift);
7095         jccb(Assembler::less, L_check_fill_8_bytes);
7096         vmovdqu(Address(to, 0), xtmp);
7097         addptr(to, 32);
7098         subl(count, 8 << shift);
7099 
7100         BIND(L_check_fill_8_bytes);
7101         // clean upper bits of YMM registers
7102         vzeroupper();
7103       } else {
7104         // Fill 32-byte chunks
7105         pshufd(xtmp, xtmp, 0);
7106 
7107         subl(count, 8 << shift);
7108         jcc(Assembler::less, L_check_fill_8_bytes);
7109         align(16);
7110 
7111         BIND(L_fill_32_bytes_loop);
7112 
7113         if (UseUnalignedLoadStores) {
7114           movdqu(Address(to, 0), xtmp);
7115           movdqu(Address(to, 16), xtmp);
7116         } else {
7117           movq(Address(to, 0), xtmp);
7118           movq(Address(to, 8), xtmp);
7119           movq(Address(to, 16), xtmp);
7120           movq(Address(to, 24), xtmp);
7121         }
7122 
7123         addptr(to, 32);
7124         subl(count, 8 << shift);
7125         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7126 
7127         BIND(L_check_fill_8_bytes);
7128       }
7129       addl(count, 8 << shift);
7130       jccb(Assembler::zero, L_exit);
7131       jmpb(L_fill_8_bytes);
7132 
7133       //
7134       // length is too short, just fill qwords
7135       //
7136       BIND(L_fill_8_bytes_loop);
7137       movq(Address(to, 0), xtmp);
7138       addptr(to, 8);
7139       BIND(L_fill_8_bytes);
7140       subl(count, 1 << (shift + 1));
7141       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7142     }
7143   }
7144   // fill trailing 4 bytes
7145   BIND(L_fill_4_bytes);
7146   testl(count, 1<<shift);
7147   jccb(Assembler::zero, L_fill_2_bytes);
7148   movl(Address(to, 0), value);
7149   if (t == T_BYTE || t == T_SHORT) {
7150     addptr(to, 4);
7151     BIND(L_fill_2_bytes);
7152     // fill trailing 2 bytes
7153     testl(count, 1<<(shift-1));
7154     jccb(Assembler::zero, L_fill_byte);
7155     movw(Address(to, 0), value);
7156     if (t == T_BYTE) {
7157       addptr(to, 2);
7158       BIND(L_fill_byte);
7159       // fill trailing byte
7160       testl(count, 1);
7161       jccb(Assembler::zero, L_exit);
7162       movb(Address(to, 0), value);
7163     } else {
7164       BIND(L_fill_byte);
7165     }
7166   } else {
7167     BIND(L_fill_2_bytes);
7168   }
7169   BIND(L_exit);
7170 }
7171 
7172 // encode char[] to byte[] in ISO_8859_1
7173 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7174                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7175                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7176                                       Register tmp5, Register result) {
7177   // rsi: src
7178   // rdi: dst
7179   // rdx: len
7180   // rcx: tmp5
7181   // rax: result
7182   ShortBranchVerifier sbv(this);
7183   assert_different_registers(src, dst, len, tmp5, result);
7184   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7185 
7186   // set result
7187   xorl(result, result);
7188   // check for zero length
7189   testl(len, len);
7190   jcc(Assembler::zero, L_done);
7191   movl(result, len);
7192 
7193   // Setup pointers
7194   lea(src, Address(src, len, Address::times_2)); // char[]
7195   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7196   negptr(len);
7197 
7198   if (UseSSE42Intrinsics || UseAVX >= 2) {
7199     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
7200     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7201 
7202     if (UseAVX >= 2) {
7203       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7204       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7205       movdl(tmp1Reg, tmp5);
7206       vpbroadcastd(tmp1Reg, tmp1Reg);
7207       jmpb(L_chars_32_check);
7208 
7209       bind(L_copy_32_chars);
7210       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7211       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7212       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
7213       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7214       jccb(Assembler::notZero, L_copy_32_chars_exit);
7215       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
7216       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector256 */ true);
7217       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7218 
7219       bind(L_chars_32_check);
7220       addptr(len, 32);
7221       jccb(Assembler::lessEqual, L_copy_32_chars);
7222 
7223       bind(L_copy_32_chars_exit);
7224       subptr(len, 16);
7225       jccb(Assembler::greater, L_copy_16_chars_exit);
7226 
7227     } else if (UseSSE42Intrinsics) {
7228       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7229       movdl(tmp1Reg, tmp5);
7230       pshufd(tmp1Reg, tmp1Reg, 0);
7231       jmpb(L_chars_16_check);
7232     }
7233 
7234     bind(L_copy_16_chars);
7235     if (UseAVX >= 2) {
7236       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7237       vptest(tmp2Reg, tmp1Reg);
7238       jccb(Assembler::notZero, L_copy_16_chars_exit);
7239       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector256 */ true);
7240       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector256 */ true);
7241     } else {
7242       if (UseAVX > 0) {
7243         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7244         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7245         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ false);
7246       } else {
7247         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7248         por(tmp2Reg, tmp3Reg);
7249         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7250         por(tmp2Reg, tmp4Reg);
7251       }
7252       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7253       jccb(Assembler::notZero, L_copy_16_chars_exit);
7254       packuswb(tmp3Reg, tmp4Reg);
7255     }
7256     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7257 
7258     bind(L_chars_16_check);
7259     addptr(len, 16);
7260     jccb(Assembler::lessEqual, L_copy_16_chars);
7261 
7262     bind(L_copy_16_chars_exit);
7263     if (UseAVX >= 2) {
7264       // clean upper bits of YMM registers
7265       vzeroupper();
7266     }
7267     subptr(len, 8);
7268     jccb(Assembler::greater, L_copy_8_chars_exit);
7269 
7270     bind(L_copy_8_chars);
7271     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7272     ptest(tmp3Reg, tmp1Reg);
7273     jccb(Assembler::notZero, L_copy_8_chars_exit);
7274     packuswb(tmp3Reg, tmp1Reg);
7275     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7276     addptr(len, 8);
7277     jccb(Assembler::lessEqual, L_copy_8_chars);
7278 
7279     bind(L_copy_8_chars_exit);
7280     subptr(len, 8);
7281     jccb(Assembler::zero, L_done);
7282   }
7283 
7284   bind(L_copy_1_char);
7285   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7286   testl(tmp5, 0xff00);      // check if Unicode char
7287   jccb(Assembler::notZero, L_copy_1_char_exit);
7288   movb(Address(dst, len, Address::times_1, 0), tmp5);
7289   addptr(len, 1);
7290   jccb(Assembler::less, L_copy_1_char);
7291 
7292   bind(L_copy_1_char_exit);
7293   addptr(result, len); // len is negative count of not processed elements
7294   bind(L_done);
7295 }
7296 
7297 /**
7298  * Emits code to update CRC-32 with a byte value according to constants in table
7299  *
7300  * @param [in,out]crc   Register containing the crc.
7301  * @param [in]val       Register containing the byte to fold into the CRC.
7302  * @param [in]table     Register containing the table of crc constants.
7303  *
7304  * uint32_t crc;
7305  * val = crc_table[(val ^ crc) & 0xFF];
7306  * crc = val ^ (crc >> 8);
7307  *
7308  */
7309 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
7310   xorl(val, crc);
7311   andl(val, 0xFF);
7312   shrl(crc, 8); // unsigned shift
7313   xorl(crc, Address(table, val, Address::times_4, 0));
7314 }
7315 
7316 /**
7317  * Fold 128-bit data chunk
7318  */
7319 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
7320   vpclmulhdq(xtmp, xK, xcrc); // [123:64]
7321   vpclmulldq(xcrc, xK, xcrc); // [63:0]
7322   vpxor(xcrc, xcrc, Address(buf, offset), false /* vector256 */);
7323   pxor(xcrc, xtmp);
7324 }
7325 
7326 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
7327   vpclmulhdq(xtmp, xK, xcrc);
7328   vpclmulldq(xcrc, xK, xcrc);
7329   pxor(xcrc, xbuf);
7330   pxor(xcrc, xtmp);
7331 }
7332 
7333 /**
7334  * 8-bit folds to compute 32-bit CRC
7335  *
7336  * uint64_t xcrc;
7337  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
7338  */
7339 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
7340   movdl(tmp, xcrc);
7341   andl(tmp, 0xFF);
7342   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
7343   psrldq(xcrc, 1); // unsigned shift one byte
7344   pxor(xcrc, xtmp);
7345 }
7346 
7347 /**
7348  * uint32_t crc;
7349  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
7350  */
7351 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
7352   movl(tmp, crc);
7353   andl(tmp, 0xFF);
7354   shrl(crc, 8);
7355   xorl(crc, Address(table, tmp, Address::times_4, 0));
7356 }
7357 
7358 /**
7359  * @param crc   register containing existing CRC (32-bit)
7360  * @param buf   register pointing to input byte buffer (byte*)
7361  * @param len   register containing number of bytes
7362  * @param table register that will contain address of CRC table
7363  * @param tmp   scratch register
7364  */
7365 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
7366   assert_different_registers(crc, buf, len, table, tmp, rax);
7367 
7368   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
7369   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
7370 
7371   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
7372   notl(crc); // ~crc
7373   cmpl(len, 16);
7374   jcc(Assembler::less, L_tail);
7375 
7376   // Align buffer to 16 bytes
7377   movl(tmp, buf);
7378   andl(tmp, 0xF);
7379   jccb(Assembler::zero, L_aligned);
7380   subl(tmp,  16);
7381   addl(len, tmp);
7382 
7383   align(4);
7384   BIND(L_align_loop);
7385   movsbl(rax, Address(buf, 0)); // load byte with sign extension
7386   update_byte_crc32(crc, rax, table);
7387   increment(buf);
7388   incrementl(tmp);
7389   jccb(Assembler::less, L_align_loop);
7390 
7391   BIND(L_aligned);
7392   movl(tmp, len); // save
7393   shrl(len, 4);
7394   jcc(Assembler::zero, L_tail_restore);
7395 
7396   // Fold crc into first bytes of vector
7397   movdqa(xmm1, Address(buf, 0));
7398   movdl(rax, xmm1);
7399   xorl(crc, rax);
7400   pinsrd(xmm1, crc, 0);
7401   addptr(buf, 16);
7402   subl(len, 4); // len > 0
7403   jcc(Assembler::less, L_fold_tail);
7404 
7405   movdqa(xmm2, Address(buf,  0));
7406   movdqa(xmm3, Address(buf, 16));
7407   movdqa(xmm4, Address(buf, 32));
7408   addptr(buf, 48);
7409   subl(len, 3);
7410   jcc(Assembler::lessEqual, L_fold_512b);
7411 
7412   // Fold total 512 bits of polynomial on each iteration,
7413   // 128 bits per each of 4 parallel streams.
7414   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
7415 
7416   align(32);
7417   BIND(L_fold_512b_loop);
7418   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
7419   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
7420   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
7421   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
7422   addptr(buf, 64);
7423   subl(len, 4);
7424   jcc(Assembler::greater, L_fold_512b_loop);
7425 
7426   // Fold 512 bits to 128 bits.
7427   BIND(L_fold_512b);
7428   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
7429   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
7430   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
7431   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
7432 
7433   // Fold the rest of 128 bits data chunks
7434   BIND(L_fold_tail);
7435   addl(len, 3);
7436   jccb(Assembler::lessEqual, L_fold_128b);
7437   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
7438 
7439   BIND(L_fold_tail_loop);
7440   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
7441   addptr(buf, 16);
7442   decrementl(len);
7443   jccb(Assembler::greater, L_fold_tail_loop);
7444 
7445   // Fold 128 bits in xmm1 down into 32 bits in crc register.
7446   BIND(L_fold_128b);
7447   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
7448   vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
7449   vpand(xmm3, xmm0, xmm2, false /* vector256 */);
7450   vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
7451   psrldq(xmm1, 8);
7452   psrldq(xmm2, 4);
7453   pxor(xmm0, xmm1);
7454   pxor(xmm0, xmm2);
7455 
7456   // 8 8-bit folds to compute 32-bit CRC.
7457   for (int j = 0; j < 4; j++) {
7458     fold_8bit_crc32(xmm0, table, xmm1, rax);
7459   }
7460   movdl(crc, xmm0); // mov 32 bits to general register
7461   for (int j = 0; j < 4; j++) {
7462     fold_8bit_crc32(crc, table, rax);
7463   }
7464 
7465   BIND(L_tail_restore);
7466   movl(len, tmp); // restore
7467   BIND(L_tail);
7468   andl(len, 0xf);
7469   jccb(Assembler::zero, L_exit);
7470 
7471   // Fold the rest of bytes
7472   align(4);
7473   BIND(L_tail_loop);
7474   movsbl(rax, Address(buf, 0)); // load byte with sign extension
7475   update_byte_crc32(crc, rax, table);
7476   increment(buf);
7477   decrementl(len);
7478   jccb(Assembler::greater, L_tail_loop);
7479 
7480   BIND(L_exit);
7481   notl(crc); // ~c
7482 }
7483 
7484 #undef BIND
7485 #undef BLOCK_COMMENT
7486 
7487 
7488 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
7489   switch (cond) {
7490     // Note some conditions are synonyms for others
7491     case Assembler::zero:         return Assembler::notZero;
7492     case Assembler::notZero:      return Assembler::zero;
7493     case Assembler::less:         return Assembler::greaterEqual;
7494     case Assembler::lessEqual:    return Assembler::greater;
7495     case Assembler::greater:      return Assembler::lessEqual;
7496     case Assembler::greaterEqual: return Assembler::less;
7497     case Assembler::below:        return Assembler::aboveEqual;
7498     case Assembler::belowEqual:   return Assembler::above;
7499     case Assembler::above:        return Assembler::belowEqual;
7500     case Assembler::aboveEqual:   return Assembler::below;
7501     case Assembler::overflow:     return Assembler::noOverflow;
7502     case Assembler::noOverflow:   return Assembler::overflow;
7503     case Assembler::negative:     return Assembler::positive;
7504     case Assembler::positive:     return Assembler::negative;
7505     case Assembler::parity:       return Assembler::noParity;
7506     case Assembler::noParity:     return Assembler::parity;
7507   }
7508   ShouldNotReachHere(); return Assembler::overflow;
7509 }
7510 
7511 SkipIfEqual::SkipIfEqual(
7512     MacroAssembler* masm, const bool* flag_addr, bool value) {
7513   _masm = masm;
7514   _masm->cmp8(ExternalAddress((address)flag_addr), value);
7515   _masm->jcc(Assembler::equal, _label);
7516 }
7517 
7518 SkipIfEqual::~SkipIfEqual() {
7519   _masm->bind(_label);
7520 }