1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/promotionInfo.inline.hpp"
  37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  38 #include "gc_implementation/parNew/parNewGeneration.hpp"
  39 #include "gc_implementation/shared/collectorCounters.hpp"
  40 #include "gc_implementation/shared/gcTimer.hpp"
  41 #include "gc_implementation/shared/gcTrace.hpp"
  42 #include "gc_implementation/shared/gcTraceTime.hpp"
  43 #include "gc_implementation/shared/isGCActiveMark.hpp"
  44 #include "gc_interface/collectedHeap.inline.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.inline.hpp"
  53 #include "memory/padded.hpp"
  54 #include "memory/referencePolicy.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/space.inline.hpp"
  57 #include "memory/tenuredGeneration.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/globals_extension.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/java.hpp"
  64 #include "runtime/orderAccess.inline.hpp"
  65 #include "runtime/vmThread.hpp"
  66 #include "services/memoryService.hpp"
  67 #include "services/runtimeService.hpp"
  68 
  69 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  70 
  71 // statics
  72 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  73 bool CMSCollector::_full_gc_requested = false;
  74 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  75 
  76 //////////////////////////////////////////////////////////////////
  77 // In support of CMS/VM thread synchronization
  78 //////////////////////////////////////////////////////////////////
  79 // We split use of the CGC_lock into 2 "levels".
  80 // The low-level locking is of the usual CGC_lock monitor. We introduce
  81 // a higher level "token" (hereafter "CMS token") built on top of the
  82 // low level monitor (hereafter "CGC lock").
  83 // The token-passing protocol gives priority to the VM thread. The
  84 // CMS-lock doesn't provide any fairness guarantees, but clients
  85 // should ensure that it is only held for very short, bounded
  86 // durations.
  87 //
  88 // When either of the CMS thread or the VM thread is involved in
  89 // collection operations during which it does not want the other
  90 // thread to interfere, it obtains the CMS token.
  91 //
  92 // If either thread tries to get the token while the other has
  93 // it, that thread waits. However, if the VM thread and CMS thread
  94 // both want the token, then the VM thread gets priority while the
  95 // CMS thread waits. This ensures, for instance, that the "concurrent"
  96 // phases of the CMS thread's work do not block out the VM thread
  97 // for long periods of time as the CMS thread continues to hog
  98 // the token. (See bug 4616232).
  99 //
 100 // The baton-passing functions are, however, controlled by the
 101 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 102 // and here the low-level CMS lock, not the high level token,
 103 // ensures mutual exclusion.
 104 //
 105 // Two important conditions that we have to satisfy:
 106 // 1. if a thread does a low-level wait on the CMS lock, then it
 107 //    relinquishes the CMS token if it were holding that token
 108 //    when it acquired the low-level CMS lock.
 109 // 2. any low-level notifications on the low-level lock
 110 //    should only be sent when a thread has relinquished the token.
 111 //
 112 // In the absence of either property, we'd have potential deadlock.
 113 //
 114 // We protect each of the CMS (concurrent and sequential) phases
 115 // with the CMS _token_, not the CMS _lock_.
 116 //
 117 // The only code protected by CMS lock is the token acquisition code
 118 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 119 // baton-passing code.
 120 //
 121 // Unfortunately, i couldn't come up with a good abstraction to factor and
 122 // hide the naked CGC_lock manipulation in the baton-passing code
 123 // further below. That's something we should try to do. Also, the proof
 124 // of correctness of this 2-level locking scheme is far from obvious,
 125 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 126 // that there may be a theoretical possibility of delay/starvation in the
 127 // low-level lock/wait/notify scheme used for the baton-passing because of
 128 // potential interference with the priority scheme embodied in the
 129 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 130 // invocation further below and marked with "XXX 20011219YSR".
 131 // Indeed, as we note elsewhere, this may become yet more slippery
 132 // in the presence of multiple CMS and/or multiple VM threads. XXX
 133 
 134 class CMSTokenSync: public StackObj {
 135  private:
 136   bool _is_cms_thread;
 137  public:
 138   CMSTokenSync(bool is_cms_thread):
 139     _is_cms_thread(is_cms_thread) {
 140     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 141            "Incorrect argument to constructor");
 142     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 143   }
 144 
 145   ~CMSTokenSync() {
 146     assert(_is_cms_thread ?
 147              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 148              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 149           "Incorrect state");
 150     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 151   }
 152 };
 153 
 154 // Convenience class that does a CMSTokenSync, and then acquires
 155 // upto three locks.
 156 class CMSTokenSyncWithLocks: public CMSTokenSync {
 157  private:
 158   // Note: locks are acquired in textual declaration order
 159   // and released in the opposite order
 160   MutexLockerEx _locker1, _locker2, _locker3;
 161  public:
 162   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 163                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 164     CMSTokenSync(is_cms_thread),
 165     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 166     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 167     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 168   { }
 169 };
 170 
 171 
 172 // Wrapper class to temporarily disable icms during a foreground cms collection.
 173 class ICMSDisabler: public StackObj {
 174  public:
 175   // The ctor disables icms and wakes up the thread so it notices the change;
 176   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 177   // CMSIncrementalMode.
 178   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 179   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 180 };
 181 
 182 //////////////////////////////////////////////////////////////////
 183 //  Concurrent Mark-Sweep Generation /////////////////////////////
 184 //////////////////////////////////////////////////////////////////
 185 
 186 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 187 
 188 // This struct contains per-thread things necessary to support parallel
 189 // young-gen collection.
 190 class CMSParGCThreadState: public CHeapObj<mtGC> {
 191  public:
 192   CFLS_LAB lab;
 193   PromotionInfo promo;
 194 
 195   // Constructor.
 196   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 197     promo.setSpace(cfls);
 198   }
 199 };
 200 
 201 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 202      ReservedSpace rs, size_t initial_byte_size, int level,
 203      CardTableRS* ct, bool use_adaptive_freelists,
 204      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 205   CardGeneration(rs, initial_byte_size, level, ct, _dispatch_index_generation_cms),
 206   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 207   _debug_collection_type(Concurrent_collection_type),
 208   _did_compact(false)
 209 {
 210   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 211   HeapWord* end    = (HeapWord*) _virtual_space.high();
 212 
 213   _direct_allocated_words = 0;
 214   NOT_PRODUCT(
 215     _numObjectsPromoted = 0;
 216     _numWordsPromoted = 0;
 217     _numObjectsAllocated = 0;
 218     _numWordsAllocated = 0;
 219   )
 220 
 221   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 222                                            use_adaptive_freelists,
 223                                            dictionaryChoice);
 224   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 225   if (_cmsSpace == NULL) {
 226     vm_exit_during_initialization(
 227       "CompactibleFreeListSpace allocation failure");
 228   }
 229   _cmsSpace->_gen = this;
 230 
 231   _gc_stats = new CMSGCStats();
 232 
 233   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 234   // offsets match. The ability to tell free chunks from objects
 235   // depends on this property.
 236   debug_only(
 237     FreeChunk* junk = NULL;
 238     assert(UseCompressedClassPointers ||
 239            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 240            "Offset of FreeChunk::_prev within FreeChunk must match"
 241            "  that of OopDesc::_klass within OopDesc");
 242   )
 243   if (CollectedHeap::use_parallel_gc_threads()) {
 244     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 245     _par_gc_thread_states =
 246       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 247     if (_par_gc_thread_states == NULL) {
 248       vm_exit_during_initialization("Could not allocate par gc structs");
 249     }
 250     for (uint i = 0; i < ParallelGCThreads; i++) {
 251       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 252       if (_par_gc_thread_states[i] == NULL) {
 253         vm_exit_during_initialization("Could not allocate par gc structs");
 254       }
 255     }
 256   } else {
 257     _par_gc_thread_states = NULL;
 258   }
 259   _incremental_collection_failed = false;
 260   // The "dilatation_factor" is the expansion that can occur on
 261   // account of the fact that the minimum object size in the CMS
 262   // generation may be larger than that in, say, a contiguous young
 263   //  generation.
 264   // Ideally, in the calculation below, we'd compute the dilatation
 265   // factor as: MinChunkSize/(promoting_gen's min object size)
 266   // Since we do not have such a general query interface for the
 267   // promoting generation, we'll instead just use the minimum
 268   // object size (which today is a header's worth of space);
 269   // note that all arithmetic is in units of HeapWords.
 270   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 271   assert(_dilatation_factor >= 1.0, "from previous assert");
 272 }
 273 
 274 
 275 // The field "_initiating_occupancy" represents the occupancy percentage
 276 // at which we trigger a new collection cycle.  Unless explicitly specified
 277 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 278 // is calculated by:
 279 //
 280 //   Let "f" be MinHeapFreeRatio in
 281 //
 282 //    _initiating_occupancy = 100-f +
 283 //                           f * (CMSTriggerRatio/100)
 284 //   where CMSTriggerRatio is the argument "tr" below.
 285 //
 286 // That is, if we assume the heap is at its desired maximum occupancy at the
 287 // end of a collection, we let CMSTriggerRatio of the (purported) free
 288 // space be allocated before initiating a new collection cycle.
 289 //
 290 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 291   assert(io <= 100 && tr <= 100, "Check the arguments");
 292   if (io >= 0) {
 293     _initiating_occupancy = (double)io / 100.0;
 294   } else {
 295     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 296                              (double)(tr * MinHeapFreeRatio) / 100.0)
 297                             / 100.0;
 298   }
 299 }
 300 
 301 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 302   assert(collector() != NULL, "no collector");
 303   collector()->ref_processor_init();
 304 }
 305 
 306 void CMSCollector::ref_processor_init() {
 307   if (_ref_processor == NULL) {
 308     // Allocate and initialize a reference processor
 309     _ref_processor =
 310       new ReferenceProcessor(_span,                               // span
 311                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 312                              (int) ParallelGCThreads,             // mt processing degree
 313                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 314                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 315                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 316                              &_is_alive_closure);                 // closure for liveness info
 317     // Initialize the _ref_processor field of CMSGen
 318     _cmsGen->set_ref_processor(_ref_processor);
 319 
 320   }
 321 }
 322 
 323 AdaptiveSizePolicy* CMSCollector::size_policy() {
 324   GenCollectedHeap* gch = GenCollectedHeap::heap();
 325   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 326     "Wrong type of heap");
 327   return gch->gen_policy()->size_policy();
 328 }
 329 
 330 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 331 
 332   const char* gen_name = "old";
 333 
 334   // Generation Counters - generation 1, 1 subspace
 335   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 336 
 337   _space_counters = new GSpaceCounters(gen_name, 0,
 338                                        _virtual_space.reserved_size(),
 339                                        this, _gen_counters);
 340 }
 341 
 342 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 343   _cms_gen(cms_gen)
 344 {
 345   assert(alpha <= 100, "bad value");
 346   _saved_alpha = alpha;
 347 
 348   // Initialize the alphas to the bootstrap value of 100.
 349   _gc0_alpha = _cms_alpha = 100;
 350 
 351   _cms_begin_time.update();
 352   _cms_end_time.update();
 353 
 354   _gc0_duration = 0.0;
 355   _gc0_period = 0.0;
 356   _gc0_promoted = 0;
 357 
 358   _cms_duration = 0.0;
 359   _cms_period = 0.0;
 360   _cms_allocated = 0;
 361 
 362   _cms_used_at_gc0_begin = 0;
 363   _cms_used_at_gc0_end = 0;
 364   _allow_duty_cycle_reduction = false;
 365   _valid_bits = 0;
 366   _icms_duty_cycle = CMSIncrementalDutyCycle;
 367 }
 368 
 369 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 370   // TBD: CR 6909490
 371   return 1.0;
 372 }
 373 
 374 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 375 }
 376 
 377 // If promotion failure handling is on use
 378 // the padded average size of the promotion for each
 379 // young generation collection.
 380 double CMSStats::time_until_cms_gen_full() const {
 381   size_t cms_free = _cms_gen->cmsSpace()->free();
 382   GenCollectedHeap* gch = GenCollectedHeap::heap();
 383   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 384                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 385   if (cms_free > expected_promotion) {
 386     // Start a cms collection if there isn't enough space to promote
 387     // for the next minor collection.  Use the padded average as
 388     // a safety factor.
 389     cms_free -= expected_promotion;
 390 
 391     // Adjust by the safety factor.
 392     double cms_free_dbl = (double)cms_free;
 393     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 394     // Apply a further correction factor which tries to adjust
 395     // for recent occurance of concurrent mode failures.
 396     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 397     cms_free_dbl = cms_free_dbl * cms_adjustment;
 398 
 399     if (PrintGCDetails && Verbose) {
 400       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 401         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 402         cms_free, expected_promotion);
 403       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 404         cms_free_dbl, cms_consumption_rate() + 1.0);
 405     }
 406     // Add 1 in case the consumption rate goes to zero.
 407     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 408   }
 409   return 0.0;
 410 }
 411 
 412 // Compare the duration of the cms collection to the
 413 // time remaining before the cms generation is empty.
 414 // Note that the time from the start of the cms collection
 415 // to the start of the cms sweep (less than the total
 416 // duration of the cms collection) can be used.  This
 417 // has been tried and some applications experienced
 418 // promotion failures early in execution.  This was
 419 // possibly because the averages were not accurate
 420 // enough at the beginning.
 421 double CMSStats::time_until_cms_start() const {
 422   // We add "gc0_period" to the "work" calculation
 423   // below because this query is done (mostly) at the
 424   // end of a scavenge, so we need to conservatively
 425   // account for that much possible delay
 426   // in the query so as to avoid concurrent mode failures
 427   // due to starting the collection just a wee bit too
 428   // late.
 429   double work = cms_duration() + gc0_period();
 430   double deadline = time_until_cms_gen_full();
 431   // If a concurrent mode failure occurred recently, we want to be
 432   // more conservative and halve our expected time_until_cms_gen_full()
 433   if (work > deadline) {
 434     if (Verbose && PrintGCDetails) {
 435       gclog_or_tty->print(
 436         " CMSCollector: collect because of anticipated promotion "
 437         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 438         gc0_period(), time_until_cms_gen_full());
 439     }
 440     return 0.0;
 441   }
 442   return work - deadline;
 443 }
 444 
 445 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 446 // amount of change to prevent wild oscillation.
 447 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 448                                               unsigned int new_duty_cycle) {
 449   assert(old_duty_cycle <= 100, "bad input value");
 450   assert(new_duty_cycle <= 100, "bad input value");
 451 
 452   // Note:  use subtraction with caution since it may underflow (values are
 453   // unsigned).  Addition is safe since we're in the range 0-100.
 454   unsigned int damped_duty_cycle = new_duty_cycle;
 455   if (new_duty_cycle < old_duty_cycle) {
 456     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 457     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 458       damped_duty_cycle = old_duty_cycle - largest_delta;
 459     }
 460   } else if (new_duty_cycle > old_duty_cycle) {
 461     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 462     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 463       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 464     }
 465   }
 466   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 467 
 468   if (CMSTraceIncrementalPacing) {
 469     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 470                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 471   }
 472   return damped_duty_cycle;
 473 }
 474 
 475 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 476   assert(CMSIncrementalPacing && valid(),
 477          "should be handled in icms_update_duty_cycle()");
 478 
 479   double cms_time_so_far = cms_timer().seconds();
 480   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 481   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 482 
 483   // Avoid division by 0.
 484   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 485   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 486 
 487   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 488   if (new_duty_cycle > _icms_duty_cycle) {
 489     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 490     if (new_duty_cycle > 2) {
 491       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 492                                                 new_duty_cycle);
 493     }
 494   } else if (_allow_duty_cycle_reduction) {
 495     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 496     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 497     // Respect the minimum duty cycle.
 498     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 499     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 500   }
 501 
 502   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 503     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 504   }
 505 
 506   _allow_duty_cycle_reduction = false;
 507   return _icms_duty_cycle;
 508 }
 509 
 510 #ifndef PRODUCT
 511 void CMSStats::print_on(outputStream *st) const {
 512   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 513   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 514                gc0_duration(), gc0_period(), gc0_promoted());
 515   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 516             cms_duration(), cms_duration_per_mb(),
 517             cms_period(), cms_allocated());
 518   st->print(",cms_since_beg=%g,cms_since_end=%g",
 519             cms_time_since_begin(), cms_time_since_end());
 520   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 521             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 522   if (CMSIncrementalMode) {
 523     st->print(",dc=%d", icms_duty_cycle());
 524   }
 525 
 526   if (valid()) {
 527     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 528               promotion_rate(), cms_allocation_rate());
 529     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 530               cms_consumption_rate(), time_until_cms_gen_full());
 531   }
 532   st->print(" ");
 533 }
 534 #endif // #ifndef PRODUCT
 535 
 536 CMSCollector::CollectorState CMSCollector::_collectorState =
 537                              CMSCollector::Idling;
 538 bool CMSCollector::_foregroundGCIsActive = false;
 539 bool CMSCollector::_foregroundGCShouldWait = false;
 540 
 541 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 542                            CardTableRS*                   ct,
 543                            ConcurrentMarkSweepPolicy*     cp):
 544   _cmsGen(cmsGen),
 545   _ct(ct),
 546   _ref_processor(NULL),    // will be set later
 547   _conc_workers(NULL),     // may be set later
 548   _abort_preclean(false),
 549   _start_sampling(false),
 550   _between_prologue_and_epilogue(false),
 551   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 552   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 553                  -1 /* lock-free */, "No_lock" /* dummy */),
 554   _modUnionClosure(&_modUnionTable),
 555   _modUnionClosurePar(&_modUnionTable),
 556   // Adjust my span to cover old (cms) gen
 557   _span(cmsGen->reserved()),
 558   // Construct the is_alive_closure with _span & markBitMap
 559   _is_alive_closure(_span, &_markBitMap),
 560   _restart_addr(NULL),
 561   _overflow_list(NULL),
 562   _stats(cmsGen),
 563   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)),
 564   _eden_chunk_array(NULL),     // may be set in ctor body
 565   _eden_chunk_capacity(0),     // -- ditto --
 566   _eden_chunk_index(0),        // -- ditto --
 567   _survivor_plab_array(NULL),  // -- ditto --
 568   _survivor_chunk_array(NULL), // -- ditto --
 569   _survivor_chunk_capacity(0), // -- ditto --
 570   _survivor_chunk_index(0),    // -- ditto --
 571   _ser_pmc_preclean_ovflw(0),
 572   _ser_kac_preclean_ovflw(0),
 573   _ser_pmc_remark_ovflw(0),
 574   _par_pmc_remark_ovflw(0),
 575   _ser_kac_ovflw(0),
 576   _par_kac_ovflw(0),
 577 #ifndef PRODUCT
 578   _num_par_pushes(0),
 579 #endif
 580   _collection_count_start(0),
 581   _verifying(false),
 582   _icms_start_limit(NULL),
 583   _icms_stop_limit(NULL),
 584   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 585   _completed_initialization(false),
 586   _collector_policy(cp),
 587   _should_unload_classes(CMSClassUnloadingEnabled),
 588   _concurrent_cycles_since_last_unload(0),
 589   _roots_scanning_options(SharedHeap::SO_None),
 590   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 591   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 592   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 593   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 594   _cms_start_registered(false)
 595 {
 596   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 597     ExplicitGCInvokesConcurrent = true;
 598   }
 599   // Now expand the span and allocate the collection support structures
 600   // (MUT, marking bit map etc.) to cover both generations subject to
 601   // collection.
 602 
 603   // For use by dirty card to oop closures.
 604   _cmsGen->cmsSpace()->set_collector(this);
 605 
 606   // Allocate MUT and marking bit map
 607   {
 608     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 609     if (!_markBitMap.allocate(_span)) {
 610       warning("Failed to allocate CMS Bit Map");
 611       return;
 612     }
 613     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 614   }
 615   {
 616     _modUnionTable.allocate(_span);
 617     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 618   }
 619 
 620   if (!_markStack.allocate(MarkStackSize)) {
 621     warning("Failed to allocate CMS Marking Stack");
 622     return;
 623   }
 624 
 625   // Support for multi-threaded concurrent phases
 626   if (CMSConcurrentMTEnabled) {
 627     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 628       // just for now
 629       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 630     }
 631     if (ConcGCThreads > 1) {
 632       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 633                                  ConcGCThreads, true);
 634       if (_conc_workers == NULL) {
 635         warning("GC/CMS: _conc_workers allocation failure: "
 636               "forcing -CMSConcurrentMTEnabled");
 637         CMSConcurrentMTEnabled = false;
 638       } else {
 639         _conc_workers->initialize_workers();
 640       }
 641     } else {
 642       CMSConcurrentMTEnabled = false;
 643     }
 644   }
 645   if (!CMSConcurrentMTEnabled) {
 646     ConcGCThreads = 0;
 647   } else {
 648     // Turn off CMSCleanOnEnter optimization temporarily for
 649     // the MT case where it's not fixed yet; see 6178663.
 650     CMSCleanOnEnter = false;
 651   }
 652   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 653          "Inconsistency");
 654 
 655   // Parallel task queues; these are shared for the
 656   // concurrent and stop-world phases of CMS, but
 657   // are not shared with parallel scavenge (ParNew).
 658   {
 659     uint i;
 660     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 661 
 662     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 663          || ParallelRefProcEnabled)
 664         && num_queues > 0) {
 665       _task_queues = new OopTaskQueueSet(num_queues);
 666       if (_task_queues == NULL) {
 667         warning("task_queues allocation failure.");
 668         return;
 669       }
 670       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 671       if (_hash_seed == NULL) {
 672         warning("_hash_seed array allocation failure");
 673         return;
 674       }
 675 
 676       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 677       for (i = 0; i < num_queues; i++) {
 678         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 679         if (q == NULL) {
 680           warning("work_queue allocation failure.");
 681           return;
 682         }
 683         _task_queues->register_queue(i, q);
 684       }
 685       for (i = 0; i < num_queues; i++) {
 686         _task_queues->queue(i)->initialize();
 687         _hash_seed[i] = 17;  // copied from ParNew
 688       }
 689     }
 690   }
 691 
 692   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 693 
 694   // Clip CMSBootstrapOccupancy between 0 and 100.
 695   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 696 
 697   _full_gcs_since_conc_gc = 0;
 698 
 699   // Now tell CMS generations the identity of their collector
 700   ConcurrentMarkSweepGeneration::set_collector(this);
 701 
 702   // Create & start a CMS thread for this CMS collector
 703   _cmsThread = ConcurrentMarkSweepThread::start(this);
 704   assert(cmsThread() != NULL, "CMS Thread should have been created");
 705   assert(cmsThread()->collector() == this,
 706          "CMS Thread should refer to this gen");
 707   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 708 
 709   // Support for parallelizing young gen rescan
 710   GenCollectedHeap* gch = GenCollectedHeap::heap();
 711   _young_gen = gch->prev_gen(_cmsGen);
 712   if (gch->supports_inline_contig_alloc()) {
 713     _top_addr = gch->top_addr();
 714     _end_addr = gch->end_addr();
 715     assert(_young_gen != NULL, "no _young_gen");
 716     _eden_chunk_index = 0;
 717     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 718     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 719     if (_eden_chunk_array == NULL) {
 720       _eden_chunk_capacity = 0;
 721       warning("GC/CMS: _eden_chunk_array allocation failure");
 722     }
 723   }
 724   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 725 
 726   // Support for parallelizing survivor space rescan
 727   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 728     const size_t max_plab_samples =
 729       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 730 
 731     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 732     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 733     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 734     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 735         || _cursor == NULL) {
 736       warning("Failed to allocate survivor plab/chunk array");
 737       if (_survivor_plab_array  != NULL) {
 738         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 739         _survivor_plab_array = NULL;
 740       }
 741       if (_survivor_chunk_array != NULL) {
 742         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 743         _survivor_chunk_array = NULL;
 744       }
 745       if (_cursor != NULL) {
 746         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 747         _cursor = NULL;
 748       }
 749     } else {
 750       _survivor_chunk_capacity = 2*max_plab_samples;
 751       for (uint i = 0; i < ParallelGCThreads; i++) {
 752         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 753         if (vec == NULL) {
 754           warning("Failed to allocate survivor plab array");
 755           for (int j = i; j > 0; j--) {
 756             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 757           }
 758           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 759           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 760           _survivor_plab_array = NULL;
 761           _survivor_chunk_array = NULL;
 762           _survivor_chunk_capacity = 0;
 763           break;
 764         } else {
 765           ChunkArray* cur =
 766             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 767                                                         max_plab_samples);
 768           assert(cur->end() == 0, "Should be 0");
 769           assert(cur->array() == vec, "Should be vec");
 770           assert(cur->capacity() == max_plab_samples, "Error");
 771         }
 772       }
 773     }
 774   }
 775   assert(   (   _survivor_plab_array  != NULL
 776              && _survivor_chunk_array != NULL)
 777          || (   _survivor_chunk_capacity == 0
 778              && _survivor_chunk_index == 0),
 779          "Error");
 780 
 781   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 782   _gc_counters = new CollectorCounters("CMS", 1);
 783   _completed_initialization = true;
 784   _inter_sweep_timer.start();  // start of time
 785 }
 786 
 787 const char* ConcurrentMarkSweepGeneration::name() const {
 788   return "concurrent mark-sweep generation";
 789 }
 790 void ConcurrentMarkSweepGeneration::update_counters() {
 791   if (UsePerfData) {
 792     _space_counters->update_all();
 793     _gen_counters->update_all();
 794   }
 795 }
 796 
 797 // this is an optimized version of update_counters(). it takes the
 798 // used value as a parameter rather than computing it.
 799 //
 800 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 801   if (UsePerfData) {
 802     _space_counters->update_used(used);
 803     _space_counters->update_capacity();
 804     _gen_counters->update_all();
 805   }
 806 }
 807 
 808 void ConcurrentMarkSweepGeneration::print() const {
 809   Generation::print();
 810   cmsSpace()->print();
 811 }
 812 
 813 #ifndef PRODUCT
 814 void ConcurrentMarkSweepGeneration::print_statistics() {
 815   cmsSpace()->printFLCensus(0);
 816 }
 817 #endif
 818 
 819 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 820   GenCollectedHeap* gch = GenCollectedHeap::heap();
 821   if (PrintGCDetails) {
 822     if (Verbose) {
 823       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 824         level(), short_name(), s, used(), capacity());
 825     } else {
 826       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 827         level(), short_name(), s, used() / K, capacity() / K);
 828     }
 829   }
 830   if (Verbose) {
 831     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 832               gch->used(), gch->capacity());
 833   } else {
 834     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 835               gch->used() / K, gch->capacity() / K);
 836   }
 837 }
 838 
 839 size_t
 840 ConcurrentMarkSweepGeneration::contiguous_available() const {
 841   // dld proposes an improvement in precision here. If the committed
 842   // part of the space ends in a free block we should add that to
 843   // uncommitted size in the calculation below. Will make this
 844   // change later, staying with the approximation below for the
 845   // time being. -- ysr.
 846   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 847 }
 848 
 849 size_t
 850 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 851   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 852 }
 853 
 854 size_t ConcurrentMarkSweepGeneration::max_available() const {
 855   return free() + _virtual_space.uncommitted_size();
 856 }
 857 
 858 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 859   size_t available = max_available();
 860   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 861   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 862   if (Verbose && PrintGCDetails) {
 863     gclog_or_tty->print_cr(
 864       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 865       "max_promo("SIZE_FORMAT")",
 866       res? "":" not", available, res? ">=":"<",
 867       av_promo, max_promotion_in_bytes);
 868   }
 869   return res;
 870 }
 871 
 872 // At a promotion failure dump information on block layout in heap
 873 // (cms old generation).
 874 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 875   if (CMSDumpAtPromotionFailure) {
 876     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 877   }
 878 }
 879 
 880 CompactibleSpace*
 881 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 882   return _cmsSpace;
 883 }
 884 
 885 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 886   // Clear the promotion information.  These pointers can be adjusted
 887   // along with all the other pointers into the heap but
 888   // compaction is expected to be a rare event with
 889   // a heap using cms so don't do it without seeing the need.
 890   if (CollectedHeap::use_parallel_gc_threads()) {
 891     for (uint i = 0; i < ParallelGCThreads; i++) {
 892       _par_gc_thread_states[i]->promo.reset();
 893     }
 894   }
 895 }
 896 
 897 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 898   blk->do_space(_cmsSpace);
 899 }
 900 
 901 void ConcurrentMarkSweepGeneration::compute_new_size() {
 902   assert_locked_or_safepoint(Heap_lock);
 903 
 904   // If incremental collection failed, we just want to expand
 905   // to the limit.
 906   if (incremental_collection_failed()) {
 907     clear_incremental_collection_failed();
 908     grow_to_reserved();
 909     return;
 910   }
 911 
 912   // The heap has been compacted but not reset yet.
 913   // Any metric such as free() or used() will be incorrect.
 914 
 915   CardGeneration::compute_new_size();
 916 
 917   // Reset again after a possible resizing
 918   if (did_compact()) {
 919     cmsSpace()->reset_after_compaction();
 920   }
 921 }
 922 
 923 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 924   assert_locked_or_safepoint(Heap_lock);
 925 
 926   // If incremental collection failed, we just want to expand
 927   // to the limit.
 928   if (incremental_collection_failed()) {
 929     clear_incremental_collection_failed();
 930     grow_to_reserved();
 931     return;
 932   }
 933 
 934   double free_percentage = ((double) free()) / capacity();
 935   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 936   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 937 
 938   // compute expansion delta needed for reaching desired free percentage
 939   if (free_percentage < desired_free_percentage) {
 940     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 941     assert(desired_capacity >= capacity(), "invalid expansion size");
 942     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 943     if (PrintGCDetails && Verbose) {
 944       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 945       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 946       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 947       gclog_or_tty->print_cr("  Desired free fraction %f",
 948         desired_free_percentage);
 949       gclog_or_tty->print_cr("  Maximum free fraction %f",
 950         maximum_free_percentage);
 951       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity()/1000);
 952       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 953         desired_capacity/1000);
 954       int prev_level = level() - 1;
 955       if (prev_level >= 0) {
 956         size_t prev_size = 0;
 957         GenCollectedHeap* gch = GenCollectedHeap::heap();
 958         Generation* prev_gen = gch->_gens[prev_level];
 959         prev_size = prev_gen->capacity();
 960           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 961                                  prev_size/1000);
 962       }
 963       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 964         unsafe_max_alloc_nogc()/1000);
 965       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 966         contiguous_available()/1000);
 967       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 968         expand_bytes);
 969     }
 970     // safe if expansion fails
 971     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 972     if (PrintGCDetails && Verbose) {
 973       gclog_or_tty->print_cr("  Expanded free fraction %f",
 974         ((double) free()) / capacity());
 975     }
 976   } else {
 977     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 978     assert(desired_capacity <= capacity(), "invalid expansion size");
 979     size_t shrink_bytes = capacity() - desired_capacity;
 980     // Don't shrink unless the delta is greater than the minimum shrink we want
 981     if (shrink_bytes >= MinHeapDeltaBytes) {
 982       shrink_free_list_by(shrink_bytes);
 983     }
 984   }
 985 }
 986 
 987 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 988   return cmsSpace()->freelistLock();
 989 }
 990 
 991 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 992                                                   bool   tlab) {
 993   CMSSynchronousYieldRequest yr;
 994   MutexLockerEx x(freelistLock(),
 995                   Mutex::_no_safepoint_check_flag);
 996   return have_lock_and_allocate(size, tlab);
 997 }
 998 
 999 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1000                                                   bool   tlab /* ignored */) {
1001   assert_lock_strong(freelistLock());
1002   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1003   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1004   // Allocate the object live (grey) if the background collector has
1005   // started marking. This is necessary because the marker may
1006   // have passed this address and consequently this object will
1007   // not otherwise be greyed and would be incorrectly swept up.
1008   // Note that if this object contains references, the writing
1009   // of those references will dirty the card containing this object
1010   // allowing the object to be blackened (and its references scanned)
1011   // either during a preclean phase or at the final checkpoint.
1012   if (res != NULL) {
1013     // We may block here with an uninitialized object with
1014     // its mark-bit or P-bits not yet set. Such objects need
1015     // to be safely navigable by block_start().
1016     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1017     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1018     collector()->direct_allocated(res, adjustedSize);
1019     _direct_allocated_words += adjustedSize;
1020     // allocation counters
1021     NOT_PRODUCT(
1022       _numObjectsAllocated++;
1023       _numWordsAllocated += (int)adjustedSize;
1024     )
1025   }
1026   return res;
1027 }
1028 
1029 // In the case of direct allocation by mutators in a generation that
1030 // is being concurrently collected, the object must be allocated
1031 // live (grey) if the background collector has started marking.
1032 // This is necessary because the marker may
1033 // have passed this address and consequently this object will
1034 // not otherwise be greyed and would be incorrectly swept up.
1035 // Note that if this object contains references, the writing
1036 // of those references will dirty the card containing this object
1037 // allowing the object to be blackened (and its references scanned)
1038 // either during a preclean phase or at the final checkpoint.
1039 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1040   assert(_markBitMap.covers(start, size), "Out of bounds");
1041   if (_collectorState >= Marking) {
1042     MutexLockerEx y(_markBitMap.lock(),
1043                     Mutex::_no_safepoint_check_flag);
1044     // [see comments preceding SweepClosure::do_blk() below for details]
1045     //
1046     // Can the P-bits be deleted now?  JJJ
1047     //
1048     // 1. need to mark the object as live so it isn't collected
1049     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1050     // 3. need to mark the end of the object so marking, precleaning or sweeping
1051     //    can skip over uninitialized or unparsable objects. An allocated
1052     //    object is considered uninitialized for our purposes as long as
1053     //    its klass word is NULL.  All old gen objects are parsable
1054     //    as soon as they are initialized.)
1055     _markBitMap.mark(start);          // object is live
1056     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1057     _markBitMap.mark(start + size - 1);
1058                                       // mark end of object
1059   }
1060   // check that oop looks uninitialized
1061   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1062 }
1063 
1064 void CMSCollector::promoted(bool par, HeapWord* start,
1065                             bool is_obj_array, size_t obj_size) {
1066   assert(_markBitMap.covers(start), "Out of bounds");
1067   // See comment in direct_allocated() about when objects should
1068   // be allocated live.
1069   if (_collectorState >= Marking) {
1070     // we already hold the marking bit map lock, taken in
1071     // the prologue
1072     if (par) {
1073       _markBitMap.par_mark(start);
1074     } else {
1075       _markBitMap.mark(start);
1076     }
1077     // We don't need to mark the object as uninitialized (as
1078     // in direct_allocated above) because this is being done with the
1079     // world stopped and the object will be initialized by the
1080     // time the marking, precleaning or sweeping get to look at it.
1081     // But see the code for copying objects into the CMS generation,
1082     // where we need to ensure that concurrent readers of the
1083     // block offset table are able to safely navigate a block that
1084     // is in flux from being free to being allocated (and in
1085     // transition while being copied into) and subsequently
1086     // becoming a bona-fide object when the copy/promotion is complete.
1087     assert(SafepointSynchronize::is_at_safepoint(),
1088            "expect promotion only at safepoints");
1089 
1090     if (_collectorState < Sweeping) {
1091       // Mark the appropriate cards in the modUnionTable, so that
1092       // this object gets scanned before the sweep. If this is
1093       // not done, CMS generation references in the object might
1094       // not get marked.
1095       // For the case of arrays, which are otherwise precisely
1096       // marked, we need to dirty the entire array, not just its head.
1097       if (is_obj_array) {
1098         // The [par_]mark_range() method expects mr.end() below to
1099         // be aligned to the granularity of a bit's representation
1100         // in the heap. In the case of the MUT below, that's a
1101         // card size.
1102         MemRegion mr(start,
1103                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1104                         CardTableModRefBS::card_size /* bytes */));
1105         if (par) {
1106           _modUnionTable.par_mark_range(mr);
1107         } else {
1108           _modUnionTable.mark_range(mr);
1109         }
1110       } else {  // not an obj array; we can just mark the head
1111         if (par) {
1112           _modUnionTable.par_mark(start);
1113         } else {
1114           _modUnionTable.mark(start);
1115         }
1116       }
1117     }
1118   }
1119 }
1120 
1121 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1122 {
1123   size_t delta = pointer_delta(addr, space->bottom());
1124   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1125 }
1126 
1127 void CMSCollector::icms_update_allocation_limits()
1128 {
1129   Generation* young = GenCollectedHeap::heap()->get_gen(0);
1130   EdenSpace* eden = young->as_DefNewGeneration()->eden();
1131 
1132   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1133   if (CMSTraceIncrementalPacing) {
1134     stats().print();
1135   }
1136 
1137   assert(duty_cycle <= 100, "invalid duty cycle");
1138   if (duty_cycle != 0) {
1139     // The duty_cycle is a percentage between 0 and 100; convert to words and
1140     // then compute the offset from the endpoints of the space.
1141     size_t free_words = eden->free() / HeapWordSize;
1142     double free_words_dbl = (double)free_words;
1143     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1144     size_t offset_words = (free_words - duty_cycle_words) / 2;
1145 
1146     _icms_start_limit = eden->top() + offset_words;
1147     _icms_stop_limit = eden->end() - offset_words;
1148 
1149     // The limits may be adjusted (shifted to the right) by
1150     // CMSIncrementalOffset, to allow the application more mutator time after a
1151     // young gen gc (when all mutators were stopped) and before CMS starts and
1152     // takes away one or more cpus.
1153     if (CMSIncrementalOffset != 0) {
1154       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1155       size_t adjustment = (size_t)adjustment_dbl;
1156       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1157       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1158         _icms_start_limit += adjustment;
1159         _icms_stop_limit = tmp_stop;
1160       }
1161     }
1162   }
1163   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1164     _icms_start_limit = _icms_stop_limit = eden->end();
1165   }
1166 
1167   // Install the new start limit.
1168   eden->set_soft_end(_icms_start_limit);
1169 
1170   if (CMSTraceIncrementalMode) {
1171     gclog_or_tty->print(" icms alloc limits:  "
1172                            PTR_FORMAT "," PTR_FORMAT
1173                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1174                            p2i(_icms_start_limit), p2i(_icms_stop_limit),
1175                            percent_of_space(eden, _icms_start_limit),
1176                            percent_of_space(eden, _icms_stop_limit));
1177     if (Verbose) {
1178       gclog_or_tty->print("eden:  ");
1179       eden->print_on(gclog_or_tty);
1180     }
1181   }
1182 }
1183 
1184 // Any changes here should try to maintain the invariant
1185 // that if this method is called with _icms_start_limit
1186 // and _icms_stop_limit both NULL, then it should return NULL
1187 // and not notify the icms thread.
1188 HeapWord*
1189 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1190                                        size_t word_size)
1191 {
1192   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1193   // nop.
1194   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1195     if (top <= _icms_start_limit) {
1196       if (CMSTraceIncrementalMode) {
1197         space->print_on(gclog_or_tty);
1198         gclog_or_tty->stamp();
1199         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1200                                ", new limit=" PTR_FORMAT
1201                                " (" SIZE_FORMAT "%%)",
1202                                p2i(top), p2i(_icms_stop_limit),
1203                                percent_of_space(space, _icms_stop_limit));
1204       }
1205       ConcurrentMarkSweepThread::start_icms();
1206       assert(top < _icms_stop_limit, "Tautology");
1207       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1208         return _icms_stop_limit;
1209       }
1210 
1211       // The allocation will cross both the _start and _stop limits, so do the
1212       // stop notification also and return end().
1213       if (CMSTraceIncrementalMode) {
1214         space->print_on(gclog_or_tty);
1215         gclog_or_tty->stamp();
1216         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1217                                ", new limit=" PTR_FORMAT
1218                                " (" SIZE_FORMAT "%%)",
1219                                p2i(top), p2i(space->end()),
1220                                percent_of_space(space, space->end()));
1221       }
1222       ConcurrentMarkSweepThread::stop_icms();
1223       return space->end();
1224     }
1225 
1226     if (top <= _icms_stop_limit) {
1227       if (CMSTraceIncrementalMode) {
1228         space->print_on(gclog_or_tty);
1229         gclog_or_tty->stamp();
1230         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1231                                ", new limit=" PTR_FORMAT
1232                                " (" SIZE_FORMAT "%%)",
1233                                top, space->end(),
1234                                percent_of_space(space, space->end()));
1235       }
1236       ConcurrentMarkSweepThread::stop_icms();
1237       return space->end();
1238     }
1239 
1240     if (CMSTraceIncrementalMode) {
1241       space->print_on(gclog_or_tty);
1242       gclog_or_tty->stamp();
1243       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1244                              ", new limit=" PTR_FORMAT,
1245                              top, NULL);
1246     }
1247   }
1248 
1249   return NULL;
1250 }
1251 
1252 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1253   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1254   // allocate, copy and if necessary update promoinfo --
1255   // delegate to underlying space.
1256   assert_lock_strong(freelistLock());
1257 
1258 #ifndef PRODUCT
1259   if (Universe::heap()->promotion_should_fail()) {
1260     return NULL;
1261   }
1262 #endif  // #ifndef PRODUCT
1263 
1264   oop res = _cmsSpace->promote(obj, obj_size);
1265   if (res == NULL) {
1266     // expand and retry
1267     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1268     expand(s*HeapWordSize, MinHeapDeltaBytes,
1269       CMSExpansionCause::_satisfy_promotion);
1270     // Since there's currently no next generation, we don't try to promote
1271     // into a more senior generation.
1272     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1273                                "is made to pass on a possibly failing "
1274                                "promotion to next generation");
1275     res = _cmsSpace->promote(obj, obj_size);
1276   }
1277   if (res != NULL) {
1278     // See comment in allocate() about when objects should
1279     // be allocated live.
1280     assert(obj->is_oop(), "Will dereference klass pointer below");
1281     collector()->promoted(false,           // Not parallel
1282                           (HeapWord*)res, obj->is_objArray(), obj_size);
1283     // promotion counters
1284     NOT_PRODUCT(
1285       _numObjectsPromoted++;
1286       _numWordsPromoted +=
1287         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1288     )
1289   }
1290   return res;
1291 }
1292 
1293 
1294 HeapWord*
1295 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1296                                              HeapWord* top,
1297                                              size_t word_sz)
1298 {
1299   return collector()->allocation_limit_reached(space, top, word_sz);
1300 }
1301 
1302 // IMPORTANT: Notes on object size recognition in CMS.
1303 // ---------------------------------------------------
1304 // A block of storage in the CMS generation is always in
1305 // one of three states. A free block (FREE), an allocated
1306 // object (OBJECT) whose size() method reports the correct size,
1307 // and an intermediate state (TRANSIENT) in which its size cannot
1308 // be accurately determined.
1309 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1310 // -----------------------------------------------------
1311 // FREE:      klass_word & 1 == 1; mark_word holds block size
1312 //
1313 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1314 //            obj->size() computes correct size
1315 //
1316 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1317 //
1318 // STATE IDENTIFICATION: (64 bit+COOPS)
1319 // ------------------------------------
1320 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1321 //
1322 // OBJECT:    klass_word installed; klass_word != 0;
1323 //            obj->size() computes correct size
1324 //
1325 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1326 //
1327 //
1328 // STATE TRANSITION DIAGRAM
1329 //
1330 //        mut / parnew                     mut  /  parnew
1331 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1332 //  ^                                                                   |
1333 //  |------------------------ DEAD <------------------------------------|
1334 //         sweep                            mut
1335 //
1336 // While a block is in TRANSIENT state its size cannot be determined
1337 // so readers will either need to come back later or stall until
1338 // the size can be determined. Note that for the case of direct
1339 // allocation, P-bits, when available, may be used to determine the
1340 // size of an object that may not yet have been initialized.
1341 
1342 // Things to support parallel young-gen collection.
1343 oop
1344 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1345                                            oop old, markOop m,
1346                                            size_t word_sz) {
1347 #ifndef PRODUCT
1348   if (Universe::heap()->promotion_should_fail()) {
1349     return NULL;
1350   }
1351 #endif  // #ifndef PRODUCT
1352 
1353   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1354   PromotionInfo* promoInfo = &ps->promo;
1355   // if we are tracking promotions, then first ensure space for
1356   // promotion (including spooling space for saving header if necessary).
1357   // then allocate and copy, then track promoted info if needed.
1358   // When tracking (see PromotionInfo::track()), the mark word may
1359   // be displaced and in this case restoration of the mark word
1360   // occurs in the (oop_since_save_marks_)iterate phase.
1361   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1362     // Out of space for allocating spooling buffers;
1363     // try expanding and allocating spooling buffers.
1364     if (!expand_and_ensure_spooling_space(promoInfo)) {
1365       return NULL;
1366     }
1367   }
1368   assert(promoInfo->has_spooling_space(), "Control point invariant");
1369   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1370   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1371   if (obj_ptr == NULL) {
1372      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1373      if (obj_ptr == NULL) {
1374        return NULL;
1375      }
1376   }
1377   oop obj = oop(obj_ptr);
1378   OrderAccess::storestore();
1379   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1380   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1381   // IMPORTANT: See note on object initialization for CMS above.
1382   // Otherwise, copy the object.  Here we must be careful to insert the
1383   // klass pointer last, since this marks the block as an allocated object.
1384   // Except with compressed oops it's the mark word.
1385   HeapWord* old_ptr = (HeapWord*)old;
1386   // Restore the mark word copied above.
1387   obj->set_mark(m);
1388   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1389   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1390   OrderAccess::storestore();
1391 
1392   if (UseCompressedClassPointers) {
1393     // Copy gap missed by (aligned) header size calculation below
1394     obj->set_klass_gap(old->klass_gap());
1395   }
1396   if (word_sz > (size_t)oopDesc::header_size()) {
1397     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1398                                  obj_ptr + oopDesc::header_size(),
1399                                  word_sz - oopDesc::header_size());
1400   }
1401 
1402   // Now we can track the promoted object, if necessary.  We take care
1403   // to delay the transition from uninitialized to full object
1404   // (i.e., insertion of klass pointer) until after, so that it
1405   // atomically becomes a promoted object.
1406   if (promoInfo->tracking()) {
1407     promoInfo->track((PromotedObject*)obj, old->klass());
1408   }
1409   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1410   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1411   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1412 
1413   // Finally, install the klass pointer (this should be volatile).
1414   OrderAccess::storestore();
1415   obj->set_klass(old->klass());
1416   // We should now be able to calculate the right size for this object
1417   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1418 
1419   collector()->promoted(true,          // parallel
1420                         obj_ptr, old->is_objArray(), word_sz);
1421 
1422   NOT_PRODUCT(
1423     Atomic::inc_ptr(&_numObjectsPromoted);
1424     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1425   )
1426 
1427   return obj;
1428 }
1429 
1430 void
1431 ConcurrentMarkSweepGeneration::
1432 par_promote_alloc_undo(int thread_num,
1433                        HeapWord* obj, size_t word_sz) {
1434   // CMS does not support promotion undo.
1435   ShouldNotReachHere();
1436 }
1437 
1438 void
1439 ConcurrentMarkSweepGeneration::
1440 par_promote_alloc_done(int thread_num) {
1441   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1442   ps->lab.retire(thread_num);
1443 }
1444 
1445 // SSS: Temporary include
1446 #include "gc_implementation/parNew/parOopClosures.inline.hpp"
1447 
1448 void
1449 ConcurrentMarkSweepGeneration::
1450 par_oop_since_save_marks_iterate_done(int thread_num) {
1451   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1452   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1453   ps->promo.promoted_oops_iterate<false>(dummy_cl);
1454 }
1455 
1456 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1457                                                    size_t size,
1458                                                    bool   tlab)
1459 {
1460   // We allow a STW collection only if a full
1461   // collection was requested.
1462   return full || should_allocate(size, tlab); // FIX ME !!!
1463   // This and promotion failure handling are connected at the
1464   // hip and should be fixed by untying them.
1465 }
1466 
1467 bool CMSCollector::shouldConcurrentCollect() {
1468   if (_full_gc_requested) {
1469     if (Verbose && PrintGCDetails) {
1470       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1471                              " gc request (or gc_locker)");
1472     }
1473     return true;
1474   }
1475 
1476   // For debugging purposes, change the type of collection.
1477   // If the rotation is not on the concurrent collection
1478   // type, don't start a concurrent collection.
1479   NOT_PRODUCT(
1480     if (RotateCMSCollectionTypes &&
1481         (_cmsGen->debug_collection_type() !=
1482           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1483       assert(_cmsGen->debug_collection_type() !=
1484         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1485         "Bad cms collection type");
1486       return false;
1487     }
1488   )
1489 
1490   FreelistLocker x(this);
1491   // ------------------------------------------------------------------
1492   // Print out lots of information which affects the initiation of
1493   // a collection.
1494   if (PrintCMSInitiationStatistics && stats().valid()) {
1495     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1496     gclog_or_tty->stamp();
1497     gclog_or_tty->cr();
1498     stats().print_on(gclog_or_tty);
1499     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1500       stats().time_until_cms_gen_full());
1501     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1502     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1503                            _cmsGen->contiguous_available());
1504     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1505     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1506     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1507     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1508     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1509     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1510     gclog_or_tty->print_cr("metadata initialized %d",
1511       MetaspaceGC::should_concurrent_collect());
1512   }
1513   // ------------------------------------------------------------------
1514 
1515   // If the estimated time to complete a cms collection (cms_duration())
1516   // is less than the estimated time remaining until the cms generation
1517   // is full, start a collection.
1518   if (!UseCMSInitiatingOccupancyOnly) {
1519     if (stats().valid()) {
1520       if (stats().time_until_cms_start() == 0.0) {
1521         return true;
1522       }
1523     } else {
1524       // We want to conservatively collect somewhat early in order
1525       // to try and "bootstrap" our CMS/promotion statistics;
1526       // this branch will not fire after the first successful CMS
1527       // collection because the stats should then be valid.
1528       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1529         if (Verbose && PrintGCDetails) {
1530           gclog_or_tty->print_cr(
1531             " CMSCollector: collect for bootstrapping statistics:"
1532             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1533             _bootstrap_occupancy);
1534         }
1535         return true;
1536       }
1537     }
1538   }
1539 
1540   // Otherwise, we start a collection cycle if
1541   // old gen want a collection cycle started. Each may use
1542   // an appropriate criterion for making this decision.
1543   // XXX We need to make sure that the gen expansion
1544   // criterion dovetails well with this. XXX NEED TO FIX THIS
1545   if (_cmsGen->should_concurrent_collect()) {
1546     if (Verbose && PrintGCDetails) {
1547       gclog_or_tty->print_cr("CMS old gen initiated");
1548     }
1549     return true;
1550   }
1551 
1552   // We start a collection if we believe an incremental collection may fail;
1553   // this is not likely to be productive in practice because it's probably too
1554   // late anyway.
1555   GenCollectedHeap* gch = GenCollectedHeap::heap();
1556   assert(gch->collector_policy()->is_generation_policy(),
1557          "You may want to check the correctness of the following");
1558   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1559     if (Verbose && PrintGCDetails) {
1560       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1561     }
1562     return true;
1563   }
1564 
1565   if (MetaspaceGC::should_concurrent_collect()) {
1566     if (Verbose && PrintGCDetails) {
1567       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1568     }
1569     return true;
1570   }
1571 
1572   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1573   if (CMSTriggerInterval >= 0) {
1574     if (CMSTriggerInterval == 0) {
1575       // Trigger always
1576       return true;
1577     }
1578 
1579     // Check the CMS time since begin (we do not check the stats validity
1580     // as we want to be able to trigger the first CMS cycle as well)
1581     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1582       if (Verbose && PrintGCDetails) {
1583         if (stats().valid()) {
1584           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1585                                  stats().cms_time_since_begin());
1586         } else {
1587           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1588         }
1589       }
1590       return true;
1591     }
1592   }
1593 
1594   return false;
1595 }
1596 
1597 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1598 
1599 // Clear _expansion_cause fields of constituent generations
1600 void CMSCollector::clear_expansion_cause() {
1601   _cmsGen->clear_expansion_cause();
1602 }
1603 
1604 // We should be conservative in starting a collection cycle.  To
1605 // start too eagerly runs the risk of collecting too often in the
1606 // extreme.  To collect too rarely falls back on full collections,
1607 // which works, even if not optimum in terms of concurrent work.
1608 // As a work around for too eagerly collecting, use the flag
1609 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1610 // giving the user an easily understandable way of controlling the
1611 // collections.
1612 // We want to start a new collection cycle if any of the following
1613 // conditions hold:
1614 // . our current occupancy exceeds the configured initiating occupancy
1615 //   for this generation, or
1616 // . we recently needed to expand this space and have not, since that
1617 //   expansion, done a collection of this generation, or
1618 // . the underlying space believes that it may be a good idea to initiate
1619 //   a concurrent collection (this may be based on criteria such as the
1620 //   following: the space uses linear allocation and linear allocation is
1621 //   going to fail, or there is believed to be excessive fragmentation in
1622 //   the generation, etc... or ...
1623 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1624 //   the case of the old generation; see CR 6543076):
1625 //   we may be approaching a point at which allocation requests may fail because
1626 //   we will be out of sufficient free space given allocation rate estimates.]
1627 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1628 
1629   assert_lock_strong(freelistLock());
1630   if (occupancy() > initiating_occupancy()) {
1631     if (PrintGCDetails && Verbose) {
1632       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1633         short_name(), occupancy(), initiating_occupancy());
1634     }
1635     return true;
1636   }
1637   if (UseCMSInitiatingOccupancyOnly) {
1638     return false;
1639   }
1640   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1641     if (PrintGCDetails && Verbose) {
1642       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1643         short_name());
1644     }
1645     return true;
1646   }
1647   if (_cmsSpace->should_concurrent_collect()) {
1648     if (PrintGCDetails && Verbose) {
1649       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1650         short_name());
1651     }
1652     return true;
1653   }
1654   return false;
1655 }
1656 
1657 void ConcurrentMarkSweepGeneration::collect(bool   full,
1658                                             bool   clear_all_soft_refs,
1659                                             size_t size,
1660                                             bool   tlab)
1661 {
1662   collector()->collect(full, clear_all_soft_refs, size, tlab);
1663 }
1664 
1665 void CMSCollector::collect(bool   full,
1666                            bool   clear_all_soft_refs,
1667                            size_t size,
1668                            bool   tlab)
1669 {
1670   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1671     // For debugging purposes skip the collection if the state
1672     // is not currently idle
1673     if (TraceCMSState) {
1674       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1675         Thread::current(), full, _collectorState);
1676     }
1677     return;
1678   }
1679 
1680   // The following "if" branch is present for defensive reasons.
1681   // In the current uses of this interface, it can be replaced with:
1682   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1683   // But I am not placing that assert here to allow future
1684   // generality in invoking this interface.
1685   if (GC_locker::is_active()) {
1686     // A consistency test for GC_locker
1687     assert(GC_locker::needs_gc(), "Should have been set already");
1688     // Skip this foreground collection, instead
1689     // expanding the heap if necessary.
1690     // Need the free list locks for the call to free() in compute_new_size()
1691     compute_new_size();
1692     return;
1693   }
1694   acquire_control_and_collect(full, clear_all_soft_refs);
1695   _full_gcs_since_conc_gc++;
1696 }
1697 
1698 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1699   GenCollectedHeap* gch = GenCollectedHeap::heap();
1700   unsigned int gc_count = gch->total_full_collections();
1701   if (gc_count == full_gc_count) {
1702     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1703     _full_gc_requested = true;
1704     _full_gc_cause = cause;
1705     CGC_lock->notify();   // nudge CMS thread
1706   } else {
1707     assert(gc_count > full_gc_count, "Error: causal loop");
1708   }
1709 }
1710 
1711 bool CMSCollector::is_external_interruption() {
1712   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1713   return GCCause::is_user_requested_gc(cause) ||
1714          GCCause::is_serviceability_requested_gc(cause);
1715 }
1716 
1717 void CMSCollector::report_concurrent_mode_interruption() {
1718   if (is_external_interruption()) {
1719     if (PrintGCDetails) {
1720       gclog_or_tty->print(" (concurrent mode interrupted)");
1721     }
1722   } else {
1723     if (PrintGCDetails) {
1724       gclog_or_tty->print(" (concurrent mode failure)");
1725     }
1726     _gc_tracer_cm->report_concurrent_mode_failure();
1727   }
1728 }
1729 
1730 
1731 // The foreground and background collectors need to coordinate in order
1732 // to make sure that they do not mutually interfere with CMS collections.
1733 // When a background collection is active,
1734 // the foreground collector may need to take over (preempt) and
1735 // synchronously complete an ongoing collection. Depending on the
1736 // frequency of the background collections and the heap usage
1737 // of the application, this preemption can be seldom or frequent.
1738 // There are only certain
1739 // points in the background collection that the "collection-baton"
1740 // can be passed to the foreground collector.
1741 //
1742 // The foreground collector will wait for the baton before
1743 // starting any part of the collection.  The foreground collector
1744 // will only wait at one location.
1745 //
1746 // The background collector will yield the baton before starting a new
1747 // phase of the collection (e.g., before initial marking, marking from roots,
1748 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1749 // of the loop which switches the phases. The background collector does some
1750 // of the phases (initial mark, final re-mark) with the world stopped.
1751 // Because of locking involved in stopping the world,
1752 // the foreground collector should not block waiting for the background
1753 // collector when it is doing a stop-the-world phase.  The background
1754 // collector will yield the baton at an additional point just before
1755 // it enters a stop-the-world phase.  Once the world is stopped, the
1756 // background collector checks the phase of the collection.  If the
1757 // phase has not changed, it proceeds with the collection.  If the
1758 // phase has changed, it skips that phase of the collection.  See
1759 // the comments on the use of the Heap_lock in collect_in_background().
1760 //
1761 // Variable used in baton passing.
1762 //   _foregroundGCIsActive - Set to true by the foreground collector when
1763 //      it wants the baton.  The foreground clears it when it has finished
1764 //      the collection.
1765 //   _foregroundGCShouldWait - Set to true by the background collector
1766 //        when it is running.  The foreground collector waits while
1767 //      _foregroundGCShouldWait is true.
1768 //  CGC_lock - monitor used to protect access to the above variables
1769 //      and to notify the foreground and background collectors.
1770 //  _collectorState - current state of the CMS collection.
1771 //
1772 // The foreground collector
1773 //   acquires the CGC_lock
1774 //   sets _foregroundGCIsActive
1775 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1776 //     various locks acquired in preparation for the collection
1777 //     are released so as not to block the background collector
1778 //     that is in the midst of a collection
1779 //   proceeds with the collection
1780 //   clears _foregroundGCIsActive
1781 //   returns
1782 //
1783 // The background collector in a loop iterating on the phases of the
1784 //      collection
1785 //   acquires the CGC_lock
1786 //   sets _foregroundGCShouldWait
1787 //   if _foregroundGCIsActive is set
1788 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1789 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1790 //     and exits the loop.
1791 //   otherwise
1792 //     proceed with that phase of the collection
1793 //     if the phase is a stop-the-world phase,
1794 //       yield the baton once more just before enqueueing
1795 //       the stop-world CMS operation (executed by the VM thread).
1796 //   returns after all phases of the collection are done
1797 //
1798 
1799 void CMSCollector::acquire_control_and_collect(bool full,
1800         bool clear_all_soft_refs) {
1801   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1802   assert(!Thread::current()->is_ConcurrentGC_thread(),
1803          "shouldn't try to acquire control from self!");
1804 
1805   // Start the protocol for acquiring control of the
1806   // collection from the background collector (aka CMS thread).
1807   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1808          "VM thread should have CMS token");
1809   // Remember the possibly interrupted state of an ongoing
1810   // concurrent collection
1811   CollectorState first_state = _collectorState;
1812 
1813   // Signal to a possibly ongoing concurrent collection that
1814   // we want to do a foreground collection.
1815   _foregroundGCIsActive = true;
1816 
1817   // Disable incremental mode during a foreground collection.
1818   ICMSDisabler icms_disabler;
1819 
1820   // release locks and wait for a notify from the background collector
1821   // releasing the locks in only necessary for phases which
1822   // do yields to improve the granularity of the collection.
1823   assert_lock_strong(bitMapLock());
1824   // We need to lock the Free list lock for the space that we are
1825   // currently collecting.
1826   assert(haveFreelistLocks(), "Must be holding free list locks");
1827   bitMapLock()->unlock();
1828   releaseFreelistLocks();
1829   {
1830     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1831     if (_foregroundGCShouldWait) {
1832       // We are going to be waiting for action for the CMS thread;
1833       // it had better not be gone (for instance at shutdown)!
1834       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1835              "CMS thread must be running");
1836       // Wait here until the background collector gives us the go-ahead
1837       ConcurrentMarkSweepThread::clear_CMS_flag(
1838         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1839       // Get a possibly blocked CMS thread going:
1840       //   Note that we set _foregroundGCIsActive true above,
1841       //   without protection of the CGC_lock.
1842       CGC_lock->notify();
1843       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1844              "Possible deadlock");
1845       while (_foregroundGCShouldWait) {
1846         // wait for notification
1847         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1848         // Possibility of delay/starvation here, since CMS token does
1849         // not know to give priority to VM thread? Actually, i think
1850         // there wouldn't be any delay/starvation, but the proof of
1851         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1852       }
1853       ConcurrentMarkSweepThread::set_CMS_flag(
1854         ConcurrentMarkSweepThread::CMS_vm_has_token);
1855     }
1856   }
1857   // The CMS_token is already held.  Get back the other locks.
1858   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1859          "VM thread should have CMS token");
1860   getFreelistLocks();
1861   bitMapLock()->lock_without_safepoint_check();
1862   if (TraceCMSState) {
1863     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1864       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1865     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1866   }
1867 
1868   // Check if we need to do a compaction, or if not, whether
1869   // we need to start the mark-sweep from scratch.
1870   bool should_compact    = false;
1871   bool should_start_over = false;
1872   decide_foreground_collection_type(clear_all_soft_refs,
1873     &should_compact, &should_start_over);
1874 
1875 NOT_PRODUCT(
1876   if (RotateCMSCollectionTypes) {
1877     if (_cmsGen->debug_collection_type() ==
1878         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1879       should_compact = true;
1880     } else if (_cmsGen->debug_collection_type() ==
1881                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1882       should_compact = false;
1883     }
1884   }
1885 )
1886 
1887   if (first_state > Idling) {
1888     report_concurrent_mode_interruption();
1889   }
1890 
1891   set_did_compact(should_compact);
1892   if (should_compact) {
1893     // If the collection is being acquired from the background
1894     // collector, there may be references on the discovered
1895     // references lists that have NULL referents (being those
1896     // that were concurrently cleared by a mutator) or
1897     // that are no longer active (having been enqueued concurrently
1898     // by the mutator).
1899     // Scrub the list of those references because Mark-Sweep-Compact
1900     // code assumes referents are not NULL and that all discovered
1901     // Reference objects are active.
1902     ref_processor()->clean_up_discovered_references();
1903 
1904     if (first_state > Idling) {
1905       save_heap_summary();
1906     }
1907 
1908     do_compaction_work(clear_all_soft_refs);
1909 
1910     // Has the GC time limit been exceeded?
1911     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1912     size_t max_eden_size = young_gen->max_capacity() -
1913                            young_gen->to()->capacity() -
1914                            young_gen->from()->capacity();
1915     GenCollectedHeap* gch = GenCollectedHeap::heap();
1916     GCCause::Cause gc_cause = gch->gc_cause();
1917     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1918                                            young_gen->eden()->used(),
1919                                            _cmsGen->max_capacity(),
1920                                            max_eden_size,
1921                                            full,
1922                                            gc_cause,
1923                                            gch->collector_policy());
1924   } else {
1925     do_mark_sweep_work(clear_all_soft_refs, first_state,
1926       should_start_over);
1927   }
1928   // Reset the expansion cause, now that we just completed
1929   // a collection cycle.
1930   clear_expansion_cause();
1931   _foregroundGCIsActive = false;
1932   return;
1933 }
1934 
1935 // Resize the tenured generation
1936 // after obtaining the free list locks for the
1937 // two generations.
1938 void CMSCollector::compute_new_size() {
1939   assert_locked_or_safepoint(Heap_lock);
1940   FreelistLocker z(this);
1941   MetaspaceGC::compute_new_size();
1942   _cmsGen->compute_new_size_free_list();
1943 }
1944 
1945 // A work method used by foreground collection to determine
1946 // what type of collection (compacting or not, continuing or fresh)
1947 // it should do.
1948 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1949 // and CMSCompactWhenClearAllSoftRefs the default in the future
1950 // and do away with the flags after a suitable period.
1951 void CMSCollector::decide_foreground_collection_type(
1952   bool clear_all_soft_refs, bool* should_compact,
1953   bool* should_start_over) {
1954   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1955   // flag is set, and we have either requested a System.gc() or
1956   // the number of full gc's since the last concurrent cycle
1957   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1958   // or if an incremental collection has failed
1959   GenCollectedHeap* gch = GenCollectedHeap::heap();
1960   assert(gch->collector_policy()->is_generation_policy(),
1961          "You may want to check the correctness of the following");
1962   // Inform cms gen if this was due to partial collection failing.
1963   // The CMS gen may use this fact to determine its expansion policy.
1964   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1965     assert(!_cmsGen->incremental_collection_failed(),
1966            "Should have been noticed, reacted to and cleared");
1967     _cmsGen->set_incremental_collection_failed();
1968   }
1969   *should_compact =
1970     UseCMSCompactAtFullCollection &&
1971     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1972      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1973      gch->incremental_collection_will_fail(true /* consult_young */));
1974   *should_start_over = false;
1975   if (clear_all_soft_refs && !*should_compact) {
1976     // We are about to do a last ditch collection attempt
1977     // so it would normally make sense to do a compaction
1978     // to reclaim as much space as possible.
1979     if (CMSCompactWhenClearAllSoftRefs) {
1980       // Default: The rationale is that in this case either
1981       // we are past the final marking phase, in which case
1982       // we'd have to start over, or so little has been done
1983       // that there's little point in saving that work. Compaction
1984       // appears to be the sensible choice in either case.
1985       *should_compact = true;
1986     } else {
1987       // We have been asked to clear all soft refs, but not to
1988       // compact. Make sure that we aren't past the final checkpoint
1989       // phase, for that is where we process soft refs. If we are already
1990       // past that phase, we'll need to redo the refs discovery phase and
1991       // if necessary clear soft refs that weren't previously
1992       // cleared. We do so by remembering the phase in which
1993       // we came in, and if we are past the refs processing
1994       // phase, we'll choose to just redo the mark-sweep
1995       // collection from scratch.
1996       if (_collectorState > FinalMarking) {
1997         // We are past the refs processing phase;
1998         // start over and do a fresh synchronous CMS cycle
1999         _collectorState = Resetting; // skip to reset to start new cycle
2000         reset(false /* == !asynch */);
2001         *should_start_over = true;
2002       } // else we can continue a possibly ongoing current cycle
2003     }
2004   }
2005 }
2006 
2007 // A work method used by the foreground collector to do
2008 // a mark-sweep-compact.
2009 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
2010   GenCollectedHeap* gch = GenCollectedHeap::heap();
2011 
2012   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
2013   gc_timer->register_gc_start();
2014 
2015   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
2016   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
2017 
2018   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
2019   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
2020     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
2021       "collections passed to foreground collector", _full_gcs_since_conc_gc);
2022   }
2023 
2024   // Temporarily widen the span of the weak reference processing to
2025   // the entire heap.
2026   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2027   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
2028   // Temporarily, clear the "is_alive_non_header" field of the
2029   // reference processor.
2030   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
2031   // Temporarily make reference _processing_ single threaded (non-MT).
2032   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2033   // Temporarily make refs discovery atomic
2034   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2035   // Temporarily make reference _discovery_ single threaded (non-MT)
2036   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2037 
2038   ref_processor()->set_enqueuing_is_done(false);
2039   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2040   ref_processor()->setup_policy(clear_all_soft_refs);
2041   // If an asynchronous collection finishes, the _modUnionTable is
2042   // all clear.  If we are assuming the collection from an asynchronous
2043   // collection, clear the _modUnionTable.
2044   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2045     "_modUnionTable should be clear if the baton was not passed");
2046   _modUnionTable.clear_all();
2047   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
2048     "mod union for klasses should be clear if the baton was passed");
2049   _ct->klass_rem_set()->clear_mod_union();
2050 
2051   // We must adjust the allocation statistics being maintained
2052   // in the free list space. We do so by reading and clearing
2053   // the sweep timer and updating the block flux rate estimates below.
2054   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2055   if (_inter_sweep_timer.is_active()) {
2056     _inter_sweep_timer.stop();
2057     // Note that we do not use this sample to update the _inter_sweep_estimate.
2058     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2059                                             _inter_sweep_estimate.padded_average(),
2060                                             _intra_sweep_estimate.padded_average());
2061   }
2062 
2063   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2064     ref_processor(), clear_all_soft_refs);
2065   #ifdef ASSERT
2066     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2067     size_t free_size = cms_space->free();
2068     assert(free_size ==
2069            pointer_delta(cms_space->end(), cms_space->compaction_top())
2070            * HeapWordSize,
2071       "All the free space should be compacted into one chunk at top");
2072     assert(cms_space->dictionary()->total_chunk_size(
2073                                       debug_only(cms_space->freelistLock())) == 0 ||
2074            cms_space->totalSizeInIndexedFreeLists() == 0,
2075       "All the free space should be in a single chunk");
2076     size_t num = cms_space->totalCount();
2077     assert((free_size == 0 && num == 0) ||
2078            (free_size > 0  && (num == 1 || num == 2)),
2079          "There should be at most 2 free chunks after compaction");
2080   #endif // ASSERT
2081   _collectorState = Resetting;
2082   assert(_restart_addr == NULL,
2083          "Should have been NULL'd before baton was passed");
2084   reset(false /* == !asynch */);
2085   _cmsGen->reset_after_compaction();
2086   _concurrent_cycles_since_last_unload = 0;
2087 
2088   // Clear any data recorded in the PLAB chunk arrays.
2089   if (_survivor_plab_array != NULL) {
2090     reset_survivor_plab_arrays();
2091   }
2092 
2093   // Adjust the per-size allocation stats for the next epoch.
2094   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2095   // Restart the "inter sweep timer" for the next epoch.
2096   _inter_sweep_timer.reset();
2097   _inter_sweep_timer.start();
2098 
2099   gc_timer->register_gc_end();
2100 
2101   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
2102 
2103   // For a mark-sweep-compact, compute_new_size() will be called
2104   // in the heap's do_collection() method.
2105 }
2106 
2107 // A work method used by the foreground collector to do
2108 // a mark-sweep, after taking over from a possibly on-going
2109 // concurrent mark-sweep collection.
2110 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2111   CollectorState first_state, bool should_start_over) {
2112   if (PrintGC && Verbose) {
2113     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2114       "collector with count %d",
2115       _full_gcs_since_conc_gc);
2116   }
2117   switch (_collectorState) {
2118     case Idling:
2119       if (first_state == Idling || should_start_over) {
2120         // The background GC was not active, or should
2121         // restarted from scratch;  start the cycle.
2122         _collectorState = InitialMarking;
2123       }
2124       // If first_state was not Idling, then a background GC
2125       // was in progress and has now finished.  No need to do it
2126       // again.  Leave the state as Idling.
2127       break;
2128     case Precleaning:
2129       // In the foreground case don't do the precleaning since
2130       // it is not done concurrently and there is extra work
2131       // required.
2132       _collectorState = FinalMarking;
2133   }
2134   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
2135 
2136   // For a mark-sweep, compute_new_size() will be called
2137   // in the heap's do_collection() method.
2138 }
2139 
2140 
2141 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
2142   DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
2143   EdenSpace* eden_space = dng->eden();
2144   ContiguousSpace* from_space = dng->from();
2145   ContiguousSpace* to_space   = dng->to();
2146   // Eden
2147   if (_eden_chunk_array != NULL) {
2148     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2149                            eden_space->bottom(), eden_space->top(),
2150                            eden_space->end(), eden_space->capacity());
2151     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
2152                            "_eden_chunk_capacity=" SIZE_FORMAT,
2153                            _eden_chunk_index, _eden_chunk_capacity);
2154     for (size_t i = 0; i < _eden_chunk_index; i++) {
2155       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2156                              i, _eden_chunk_array[i]);
2157     }
2158   }
2159   // Survivor
2160   if (_survivor_chunk_array != NULL) {
2161     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2162                            from_space->bottom(), from_space->top(),
2163                            from_space->end(), from_space->capacity());
2164     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
2165                            "_survivor_chunk_capacity=" SIZE_FORMAT,
2166                            _survivor_chunk_index, _survivor_chunk_capacity);
2167     for (size_t i = 0; i < _survivor_chunk_index; i++) {
2168       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2169                              i, _survivor_chunk_array[i]);
2170     }
2171   }
2172 }
2173 
2174 void CMSCollector::getFreelistLocks() const {
2175   // Get locks for all free lists in all generations that this
2176   // collector is responsible for
2177   _cmsGen->freelistLock()->lock_without_safepoint_check();
2178 }
2179 
2180 void CMSCollector::releaseFreelistLocks() const {
2181   // Release locks for all free lists in all generations that this
2182   // collector is responsible for
2183   _cmsGen->freelistLock()->unlock();
2184 }
2185 
2186 bool CMSCollector::haveFreelistLocks() const {
2187   // Check locks for all free lists in all generations that this
2188   // collector is responsible for
2189   assert_lock_strong(_cmsGen->freelistLock());
2190   PRODUCT_ONLY(ShouldNotReachHere());
2191   return true;
2192 }
2193 
2194 // A utility class that is used by the CMS collector to
2195 // temporarily "release" the foreground collector from its
2196 // usual obligation to wait for the background collector to
2197 // complete an ongoing phase before proceeding.
2198 class ReleaseForegroundGC: public StackObj {
2199  private:
2200   CMSCollector* _c;
2201  public:
2202   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2203     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2204     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2205     // allow a potentially blocked foreground collector to proceed
2206     _c->_foregroundGCShouldWait = false;
2207     if (_c->_foregroundGCIsActive) {
2208       CGC_lock->notify();
2209     }
2210     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2211            "Possible deadlock");
2212   }
2213 
2214   ~ReleaseForegroundGC() {
2215     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2216     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2217     _c->_foregroundGCShouldWait = true;
2218   }
2219 };
2220 
2221 // There are separate collect_in_background and collect_in_foreground because of
2222 // the different locking requirements of the background collector and the
2223 // foreground collector.  There was originally an attempt to share
2224 // one "collect" method between the background collector and the foreground
2225 // collector but the if-then-else required made it cleaner to have
2226 // separate methods.
2227 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
2228   assert(Thread::current()->is_ConcurrentGC_thread(),
2229     "A CMS asynchronous collection is only allowed on a CMS thread.");
2230 
2231   GenCollectedHeap* gch = GenCollectedHeap::heap();
2232   {
2233     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2234     MutexLockerEx hl(Heap_lock, safepoint_check);
2235     FreelistLocker fll(this);
2236     MutexLockerEx x(CGC_lock, safepoint_check);
2237     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2238       // The foreground collector is active or we're
2239       // not using asynchronous collections.  Skip this
2240       // background collection.
2241       assert(!_foregroundGCShouldWait, "Should be clear");
2242       return;
2243     } else {
2244       assert(_collectorState == Idling, "Should be idling before start.");
2245       _collectorState = InitialMarking;
2246       register_gc_start(cause);
2247       // Reset the expansion cause, now that we are about to begin
2248       // a new cycle.
2249       clear_expansion_cause();
2250 
2251       // Clear the MetaspaceGC flag since a concurrent collection
2252       // is starting but also clear it after the collection.
2253       MetaspaceGC::set_should_concurrent_collect(false);
2254     }
2255     // Decide if we want to enable class unloading as part of the
2256     // ensuing concurrent GC cycle.
2257     update_should_unload_classes();
2258     _full_gc_requested = false;           // acks all outstanding full gc requests
2259     _full_gc_cause = GCCause::_no_gc;
2260     // Signal that we are about to start a collection
2261     gch->increment_total_full_collections();  // ... starting a collection cycle
2262     _collection_count_start = gch->total_full_collections();
2263   }
2264 
2265   // Used for PrintGC
2266   size_t prev_used;
2267   if (PrintGC && Verbose) {
2268     prev_used = _cmsGen->used(); // XXXPERM
2269   }
2270 
2271   // The change of the collection state is normally done at this level;
2272   // the exceptions are phases that are executed while the world is
2273   // stopped.  For those phases the change of state is done while the
2274   // world is stopped.  For baton passing purposes this allows the
2275   // background collector to finish the phase and change state atomically.
2276   // The foreground collector cannot wait on a phase that is done
2277   // while the world is stopped because the foreground collector already
2278   // has the world stopped and would deadlock.
2279   while (_collectorState != Idling) {
2280     if (TraceCMSState) {
2281       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2282         Thread::current(), _collectorState);
2283     }
2284     // The foreground collector
2285     //   holds the Heap_lock throughout its collection.
2286     //   holds the CMS token (but not the lock)
2287     //     except while it is waiting for the background collector to yield.
2288     //
2289     // The foreground collector should be blocked (not for long)
2290     //   if the background collector is about to start a phase
2291     //   executed with world stopped.  If the background
2292     //   collector has already started such a phase, the
2293     //   foreground collector is blocked waiting for the
2294     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2295     //   are executed in the VM thread.
2296     //
2297     // The locking order is
2298     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2299     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2300     //   CMS token  (claimed in
2301     //                stop_world_and_do() -->
2302     //                  safepoint_synchronize() -->
2303     //                    CMSThread::synchronize())
2304 
2305     {
2306       // Check if the FG collector wants us to yield.
2307       CMSTokenSync x(true); // is cms thread
2308       if (waitForForegroundGC()) {
2309         // We yielded to a foreground GC, nothing more to be
2310         // done this round.
2311         assert(_foregroundGCShouldWait == false, "We set it to false in "
2312                "waitForForegroundGC()");
2313         if (TraceCMSState) {
2314           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2315             " exiting collection CMS state %d",
2316             Thread::current(), _collectorState);
2317         }
2318         return;
2319       } else {
2320         // The background collector can run but check to see if the
2321         // foreground collector has done a collection while the
2322         // background collector was waiting to get the CGC_lock
2323         // above.  If yes, break so that _foregroundGCShouldWait
2324         // is cleared before returning.
2325         if (_collectorState == Idling) {
2326           break;
2327         }
2328       }
2329     }
2330 
2331     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2332       "should be waiting");
2333 
2334     switch (_collectorState) {
2335       case InitialMarking:
2336         {
2337           ReleaseForegroundGC x(this);
2338           stats().record_cms_begin();
2339           VM_CMS_Initial_Mark initial_mark_op(this);
2340           VMThread::execute(&initial_mark_op);
2341         }
2342         // The collector state may be any legal state at this point
2343         // since the background collector may have yielded to the
2344         // foreground collector.
2345         break;
2346       case Marking:
2347         // initial marking in checkpointRootsInitialWork has been completed
2348         if (markFromRoots(true)) { // we were successful
2349           assert(_collectorState == Precleaning, "Collector state should "
2350             "have changed");
2351         } else {
2352           assert(_foregroundGCIsActive, "Internal state inconsistency");
2353         }
2354         break;
2355       case Precleaning:
2356         // marking from roots in markFromRoots has been completed
2357         preclean();
2358         assert(_collectorState == AbortablePreclean ||
2359                _collectorState == FinalMarking,
2360                "Collector state should have changed");
2361         break;
2362       case AbortablePreclean:
2363         abortable_preclean();
2364         assert(_collectorState == FinalMarking, "Collector state should "
2365           "have changed");
2366         break;
2367       case FinalMarking:
2368         {
2369           ReleaseForegroundGC x(this);
2370 
2371           VM_CMS_Final_Remark final_remark_op(this);
2372           VMThread::execute(&final_remark_op);
2373         }
2374         assert(_foregroundGCShouldWait, "block post-condition");
2375         break;
2376       case Sweeping:
2377         // final marking in checkpointRootsFinal has been completed
2378         sweep(true);
2379         assert(_collectorState == Resizing, "Collector state change "
2380           "to Resizing must be done under the free_list_lock");
2381         _full_gcs_since_conc_gc = 0;
2382 
2383       case Resizing: {
2384         // Sweeping has been completed...
2385         // At this point the background collection has completed.
2386         // Don't move the call to compute_new_size() down
2387         // into code that might be executed if the background
2388         // collection was preempted.
2389         {
2390           ReleaseForegroundGC x(this);   // unblock FG collection
2391           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2392           CMSTokenSync        z(true);   // not strictly needed.
2393           if (_collectorState == Resizing) {
2394             compute_new_size();
2395             save_heap_summary();
2396             _collectorState = Resetting;
2397           } else {
2398             assert(_collectorState == Idling, "The state should only change"
2399                    " because the foreground collector has finished the collection");
2400           }
2401         }
2402         break;
2403       }
2404       case Resetting:
2405         // CMS heap resizing has been completed
2406         reset(true);
2407         assert(_collectorState == Idling, "Collector state should "
2408           "have changed");
2409 
2410         MetaspaceGC::set_should_concurrent_collect(false);
2411 
2412         stats().record_cms_end();
2413         // Don't move the concurrent_phases_end() and compute_new_size()
2414         // calls to here because a preempted background collection
2415         // has it's state set to "Resetting".
2416         break;
2417       case Idling:
2418       default:
2419         ShouldNotReachHere();
2420         break;
2421     }
2422     if (TraceCMSState) {
2423       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2424         Thread::current(), _collectorState);
2425     }
2426     assert(_foregroundGCShouldWait, "block post-condition");
2427   }
2428 
2429   // Should this be in gc_epilogue?
2430   collector_policy()->counters()->update_counters();
2431 
2432   {
2433     // Clear _foregroundGCShouldWait and, in the event that the
2434     // foreground collector is waiting, notify it, before
2435     // returning.
2436     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2437     _foregroundGCShouldWait = false;
2438     if (_foregroundGCIsActive) {
2439       CGC_lock->notify();
2440     }
2441     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2442            "Possible deadlock");
2443   }
2444   if (TraceCMSState) {
2445     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2446       " exiting collection CMS state %d",
2447       Thread::current(), _collectorState);
2448   }
2449   if (PrintGC && Verbose) {
2450     _cmsGen->print_heap_change(prev_used);
2451   }
2452 }
2453 
2454 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
2455   if (!_cms_start_registered) {
2456     register_gc_start(cause);
2457   }
2458 }
2459 
2460 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2461   _cms_start_registered = true;
2462   _gc_timer_cm->register_gc_start();
2463   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2464 }
2465 
2466 void CMSCollector::register_gc_end() {
2467   if (_cms_start_registered) {
2468     report_heap_summary(GCWhen::AfterGC);
2469 
2470     _gc_timer_cm->register_gc_end();
2471     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2472     _cms_start_registered = false;
2473   }
2474 }
2475 
2476 void CMSCollector::save_heap_summary() {
2477   GenCollectedHeap* gch = GenCollectedHeap::heap();
2478   _last_heap_summary = gch->create_heap_summary();
2479   _last_metaspace_summary = gch->create_metaspace_summary();
2480 }
2481 
2482 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2483   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2484   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2485 }
2486 
2487 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
2488   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2489          "Foreground collector should be waiting, not executing");
2490   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2491     "may only be done by the VM Thread with the world stopped");
2492   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2493          "VM thread should have CMS token");
2494 
2495   // The gc id is created in register_foreground_gc_start if this collection is synchronous
2496   const GCId gc_id = _collectorState == InitialMarking ? GCId::peek() : _gc_tracer_cm->gc_id();
2497   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2498     true, NULL, gc_id);)
2499   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2500 
2501   HandleMark hm;  // Discard invalid handles created during verification
2502 
2503   if (VerifyBeforeGC &&
2504       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2505     Universe::verify();
2506   }
2507 
2508   // Snapshot the soft reference policy to be used in this collection cycle.
2509   ref_processor()->setup_policy(clear_all_soft_refs);
2510 
2511   // Decide if class unloading should be done
2512   update_should_unload_classes();
2513 
2514   bool init_mark_was_synchronous = false; // until proven otherwise
2515   while (_collectorState != Idling) {
2516     if (TraceCMSState) {
2517       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2518         Thread::current(), _collectorState);
2519     }
2520     switch (_collectorState) {
2521       case InitialMarking:
2522         register_foreground_gc_start(cause);
2523         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2524         checkpointRootsInitial(false);
2525         assert(_collectorState == Marking, "Collector state should have changed"
2526           " within checkpointRootsInitial()");
2527         break;
2528       case Marking:
2529         // initial marking in checkpointRootsInitialWork has been completed
2530         if (VerifyDuringGC &&
2531             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2532           Universe::verify("Verify before initial mark: ");
2533         }
2534         {
2535           bool res = markFromRoots(false);
2536           assert(res && _collectorState == FinalMarking, "Collector state should "
2537             "have changed");
2538           break;
2539         }
2540       case FinalMarking:
2541         if (VerifyDuringGC &&
2542             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2543           Universe::verify("Verify before re-mark: ");
2544         }
2545         checkpointRootsFinal(false, clear_all_soft_refs,
2546                              init_mark_was_synchronous);
2547         assert(_collectorState == Sweeping, "Collector state should not "
2548           "have changed within checkpointRootsFinal()");
2549         break;
2550       case Sweeping:
2551         // final marking in checkpointRootsFinal has been completed
2552         if (VerifyDuringGC &&
2553             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2554           Universe::verify("Verify before sweep: ");
2555         }
2556         sweep(false);
2557         assert(_collectorState == Resizing, "Incorrect state");
2558         break;
2559       case Resizing: {
2560         // Sweeping has been completed; the actual resize in this case
2561         // is done separately; nothing to be done in this state.
2562         _collectorState = Resetting;
2563         break;
2564       }
2565       case Resetting:
2566         // The heap has been resized.
2567         if (VerifyDuringGC &&
2568             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2569           Universe::verify("Verify before reset: ");
2570         }
2571         save_heap_summary();
2572         reset(false);
2573         assert(_collectorState == Idling, "Collector state should "
2574           "have changed");
2575         break;
2576       case Precleaning:
2577       case AbortablePreclean:
2578         // Elide the preclean phase
2579         _collectorState = FinalMarking;
2580         break;
2581       default:
2582         ShouldNotReachHere();
2583     }
2584     if (TraceCMSState) {
2585       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2586         Thread::current(), _collectorState);
2587     }
2588   }
2589 
2590   if (VerifyAfterGC &&
2591       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2592     Universe::verify();
2593   }
2594   if (TraceCMSState) {
2595     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2596       " exiting collection CMS state %d",
2597       Thread::current(), _collectorState);
2598   }
2599 }
2600 
2601 bool CMSCollector::waitForForegroundGC() {
2602   bool res = false;
2603   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2604          "CMS thread should have CMS token");
2605   // Block the foreground collector until the
2606   // background collectors decides whether to
2607   // yield.
2608   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2609   _foregroundGCShouldWait = true;
2610   if (_foregroundGCIsActive) {
2611     // The background collector yields to the
2612     // foreground collector and returns a value
2613     // indicating that it has yielded.  The foreground
2614     // collector can proceed.
2615     res = true;
2616     _foregroundGCShouldWait = false;
2617     ConcurrentMarkSweepThread::clear_CMS_flag(
2618       ConcurrentMarkSweepThread::CMS_cms_has_token);
2619     ConcurrentMarkSweepThread::set_CMS_flag(
2620       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2621     // Get a possibly blocked foreground thread going
2622     CGC_lock->notify();
2623     if (TraceCMSState) {
2624       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2625         Thread::current(), _collectorState);
2626     }
2627     while (_foregroundGCIsActive) {
2628       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2629     }
2630     ConcurrentMarkSweepThread::set_CMS_flag(
2631       ConcurrentMarkSweepThread::CMS_cms_has_token);
2632     ConcurrentMarkSweepThread::clear_CMS_flag(
2633       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2634   }
2635   if (TraceCMSState) {
2636     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2637       Thread::current(), _collectorState);
2638   }
2639   return res;
2640 }
2641 
2642 // Because of the need to lock the free lists and other structures in
2643 // the collector, common to all the generations that the collector is
2644 // collecting, we need the gc_prologues of individual CMS generations
2645 // delegate to their collector. It may have been simpler had the
2646 // current infrastructure allowed one to call a prologue on a
2647 // collector. In the absence of that we have the generation's
2648 // prologue delegate to the collector, which delegates back
2649 // some "local" work to a worker method in the individual generations
2650 // that it's responsible for collecting, while itself doing any
2651 // work common to all generations it's responsible for. A similar
2652 // comment applies to the  gc_epilogue()'s.
2653 // The role of the variable _between_prologue_and_epilogue is to
2654 // enforce the invocation protocol.
2655 void CMSCollector::gc_prologue(bool full) {
2656   // Call gc_prologue_work() for the CMSGen
2657   // we are responsible for.
2658 
2659   // The following locking discipline assumes that we are only called
2660   // when the world is stopped.
2661   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2662 
2663   // The CMSCollector prologue must call the gc_prologues for the
2664   // "generations" that it's responsible
2665   // for.
2666 
2667   assert(   Thread::current()->is_VM_thread()
2668          || (   CMSScavengeBeforeRemark
2669              && Thread::current()->is_ConcurrentGC_thread()),
2670          "Incorrect thread type for prologue execution");
2671 
2672   if (_between_prologue_and_epilogue) {
2673     // We have already been invoked; this is a gc_prologue delegation
2674     // from yet another CMS generation that we are responsible for, just
2675     // ignore it since all relevant work has already been done.
2676     return;
2677   }
2678 
2679   // set a bit saying prologue has been called; cleared in epilogue
2680   _between_prologue_and_epilogue = true;
2681   // Claim locks for common data structures, then call gc_prologue_work()
2682   // for each CMSGen.
2683 
2684   getFreelistLocks();   // gets free list locks on constituent spaces
2685   bitMapLock()->lock_without_safepoint_check();
2686 
2687   // Should call gc_prologue_work() for all cms gens we are responsible for
2688   bool duringMarking =    _collectorState >= Marking
2689                          && _collectorState < Sweeping;
2690 
2691   // The young collections clear the modified oops state, which tells if
2692   // there are any modified oops in the class. The remark phase also needs
2693   // that information. Tell the young collection to save the union of all
2694   // modified klasses.
2695   if (duringMarking) {
2696     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2697   }
2698 
2699   bool registerClosure = duringMarking;
2700 
2701   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2702                                                &_modUnionClosurePar
2703                                                : &_modUnionClosure;
2704   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2705 
2706   if (!full) {
2707     stats().record_gc0_begin();
2708   }
2709 }
2710 
2711 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2712 
2713   _capacity_at_prologue = capacity();
2714   _used_at_prologue = used();
2715 
2716   // Delegate to CMScollector which knows how to coordinate between
2717   // this and any other CMS generations that it is responsible for
2718   // collecting.
2719   collector()->gc_prologue(full);
2720 }
2721 
2722 // This is a "private" interface for use by this generation's CMSCollector.
2723 // Not to be called directly by any other entity (for instance,
2724 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2725 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2726   bool registerClosure, ModUnionClosure* modUnionClosure) {
2727   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2728   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2729     "Should be NULL");
2730   if (registerClosure) {
2731     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2732   }
2733   cmsSpace()->gc_prologue();
2734   // Clear stat counters
2735   NOT_PRODUCT(
2736     assert(_numObjectsPromoted == 0, "check");
2737     assert(_numWordsPromoted   == 0, "check");
2738     if (Verbose && PrintGC) {
2739       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2740                           SIZE_FORMAT" bytes concurrently",
2741       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2742     }
2743     _numObjectsAllocated = 0;
2744     _numWordsAllocated   = 0;
2745   )
2746 }
2747 
2748 void CMSCollector::gc_epilogue(bool full) {
2749   // The following locking discipline assumes that we are only called
2750   // when the world is stopped.
2751   assert(SafepointSynchronize::is_at_safepoint(),
2752          "world is stopped assumption");
2753 
2754   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2755   // if linear allocation blocks need to be appropriately marked to allow the
2756   // the blocks to be parsable. We also check here whether we need to nudge the
2757   // CMS collector thread to start a new cycle (if it's not already active).
2758   assert(   Thread::current()->is_VM_thread()
2759          || (   CMSScavengeBeforeRemark
2760              && Thread::current()->is_ConcurrentGC_thread()),
2761          "Incorrect thread type for epilogue execution");
2762 
2763   if (!_between_prologue_and_epilogue) {
2764     // We have already been invoked; this is a gc_epilogue delegation
2765     // from yet another CMS generation that we are responsible for, just
2766     // ignore it since all relevant work has already been done.
2767     return;
2768   }
2769   assert(haveFreelistLocks(), "must have freelist locks");
2770   assert_lock_strong(bitMapLock());
2771 
2772   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2773 
2774   _cmsGen->gc_epilogue_work(full);
2775 
2776   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2777     // in case sampling was not already enabled, enable it
2778     _start_sampling = true;
2779   }
2780   // reset _eden_chunk_array so sampling starts afresh
2781   _eden_chunk_index = 0;
2782 
2783   size_t cms_used   = _cmsGen->cmsSpace()->used();
2784 
2785   // update performance counters - this uses a special version of
2786   // update_counters() that allows the utilization to be passed as a
2787   // parameter, avoiding multiple calls to used().
2788   //
2789   _cmsGen->update_counters(cms_used);
2790 
2791   if (CMSIncrementalMode) {
2792     icms_update_allocation_limits();
2793   }
2794 
2795   bitMapLock()->unlock();
2796   releaseFreelistLocks();
2797 
2798   if (!CleanChunkPoolAsync) {
2799     Chunk::clean_chunk_pool();
2800   }
2801 
2802   set_did_compact(false);
2803   _between_prologue_and_epilogue = false;  // ready for next cycle
2804 }
2805 
2806 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2807   collector()->gc_epilogue(full);
2808 
2809   // Also reset promotion tracking in par gc thread states.
2810   if (CollectedHeap::use_parallel_gc_threads()) {
2811     for (uint i = 0; i < ParallelGCThreads; i++) {
2812       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2813     }
2814   }
2815 }
2816 
2817 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2818   assert(!incremental_collection_failed(), "Should have been cleared");
2819   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2820   cmsSpace()->gc_epilogue();
2821     // Print stat counters
2822   NOT_PRODUCT(
2823     assert(_numObjectsAllocated == 0, "check");
2824     assert(_numWordsAllocated == 0, "check");
2825     if (Verbose && PrintGC) {
2826       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2827                           SIZE_FORMAT" bytes",
2828                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2829     }
2830     _numObjectsPromoted = 0;
2831     _numWordsPromoted   = 0;
2832   )
2833 
2834   if (PrintGC && Verbose) {
2835     // Call down the chain in contiguous_available needs the freelistLock
2836     // so print this out before releasing the freeListLock.
2837     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2838                         contiguous_available());
2839   }
2840 }
2841 
2842 #ifndef PRODUCT
2843 bool CMSCollector::have_cms_token() {
2844   Thread* thr = Thread::current();
2845   if (thr->is_VM_thread()) {
2846     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2847   } else if (thr->is_ConcurrentGC_thread()) {
2848     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2849   } else if (thr->is_GC_task_thread()) {
2850     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2851            ParGCRareEvent_lock->owned_by_self();
2852   }
2853   return false;
2854 }
2855 #endif
2856 
2857 // Check reachability of the given heap address in CMS generation,
2858 // treating all other generations as roots.
2859 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2860   // We could "guarantee" below, rather than assert, but I'll
2861   // leave these as "asserts" so that an adventurous debugger
2862   // could try this in the product build provided some subset of
2863   // the conditions were met, provided they were interested in the
2864   // results and knew that the computation below wouldn't interfere
2865   // with other concurrent computations mutating the structures
2866   // being read or written.
2867   assert(SafepointSynchronize::is_at_safepoint(),
2868          "Else mutations in object graph will make answer suspect");
2869   assert(have_cms_token(), "Should hold cms token");
2870   assert(haveFreelistLocks(), "must hold free list locks");
2871   assert_lock_strong(bitMapLock());
2872 
2873   // Clear the marking bit map array before starting, but, just
2874   // for kicks, first report if the given address is already marked
2875   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", addr,
2876                 _markBitMap.isMarked(addr) ? "" : " not");
2877 
2878   if (verify_after_remark()) {
2879     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2880     bool result = verification_mark_bm()->isMarked(addr);
2881     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", addr,
2882                            result ? "IS" : "is NOT");
2883     return result;
2884   } else {
2885     gclog_or_tty->print_cr("Could not compute result");
2886     return false;
2887   }
2888 }
2889 
2890 
2891 void
2892 CMSCollector::print_on_error(outputStream* st) {
2893   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2894   if (collector != NULL) {
2895     CMSBitMap* bitmap = &collector->_markBitMap;
2896     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
2897     bitmap->print_on_error(st, " Bits: ");
2898 
2899     st->cr();
2900 
2901     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2902     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
2903     mut_bitmap->print_on_error(st, " Bits: ");
2904   }
2905 }
2906 
2907 ////////////////////////////////////////////////////////
2908 // CMS Verification Support
2909 ////////////////////////////////////////////////////////
2910 // Following the remark phase, the following invariant
2911 // should hold -- each object in the CMS heap which is
2912 // marked in markBitMap() should be marked in the verification_mark_bm().
2913 
2914 class VerifyMarkedClosure: public BitMapClosure {
2915   CMSBitMap* _marks;
2916   bool       _failed;
2917 
2918  public:
2919   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2920 
2921   bool do_bit(size_t offset) {
2922     HeapWord* addr = _marks->offsetToHeapWord(offset);
2923     if (!_marks->isMarked(addr)) {
2924       oop(addr)->print_on(gclog_or_tty);
2925       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2926       _failed = true;
2927     }
2928     return true;
2929   }
2930 
2931   bool failed() { return _failed; }
2932 };
2933 
2934 bool CMSCollector::verify_after_remark(bool silent) {
2935   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2936   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2937   static bool init = false;
2938 
2939   assert(SafepointSynchronize::is_at_safepoint(),
2940          "Else mutations in object graph will make answer suspect");
2941   assert(have_cms_token(),
2942          "Else there may be mutual interference in use of "
2943          " verification data structures");
2944   assert(_collectorState > Marking && _collectorState <= Sweeping,
2945          "Else marking info checked here may be obsolete");
2946   assert(haveFreelistLocks(), "must hold free list locks");
2947   assert_lock_strong(bitMapLock());
2948 
2949 
2950   // Allocate marking bit map if not already allocated
2951   if (!init) { // first time
2952     if (!verification_mark_bm()->allocate(_span)) {
2953       return false;
2954     }
2955     init = true;
2956   }
2957 
2958   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2959 
2960   // Turn off refs discovery -- so we will be tracing through refs.
2961   // This is as intended, because by this time
2962   // GC must already have cleared any refs that need to be cleared,
2963   // and traced those that need to be marked; moreover,
2964   // the marking done here is not going to interfere in any
2965   // way with the marking information used by GC.
2966   NoRefDiscovery no_discovery(ref_processor());
2967 
2968   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2969 
2970   // Clear any marks from a previous round
2971   verification_mark_bm()->clear_all();
2972   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2973   verify_work_stacks_empty();
2974 
2975   GenCollectedHeap* gch = GenCollectedHeap::heap();
2976   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2977   // Update the saved marks which may affect the root scans.
2978   gch->save_marks();
2979 
2980   if (CMSRemarkVerifyVariant == 1) {
2981     // In this first variant of verification, we complete
2982     // all marking, then check if the new marks-vector is
2983     // a subset of the CMS marks-vector.
2984     verify_after_remark_work_1();
2985   } else if (CMSRemarkVerifyVariant == 2) {
2986     // In this second variant of verification, we flag an error
2987     // (i.e. an object reachable in the new marks-vector not reachable
2988     // in the CMS marks-vector) immediately, also indicating the
2989     // identify of an object (A) that references the unmarked object (B) --
2990     // presumably, a mutation to A failed to be picked up by preclean/remark?
2991     verify_after_remark_work_2();
2992   } else {
2993     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
2994             CMSRemarkVerifyVariant);
2995   }
2996   if (!silent) gclog_or_tty->print(" done] ");
2997   return true;
2998 }
2999 
3000 void CMSCollector::verify_after_remark_work_1() {
3001   ResourceMark rm;
3002   HandleMark  hm;
3003   GenCollectedHeap* gch = GenCollectedHeap::heap();
3004 
3005   // Get a clear set of claim bits for the roots processing to work with.
3006   ClassLoaderDataGraph::clear_claimed_marks();
3007 
3008   // Mark from roots one level into CMS
3009   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
3010   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3011 
3012   gch->gen_process_roots(_cmsGen->level(),
3013                          true,   // younger gens are roots
3014                          true,   // activate StrongRootsScope
3015                          SharedHeap::ScanningOption(roots_scanning_options()),
3016                          should_unload_classes(),
3017                          &notOlder,
3018                          NULL,
3019                          NULL);  // SSS: Provide correct closure
3020 
3021   // Now mark from the roots
3022   MarkFromRootsClosure markFromRootsClosure(this, _span,
3023     verification_mark_bm(), verification_mark_stack(),
3024     false /* don't yield */, true /* verifying */);
3025   assert(_restart_addr == NULL, "Expected pre-condition");
3026   verification_mark_bm()->iterate(&markFromRootsClosure);
3027   while (_restart_addr != NULL) {
3028     // Deal with stack overflow: by restarting at the indicated
3029     // address.
3030     HeapWord* ra = _restart_addr;
3031     markFromRootsClosure.reset(ra);
3032     _restart_addr = NULL;
3033     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3034   }
3035   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3036   verify_work_stacks_empty();
3037 
3038   // Marking completed -- now verify that each bit marked in
3039   // verification_mark_bm() is also marked in markBitMap(); flag all
3040   // errors by printing corresponding objects.
3041   VerifyMarkedClosure vcl(markBitMap());
3042   verification_mark_bm()->iterate(&vcl);
3043   if (vcl.failed()) {
3044     gclog_or_tty->print("Verification failed");
3045     Universe::heap()->print_on(gclog_or_tty);
3046     fatal("CMS: failed marking verification after remark");
3047   }
3048 }
3049 
3050 class VerifyKlassOopsKlassClosure : public KlassClosure {
3051   class VerifyKlassOopsClosure : public OopClosure {
3052     CMSBitMap* _bitmap;
3053    public:
3054     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
3055     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
3056     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3057   } _oop_closure;
3058  public:
3059   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
3060   void do_klass(Klass* k) {
3061     k->oops_do(&_oop_closure);
3062   }
3063 };
3064 
3065 void CMSCollector::verify_after_remark_work_2() {
3066   ResourceMark rm;
3067   HandleMark  hm;
3068   GenCollectedHeap* gch = GenCollectedHeap::heap();
3069 
3070   // Get a clear set of claim bits for the roots processing to work with.
3071   ClassLoaderDataGraph::clear_claimed_marks();
3072 
3073   // Mark from roots one level into CMS
3074   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
3075                                      markBitMap());
3076   CLDToOopClosure cld_closure(&notOlder, true);
3077 
3078   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3079 
3080   gch->gen_process_roots(_cmsGen->level(),
3081                          true,   // younger gens are roots
3082                          true,   // activate StrongRootsScope
3083                          SharedHeap::ScanningOption(roots_scanning_options()),
3084                          should_unload_classes(),
3085                          &notOlder,
3086                          NULL,
3087                          &cld_closure);
3088 
3089   // Now mark from the roots
3090   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
3091     verification_mark_bm(), markBitMap(), verification_mark_stack());
3092   assert(_restart_addr == NULL, "Expected pre-condition");
3093   verification_mark_bm()->iterate(&markFromRootsClosure);
3094   while (_restart_addr != NULL) {
3095     // Deal with stack overflow: by restarting at the indicated
3096     // address.
3097     HeapWord* ra = _restart_addr;
3098     markFromRootsClosure.reset(ra);
3099     _restart_addr = NULL;
3100     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3101   }
3102   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3103   verify_work_stacks_empty();
3104 
3105   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
3106   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
3107 
3108   // Marking completed -- now verify that each bit marked in
3109   // verification_mark_bm() is also marked in markBitMap(); flag all
3110   // errors by printing corresponding objects.
3111   VerifyMarkedClosure vcl(markBitMap());
3112   verification_mark_bm()->iterate(&vcl);
3113   assert(!vcl.failed(), "Else verification above should not have succeeded");
3114 }
3115 
3116 void ConcurrentMarkSweepGeneration::save_marks() {
3117   // delegate to CMS space
3118   cmsSpace()->save_marks();
3119   for (uint i = 0; i < ParallelGCThreads; i++) {
3120     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3121   }
3122 }
3123 
3124 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3125   return cmsSpace()->no_allocs_since_save_marks();
3126 }
3127 
3128 void
3129 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3130   cl->set_generation(this);
3131   younger_refs_in_space_iterate(_cmsSpace, cl);
3132   cl->reset_generation();
3133 }
3134 
3135 void
3136 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
3137   if (freelistLock()->owned_by_self()) {
3138     Generation::oop_iterate(cl);
3139   } else {
3140     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3141     Generation::oop_iterate(cl);
3142   }
3143 }
3144 
3145 void
3146 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3147   if (freelistLock()->owned_by_self()) {
3148     Generation::object_iterate(cl);
3149   } else {
3150     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3151     Generation::object_iterate(cl);
3152   }
3153 }
3154 
3155 void
3156 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3157   if (freelistLock()->owned_by_self()) {
3158     Generation::safe_object_iterate(cl);
3159   } else {
3160     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3161     Generation::safe_object_iterate(cl);
3162   }
3163 }
3164 
3165 void
3166 ConcurrentMarkSweepGeneration::post_compact() {
3167 }
3168 
3169 void
3170 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3171   // Fix the linear allocation blocks to look like free blocks.
3172 
3173   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3174   // are not called when the heap is verified during universe initialization and
3175   // at vm shutdown.
3176   if (freelistLock()->owned_by_self()) {
3177     cmsSpace()->prepare_for_verify();
3178   } else {
3179     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3180     cmsSpace()->prepare_for_verify();
3181   }
3182 }
3183 
3184 void
3185 ConcurrentMarkSweepGeneration::verify() {
3186   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3187   // are not called when the heap is verified during universe initialization and
3188   // at vm shutdown.
3189   if (freelistLock()->owned_by_self()) {
3190     cmsSpace()->verify();
3191   } else {
3192     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3193     cmsSpace()->verify();
3194   }
3195 }
3196 
3197 void CMSCollector::verify() {
3198   _cmsGen->verify();
3199 }
3200 
3201 #ifndef PRODUCT
3202 bool CMSCollector::overflow_list_is_empty() const {
3203   assert(_num_par_pushes >= 0, "Inconsistency");
3204   if (_overflow_list == NULL) {
3205     assert(_num_par_pushes == 0, "Inconsistency");
3206   }
3207   return _overflow_list == NULL;
3208 }
3209 
3210 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3211 // merely consolidate assertion checks that appear to occur together frequently.
3212 void CMSCollector::verify_work_stacks_empty() const {
3213   assert(_markStack.isEmpty(), "Marking stack should be empty");
3214   assert(overflow_list_is_empty(), "Overflow list should be empty");
3215 }
3216 
3217 void CMSCollector::verify_overflow_empty() const {
3218   assert(overflow_list_is_empty(), "Overflow list should be empty");
3219   assert(no_preserved_marks(), "No preserved marks");
3220 }
3221 #endif // PRODUCT
3222 
3223 // Decide if we want to enable class unloading as part of the
3224 // ensuing concurrent GC cycle. We will collect and
3225 // unload classes if it's the case that:
3226 // (1) an explicit gc request has been made and the flag
3227 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3228 // (2) (a) class unloading is enabled at the command line, and
3229 //     (b) old gen is getting really full
3230 // NOTE: Provided there is no change in the state of the heap between
3231 // calls to this method, it should have idempotent results. Moreover,
3232 // its results should be monotonically increasing (i.e. going from 0 to 1,
3233 // but not 1 to 0) between successive calls between which the heap was
3234 // not collected. For the implementation below, it must thus rely on
3235 // the property that concurrent_cycles_since_last_unload()
3236 // will not decrease unless a collection cycle happened and that
3237 // _cmsGen->is_too_full() are
3238 // themselves also monotonic in that sense. See check_monotonicity()
3239 // below.
3240 void CMSCollector::update_should_unload_classes() {
3241   _should_unload_classes = false;
3242   // Condition 1 above
3243   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3244     _should_unload_classes = true;
3245   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3246     // Disjuncts 2.b.(i,ii,iii) above
3247     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3248                               CMSClassUnloadingMaxInterval)
3249                            || _cmsGen->is_too_full();
3250   }
3251 }
3252 
3253 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3254   bool res = should_concurrent_collect();
3255   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3256   return res;
3257 }
3258 
3259 void CMSCollector::setup_cms_unloading_and_verification_state() {
3260   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3261                              || VerifyBeforeExit;
3262   const  int  rso           =   SharedHeap::SO_AllCodeCache;
3263 
3264   // We set the proper root for this CMS cycle here.
3265   if (should_unload_classes()) {   // Should unload classes this cycle
3266     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3267     set_verifying(should_verify);    // Set verification state for this cycle
3268     return;                            // Nothing else needs to be done at this time
3269   }
3270 
3271   // Not unloading classes this cycle
3272   assert(!should_unload_classes(), "Inconsistency!");
3273 
3274   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3275     // Include symbols, strings and code cache elements to prevent their resurrection.
3276     add_root_scanning_option(rso);
3277     set_verifying(true);
3278   } else if (verifying() && !should_verify) {
3279     // We were verifying, but some verification flags got disabled.
3280     set_verifying(false);
3281     // Exclude symbols, strings and code cache elements from root scanning to
3282     // reduce IM and RM pauses.
3283     remove_root_scanning_option(rso);
3284   }
3285 }
3286 
3287 
3288 #ifndef PRODUCT
3289 HeapWord* CMSCollector::block_start(const void* p) const {
3290   const HeapWord* addr = (HeapWord*)p;
3291   if (_span.contains(p)) {
3292     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3293       return _cmsGen->cmsSpace()->block_start(p);
3294     }
3295   }
3296   return NULL;
3297 }
3298 #endif
3299 
3300 HeapWord*
3301 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3302                                                    bool   tlab,
3303                                                    bool   parallel) {
3304   CMSSynchronousYieldRequest yr;
3305   assert(!tlab, "Can't deal with TLAB allocation");
3306   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3307   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3308     CMSExpansionCause::_satisfy_allocation);
3309   if (GCExpandToAllocateDelayMillis > 0) {
3310     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3311   }
3312   return have_lock_and_allocate(word_size, tlab);
3313 }
3314 
3315 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3316 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3317 // to CardGeneration and share it...
3318 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3319   return CardGeneration::expand(bytes, expand_bytes);
3320 }
3321 
3322 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3323   CMSExpansionCause::Cause cause)
3324 {
3325 
3326   bool success = expand(bytes, expand_bytes);
3327 
3328   // remember why we expanded; this information is used
3329   // by shouldConcurrentCollect() when making decisions on whether to start
3330   // a new CMS cycle.
3331   if (success) {
3332     set_expansion_cause(cause);
3333     if (PrintGCDetails && Verbose) {
3334       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3335         CMSExpansionCause::to_string(cause));
3336     }
3337   }
3338 }
3339 
3340 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3341   HeapWord* res = NULL;
3342   MutexLocker x(ParGCRareEvent_lock);
3343   while (true) {
3344     // Expansion by some other thread might make alloc OK now:
3345     res = ps->lab.alloc(word_sz);
3346     if (res != NULL) return res;
3347     // If there's not enough expansion space available, give up.
3348     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3349       return NULL;
3350     }
3351     // Otherwise, we try expansion.
3352     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3353       CMSExpansionCause::_allocate_par_lab);
3354     // Now go around the loop and try alloc again;
3355     // A competing par_promote might beat us to the expansion space,
3356     // so we may go around the loop again if promotion fails again.
3357     if (GCExpandToAllocateDelayMillis > 0) {
3358       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3359     }
3360   }
3361 }
3362 
3363 
3364 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3365   PromotionInfo* promo) {
3366   MutexLocker x(ParGCRareEvent_lock);
3367   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3368   while (true) {
3369     // Expansion by some other thread might make alloc OK now:
3370     if (promo->ensure_spooling_space()) {
3371       assert(promo->has_spooling_space(),
3372              "Post-condition of successful ensure_spooling_space()");
3373       return true;
3374     }
3375     // If there's not enough expansion space available, give up.
3376     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3377       return false;
3378     }
3379     // Otherwise, we try expansion.
3380     expand(refill_size_bytes, MinHeapDeltaBytes,
3381       CMSExpansionCause::_allocate_par_spooling_space);
3382     // Now go around the loop and try alloc again;
3383     // A competing allocation might beat us to the expansion space,
3384     // so we may go around the loop again if allocation fails again.
3385     if (GCExpandToAllocateDelayMillis > 0) {
3386       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3387     }
3388   }
3389 }
3390 
3391 
3392 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3393   assert_locked_or_safepoint(ExpandHeap_lock);
3394   // Shrink committed space
3395   _virtual_space.shrink_by(bytes);
3396   // Shrink space; this also shrinks the space's BOT
3397   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
3398   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
3399   // Shrink the shared block offset array
3400   _bts->resize(new_word_size);
3401   MemRegion mr(_cmsSpace->bottom(), new_word_size);
3402   // Shrink the card table
3403   Universe::heap()->barrier_set()->resize_covered_region(mr);
3404 
3405   if (Verbose && PrintGC) {
3406     size_t new_mem_size = _virtual_space.committed_size();
3407     size_t old_mem_size = new_mem_size + bytes;
3408     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3409                   name(), old_mem_size/K, new_mem_size/K);
3410   }
3411 }
3412 
3413 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3414   assert_locked_or_safepoint(Heap_lock);
3415   size_t size = ReservedSpace::page_align_size_down(bytes);
3416   // Only shrink if a compaction was done so that all the free space
3417   // in the generation is in a contiguous block at the end.
3418   if (size > 0 && did_compact()) {
3419     shrink_by(size);
3420   }
3421 }
3422 
3423 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3424   assert_locked_or_safepoint(Heap_lock);
3425   bool result = _virtual_space.expand_by(bytes);
3426   if (result) {
3427     size_t new_word_size =
3428       heap_word_size(_virtual_space.committed_size());
3429     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3430     _bts->resize(new_word_size);  // resize the block offset shared array
3431     Universe::heap()->barrier_set()->resize_covered_region(mr);
3432     // Hmmmm... why doesn't CFLS::set_end verify locking?
3433     // This is quite ugly; FIX ME XXX
3434     _cmsSpace->assert_locked(freelistLock());
3435     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3436 
3437     // update the space and generation capacity counters
3438     if (UsePerfData) {
3439       _space_counters->update_capacity();
3440       _gen_counters->update_all();
3441     }
3442 
3443     if (Verbose && PrintGC) {
3444       size_t new_mem_size = _virtual_space.committed_size();
3445       size_t old_mem_size = new_mem_size - bytes;
3446       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3447                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3448     }
3449   }
3450   return result;
3451 }
3452 
3453 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3454   assert_locked_or_safepoint(Heap_lock);
3455   bool success = true;
3456   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3457   if (remaining_bytes > 0) {
3458     success = grow_by(remaining_bytes);
3459     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3460   }
3461   return success;
3462 }
3463 
3464 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
3465   assert_locked_or_safepoint(Heap_lock);
3466   assert_lock_strong(freelistLock());
3467   if (PrintGCDetails && Verbose) {
3468     warning("Shrinking of CMS not yet implemented");
3469   }
3470   return;
3471 }
3472 
3473 
3474 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3475 // phases.
3476 class CMSPhaseAccounting: public StackObj {
3477  public:
3478   CMSPhaseAccounting(CMSCollector *collector,
3479                      const char *phase,
3480                      const GCId gc_id,
3481                      bool print_cr = true);
3482   ~CMSPhaseAccounting();
3483 
3484  private:
3485   CMSCollector *_collector;
3486   const char *_phase;
3487   elapsedTimer _wallclock;
3488   bool _print_cr;
3489   const GCId _gc_id;
3490 
3491  public:
3492   // Not MT-safe; so do not pass around these StackObj's
3493   // where they may be accessed by other threads.
3494   jlong wallclock_millis() {
3495     assert(_wallclock.is_active(), "Wall clock should not stop");
3496     _wallclock.stop();  // to record time
3497     jlong ret = _wallclock.milliseconds();
3498     _wallclock.start(); // restart
3499     return ret;
3500   }
3501 };
3502 
3503 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3504                                        const char *phase,
3505                                        const GCId gc_id,
3506                                        bool print_cr) :
3507   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
3508 
3509   if (PrintCMSStatistics != 0) {
3510     _collector->resetYields();
3511   }
3512   if (PrintGCDetails) {
3513     gclog_or_tty->gclog_stamp(_gc_id);
3514     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
3515       _collector->cmsGen()->short_name(), _phase);
3516   }
3517   _collector->resetTimer();
3518   _wallclock.start();
3519   _collector->startTimer();
3520 }
3521 
3522 CMSPhaseAccounting::~CMSPhaseAccounting() {
3523   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3524   _collector->stopTimer();
3525   _wallclock.stop();
3526   if (PrintGCDetails) {
3527     gclog_or_tty->gclog_stamp(_gc_id);
3528     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3529                  _collector->cmsGen()->short_name(),
3530                  _phase, _collector->timerValue(), _wallclock.seconds());
3531     if (_print_cr) {
3532       gclog_or_tty->cr();
3533     }
3534     if (PrintCMSStatistics != 0) {
3535       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3536                     _collector->yields());
3537     }
3538   }
3539 }
3540 
3541 // CMS work
3542 
3543 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
3544 class CMSParMarkTask : public AbstractGangTask {
3545  protected:
3546   CMSCollector*     _collector;
3547   int               _n_workers;
3548   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
3549       AbstractGangTask(name),
3550       _collector(collector),
3551       _n_workers(n_workers) {}
3552   // Work method in support of parallel rescan ... of young gen spaces
3553   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
3554                              ContiguousSpace* space,
3555                              HeapWord** chunk_array, size_t chunk_top);
3556   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
3557 };
3558 
3559 // Parallel initial mark task
3560 class CMSParInitialMarkTask: public CMSParMarkTask {
3561  public:
3562   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
3563       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
3564                      collector, n_workers) {}
3565   void work(uint worker_id);
3566 };
3567 
3568 // Checkpoint the roots into this generation from outside
3569 // this generation. [Note this initial checkpoint need only
3570 // be approximate -- we'll do a catch up phase subsequently.]
3571 void CMSCollector::checkpointRootsInitial(bool asynch) {
3572   assert(_collectorState == InitialMarking, "Wrong collector state");
3573   check_correct_thread_executing();
3574   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3575 
3576   save_heap_summary();
3577   report_heap_summary(GCWhen::BeforeGC);
3578 
3579   ReferenceProcessor* rp = ref_processor();
3580   SpecializationStats::clear();
3581   assert(_restart_addr == NULL, "Control point invariant");
3582   if (asynch) {
3583     // acquire locks for subsequent manipulations
3584     MutexLockerEx x(bitMapLock(),
3585                     Mutex::_no_safepoint_check_flag);
3586     checkpointRootsInitialWork(asynch);
3587     // enable ("weak") refs discovery
3588     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3589     _collectorState = Marking;
3590   } else {
3591     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3592     // which recognizes if we are a CMS generation, and doesn't try to turn on
3593     // discovery; verify that they aren't meddling.
3594     assert(!rp->discovery_is_atomic(),
3595            "incorrect setting of discovery predicate");
3596     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3597            "ref discovery for this generation kind");
3598     // already have locks
3599     checkpointRootsInitialWork(asynch);
3600     // now enable ("weak") refs discovery
3601     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3602     _collectorState = Marking;
3603   }
3604   SpecializationStats::print();
3605 }
3606 
3607 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3608   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3609   assert(_collectorState == InitialMarking, "just checking");
3610 
3611   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3612   // precede our marking with a collection of all
3613   // younger generations to keep floating garbage to a minimum.
3614   // XXX: we won't do this for now -- it's an optimization to be done later.
3615 
3616   // already have locks
3617   assert_lock_strong(bitMapLock());
3618   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3619 
3620   // Setup the verification and class unloading state for this
3621   // CMS collection cycle.
3622   setup_cms_unloading_and_verification_state();
3623 
3624   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3625     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
3626 
3627   // Reset all the PLAB chunk arrays if necessary.
3628   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3629     reset_survivor_plab_arrays();
3630   }
3631 
3632   ResourceMark rm;
3633   HandleMark  hm;
3634 
3635   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3636   GenCollectedHeap* gch = GenCollectedHeap::heap();
3637 
3638   verify_work_stacks_empty();
3639   verify_overflow_empty();
3640 
3641   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3642   // Update the saved marks which may affect the root scans.
3643   gch->save_marks();
3644 
3645   // weak reference processing has not started yet.
3646   ref_processor()->set_enqueuing_is_done(false);
3647 
3648   // Need to remember all newly created CLDs,
3649   // so that we can guarantee that the remark finds them.
3650   ClassLoaderDataGraph::remember_new_clds(true);
3651 
3652   // Whenever a CLD is found, it will be claimed before proceeding to mark
3653   // the klasses. The claimed marks need to be cleared before marking starts.
3654   ClassLoaderDataGraph::clear_claimed_marks();
3655 
3656   if (CMSPrintEdenSurvivorChunks) {
3657     print_eden_and_survivor_chunk_arrays();
3658   }
3659 
3660   {
3661     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3662     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
3663       // The parallel version.
3664       FlexibleWorkGang* workers = gch->workers();
3665       assert(workers != NULL, "Need parallel worker threads.");
3666       int n_workers = workers->active_workers();
3667       CMSParInitialMarkTask tsk(this, n_workers);
3668       gch->set_par_threads(n_workers);
3669       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3670       if (n_workers > 1) {
3671         GenCollectedHeap::StrongRootsScope srs(gch);
3672         workers->run_task(&tsk);
3673       } else {
3674         GenCollectedHeap::StrongRootsScope srs(gch);
3675         tsk.work(0);
3676       }
3677       gch->set_par_threads(0);
3678     } else {
3679       // The serial version.
3680       CLDToOopClosure cld_closure(&notOlder, true);
3681       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3682       gch->gen_process_roots(_cmsGen->level(),
3683                              true,   // younger gens are roots
3684                              true,   // activate StrongRootsScope
3685                              SharedHeap::ScanningOption(roots_scanning_options()),
3686                              should_unload_classes(),
3687                              &notOlder,
3688                              NULL,
3689                              &cld_closure);
3690     }
3691   }
3692 
3693   // Clear mod-union table; it will be dirtied in the prologue of
3694   // CMS generation per each younger generation collection.
3695 
3696   assert(_modUnionTable.isAllClear(),
3697        "Was cleared in most recent final checkpoint phase"
3698        " or no bits are set in the gc_prologue before the start of the next "
3699        "subsequent marking phase.");
3700 
3701   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3702 
3703   // Save the end of the used_region of the constituent generations
3704   // to be used to limit the extent of sweep in each generation.
3705   save_sweep_limits();
3706   verify_overflow_empty();
3707 }
3708 
3709 bool CMSCollector::markFromRoots(bool asynch) {
3710   // we might be tempted to assert that:
3711   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3712   //        "inconsistent argument?");
3713   // However that wouldn't be right, because it's possible that
3714   // a safepoint is indeed in progress as a younger generation
3715   // stop-the-world GC happens even as we mark in this generation.
3716   assert(_collectorState == Marking, "inconsistent state?");
3717   check_correct_thread_executing();
3718   verify_overflow_empty();
3719 
3720   bool res;
3721   if (asynch) {
3722     // Weak ref discovery note: We may be discovering weak
3723     // refs in this generation concurrent (but interleaved) with
3724     // weak ref discovery by a younger generation collector.
3725 
3726     CMSTokenSyncWithLocks ts(true, bitMapLock());
3727     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3728     CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3729     res = markFromRootsWork(asynch);
3730     if (res) {
3731       _collectorState = Precleaning;
3732     } else { // We failed and a foreground collection wants to take over
3733       assert(_foregroundGCIsActive, "internal state inconsistency");
3734       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3735       if (PrintGCDetails) {
3736         gclog_or_tty->print_cr("bailing out to foreground collection");
3737       }
3738     }
3739   } else {
3740     assert(SafepointSynchronize::is_at_safepoint(),
3741            "inconsistent with asynch == false");
3742     // already have locks
3743     res = markFromRootsWork(asynch);
3744     _collectorState = FinalMarking;
3745   }
3746   verify_overflow_empty();
3747   return res;
3748 }
3749 
3750 bool CMSCollector::markFromRootsWork(bool asynch) {
3751   // iterate over marked bits in bit map, doing a full scan and mark
3752   // from these roots using the following algorithm:
3753   // . if oop is to the right of the current scan pointer,
3754   //   mark corresponding bit (we'll process it later)
3755   // . else (oop is to left of current scan pointer)
3756   //   push oop on marking stack
3757   // . drain the marking stack
3758 
3759   // Note that when we do a marking step we need to hold the
3760   // bit map lock -- recall that direct allocation (by mutators)
3761   // and promotion (by younger generation collectors) is also
3762   // marking the bit map. [the so-called allocate live policy.]
3763   // Because the implementation of bit map marking is not
3764   // robust wrt simultaneous marking of bits in the same word,
3765   // we need to make sure that there is no such interference
3766   // between concurrent such updates.
3767 
3768   // already have locks
3769   assert_lock_strong(bitMapLock());
3770 
3771   verify_work_stacks_empty();
3772   verify_overflow_empty();
3773   bool result = false;
3774   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3775     result = do_marking_mt(asynch);
3776   } else {
3777     result = do_marking_st(asynch);
3778   }
3779   return result;
3780 }
3781 
3782 // Forward decl
3783 class CMSConcMarkingTask;
3784 
3785 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3786   CMSCollector*       _collector;
3787   CMSConcMarkingTask* _task;
3788  public:
3789   virtual void yield();
3790 
3791   // "n_threads" is the number of threads to be terminated.
3792   // "queue_set" is a set of work queues of other threads.
3793   // "collector" is the CMS collector associated with this task terminator.
3794   // "yield" indicates whether we need the gang as a whole to yield.
3795   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3796     ParallelTaskTerminator(n_threads, queue_set),
3797     _collector(collector) { }
3798 
3799   void set_task(CMSConcMarkingTask* task) {
3800     _task = task;
3801   }
3802 };
3803 
3804 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3805   CMSConcMarkingTask* _task;
3806  public:
3807   bool should_exit_termination();
3808   void set_task(CMSConcMarkingTask* task) {
3809     _task = task;
3810   }
3811 };
3812 
3813 // MT Concurrent Marking Task
3814 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3815   CMSCollector* _collector;
3816   int           _n_workers;                  // requested/desired # workers
3817   bool          _asynch;
3818   bool          _result;
3819   CompactibleFreeListSpace*  _cms_space;
3820   char          _pad_front[64];   // padding to ...
3821   HeapWord*     _global_finger;   // ... avoid sharing cache line
3822   char          _pad_back[64];
3823   HeapWord*     _restart_addr;
3824 
3825   //  Exposed here for yielding support
3826   Mutex* const _bit_map_lock;
3827 
3828   // The per thread work queues, available here for stealing
3829   OopTaskQueueSet*  _task_queues;
3830 
3831   // Termination (and yielding) support
3832   CMSConcMarkingTerminator _term;
3833   CMSConcMarkingTerminatorTerminator _term_term;
3834 
3835  public:
3836   CMSConcMarkingTask(CMSCollector* collector,
3837                  CompactibleFreeListSpace* cms_space,
3838                  bool asynch,
3839                  YieldingFlexibleWorkGang* workers,
3840                  OopTaskQueueSet* task_queues):
3841     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3842     _collector(collector),
3843     _cms_space(cms_space),
3844     _asynch(asynch), _n_workers(0), _result(true),
3845     _task_queues(task_queues),
3846     _term(_n_workers, task_queues, _collector),
3847     _bit_map_lock(collector->bitMapLock())
3848   {
3849     _requested_size = _n_workers;
3850     _term.set_task(this);
3851     _term_term.set_task(this);
3852     _restart_addr = _global_finger = _cms_space->bottom();
3853   }
3854 
3855 
3856   OopTaskQueueSet* task_queues()  { return _task_queues; }
3857 
3858   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3859 
3860   HeapWord** global_finger_addr() { return &_global_finger; }
3861 
3862   CMSConcMarkingTerminator* terminator() { return &_term; }
3863 
3864   virtual void set_for_termination(int active_workers) {
3865     terminator()->reset_for_reuse(active_workers);
3866   }
3867 
3868   void work(uint worker_id);
3869   bool should_yield() {
3870     return    ConcurrentMarkSweepThread::should_yield()
3871            && !_collector->foregroundGCIsActive()
3872            && _asynch;
3873   }
3874 
3875   virtual void coordinator_yield();  // stuff done by coordinator
3876   bool result() { return _result; }
3877 
3878   void reset(HeapWord* ra) {
3879     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3880     _restart_addr = _global_finger = ra;
3881     _term.reset_for_reuse();
3882   }
3883 
3884   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3885                                            OopTaskQueue* work_q);
3886 
3887  private:
3888   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3889   void do_work_steal(int i);
3890   void bump_global_finger(HeapWord* f);
3891 };
3892 
3893 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3894   assert(_task != NULL, "Error");
3895   return _task->yielding();
3896   // Note that we do not need the disjunct || _task->should_yield() above
3897   // because we want terminating threads to yield only if the task
3898   // is already in the midst of yielding, which happens only after at least one
3899   // thread has yielded.
3900 }
3901 
3902 void CMSConcMarkingTerminator::yield() {
3903   if (_task->should_yield()) {
3904     _task->yield();
3905   } else {
3906     ParallelTaskTerminator::yield();
3907   }
3908 }
3909 
3910 ////////////////////////////////////////////////////////////////
3911 // Concurrent Marking Algorithm Sketch
3912 ////////////////////////////////////////////////////////////////
3913 // Until all tasks exhausted (both spaces):
3914 // -- claim next available chunk
3915 // -- bump global finger via CAS
3916 // -- find first object that starts in this chunk
3917 //    and start scanning bitmap from that position
3918 // -- scan marked objects for oops
3919 // -- CAS-mark target, and if successful:
3920 //    . if target oop is above global finger (volatile read)
3921 //      nothing to do
3922 //    . if target oop is in chunk and above local finger
3923 //        then nothing to do
3924 //    . else push on work-queue
3925 // -- Deal with possible overflow issues:
3926 //    . local work-queue overflow causes stuff to be pushed on
3927 //      global (common) overflow queue
3928 //    . always first empty local work queue
3929 //    . then get a batch of oops from global work queue if any
3930 //    . then do work stealing
3931 // -- When all tasks claimed (both spaces)
3932 //    and local work queue empty,
3933 //    then in a loop do:
3934 //    . check global overflow stack; steal a batch of oops and trace
3935 //    . try to steal from other threads oif GOS is empty
3936 //    . if neither is available, offer termination
3937 // -- Terminate and return result
3938 //
3939 void CMSConcMarkingTask::work(uint worker_id) {
3940   elapsedTimer _timer;
3941   ResourceMark rm;
3942   HandleMark hm;
3943 
3944   DEBUG_ONLY(_collector->verify_overflow_empty();)
3945 
3946   // Before we begin work, our work queue should be empty
3947   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3948   // Scan the bitmap covering _cms_space, tracing through grey objects.
3949   _timer.start();
3950   do_scan_and_mark(worker_id, _cms_space);
3951   _timer.stop();
3952   if (PrintCMSStatistics != 0) {
3953     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3954       worker_id, _timer.seconds());
3955       // XXX: need xxx/xxx type of notation, two timers
3956   }
3957 
3958   // ... do work stealing
3959   _timer.reset();
3960   _timer.start();
3961   do_work_steal(worker_id);
3962   _timer.stop();
3963   if (PrintCMSStatistics != 0) {
3964     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3965       worker_id, _timer.seconds());
3966       // XXX: need xxx/xxx type of notation, two timers
3967   }
3968   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3969   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3970   // Note that under the current task protocol, the
3971   // following assertion is true even of the spaces
3972   // expanded since the completion of the concurrent
3973   // marking. XXX This will likely change under a strict
3974   // ABORT semantics.
3975   // After perm removal the comparison was changed to
3976   // greater than or equal to from strictly greater than.
3977   // Before perm removal the highest address sweep would
3978   // have been at the end of perm gen but now is at the
3979   // end of the tenured gen.
3980   assert(_global_finger >=  _cms_space->end(),
3981          "All tasks have been completed");
3982   DEBUG_ONLY(_collector->verify_overflow_empty();)
3983 }
3984 
3985 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3986   HeapWord* read = _global_finger;
3987   HeapWord* cur  = read;
3988   while (f > read) {
3989     cur = read;
3990     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3991     if (cur == read) {
3992       // our cas succeeded
3993       assert(_global_finger >= f, "protocol consistency");
3994       break;
3995     }
3996   }
3997 }
3998 
3999 // This is really inefficient, and should be redone by
4000 // using (not yet available) block-read and -write interfaces to the
4001 // stack and the work_queue. XXX FIX ME !!!
4002 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
4003                                                       OopTaskQueue* work_q) {
4004   // Fast lock-free check
4005   if (ovflw_stk->length() == 0) {
4006     return false;
4007   }
4008   assert(work_q->size() == 0, "Shouldn't steal");
4009   MutexLockerEx ml(ovflw_stk->par_lock(),
4010                    Mutex::_no_safepoint_check_flag);
4011   // Grab up to 1/4 the size of the work queue
4012   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4013                     (size_t)ParGCDesiredObjsFromOverflowList);
4014   num = MIN2(num, ovflw_stk->length());
4015   for (int i = (int) num; i > 0; i--) {
4016     oop cur = ovflw_stk->pop();
4017     assert(cur != NULL, "Counted wrong?");
4018     work_q->push(cur);
4019   }
4020   return num > 0;
4021 }
4022 
4023 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
4024   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4025   int n_tasks = pst->n_tasks();
4026   // We allow that there may be no tasks to do here because
4027   // we are restarting after a stack overflow.
4028   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
4029   uint nth_task = 0;
4030 
4031   HeapWord* aligned_start = sp->bottom();
4032   if (sp->used_region().contains(_restart_addr)) {
4033     // Align down to a card boundary for the start of 0th task
4034     // for this space.
4035     aligned_start =
4036       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
4037                                  CardTableModRefBS::card_size);
4038   }
4039 
4040   size_t chunk_size = sp->marking_task_size();
4041   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4042     // Having claimed the nth task in this space,
4043     // compute the chunk that it corresponds to:
4044     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
4045                                aligned_start + (nth_task+1)*chunk_size);
4046     // Try and bump the global finger via a CAS;
4047     // note that we need to do the global finger bump
4048     // _before_ taking the intersection below, because
4049     // the task corresponding to that region will be
4050     // deemed done even if the used_region() expands
4051     // because of allocation -- as it almost certainly will
4052     // during start-up while the threads yield in the
4053     // closure below.
4054     HeapWord* finger = span.end();
4055     bump_global_finger(finger);   // atomically
4056     // There are null tasks here corresponding to chunks
4057     // beyond the "top" address of the space.
4058     span = span.intersection(sp->used_region());
4059     if (!span.is_empty()) {  // Non-null task
4060       HeapWord* prev_obj;
4061       assert(!span.contains(_restart_addr) || nth_task == 0,
4062              "Inconsistency");
4063       if (nth_task == 0) {
4064         // For the 0th task, we'll not need to compute a block_start.
4065         if (span.contains(_restart_addr)) {
4066           // In the case of a restart because of stack overflow,
4067           // we might additionally skip a chunk prefix.
4068           prev_obj = _restart_addr;
4069         } else {
4070           prev_obj = span.start();
4071         }
4072       } else {
4073         // We want to skip the first object because
4074         // the protocol is to scan any object in its entirety
4075         // that _starts_ in this span; a fortiori, any
4076         // object starting in an earlier span is scanned
4077         // as part of an earlier claimed task.
4078         // Below we use the "careful" version of block_start
4079         // so we do not try to navigate uninitialized objects.
4080         prev_obj = sp->block_start_careful(span.start());
4081         // Below we use a variant of block_size that uses the
4082         // Printezis bits to avoid waiting for allocated
4083         // objects to become initialized/parsable.
4084         while (prev_obj < span.start()) {
4085           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4086           if (sz > 0) {
4087             prev_obj += sz;
4088           } else {
4089             // In this case we may end up doing a bit of redundant
4090             // scanning, but that appears unavoidable, short of
4091             // locking the free list locks; see bug 6324141.
4092             break;
4093           }
4094         }
4095       }
4096       if (prev_obj < span.end()) {
4097         MemRegion my_span = MemRegion(prev_obj, span.end());
4098         // Do the marking work within a non-empty span --
4099         // the last argument to the constructor indicates whether the
4100         // iteration should be incremental with periodic yields.
4101         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4102                                     &_collector->_markBitMap,
4103                                     work_queue(i),
4104                                     &_collector->_markStack,
4105                                     _asynch);
4106         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4107       } // else nothing to do for this task
4108     }   // else nothing to do for this task
4109   }
4110   // We'd be tempted to assert here that since there are no
4111   // more tasks left to claim in this space, the global_finger
4112   // must exceed space->top() and a fortiori space->end(). However,
4113   // that would not quite be correct because the bumping of
4114   // global_finger occurs strictly after the claiming of a task,
4115   // so by the time we reach here the global finger may not yet
4116   // have been bumped up by the thread that claimed the last
4117   // task.
4118   pst->all_tasks_completed();
4119 }
4120 
4121 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
4122  private:
4123   CMSCollector* _collector;
4124   CMSConcMarkingTask* _task;
4125   MemRegion     _span;
4126   CMSBitMap*    _bit_map;
4127   CMSMarkStack* _overflow_stack;
4128   OopTaskQueue* _work_queue;
4129  protected:
4130   DO_OOP_WORK_DEFN
4131  public:
4132   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4133                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
4134     MetadataAwareOopClosure(collector->ref_processor()),
4135     _collector(collector),
4136     _task(task),
4137     _span(collector->_span),
4138     _work_queue(work_queue),
4139     _bit_map(bit_map),
4140     _overflow_stack(overflow_stack)
4141   { }
4142   virtual void do_oop(oop* p);
4143   virtual void do_oop(narrowOop* p);
4144 
4145   void trim_queue(size_t max);
4146   void handle_stack_overflow(HeapWord* lost);
4147   void do_yield_check() {
4148     if (_task->should_yield()) {
4149       _task->yield();
4150     }
4151   }
4152 };
4153 
4154 // Grey object scanning during work stealing phase --
4155 // the salient assumption here is that any references
4156 // that are in these stolen objects being scanned must
4157 // already have been initialized (else they would not have
4158 // been published), so we do not need to check for
4159 // uninitialized objects before pushing here.
4160 void Par_ConcMarkingClosure::do_oop(oop obj) {
4161   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4162   HeapWord* addr = (HeapWord*)obj;
4163   // Check if oop points into the CMS generation
4164   // and is not marked
4165   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4166     // a white object ...
4167     // If we manage to "claim" the object, by being the
4168     // first thread to mark it, then we push it on our
4169     // marking stack
4170     if (_bit_map->par_mark(addr)) {     // ... now grey
4171       // push on work queue (grey set)
4172       bool simulate_overflow = false;
4173       NOT_PRODUCT(
4174         if (CMSMarkStackOverflowALot &&
4175             _collector->simulate_overflow()) {
4176           // simulate a stack overflow
4177           simulate_overflow = true;
4178         }
4179       )
4180       if (simulate_overflow ||
4181           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4182         // stack overflow
4183         if (PrintCMSStatistics != 0) {
4184           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4185                                  SIZE_FORMAT, _overflow_stack->capacity());
4186         }
4187         // We cannot assert that the overflow stack is full because
4188         // it may have been emptied since.
4189         assert(simulate_overflow ||
4190                _work_queue->size() == _work_queue->max_elems(),
4191               "Else push should have succeeded");
4192         handle_stack_overflow(addr);
4193       }
4194     } // Else, some other thread got there first
4195     do_yield_check();
4196   }
4197 }
4198 
4199 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4200 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4201 
4202 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4203   while (_work_queue->size() > max) {
4204     oop new_oop;
4205     if (_work_queue->pop_local(new_oop)) {
4206       assert(new_oop->is_oop(), "Should be an oop");
4207       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4208       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4209       // SSS: Opportunity to devirtualize
4210       new_oop->oop_iterate<false>(this);  // do_oop() above
4211       do_yield_check();
4212     }
4213   }
4214 }
4215 
4216 // Upon stack overflow, we discard (part of) the stack,
4217 // remembering the least address amongst those discarded
4218 // in CMSCollector's _restart_address.
4219 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4220   // We need to do this under a mutex to prevent other
4221   // workers from interfering with the work done below.
4222   MutexLockerEx ml(_overflow_stack->par_lock(),
4223                    Mutex::_no_safepoint_check_flag);
4224   // Remember the least grey address discarded
4225   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4226   _collector->lower_restart_addr(ra);
4227   _overflow_stack->reset();  // discard stack contents
4228   _overflow_stack->expand(); // expand the stack if possible
4229 }
4230 
4231 
4232 void CMSConcMarkingTask::do_work_steal(int i) {
4233   OopTaskQueue* work_q = work_queue(i);
4234   oop obj_to_scan;
4235   CMSBitMap* bm = &(_collector->_markBitMap);
4236   CMSMarkStack* ovflw = &(_collector->_markStack);
4237   int* seed = _collector->hash_seed(i);
4238   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4239   while (true) {
4240     cl.trim_queue(0);
4241     assert(work_q->size() == 0, "Should have been emptied above");
4242     if (get_work_from_overflow_stack(ovflw, work_q)) {
4243       // Can't assert below because the work obtained from the
4244       // overflow stack may already have been stolen from us.
4245       // assert(work_q->size() > 0, "Work from overflow stack");
4246       continue;
4247     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4248       assert(obj_to_scan->is_oop(), "Should be an oop");
4249       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4250       // SSS: Opportunity to devirtualize
4251       obj_to_scan->oop_iterate<false>(&cl);
4252     } else if (terminator()->offer_termination(&_term_term)) {
4253       assert(work_q->size() == 0, "Impossible!");
4254       break;
4255     } else if (yielding() || should_yield()) {
4256       yield();
4257     }
4258   }
4259 }
4260 
4261 // This is run by the CMS (coordinator) thread.
4262 void CMSConcMarkingTask::coordinator_yield() {
4263   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4264          "CMS thread should hold CMS token");
4265   // First give up the locks, then yield, then re-lock
4266   // We should probably use a constructor/destructor idiom to
4267   // do this unlock/lock or modify the MutexUnlocker class to
4268   // serve our purpose. XXX
4269   assert_lock_strong(_bit_map_lock);
4270   _bit_map_lock->unlock();
4271   ConcurrentMarkSweepThread::desynchronize(true);
4272   ConcurrentMarkSweepThread::acknowledge_yield_request();
4273   _collector->stopTimer();
4274   if (PrintCMSStatistics != 0) {
4275     _collector->incrementYields();
4276   }
4277   _collector->icms_wait();
4278 
4279   // It is possible for whichever thread initiated the yield request
4280   // not to get a chance to wake up and take the bitmap lock between
4281   // this thread releasing it and reacquiring it. So, while the
4282   // should_yield() flag is on, let's sleep for a bit to give the
4283   // other thread a chance to wake up. The limit imposed on the number
4284   // of iterations is defensive, to avoid any unforseen circumstances
4285   // putting us into an infinite loop. Since it's always been this
4286   // (coordinator_yield()) method that was observed to cause the
4287   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4288   // which is by default non-zero. For the other seven methods that
4289   // also perform the yield operation, as are using a different
4290   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4291   // can enable the sleeping for those methods too, if necessary.
4292   // See 6442774.
4293   //
4294   // We really need to reconsider the synchronization between the GC
4295   // thread and the yield-requesting threads in the future and we
4296   // should really use wait/notify, which is the recommended
4297   // way of doing this type of interaction. Additionally, we should
4298   // consolidate the eight methods that do the yield operation and they
4299   // are almost identical into one for better maintainability and
4300   // readability. See 6445193.
4301   //
4302   // Tony 2006.06.29
4303   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4304                    ConcurrentMarkSweepThread::should_yield() &&
4305                    !CMSCollector::foregroundGCIsActive(); ++i) {
4306     os::sleep(Thread::current(), 1, false);
4307     ConcurrentMarkSweepThread::acknowledge_yield_request();
4308   }
4309 
4310   ConcurrentMarkSweepThread::synchronize(true);
4311   _bit_map_lock->lock_without_safepoint_check();
4312   _collector->startTimer();
4313 }
4314 
4315 bool CMSCollector::do_marking_mt(bool asynch) {
4316   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4317   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4318                                        conc_workers()->total_workers(),
4319                                        conc_workers()->active_workers(),
4320                                        Threads::number_of_non_daemon_threads());
4321   conc_workers()->set_active_workers(num_workers);
4322 
4323   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4324 
4325   CMSConcMarkingTask tsk(this,
4326                          cms_space,
4327                          asynch,
4328                          conc_workers(),
4329                          task_queues());
4330 
4331   // Since the actual number of workers we get may be different
4332   // from the number we requested above, do we need to do anything different
4333   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4334   // class?? XXX
4335   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4336 
4337   // Refs discovery is already non-atomic.
4338   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4339   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4340   conc_workers()->start_task(&tsk);
4341   while (tsk.yielded()) {
4342     tsk.coordinator_yield();
4343     conc_workers()->continue_task(&tsk);
4344   }
4345   // If the task was aborted, _restart_addr will be non-NULL
4346   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4347   while (_restart_addr != NULL) {
4348     // XXX For now we do not make use of ABORTED state and have not
4349     // yet implemented the right abort semantics (even in the original
4350     // single-threaded CMS case). That needs some more investigation
4351     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4352     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4353     // If _restart_addr is non-NULL, a marking stack overflow
4354     // occurred; we need to do a fresh marking iteration from the
4355     // indicated restart address.
4356     if (_foregroundGCIsActive && asynch) {
4357       // We may be running into repeated stack overflows, having
4358       // reached the limit of the stack size, while making very
4359       // slow forward progress. It may be best to bail out and
4360       // let the foreground collector do its job.
4361       // Clear _restart_addr, so that foreground GC
4362       // works from scratch. This avoids the headache of
4363       // a "rescan" which would otherwise be needed because
4364       // of the dirty mod union table & card table.
4365       _restart_addr = NULL;
4366       return false;
4367     }
4368     // Adjust the task to restart from _restart_addr
4369     tsk.reset(_restart_addr);
4370     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4371                   _restart_addr);
4372     _restart_addr = NULL;
4373     // Get the workers going again
4374     conc_workers()->start_task(&tsk);
4375     while (tsk.yielded()) {
4376       tsk.coordinator_yield();
4377       conc_workers()->continue_task(&tsk);
4378     }
4379   }
4380   assert(tsk.completed(), "Inconsistency");
4381   assert(tsk.result() == true, "Inconsistency");
4382   return true;
4383 }
4384 
4385 bool CMSCollector::do_marking_st(bool asynch) {
4386   ResourceMark rm;
4387   HandleMark   hm;
4388 
4389   // Temporarily make refs discovery single threaded (non-MT)
4390   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4391   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4392     &_markStack, CMSYield && asynch);
4393   // the last argument to iterate indicates whether the iteration
4394   // should be incremental with periodic yields.
4395   _markBitMap.iterate(&markFromRootsClosure);
4396   // If _restart_addr is non-NULL, a marking stack overflow
4397   // occurred; we need to do a fresh iteration from the
4398   // indicated restart address.
4399   while (_restart_addr != NULL) {
4400     if (_foregroundGCIsActive && asynch) {
4401       // We may be running into repeated stack overflows, having
4402       // reached the limit of the stack size, while making very
4403       // slow forward progress. It may be best to bail out and
4404       // let the foreground collector do its job.
4405       // Clear _restart_addr, so that foreground GC
4406       // works from scratch. This avoids the headache of
4407       // a "rescan" which would otherwise be needed because
4408       // of the dirty mod union table & card table.
4409       _restart_addr = NULL;
4410       return false;  // indicating failure to complete marking
4411     }
4412     // Deal with stack overflow:
4413     // we restart marking from _restart_addr
4414     HeapWord* ra = _restart_addr;
4415     markFromRootsClosure.reset(ra);
4416     _restart_addr = NULL;
4417     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4418   }
4419   return true;
4420 }
4421 
4422 void CMSCollector::preclean() {
4423   check_correct_thread_executing();
4424   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4425   verify_work_stacks_empty();
4426   verify_overflow_empty();
4427   _abort_preclean = false;
4428   if (CMSPrecleaningEnabled) {
4429     if (!CMSEdenChunksRecordAlways) {
4430       _eden_chunk_index = 0;
4431     }
4432     size_t used = get_eden_used();
4433     size_t capacity = get_eden_capacity();
4434     // Don't start sampling unless we will get sufficiently
4435     // many samples.
4436     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4437                 * CMSScheduleRemarkEdenPenetration)) {
4438       _start_sampling = true;
4439     } else {
4440       _start_sampling = false;
4441     }
4442     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4443     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
4444     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4445   }
4446   CMSTokenSync x(true); // is cms thread
4447   if (CMSPrecleaningEnabled) {
4448     sample_eden();
4449     _collectorState = AbortablePreclean;
4450   } else {
4451     _collectorState = FinalMarking;
4452   }
4453   verify_work_stacks_empty();
4454   verify_overflow_empty();
4455 }
4456 
4457 // Try and schedule the remark such that young gen
4458 // occupancy is CMSScheduleRemarkEdenPenetration %.
4459 void CMSCollector::abortable_preclean() {
4460   check_correct_thread_executing();
4461   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4462   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4463 
4464   // If Eden's current occupancy is below this threshold,
4465   // immediately schedule the remark; else preclean
4466   // past the next scavenge in an effort to
4467   // schedule the pause as described above. By choosing
4468   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4469   // we will never do an actual abortable preclean cycle.
4470   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4471     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4472     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
4473     // We need more smarts in the abortable preclean
4474     // loop below to deal with cases where allocation
4475     // in young gen is very very slow, and our precleaning
4476     // is running a losing race against a horde of
4477     // mutators intent on flooding us with CMS updates
4478     // (dirty cards).
4479     // One, admittedly dumb, strategy is to give up
4480     // after a certain number of abortable precleaning loops
4481     // or after a certain maximum time. We want to make
4482     // this smarter in the next iteration.
4483     // XXX FIX ME!!! YSR
4484     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4485     while (!(should_abort_preclean() ||
4486              ConcurrentMarkSweepThread::should_terminate())) {
4487       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4488       cumworkdone += workdone;
4489       loops++;
4490       // Voluntarily terminate abortable preclean phase if we have
4491       // been at it for too long.
4492       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4493           loops >= CMSMaxAbortablePrecleanLoops) {
4494         if (PrintGCDetails) {
4495           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4496         }
4497         break;
4498       }
4499       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4500         if (PrintGCDetails) {
4501           gclog_or_tty->print(" CMS: abort preclean due to time ");
4502         }
4503         break;
4504       }
4505       // If we are doing little work each iteration, we should
4506       // take a short break.
4507       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4508         // Sleep for some time, waiting for work to accumulate
4509         stopTimer();
4510         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4511         startTimer();
4512         waited++;
4513       }
4514     }
4515     if (PrintCMSStatistics > 0) {
4516       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
4517                           loops, waited, cumworkdone);
4518     }
4519   }
4520   CMSTokenSync x(true); // is cms thread
4521   if (_collectorState != Idling) {
4522     assert(_collectorState == AbortablePreclean,
4523            "Spontaneous state transition?");
4524     _collectorState = FinalMarking;
4525   } // Else, a foreground collection completed this CMS cycle.
4526   return;
4527 }
4528 
4529 // Respond to an Eden sampling opportunity
4530 void CMSCollector::sample_eden() {
4531   // Make sure a young gc cannot sneak in between our
4532   // reading and recording of a sample.
4533   assert(Thread::current()->is_ConcurrentGC_thread(),
4534          "Only the cms thread may collect Eden samples");
4535   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4536          "Should collect samples while holding CMS token");
4537   if (!_start_sampling) {
4538     return;
4539   }
4540   // When CMSEdenChunksRecordAlways is true, the eden chunk array
4541   // is populated by the young generation.
4542   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
4543     if (_eden_chunk_index < _eden_chunk_capacity) {
4544       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4545       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4546              "Unexpected state of Eden");
4547       // We'd like to check that what we just sampled is an oop-start address;
4548       // however, we cannot do that here since the object may not yet have been
4549       // initialized. So we'll instead do the check when we _use_ this sample
4550       // later.
4551       if (_eden_chunk_index == 0 ||
4552           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4553                          _eden_chunk_array[_eden_chunk_index-1])
4554            >= CMSSamplingGrain)) {
4555         _eden_chunk_index++;  // commit sample
4556       }
4557     }
4558   }
4559   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4560     size_t used = get_eden_used();
4561     size_t capacity = get_eden_capacity();
4562     assert(used <= capacity, "Unexpected state of Eden");
4563     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4564       _abort_preclean = true;
4565     }
4566   }
4567 }
4568 
4569 
4570 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4571   assert(_collectorState == Precleaning ||
4572          _collectorState == AbortablePreclean, "incorrect state");
4573   ResourceMark rm;
4574   HandleMark   hm;
4575 
4576   // Precleaning is currently not MT but the reference processor
4577   // may be set for MT.  Disable it temporarily here.
4578   ReferenceProcessor* rp = ref_processor();
4579   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4580 
4581   // Do one pass of scrubbing the discovered reference lists
4582   // to remove any reference objects with strongly-reachable
4583   // referents.
4584   if (clean_refs) {
4585     CMSPrecleanRefsYieldClosure yield_cl(this);
4586     assert(rp->span().equals(_span), "Spans should be equal");
4587     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4588                                    &_markStack, true /* preclean */);
4589     CMSDrainMarkingStackClosure complete_trace(this,
4590                                    _span, &_markBitMap, &_markStack,
4591                                    &keep_alive, true /* preclean */);
4592 
4593     // We don't want this step to interfere with a young
4594     // collection because we don't want to take CPU
4595     // or memory bandwidth away from the young GC threads
4596     // (which may be as many as there are CPUs).
4597     // Note that we don't need to protect ourselves from
4598     // interference with mutators because they can't
4599     // manipulate the discovered reference lists nor affect
4600     // the computed reachability of the referents, the
4601     // only properties manipulated by the precleaning
4602     // of these reference lists.
4603     stopTimer();
4604     CMSTokenSyncWithLocks x(true /* is cms thread */,
4605                             bitMapLock());
4606     startTimer();
4607     sample_eden();
4608 
4609     // The following will yield to allow foreground
4610     // collection to proceed promptly. XXX YSR:
4611     // The code in this method may need further
4612     // tweaking for better performance and some restructuring
4613     // for cleaner interfaces.
4614     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4615     rp->preclean_discovered_references(
4616           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
4617           gc_timer, _gc_tracer_cm->gc_id());
4618   }
4619 
4620   if (clean_survivor) {  // preclean the active survivor space(s)
4621     assert(_young_gen->kind() == Generation::DefNew ||
4622            _young_gen->kind() == Generation::ParNew,
4623          "incorrect type for cast");
4624     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4625     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4626                              &_markBitMap, &_modUnionTable,
4627                              &_markStack, true /* precleaning phase */);
4628     stopTimer();
4629     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4630                              bitMapLock());
4631     startTimer();
4632     unsigned int before_count =
4633       GenCollectedHeap::heap()->total_collections();
4634     SurvivorSpacePrecleanClosure
4635       sss_cl(this, _span, &_markBitMap, &_markStack,
4636              &pam_cl, before_count, CMSYield);
4637     dng->from()->object_iterate_careful(&sss_cl);
4638     dng->to()->object_iterate_careful(&sss_cl);
4639   }
4640   MarkRefsIntoAndScanClosure
4641     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4642              &_markStack, this, CMSYield,
4643              true /* precleaning phase */);
4644   // CAUTION: The following closure has persistent state that may need to
4645   // be reset upon a decrease in the sequence of addresses it
4646   // processes.
4647   ScanMarkedObjectsAgainCarefullyClosure
4648     smoac_cl(this, _span,
4649       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4650 
4651   // Preclean dirty cards in ModUnionTable and CardTable using
4652   // appropriate convergence criterion;
4653   // repeat CMSPrecleanIter times unless we find that
4654   // we are losing.
4655   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4656   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4657          "Bad convergence multiplier");
4658   assert(CMSPrecleanThreshold >= 100,
4659          "Unreasonably low CMSPrecleanThreshold");
4660 
4661   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4662   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4663        numIter < CMSPrecleanIter;
4664        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4665     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4666     if (Verbose && PrintGCDetails) {
4667       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
4668     }
4669     // Either there are very few dirty cards, so re-mark
4670     // pause will be small anyway, or our pre-cleaning isn't
4671     // that much faster than the rate at which cards are being
4672     // dirtied, so we might as well stop and re-mark since
4673     // precleaning won't improve our re-mark time by much.
4674     if (curNumCards <= CMSPrecleanThreshold ||
4675         (numIter > 0 &&
4676          (curNumCards * CMSPrecleanDenominator >
4677          lastNumCards * CMSPrecleanNumerator))) {
4678       numIter++;
4679       cumNumCards += curNumCards;
4680       break;
4681     }
4682   }
4683 
4684   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4685 
4686   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4687   cumNumCards += curNumCards;
4688   if (PrintGCDetails && PrintCMSStatistics != 0) {
4689     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
4690                   curNumCards, cumNumCards, numIter);
4691   }
4692   return cumNumCards;   // as a measure of useful work done
4693 }
4694 
4695 // PRECLEANING NOTES:
4696 // Precleaning involves:
4697 // . reading the bits of the modUnionTable and clearing the set bits.
4698 // . For the cards corresponding to the set bits, we scan the
4699 //   objects on those cards. This means we need the free_list_lock
4700 //   so that we can safely iterate over the CMS space when scanning
4701 //   for oops.
4702 // . When we scan the objects, we'll be both reading and setting
4703 //   marks in the marking bit map, so we'll need the marking bit map.
4704 // . For protecting _collector_state transitions, we take the CGC_lock.
4705 //   Note that any races in the reading of of card table entries by the
4706 //   CMS thread on the one hand and the clearing of those entries by the
4707 //   VM thread or the setting of those entries by the mutator threads on the
4708 //   other are quite benign. However, for efficiency it makes sense to keep
4709 //   the VM thread from racing with the CMS thread while the latter is
4710 //   dirty card info to the modUnionTable. We therefore also use the
4711 //   CGC_lock to protect the reading of the card table and the mod union
4712 //   table by the CM thread.
4713 // . We run concurrently with mutator updates, so scanning
4714 //   needs to be done carefully  -- we should not try to scan
4715 //   potentially uninitialized objects.
4716 //
4717 // Locking strategy: While holding the CGC_lock, we scan over and
4718 // reset a maximal dirty range of the mod union / card tables, then lock
4719 // the free_list_lock and bitmap lock to do a full marking, then
4720 // release these locks; and repeat the cycle. This allows for a
4721 // certain amount of fairness in the sharing of these locks between
4722 // the CMS collector on the one hand, and the VM thread and the
4723 // mutators on the other.
4724 
4725 // NOTE: preclean_mod_union_table() and preclean_card_table()
4726 // further below are largely identical; if you need to modify
4727 // one of these methods, please check the other method too.
4728 
4729 size_t CMSCollector::preclean_mod_union_table(
4730   ConcurrentMarkSweepGeneration* gen,
4731   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4732   verify_work_stacks_empty();
4733   verify_overflow_empty();
4734 
4735   // strategy: starting with the first card, accumulate contiguous
4736   // ranges of dirty cards; clear these cards, then scan the region
4737   // covered by these cards.
4738 
4739   // Since all of the MUT is committed ahead, we can just use
4740   // that, in case the generations expand while we are precleaning.
4741   // It might also be fine to just use the committed part of the
4742   // generation, but we might potentially miss cards when the
4743   // generation is rapidly expanding while we are in the midst
4744   // of precleaning.
4745   HeapWord* startAddr = gen->reserved().start();
4746   HeapWord* endAddr   = gen->reserved().end();
4747 
4748   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4749 
4750   size_t numDirtyCards, cumNumDirtyCards;
4751   HeapWord *nextAddr, *lastAddr;
4752   for (cumNumDirtyCards = numDirtyCards = 0,
4753        nextAddr = lastAddr = startAddr;
4754        nextAddr < endAddr;
4755        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4756 
4757     ResourceMark rm;
4758     HandleMark   hm;
4759 
4760     MemRegion dirtyRegion;
4761     {
4762       stopTimer();
4763       // Potential yield point
4764       CMSTokenSync ts(true);
4765       startTimer();
4766       sample_eden();
4767       // Get dirty region starting at nextOffset (inclusive),
4768       // simultaneously clearing it.
4769       dirtyRegion =
4770         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4771       assert(dirtyRegion.start() >= nextAddr,
4772              "returned region inconsistent?");
4773     }
4774     // Remember where the next search should begin.
4775     // The returned region (if non-empty) is a right open interval,
4776     // so lastOffset is obtained from the right end of that
4777     // interval.
4778     lastAddr = dirtyRegion.end();
4779     // Should do something more transparent and less hacky XXX
4780     numDirtyCards =
4781       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4782 
4783     // We'll scan the cards in the dirty region (with periodic
4784     // yields for foreground GC as needed).
4785     if (!dirtyRegion.is_empty()) {
4786       assert(numDirtyCards > 0, "consistency check");
4787       HeapWord* stop_point = NULL;
4788       stopTimer();
4789       // Potential yield point
4790       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4791                                bitMapLock());
4792       startTimer();
4793       {
4794         verify_work_stacks_empty();
4795         verify_overflow_empty();
4796         sample_eden();
4797         stop_point =
4798           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4799       }
4800       if (stop_point != NULL) {
4801         // The careful iteration stopped early either because it found an
4802         // uninitialized object, or because we were in the midst of an
4803         // "abortable preclean", which should now be aborted. Redirty
4804         // the bits corresponding to the partially-scanned or unscanned
4805         // cards. We'll either restart at the next block boundary or
4806         // abort the preclean.
4807         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4808                "Should only be AbortablePreclean.");
4809         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4810         if (should_abort_preclean()) {
4811           break; // out of preclean loop
4812         } else {
4813           // Compute the next address at which preclean should pick up;
4814           // might need bitMapLock in order to read P-bits.
4815           lastAddr = next_card_start_after_block(stop_point);
4816         }
4817       }
4818     } else {
4819       assert(lastAddr == endAddr, "consistency check");
4820       assert(numDirtyCards == 0, "consistency check");
4821       break;
4822     }
4823   }
4824   verify_work_stacks_empty();
4825   verify_overflow_empty();
4826   return cumNumDirtyCards;
4827 }
4828 
4829 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4830 // below are largely identical; if you need to modify
4831 // one of these methods, please check the other method too.
4832 
4833 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4834   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4835   // strategy: it's similar to precleamModUnionTable above, in that
4836   // we accumulate contiguous ranges of dirty cards, mark these cards
4837   // precleaned, then scan the region covered by these cards.
4838   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4839   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4840 
4841   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4842 
4843   size_t numDirtyCards, cumNumDirtyCards;
4844   HeapWord *lastAddr, *nextAddr;
4845 
4846   for (cumNumDirtyCards = numDirtyCards = 0,
4847        nextAddr = lastAddr = startAddr;
4848        nextAddr < endAddr;
4849        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4850 
4851     ResourceMark rm;
4852     HandleMark   hm;
4853 
4854     MemRegion dirtyRegion;
4855     {
4856       // See comments in "Precleaning notes" above on why we
4857       // do this locking. XXX Could the locking overheads be
4858       // too high when dirty cards are sparse? [I don't think so.]
4859       stopTimer();
4860       CMSTokenSync x(true); // is cms thread
4861       startTimer();
4862       sample_eden();
4863       // Get and clear dirty region from card table
4864       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4865                                     MemRegion(nextAddr, endAddr),
4866                                     true,
4867                                     CardTableModRefBS::precleaned_card_val());
4868 
4869       assert(dirtyRegion.start() >= nextAddr,
4870              "returned region inconsistent?");
4871     }
4872     lastAddr = dirtyRegion.end();
4873     numDirtyCards =
4874       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4875 
4876     if (!dirtyRegion.is_empty()) {
4877       stopTimer();
4878       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4879       startTimer();
4880       sample_eden();
4881       verify_work_stacks_empty();
4882       verify_overflow_empty();
4883       HeapWord* stop_point =
4884         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4885       if (stop_point != NULL) {
4886         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4887                "Should only be AbortablePreclean.");
4888         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4889         if (should_abort_preclean()) {
4890           break; // out of preclean loop
4891         } else {
4892           // Compute the next address at which preclean should pick up.
4893           lastAddr = next_card_start_after_block(stop_point);
4894         }
4895       }
4896     } else {
4897       break;
4898     }
4899   }
4900   verify_work_stacks_empty();
4901   verify_overflow_empty();
4902   return cumNumDirtyCards;
4903 }
4904 
4905 class PrecleanKlassClosure : public KlassClosure {
4906   KlassToOopClosure _cm_klass_closure;
4907  public:
4908   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4909   void do_klass(Klass* k) {
4910     if (k->has_accumulated_modified_oops()) {
4911       k->clear_accumulated_modified_oops();
4912 
4913       _cm_klass_closure.do_klass(k);
4914     }
4915   }
4916 };
4917 
4918 // The freelist lock is needed to prevent asserts, is it really needed?
4919 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4920 
4921   cl->set_freelistLock(freelistLock);
4922 
4923   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4924 
4925   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4926   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4927   PrecleanKlassClosure preclean_klass_closure(cl);
4928   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4929 
4930   verify_work_stacks_empty();
4931   verify_overflow_empty();
4932 }
4933 
4934 void CMSCollector::checkpointRootsFinal(bool asynch,
4935   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4936   assert(_collectorState == FinalMarking, "incorrect state transition?");
4937   check_correct_thread_executing();
4938   // world is stopped at this checkpoint
4939   assert(SafepointSynchronize::is_at_safepoint(),
4940          "world should be stopped");
4941   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4942 
4943   verify_work_stacks_empty();
4944   verify_overflow_empty();
4945 
4946   SpecializationStats::clear();
4947   if (PrintGCDetails) {
4948     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4949                         _young_gen->used() / K,
4950                         _young_gen->capacity() / K);
4951   }
4952   if (asynch) {
4953     if (CMSScavengeBeforeRemark) {
4954       GenCollectedHeap* gch = GenCollectedHeap::heap();
4955       // Temporarily set flag to false, GCH->do_collection will
4956       // expect it to be false and set to true
4957       FlagSetting fl(gch->_is_gc_active, false);
4958       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4959         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4960       int level = _cmsGen->level() - 1;
4961       if (level >= 0) {
4962         gch->do_collection(true,        // full (i.e. force, see below)
4963                            false,       // !clear_all_soft_refs
4964                            0,           // size
4965                            false,       // is_tlab
4966                            level        // max_level
4967                           );
4968       }
4969     }
4970     FreelistLocker x(this);
4971     MutexLockerEx y(bitMapLock(),
4972                     Mutex::_no_safepoint_check_flag);
4973     assert(!init_mark_was_synchronous, "but that's impossible!");
4974     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
4975   } else {
4976     // already have all the locks
4977     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
4978                              init_mark_was_synchronous);
4979   }
4980   verify_work_stacks_empty();
4981   verify_overflow_empty();
4982   SpecializationStats::print();
4983 }
4984 
4985 void CMSCollector::checkpointRootsFinalWork(bool asynch,
4986   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4987 
4988   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4989 
4990   assert(haveFreelistLocks(), "must have free list locks");
4991   assert_lock_strong(bitMapLock());
4992 
4993   ResourceMark rm;
4994   HandleMark   hm;
4995 
4996   GenCollectedHeap* gch = GenCollectedHeap::heap();
4997 
4998   if (should_unload_classes()) {
4999     CodeCache::gc_prologue();
5000   }
5001   assert(haveFreelistLocks(), "must have free list locks");
5002   assert_lock_strong(bitMapLock());
5003 
5004   if (!init_mark_was_synchronous) {
5005     // We might assume that we need not fill TLAB's when
5006     // CMSScavengeBeforeRemark is set, because we may have just done
5007     // a scavenge which would have filled all TLAB's -- and besides
5008     // Eden would be empty. This however may not always be the case --
5009     // for instance although we asked for a scavenge, it may not have
5010     // happened because of a JNI critical section. We probably need
5011     // a policy for deciding whether we can in that case wait until
5012     // the critical section releases and then do the remark following
5013     // the scavenge, and skip it here. In the absence of that policy,
5014     // or of an indication of whether the scavenge did indeed occur,
5015     // we cannot rely on TLAB's having been filled and must do
5016     // so here just in case a scavenge did not happen.
5017     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
5018     // Update the saved marks which may affect the root scans.
5019     gch->save_marks();
5020 
5021     if (CMSPrintEdenSurvivorChunks) {
5022       print_eden_and_survivor_chunk_arrays();
5023     }
5024 
5025     {
5026       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
5027 
5028       // Note on the role of the mod union table:
5029       // Since the marker in "markFromRoots" marks concurrently with
5030       // mutators, it is possible for some reachable objects not to have been
5031       // scanned. For instance, an only reference to an object A was
5032       // placed in object B after the marker scanned B. Unless B is rescanned,
5033       // A would be collected. Such updates to references in marked objects
5034       // are detected via the mod union table which is the set of all cards
5035       // dirtied since the first checkpoint in this GC cycle and prior to
5036       // the most recent young generation GC, minus those cleaned up by the
5037       // concurrent precleaning.
5038       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
5039         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5040         do_remark_parallel();
5041       } else {
5042         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
5043                     _gc_timer_cm, _gc_tracer_cm->gc_id());
5044         do_remark_non_parallel();
5045       }
5046     }
5047   } else {
5048     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
5049     // The initial mark was stop-world, so there's no rescanning to
5050     // do; go straight on to the next step below.
5051   }
5052   verify_work_stacks_empty();
5053   verify_overflow_empty();
5054 
5055   {
5056     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
5057     refProcessingWork(asynch, clear_all_soft_refs);
5058   }
5059   verify_work_stacks_empty();
5060   verify_overflow_empty();
5061 
5062   if (should_unload_classes()) {
5063     CodeCache::gc_epilogue();
5064   }
5065   JvmtiExport::gc_epilogue();
5066 
5067   // If we encountered any (marking stack / work queue) overflow
5068   // events during the current CMS cycle, take appropriate
5069   // remedial measures, where possible, so as to try and avoid
5070   // recurrence of that condition.
5071   assert(_markStack.isEmpty(), "No grey objects");
5072   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5073                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5074   if (ser_ovflw > 0) {
5075     if (PrintCMSStatistics != 0) {
5076       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5077         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5078         ", kac_preclean="SIZE_FORMAT")",
5079         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5080         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5081     }
5082     _markStack.expand();
5083     _ser_pmc_remark_ovflw = 0;
5084     _ser_pmc_preclean_ovflw = 0;
5085     _ser_kac_preclean_ovflw = 0;
5086     _ser_kac_ovflw = 0;
5087   }
5088   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5089     if (PrintCMSStatistics != 0) {
5090       gclog_or_tty->print_cr("Work queue overflow (benign) "
5091         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5092         _par_pmc_remark_ovflw, _par_kac_ovflw);
5093     }
5094     _par_pmc_remark_ovflw = 0;
5095     _par_kac_ovflw = 0;
5096   }
5097   if (PrintCMSStatistics != 0) {
5098      if (_markStack._hit_limit > 0) {
5099        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5100                               _markStack._hit_limit);
5101      }
5102      if (_markStack._failed_double > 0) {
5103        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5104                               " current capacity "SIZE_FORMAT,
5105                               _markStack._failed_double,
5106                               _markStack.capacity());
5107      }
5108   }
5109   _markStack._hit_limit = 0;
5110   _markStack._failed_double = 0;
5111 
5112   if ((VerifyAfterGC || VerifyDuringGC) &&
5113       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5114     verify_after_remark();
5115   }
5116 
5117   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
5118 
5119   // Change under the freelistLocks.
5120   _collectorState = Sweeping;
5121   // Call isAllClear() under bitMapLock
5122   assert(_modUnionTable.isAllClear(),
5123       "Should be clear by end of the final marking");
5124   assert(_ct->klass_rem_set()->mod_union_is_clear(),
5125       "Should be clear by end of the final marking");
5126 }
5127 
5128 void CMSParInitialMarkTask::work(uint worker_id) {
5129   elapsedTimer _timer;
5130   ResourceMark rm;
5131   HandleMark   hm;
5132 
5133   // ---------- scan from roots --------------
5134   _timer.start();
5135   GenCollectedHeap* gch = GenCollectedHeap::heap();
5136   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
5137 
5138   // ---------- young gen roots --------------
5139   {
5140     work_on_young_gen_roots(worker_id, &par_mri_cl);
5141     _timer.stop();
5142     if (PrintCMSStatistics != 0) {
5143       gclog_or_tty->print_cr(
5144         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
5145         worker_id, _timer.seconds());
5146     }
5147   }
5148 
5149   // ---------- remaining roots --------------
5150   _timer.reset();
5151   _timer.start();
5152 
5153   CLDToOopClosure cld_closure(&par_mri_cl, true);
5154 
5155   gch->gen_process_roots(_collector->_cmsGen->level(),
5156                          false,     // yg was scanned above
5157                          false,     // this is parallel code
5158                          SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5159                          _collector->should_unload_classes(),
5160                          &par_mri_cl,
5161                          NULL,
5162                          &cld_closure);
5163   assert(_collector->should_unload_classes()
5164          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5165          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5166   _timer.stop();
5167   if (PrintCMSStatistics != 0) {
5168     gclog_or_tty->print_cr(
5169       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
5170       worker_id, _timer.seconds());
5171   }
5172 }
5173 
5174 // Parallel remark task
5175 class CMSParRemarkTask: public CMSParMarkTask {
5176   CompactibleFreeListSpace* _cms_space;
5177 
5178   // The per-thread work queues, available here for stealing.
5179   OopTaskQueueSet*       _task_queues;
5180   ParallelTaskTerminator _term;
5181 
5182  public:
5183   // A value of 0 passed to n_workers will cause the number of
5184   // workers to be taken from the active workers in the work gang.
5185   CMSParRemarkTask(CMSCollector* collector,
5186                    CompactibleFreeListSpace* cms_space,
5187                    int n_workers, FlexibleWorkGang* workers,
5188                    OopTaskQueueSet* task_queues):
5189     CMSParMarkTask("Rescan roots and grey objects in parallel",
5190                    collector, n_workers),
5191     _cms_space(cms_space),
5192     _task_queues(task_queues),
5193     _term(n_workers, task_queues) { }
5194 
5195   OopTaskQueueSet* task_queues() { return _task_queues; }
5196 
5197   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5198 
5199   ParallelTaskTerminator* terminator() { return &_term; }
5200   int n_workers() { return _n_workers; }
5201 
5202   void work(uint worker_id);
5203 
5204  private:
5205   // ... of  dirty cards in old space
5206   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5207                                   Par_MarkRefsIntoAndScanClosure* cl);
5208 
5209   // ... work stealing for the above
5210   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5211 };
5212 
5213 class RemarkKlassClosure : public KlassClosure {
5214   KlassToOopClosure _cm_klass_closure;
5215  public:
5216   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5217   void do_klass(Klass* k) {
5218     // Check if we have modified any oops in the Klass during the concurrent marking.
5219     if (k->has_accumulated_modified_oops()) {
5220       k->clear_accumulated_modified_oops();
5221 
5222       // We could have transfered the current modified marks to the accumulated marks,
5223       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5224     } else if (k->has_modified_oops()) {
5225       // Don't clear anything, this info is needed by the next young collection.
5226     } else {
5227       // No modified oops in the Klass.
5228       return;
5229     }
5230 
5231     // The klass has modified fields, need to scan the klass.
5232     _cm_klass_closure.do_klass(k);
5233   }
5234 };
5235 
5236 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
5237   DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5238   EdenSpace* eden_space = dng->eden();
5239   ContiguousSpace* from_space = dng->from();
5240   ContiguousSpace* to_space   = dng->to();
5241 
5242   HeapWord** eca = _collector->_eden_chunk_array;
5243   size_t     ect = _collector->_eden_chunk_index;
5244   HeapWord** sca = _collector->_survivor_chunk_array;
5245   size_t     sct = _collector->_survivor_chunk_index;
5246 
5247   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5248   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5249 
5250   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
5251   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
5252   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
5253 }
5254 
5255 // work_queue(i) is passed to the closure
5256 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5257 // also is passed to do_dirty_card_rescan_tasks() and to
5258 // do_work_steal() to select the i-th task_queue.
5259 
5260 void CMSParRemarkTask::work(uint worker_id) {
5261   elapsedTimer _timer;
5262   ResourceMark rm;
5263   HandleMark   hm;
5264 
5265   // ---------- rescan from roots --------------
5266   _timer.start();
5267   GenCollectedHeap* gch = GenCollectedHeap::heap();
5268   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5269     _collector->_span, _collector->ref_processor(),
5270     &(_collector->_markBitMap),
5271     work_queue(worker_id));
5272 
5273   // Rescan young gen roots first since these are likely
5274   // coarsely partitioned and may, on that account, constitute
5275   // the critical path; thus, it's best to start off that
5276   // work first.
5277   // ---------- young gen roots --------------
5278   {
5279     work_on_young_gen_roots(worker_id, &par_mrias_cl);
5280     _timer.stop();
5281     if (PrintCMSStatistics != 0) {
5282       gclog_or_tty->print_cr(
5283         "Finished young gen rescan work in %dth thread: %3.3f sec",
5284         worker_id, _timer.seconds());
5285     }
5286   }
5287 
5288   // ---------- remaining roots --------------
5289   _timer.reset();
5290   _timer.start();
5291   gch->gen_process_roots(_collector->_cmsGen->level(),
5292                          false,     // yg was scanned above
5293                          false,     // this is parallel code
5294                          SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5295                          _collector->should_unload_classes(),
5296                          &par_mrias_cl,
5297                          NULL,
5298                          NULL);     // The dirty klasses will be handled below
5299 
5300   assert(_collector->should_unload_classes()
5301          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5302          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5303   _timer.stop();
5304   if (PrintCMSStatistics != 0) {
5305     gclog_or_tty->print_cr(
5306       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5307       worker_id, _timer.seconds());
5308   }
5309 
5310   // ---------- unhandled CLD scanning ----------
5311   if (worker_id == 0) { // Single threaded at the moment.
5312     _timer.reset();
5313     _timer.start();
5314 
5315     // Scan all new class loader data objects and new dependencies that were
5316     // introduced during concurrent marking.
5317     ResourceMark rm;
5318     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5319     for (int i = 0; i < array->length(); i++) {
5320       par_mrias_cl.do_class_loader_data(array->at(i));
5321     }
5322 
5323     // We don't need to keep track of new CLDs anymore.
5324     ClassLoaderDataGraph::remember_new_clds(false);
5325 
5326     _timer.stop();
5327     if (PrintCMSStatistics != 0) {
5328       gclog_or_tty->print_cr(
5329           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5330           worker_id, _timer.seconds());
5331     }
5332   }
5333 
5334   // ---------- dirty klass scanning ----------
5335   if (worker_id == 0) { // Single threaded at the moment.
5336     _timer.reset();
5337     _timer.start();
5338 
5339     // Scan all classes that was dirtied during the concurrent marking phase.
5340     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5341     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5342 
5343     _timer.stop();
5344     if (PrintCMSStatistics != 0) {
5345       gclog_or_tty->print_cr(
5346           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5347           worker_id, _timer.seconds());
5348     }
5349   }
5350 
5351   // We might have added oops to ClassLoaderData::_handles during the
5352   // concurrent marking phase. These oops point to newly allocated objects
5353   // that are guaranteed to be kept alive. Either by the direct allocation
5354   // code, or when the young collector processes the roots. Hence,
5355   // we don't have to revisit the _handles block during the remark phase.
5356 
5357   // ---------- rescan dirty cards ------------
5358   _timer.reset();
5359   _timer.start();
5360 
5361   // Do the rescan tasks for each of the two spaces
5362   // (cms_space) in turn.
5363   // "worker_id" is passed to select the task_queue for "worker_id"
5364   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5365   _timer.stop();
5366   if (PrintCMSStatistics != 0) {
5367     gclog_or_tty->print_cr(
5368       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5369       worker_id, _timer.seconds());
5370   }
5371 
5372   // ---------- steal work from other threads ...
5373   // ---------- ... and drain overflow list.
5374   _timer.reset();
5375   _timer.start();
5376   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5377   _timer.stop();
5378   if (PrintCMSStatistics != 0) {
5379     gclog_or_tty->print_cr(
5380       "Finished work stealing in %dth thread: %3.3f sec",
5381       worker_id, _timer.seconds());
5382   }
5383 }
5384 
5385 // Note that parameter "i" is not used.
5386 void
5387 CMSParMarkTask::do_young_space_rescan(uint worker_id,
5388   OopsInGenClosure* cl, ContiguousSpace* space,
5389   HeapWord** chunk_array, size_t chunk_top) {
5390   // Until all tasks completed:
5391   // . claim an unclaimed task
5392   // . compute region boundaries corresponding to task claimed
5393   //   using chunk_array
5394   // . par_oop_iterate(cl) over that region
5395 
5396   ResourceMark rm;
5397   HandleMark   hm;
5398 
5399   SequentialSubTasksDone* pst = space->par_seq_tasks();
5400 
5401   uint nth_task = 0;
5402   uint n_tasks  = pst->n_tasks();
5403 
5404   if (n_tasks > 0) {
5405     assert(pst->valid(), "Uninitialized use?");
5406     HeapWord *start, *end;
5407     while (!pst->is_task_claimed(/* reference */ nth_task)) {
5408       // We claimed task # nth_task; compute its boundaries.
5409       if (chunk_top == 0) {  // no samples were taken
5410         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5411         start = space->bottom();
5412         end   = space->top();
5413       } else if (nth_task == 0) {
5414         start = space->bottom();
5415         end   = chunk_array[nth_task];
5416       } else if (nth_task < (uint)chunk_top) {
5417         assert(nth_task >= 1, "Control point invariant");
5418         start = chunk_array[nth_task - 1];
5419         end   = chunk_array[nth_task];
5420       } else {
5421         assert(nth_task == (uint)chunk_top, "Control point invariant");
5422         start = chunk_array[chunk_top - 1];
5423         end   = space->top();
5424       }
5425       MemRegion mr(start, end);
5426       // Verify that mr is in space
5427       assert(mr.is_empty() || space->used_region().contains(mr),
5428              "Should be in space");
5429       // Verify that "start" is an object boundary
5430       assert(mr.is_empty() || oop(mr.start())->is_oop(),
5431              "Should be an oop");
5432       space->par_oop_iterate<false>(mr, cl);
5433     }
5434     pst->all_tasks_completed();
5435   }
5436 }
5437 
5438 void
5439 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5440   CompactibleFreeListSpace* sp, int i,
5441   Par_MarkRefsIntoAndScanClosure* cl) {
5442   // Until all tasks completed:
5443   // . claim an unclaimed task
5444   // . compute region boundaries corresponding to task claimed
5445   // . transfer dirty bits ct->mut for that region
5446   // . apply rescanclosure to dirty mut bits for that region
5447 
5448   ResourceMark rm;
5449   HandleMark   hm;
5450 
5451   OopTaskQueue* work_q = work_queue(i);
5452   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5453   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5454   // CAUTION: This closure has state that persists across calls to
5455   // the work method dirty_range_iterate_clear() in that it has
5456   // embedded in it a (subtype of) UpwardsObjectClosure. The
5457   // use of that state in the embedded UpwardsObjectClosure instance
5458   // assumes that the cards are always iterated (even if in parallel
5459   // by several threads) in monotonically increasing order per each
5460   // thread. This is true of the implementation below which picks
5461   // card ranges (chunks) in monotonically increasing order globally
5462   // and, a-fortiori, in monotonically increasing order per thread
5463   // (the latter order being a subsequence of the former).
5464   // If the work code below is ever reorganized into a more chaotic
5465   // work-partitioning form than the current "sequential tasks"
5466   // paradigm, the use of that persistent state will have to be
5467   // revisited and modified appropriately. See also related
5468   // bug 4756801 work on which should examine this code to make
5469   // sure that the changes there do not run counter to the
5470   // assumptions made here and necessary for correctness and
5471   // efficiency. Note also that this code might yield inefficient
5472   // behavior in the case of very large objects that span one or
5473   // more work chunks. Such objects would potentially be scanned
5474   // several times redundantly. Work on 4756801 should try and
5475   // address that performance anomaly if at all possible. XXX
5476   MemRegion  full_span  = _collector->_span;
5477   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5478   MarkFromDirtyCardsClosure
5479     greyRescanClosure(_collector, full_span, // entire span of interest
5480                       sp, bm, work_q, cl);
5481 
5482   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5483   assert(pst->valid(), "Uninitialized use?");
5484   uint nth_task = 0;
5485   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5486   MemRegion span = sp->used_region();
5487   HeapWord* start_addr = span.start();
5488   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5489                                            alignment);
5490   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5491   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5492          start_addr, "Check alignment");
5493   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5494          chunk_size, "Check alignment");
5495 
5496   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5497     // Having claimed the nth_task, compute corresponding mem-region,
5498     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
5499     // The alignment restriction ensures that we do not need any
5500     // synchronization with other gang-workers while setting or
5501     // clearing bits in thus chunk of the MUT.
5502     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5503                                     start_addr + (nth_task+1)*chunk_size);
5504     // The last chunk's end might be way beyond end of the
5505     // used region. In that case pull back appropriately.
5506     if (this_span.end() > end_addr) {
5507       this_span.set_end(end_addr);
5508       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5509     }
5510     // Iterate over the dirty cards covering this chunk, marking them
5511     // precleaned, and setting the corresponding bits in the mod union
5512     // table. Since we have been careful to partition at Card and MUT-word
5513     // boundaries no synchronization is needed between parallel threads.
5514     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5515                                                  &modUnionClosure);
5516 
5517     // Having transferred these marks into the modUnionTable,
5518     // rescan the marked objects on the dirty cards in the modUnionTable.
5519     // Even if this is at a synchronous collection, the initial marking
5520     // may have been done during an asynchronous collection so there
5521     // may be dirty bits in the mod-union table.
5522     _collector->_modUnionTable.dirty_range_iterate_clear(
5523                   this_span, &greyRescanClosure);
5524     _collector->_modUnionTable.verifyNoOneBitsInRange(
5525                                  this_span.start(),
5526                                  this_span.end());
5527   }
5528   pst->all_tasks_completed();  // declare that i am done
5529 }
5530 
5531 // . see if we can share work_queues with ParNew? XXX
5532 void
5533 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5534                                 int* seed) {
5535   OopTaskQueue* work_q = work_queue(i);
5536   NOT_PRODUCT(int num_steals = 0;)
5537   oop obj_to_scan;
5538   CMSBitMap* bm = &(_collector->_markBitMap);
5539 
5540   while (true) {
5541     // Completely finish any left over work from (an) earlier round(s)
5542     cl->trim_queue(0);
5543     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5544                                          (size_t)ParGCDesiredObjsFromOverflowList);
5545     // Now check if there's any work in the overflow list
5546     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5547     // only affects the number of attempts made to get work from the
5548     // overflow list and does not affect the number of workers.  Just
5549     // pass ParallelGCThreads so this behavior is unchanged.
5550     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5551                                                 work_q,
5552                                                 ParallelGCThreads)) {
5553       // found something in global overflow list;
5554       // not yet ready to go stealing work from others.
5555       // We'd like to assert(work_q->size() != 0, ...)
5556       // because we just took work from the overflow list,
5557       // but of course we can't since all of that could have
5558       // been already stolen from us.
5559       // "He giveth and He taketh away."
5560       continue;
5561     }
5562     // Verify that we have no work before we resort to stealing
5563     assert(work_q->size() == 0, "Have work, shouldn't steal");
5564     // Try to steal from other queues that have work
5565     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5566       NOT_PRODUCT(num_steals++;)
5567       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5568       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5569       // Do scanning work
5570       obj_to_scan->oop_iterate(cl);
5571       // Loop around, finish this work, and try to steal some more
5572     } else if (terminator()->offer_termination()) {
5573         break;  // nirvana from the infinite cycle
5574     }
5575   }
5576   NOT_PRODUCT(
5577     if (PrintCMSStatistics != 0) {
5578       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5579     }
5580   )
5581   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5582          "Else our work is not yet done");
5583 }
5584 
5585 // Record object boundaries in _eden_chunk_array by sampling the eden
5586 // top in the slow-path eden object allocation code path and record
5587 // the boundaries, if CMSEdenChunksRecordAlways is true. If
5588 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
5589 // sampling in sample_eden() that activates during the part of the
5590 // preclean phase.
5591 void CMSCollector::sample_eden_chunk() {
5592   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
5593     if (_eden_chunk_lock->try_lock()) {
5594       // Record a sample. This is the critical section. The contents
5595       // of the _eden_chunk_array have to be non-decreasing in the
5596       // address order.
5597       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
5598       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
5599              "Unexpected state of Eden");
5600       if (_eden_chunk_index == 0 ||
5601           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
5602            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
5603                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
5604         _eden_chunk_index++;  // commit sample
5605       }
5606       _eden_chunk_lock->unlock();
5607     }
5608   }
5609 }
5610 
5611 // Return a thread-local PLAB recording array, as appropriate.
5612 void* CMSCollector::get_data_recorder(int thr_num) {
5613   if (_survivor_plab_array != NULL &&
5614       (CMSPLABRecordAlways ||
5615        (_collectorState > Marking && _collectorState < FinalMarking))) {
5616     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5617     ChunkArray* ca = &_survivor_plab_array[thr_num];
5618     ca->reset();   // clear it so that fresh data is recorded
5619     return (void*) ca;
5620   } else {
5621     return NULL;
5622   }
5623 }
5624 
5625 // Reset all the thread-local PLAB recording arrays
5626 void CMSCollector::reset_survivor_plab_arrays() {
5627   for (uint i = 0; i < ParallelGCThreads; i++) {
5628     _survivor_plab_array[i].reset();
5629   }
5630 }
5631 
5632 // Merge the per-thread plab arrays into the global survivor chunk
5633 // array which will provide the partitioning of the survivor space
5634 // for CMS initial scan and rescan.
5635 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5636                                               int no_of_gc_threads) {
5637   assert(_survivor_plab_array  != NULL, "Error");
5638   assert(_survivor_chunk_array != NULL, "Error");
5639   assert(_collectorState == FinalMarking ||
5640          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
5641   for (int j = 0; j < no_of_gc_threads; j++) {
5642     _cursor[j] = 0;
5643   }
5644   HeapWord* top = surv->top();
5645   size_t i;
5646   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5647     HeapWord* min_val = top;          // Higher than any PLAB address
5648     uint      min_tid = 0;            // position of min_val this round
5649     for (int j = 0; j < no_of_gc_threads; j++) {
5650       ChunkArray* cur_sca = &_survivor_plab_array[j];
5651       if (_cursor[j] == cur_sca->end()) {
5652         continue;
5653       }
5654       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5655       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5656       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5657       if (cur_val < min_val) {
5658         min_tid = j;
5659         min_val = cur_val;
5660       } else {
5661         assert(cur_val < top, "All recorded addresses should be less");
5662       }
5663     }
5664     // At this point min_val and min_tid are respectively
5665     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5666     // and the thread (j) that witnesses that address.
5667     // We record this address in the _survivor_chunk_array[i]
5668     // and increment _cursor[min_tid] prior to the next round i.
5669     if (min_val == top) {
5670       break;
5671     }
5672     _survivor_chunk_array[i] = min_val;
5673     _cursor[min_tid]++;
5674   }
5675   // We are all done; record the size of the _survivor_chunk_array
5676   _survivor_chunk_index = i; // exclusive: [0, i)
5677   if (PrintCMSStatistics > 0) {
5678     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5679   }
5680   // Verify that we used up all the recorded entries
5681   #ifdef ASSERT
5682     size_t total = 0;
5683     for (int j = 0; j < no_of_gc_threads; j++) {
5684       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5685       total += _cursor[j];
5686     }
5687     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5688     // Check that the merged array is in sorted order
5689     if (total > 0) {
5690       for (size_t i = 0; i < total - 1; i++) {
5691         if (PrintCMSStatistics > 0) {
5692           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5693                               i, _survivor_chunk_array[i]);
5694         }
5695         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5696                "Not sorted");
5697       }
5698     }
5699   #endif // ASSERT
5700 }
5701 
5702 // Set up the space's par_seq_tasks structure for work claiming
5703 // for parallel initial scan and rescan of young gen.
5704 // See ParRescanTask where this is currently used.
5705 void
5706 CMSCollector::
5707 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5708   assert(n_threads > 0, "Unexpected n_threads argument");
5709   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5710 
5711   // Eden space
5712   if (!dng->eden()->is_empty()) {
5713     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5714     assert(!pst->valid(), "Clobbering existing data?");
5715     // Each valid entry in [0, _eden_chunk_index) represents a task.
5716     size_t n_tasks = _eden_chunk_index + 1;
5717     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5718     // Sets the condition for completion of the subtask (how many threads
5719     // need to finish in order to be done).
5720     pst->set_n_threads(n_threads);
5721     pst->set_n_tasks((int)n_tasks);
5722   }
5723 
5724   // Merge the survivor plab arrays into _survivor_chunk_array
5725   if (_survivor_plab_array != NULL) {
5726     merge_survivor_plab_arrays(dng->from(), n_threads);
5727   } else {
5728     assert(_survivor_chunk_index == 0, "Error");
5729   }
5730 
5731   // To space
5732   {
5733     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5734     assert(!pst->valid(), "Clobbering existing data?");
5735     // Sets the condition for completion of the subtask (how many threads
5736     // need to finish in order to be done).
5737     pst->set_n_threads(n_threads);
5738     pst->set_n_tasks(1);
5739     assert(pst->valid(), "Error");
5740   }
5741 
5742   // From space
5743   {
5744     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5745     assert(!pst->valid(), "Clobbering existing data?");
5746     size_t n_tasks = _survivor_chunk_index + 1;
5747     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5748     // Sets the condition for completion of the subtask (how many threads
5749     // need to finish in order to be done).
5750     pst->set_n_threads(n_threads);
5751     pst->set_n_tasks((int)n_tasks);
5752     assert(pst->valid(), "Error");
5753   }
5754 }
5755 
5756 // Parallel version of remark
5757 void CMSCollector::do_remark_parallel() {
5758   GenCollectedHeap* gch = GenCollectedHeap::heap();
5759   FlexibleWorkGang* workers = gch->workers();
5760   assert(workers != NULL, "Need parallel worker threads.");
5761   // Choose to use the number of GC workers most recently set
5762   // into "active_workers".  If active_workers is not set, set it
5763   // to ParallelGCThreads.
5764   int n_workers = workers->active_workers();
5765   if (n_workers == 0) {
5766     assert(n_workers > 0, "Should have been set during scavenge");
5767     n_workers = ParallelGCThreads;
5768     workers->set_active_workers(n_workers);
5769   }
5770   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5771 
5772   CMSParRemarkTask tsk(this,
5773     cms_space,
5774     n_workers, workers, task_queues());
5775 
5776   // Set up for parallel process_roots work.
5777   gch->set_par_threads(n_workers);
5778   // We won't be iterating over the cards in the card table updating
5779   // the younger_gen cards, so we shouldn't call the following else
5780   // the verification code as well as subsequent younger_refs_iterate
5781   // code would get confused. XXX
5782   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5783 
5784   // The young gen rescan work will not be done as part of
5785   // process_roots (which currently doesn't know how to
5786   // parallelize such a scan), but rather will be broken up into
5787   // a set of parallel tasks (via the sampling that the [abortable]
5788   // preclean phase did of EdenSpace, plus the [two] tasks of
5789   // scanning the [two] survivor spaces. Further fine-grain
5790   // parallelization of the scanning of the survivor spaces
5791   // themselves, and of precleaning of the younger gen itself
5792   // is deferred to the future.
5793   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5794 
5795   // The dirty card rescan work is broken up into a "sequence"
5796   // of parallel tasks (per constituent space) that are dynamically
5797   // claimed by the parallel threads.
5798   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5799 
5800   // It turns out that even when we're using 1 thread, doing the work in a
5801   // separate thread causes wide variance in run times.  We can't help this
5802   // in the multi-threaded case, but we special-case n=1 here to get
5803   // repeatable measurements of the 1-thread overhead of the parallel code.
5804   if (n_workers > 1) {
5805     // Make refs discovery MT-safe, if it isn't already: it may not
5806     // necessarily be so, since it's possible that we are doing
5807     // ST marking.
5808     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5809     GenCollectedHeap::StrongRootsScope srs(gch);
5810     workers->run_task(&tsk);
5811   } else {
5812     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5813     GenCollectedHeap::StrongRootsScope srs(gch);
5814     tsk.work(0);
5815   }
5816 
5817   gch->set_par_threads(0);  // 0 ==> non-parallel.
5818   // restore, single-threaded for now, any preserved marks
5819   // as a result of work_q overflow
5820   restore_preserved_marks_if_any();
5821 }
5822 
5823 // Non-parallel version of remark
5824 void CMSCollector::do_remark_non_parallel() {
5825   ResourceMark rm;
5826   HandleMark   hm;
5827   GenCollectedHeap* gch = GenCollectedHeap::heap();
5828   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5829 
5830   MarkRefsIntoAndScanClosure
5831     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5832              &_markStack, this,
5833              false /* should_yield */, false /* not precleaning */);
5834   MarkFromDirtyCardsClosure
5835     markFromDirtyCardsClosure(this, _span,
5836                               NULL,  // space is set further below
5837                               &_markBitMap, &_markStack, &mrias_cl);
5838   {
5839     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5840     // Iterate over the dirty cards, setting the corresponding bits in the
5841     // mod union table.
5842     {
5843       ModUnionClosure modUnionClosure(&_modUnionTable);
5844       _ct->ct_bs()->dirty_card_iterate(
5845                       _cmsGen->used_region(),
5846                       &modUnionClosure);
5847     }
5848     // Having transferred these marks into the modUnionTable, we just need
5849     // to rescan the marked objects on the dirty cards in the modUnionTable.
5850     // The initial marking may have been done during an asynchronous
5851     // collection so there may be dirty bits in the mod-union table.
5852     const int alignment =
5853       CardTableModRefBS::card_size * BitsPerWord;
5854     {
5855       // ... First handle dirty cards in CMS gen
5856       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5857       MemRegion ur = _cmsGen->used_region();
5858       HeapWord* lb = ur.start();
5859       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5860       MemRegion cms_span(lb, ub);
5861       _modUnionTable.dirty_range_iterate_clear(cms_span,
5862                                                &markFromDirtyCardsClosure);
5863       verify_work_stacks_empty();
5864       if (PrintCMSStatistics != 0) {
5865         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5866           markFromDirtyCardsClosure.num_dirty_cards());
5867       }
5868     }
5869   }
5870   if (VerifyDuringGC &&
5871       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5872     HandleMark hm;  // Discard invalid handles created during verification
5873     Universe::verify();
5874   }
5875   {
5876     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5877 
5878     verify_work_stacks_empty();
5879 
5880     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5881     GenCollectedHeap::StrongRootsScope srs(gch);
5882 
5883     gch->gen_process_roots(_cmsGen->level(),
5884                            true,  // younger gens as roots
5885                            false, // use the local StrongRootsScope
5886                            SharedHeap::ScanningOption(roots_scanning_options()),
5887                            should_unload_classes(),
5888                            &mrias_cl,
5889                            NULL,
5890                            NULL); // The dirty klasses will be handled below
5891 
5892     assert(should_unload_classes()
5893            || (roots_scanning_options() & SharedHeap::SO_AllCodeCache),
5894            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5895   }
5896 
5897   {
5898     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5899 
5900     verify_work_stacks_empty();
5901 
5902     // Scan all class loader data objects that might have been introduced
5903     // during concurrent marking.
5904     ResourceMark rm;
5905     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5906     for (int i = 0; i < array->length(); i++) {
5907       mrias_cl.do_class_loader_data(array->at(i));
5908     }
5909 
5910     // We don't need to keep track of new CLDs anymore.
5911     ClassLoaderDataGraph::remember_new_clds(false);
5912 
5913     verify_work_stacks_empty();
5914   }
5915 
5916   {
5917     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5918 
5919     verify_work_stacks_empty();
5920 
5921     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5922     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5923 
5924     verify_work_stacks_empty();
5925   }
5926 
5927   // We might have added oops to ClassLoaderData::_handles during the
5928   // concurrent marking phase. These oops point to newly allocated objects
5929   // that are guaranteed to be kept alive. Either by the direct allocation
5930   // code, or when the young collector processes the roots. Hence,
5931   // we don't have to revisit the _handles block during the remark phase.
5932 
5933   verify_work_stacks_empty();
5934   // Restore evacuated mark words, if any, used for overflow list links
5935   if (!CMSOverflowEarlyRestoration) {
5936     restore_preserved_marks_if_any();
5937   }
5938   verify_overflow_empty();
5939 }
5940 
5941 ////////////////////////////////////////////////////////
5942 // Parallel Reference Processing Task Proxy Class
5943 ////////////////////////////////////////////////////////
5944 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5945   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5946   CMSCollector*          _collector;
5947   CMSBitMap*             _mark_bit_map;
5948   const MemRegion        _span;
5949   ProcessTask&           _task;
5950 
5951 public:
5952   CMSRefProcTaskProxy(ProcessTask&     task,
5953                       CMSCollector*    collector,
5954                       const MemRegion& span,
5955                       CMSBitMap*       mark_bit_map,
5956                       AbstractWorkGang* workers,
5957                       OopTaskQueueSet* task_queues):
5958     // XXX Should superclass AGTWOQ also know about AWG since it knows
5959     // about the task_queues used by the AWG? Then it could initialize
5960     // the terminator() object. See 6984287. The set_for_termination()
5961     // below is a temporary band-aid for the regression in 6984287.
5962     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5963       task_queues),
5964     _task(task),
5965     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5966   {
5967     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5968            "Inconsistency in _span");
5969     set_for_termination(workers->active_workers());
5970   }
5971 
5972   OopTaskQueueSet* task_queues() { return queues(); }
5973 
5974   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5975 
5976   void do_work_steal(int i,
5977                      CMSParDrainMarkingStackClosure* drain,
5978                      CMSParKeepAliveClosure* keep_alive,
5979                      int* seed);
5980 
5981   virtual void work(uint worker_id);
5982 };
5983 
5984 void CMSRefProcTaskProxy::work(uint worker_id) {
5985   ResourceMark rm;
5986   HandleMark hm;
5987   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5988   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5989                                         _mark_bit_map,
5990                                         work_queue(worker_id));
5991   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5992                                                  _mark_bit_map,
5993                                                  work_queue(worker_id));
5994   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5995   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5996   if (_task.marks_oops_alive()) {
5997     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5998                   _collector->hash_seed(worker_id));
5999   }
6000   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
6001   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
6002 }
6003 
6004 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
6005   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
6006   EnqueueTask& _task;
6007 
6008 public:
6009   CMSRefEnqueueTaskProxy(EnqueueTask& task)
6010     : AbstractGangTask("Enqueue reference objects in parallel"),
6011       _task(task)
6012   { }
6013 
6014   virtual void work(uint worker_id)
6015   {
6016     _task.work(worker_id);
6017   }
6018 };
6019 
6020 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
6021   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
6022    _span(span),
6023    _bit_map(bit_map),
6024    _work_queue(work_queue),
6025    _mark_and_push(collector, span, bit_map, work_queue),
6026    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6027                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
6028 { }
6029 
6030 // . see if we can share work_queues with ParNew? XXX
6031 void CMSRefProcTaskProxy::do_work_steal(int i,
6032   CMSParDrainMarkingStackClosure* drain,
6033   CMSParKeepAliveClosure* keep_alive,
6034   int* seed) {
6035   OopTaskQueue* work_q = work_queue(i);
6036   NOT_PRODUCT(int num_steals = 0;)
6037   oop obj_to_scan;
6038 
6039   while (true) {
6040     // Completely finish any left over work from (an) earlier round(s)
6041     drain->trim_queue(0);
6042     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
6043                                          (size_t)ParGCDesiredObjsFromOverflowList);
6044     // Now check if there's any work in the overflow list
6045     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
6046     // only affects the number of attempts made to get work from the
6047     // overflow list and does not affect the number of workers.  Just
6048     // pass ParallelGCThreads so this behavior is unchanged.
6049     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
6050                                                 work_q,
6051                                                 ParallelGCThreads)) {
6052       // Found something in global overflow list;
6053       // not yet ready to go stealing work from others.
6054       // We'd like to assert(work_q->size() != 0, ...)
6055       // because we just took work from the overflow list,
6056       // but of course we can't, since all of that might have
6057       // been already stolen from us.
6058       continue;
6059     }
6060     // Verify that we have no work before we resort to stealing
6061     assert(work_q->size() == 0, "Have work, shouldn't steal");
6062     // Try to steal from other queues that have work
6063     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
6064       NOT_PRODUCT(num_steals++;)
6065       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
6066       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
6067       // Do scanning work
6068       // SSS: Opportunity to devirtualize
6069       obj_to_scan->oop_iterate<false>(keep_alive);
6070       // Loop around, finish this work, and try to steal some more
6071     } else if (terminator()->offer_termination()) {
6072       break;  // nirvana from the infinite cycle
6073     }
6074   }
6075   NOT_PRODUCT(
6076     if (PrintCMSStatistics != 0) {
6077       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
6078     }
6079   )
6080 }
6081 
6082 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
6083 {
6084   GenCollectedHeap* gch = GenCollectedHeap::heap();
6085   FlexibleWorkGang* workers = gch->workers();
6086   assert(workers != NULL, "Need parallel worker threads.");
6087   CMSRefProcTaskProxy rp_task(task, &_collector,
6088                               _collector.ref_processor()->span(),
6089                               _collector.markBitMap(),
6090                               workers, _collector.task_queues());
6091   workers->run_task(&rp_task);
6092 }
6093 
6094 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
6095 {
6096 
6097   GenCollectedHeap* gch = GenCollectedHeap::heap();
6098   FlexibleWorkGang* workers = gch->workers();
6099   assert(workers != NULL, "Need parallel worker threads.");
6100   CMSRefEnqueueTaskProxy enq_task(task);
6101   workers->run_task(&enq_task);
6102 }
6103 
6104 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
6105 
6106   ResourceMark rm;
6107   HandleMark   hm;
6108 
6109   ReferenceProcessor* rp = ref_processor();
6110   assert(rp->span().equals(_span), "Spans should be equal");
6111   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
6112   // Process weak references.
6113   rp->setup_policy(clear_all_soft_refs);
6114   verify_work_stacks_empty();
6115 
6116   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
6117                                           &_markStack, false /* !preclean */);
6118   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
6119                                 _span, &_markBitMap, &_markStack,
6120                                 &cmsKeepAliveClosure, false /* !preclean */);
6121   {
6122     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6123 
6124     ReferenceProcessorStats stats;
6125     if (rp->processing_is_mt()) {
6126       // Set the degree of MT here.  If the discovery is done MT, there
6127       // may have been a different number of threads doing the discovery
6128       // and a different number of discovered lists may have Ref objects.
6129       // That is OK as long as the Reference lists are balanced (see
6130       // balance_all_queues() and balance_queues()).
6131       GenCollectedHeap* gch = GenCollectedHeap::heap();
6132       int active_workers = ParallelGCThreads;
6133       FlexibleWorkGang* workers = gch->workers();
6134       if (workers != NULL) {
6135         active_workers = workers->active_workers();
6136         // The expectation is that active_workers will have already
6137         // been set to a reasonable value.  If it has not been set,
6138         // investigate.
6139         assert(active_workers > 0, "Should have been set during scavenge");
6140       }
6141       rp->set_active_mt_degree(active_workers);
6142       CMSRefProcTaskExecutor task_executor(*this);
6143       stats = rp->process_discovered_references(&_is_alive_closure,
6144                                         &cmsKeepAliveClosure,
6145                                         &cmsDrainMarkingStackClosure,
6146                                         &task_executor,
6147                                         _gc_timer_cm,
6148                                         _gc_tracer_cm->gc_id());
6149     } else {
6150       stats = rp->process_discovered_references(&_is_alive_closure,
6151                                         &cmsKeepAliveClosure,
6152                                         &cmsDrainMarkingStackClosure,
6153                                         NULL,
6154                                         _gc_timer_cm,
6155                                         _gc_tracer_cm->gc_id());
6156     }
6157     _gc_tracer_cm->report_gc_reference_stats(stats);
6158 
6159   }
6160 
6161   // This is the point where the entire marking should have completed.
6162   verify_work_stacks_empty();
6163 
6164   if (should_unload_classes()) {
6165     {
6166       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6167 
6168       // Unload classes and purge the SystemDictionary.
6169       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
6170 
6171       // Unload nmethods.
6172       CodeCache::do_unloading(&_is_alive_closure, purged_class);
6173 
6174       // Prune dead klasses from subklass/sibling/implementor lists.
6175       Klass::clean_weak_klass_links(&_is_alive_closure);
6176     }
6177 
6178     {
6179       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6180       // Clean up unreferenced symbols in symbol table.
6181       SymbolTable::unlink();
6182     }
6183 
6184     {
6185       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
6186       // Delete entries for dead interned strings.
6187       StringTable::unlink(&_is_alive_closure);
6188     }
6189   }
6190 
6191 
6192   // Restore any preserved marks as a result of mark stack or
6193   // work queue overflow
6194   restore_preserved_marks_if_any();  // done single-threaded for now
6195 
6196   rp->set_enqueuing_is_done(true);
6197   if (rp->processing_is_mt()) {
6198     rp->balance_all_queues();
6199     CMSRefProcTaskExecutor task_executor(*this);
6200     rp->enqueue_discovered_references(&task_executor);
6201   } else {
6202     rp->enqueue_discovered_references(NULL);
6203   }
6204   rp->verify_no_references_recorded();
6205   assert(!rp->discovery_enabled(), "should have been disabled");
6206 }
6207 
6208 #ifndef PRODUCT
6209 void CMSCollector::check_correct_thread_executing() {
6210   Thread* t = Thread::current();
6211   // Only the VM thread or the CMS thread should be here.
6212   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6213          "Unexpected thread type");
6214   // If this is the vm thread, the foreground process
6215   // should not be waiting.  Note that _foregroundGCIsActive is
6216   // true while the foreground collector is waiting.
6217   if (_foregroundGCShouldWait) {
6218     // We cannot be the VM thread
6219     assert(t->is_ConcurrentGC_thread(),
6220            "Should be CMS thread");
6221   } else {
6222     // We can be the CMS thread only if we are in a stop-world
6223     // phase of CMS collection.
6224     if (t->is_ConcurrentGC_thread()) {
6225       assert(_collectorState == InitialMarking ||
6226              _collectorState == FinalMarking,
6227              "Should be a stop-world phase");
6228       // The CMS thread should be holding the CMS_token.
6229       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6230              "Potential interference with concurrently "
6231              "executing VM thread");
6232     }
6233   }
6234 }
6235 #endif
6236 
6237 void CMSCollector::sweep(bool asynch) {
6238   assert(_collectorState == Sweeping, "just checking");
6239   check_correct_thread_executing();
6240   verify_work_stacks_empty();
6241   verify_overflow_empty();
6242   increment_sweep_count();
6243   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6244 
6245   _inter_sweep_timer.stop();
6246   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6247 
6248   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6249   _intra_sweep_timer.reset();
6250   _intra_sweep_timer.start();
6251   if (asynch) {
6252     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6253     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
6254     // First sweep the old gen
6255     {
6256       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6257                                bitMapLock());
6258       sweepWork(_cmsGen, asynch);
6259     }
6260 
6261     // Update Universe::_heap_*_at_gc figures.
6262     // We need all the free list locks to make the abstract state
6263     // transition from Sweeping to Resetting. See detailed note
6264     // further below.
6265     {
6266       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6267       // Update heap occupancy information which is used as
6268       // input to soft ref clearing policy at the next gc.
6269       Universe::update_heap_info_at_gc();
6270       _collectorState = Resizing;
6271     }
6272   } else {
6273     // already have needed locks
6274     sweepWork(_cmsGen,  asynch);
6275     // Update heap occupancy information which is used as
6276     // input to soft ref clearing policy at the next gc.
6277     Universe::update_heap_info_at_gc();
6278     _collectorState = Resizing;
6279   }
6280   verify_work_stacks_empty();
6281   verify_overflow_empty();
6282 
6283   if (should_unload_classes()) {
6284     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
6285     // requires that the virtual spaces are stable and not deleted.
6286     ClassLoaderDataGraph::set_should_purge(true);
6287   }
6288 
6289   _intra_sweep_timer.stop();
6290   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6291 
6292   _inter_sweep_timer.reset();
6293   _inter_sweep_timer.start();
6294 
6295   // We need to use a monotonically non-decreasing time in ms
6296   // or we will see time-warp warnings and os::javaTimeMillis()
6297   // does not guarantee monotonicity.
6298   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6299   update_time_of_last_gc(now);
6300 
6301   // NOTE on abstract state transitions:
6302   // Mutators allocate-live and/or mark the mod-union table dirty
6303   // based on the state of the collection.  The former is done in
6304   // the interval [Marking, Sweeping] and the latter in the interval
6305   // [Marking, Sweeping).  Thus the transitions into the Marking state
6306   // and out of the Sweeping state must be synchronously visible
6307   // globally to the mutators.
6308   // The transition into the Marking state happens with the world
6309   // stopped so the mutators will globally see it.  Sweeping is
6310   // done asynchronously by the background collector so the transition
6311   // from the Sweeping state to the Resizing state must be done
6312   // under the freelistLock (as is the check for whether to
6313   // allocate-live and whether to dirty the mod-union table).
6314   assert(_collectorState == Resizing, "Change of collector state to"
6315     " Resizing must be done under the freelistLocks (plural)");
6316 
6317   // Now that sweeping has been completed, we clear
6318   // the incremental_collection_failed flag,
6319   // thus inviting a younger gen collection to promote into
6320   // this generation. If such a promotion may still fail,
6321   // the flag will be set again when a young collection is
6322   // attempted.
6323   GenCollectedHeap* gch = GenCollectedHeap::heap();
6324   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6325   gch->update_full_collections_completed(_collection_count_start);
6326 }
6327 
6328 // FIX ME!!! Looks like this belongs in CFLSpace, with
6329 // CMSGen merely delegating to it.
6330 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6331   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6332   HeapWord*  minAddr        = _cmsSpace->bottom();
6333   HeapWord*  largestAddr    =
6334     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6335   if (largestAddr == NULL) {
6336     // The dictionary appears to be empty.  In this case
6337     // try to coalesce at the end of the heap.
6338     largestAddr = _cmsSpace->end();
6339   }
6340   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6341   size_t nearLargestOffset =
6342     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6343   if (PrintFLSStatistics != 0) {
6344     gclog_or_tty->print_cr(
6345       "CMS: Large Block: " PTR_FORMAT ";"
6346       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6347       largestAddr,
6348       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6349   }
6350   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6351 }
6352 
6353 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6354   return addr >= _cmsSpace->nearLargestChunk();
6355 }
6356 
6357 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6358   return _cmsSpace->find_chunk_at_end();
6359 }
6360 
6361 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6362                                                     bool full) {
6363   // The next lower level has been collected.  Gather any statistics
6364   // that are of interest at this point.
6365   if (!full && (current_level + 1) == level()) {
6366     // Gather statistics on the young generation collection.
6367     collector()->stats().record_gc0_end(used());
6368   }
6369 }
6370 
6371 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6372   if (PrintGCDetails && Verbose) {
6373     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6374   }
6375   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6376   _debug_collection_type =
6377     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6378   if (PrintGCDetails && Verbose) {
6379     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6380   }
6381 }
6382 
6383 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6384   bool asynch) {
6385   // We iterate over the space(s) underlying this generation,
6386   // checking the mark bit map to see if the bits corresponding
6387   // to specific blocks are marked or not. Blocks that are
6388   // marked are live and are not swept up. All remaining blocks
6389   // are swept up, with coalescing on-the-fly as we sweep up
6390   // contiguous free and/or garbage blocks:
6391   // We need to ensure that the sweeper synchronizes with allocators
6392   // and stop-the-world collectors. In particular, the following
6393   // locks are used:
6394   // . CMS token: if this is held, a stop the world collection cannot occur
6395   // . freelistLock: if this is held no allocation can occur from this
6396   //                 generation by another thread
6397   // . bitMapLock: if this is held, no other thread can access or update
6398   //
6399 
6400   // Note that we need to hold the freelistLock if we use
6401   // block iterate below; else the iterator might go awry if
6402   // a mutator (or promotion) causes block contents to change
6403   // (for instance if the allocator divvies up a block).
6404   // If we hold the free list lock, for all practical purposes
6405   // young generation GC's can't occur (they'll usually need to
6406   // promote), so we might as well prevent all young generation
6407   // GC's while we do a sweeping step. For the same reason, we might
6408   // as well take the bit map lock for the entire duration
6409 
6410   // check that we hold the requisite locks
6411   assert(have_cms_token(), "Should hold cms token");
6412   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6413          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6414         "Should possess CMS token to sweep");
6415   assert_lock_strong(gen->freelistLock());
6416   assert_lock_strong(bitMapLock());
6417 
6418   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6419   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6420   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6421                                       _inter_sweep_estimate.padded_average(),
6422                                       _intra_sweep_estimate.padded_average());
6423   gen->setNearLargestChunk();
6424 
6425   {
6426     SweepClosure sweepClosure(this, gen, &_markBitMap,
6427                             CMSYield && asynch);
6428     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6429     // We need to free-up/coalesce garbage/blocks from a
6430     // co-terminal free run. This is done in the SweepClosure
6431     // destructor; so, do not remove this scope, else the
6432     // end-of-sweep-census below will be off by a little bit.
6433   }
6434   gen->cmsSpace()->sweep_completed();
6435   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6436   if (should_unload_classes()) {                // unloaded classes this cycle,
6437     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6438   } else {                                      // did not unload classes,
6439     _concurrent_cycles_since_last_unload++;     // ... increment count
6440   }
6441 }
6442 
6443 // Reset CMS data structures (for now just the marking bit map)
6444 // preparatory for the next cycle.
6445 void CMSCollector::reset(bool asynch) {
6446   if (asynch) {
6447     CMSTokenSyncWithLocks ts(true, bitMapLock());
6448 
6449     // If the state is not "Resetting", the foreground  thread
6450     // has done a collection and the resetting.
6451     if (_collectorState != Resetting) {
6452       assert(_collectorState == Idling, "The state should only change"
6453         " because the foreground collector has finished the collection");
6454       return;
6455     }
6456 
6457     // Clear the mark bitmap (no grey objects to start with)
6458     // for the next cycle.
6459     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6460     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
6461 
6462     HeapWord* curAddr = _markBitMap.startWord();
6463     while (curAddr < _markBitMap.endWord()) {
6464       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6465       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6466       _markBitMap.clear_large_range(chunk);
6467       if (ConcurrentMarkSweepThread::should_yield() &&
6468           !foregroundGCIsActive() &&
6469           CMSYield) {
6470         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6471                "CMS thread should hold CMS token");
6472         assert_lock_strong(bitMapLock());
6473         bitMapLock()->unlock();
6474         ConcurrentMarkSweepThread::desynchronize(true);
6475         ConcurrentMarkSweepThread::acknowledge_yield_request();
6476         stopTimer();
6477         if (PrintCMSStatistics != 0) {
6478           incrementYields();
6479         }
6480         icms_wait();
6481 
6482         // See the comment in coordinator_yield()
6483         for (unsigned i = 0; i < CMSYieldSleepCount &&
6484                          ConcurrentMarkSweepThread::should_yield() &&
6485                          !CMSCollector::foregroundGCIsActive(); ++i) {
6486           os::sleep(Thread::current(), 1, false);
6487           ConcurrentMarkSweepThread::acknowledge_yield_request();
6488         }
6489 
6490         ConcurrentMarkSweepThread::synchronize(true);
6491         bitMapLock()->lock_without_safepoint_check();
6492         startTimer();
6493       }
6494       curAddr = chunk.end();
6495     }
6496     // A successful mostly concurrent collection has been done.
6497     // Because only the full (i.e., concurrent mode failure) collections
6498     // are being measured for gc overhead limits, clean the "near" flag
6499     // and count.
6500     size_policy()->reset_gc_overhead_limit_count();
6501     _collectorState = Idling;
6502   } else {
6503     // already have the lock
6504     assert(_collectorState == Resetting, "just checking");
6505     assert_lock_strong(bitMapLock());
6506     _markBitMap.clear_all();
6507     _collectorState = Idling;
6508   }
6509 
6510   // Stop incremental mode after a cycle completes, so that any future cycles
6511   // are triggered by allocation.
6512   stop_icms();
6513 
6514   NOT_PRODUCT(
6515     if (RotateCMSCollectionTypes) {
6516       _cmsGen->rotate_debug_collection_type();
6517     }
6518   )
6519 
6520   register_gc_end();
6521 }
6522 
6523 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6524   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6525   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6526   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
6527   TraceCollectorStats tcs(counters());
6528 
6529   switch (op) {
6530     case CMS_op_checkpointRootsInitial: {
6531       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6532       checkpointRootsInitial(true);       // asynch
6533       if (PrintGC) {
6534         _cmsGen->printOccupancy("initial-mark");
6535       }
6536       break;
6537     }
6538     case CMS_op_checkpointRootsFinal: {
6539       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6540       checkpointRootsFinal(true,    // asynch
6541                            false,   // !clear_all_soft_refs
6542                            false);  // !init_mark_was_synchronous
6543       if (PrintGC) {
6544         _cmsGen->printOccupancy("remark");
6545       }
6546       break;
6547     }
6548     default:
6549       fatal("No such CMS_op");
6550   }
6551 }
6552 
6553 #ifndef PRODUCT
6554 size_t const CMSCollector::skip_header_HeapWords() {
6555   return FreeChunk::header_size();
6556 }
6557 
6558 // Try and collect here conditions that should hold when
6559 // CMS thread is exiting. The idea is that the foreground GC
6560 // thread should not be blocked if it wants to terminate
6561 // the CMS thread and yet continue to run the VM for a while
6562 // after that.
6563 void CMSCollector::verify_ok_to_terminate() const {
6564   assert(Thread::current()->is_ConcurrentGC_thread(),
6565          "should be called by CMS thread");
6566   assert(!_foregroundGCShouldWait, "should be false");
6567   // We could check here that all the various low-level locks
6568   // are not held by the CMS thread, but that is overkill; see
6569   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6570   // is checked.
6571 }
6572 #endif
6573 
6574 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6575    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6576           "missing Printezis mark?");
6577   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6578   size_t size = pointer_delta(nextOneAddr + 1, addr);
6579   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6580          "alignment problem");
6581   assert(size >= 3, "Necessary for Printezis marks to work");
6582   return size;
6583 }
6584 
6585 // A variant of the above (block_size_using_printezis_bits()) except
6586 // that we return 0 if the P-bits are not yet set.
6587 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6588   if (_markBitMap.isMarked(addr + 1)) {
6589     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6590     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6591     size_t size = pointer_delta(nextOneAddr + 1, addr);
6592     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6593            "alignment problem");
6594     assert(size >= 3, "Necessary for Printezis marks to work");
6595     return size;
6596   }
6597   return 0;
6598 }
6599 
6600 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6601   size_t sz = 0;
6602   oop p = (oop)addr;
6603   if (p->klass_or_null() != NULL) {
6604     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6605   } else {
6606     sz = block_size_using_printezis_bits(addr);
6607   }
6608   assert(sz > 0, "size must be nonzero");
6609   HeapWord* next_block = addr + sz;
6610   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6611                                              CardTableModRefBS::card_size);
6612   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6613          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6614          "must be different cards");
6615   return next_card;
6616 }
6617 
6618 
6619 // CMS Bit Map Wrapper /////////////////////////////////////////
6620 
6621 // Construct a CMS bit map infrastructure, but don't create the
6622 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6623 // further below.
6624 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6625   _bm(),
6626   _shifter(shifter),
6627   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6628 {
6629   _bmStartWord = 0;
6630   _bmWordSize  = 0;
6631 }
6632 
6633 bool CMSBitMap::allocate(MemRegion mr) {
6634   _bmStartWord = mr.start();
6635   _bmWordSize  = mr.word_size();
6636   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6637                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6638   if (!brs.is_reserved()) {
6639     warning("CMS bit map allocation failure");
6640     return false;
6641   }
6642   // For now we'll just commit all of the bit map up front.
6643   // Later on we'll try to be more parsimonious with swap.
6644   if (!_virtual_space.initialize(brs, brs.size())) {
6645     warning("CMS bit map backing store failure");
6646     return false;
6647   }
6648   assert(_virtual_space.committed_size() == brs.size(),
6649          "didn't reserve backing store for all of CMS bit map?");
6650   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6651   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6652          _bmWordSize, "inconsistency in bit map sizing");
6653   _bm.set_size(_bmWordSize >> _shifter);
6654 
6655   // bm.clear(); // can we rely on getting zero'd memory? verify below
6656   assert(isAllClear(),
6657          "Expected zero'd memory from ReservedSpace constructor");
6658   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6659          "consistency check");
6660   return true;
6661 }
6662 
6663 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6664   HeapWord *next_addr, *end_addr, *last_addr;
6665   assert_locked();
6666   assert(covers(mr), "out-of-range error");
6667   // XXX assert that start and end are appropriately aligned
6668   for (next_addr = mr.start(), end_addr = mr.end();
6669        next_addr < end_addr; next_addr = last_addr) {
6670     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6671     last_addr = dirty_region.end();
6672     if (!dirty_region.is_empty()) {
6673       cl->do_MemRegion(dirty_region);
6674     } else {
6675       assert(last_addr == end_addr, "program logic");
6676       return;
6677     }
6678   }
6679 }
6680 
6681 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
6682   _bm.print_on_error(st, prefix);
6683 }
6684 
6685 #ifndef PRODUCT
6686 void CMSBitMap::assert_locked() const {
6687   CMSLockVerifier::assert_locked(lock());
6688 }
6689 
6690 bool CMSBitMap::covers(MemRegion mr) const {
6691   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6692   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6693          "size inconsistency");
6694   return (mr.start() >= _bmStartWord) &&
6695          (mr.end()   <= endWord());
6696 }
6697 
6698 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6699     return (start >= _bmStartWord && (start + size) <= endWord());
6700 }
6701 
6702 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6703   // verify that there are no 1 bits in the interval [left, right)
6704   FalseBitMapClosure falseBitMapClosure;
6705   iterate(&falseBitMapClosure, left, right);
6706 }
6707 
6708 void CMSBitMap::region_invariant(MemRegion mr)
6709 {
6710   assert_locked();
6711   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6712   assert(!mr.is_empty(), "unexpected empty region");
6713   assert(covers(mr), "mr should be covered by bit map");
6714   // convert address range into offset range
6715   size_t start_ofs = heapWordToOffset(mr.start());
6716   // Make sure that end() is appropriately aligned
6717   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6718                         (1 << (_shifter+LogHeapWordSize))),
6719          "Misaligned mr.end()");
6720   size_t end_ofs   = heapWordToOffset(mr.end());
6721   assert(end_ofs > start_ofs, "Should mark at least one bit");
6722 }
6723 
6724 #endif
6725 
6726 bool CMSMarkStack::allocate(size_t size) {
6727   // allocate a stack of the requisite depth
6728   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6729                    size * sizeof(oop)));
6730   if (!rs.is_reserved()) {
6731     warning("CMSMarkStack allocation failure");
6732     return false;
6733   }
6734   if (!_virtual_space.initialize(rs, rs.size())) {
6735     warning("CMSMarkStack backing store failure");
6736     return false;
6737   }
6738   assert(_virtual_space.committed_size() == rs.size(),
6739          "didn't reserve backing store for all of CMS stack?");
6740   _base = (oop*)(_virtual_space.low());
6741   _index = 0;
6742   _capacity = size;
6743   NOT_PRODUCT(_max_depth = 0);
6744   return true;
6745 }
6746 
6747 // XXX FIX ME !!! In the MT case we come in here holding a
6748 // leaf lock. For printing we need to take a further lock
6749 // which has lower rank. We need to recalibrate the two
6750 // lock-ranks involved in order to be able to print the
6751 // messages below. (Or defer the printing to the caller.
6752 // For now we take the expedient path of just disabling the
6753 // messages for the problematic case.)
6754 void CMSMarkStack::expand() {
6755   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6756   if (_capacity == MarkStackSizeMax) {
6757     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6758       // We print a warning message only once per CMS cycle.
6759       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6760     }
6761     return;
6762   }
6763   // Double capacity if possible
6764   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6765   // Do not give up existing stack until we have managed to
6766   // get the double capacity that we desired.
6767   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6768                    new_capacity * sizeof(oop)));
6769   if (rs.is_reserved()) {
6770     // Release the backing store associated with old stack
6771     _virtual_space.release();
6772     // Reinitialize virtual space for new stack
6773     if (!_virtual_space.initialize(rs, rs.size())) {
6774       fatal("Not enough swap for expanded marking stack");
6775     }
6776     _base = (oop*)(_virtual_space.low());
6777     _index = 0;
6778     _capacity = new_capacity;
6779   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6780     // Failed to double capacity, continue;
6781     // we print a detail message only once per CMS cycle.
6782     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6783             SIZE_FORMAT"K",
6784             _capacity / K, new_capacity / K);
6785   }
6786 }
6787 
6788 
6789 // Closures
6790 // XXX: there seems to be a lot of code  duplication here;
6791 // should refactor and consolidate common code.
6792 
6793 // This closure is used to mark refs into the CMS generation in
6794 // the CMS bit map. Called at the first checkpoint. This closure
6795 // assumes that we do not need to re-mark dirty cards; if the CMS
6796 // generation on which this is used is not an oldest
6797 // generation then this will lose younger_gen cards!
6798 
6799 MarkRefsIntoClosure::MarkRefsIntoClosure(
6800   MemRegion span, CMSBitMap* bitMap):
6801     _span(span),
6802     _bitMap(bitMap)
6803 {
6804     assert(_ref_processor == NULL, "deliberately left NULL");
6805     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6806 }
6807 
6808 void MarkRefsIntoClosure::do_oop(oop obj) {
6809   // if p points into _span, then mark corresponding bit in _markBitMap
6810   assert(obj->is_oop(), "expected an oop");
6811   HeapWord* addr = (HeapWord*)obj;
6812   if (_span.contains(addr)) {
6813     // this should be made more efficient
6814     _bitMap->mark(addr);
6815   }
6816 }
6817 
6818 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6819 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6820 
6821 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6822   MemRegion span, CMSBitMap* bitMap):
6823     _span(span),
6824     _bitMap(bitMap)
6825 {
6826     assert(_ref_processor == NULL, "deliberately left NULL");
6827     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6828 }
6829 
6830 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6831   // if p points into _span, then mark corresponding bit in _markBitMap
6832   assert(obj->is_oop(), "expected an oop");
6833   HeapWord* addr = (HeapWord*)obj;
6834   if (_span.contains(addr)) {
6835     // this should be made more efficient
6836     _bitMap->par_mark(addr);
6837   }
6838 }
6839 
6840 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6841 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6842 
6843 // A variant of the above, used for CMS marking verification.
6844 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6845   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6846     _span(span),
6847     _verification_bm(verification_bm),
6848     _cms_bm(cms_bm)
6849 {
6850     assert(_ref_processor == NULL, "deliberately left NULL");
6851     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6852 }
6853 
6854 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6855   // if p points into _span, then mark corresponding bit in _markBitMap
6856   assert(obj->is_oop(), "expected an oop");
6857   HeapWord* addr = (HeapWord*)obj;
6858   if (_span.contains(addr)) {
6859     _verification_bm->mark(addr);
6860     if (!_cms_bm->isMarked(addr)) {
6861       oop(addr)->print();
6862       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6863       fatal("... aborting");
6864     }
6865   }
6866 }
6867 
6868 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6869 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6870 
6871 //////////////////////////////////////////////////
6872 // MarkRefsIntoAndScanClosure
6873 //////////////////////////////////////////////////
6874 
6875 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6876                                                        ReferenceProcessor* rp,
6877                                                        CMSBitMap* bit_map,
6878                                                        CMSBitMap* mod_union_table,
6879                                                        CMSMarkStack*  mark_stack,
6880                                                        CMSCollector* collector,
6881                                                        bool should_yield,
6882                                                        bool concurrent_precleaning):
6883   _collector(collector),
6884   _span(span),
6885   _bit_map(bit_map),
6886   _mark_stack(mark_stack),
6887   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6888                       mark_stack, concurrent_precleaning),
6889   _yield(should_yield),
6890   _concurrent_precleaning(concurrent_precleaning),
6891   _freelistLock(NULL)
6892 {
6893   _ref_processor = rp;
6894   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6895 }
6896 
6897 // This closure is used to mark refs into the CMS generation at the
6898 // second (final) checkpoint, and to scan and transitively follow
6899 // the unmarked oops. It is also used during the concurrent precleaning
6900 // phase while scanning objects on dirty cards in the CMS generation.
6901 // The marks are made in the marking bit map and the marking stack is
6902 // used for keeping the (newly) grey objects during the scan.
6903 // The parallel version (Par_...) appears further below.
6904 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6905   if (obj != NULL) {
6906     assert(obj->is_oop(), "expected an oop");
6907     HeapWord* addr = (HeapWord*)obj;
6908     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6909     assert(_collector->overflow_list_is_empty(),
6910            "overflow list should be empty");
6911     if (_span.contains(addr) &&
6912         !_bit_map->isMarked(addr)) {
6913       // mark bit map (object is now grey)
6914       _bit_map->mark(addr);
6915       // push on marking stack (stack should be empty), and drain the
6916       // stack by applying this closure to the oops in the oops popped
6917       // from the stack (i.e. blacken the grey objects)
6918       bool res = _mark_stack->push(obj);
6919       assert(res, "Should have space to push on empty stack");
6920       do {
6921         oop new_oop = _mark_stack->pop();
6922         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6923         assert(_bit_map->isMarked((HeapWord*)new_oop),
6924                "only grey objects on this stack");
6925         // iterate over the oops in this oop, marking and pushing
6926         // the ones in CMS heap (i.e. in _span).
6927         new_oop->oop_iterate(&_pushAndMarkClosure);
6928         // check if it's time to yield
6929         do_yield_check();
6930       } while (!_mark_stack->isEmpty() ||
6931                (!_concurrent_precleaning && take_from_overflow_list()));
6932         // if marking stack is empty, and we are not doing this
6933         // during precleaning, then check the overflow list
6934     }
6935     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6936     assert(_collector->overflow_list_is_empty(),
6937            "overflow list was drained above");
6938     // We could restore evacuated mark words, if any, used for
6939     // overflow list links here because the overflow list is
6940     // provably empty here. That would reduce the maximum
6941     // size requirements for preserved_{oop,mark}_stack.
6942     // But we'll just postpone it until we are all done
6943     // so we can just stream through.
6944     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6945       _collector->restore_preserved_marks_if_any();
6946       assert(_collector->no_preserved_marks(), "No preserved marks");
6947     }
6948     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6949            "All preserved marks should have been restored above");
6950   }
6951 }
6952 
6953 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6954 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6955 
6956 void MarkRefsIntoAndScanClosure::do_yield_work() {
6957   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6958          "CMS thread should hold CMS token");
6959   assert_lock_strong(_freelistLock);
6960   assert_lock_strong(_bit_map->lock());
6961   // relinquish the free_list_lock and bitMaplock()
6962   _bit_map->lock()->unlock();
6963   _freelistLock->unlock();
6964   ConcurrentMarkSweepThread::desynchronize(true);
6965   ConcurrentMarkSweepThread::acknowledge_yield_request();
6966   _collector->stopTimer();
6967   if (PrintCMSStatistics != 0) {
6968     _collector->incrementYields();
6969   }
6970   _collector->icms_wait();
6971 
6972   // See the comment in coordinator_yield()
6973   for (unsigned i = 0;
6974        i < CMSYieldSleepCount &&
6975        ConcurrentMarkSweepThread::should_yield() &&
6976        !CMSCollector::foregroundGCIsActive();
6977        ++i) {
6978     os::sleep(Thread::current(), 1, false);
6979     ConcurrentMarkSweepThread::acknowledge_yield_request();
6980   }
6981 
6982   ConcurrentMarkSweepThread::synchronize(true);
6983   _freelistLock->lock_without_safepoint_check();
6984   _bit_map->lock()->lock_without_safepoint_check();
6985   _collector->startTimer();
6986 }
6987 
6988 ///////////////////////////////////////////////////////////
6989 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6990 //                                 MarkRefsIntoAndScanClosure
6991 ///////////////////////////////////////////////////////////
6992 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6993   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6994   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6995   _span(span),
6996   _bit_map(bit_map),
6997   _work_queue(work_queue),
6998   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6999                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
7000   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
7001 {
7002   _ref_processor = rp;
7003   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7004 }
7005 
7006 // This closure is used to mark refs into the CMS generation at the
7007 // second (final) checkpoint, and to scan and transitively follow
7008 // the unmarked oops. The marks are made in the marking bit map and
7009 // the work_queue is used for keeping the (newly) grey objects during
7010 // the scan phase whence they are also available for stealing by parallel
7011 // threads. Since the marking bit map is shared, updates are
7012 // synchronized (via CAS).
7013 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
7014   if (obj != NULL) {
7015     // Ignore mark word because this could be an already marked oop
7016     // that may be chained at the end of the overflow list.
7017     assert(obj->is_oop(true), "expected an oop");
7018     HeapWord* addr = (HeapWord*)obj;
7019     if (_span.contains(addr) &&
7020         !_bit_map->isMarked(addr)) {
7021       // mark bit map (object will become grey):
7022       // It is possible for several threads to be
7023       // trying to "claim" this object concurrently;
7024       // the unique thread that succeeds in marking the
7025       // object first will do the subsequent push on
7026       // to the work queue (or overflow list).
7027       if (_bit_map->par_mark(addr)) {
7028         // push on work_queue (which may not be empty), and trim the
7029         // queue to an appropriate length by applying this closure to
7030         // the oops in the oops popped from the stack (i.e. blacken the
7031         // grey objects)
7032         bool res = _work_queue->push(obj);
7033         assert(res, "Low water mark should be less than capacity?");
7034         trim_queue(_low_water_mark);
7035       } // Else, another thread claimed the object
7036     }
7037   }
7038 }
7039 
7040 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7041 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7042 
7043 // This closure is used to rescan the marked objects on the dirty cards
7044 // in the mod union table and the card table proper.
7045 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
7046   oop p, MemRegion mr) {
7047 
7048   size_t size = 0;
7049   HeapWord* addr = (HeapWord*)p;
7050   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7051   assert(_span.contains(addr), "we are scanning the CMS generation");
7052   // check if it's time to yield
7053   if (do_yield_check()) {
7054     // We yielded for some foreground stop-world work,
7055     // and we have been asked to abort this ongoing preclean cycle.
7056     return 0;
7057   }
7058   if (_bitMap->isMarked(addr)) {
7059     // it's marked; is it potentially uninitialized?
7060     if (p->klass_or_null() != NULL) {
7061         // an initialized object; ignore mark word in verification below
7062         // since we are running concurrent with mutators
7063         assert(p->is_oop(true), "should be an oop");
7064         if (p->is_objArray()) {
7065           // objArrays are precisely marked; restrict scanning
7066           // to dirty cards only.
7067           size = CompactibleFreeListSpace::adjustObjectSize(
7068                    p->oop_iterate(_scanningClosure, mr));
7069         } else {
7070           // A non-array may have been imprecisely marked; we need
7071           // to scan object in its entirety.
7072           size = CompactibleFreeListSpace::adjustObjectSize(
7073                    p->oop_iterate(_scanningClosure));
7074         }
7075         #ifdef ASSERT
7076           size_t direct_size =
7077             CompactibleFreeListSpace::adjustObjectSize(p->size());
7078           assert(size == direct_size, "Inconsistency in size");
7079           assert(size >= 3, "Necessary for Printezis marks to work");
7080           if (!_bitMap->isMarked(addr+1)) {
7081             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
7082           } else {
7083             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
7084             assert(_bitMap->isMarked(addr+size-1),
7085                    "inconsistent Printezis mark");
7086           }
7087         #endif // ASSERT
7088     } else {
7089       // An uninitialized object.
7090       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
7091       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7092       size = pointer_delta(nextOneAddr + 1, addr);
7093       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7094              "alignment problem");
7095       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
7096       // will dirty the card when the klass pointer is installed in the
7097       // object (signaling the completion of initialization).
7098     }
7099   } else {
7100     // Either a not yet marked object or an uninitialized object
7101     if (p->klass_or_null() == NULL) {
7102       // An uninitialized object, skip to the next card, since
7103       // we may not be able to read its P-bits yet.
7104       assert(size == 0, "Initial value");
7105     } else {
7106       // An object not (yet) reached by marking: we merely need to
7107       // compute its size so as to go look at the next block.
7108       assert(p->is_oop(true), "should be an oop");
7109       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
7110     }
7111   }
7112   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7113   return size;
7114 }
7115 
7116 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
7117   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7118          "CMS thread should hold CMS token");
7119   assert_lock_strong(_freelistLock);
7120   assert_lock_strong(_bitMap->lock());
7121   // relinquish the free_list_lock and bitMaplock()
7122   _bitMap->lock()->unlock();
7123   _freelistLock->unlock();
7124   ConcurrentMarkSweepThread::desynchronize(true);
7125   ConcurrentMarkSweepThread::acknowledge_yield_request();
7126   _collector->stopTimer();
7127   if (PrintCMSStatistics != 0) {
7128     _collector->incrementYields();
7129   }
7130   _collector->icms_wait();
7131 
7132   // See the comment in coordinator_yield()
7133   for (unsigned i = 0; i < CMSYieldSleepCount &&
7134                    ConcurrentMarkSweepThread::should_yield() &&
7135                    !CMSCollector::foregroundGCIsActive(); ++i) {
7136     os::sleep(Thread::current(), 1, false);
7137     ConcurrentMarkSweepThread::acknowledge_yield_request();
7138   }
7139 
7140   ConcurrentMarkSweepThread::synchronize(true);
7141   _freelistLock->lock_without_safepoint_check();
7142   _bitMap->lock()->lock_without_safepoint_check();
7143   _collector->startTimer();
7144 }
7145 
7146 
7147 //////////////////////////////////////////////////////////////////
7148 // SurvivorSpacePrecleanClosure
7149 //////////////////////////////////////////////////////////////////
7150 // This (single-threaded) closure is used to preclean the oops in
7151 // the survivor spaces.
7152 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
7153 
7154   HeapWord* addr = (HeapWord*)p;
7155   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7156   assert(!_span.contains(addr), "we are scanning the survivor spaces");
7157   assert(p->klass_or_null() != NULL, "object should be initialized");
7158   // an initialized object; ignore mark word in verification below
7159   // since we are running concurrent with mutators
7160   assert(p->is_oop(true), "should be an oop");
7161   // Note that we do not yield while we iterate over
7162   // the interior oops of p, pushing the relevant ones
7163   // on our marking stack.
7164   size_t size = p->oop_iterate(_scanning_closure);
7165   do_yield_check();
7166   // Observe that below, we do not abandon the preclean
7167   // phase as soon as we should; rather we empty the
7168   // marking stack before returning. This is to satisfy
7169   // some existing assertions. In general, it may be a
7170   // good idea to abort immediately and complete the marking
7171   // from the grey objects at a later time.
7172   while (!_mark_stack->isEmpty()) {
7173     oop new_oop = _mark_stack->pop();
7174     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7175     assert(_bit_map->isMarked((HeapWord*)new_oop),
7176            "only grey objects on this stack");
7177     // iterate over the oops in this oop, marking and pushing
7178     // the ones in CMS heap (i.e. in _span).
7179     new_oop->oop_iterate(_scanning_closure);
7180     // check if it's time to yield
7181     do_yield_check();
7182   }
7183   unsigned int after_count =
7184     GenCollectedHeap::heap()->total_collections();
7185   bool abort = (_before_count != after_count) ||
7186                _collector->should_abort_preclean();
7187   return abort ? 0 : size;
7188 }
7189 
7190 void SurvivorSpacePrecleanClosure::do_yield_work() {
7191   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7192          "CMS thread should hold CMS token");
7193   assert_lock_strong(_bit_map->lock());
7194   // Relinquish the bit map lock
7195   _bit_map->lock()->unlock();
7196   ConcurrentMarkSweepThread::desynchronize(true);
7197   ConcurrentMarkSweepThread::acknowledge_yield_request();
7198   _collector->stopTimer();
7199   if (PrintCMSStatistics != 0) {
7200     _collector->incrementYields();
7201   }
7202   _collector->icms_wait();
7203 
7204   // See the comment in coordinator_yield()
7205   for (unsigned i = 0; i < CMSYieldSleepCount &&
7206                        ConcurrentMarkSweepThread::should_yield() &&
7207                        !CMSCollector::foregroundGCIsActive(); ++i) {
7208     os::sleep(Thread::current(), 1, false);
7209     ConcurrentMarkSweepThread::acknowledge_yield_request();
7210   }
7211 
7212   ConcurrentMarkSweepThread::synchronize(true);
7213   _bit_map->lock()->lock_without_safepoint_check();
7214   _collector->startTimer();
7215 }
7216 
7217 // This closure is used to rescan the marked objects on the dirty cards
7218 // in the mod union table and the card table proper. In the parallel
7219 // case, although the bitMap is shared, we do a single read so the
7220 // isMarked() query is "safe".
7221 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7222   // Ignore mark word because we are running concurrent with mutators
7223   assert(p->is_oop_or_null(true), "expected an oop or null");
7224   HeapWord* addr = (HeapWord*)p;
7225   assert(_span.contains(addr), "we are scanning the CMS generation");
7226   bool is_obj_array = false;
7227   #ifdef ASSERT
7228     if (!_parallel) {
7229       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7230       assert(_collector->overflow_list_is_empty(),
7231              "overflow list should be empty");
7232 
7233     }
7234   #endif // ASSERT
7235   if (_bit_map->isMarked(addr)) {
7236     // Obj arrays are precisely marked, non-arrays are not;
7237     // so we scan objArrays precisely and non-arrays in their
7238     // entirety.
7239     if (p->is_objArray()) {
7240       is_obj_array = true;
7241       if (_parallel) {
7242         p->oop_iterate(_par_scan_closure, mr);
7243       } else {
7244         p->oop_iterate(_scan_closure, mr);
7245       }
7246     } else {
7247       if (_parallel) {
7248         p->oop_iterate(_par_scan_closure);
7249       } else {
7250         p->oop_iterate(_scan_closure);
7251       }
7252     }
7253   }
7254   #ifdef ASSERT
7255     if (!_parallel) {
7256       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7257       assert(_collector->overflow_list_is_empty(),
7258              "overflow list should be empty");
7259 
7260     }
7261   #endif // ASSERT
7262   return is_obj_array;
7263 }
7264 
7265 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7266                         MemRegion span,
7267                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7268                         bool should_yield, bool verifying):
7269   _collector(collector),
7270   _span(span),
7271   _bitMap(bitMap),
7272   _mut(&collector->_modUnionTable),
7273   _markStack(markStack),
7274   _yield(should_yield),
7275   _skipBits(0)
7276 {
7277   assert(_markStack->isEmpty(), "stack should be empty");
7278   _finger = _bitMap->startWord();
7279   _threshold = _finger;
7280   assert(_collector->_restart_addr == NULL, "Sanity check");
7281   assert(_span.contains(_finger), "Out of bounds _finger?");
7282   DEBUG_ONLY(_verifying = verifying;)
7283 }
7284 
7285 void MarkFromRootsClosure::reset(HeapWord* addr) {
7286   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7287   assert(_span.contains(addr), "Out of bounds _finger?");
7288   _finger = addr;
7289   _threshold = (HeapWord*)round_to(
7290                  (intptr_t)_finger, CardTableModRefBS::card_size);
7291 }
7292 
7293 // Should revisit to see if this should be restructured for
7294 // greater efficiency.
7295 bool MarkFromRootsClosure::do_bit(size_t offset) {
7296   if (_skipBits > 0) {
7297     _skipBits--;
7298     return true;
7299   }
7300   // convert offset into a HeapWord*
7301   HeapWord* addr = _bitMap->startWord() + offset;
7302   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7303          "address out of range");
7304   assert(_bitMap->isMarked(addr), "tautology");
7305   if (_bitMap->isMarked(addr+1)) {
7306     // this is an allocated but not yet initialized object
7307     assert(_skipBits == 0, "tautology");
7308     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7309     oop p = oop(addr);
7310     if (p->klass_or_null() == NULL) {
7311       DEBUG_ONLY(if (!_verifying) {)
7312         // We re-dirty the cards on which this object lies and increase
7313         // the _threshold so that we'll come back to scan this object
7314         // during the preclean or remark phase. (CMSCleanOnEnter)
7315         if (CMSCleanOnEnter) {
7316           size_t sz = _collector->block_size_using_printezis_bits(addr);
7317           HeapWord* end_card_addr   = (HeapWord*)round_to(
7318                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7319           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7320           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7321           // Bump _threshold to end_card_addr; note that
7322           // _threshold cannot possibly exceed end_card_addr, anyhow.
7323           // This prevents future clearing of the card as the scan proceeds
7324           // to the right.
7325           assert(_threshold <= end_card_addr,
7326                  "Because we are just scanning into this object");
7327           if (_threshold < end_card_addr) {
7328             _threshold = end_card_addr;
7329           }
7330           if (p->klass_or_null() != NULL) {
7331             // Redirty the range of cards...
7332             _mut->mark_range(redirty_range);
7333           } // ...else the setting of klass will dirty the card anyway.
7334         }
7335       DEBUG_ONLY(})
7336       return true;
7337     }
7338   }
7339   scanOopsInOop(addr);
7340   return true;
7341 }
7342 
7343 // We take a break if we've been at this for a while,
7344 // so as to avoid monopolizing the locks involved.
7345 void MarkFromRootsClosure::do_yield_work() {
7346   // First give up the locks, then yield, then re-lock
7347   // We should probably use a constructor/destructor idiom to
7348   // do this unlock/lock or modify the MutexUnlocker class to
7349   // serve our purpose. XXX
7350   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7351          "CMS thread should hold CMS token");
7352   assert_lock_strong(_bitMap->lock());
7353   _bitMap->lock()->unlock();
7354   ConcurrentMarkSweepThread::desynchronize(true);
7355   ConcurrentMarkSweepThread::acknowledge_yield_request();
7356   _collector->stopTimer();
7357   if (PrintCMSStatistics != 0) {
7358     _collector->incrementYields();
7359   }
7360   _collector->icms_wait();
7361 
7362   // See the comment in coordinator_yield()
7363   for (unsigned i = 0; i < CMSYieldSleepCount &&
7364                        ConcurrentMarkSweepThread::should_yield() &&
7365                        !CMSCollector::foregroundGCIsActive(); ++i) {
7366     os::sleep(Thread::current(), 1, false);
7367     ConcurrentMarkSweepThread::acknowledge_yield_request();
7368   }
7369 
7370   ConcurrentMarkSweepThread::synchronize(true);
7371   _bitMap->lock()->lock_without_safepoint_check();
7372   _collector->startTimer();
7373 }
7374 
7375 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7376   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7377   assert(_markStack->isEmpty(),
7378          "should drain stack to limit stack usage");
7379   // convert ptr to an oop preparatory to scanning
7380   oop obj = oop(ptr);
7381   // Ignore mark word in verification below, since we
7382   // may be running concurrent with mutators.
7383   assert(obj->is_oop(true), "should be an oop");
7384   assert(_finger <= ptr, "_finger runneth ahead");
7385   // advance the finger to right end of this object
7386   _finger = ptr + obj->size();
7387   assert(_finger > ptr, "we just incremented it above");
7388   // On large heaps, it may take us some time to get through
7389   // the marking phase (especially if running iCMS). During
7390   // this time it's possible that a lot of mutations have
7391   // accumulated in the card table and the mod union table --
7392   // these mutation records are redundant until we have
7393   // actually traced into the corresponding card.
7394   // Here, we check whether advancing the finger would make
7395   // us cross into a new card, and if so clear corresponding
7396   // cards in the MUT (preclean them in the card-table in the
7397   // future).
7398 
7399   DEBUG_ONLY(if (!_verifying) {)
7400     // The clean-on-enter optimization is disabled by default,
7401     // until we fix 6178663.
7402     if (CMSCleanOnEnter && (_finger > _threshold)) {
7403       // [_threshold, _finger) represents the interval
7404       // of cards to be cleared  in MUT (or precleaned in card table).
7405       // The set of cards to be cleared is all those that overlap
7406       // with the interval [_threshold, _finger); note that
7407       // _threshold is always kept card-aligned but _finger isn't
7408       // always card-aligned.
7409       HeapWord* old_threshold = _threshold;
7410       assert(old_threshold == (HeapWord*)round_to(
7411               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7412              "_threshold should always be card-aligned");
7413       _threshold = (HeapWord*)round_to(
7414                      (intptr_t)_finger, CardTableModRefBS::card_size);
7415       MemRegion mr(old_threshold, _threshold);
7416       assert(!mr.is_empty(), "Control point invariant");
7417       assert(_span.contains(mr), "Should clear within span");
7418       _mut->clear_range(mr);
7419     }
7420   DEBUG_ONLY(})
7421   // Note: the finger doesn't advance while we drain
7422   // the stack below.
7423   PushOrMarkClosure pushOrMarkClosure(_collector,
7424                                       _span, _bitMap, _markStack,
7425                                       _finger, this);
7426   bool res = _markStack->push(obj);
7427   assert(res, "Empty non-zero size stack should have space for single push");
7428   while (!_markStack->isEmpty()) {
7429     oop new_oop = _markStack->pop();
7430     // Skip verifying header mark word below because we are
7431     // running concurrent with mutators.
7432     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7433     // now scan this oop's oops
7434     new_oop->oop_iterate(&pushOrMarkClosure);
7435     do_yield_check();
7436   }
7437   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7438 }
7439 
7440 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7441                        CMSCollector* collector, MemRegion span,
7442                        CMSBitMap* bit_map,
7443                        OopTaskQueue* work_queue,
7444                        CMSMarkStack*  overflow_stack,
7445                        bool should_yield):
7446   _collector(collector),
7447   _whole_span(collector->_span),
7448   _span(span),
7449   _bit_map(bit_map),
7450   _mut(&collector->_modUnionTable),
7451   _work_queue(work_queue),
7452   _overflow_stack(overflow_stack),
7453   _yield(should_yield),
7454   _skip_bits(0),
7455   _task(task)
7456 {
7457   assert(_work_queue->size() == 0, "work_queue should be empty");
7458   _finger = span.start();
7459   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7460   assert(_span.contains(_finger), "Out of bounds _finger?");
7461 }
7462 
7463 // Should revisit to see if this should be restructured for
7464 // greater efficiency.
7465 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7466   if (_skip_bits > 0) {
7467     _skip_bits--;
7468     return true;
7469   }
7470   // convert offset into a HeapWord*
7471   HeapWord* addr = _bit_map->startWord() + offset;
7472   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7473          "address out of range");
7474   assert(_bit_map->isMarked(addr), "tautology");
7475   if (_bit_map->isMarked(addr+1)) {
7476     // this is an allocated object that might not yet be initialized
7477     assert(_skip_bits == 0, "tautology");
7478     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7479     oop p = oop(addr);
7480     if (p->klass_or_null() == NULL) {
7481       // in the case of Clean-on-Enter optimization, redirty card
7482       // and avoid clearing card by increasing  the threshold.
7483       return true;
7484     }
7485   }
7486   scan_oops_in_oop(addr);
7487   return true;
7488 }
7489 
7490 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7491   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7492   // Should we assert that our work queue is empty or
7493   // below some drain limit?
7494   assert(_work_queue->size() == 0,
7495          "should drain stack to limit stack usage");
7496   // convert ptr to an oop preparatory to scanning
7497   oop obj = oop(ptr);
7498   // Ignore mark word in verification below, since we
7499   // may be running concurrent with mutators.
7500   assert(obj->is_oop(true), "should be an oop");
7501   assert(_finger <= ptr, "_finger runneth ahead");
7502   // advance the finger to right end of this object
7503   _finger = ptr + obj->size();
7504   assert(_finger > ptr, "we just incremented it above");
7505   // On large heaps, it may take us some time to get through
7506   // the marking phase (especially if running iCMS). During
7507   // this time it's possible that a lot of mutations have
7508   // accumulated in the card table and the mod union table --
7509   // these mutation records are redundant until we have
7510   // actually traced into the corresponding card.
7511   // Here, we check whether advancing the finger would make
7512   // us cross into a new card, and if so clear corresponding
7513   // cards in the MUT (preclean them in the card-table in the
7514   // future).
7515 
7516   // The clean-on-enter optimization is disabled by default,
7517   // until we fix 6178663.
7518   if (CMSCleanOnEnter && (_finger > _threshold)) {
7519     // [_threshold, _finger) represents the interval
7520     // of cards to be cleared  in MUT (or precleaned in card table).
7521     // The set of cards to be cleared is all those that overlap
7522     // with the interval [_threshold, _finger); note that
7523     // _threshold is always kept card-aligned but _finger isn't
7524     // always card-aligned.
7525     HeapWord* old_threshold = _threshold;
7526     assert(old_threshold == (HeapWord*)round_to(
7527             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7528            "_threshold should always be card-aligned");
7529     _threshold = (HeapWord*)round_to(
7530                    (intptr_t)_finger, CardTableModRefBS::card_size);
7531     MemRegion mr(old_threshold, _threshold);
7532     assert(!mr.is_empty(), "Control point invariant");
7533     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7534     _mut->clear_range(mr);
7535   }
7536 
7537   // Note: the local finger doesn't advance while we drain
7538   // the stack below, but the global finger sure can and will.
7539   HeapWord** gfa = _task->global_finger_addr();
7540   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7541                                       _span, _bit_map,
7542                                       _work_queue,
7543                                       _overflow_stack,
7544                                       _finger,
7545                                       gfa, this);
7546   bool res = _work_queue->push(obj);   // overflow could occur here
7547   assert(res, "Will hold once we use workqueues");
7548   while (true) {
7549     oop new_oop;
7550     if (!_work_queue->pop_local(new_oop)) {
7551       // We emptied our work_queue; check if there's stuff that can
7552       // be gotten from the overflow stack.
7553       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7554             _overflow_stack, _work_queue)) {
7555         do_yield_check();
7556         continue;
7557       } else {  // done
7558         break;
7559       }
7560     }
7561     // Skip verifying header mark word below because we are
7562     // running concurrent with mutators.
7563     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7564     // now scan this oop's oops
7565     new_oop->oop_iterate(&pushOrMarkClosure);
7566     do_yield_check();
7567   }
7568   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7569 }
7570 
7571 // Yield in response to a request from VM Thread or
7572 // from mutators.
7573 void Par_MarkFromRootsClosure::do_yield_work() {
7574   assert(_task != NULL, "sanity");
7575   _task->yield();
7576 }
7577 
7578 // A variant of the above used for verifying CMS marking work.
7579 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7580                         MemRegion span,
7581                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7582                         CMSMarkStack*  mark_stack):
7583   _collector(collector),
7584   _span(span),
7585   _verification_bm(verification_bm),
7586   _cms_bm(cms_bm),
7587   _mark_stack(mark_stack),
7588   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7589                       mark_stack)
7590 {
7591   assert(_mark_stack->isEmpty(), "stack should be empty");
7592   _finger = _verification_bm->startWord();
7593   assert(_collector->_restart_addr == NULL, "Sanity check");
7594   assert(_span.contains(_finger), "Out of bounds _finger?");
7595 }
7596 
7597 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7598   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7599   assert(_span.contains(addr), "Out of bounds _finger?");
7600   _finger = addr;
7601 }
7602 
7603 // Should revisit to see if this should be restructured for
7604 // greater efficiency.
7605 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7606   // convert offset into a HeapWord*
7607   HeapWord* addr = _verification_bm->startWord() + offset;
7608   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7609          "address out of range");
7610   assert(_verification_bm->isMarked(addr), "tautology");
7611   assert(_cms_bm->isMarked(addr), "tautology");
7612 
7613   assert(_mark_stack->isEmpty(),
7614          "should drain stack to limit stack usage");
7615   // convert addr to an oop preparatory to scanning
7616   oop obj = oop(addr);
7617   assert(obj->is_oop(), "should be an oop");
7618   assert(_finger <= addr, "_finger runneth ahead");
7619   // advance the finger to right end of this object
7620   _finger = addr + obj->size();
7621   assert(_finger > addr, "we just incremented it above");
7622   // Note: the finger doesn't advance while we drain
7623   // the stack below.
7624   bool res = _mark_stack->push(obj);
7625   assert(res, "Empty non-zero size stack should have space for single push");
7626   while (!_mark_stack->isEmpty()) {
7627     oop new_oop = _mark_stack->pop();
7628     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7629     // now scan this oop's oops
7630     // SSS: This is not devirtualized, opportunity to fix?
7631     new_oop->oop_iterate<false>(&_pam_verify_closure);
7632   }
7633   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7634   return true;
7635 }
7636 
7637 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7638   CMSCollector* collector, MemRegion span,
7639   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7640   CMSMarkStack*  mark_stack):
7641   MetadataAwareOopClosure(collector->ref_processor()),
7642   _collector(collector),
7643   _span(span),
7644   _verification_bm(verification_bm),
7645   _cms_bm(cms_bm),
7646   _mark_stack(mark_stack)
7647 { }
7648 
7649 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7650 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7651 
7652 // Upon stack overflow, we discard (part of) the stack,
7653 // remembering the least address amongst those discarded
7654 // in CMSCollector's _restart_address.
7655 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7656   // Remember the least grey address discarded
7657   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7658   _collector->lower_restart_addr(ra);
7659   _mark_stack->reset();  // discard stack contents
7660   _mark_stack->expand(); // expand the stack if possible
7661 }
7662 
7663 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7664   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7665   HeapWord* addr = (HeapWord*)obj;
7666   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7667     // Oop lies in _span and isn't yet grey or black
7668     _verification_bm->mark(addr);            // now grey
7669     if (!_cms_bm->isMarked(addr)) {
7670       oop(addr)->print();
7671       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7672                              addr);
7673       fatal("... aborting");
7674     }
7675 
7676     if (!_mark_stack->push(obj)) { // stack overflow
7677       if (PrintCMSStatistics != 0) {
7678         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7679                                SIZE_FORMAT, _mark_stack->capacity());
7680       }
7681       assert(_mark_stack->isFull(), "Else push should have succeeded");
7682       handle_stack_overflow(addr);
7683     }
7684     // anything including and to the right of _finger
7685     // will be scanned as we iterate over the remainder of the
7686     // bit map
7687   }
7688 }
7689 
7690 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7691                      MemRegion span,
7692                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7693                      HeapWord* finger, MarkFromRootsClosure* parent) :
7694   MetadataAwareOopClosure(collector->ref_processor()),
7695   _collector(collector),
7696   _span(span),
7697   _bitMap(bitMap),
7698   _markStack(markStack),
7699   _finger(finger),
7700   _parent(parent)
7701 { }
7702 
7703 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7704                      MemRegion span,
7705                      CMSBitMap* bit_map,
7706                      OopTaskQueue* work_queue,
7707                      CMSMarkStack*  overflow_stack,
7708                      HeapWord* finger,
7709                      HeapWord** global_finger_addr,
7710                      Par_MarkFromRootsClosure* parent) :
7711   MetadataAwareOopClosure(collector->ref_processor()),
7712   _collector(collector),
7713   _whole_span(collector->_span),
7714   _span(span),
7715   _bit_map(bit_map),
7716   _work_queue(work_queue),
7717   _overflow_stack(overflow_stack),
7718   _finger(finger),
7719   _global_finger_addr(global_finger_addr),
7720   _parent(parent)
7721 { }
7722 
7723 // Assumes thread-safe access by callers, who are
7724 // responsible for mutual exclusion.
7725 void CMSCollector::lower_restart_addr(HeapWord* low) {
7726   assert(_span.contains(low), "Out of bounds addr");
7727   if (_restart_addr == NULL) {
7728     _restart_addr = low;
7729   } else {
7730     _restart_addr = MIN2(_restart_addr, low);
7731   }
7732 }
7733 
7734 // Upon stack overflow, we discard (part of) the stack,
7735 // remembering the least address amongst those discarded
7736 // in CMSCollector's _restart_address.
7737 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7738   // Remember the least grey address discarded
7739   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7740   _collector->lower_restart_addr(ra);
7741   _markStack->reset();  // discard stack contents
7742   _markStack->expand(); // expand the stack if possible
7743 }
7744 
7745 // Upon stack overflow, we discard (part of) the stack,
7746 // remembering the least address amongst those discarded
7747 // in CMSCollector's _restart_address.
7748 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7749   // We need to do this under a mutex to prevent other
7750   // workers from interfering with the work done below.
7751   MutexLockerEx ml(_overflow_stack->par_lock(),
7752                    Mutex::_no_safepoint_check_flag);
7753   // Remember the least grey address discarded
7754   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7755   _collector->lower_restart_addr(ra);
7756   _overflow_stack->reset();  // discard stack contents
7757   _overflow_stack->expand(); // expand the stack if possible
7758 }
7759 
7760 void PushOrMarkClosure::do_oop(oop obj) {
7761   // Ignore mark word because we are running concurrent with mutators.
7762   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7763   HeapWord* addr = (HeapWord*)obj;
7764   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7765     // Oop lies in _span and isn't yet grey or black
7766     _bitMap->mark(addr);            // now grey
7767     if (addr < _finger) {
7768       // the bit map iteration has already either passed, or
7769       // sampled, this bit in the bit map; we'll need to
7770       // use the marking stack to scan this oop's oops.
7771       bool simulate_overflow = false;
7772       NOT_PRODUCT(
7773         if (CMSMarkStackOverflowALot &&
7774             _collector->simulate_overflow()) {
7775           // simulate a stack overflow
7776           simulate_overflow = true;
7777         }
7778       )
7779       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7780         if (PrintCMSStatistics != 0) {
7781           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7782                                  SIZE_FORMAT, _markStack->capacity());
7783         }
7784         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7785         handle_stack_overflow(addr);
7786       }
7787     }
7788     // anything including and to the right of _finger
7789     // will be scanned as we iterate over the remainder of the
7790     // bit map
7791     do_yield_check();
7792   }
7793 }
7794 
7795 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7796 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7797 
7798 void Par_PushOrMarkClosure::do_oop(oop obj) {
7799   // Ignore mark word because we are running concurrent with mutators.
7800   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7801   HeapWord* addr = (HeapWord*)obj;
7802   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7803     // Oop lies in _span and isn't yet grey or black
7804     // We read the global_finger (volatile read) strictly after marking oop
7805     bool res = _bit_map->par_mark(addr);    // now grey
7806     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7807     // Should we push this marked oop on our stack?
7808     // -- if someone else marked it, nothing to do
7809     // -- if target oop is above global finger nothing to do
7810     // -- if target oop is in chunk and above local finger
7811     //      then nothing to do
7812     // -- else push on work queue
7813     if (   !res       // someone else marked it, they will deal with it
7814         || (addr >= *gfa)  // will be scanned in a later task
7815         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7816       return;
7817     }
7818     // the bit map iteration has already either passed, or
7819     // sampled, this bit in the bit map; we'll need to
7820     // use the marking stack to scan this oop's oops.
7821     bool simulate_overflow = false;
7822     NOT_PRODUCT(
7823       if (CMSMarkStackOverflowALot &&
7824           _collector->simulate_overflow()) {
7825         // simulate a stack overflow
7826         simulate_overflow = true;
7827       }
7828     )
7829     if (simulate_overflow ||
7830         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7831       // stack overflow
7832       if (PrintCMSStatistics != 0) {
7833         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7834                                SIZE_FORMAT, _overflow_stack->capacity());
7835       }
7836       // We cannot assert that the overflow stack is full because
7837       // it may have been emptied since.
7838       assert(simulate_overflow ||
7839              _work_queue->size() == _work_queue->max_elems(),
7840             "Else push should have succeeded");
7841       handle_stack_overflow(addr);
7842     }
7843     do_yield_check();
7844   }
7845 }
7846 
7847 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7848 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7849 
7850 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7851                                        MemRegion span,
7852                                        ReferenceProcessor* rp,
7853                                        CMSBitMap* bit_map,
7854                                        CMSBitMap* mod_union_table,
7855                                        CMSMarkStack*  mark_stack,
7856                                        bool           concurrent_precleaning):
7857   MetadataAwareOopClosure(rp),
7858   _collector(collector),
7859   _span(span),
7860   _bit_map(bit_map),
7861   _mod_union_table(mod_union_table),
7862   _mark_stack(mark_stack),
7863   _concurrent_precleaning(concurrent_precleaning)
7864 {
7865   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7866 }
7867 
7868 // Grey object rescan during pre-cleaning and second checkpoint phases --
7869 // the non-parallel version (the parallel version appears further below.)
7870 void PushAndMarkClosure::do_oop(oop obj) {
7871   // Ignore mark word verification. If during concurrent precleaning,
7872   // the object monitor may be locked. If during the checkpoint
7873   // phases, the object may already have been reached by a  different
7874   // path and may be at the end of the global overflow list (so
7875   // the mark word may be NULL).
7876   assert(obj->is_oop_or_null(true /* ignore mark word */),
7877          "expected an oop or NULL");
7878   HeapWord* addr = (HeapWord*)obj;
7879   // Check if oop points into the CMS generation
7880   // and is not marked
7881   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7882     // a white object ...
7883     _bit_map->mark(addr);         // ... now grey
7884     // push on the marking stack (grey set)
7885     bool simulate_overflow = false;
7886     NOT_PRODUCT(
7887       if (CMSMarkStackOverflowALot &&
7888           _collector->simulate_overflow()) {
7889         // simulate a stack overflow
7890         simulate_overflow = true;
7891       }
7892     )
7893     if (simulate_overflow || !_mark_stack->push(obj)) {
7894       if (_concurrent_precleaning) {
7895          // During precleaning we can just dirty the appropriate card(s)
7896          // in the mod union table, thus ensuring that the object remains
7897          // in the grey set  and continue. In the case of object arrays
7898          // we need to dirty all of the cards that the object spans,
7899          // since the rescan of object arrays will be limited to the
7900          // dirty cards.
7901          // Note that no one can be interfering with us in this action
7902          // of dirtying the mod union table, so no locking or atomics
7903          // are required.
7904          if (obj->is_objArray()) {
7905            size_t sz = obj->size();
7906            HeapWord* end_card_addr = (HeapWord*)round_to(
7907                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7908            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7909            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7910            _mod_union_table->mark_range(redirty_range);
7911          } else {
7912            _mod_union_table->mark(addr);
7913          }
7914          _collector->_ser_pmc_preclean_ovflw++;
7915       } else {
7916          // During the remark phase, we need to remember this oop
7917          // in the overflow list.
7918          _collector->push_on_overflow_list(obj);
7919          _collector->_ser_pmc_remark_ovflw++;
7920       }
7921     }
7922   }
7923 }
7924 
7925 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7926                                                MemRegion span,
7927                                                ReferenceProcessor* rp,
7928                                                CMSBitMap* bit_map,
7929                                                OopTaskQueue* work_queue):
7930   MetadataAwareOopClosure(rp),
7931   _collector(collector),
7932   _span(span),
7933   _bit_map(bit_map),
7934   _work_queue(work_queue)
7935 {
7936   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7937 }
7938 
7939 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7940 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7941 
7942 // Grey object rescan during second checkpoint phase --
7943 // the parallel version.
7944 void Par_PushAndMarkClosure::do_oop(oop obj) {
7945   // In the assert below, we ignore the mark word because
7946   // this oop may point to an already visited object that is
7947   // on the overflow stack (in which case the mark word has
7948   // been hijacked for chaining into the overflow stack --
7949   // if this is the last object in the overflow stack then
7950   // its mark word will be NULL). Because this object may
7951   // have been subsequently popped off the global overflow
7952   // stack, and the mark word possibly restored to the prototypical
7953   // value, by the time we get to examined this failing assert in
7954   // the debugger, is_oop_or_null(false) may subsequently start
7955   // to hold.
7956   assert(obj->is_oop_or_null(true),
7957          "expected an oop or NULL");
7958   HeapWord* addr = (HeapWord*)obj;
7959   // Check if oop points into the CMS generation
7960   // and is not marked
7961   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7962     // a white object ...
7963     // If we manage to "claim" the object, by being the
7964     // first thread to mark it, then we push it on our
7965     // marking stack
7966     if (_bit_map->par_mark(addr)) {     // ... now grey
7967       // push on work queue (grey set)
7968       bool simulate_overflow = false;
7969       NOT_PRODUCT(
7970         if (CMSMarkStackOverflowALot &&
7971             _collector->par_simulate_overflow()) {
7972           // simulate a stack overflow
7973           simulate_overflow = true;
7974         }
7975       )
7976       if (simulate_overflow || !_work_queue->push(obj)) {
7977         _collector->par_push_on_overflow_list(obj);
7978         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7979       }
7980     } // Else, some other thread got there first
7981   }
7982 }
7983 
7984 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7985 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7986 
7987 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7988   Mutex* bml = _collector->bitMapLock();
7989   assert_lock_strong(bml);
7990   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7991          "CMS thread should hold CMS token");
7992 
7993   bml->unlock();
7994   ConcurrentMarkSweepThread::desynchronize(true);
7995 
7996   ConcurrentMarkSweepThread::acknowledge_yield_request();
7997 
7998   _collector->stopTimer();
7999   if (PrintCMSStatistics != 0) {
8000     _collector->incrementYields();
8001   }
8002   _collector->icms_wait();
8003 
8004   // See the comment in coordinator_yield()
8005   for (unsigned i = 0; i < CMSYieldSleepCount &&
8006                        ConcurrentMarkSweepThread::should_yield() &&
8007                        !CMSCollector::foregroundGCIsActive(); ++i) {
8008     os::sleep(Thread::current(), 1, false);
8009     ConcurrentMarkSweepThread::acknowledge_yield_request();
8010   }
8011 
8012   ConcurrentMarkSweepThread::synchronize(true);
8013   bml->lock();
8014 
8015   _collector->startTimer();
8016 }
8017 
8018 bool CMSPrecleanRefsYieldClosure::should_return() {
8019   if (ConcurrentMarkSweepThread::should_yield()) {
8020     do_yield_work();
8021   }
8022   return _collector->foregroundGCIsActive();
8023 }
8024 
8025 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
8026   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
8027          "mr should be aligned to start at a card boundary");
8028   // We'd like to assert:
8029   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
8030   //        "mr should be a range of cards");
8031   // However, that would be too strong in one case -- the last
8032   // partition ends at _unallocated_block which, in general, can be
8033   // an arbitrary boundary, not necessarily card aligned.
8034   if (PrintCMSStatistics != 0) {
8035     _num_dirty_cards +=
8036          mr.word_size()/CardTableModRefBS::card_size_in_words;
8037   }
8038   _space->object_iterate_mem(mr, &_scan_cl);
8039 }
8040 
8041 SweepClosure::SweepClosure(CMSCollector* collector,
8042                            ConcurrentMarkSweepGeneration* g,
8043                            CMSBitMap* bitMap, bool should_yield) :
8044   _collector(collector),
8045   _g(g),
8046   _sp(g->cmsSpace()),
8047   _limit(_sp->sweep_limit()),
8048   _freelistLock(_sp->freelistLock()),
8049   _bitMap(bitMap),
8050   _yield(should_yield),
8051   _inFreeRange(false),           // No free range at beginning of sweep
8052   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
8053   _lastFreeRangeCoalesced(false),
8054   _freeFinger(g->used_region().start())
8055 {
8056   NOT_PRODUCT(
8057     _numObjectsFreed = 0;
8058     _numWordsFreed   = 0;
8059     _numObjectsLive = 0;
8060     _numWordsLive = 0;
8061     _numObjectsAlreadyFree = 0;
8062     _numWordsAlreadyFree = 0;
8063     _last_fc = NULL;
8064 
8065     _sp->initializeIndexedFreeListArrayReturnedBytes();
8066     _sp->dictionary()->initialize_dict_returned_bytes();
8067   )
8068   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8069          "sweep _limit out of bounds");
8070   if (CMSTraceSweeper) {
8071     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
8072                         _limit);
8073   }
8074 }
8075 
8076 void SweepClosure::print_on(outputStream* st) const {
8077   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
8078                 _sp->bottom(), _sp->end());
8079   tty->print_cr("_limit = " PTR_FORMAT, _limit);
8080   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
8081   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
8082   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
8083                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
8084 }
8085 
8086 #ifndef PRODUCT
8087 // Assertion checking only:  no useful work in product mode --
8088 // however, if any of the flags below become product flags,
8089 // you may need to review this code to see if it needs to be
8090 // enabled in product mode.
8091 SweepClosure::~SweepClosure() {
8092   assert_lock_strong(_freelistLock);
8093   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8094          "sweep _limit out of bounds");
8095   if (inFreeRange()) {
8096     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
8097     print();
8098     ShouldNotReachHere();
8099   }
8100   if (Verbose && PrintGC) {
8101     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
8102                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
8103     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
8104                            SIZE_FORMAT" bytes  "
8105       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
8106       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
8107       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
8108     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
8109                         * sizeof(HeapWord);
8110     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
8111 
8112     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
8113       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
8114       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
8115       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
8116       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
8117       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
8118         indexListReturnedBytes);
8119       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
8120         dict_returned_bytes);
8121     }
8122   }
8123   if (CMSTraceSweeper) {
8124     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
8125                            _limit);
8126   }
8127 }
8128 #endif  // PRODUCT
8129 
8130 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
8131     bool freeRangeInFreeLists) {
8132   if (CMSTraceSweeper) {
8133     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
8134                freeFinger, freeRangeInFreeLists);
8135   }
8136   assert(!inFreeRange(), "Trampling existing free range");
8137   set_inFreeRange(true);
8138   set_lastFreeRangeCoalesced(false);
8139 
8140   set_freeFinger(freeFinger);
8141   set_freeRangeInFreeLists(freeRangeInFreeLists);
8142   if (CMSTestInFreeList) {
8143     if (freeRangeInFreeLists) {
8144       FreeChunk* fc = (FreeChunk*) freeFinger;
8145       assert(fc->is_free(), "A chunk on the free list should be free.");
8146       assert(fc->size() > 0, "Free range should have a size");
8147       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
8148     }
8149   }
8150 }
8151 
8152 // Note that the sweeper runs concurrently with mutators. Thus,
8153 // it is possible for direct allocation in this generation to happen
8154 // in the middle of the sweep. Note that the sweeper also coalesces
8155 // contiguous free blocks. Thus, unless the sweeper and the allocator
8156 // synchronize appropriately freshly allocated blocks may get swept up.
8157 // This is accomplished by the sweeper locking the free lists while
8158 // it is sweeping. Thus blocks that are determined to be free are
8159 // indeed free. There is however one additional complication:
8160 // blocks that have been allocated since the final checkpoint and
8161 // mark, will not have been marked and so would be treated as
8162 // unreachable and swept up. To prevent this, the allocator marks
8163 // the bit map when allocating during the sweep phase. This leads,
8164 // however, to a further complication -- objects may have been allocated
8165 // but not yet initialized -- in the sense that the header isn't yet
8166 // installed. The sweeper can not then determine the size of the block
8167 // in order to skip over it. To deal with this case, we use a technique
8168 // (due to Printezis) to encode such uninitialized block sizes in the
8169 // bit map. Since the bit map uses a bit per every HeapWord, but the
8170 // CMS generation has a minimum object size of 3 HeapWords, it follows
8171 // that "normal marks" won't be adjacent in the bit map (there will
8172 // always be at least two 0 bits between successive 1 bits). We make use
8173 // of these "unused" bits to represent uninitialized blocks -- the bit
8174 // corresponding to the start of the uninitialized object and the next
8175 // bit are both set. Finally, a 1 bit marks the end of the object that
8176 // started with the two consecutive 1 bits to indicate its potentially
8177 // uninitialized state.
8178 
8179 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8180   FreeChunk* fc = (FreeChunk*)addr;
8181   size_t res;
8182 
8183   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8184   // than "addr == _limit" because although _limit was a block boundary when
8185   // we started the sweep, it may no longer be one because heap expansion
8186   // may have caused us to coalesce the block ending at the address _limit
8187   // with a newly expanded chunk (this happens when _limit was set to the
8188   // previous _end of the space), so we may have stepped past _limit:
8189   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8190   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8191     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8192            "sweep _limit out of bounds");
8193     assert(addr < _sp->end(), "addr out of bounds");
8194     // Flush any free range we might be holding as a single
8195     // coalesced chunk to the appropriate free list.
8196     if (inFreeRange()) {
8197       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8198              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8199       flush_cur_free_chunk(freeFinger(),
8200                            pointer_delta(addr, freeFinger()));
8201       if (CMSTraceSweeper) {
8202         gclog_or_tty->print("Sweep: last chunk: ");
8203         gclog_or_tty->print("put_free_blk " PTR_FORMAT " ("SIZE_FORMAT") "
8204                    "[coalesced:%d]\n",
8205                    freeFinger(), pointer_delta(addr, freeFinger()),
8206                    lastFreeRangeCoalesced() ? 1 : 0);
8207       }
8208     }
8209 
8210     // help the iterator loop finish
8211     return pointer_delta(_sp->end(), addr);
8212   }
8213 
8214   assert(addr < _limit, "sweep invariant");
8215   // check if we should yield
8216   do_yield_check(addr);
8217   if (fc->is_free()) {
8218     // Chunk that is already free
8219     res = fc->size();
8220     do_already_free_chunk(fc);
8221     debug_only(_sp->verifyFreeLists());
8222     // If we flush the chunk at hand in lookahead_and_flush()
8223     // and it's coalesced with a preceding chunk, then the
8224     // process of "mangling" the payload of the coalesced block
8225     // will cause erasure of the size information from the
8226     // (erstwhile) header of all the coalesced blocks but the
8227     // first, so the first disjunct in the assert will not hold
8228     // in that specific case (in which case the second disjunct
8229     // will hold).
8230     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8231            "Otherwise the size info doesn't change at this step");
8232     NOT_PRODUCT(
8233       _numObjectsAlreadyFree++;
8234       _numWordsAlreadyFree += res;
8235     )
8236     NOT_PRODUCT(_last_fc = fc;)
8237   } else if (!_bitMap->isMarked(addr)) {
8238     // Chunk is fresh garbage
8239     res = do_garbage_chunk(fc);
8240     debug_only(_sp->verifyFreeLists());
8241     NOT_PRODUCT(
8242       _numObjectsFreed++;
8243       _numWordsFreed += res;
8244     )
8245   } else {
8246     // Chunk that is alive.
8247     res = do_live_chunk(fc);
8248     debug_only(_sp->verifyFreeLists());
8249     NOT_PRODUCT(
8250         _numObjectsLive++;
8251         _numWordsLive += res;
8252     )
8253   }
8254   return res;
8255 }
8256 
8257 // For the smart allocation, record following
8258 //  split deaths - a free chunk is removed from its free list because
8259 //      it is being split into two or more chunks.
8260 //  split birth - a free chunk is being added to its free list because
8261 //      a larger free chunk has been split and resulted in this free chunk.
8262 //  coal death - a free chunk is being removed from its free list because
8263 //      it is being coalesced into a large free chunk.
8264 //  coal birth - a free chunk is being added to its free list because
8265 //      it was created when two or more free chunks where coalesced into
8266 //      this free chunk.
8267 //
8268 // These statistics are used to determine the desired number of free
8269 // chunks of a given size.  The desired number is chosen to be relative
8270 // to the end of a CMS sweep.  The desired number at the end of a sweep
8271 // is the
8272 //      count-at-end-of-previous-sweep (an amount that was enough)
8273 //              - count-at-beginning-of-current-sweep  (the excess)
8274 //              + split-births  (gains in this size during interval)
8275 //              - split-deaths  (demands on this size during interval)
8276 // where the interval is from the end of one sweep to the end of the
8277 // next.
8278 //
8279 // When sweeping the sweeper maintains an accumulated chunk which is
8280 // the chunk that is made up of chunks that have been coalesced.  That
8281 // will be termed the left-hand chunk.  A new chunk of garbage that
8282 // is being considered for coalescing will be referred to as the
8283 // right-hand chunk.
8284 //
8285 // When making a decision on whether to coalesce a right-hand chunk with
8286 // the current left-hand chunk, the current count vs. the desired count
8287 // of the left-hand chunk is considered.  Also if the right-hand chunk
8288 // is near the large chunk at the end of the heap (see
8289 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8290 // left-hand chunk is coalesced.
8291 //
8292 // When making a decision about whether to split a chunk, the desired count
8293 // vs. the current count of the candidate to be split is also considered.
8294 // If the candidate is underpopulated (currently fewer chunks than desired)
8295 // a chunk of an overpopulated (currently more chunks than desired) size may
8296 // be chosen.  The "hint" associated with a free list, if non-null, points
8297 // to a free list which may be overpopulated.
8298 //
8299 
8300 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8301   const size_t size = fc->size();
8302   // Chunks that cannot be coalesced are not in the
8303   // free lists.
8304   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8305     assert(_sp->verify_chunk_in_free_list(fc),
8306       "free chunk should be in free lists");
8307   }
8308   // a chunk that is already free, should not have been
8309   // marked in the bit map
8310   HeapWord* const addr = (HeapWord*) fc;
8311   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8312   // Verify that the bit map has no bits marked between
8313   // addr and purported end of this block.
8314   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8315 
8316   // Some chunks cannot be coalesced under any circumstances.
8317   // See the definition of cantCoalesce().
8318   if (!fc->cantCoalesce()) {
8319     // This chunk can potentially be coalesced.
8320     if (_sp->adaptive_freelists()) {
8321       // All the work is done in
8322       do_post_free_or_garbage_chunk(fc, size);
8323     } else {  // Not adaptive free lists
8324       // this is a free chunk that can potentially be coalesced by the sweeper;
8325       if (!inFreeRange()) {
8326         // if the next chunk is a free block that can't be coalesced
8327         // it doesn't make sense to remove this chunk from the free lists
8328         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8329         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8330         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8331             nextChunk->is_free()               &&     // ... which is free...
8332             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8333           // nothing to do
8334         } else {
8335           // Potentially the start of a new free range:
8336           // Don't eagerly remove it from the free lists.
8337           // No need to remove it if it will just be put
8338           // back again.  (Also from a pragmatic point of view
8339           // if it is a free block in a region that is beyond
8340           // any allocated blocks, an assertion will fail)
8341           // Remember the start of a free run.
8342           initialize_free_range(addr, true);
8343           // end - can coalesce with next chunk
8344         }
8345       } else {
8346         // the midst of a free range, we are coalescing
8347         print_free_block_coalesced(fc);
8348         if (CMSTraceSweeper) {
8349           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", fc, size);
8350         }
8351         // remove it from the free lists
8352         _sp->removeFreeChunkFromFreeLists(fc);
8353         set_lastFreeRangeCoalesced(true);
8354         // If the chunk is being coalesced and the current free range is
8355         // in the free lists, remove the current free range so that it
8356         // will be returned to the free lists in its entirety - all
8357         // the coalesced pieces included.
8358         if (freeRangeInFreeLists()) {
8359           FreeChunk* ffc = (FreeChunk*) freeFinger();
8360           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8361             "Size of free range is inconsistent with chunk size.");
8362           if (CMSTestInFreeList) {
8363             assert(_sp->verify_chunk_in_free_list(ffc),
8364               "free range is not in free lists");
8365           }
8366           _sp->removeFreeChunkFromFreeLists(ffc);
8367           set_freeRangeInFreeLists(false);
8368         }
8369       }
8370     }
8371     // Note that if the chunk is not coalescable (the else arm
8372     // below), we unconditionally flush, without needing to do
8373     // a "lookahead," as we do below.
8374     if (inFreeRange()) lookahead_and_flush(fc, size);
8375   } else {
8376     // Code path common to both original and adaptive free lists.
8377 
8378     // cant coalesce with previous block; this should be treated
8379     // as the end of a free run if any
8380     if (inFreeRange()) {
8381       // we kicked some butt; time to pick up the garbage
8382       assert(freeFinger() < addr, "freeFinger points too high");
8383       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8384     }
8385     // else, nothing to do, just continue
8386   }
8387 }
8388 
8389 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8390   // This is a chunk of garbage.  It is not in any free list.
8391   // Add it to a free list or let it possibly be coalesced into
8392   // a larger chunk.
8393   HeapWord* const addr = (HeapWord*) fc;
8394   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8395 
8396   if (_sp->adaptive_freelists()) {
8397     // Verify that the bit map has no bits marked between
8398     // addr and purported end of just dead object.
8399     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8400 
8401     do_post_free_or_garbage_chunk(fc, size);
8402   } else {
8403     if (!inFreeRange()) {
8404       // start of a new free range
8405       assert(size > 0, "A free range should have a size");
8406       initialize_free_range(addr, false);
8407     } else {
8408       // this will be swept up when we hit the end of the
8409       // free range
8410       if (CMSTraceSweeper) {
8411         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", fc, size);
8412       }
8413       // If the chunk is being coalesced and the current free range is
8414       // in the free lists, remove the current free range so that it
8415       // will be returned to the free lists in its entirety - all
8416       // the coalesced pieces included.
8417       if (freeRangeInFreeLists()) {
8418         FreeChunk* ffc = (FreeChunk*)freeFinger();
8419         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8420           "Size of free range is inconsistent with chunk size.");
8421         if (CMSTestInFreeList) {
8422           assert(_sp->verify_chunk_in_free_list(ffc),
8423             "free range is not in free lists");
8424         }
8425         _sp->removeFreeChunkFromFreeLists(ffc);
8426         set_freeRangeInFreeLists(false);
8427       }
8428       set_lastFreeRangeCoalesced(true);
8429     }
8430     // this will be swept up when we hit the end of the free range
8431 
8432     // Verify that the bit map has no bits marked between
8433     // addr and purported end of just dead object.
8434     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8435   }
8436   assert(_limit >= addr + size,
8437          "A freshly garbage chunk can't possibly straddle over _limit");
8438   if (inFreeRange()) lookahead_and_flush(fc, size);
8439   return size;
8440 }
8441 
8442 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8443   HeapWord* addr = (HeapWord*) fc;
8444   // The sweeper has just found a live object. Return any accumulated
8445   // left hand chunk to the free lists.
8446   if (inFreeRange()) {
8447     assert(freeFinger() < addr, "freeFinger points too high");
8448     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8449   }
8450 
8451   // This object is live: we'd normally expect this to be
8452   // an oop, and like to assert the following:
8453   // assert(oop(addr)->is_oop(), "live block should be an oop");
8454   // However, as we commented above, this may be an object whose
8455   // header hasn't yet been initialized.
8456   size_t size;
8457   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8458   if (_bitMap->isMarked(addr + 1)) {
8459     // Determine the size from the bit map, rather than trying to
8460     // compute it from the object header.
8461     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8462     size = pointer_delta(nextOneAddr + 1, addr);
8463     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8464            "alignment problem");
8465 
8466 #ifdef ASSERT
8467       if (oop(addr)->klass_or_null() != NULL) {
8468         // Ignore mark word because we are running concurrent with mutators
8469         assert(oop(addr)->is_oop(true), "live block should be an oop");
8470         assert(size ==
8471                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8472                "P-mark and computed size do not agree");
8473       }
8474 #endif
8475 
8476   } else {
8477     // This should be an initialized object that's alive.
8478     assert(oop(addr)->klass_or_null() != NULL,
8479            "Should be an initialized object");
8480     // Ignore mark word because we are running concurrent with mutators
8481     assert(oop(addr)->is_oop(true), "live block should be an oop");
8482     // Verify that the bit map has no bits marked between
8483     // addr and purported end of this block.
8484     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8485     assert(size >= 3, "Necessary for Printezis marks to work");
8486     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8487     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8488   }
8489   return size;
8490 }
8491 
8492 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8493                                                  size_t chunkSize) {
8494   // do_post_free_or_garbage_chunk() should only be called in the case
8495   // of the adaptive free list allocator.
8496   const bool fcInFreeLists = fc->is_free();
8497   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8498   assert((HeapWord*)fc <= _limit, "sweep invariant");
8499   if (CMSTestInFreeList && fcInFreeLists) {
8500     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8501   }
8502 
8503   if (CMSTraceSweeper) {
8504     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", fc, chunkSize);
8505   }
8506 
8507   HeapWord* const fc_addr = (HeapWord*) fc;
8508 
8509   bool coalesce;
8510   const size_t left  = pointer_delta(fc_addr, freeFinger());
8511   const size_t right = chunkSize;
8512   switch (FLSCoalescePolicy) {
8513     // numeric value forms a coalition aggressiveness metric
8514     case 0:  { // never coalesce
8515       coalesce = false;
8516       break;
8517     }
8518     case 1: { // coalesce if left & right chunks on overpopulated lists
8519       coalesce = _sp->coalOverPopulated(left) &&
8520                  _sp->coalOverPopulated(right);
8521       break;
8522     }
8523     case 2: { // coalesce if left chunk on overpopulated list (default)
8524       coalesce = _sp->coalOverPopulated(left);
8525       break;
8526     }
8527     case 3: { // coalesce if left OR right chunk on overpopulated list
8528       coalesce = _sp->coalOverPopulated(left) ||
8529                  _sp->coalOverPopulated(right);
8530       break;
8531     }
8532     case 4: { // always coalesce
8533       coalesce = true;
8534       break;
8535     }
8536     default:
8537      ShouldNotReachHere();
8538   }
8539 
8540   // Should the current free range be coalesced?
8541   // If the chunk is in a free range and either we decided to coalesce above
8542   // or the chunk is near the large block at the end of the heap
8543   // (isNearLargestChunk() returns true), then coalesce this chunk.
8544   const bool doCoalesce = inFreeRange()
8545                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8546   if (doCoalesce) {
8547     // Coalesce the current free range on the left with the new
8548     // chunk on the right.  If either is on a free list,
8549     // it must be removed from the list and stashed in the closure.
8550     if (freeRangeInFreeLists()) {
8551       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8552       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8553         "Size of free range is inconsistent with chunk size.");
8554       if (CMSTestInFreeList) {
8555         assert(_sp->verify_chunk_in_free_list(ffc),
8556           "Chunk is not in free lists");
8557       }
8558       _sp->coalDeath(ffc->size());
8559       _sp->removeFreeChunkFromFreeLists(ffc);
8560       set_freeRangeInFreeLists(false);
8561     }
8562     if (fcInFreeLists) {
8563       _sp->coalDeath(chunkSize);
8564       assert(fc->size() == chunkSize,
8565         "The chunk has the wrong size or is not in the free lists");
8566       _sp->removeFreeChunkFromFreeLists(fc);
8567     }
8568     set_lastFreeRangeCoalesced(true);
8569     print_free_block_coalesced(fc);
8570   } else {  // not in a free range and/or should not coalesce
8571     // Return the current free range and start a new one.
8572     if (inFreeRange()) {
8573       // In a free range but cannot coalesce with the right hand chunk.
8574       // Put the current free range into the free lists.
8575       flush_cur_free_chunk(freeFinger(),
8576                            pointer_delta(fc_addr, freeFinger()));
8577     }
8578     // Set up for new free range.  Pass along whether the right hand
8579     // chunk is in the free lists.
8580     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8581   }
8582 }
8583 
8584 // Lookahead flush:
8585 // If we are tracking a free range, and this is the last chunk that
8586 // we'll look at because its end crosses past _limit, we'll preemptively
8587 // flush it along with any free range we may be holding on to. Note that
8588 // this can be the case only for an already free or freshly garbage
8589 // chunk. If this block is an object, it can never straddle
8590 // over _limit. The "straddling" occurs when _limit is set at
8591 // the previous end of the space when this cycle started, and
8592 // a subsequent heap expansion caused the previously co-terminal
8593 // free block to be coalesced with the newly expanded portion,
8594 // thus rendering _limit a non-block-boundary making it dangerous
8595 // for the sweeper to step over and examine.
8596 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8597   assert(inFreeRange(), "Should only be called if currently in a free range.");
8598   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8599   assert(_sp->used_region().contains(eob - 1),
8600          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
8601                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8602                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8603                  eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8604   if (eob >= _limit) {
8605     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8606     if (CMSTraceSweeper) {
8607       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8608                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8609                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8610                              _limit, fc, eob, _sp->bottom(), _sp->end());
8611     }
8612     // Return the storage we are tracking back into the free lists.
8613     if (CMSTraceSweeper) {
8614       gclog_or_tty->print_cr("Flushing ... ");
8615     }
8616     assert(freeFinger() < eob, "Error");
8617     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8618   }
8619 }
8620 
8621 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8622   assert(inFreeRange(), "Should only be called if currently in a free range.");
8623   assert(size > 0,
8624     "A zero sized chunk cannot be added to the free lists.");
8625   if (!freeRangeInFreeLists()) {
8626     if (CMSTestInFreeList) {
8627       FreeChunk* fc = (FreeChunk*) chunk;
8628       fc->set_size(size);
8629       assert(!_sp->verify_chunk_in_free_list(fc),
8630         "chunk should not be in free lists yet");
8631     }
8632     if (CMSTraceSweeper) {
8633       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
8634                     chunk, size);
8635     }
8636     // A new free range is going to be starting.  The current
8637     // free range has not been added to the free lists yet or
8638     // was removed so add it back.
8639     // If the current free range was coalesced, then the death
8640     // of the free range was recorded.  Record a birth now.
8641     if (lastFreeRangeCoalesced()) {
8642       _sp->coalBirth(size);
8643     }
8644     _sp->addChunkAndRepairOffsetTable(chunk, size,
8645             lastFreeRangeCoalesced());
8646   } else if (CMSTraceSweeper) {
8647     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8648   }
8649   set_inFreeRange(false);
8650   set_freeRangeInFreeLists(false);
8651 }
8652 
8653 // We take a break if we've been at this for a while,
8654 // so as to avoid monopolizing the locks involved.
8655 void SweepClosure::do_yield_work(HeapWord* addr) {
8656   // Return current free chunk being used for coalescing (if any)
8657   // to the appropriate freelist.  After yielding, the next
8658   // free block encountered will start a coalescing range of
8659   // free blocks.  If the next free block is adjacent to the
8660   // chunk just flushed, they will need to wait for the next
8661   // sweep to be coalesced.
8662   if (inFreeRange()) {
8663     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8664   }
8665 
8666   // First give up the locks, then yield, then re-lock.
8667   // We should probably use a constructor/destructor idiom to
8668   // do this unlock/lock or modify the MutexUnlocker class to
8669   // serve our purpose. XXX
8670   assert_lock_strong(_bitMap->lock());
8671   assert_lock_strong(_freelistLock);
8672   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8673          "CMS thread should hold CMS token");
8674   _bitMap->lock()->unlock();
8675   _freelistLock->unlock();
8676   ConcurrentMarkSweepThread::desynchronize(true);
8677   ConcurrentMarkSweepThread::acknowledge_yield_request();
8678   _collector->stopTimer();
8679   if (PrintCMSStatistics != 0) {
8680     _collector->incrementYields();
8681   }
8682   _collector->icms_wait();
8683 
8684   // See the comment in coordinator_yield()
8685   for (unsigned i = 0; i < CMSYieldSleepCount &&
8686                        ConcurrentMarkSweepThread::should_yield() &&
8687                        !CMSCollector::foregroundGCIsActive(); ++i) {
8688     os::sleep(Thread::current(), 1, false);
8689     ConcurrentMarkSweepThread::acknowledge_yield_request();
8690   }
8691 
8692   ConcurrentMarkSweepThread::synchronize(true);
8693   _freelistLock->lock();
8694   _bitMap->lock()->lock_without_safepoint_check();
8695   _collector->startTimer();
8696 }
8697 
8698 #ifndef PRODUCT
8699 // This is actually very useful in a product build if it can
8700 // be called from the debugger.  Compile it into the product
8701 // as needed.
8702 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8703   return debug_cms_space->verify_chunk_in_free_list(fc);
8704 }
8705 #endif
8706 
8707 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8708   if (CMSTraceSweeper) {
8709     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8710                            fc, fc->size());
8711   }
8712 }
8713 
8714 // CMSIsAliveClosure
8715 bool CMSIsAliveClosure::do_object_b(oop obj) {
8716   HeapWord* addr = (HeapWord*)obj;
8717   return addr != NULL &&
8718          (!_span.contains(addr) || _bit_map->isMarked(addr));
8719 }
8720 
8721 
8722 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8723                       MemRegion span,
8724                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8725                       bool cpc):
8726   _collector(collector),
8727   _span(span),
8728   _bit_map(bit_map),
8729   _mark_stack(mark_stack),
8730   _concurrent_precleaning(cpc) {
8731   assert(!_span.is_empty(), "Empty span could spell trouble");
8732 }
8733 
8734 
8735 // CMSKeepAliveClosure: the serial version
8736 void CMSKeepAliveClosure::do_oop(oop obj) {
8737   HeapWord* addr = (HeapWord*)obj;
8738   if (_span.contains(addr) &&
8739       !_bit_map->isMarked(addr)) {
8740     _bit_map->mark(addr);
8741     bool simulate_overflow = false;
8742     NOT_PRODUCT(
8743       if (CMSMarkStackOverflowALot &&
8744           _collector->simulate_overflow()) {
8745         // simulate a stack overflow
8746         simulate_overflow = true;
8747       }
8748     )
8749     if (simulate_overflow || !_mark_stack->push(obj)) {
8750       if (_concurrent_precleaning) {
8751         // We dirty the overflown object and let the remark
8752         // phase deal with it.
8753         assert(_collector->overflow_list_is_empty(), "Error");
8754         // In the case of object arrays, we need to dirty all of
8755         // the cards that the object spans. No locking or atomics
8756         // are needed since no one else can be mutating the mod union
8757         // table.
8758         if (obj->is_objArray()) {
8759           size_t sz = obj->size();
8760           HeapWord* end_card_addr =
8761             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8762           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8763           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8764           _collector->_modUnionTable.mark_range(redirty_range);
8765         } else {
8766           _collector->_modUnionTable.mark(addr);
8767         }
8768         _collector->_ser_kac_preclean_ovflw++;
8769       } else {
8770         _collector->push_on_overflow_list(obj);
8771         _collector->_ser_kac_ovflw++;
8772       }
8773     }
8774   }
8775 }
8776 
8777 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8778 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8779 
8780 // CMSParKeepAliveClosure: a parallel version of the above.
8781 // The work queues are private to each closure (thread),
8782 // but (may be) available for stealing by other threads.
8783 void CMSParKeepAliveClosure::do_oop(oop obj) {
8784   HeapWord* addr = (HeapWord*)obj;
8785   if (_span.contains(addr) &&
8786       !_bit_map->isMarked(addr)) {
8787     // In general, during recursive tracing, several threads
8788     // may be concurrently getting here; the first one to
8789     // "tag" it, claims it.
8790     if (_bit_map->par_mark(addr)) {
8791       bool res = _work_queue->push(obj);
8792       assert(res, "Low water mark should be much less than capacity");
8793       // Do a recursive trim in the hope that this will keep
8794       // stack usage lower, but leave some oops for potential stealers
8795       trim_queue(_low_water_mark);
8796     } // Else, another thread got there first
8797   }
8798 }
8799 
8800 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8801 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8802 
8803 void CMSParKeepAliveClosure::trim_queue(uint max) {
8804   while (_work_queue->size() > max) {
8805     oop new_oop;
8806     if (_work_queue->pop_local(new_oop)) {
8807       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8808       assert(_bit_map->isMarked((HeapWord*)new_oop),
8809              "no white objects on this stack!");
8810       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8811       // iterate over the oops in this oop, marking and pushing
8812       // the ones in CMS heap (i.e. in _span).
8813       new_oop->oop_iterate(&_mark_and_push);
8814     }
8815   }
8816 }
8817 
8818 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8819                                 CMSCollector* collector,
8820                                 MemRegion span, CMSBitMap* bit_map,
8821                                 OopTaskQueue* work_queue):
8822   _collector(collector),
8823   _span(span),
8824   _bit_map(bit_map),
8825   _work_queue(work_queue) { }
8826 
8827 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8828   HeapWord* addr = (HeapWord*)obj;
8829   if (_span.contains(addr) &&
8830       !_bit_map->isMarked(addr)) {
8831     if (_bit_map->par_mark(addr)) {
8832       bool simulate_overflow = false;
8833       NOT_PRODUCT(
8834         if (CMSMarkStackOverflowALot &&
8835             _collector->par_simulate_overflow()) {
8836           // simulate a stack overflow
8837           simulate_overflow = true;
8838         }
8839       )
8840       if (simulate_overflow || !_work_queue->push(obj)) {
8841         _collector->par_push_on_overflow_list(obj);
8842         _collector->_par_kac_ovflw++;
8843       }
8844     } // Else another thread got there already
8845   }
8846 }
8847 
8848 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8849 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8850 
8851 //////////////////////////////////////////////////////////////////
8852 //  CMSExpansionCause                /////////////////////////////
8853 //////////////////////////////////////////////////////////////////
8854 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8855   switch (cause) {
8856     case _no_expansion:
8857       return "No expansion";
8858     case _satisfy_free_ratio:
8859       return "Free ratio";
8860     case _satisfy_promotion:
8861       return "Satisfy promotion";
8862     case _satisfy_allocation:
8863       return "allocation";
8864     case _allocate_par_lab:
8865       return "Par LAB";
8866     case _allocate_par_spooling_space:
8867       return "Par Spooling Space";
8868     case _adaptive_size_policy:
8869       return "Ergonomics";
8870     default:
8871       return "unknown";
8872   }
8873 }
8874 
8875 void CMSDrainMarkingStackClosure::do_void() {
8876   // the max number to take from overflow list at a time
8877   const size_t num = _mark_stack->capacity()/4;
8878   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8879          "Overflow list should be NULL during concurrent phases");
8880   while (!_mark_stack->isEmpty() ||
8881          // if stack is empty, check the overflow list
8882          _collector->take_from_overflow_list(num, _mark_stack)) {
8883     oop obj = _mark_stack->pop();
8884     HeapWord* addr = (HeapWord*)obj;
8885     assert(_span.contains(addr), "Should be within span");
8886     assert(_bit_map->isMarked(addr), "Should be marked");
8887     assert(obj->is_oop(), "Should be an oop");
8888     obj->oop_iterate(_keep_alive);
8889   }
8890 }
8891 
8892 void CMSParDrainMarkingStackClosure::do_void() {
8893   // drain queue
8894   trim_queue(0);
8895 }
8896 
8897 // Trim our work_queue so its length is below max at return
8898 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8899   while (_work_queue->size() > max) {
8900     oop new_oop;
8901     if (_work_queue->pop_local(new_oop)) {
8902       assert(new_oop->is_oop(), "Expected an oop");
8903       assert(_bit_map->isMarked((HeapWord*)new_oop),
8904              "no white objects on this stack!");
8905       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8906       // iterate over the oops in this oop, marking and pushing
8907       // the ones in CMS heap (i.e. in _span).
8908       new_oop->oop_iterate(&_mark_and_push);
8909     }
8910   }
8911 }
8912 
8913 ////////////////////////////////////////////////////////////////////
8914 // Support for Marking Stack Overflow list handling and related code
8915 ////////////////////////////////////////////////////////////////////
8916 // Much of the following code is similar in shape and spirit to the
8917 // code used in ParNewGC. We should try and share that code
8918 // as much as possible in the future.
8919 
8920 #ifndef PRODUCT
8921 // Debugging support for CMSStackOverflowALot
8922 
8923 // It's OK to call this multi-threaded;  the worst thing
8924 // that can happen is that we'll get a bunch of closely
8925 // spaced simulated overflows, but that's OK, in fact
8926 // probably good as it would exercise the overflow code
8927 // under contention.
8928 bool CMSCollector::simulate_overflow() {
8929   if (_overflow_counter-- <= 0) { // just being defensive
8930     _overflow_counter = CMSMarkStackOverflowInterval;
8931     return true;
8932   } else {
8933     return false;
8934   }
8935 }
8936 
8937 bool CMSCollector::par_simulate_overflow() {
8938   return simulate_overflow();
8939 }
8940 #endif
8941 
8942 // Single-threaded
8943 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8944   assert(stack->isEmpty(), "Expected precondition");
8945   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8946   size_t i = num;
8947   oop  cur = _overflow_list;
8948   const markOop proto = markOopDesc::prototype();
8949   NOT_PRODUCT(ssize_t n = 0;)
8950   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8951     next = oop(cur->mark());
8952     cur->set_mark(proto);   // until proven otherwise
8953     assert(cur->is_oop(), "Should be an oop");
8954     bool res = stack->push(cur);
8955     assert(res, "Bit off more than can chew?");
8956     NOT_PRODUCT(n++;)
8957   }
8958   _overflow_list = cur;
8959 #ifndef PRODUCT
8960   assert(_num_par_pushes >= n, "Too many pops?");
8961   _num_par_pushes -=n;
8962 #endif
8963   return !stack->isEmpty();
8964 }
8965 
8966 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8967 // (MT-safe) Get a prefix of at most "num" from the list.
8968 // The overflow list is chained through the mark word of
8969 // each object in the list. We fetch the entire list,
8970 // break off a prefix of the right size and return the
8971 // remainder. If other threads try to take objects from
8972 // the overflow list at that time, they will wait for
8973 // some time to see if data becomes available. If (and
8974 // only if) another thread places one or more object(s)
8975 // on the global list before we have returned the suffix
8976 // to the global list, we will walk down our local list
8977 // to find its end and append the global list to
8978 // our suffix before returning it. This suffix walk can
8979 // prove to be expensive (quadratic in the amount of traffic)
8980 // when there are many objects in the overflow list and
8981 // there is much producer-consumer contention on the list.
8982 // *NOTE*: The overflow list manipulation code here and
8983 // in ParNewGeneration:: are very similar in shape,
8984 // except that in the ParNew case we use the old (from/eden)
8985 // copy of the object to thread the list via its klass word.
8986 // Because of the common code, if you make any changes in
8987 // the code below, please check the ParNew version to see if
8988 // similar changes might be needed.
8989 // CR 6797058 has been filed to consolidate the common code.
8990 bool CMSCollector::par_take_from_overflow_list(size_t num,
8991                                                OopTaskQueue* work_q,
8992                                                int no_of_gc_threads) {
8993   assert(work_q->size() == 0, "First empty local work queue");
8994   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8995   if (_overflow_list == NULL) {
8996     return false;
8997   }
8998   // Grab the entire list; we'll put back a suffix
8999   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9000   Thread* tid = Thread::current();
9001   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
9002   // set to ParallelGCThreads.
9003   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
9004   size_t sleep_time_millis = MAX2((size_t)1, num/100);
9005   // If the list is busy, we spin for a short while,
9006   // sleeping between attempts to get the list.
9007   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
9008     os::sleep(tid, sleep_time_millis, false);
9009     if (_overflow_list == NULL) {
9010       // Nothing left to take
9011       return false;
9012     } else if (_overflow_list != BUSY) {
9013       // Try and grab the prefix
9014       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9015     }
9016   }
9017   // If the list was found to be empty, or we spun long
9018   // enough, we give up and return empty-handed. If we leave
9019   // the list in the BUSY state below, it must be the case that
9020   // some other thread holds the overflow list and will set it
9021   // to a non-BUSY state in the future.
9022   if (prefix == NULL || prefix == BUSY) {
9023      // Nothing to take or waited long enough
9024      if (prefix == NULL) {
9025        // Write back the NULL in case we overwrote it with BUSY above
9026        // and it is still the same value.
9027        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9028      }
9029      return false;
9030   }
9031   assert(prefix != NULL && prefix != BUSY, "Error");
9032   size_t i = num;
9033   oop cur = prefix;
9034   // Walk down the first "num" objects, unless we reach the end.
9035   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
9036   if (cur->mark() == NULL) {
9037     // We have "num" or fewer elements in the list, so there
9038     // is nothing to return to the global list.
9039     // Write back the NULL in lieu of the BUSY we wrote
9040     // above, if it is still the same value.
9041     if (_overflow_list == BUSY) {
9042       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9043     }
9044   } else {
9045     // Chop off the suffix and return it to the global list.
9046     assert(cur->mark() != BUSY, "Error");
9047     oop suffix_head = cur->mark(); // suffix will be put back on global list
9048     cur->set_mark(NULL);           // break off suffix
9049     // It's possible that the list is still in the empty(busy) state
9050     // we left it in a short while ago; in that case we may be
9051     // able to place back the suffix without incurring the cost
9052     // of a walk down the list.
9053     oop observed_overflow_list = _overflow_list;
9054     oop cur_overflow_list = observed_overflow_list;
9055     bool attached = false;
9056     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
9057       observed_overflow_list =
9058         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9059       if (cur_overflow_list == observed_overflow_list) {
9060         attached = true;
9061         break;
9062       } else cur_overflow_list = observed_overflow_list;
9063     }
9064     if (!attached) {
9065       // Too bad, someone else sneaked in (at least) an element; we'll need
9066       // to do a splice. Find tail of suffix so we can prepend suffix to global
9067       // list.
9068       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
9069       oop suffix_tail = cur;
9070       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
9071              "Tautology");
9072       observed_overflow_list = _overflow_list;
9073       do {
9074         cur_overflow_list = observed_overflow_list;
9075         if (cur_overflow_list != BUSY) {
9076           // Do the splice ...
9077           suffix_tail->set_mark(markOop(cur_overflow_list));
9078         } else { // cur_overflow_list == BUSY
9079           suffix_tail->set_mark(NULL);
9080         }
9081         // ... and try to place spliced list back on overflow_list ...
9082         observed_overflow_list =
9083           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9084       } while (cur_overflow_list != observed_overflow_list);
9085       // ... until we have succeeded in doing so.
9086     }
9087   }
9088 
9089   // Push the prefix elements on work_q
9090   assert(prefix != NULL, "control point invariant");
9091   const markOop proto = markOopDesc::prototype();
9092   oop next;
9093   NOT_PRODUCT(ssize_t n = 0;)
9094   for (cur = prefix; cur != NULL; cur = next) {
9095     next = oop(cur->mark());
9096     cur->set_mark(proto);   // until proven otherwise
9097     assert(cur->is_oop(), "Should be an oop");
9098     bool res = work_q->push(cur);
9099     assert(res, "Bit off more than we can chew?");
9100     NOT_PRODUCT(n++;)
9101   }
9102 #ifndef PRODUCT
9103   assert(_num_par_pushes >= n, "Too many pops?");
9104   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
9105 #endif
9106   return true;
9107 }
9108 
9109 // Single-threaded
9110 void CMSCollector::push_on_overflow_list(oop p) {
9111   NOT_PRODUCT(_num_par_pushes++;)
9112   assert(p->is_oop(), "Not an oop");
9113   preserve_mark_if_necessary(p);
9114   p->set_mark((markOop)_overflow_list);
9115   _overflow_list = p;
9116 }
9117 
9118 // Multi-threaded; use CAS to prepend to overflow list
9119 void CMSCollector::par_push_on_overflow_list(oop p) {
9120   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
9121   assert(p->is_oop(), "Not an oop");
9122   par_preserve_mark_if_necessary(p);
9123   oop observed_overflow_list = _overflow_list;
9124   oop cur_overflow_list;
9125   do {
9126     cur_overflow_list = observed_overflow_list;
9127     if (cur_overflow_list != BUSY) {
9128       p->set_mark(markOop(cur_overflow_list));
9129     } else {
9130       p->set_mark(NULL);
9131     }
9132     observed_overflow_list =
9133       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
9134   } while (cur_overflow_list != observed_overflow_list);
9135 }
9136 #undef BUSY
9137 
9138 // Single threaded
9139 // General Note on GrowableArray: pushes may silently fail
9140 // because we are (temporarily) out of C-heap for expanding
9141 // the stack. The problem is quite ubiquitous and affects
9142 // a lot of code in the JVM. The prudent thing for GrowableArray
9143 // to do (for now) is to exit with an error. However, that may
9144 // be too draconian in some cases because the caller may be
9145 // able to recover without much harm. For such cases, we
9146 // should probably introduce a "soft_push" method which returns
9147 // an indication of success or failure with the assumption that
9148 // the caller may be able to recover from a failure; code in
9149 // the VM can then be changed, incrementally, to deal with such
9150 // failures where possible, thus, incrementally hardening the VM
9151 // in such low resource situations.
9152 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9153   _preserved_oop_stack.push(p);
9154   _preserved_mark_stack.push(m);
9155   assert(m == p->mark(), "Mark word changed");
9156   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9157          "bijection");
9158 }
9159 
9160 // Single threaded
9161 void CMSCollector::preserve_mark_if_necessary(oop p) {
9162   markOop m = p->mark();
9163   if (m->must_be_preserved(p)) {
9164     preserve_mark_work(p, m);
9165   }
9166 }
9167 
9168 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9169   markOop m = p->mark();
9170   if (m->must_be_preserved(p)) {
9171     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9172     // Even though we read the mark word without holding
9173     // the lock, we are assured that it will not change
9174     // because we "own" this oop, so no other thread can
9175     // be trying to push it on the overflow list; see
9176     // the assertion in preserve_mark_work() that checks
9177     // that m == p->mark().
9178     preserve_mark_work(p, m);
9179   }
9180 }
9181 
9182 // We should be able to do this multi-threaded,
9183 // a chunk of stack being a task (this is
9184 // correct because each oop only ever appears
9185 // once in the overflow list. However, it's
9186 // not very easy to completely overlap this with
9187 // other operations, so will generally not be done
9188 // until all work's been completed. Because we
9189 // expect the preserved oop stack (set) to be small,
9190 // it's probably fine to do this single-threaded.
9191 // We can explore cleverer concurrent/overlapped/parallel
9192 // processing of preserved marks if we feel the
9193 // need for this in the future. Stack overflow should
9194 // be so rare in practice and, when it happens, its
9195 // effect on performance so great that this will
9196 // likely just be in the noise anyway.
9197 void CMSCollector::restore_preserved_marks_if_any() {
9198   assert(SafepointSynchronize::is_at_safepoint(),
9199          "world should be stopped");
9200   assert(Thread::current()->is_ConcurrentGC_thread() ||
9201          Thread::current()->is_VM_thread(),
9202          "should be single-threaded");
9203   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9204          "bijection");
9205 
9206   while (!_preserved_oop_stack.is_empty()) {
9207     oop p = _preserved_oop_stack.pop();
9208     assert(p->is_oop(), "Should be an oop");
9209     assert(_span.contains(p), "oop should be in _span");
9210     assert(p->mark() == markOopDesc::prototype(),
9211            "Set when taken from overflow list");
9212     markOop m = _preserved_mark_stack.pop();
9213     p->set_mark(m);
9214   }
9215   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9216          "stacks were cleared above");
9217 }
9218 
9219 #ifndef PRODUCT
9220 bool CMSCollector::no_preserved_marks() const {
9221   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9222 }
9223 #endif
9224 
9225 // Transfer some number of overflown objects to usual marking
9226 // stack. Return true if some objects were transferred.
9227 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9228   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9229                     (size_t)ParGCDesiredObjsFromOverflowList);
9230 
9231   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9232   assert(_collector->overflow_list_is_empty() || res,
9233          "If list is not empty, we should have taken something");
9234   assert(!res || !_mark_stack->isEmpty(),
9235          "If we took something, it should now be on our stack");
9236   return res;
9237 }
9238 
9239 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9240   size_t res = _sp->block_size_no_stall(addr, _collector);
9241   if (_sp->block_is_obj(addr)) {
9242     if (_live_bit_map->isMarked(addr)) {
9243       // It can't have been dead in a previous cycle
9244       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9245     } else {
9246       _dead_bit_map->mark(addr);      // mark the dead object
9247     }
9248   }
9249   // Could be 0, if the block size could not be computed without stalling.
9250   return res;
9251 }
9252 
9253 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9254 
9255   switch (phase) {
9256     case CMSCollector::InitialMarking:
9257       initialize(true  /* fullGC */ ,
9258                  cause /* cause of the GC */,
9259                  true  /* recordGCBeginTime */,
9260                  true  /* recordPreGCUsage */,
9261                  false /* recordPeakUsage */,
9262                  false /* recordPostGCusage */,
9263                  true  /* recordAccumulatedGCTime */,
9264                  false /* recordGCEndTime */,
9265                  false /* countCollection */  );
9266       break;
9267 
9268     case CMSCollector::FinalMarking:
9269       initialize(true  /* fullGC */ ,
9270                  cause /* cause of the GC */,
9271                  false /* recordGCBeginTime */,
9272                  false /* recordPreGCUsage */,
9273                  false /* recordPeakUsage */,
9274                  false /* recordPostGCusage */,
9275                  true  /* recordAccumulatedGCTime */,
9276                  false /* recordGCEndTime */,
9277                  false /* countCollection */  );
9278       break;
9279 
9280     case CMSCollector::Sweeping:
9281       initialize(true  /* fullGC */ ,
9282                  cause /* cause of the GC */,
9283                  false /* recordGCBeginTime */,
9284                  false /* recordPreGCUsage */,
9285                  true  /* recordPeakUsage */,
9286                  true  /* recordPostGCusage */,
9287                  false /* recordAccumulatedGCTime */,
9288                  true  /* recordGCEndTime */,
9289                  true  /* countCollection */  );
9290       break;
9291 
9292     default:
9293       ShouldNotReachHere();
9294   }
9295 }