1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OOPS_OOP_INLINE_HPP
  26 #define SHARE_VM_OOPS_OOP_INLINE_HPP
  27 
  28 #include "gc_implementation/shared/ageTable.hpp"
  29 #include "memory/barrierSet.inline.hpp"
  30 #include "memory/cardTableModRefBS.hpp"
  31 #include "memory/genCollectedHeap.hpp"
  32 #include "memory/generation.hpp"
  33 #include "memory/specialized_oop_closures.hpp"
  34 #include "oops/arrayKlass.hpp"
  35 #include "oops/arrayOop.hpp"
  36 #include "oops/klass.inline.hpp"
  37 #include "oops/markOop.inline.hpp"
  38 #include "oops/oop.hpp"
  39 #include "runtime/atomic.inline.hpp"
  40 #include "runtime/orderAccess.inline.hpp"
  41 #include "runtime/os.hpp"
  42 #include "utilities/macros.hpp"
  43 
  44 // Implementation of all inlined member functions defined in oop.hpp
  45 // We need a separate file to avoid circular references
  46 
  47 inline void oopDesc::release_set_mark(markOop m) {
  48   OrderAccess::release_store_ptr(&_mark, m);
  49 }
  50 
  51 inline markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
  52   return (markOop) Atomic::cmpxchg_ptr(new_mark, &_mark, old_mark);
  53 }
  54 
  55 inline Klass* oopDesc::klass() const {
  56   if (UseCompressedClassPointers) {
  57     return Klass::decode_klass_not_null(_metadata._compressed_klass);
  58   } else {
  59     return _metadata._klass;
  60   }
  61 }
  62 
  63 inline Klass* oopDesc::klass_or_null() const volatile {
  64   // can be NULL in CMS
  65   if (UseCompressedClassPointers) {
  66     return Klass::decode_klass(_metadata._compressed_klass);
  67   } else {
  68     return _metadata._klass;
  69   }
  70 }
  71 
  72 inline int oopDesc::klass_gap_offset_in_bytes() {
  73   assert(UseCompressedClassPointers, "only applicable to compressed klass pointers");
  74   return oopDesc::klass_offset_in_bytes() + sizeof(narrowKlass);
  75 }
  76 
  77 inline Klass** oopDesc::klass_addr() {
  78   // Only used internally and with CMS and will not work with
  79   // UseCompressedOops
  80   assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers");
  81   return (Klass**) &_metadata._klass;
  82 }
  83 
  84 inline narrowKlass* oopDesc::compressed_klass_addr() {
  85   assert(UseCompressedClassPointers, "only called by compressed klass pointers");
  86   return &_metadata._compressed_klass;
  87 }
  88 
  89 inline void oopDesc::set_klass(Klass* k) {
  90   // since klasses are promoted no store check is needed
  91   assert(Universe::is_bootstrapping() || k != NULL, "must be a real Klass*");
  92   assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass*");
  93   if (UseCompressedClassPointers) {
  94     *compressed_klass_addr() = Klass::encode_klass_not_null(k);
  95   } else {
  96     *klass_addr() = k;
  97   }
  98 }
  99 
 100 inline int oopDesc::klass_gap() const {
 101   return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
 102 }
 103 
 104 inline void oopDesc::set_klass_gap(int v) {
 105   if (UseCompressedClassPointers) {
 106     *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes()) = v;
 107   }
 108 }
 109 
 110 inline void oopDesc::set_klass_to_list_ptr(oop k) {
 111   // This is only to be used during GC, for from-space objects, so no
 112   // barrier is needed.
 113   if (UseCompressedClassPointers) {
 114     _metadata._compressed_klass = (narrowKlass)encode_heap_oop(k);  // may be null (parnew overflow handling)
 115   } else {
 116     _metadata._klass = (Klass*)(address)k;
 117   }
 118 }
 119 
 120 inline oop oopDesc::list_ptr_from_klass() {
 121   // This is only to be used during GC, for from-space objects.
 122   if (UseCompressedClassPointers) {
 123     return decode_heap_oop((narrowOop)_metadata._compressed_klass);
 124   } else {
 125     // Special case for GC
 126     return (oop)(address)_metadata._klass;
 127   }
 128 }
 129 
 130 inline void   oopDesc::init_mark()                 { set_mark(markOopDesc::prototype_for_object(this)); }
 131 
 132 inline bool oopDesc::is_a(Klass* k)        const { return klass()->is_subtype_of(k); }
 133 
 134 inline bool oopDesc::is_instance()            const { return klass()->oop_is_instance(); }
 135 inline bool oopDesc::is_instanceClassLoader() const { return klass()->oop_is_instanceClassLoader(); }
 136 inline bool oopDesc::is_instanceMirror()      const { return klass()->oop_is_instanceMirror(); }
 137 inline bool oopDesc::is_instanceRef()         const { return klass()->oop_is_instanceRef(); }
 138 inline bool oopDesc::is_array()               const { return klass()->oop_is_array(); }
 139 inline bool oopDesc::is_objArray()            const { return klass()->oop_is_objArray(); }
 140 inline bool oopDesc::is_typeArray()           const { return klass()->oop_is_typeArray(); }
 141 
 142 inline void*     oopDesc::field_base(int offset)        const { return (void*)&((char*)this)[offset]; }
 143 
 144 template <class T> inline T* oopDesc::obj_field_addr(int offset) const { return (T*)field_base(offset); }
 145 inline Metadata** oopDesc::metadata_field_addr(int offset) const { return (Metadata**)field_base(offset); }
 146 inline jbyte*    oopDesc::byte_field_addr(int offset)   const { return (jbyte*)   field_base(offset); }
 147 inline jchar*    oopDesc::char_field_addr(int offset)   const { return (jchar*)   field_base(offset); }
 148 inline jboolean* oopDesc::bool_field_addr(int offset)   const { return (jboolean*)field_base(offset); }
 149 inline jint*     oopDesc::int_field_addr(int offset)    const { return (jint*)    field_base(offset); }
 150 inline jshort*   oopDesc::short_field_addr(int offset)  const { return (jshort*)  field_base(offset); }
 151 inline jlong*    oopDesc::long_field_addr(int offset)   const { return (jlong*)   field_base(offset); }
 152 inline jfloat*   oopDesc::float_field_addr(int offset)  const { return (jfloat*)  field_base(offset); }
 153 inline jdouble*  oopDesc::double_field_addr(int offset) const { return (jdouble*) field_base(offset); }
 154 inline address*  oopDesc::address_field_addr(int offset) const { return (address*) field_base(offset); }
 155 
 156 
 157 // Functions for getting and setting oops within instance objects.
 158 // If the oops are compressed, the type passed to these overloaded functions
 159 // is narrowOop.  All functions are overloaded so they can be called by
 160 // template functions without conditionals (the compiler instantiates via
 161 // the right type and inlines the appopriate code).
 162 
 163 inline bool oopDesc::is_null(oop obj)       { return obj == NULL; }
 164 inline bool oopDesc::is_null(narrowOop obj) { return obj == 0; }
 165 
 166 // Algorithm for encoding and decoding oops from 64 bit pointers to 32 bit
 167 // offset from the heap base.  Saving the check for null can save instructions
 168 // in inner GC loops so these are separated.
 169 
 170 inline bool check_obj_alignment(oop obj) {
 171   return cast_from_oop<intptr_t>(obj) % MinObjAlignmentInBytes == 0;
 172 }
 173 
 174 inline narrowOop oopDesc::encode_heap_oop_not_null(oop v) {
 175   assert(!is_null(v), "oop value can never be zero");
 176   assert(check_obj_alignment(v), "Address not aligned");
 177   assert(Universe::heap()->is_in_reserved(v), "Address not in heap");
 178   address base = Universe::narrow_oop_base();
 179   int    shift = Universe::narrow_oop_shift();
 180   uint64_t  pd = (uint64_t)(pointer_delta((void*)v, (void*)base, 1));
 181   assert(OopEncodingHeapMax > pd, "change encoding max if new encoding");
 182   uint64_t result = pd >> shift;
 183   assert((result & CONST64(0xffffffff00000000)) == 0, "narrow oop overflow");
 184   assert(decode_heap_oop(result) == v, "reversibility");
 185   return (narrowOop)result;
 186 }
 187 
 188 inline narrowOop oopDesc::encode_heap_oop(oop v) {
 189   return (is_null(v)) ? (narrowOop)0 : encode_heap_oop_not_null(v);
 190 }
 191 
 192 inline oop oopDesc::decode_heap_oop_not_null(narrowOop v) {
 193   assert(!is_null(v), "narrow oop value can never be zero");
 194   address base = Universe::narrow_oop_base();
 195   int    shift = Universe::narrow_oop_shift();
 196   oop result = (oop)(void*)((uintptr_t)base + ((uintptr_t)v << shift));
 197   assert(check_obj_alignment(result), err_msg("address not aligned: " INTPTR_FORMAT, p2i((void*) result)));
 198   return result;
 199 }
 200 
 201 inline oop oopDesc::decode_heap_oop(narrowOop v) {
 202   return is_null(v) ? (oop)NULL : decode_heap_oop_not_null(v);
 203 }
 204 
 205 inline oop oopDesc::decode_heap_oop_not_null(oop v) { return v; }
 206 inline oop oopDesc::decode_heap_oop(oop v)  { return v; }
 207 
 208 // Load an oop out of the Java heap as is without decoding.
 209 // Called by GC to check for null before decoding.
 210 inline oop       oopDesc::load_heap_oop(oop* p)          { return *p; }
 211 inline narrowOop oopDesc::load_heap_oop(narrowOop* p)    { return *p; }
 212 
 213 // Load and decode an oop out of the Java heap into a wide oop.
 214 inline oop oopDesc::load_decode_heap_oop_not_null(oop* p)       { return *p; }
 215 inline oop oopDesc::load_decode_heap_oop_not_null(narrowOop* p) {
 216   return decode_heap_oop_not_null(*p);
 217 }
 218 
 219 // Load and decode an oop out of the heap accepting null
 220 inline oop oopDesc::load_decode_heap_oop(oop* p) { return *p; }
 221 inline oop oopDesc::load_decode_heap_oop(narrowOop* p) {
 222   return decode_heap_oop(*p);
 223 }
 224 
 225 // Store already encoded heap oop into the heap.
 226 inline void oopDesc::store_heap_oop(oop* p, oop v)                 { *p = v; }
 227 inline void oopDesc::store_heap_oop(narrowOop* p, narrowOop v)     { *p = v; }
 228 
 229 // Encode and store a heap oop.
 230 inline void oopDesc::encode_store_heap_oop_not_null(narrowOop* p, oop v) {
 231   *p = encode_heap_oop_not_null(v);
 232 }
 233 inline void oopDesc::encode_store_heap_oop_not_null(oop* p, oop v) { *p = v; }
 234 
 235 // Encode and store a heap oop allowing for null.
 236 inline void oopDesc::encode_store_heap_oop(narrowOop* p, oop v) {
 237   *p = encode_heap_oop(v);
 238 }
 239 inline void oopDesc::encode_store_heap_oop(oop* p, oop v) { *p = v; }
 240 
 241 // Store heap oop as is for volatile fields.
 242 inline void oopDesc::release_store_heap_oop(volatile oop* p, oop v) {
 243   OrderAccess::release_store_ptr(p, v);
 244 }
 245 inline void oopDesc::release_store_heap_oop(volatile narrowOop* p,
 246                                             narrowOop v) {
 247   OrderAccess::release_store(p, v);
 248 }
 249 
 250 inline void oopDesc::release_encode_store_heap_oop_not_null(
 251                                                 volatile narrowOop* p, oop v) {
 252   // heap oop is not pointer sized.
 253   OrderAccess::release_store(p, encode_heap_oop_not_null(v));
 254 }
 255 
 256 inline void oopDesc::release_encode_store_heap_oop_not_null(
 257                                                       volatile oop* p, oop v) {
 258   OrderAccess::release_store_ptr(p, v);
 259 }
 260 
 261 inline void oopDesc::release_encode_store_heap_oop(volatile oop* p,
 262                                                            oop v) {
 263   OrderAccess::release_store_ptr(p, v);
 264 }
 265 inline void oopDesc::release_encode_store_heap_oop(
 266                                                 volatile narrowOop* p, oop v) {
 267   OrderAccess::release_store(p, encode_heap_oop(v));
 268 }
 269 
 270 
 271 // These functions are only used to exchange oop fields in instances,
 272 // not headers.
 273 inline oop oopDesc::atomic_exchange_oop(oop exchange_value, volatile HeapWord *dest) {
 274   if (UseCompressedOops) {
 275     // encode exchange value from oop to T
 276     narrowOop val = encode_heap_oop(exchange_value);
 277     narrowOop old = (narrowOop)Atomic::xchg(val, (narrowOop*)dest);
 278     // decode old from T to oop
 279     return decode_heap_oop(old);
 280   } else {
 281     return (oop)Atomic::xchg_ptr(exchange_value, (oop*)dest);
 282   }
 283 }
 284 
 285 // In order to put or get a field out of an instance, must first check
 286 // if the field has been compressed and uncompress it.
 287 inline oop oopDesc::obj_field(int offset) const {
 288   return UseCompressedOops ?
 289     load_decode_heap_oop(obj_field_addr<narrowOop>(offset)) :
 290     load_decode_heap_oop(obj_field_addr<oop>(offset));
 291 }
 292 inline volatile oop oopDesc::obj_field_volatile(int offset) const {
 293   volatile oop value = obj_field(offset);
 294   OrderAccess::acquire();
 295   return value;
 296 }
 297 inline void oopDesc::obj_field_put(int offset, oop value) {
 298   UseCompressedOops ? oop_store(obj_field_addr<narrowOop>(offset), value) :
 299                       oop_store(obj_field_addr<oop>(offset),       value);
 300 }
 301 
 302 inline Metadata* oopDesc::metadata_field(int offset) const {
 303   return *metadata_field_addr(offset);
 304 }
 305 
 306 inline void oopDesc::metadata_field_put(int offset, Metadata* value) {
 307   *metadata_field_addr(offset) = value;
 308 }
 309 
 310 inline void oopDesc::obj_field_put_raw(int offset, oop value) {
 311   UseCompressedOops ?
 312     encode_store_heap_oop(obj_field_addr<narrowOop>(offset), value) :
 313     encode_store_heap_oop(obj_field_addr<oop>(offset),       value);
 314 }
 315 inline void oopDesc::obj_field_put_volatile(int offset, oop value) {
 316   OrderAccess::release();
 317   obj_field_put(offset, value);
 318   OrderAccess::fence();
 319 }
 320 
 321 inline jbyte oopDesc::byte_field(int offset) const                  { return (jbyte) *byte_field_addr(offset);    }
 322 inline void oopDesc::byte_field_put(int offset, jbyte contents)     { *byte_field_addr(offset) = (jint) contents; }
 323 
 324 inline jboolean oopDesc::bool_field(int offset) const               { return (jboolean) *bool_field_addr(offset); }
 325 inline void oopDesc::bool_field_put(int offset, jboolean contents)  { *bool_field_addr(offset) = (jint) contents; }
 326 
 327 inline jchar oopDesc::char_field(int offset) const                  { return (jchar) *char_field_addr(offset);    }
 328 inline void oopDesc::char_field_put(int offset, jchar contents)     { *char_field_addr(offset) = (jint) contents; }
 329 
 330 inline jint oopDesc::int_field(int offset) const                    { return *int_field_addr(offset);        }
 331 inline void oopDesc::int_field_put(int offset, jint contents)       { *int_field_addr(offset) = contents;    }
 332 
 333 inline jshort oopDesc::short_field(int offset) const                { return (jshort) *short_field_addr(offset);  }
 334 inline void oopDesc::short_field_put(int offset, jshort contents)   { *short_field_addr(offset) = (jint) contents;}
 335 
 336 inline jlong oopDesc::long_field(int offset) const                  { return *long_field_addr(offset);       }
 337 inline void oopDesc::long_field_put(int offset, jlong contents)     { *long_field_addr(offset) = contents;   }
 338 
 339 inline jfloat oopDesc::float_field(int offset) const                { return *float_field_addr(offset);      }
 340 inline void oopDesc::float_field_put(int offset, jfloat contents)   { *float_field_addr(offset) = contents;  }
 341 
 342 inline jdouble oopDesc::double_field(int offset) const              { return *double_field_addr(offset);     }
 343 inline void oopDesc::double_field_put(int offset, jdouble contents) { *double_field_addr(offset) = contents; }
 344 
 345 inline address oopDesc::address_field(int offset) const              { return *address_field_addr(offset);     }
 346 inline void oopDesc::address_field_put(int offset, address contents) { *address_field_addr(offset) = contents; }
 347 
 348 inline oop oopDesc::obj_field_acquire(int offset) const {
 349   return UseCompressedOops ?
 350              decode_heap_oop((narrowOop)
 351                OrderAccess::load_acquire(obj_field_addr<narrowOop>(offset)))
 352            : decode_heap_oop((oop)
 353                OrderAccess::load_ptr_acquire(obj_field_addr<oop>(offset)));
 354 }
 355 inline void oopDesc::release_obj_field_put(int offset, oop value) {
 356   UseCompressedOops ?
 357     oop_store((volatile narrowOop*)obj_field_addr<narrowOop>(offset), value) :
 358     oop_store((volatile oop*)      obj_field_addr<oop>(offset),       value);
 359 }
 360 
 361 inline jbyte oopDesc::byte_field_acquire(int offset) const                  { return OrderAccess::load_acquire(byte_field_addr(offset));     }
 362 inline void oopDesc::release_byte_field_put(int offset, jbyte contents)     { OrderAccess::release_store(byte_field_addr(offset), contents); }
 363 
 364 inline jboolean oopDesc::bool_field_acquire(int offset) const               { return OrderAccess::load_acquire(bool_field_addr(offset));     }
 365 inline void oopDesc::release_bool_field_put(int offset, jboolean contents)  { OrderAccess::release_store(bool_field_addr(offset), contents); }
 366 
 367 inline jchar oopDesc::char_field_acquire(int offset) const                  { return OrderAccess::load_acquire(char_field_addr(offset));     }
 368 inline void oopDesc::release_char_field_put(int offset, jchar contents)     { OrderAccess::release_store(char_field_addr(offset), contents); }
 369 
 370 inline jint oopDesc::int_field_acquire(int offset) const                    { return OrderAccess::load_acquire(int_field_addr(offset));      }
 371 inline void oopDesc::release_int_field_put(int offset, jint contents)       { OrderAccess::release_store(int_field_addr(offset), contents);  }
 372 
 373 inline jshort oopDesc::short_field_acquire(int offset) const                { return (jshort)OrderAccess::load_acquire(short_field_addr(offset)); }
 374 inline void oopDesc::release_short_field_put(int offset, jshort contents)   { OrderAccess::release_store(short_field_addr(offset), contents);     }
 375 
 376 inline jlong oopDesc::long_field_acquire(int offset) const                  { return OrderAccess::load_acquire(long_field_addr(offset));       }
 377 inline void oopDesc::release_long_field_put(int offset, jlong contents)     { OrderAccess::release_store(long_field_addr(offset), contents);   }
 378 
 379 inline jfloat oopDesc::float_field_acquire(int offset) const                { return OrderAccess::load_acquire(float_field_addr(offset));      }
 380 inline void oopDesc::release_float_field_put(int offset, jfloat contents)   { OrderAccess::release_store(float_field_addr(offset), contents);  }
 381 
 382 inline jdouble oopDesc::double_field_acquire(int offset) const              { return OrderAccess::load_acquire(double_field_addr(offset));     }
 383 inline void oopDesc::release_double_field_put(int offset, jdouble contents) { OrderAccess::release_store(double_field_addr(offset), contents); }
 384 
 385 inline address oopDesc::address_field_acquire(int offset) const             { return (address) OrderAccess::load_ptr_acquire(address_field_addr(offset)); }
 386 inline void oopDesc::release_address_field_put(int offset, address contents) { OrderAccess::release_store_ptr(address_field_addr(offset), contents); }
 387 
 388 inline int oopDesc::size_given_klass(Klass* klass)  {
 389   int lh = klass->layout_helper();
 390   int s;
 391 
 392   // lh is now a value computed at class initialization that may hint
 393   // at the size.  For instances, this is positive and equal to the
 394   // size.  For arrays, this is negative and provides log2 of the
 395   // array element size.  For other oops, it is zero and thus requires
 396   // a virtual call.
 397   //
 398   // We go to all this trouble because the size computation is at the
 399   // heart of phase 2 of mark-compaction, and called for every object,
 400   // alive or dead.  So the speed here is equal in importance to the
 401   // speed of allocation.
 402 
 403   if (lh > Klass::_lh_neutral_value) {
 404     if (!Klass::layout_helper_needs_slow_path(lh)) {
 405       s = lh >> LogHeapWordSize;  // deliver size scaled by wordSize
 406     } else {
 407       s = klass->oop_size(this);
 408     }
 409   } else if (lh <= Klass::_lh_neutral_value) {
 410     // The most common case is instances; fall through if so.
 411     if (lh < Klass::_lh_neutral_value) {
 412       // Second most common case is arrays.  We have to fetch the
 413       // length of the array, shift (multiply) it appropriately,
 414       // up to wordSize, add the header, and align to object size.
 415       size_t size_in_bytes;
 416 #ifdef _M_IA64
 417       // The Windows Itanium Aug 2002 SDK hoists this load above
 418       // the check for s < 0.  An oop at the end of the heap will
 419       // cause an access violation if this load is performed on a non
 420       // array oop.  Making the reference volatile prohibits this.
 421       // (%%% please explain by what magic the length is actually fetched!)
 422       volatile int *array_length;
 423       array_length = (volatile int *)( (intptr_t)this +
 424                           arrayOopDesc::length_offset_in_bytes() );
 425       assert(array_length > 0, "Integer arithmetic problem somewhere");
 426       // Put into size_t to avoid overflow.
 427       size_in_bytes = (size_t) array_length;
 428       size_in_bytes = size_in_bytes << Klass::layout_helper_log2_element_size(lh);
 429 #else
 430       size_t array_length = (size_t) ((arrayOop)this)->length();
 431       size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
 432 #endif
 433       size_in_bytes += Klass::layout_helper_header_size(lh);
 434 
 435       // This code could be simplified, but by keeping array_header_in_bytes
 436       // in units of bytes and doing it this way we can round up just once,
 437       // skipping the intermediate round to HeapWordSize.  Cast the result
 438       // of round_to to size_t to guarantee unsigned division == right shift.
 439       s = (int)((size_t)round_to(size_in_bytes, MinObjAlignmentInBytes) /
 440         HeapWordSize);
 441 
 442       // UseParNewGC, UseParallelGC and UseG1GC can change the length field
 443       // of an "old copy" of an object array in the young gen so it indicates
 444       // the grey portion of an already copied array. This will cause the first
 445       // disjunct below to fail if the two comparands are computed across such
 446       // a concurrent change.
 447       // UseParNewGC also runs with promotion labs (which look like int
 448       // filler arrays) which are subject to changing their declared size
 449       // when finally retiring a PLAB; this also can cause the first disjunct
 450       // to fail for another worker thread that is concurrently walking the block
 451       // offset table. Both these invariant failures are benign for their
 452       // current uses; we relax the assertion checking to cover these two cases below:
 453       //     is_objArray() && is_forwarded()   // covers first scenario above
 454       //  || is_typeArray()                    // covers second scenario above
 455       // If and when UseParallelGC uses the same obj array oop stealing/chunking
 456       // technique, we will need to suitably modify the assertion.
 457       assert((s == klass->oop_size(this)) ||
 458              (Universe::heap()->is_gc_active() &&
 459               ((is_typeArray() && UseParNewGC) ||
 460                (is_objArray()  && is_forwarded() && (UseParNewGC || UseParallelGC || UseG1GC)))),
 461              "wrong array object size");
 462     } else {
 463       // Must be zero, so bite the bullet and take the virtual call.
 464       s = klass->oop_size(this);
 465     }
 466   }
 467 
 468   assert(s % MinObjAlignment == 0, "alignment check");
 469   assert(s > 0, "Bad size calculated");
 470   return s;
 471 }
 472 
 473 
 474 inline int oopDesc::size()  {
 475   return size_given_klass(klass());
 476 }
 477 
 478 inline void update_barrier_set(void* p, oop v, bool release = false) {
 479   assert(oopDesc::bs() != NULL, "Uninitialized bs in oop!");
 480   oopDesc::bs()->write_ref_field(p, v, release);
 481 }
 482 
 483 template <class T> inline void update_barrier_set_pre(T* p, oop v) {
 484   oopDesc::bs()->write_ref_field_pre(p, v);
 485 }
 486 
 487 template <class T> inline void oop_store(T* p, oop v) {
 488   if (always_do_update_barrier) {
 489     oop_store((volatile T*)p, v);
 490   } else {
 491     update_barrier_set_pre(p, v);
 492     oopDesc::encode_store_heap_oop(p, v);
 493     // always_do_update_barrier == false =>
 494     // Either we are at a safepoint (in GC) or CMS is not used. In both
 495     // cases it's unnecessary to mark the card as dirty with release sematics.
 496     update_barrier_set((void*)p, v, false /* release */);  // cast away type
 497   }
 498 }
 499 
 500 template <class T> inline void oop_store(volatile T* p, oop v) {
 501   update_barrier_set_pre((T*)p, v);   // cast away volatile
 502   // Used by release_obj_field_put, so use release_store_ptr.
 503   oopDesc::release_encode_store_heap_oop(p, v);
 504   // When using CMS we must mark the card corresponding to p as dirty
 505   // with release sematics to prevent that CMS sees the dirty card but
 506   // not the new value v at p due to reordering of the two
 507   // stores. Note that CMS has a concurrent precleaning phase, where
 508   // it reads the card table while the Java threads are running.
 509   update_barrier_set((void*)p, v, true /* release */);    // cast away type
 510 }
 511 
 512 // Should replace *addr = oop assignments where addr type depends on UseCompressedOops
 513 // (without having to remember the function name this calls).
 514 inline void oop_store_raw(HeapWord* addr, oop value) {
 515   if (UseCompressedOops) {
 516     oopDesc::encode_store_heap_oop((narrowOop*)addr, value);
 517   } else {
 518     oopDesc::encode_store_heap_oop((oop*)addr, value);
 519   }
 520 }
 521 
 522 inline oop oopDesc::atomic_compare_exchange_oop(oop exchange_value,
 523                                                 volatile HeapWord *dest,
 524                                                 oop compare_value,
 525                                                 bool prebarrier) {
 526   if (UseCompressedOops) {
 527     if (prebarrier) {
 528       update_barrier_set_pre((narrowOop*)dest, exchange_value);
 529     }
 530     // encode exchange and compare value from oop to T
 531     narrowOop val = encode_heap_oop(exchange_value);
 532     narrowOop cmp = encode_heap_oop(compare_value);
 533 
 534     narrowOop old = (narrowOop) Atomic::cmpxchg(val, (narrowOop*)dest, cmp);
 535     // decode old from T to oop
 536     return decode_heap_oop(old);
 537   } else {
 538     if (prebarrier) {
 539       update_barrier_set_pre((oop*)dest, exchange_value);
 540     }
 541     return (oop)Atomic::cmpxchg_ptr(exchange_value, (oop*)dest, compare_value);
 542   }
 543 }
 544 
 545 // Used only for markSweep, scavenging
 546 inline bool oopDesc::is_gc_marked() const {
 547   return mark()->is_marked();
 548 }
 549 
 550 inline bool oopDesc::is_locked() const {
 551   return mark()->is_locked();
 552 }
 553 
 554 inline bool oopDesc::is_unlocked() const {
 555   return mark()->is_unlocked();
 556 }
 557 
 558 inline bool oopDesc::has_bias_pattern() const {
 559   return mark()->has_bias_pattern();
 560 }
 561 
 562 
 563 // used only for asserts
 564 inline bool oopDesc::is_oop(bool ignore_mark_word) const {
 565   oop obj = (oop) this;
 566   if (!check_obj_alignment(obj)) return false;
 567   if (!Universe::heap()->is_in_reserved(obj)) return false;
 568   // obj is aligned and accessible in heap
 569   if (Universe::heap()->is_in_reserved(obj->klass_or_null())) return false;
 570 
 571   // Header verification: the mark is typically non-NULL. If we're
 572   // at a safepoint, it must not be null.
 573   // Outside of a safepoint, the header could be changing (for example,
 574   // another thread could be inflating a lock on this object).
 575   if (ignore_mark_word) {
 576     return true;
 577   }
 578   if (mark() != NULL) {
 579     return true;
 580   }
 581   return !SafepointSynchronize::is_at_safepoint();
 582 }
 583 
 584 
 585 // used only for asserts
 586 inline bool oopDesc::is_oop_or_null(bool ignore_mark_word) const {
 587   return this == NULL ? true : is_oop(ignore_mark_word);
 588 }
 589 
 590 #ifndef PRODUCT
 591 // used only for asserts
 592 inline bool oopDesc::is_unlocked_oop() const {
 593   if (!Universe::heap()->is_in_reserved(this)) return false;
 594   return mark()->is_unlocked();
 595 }
 596 #endif // PRODUCT
 597 
 598 inline void oopDesc::follow_contents(void) {
 599   assert (is_gc_marked(), "should be marked");
 600   klass()->oop_follow_contents(this);
 601 }
 602 
 603 // Used by scavengers
 604 
 605 inline bool oopDesc::is_forwarded() const {
 606   // The extra heap check is needed since the obj might be locked, in which case the
 607   // mark would point to a stack location and have the sentinel bit cleared
 608   return mark()->is_marked();
 609 }
 610 
 611 // Used by scavengers
 612 inline void oopDesc::forward_to(oop p) {
 613   assert(check_obj_alignment(p),
 614          "forwarding to something not aligned");
 615   assert(Universe::heap()->is_in_reserved(p),
 616          "forwarding to something not in heap");
 617   markOop m = markOopDesc::encode_pointer_as_mark(p);
 618   assert(m->decode_pointer() == p, "encoding must be reversable");
 619   set_mark(m);
 620 }
 621 
 622 // Used by parallel scavengers
 623 inline bool oopDesc::cas_forward_to(oop p, markOop compare) {
 624   assert(check_obj_alignment(p),
 625          "forwarding to something not aligned");
 626   assert(Universe::heap()->is_in_reserved(p),
 627          "forwarding to something not in heap");
 628   markOop m = markOopDesc::encode_pointer_as_mark(p);
 629   assert(m->decode_pointer() == p, "encoding must be reversable");
 630   return cas_set_mark(m, compare) == compare;
 631 }
 632 
 633 // Note that the forwardee is not the same thing as the displaced_mark.
 634 // The forwardee is used when copying during scavenge and mark-sweep.
 635 // It does need to clear the low two locking- and GC-related bits.
 636 inline oop oopDesc::forwardee() const {
 637   return (oop) mark()->decode_pointer();
 638 }
 639 
 640 inline bool oopDesc::has_displaced_mark() const {
 641   return mark()->has_displaced_mark_helper();
 642 }
 643 
 644 inline markOop oopDesc::displaced_mark() const {
 645   return mark()->displaced_mark_helper();
 646 }
 647 
 648 inline void oopDesc::set_displaced_mark(markOop m) {
 649   mark()->set_displaced_mark_helper(m);
 650 }
 651 
 652 // The following method needs to be MT safe.
 653 inline uint oopDesc::age() const {
 654   assert(!is_forwarded(), "Attempt to read age from forwarded mark");
 655   if (has_displaced_mark()) {
 656     return displaced_mark()->age();
 657   } else {
 658     return mark()->age();
 659   }
 660 }
 661 
 662 inline void oopDesc::incr_age() {
 663   assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
 664   if (has_displaced_mark()) {
 665     set_displaced_mark(displaced_mark()->incr_age());
 666   } else {
 667     set_mark(mark()->incr_age());
 668   }
 669 }
 670 
 671 
 672 inline intptr_t oopDesc::identity_hash() {
 673   // Fast case; if the object is unlocked and the hash value is set, no locking is needed
 674   // Note: The mark must be read into local variable to avoid concurrent updates.
 675   markOop mrk = mark();
 676   if (mrk->is_unlocked() && !mrk->has_no_hash()) {
 677     return mrk->hash();
 678   } else if (mrk->is_marked()) {
 679     return mrk->hash();
 680   } else {
 681     return slow_identity_hash();
 682   }
 683 }
 684 
 685 inline int oopDesc::adjust_pointers() {
 686   debug_only(int check_size = size());
 687   int s = klass()->oop_adjust_pointers(this);
 688   assert(s == check_size, "should be the same");
 689   return s;
 690 }
 691 
 692 template <bool nv, typename OopClosureType>
 693 inline int oopDesc::oop_iterate(OopClosureType* blk) {
 694   CONCRETE_KLASS_DO_AND_RETURN(klass(), oop_oop_iterate<nv>(this,blk));
 695 }
 696 
 697 template <bool nv, typename OopClosureType>
 698 inline int oopDesc::oop_iterate(OopClosureType* blk, MemRegion mr) {
 699   CONCRETE_KLASS_DO_AND_RETURN(klass(), oop_oop_iterate_m<nv>(this,blk,mr));
 700 }
 701 
 702 #if INCLUDE_ALL_GCS
 703 template <bool nv, typename OopClosureType>
 704 inline int oopDesc::oop_iterate_backwards(OopClosureType* blk) {
 705   CONCRETE_KLASS_DO_AND_RETURN(klass(), oop_oop_iterate_backwards<nv>(this, blk));
 706 }
 707 #endif // INCLUDE_ALL_GCS
 708 
 709 inline int oopDesc::oop_iterate_no_header(OopClosure* blk) {
 710   // The NoHeaderExtendedOopClosure wraps the OopClosure and proxies all
 711   // the do_oop calls, but turns off all other features in ExtendedOopClosure.
 712   NoHeaderExtendedOopClosure cl(blk);
 713   return oop_iterate(&cl);
 714 }
 715 
 716 inline int oopDesc::oop_iterate_no_header(OopClosure* blk, MemRegion mr) {
 717   NoHeaderExtendedOopClosure cl(blk);
 718   return oop_iterate(&cl, mr);
 719 }
 720 
 721 #endif // SHARE_VM_OOPS_OOP_INLINE_HPP