1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/chaitin.hpp"
  43 #include "opto/compile.hpp"
  44 #include "opto/connode.hpp"
  45 #include "opto/divnode.hpp"
  46 #include "opto/escape.hpp"
  47 #include "opto/idealGraphPrinter.hpp"
  48 #include "opto/loopnode.hpp"
  49 #include "opto/machnode.hpp"
  50 #include "opto/macro.hpp"
  51 #include "opto/matcher.hpp"
  52 #include "opto/mathexactnode.hpp"
  53 #include "opto/memnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/narrowptrnode.hpp"
  56 #include "opto/node.hpp"
  57 #include "opto/opcodes.hpp"
  58 #include "opto/output.hpp"
  59 #include "opto/parse.hpp"
  60 #include "opto/phaseX.hpp"
  61 #include "opto/rootnode.hpp"
  62 #include "opto/runtime.hpp"
  63 #include "opto/stringopts.hpp"
  64 #include "opto/type.hpp"
  65 #include "opto/vectornode.hpp"
  66 #include "runtime/arguments.hpp"
  67 #include "runtime/signature.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "trace/tracing.hpp"
  71 #include "utilities/copy.hpp"
  72 
  73 
  74 // -------------------- Compile::mach_constant_base_node -----------------------
  75 // Constant table base node singleton.
  76 MachConstantBaseNode* Compile::mach_constant_base_node() {
  77   if (_mach_constant_base_node == NULL) {
  78     _mach_constant_base_node = new MachConstantBaseNode();
  79     _mach_constant_base_node->add_req(C->root());
  80   }
  81   return _mach_constant_base_node;
  82 }
  83 
  84 
  85 /// Support for intrinsics.
  86 
  87 // Return the index at which m must be inserted (or already exists).
  88 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  89 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  90 #ifdef ASSERT
  91   for (int i = 1; i < _intrinsics->length(); i++) {
  92     CallGenerator* cg1 = _intrinsics->at(i-1);
  93     CallGenerator* cg2 = _intrinsics->at(i);
  94     assert(cg1->method() != cg2->method()
  95            ? cg1->method()     < cg2->method()
  96            : cg1->is_virtual() < cg2->is_virtual(),
  97            "compiler intrinsics list must stay sorted");
  98   }
  99 #endif
 100   // Binary search sorted list, in decreasing intervals [lo, hi].
 101   int lo = 0, hi = _intrinsics->length()-1;
 102   while (lo <= hi) {
 103     int mid = (uint)(hi + lo) / 2;
 104     ciMethod* mid_m = _intrinsics->at(mid)->method();
 105     if (m < mid_m) {
 106       hi = mid-1;
 107     } else if (m > mid_m) {
 108       lo = mid+1;
 109     } else {
 110       // look at minor sort key
 111       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 112       if (is_virtual < mid_virt) {
 113         hi = mid-1;
 114       } else if (is_virtual > mid_virt) {
 115         lo = mid+1;
 116       } else {
 117         return mid;  // exact match
 118       }
 119     }
 120   }
 121   return lo;  // inexact match
 122 }
 123 
 124 void Compile::register_intrinsic(CallGenerator* cg) {
 125   if (_intrinsics == NULL) {
 126     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 127   }
 128   // This code is stolen from ciObjectFactory::insert.
 129   // Really, GrowableArray should have methods for
 130   // insert_at, remove_at, and binary_search.
 131   int len = _intrinsics->length();
 132   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 133   if (index == len) {
 134     _intrinsics->append(cg);
 135   } else {
 136 #ifdef ASSERT
 137     CallGenerator* oldcg = _intrinsics->at(index);
 138     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 139 #endif
 140     _intrinsics->append(_intrinsics->at(len-1));
 141     int pos;
 142     for (pos = len-2; pos >= index; pos--) {
 143       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 144     }
 145     _intrinsics->at_put(index, cg);
 146   }
 147   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 148 }
 149 
 150 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 151   assert(m->is_loaded(), "don't try this on unloaded methods");
 152   if (_intrinsics != NULL) {
 153     int index = intrinsic_insertion_index(m, is_virtual);
 154     if (index < _intrinsics->length()
 155         && _intrinsics->at(index)->method() == m
 156         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 157       return _intrinsics->at(index);
 158     }
 159   }
 160   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 161   if (m->intrinsic_id() != vmIntrinsics::_none &&
 162       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 163     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 164     if (cg != NULL) {
 165       // Save it for next time:
 166       register_intrinsic(cg);
 167       return cg;
 168     } else {
 169       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 170     }
 171   }
 172   return NULL;
 173 }
 174 
 175 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 176 // in library_call.cpp.
 177 
 178 
 179 #ifndef PRODUCT
 180 // statistics gathering...
 181 
 182 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 183 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 184 
 185 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 186   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 187   int oflags = _intrinsic_hist_flags[id];
 188   assert(flags != 0, "what happened?");
 189   if (is_virtual) {
 190     flags |= _intrinsic_virtual;
 191   }
 192   bool changed = (flags != oflags);
 193   if ((flags & _intrinsic_worked) != 0) {
 194     juint count = (_intrinsic_hist_count[id] += 1);
 195     if (count == 1) {
 196       changed = true;           // first time
 197     }
 198     // increment the overall count also:
 199     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 200   }
 201   if (changed) {
 202     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 203       // Something changed about the intrinsic's virtuality.
 204       if ((flags & _intrinsic_virtual) != 0) {
 205         // This is the first use of this intrinsic as a virtual call.
 206         if (oflags != 0) {
 207           // We already saw it as a non-virtual, so note both cases.
 208           flags |= _intrinsic_both;
 209         }
 210       } else if ((oflags & _intrinsic_both) == 0) {
 211         // This is the first use of this intrinsic as a non-virtual
 212         flags |= _intrinsic_both;
 213       }
 214     }
 215     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 216   }
 217   // update the overall flags also:
 218   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 219   return changed;
 220 }
 221 
 222 static char* format_flags(int flags, char* buf) {
 223   buf[0] = 0;
 224   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 225   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 226   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 227   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 228   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 229   if (buf[0] == 0)  strcat(buf, ",");
 230   assert(buf[0] == ',', "must be");
 231   return &buf[1];
 232 }
 233 
 234 void Compile::print_intrinsic_statistics() {
 235   char flagsbuf[100];
 236   ttyLocker ttyl;
 237   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 238   tty->print_cr("Compiler intrinsic usage:");
 239   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 240   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 241   #define PRINT_STAT_LINE(name, c, f) \
 242     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 243   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 244     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 245     int   flags = _intrinsic_hist_flags[id];
 246     juint count = _intrinsic_hist_count[id];
 247     if ((flags | count) != 0) {
 248       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 249     }
 250   }
 251   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 252   if (xtty != NULL)  xtty->tail("statistics");
 253 }
 254 
 255 void Compile::print_statistics() {
 256   { ttyLocker ttyl;
 257     if (xtty != NULL)  xtty->head("statistics type='opto'");
 258     Parse::print_statistics();
 259     PhaseCCP::print_statistics();
 260     PhaseRegAlloc::print_statistics();
 261     Scheduling::print_statistics();
 262     PhasePeephole::print_statistics();
 263     PhaseIdealLoop::print_statistics();
 264     if (xtty != NULL)  xtty->tail("statistics");
 265   }
 266   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 267     // put this under its own <statistics> element.
 268     print_intrinsic_statistics();
 269   }
 270 }
 271 #endif //PRODUCT
 272 
 273 // Support for bundling info
 274 Bundle* Compile::node_bundling(const Node *n) {
 275   assert(valid_bundle_info(n), "oob");
 276   return &_node_bundling_base[n->_idx];
 277 }
 278 
 279 bool Compile::valid_bundle_info(const Node *n) {
 280   return (_node_bundling_limit > n->_idx);
 281 }
 282 
 283 
 284 void Compile::gvn_replace_by(Node* n, Node* nn) {
 285   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 286     Node* use = n->last_out(i);
 287     bool is_in_table = initial_gvn()->hash_delete(use);
 288     uint uses_found = 0;
 289     for (uint j = 0; j < use->len(); j++) {
 290       if (use->in(j) == n) {
 291         if (j < use->req())
 292           use->set_req(j, nn);
 293         else
 294           use->set_prec(j, nn);
 295         uses_found++;
 296       }
 297     }
 298     if (is_in_table) {
 299       // reinsert into table
 300       initial_gvn()->hash_find_insert(use);
 301     }
 302     record_for_igvn(use);
 303     i -= uses_found;    // we deleted 1 or more copies of this edge
 304   }
 305 }
 306 
 307 
 308 static inline bool not_a_node(const Node* n) {
 309   if (n == NULL)                   return true;
 310   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 311   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 312   return false;
 313 }
 314 
 315 // Identify all nodes that are reachable from below, useful.
 316 // Use breadth-first pass that records state in a Unique_Node_List,
 317 // recursive traversal is slower.
 318 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 319   int estimated_worklist_size = unique();
 320   useful.map( estimated_worklist_size, NULL );  // preallocate space
 321 
 322   // Initialize worklist
 323   if (root() != NULL)     { useful.push(root()); }
 324   // If 'top' is cached, declare it useful to preserve cached node
 325   if( cached_top_node() ) { useful.push(cached_top_node()); }
 326 
 327   // Push all useful nodes onto the list, breadthfirst
 328   for( uint next = 0; next < useful.size(); ++next ) {
 329     assert( next < unique(), "Unique useful nodes < total nodes");
 330     Node *n  = useful.at(next);
 331     uint max = n->len();
 332     for( uint i = 0; i < max; ++i ) {
 333       Node *m = n->in(i);
 334       if (not_a_node(m))  continue;
 335       useful.push(m);
 336     }
 337   }
 338 }
 339 
 340 // Update dead_node_list with any missing dead nodes using useful
 341 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 342 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 343   uint max_idx = unique();
 344   VectorSet& useful_node_set = useful.member_set();
 345 
 346   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 347     // If node with index node_idx is not in useful set,
 348     // mark it as dead in dead node list.
 349     if (! useful_node_set.test(node_idx) ) {
 350       record_dead_node(node_idx);
 351     }
 352   }
 353 }
 354 
 355 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 356   int shift = 0;
 357   for (int i = 0; i < inlines->length(); i++) {
 358     CallGenerator* cg = inlines->at(i);
 359     CallNode* call = cg->call_node();
 360     if (shift > 0) {
 361       inlines->at_put(i-shift, cg);
 362     }
 363     if (!useful.member(call)) {
 364       shift++;
 365     }
 366   }
 367   inlines->trunc_to(inlines->length()-shift);
 368 }
 369 
 370 // Disconnect all useless nodes by disconnecting those at the boundary.
 371 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 372   uint next = 0;
 373   while (next < useful.size()) {
 374     Node *n = useful.at(next++);
 375     if (n->is_SafePoint()) {
 376       // We're done with a parsing phase. Replaced nodes are not valid
 377       // beyond that point.
 378       n->as_SafePoint()->delete_replaced_nodes();
 379     }
 380     // Use raw traversal of out edges since this code removes out edges
 381     int max = n->outcnt();
 382     for (int j = 0; j < max; ++j) {
 383       Node* child = n->raw_out(j);
 384       if (! useful.member(child)) {
 385         assert(!child->is_top() || child != top(),
 386                "If top is cached in Compile object it is in useful list");
 387         // Only need to remove this out-edge to the useless node
 388         n->raw_del_out(j);
 389         --j;
 390         --max;
 391       }
 392     }
 393     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 394       record_for_igvn(n->unique_out());
 395     }
 396   }
 397   // Remove useless macro and predicate opaq nodes
 398   for (int i = C->macro_count()-1; i >= 0; i--) {
 399     Node* n = C->macro_node(i);
 400     if (!useful.member(n)) {
 401       remove_macro_node(n);
 402     }
 403   }
 404   // Remove useless expensive node
 405   for (int i = C->expensive_count()-1; i >= 0; i--) {
 406     Node* n = C->expensive_node(i);
 407     if (!useful.member(n)) {
 408       remove_expensive_node(n);
 409     }
 410   }
 411   // clean up the late inline lists
 412   remove_useless_late_inlines(&_string_late_inlines, useful);
 413   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 414   remove_useless_late_inlines(&_late_inlines, useful);
 415   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 416 }
 417 
 418 //------------------------------frame_size_in_words-----------------------------
 419 // frame_slots in units of words
 420 int Compile::frame_size_in_words() const {
 421   // shift is 0 in LP32 and 1 in LP64
 422   const int shift = (LogBytesPerWord - LogBytesPerInt);
 423   int words = _frame_slots >> shift;
 424   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 425   return words;
 426 }
 427 
 428 // To bang the stack of this compiled method we use the stack size
 429 // that the interpreter would need in case of a deoptimization. This
 430 // removes the need to bang the stack in the deoptimization blob which
 431 // in turn simplifies stack overflow handling.
 432 int Compile::bang_size_in_bytes() const {
 433   return MAX2(_interpreter_frame_size, frame_size_in_bytes());
 434 }
 435 
 436 // ============================================================================
 437 //------------------------------CompileWrapper---------------------------------
 438 class CompileWrapper : public StackObj {
 439   Compile *const _compile;
 440  public:
 441   CompileWrapper(Compile* compile);
 442 
 443   ~CompileWrapper();
 444 };
 445 
 446 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 447   // the Compile* pointer is stored in the current ciEnv:
 448   ciEnv* env = compile->env();
 449   assert(env == ciEnv::current(), "must already be a ciEnv active");
 450   assert(env->compiler_data() == NULL, "compile already active?");
 451   env->set_compiler_data(compile);
 452   assert(compile == Compile::current(), "sanity");
 453 
 454   compile->set_type_dict(NULL);
 455   compile->set_type_hwm(NULL);
 456   compile->set_type_last_size(0);
 457   compile->set_last_tf(NULL, NULL);
 458   compile->set_indexSet_arena(NULL);
 459   compile->set_indexSet_free_block_list(NULL);
 460   compile->init_type_arena();
 461   Type::Initialize(compile);
 462   _compile->set_scratch_buffer_blob(NULL);
 463   _compile->begin_method();
 464 }
 465 CompileWrapper::~CompileWrapper() {
 466   _compile->end_method();
 467   if (_compile->scratch_buffer_blob() != NULL)
 468     BufferBlob::free(_compile->scratch_buffer_blob());
 469   _compile->env()->set_compiler_data(NULL);
 470 }
 471 
 472 
 473 //----------------------------print_compile_messages---------------------------
 474 void Compile::print_compile_messages() {
 475 #ifndef PRODUCT
 476   // Check if recompiling
 477   if (_subsume_loads == false && PrintOpto) {
 478     // Recompiling without allowing machine instructions to subsume loads
 479     tty->print_cr("*********************************************************");
 480     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 481     tty->print_cr("*********************************************************");
 482   }
 483   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 484     // Recompiling without escape analysis
 485     tty->print_cr("*********************************************************");
 486     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 487     tty->print_cr("*********************************************************");
 488   }
 489   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 490     // Recompiling without boxing elimination
 491     tty->print_cr("*********************************************************");
 492     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 493     tty->print_cr("*********************************************************");
 494   }
 495   if (env()->break_at_compile()) {
 496     // Open the debugger when compiling this method.
 497     tty->print("### Breaking when compiling: ");
 498     method()->print_short_name();
 499     tty->cr();
 500     BREAKPOINT;
 501   }
 502 
 503   if( PrintOpto ) {
 504     if (is_osr_compilation()) {
 505       tty->print("[OSR]%3d", _compile_id);
 506     } else {
 507       tty->print("%3d", _compile_id);
 508     }
 509   }
 510 #endif
 511 }
 512 
 513 
 514 //-----------------------init_scratch_buffer_blob------------------------------
 515 // Construct a temporary BufferBlob and cache it for this compile.
 516 void Compile::init_scratch_buffer_blob(int const_size) {
 517   // If there is already a scratch buffer blob allocated and the
 518   // constant section is big enough, use it.  Otherwise free the
 519   // current and allocate a new one.
 520   BufferBlob* blob = scratch_buffer_blob();
 521   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 522     // Use the current blob.
 523   } else {
 524     if (blob != NULL) {
 525       BufferBlob::free(blob);
 526     }
 527 
 528     ResourceMark rm;
 529     _scratch_const_size = const_size;
 530     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 531     blob = BufferBlob::create("Compile::scratch_buffer", size);
 532     // Record the buffer blob for next time.
 533     set_scratch_buffer_blob(blob);
 534     // Have we run out of code space?
 535     if (scratch_buffer_blob() == NULL) {
 536       // Let CompilerBroker disable further compilations.
 537       record_failure("Not enough space for scratch buffer in CodeCache");
 538       CompileBroker::handle_full_code_cache();
 539       return;
 540     }
 541   }
 542 
 543   // Initialize the relocation buffers
 544   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 545   set_scratch_locs_memory(locs_buf);
 546 }
 547 
 548 
 549 //-----------------------scratch_emit_size-------------------------------------
 550 // Helper function that computes size by emitting code
 551 uint Compile::scratch_emit_size(const Node* n) {
 552   // Start scratch_emit_size section.
 553   set_in_scratch_emit_size(true);
 554 
 555   // Emit into a trash buffer and count bytes emitted.
 556   // This is a pretty expensive way to compute a size,
 557   // but it works well enough if seldom used.
 558   // All common fixed-size instructions are given a size
 559   // method by the AD file.
 560   // Note that the scratch buffer blob and locs memory are
 561   // allocated at the beginning of the compile task, and
 562   // may be shared by several calls to scratch_emit_size.
 563   // The allocation of the scratch buffer blob is particularly
 564   // expensive, since it has to grab the code cache lock.
 565   BufferBlob* blob = this->scratch_buffer_blob();
 566   assert(blob != NULL, "Initialize BufferBlob at start");
 567   assert(blob->size() > MAX_inst_size, "sanity");
 568   relocInfo* locs_buf = scratch_locs_memory();
 569   address blob_begin = blob->content_begin();
 570   address blob_end   = (address)locs_buf;
 571   assert(blob->content_contains(blob_end), "sanity");
 572   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 573   buf.initialize_consts_size(_scratch_const_size);
 574   buf.initialize_stubs_size(MAX_stubs_size);
 575   assert(locs_buf != NULL, "sanity");
 576   int lsize = MAX_locs_size / 3;
 577   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 578   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 579   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 580 
 581   // Do the emission.
 582 
 583   Label fakeL; // Fake label for branch instructions.
 584   Label*   saveL = NULL;
 585   uint save_bnum = 0;
 586   bool is_branch = n->is_MachBranch();
 587   if (is_branch) {
 588     MacroAssembler masm(&buf);
 589     masm.bind(fakeL);
 590     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 591     n->as_MachBranch()->label_set(&fakeL, 0);
 592   }
 593   n->emit(buf, this->regalloc());
 594   if (is_branch) // Restore label.
 595     n->as_MachBranch()->label_set(saveL, save_bnum);
 596 
 597   // End scratch_emit_size section.
 598   set_in_scratch_emit_size(false);
 599 
 600   return buf.insts_size();
 601 }
 602 
 603 
 604 // ============================================================================
 605 //------------------------------Compile standard-------------------------------
 606 debug_only( int Compile::_debug_idx = 100000; )
 607 
 608 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 609 // the continuation bci for on stack replacement.
 610 
 611 
 612 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 613                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 614                 : Phase(Compiler),
 615                   _env(ci_env),
 616                   _log(ci_env->log()),
 617                   _compile_id(ci_env->compile_id()),
 618                   _save_argument_registers(false),
 619                   _stub_name(NULL),
 620                   _stub_function(NULL),
 621                   _stub_entry_point(NULL),
 622                   _method(target),
 623                   _entry_bci(osr_bci),
 624                   _initial_gvn(NULL),
 625                   _for_igvn(NULL),
 626                   _warm_calls(NULL),
 627                   _subsume_loads(subsume_loads),
 628                   _do_escape_analysis(do_escape_analysis),
 629                   _eliminate_boxing(eliminate_boxing),
 630                   _failure_reason(NULL),
 631                   _code_buffer("Compile::Fill_buffer"),
 632                   _orig_pc_slot(0),
 633                   _orig_pc_slot_offset_in_bytes(0),
 634                   _has_method_handle_invokes(false),
 635                   _mach_constant_base_node(NULL),
 636                   _node_bundling_limit(0),
 637                   _node_bundling_base(NULL),
 638                   _java_calls(0),
 639                   _inner_loops(0),
 640                   _scratch_const_size(-1),
 641                   _in_scratch_emit_size(false),
 642                   _dead_node_list(comp_arena()),
 643                   _dead_node_count(0),
 644 #ifndef PRODUCT
 645                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 646                   _in_dump_cnt(0),
 647                   _printer(IdealGraphPrinter::printer()),
 648 #endif
 649                   _congraph(NULL),
 650                   _replay_inline_data(NULL),
 651                   _late_inlines(comp_arena(), 2, 0, NULL),
 652                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 653                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 654                   _late_inlines_pos(0),
 655                   _number_of_mh_late_inlines(0),
 656                   _inlining_progress(false),
 657                   _inlining_incrementally(false),
 658                   _print_inlining_list(NULL),
 659                   _print_inlining_stream(NULL),
 660                   _print_inlining_idx(0),
 661                   _print_inlining_output(NULL),
 662                   _interpreter_frame_size(0) {
 663   C = this;
 664 
 665   CompileWrapper cw(this);
 666 #ifndef PRODUCT
 667   if (TimeCompiler2) {
 668     tty->print(" ");
 669     target->holder()->name()->print();
 670     tty->print(".");
 671     target->print_short_name();
 672     tty->print("  ");
 673   }
 674   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 675   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 676   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 677   if (!print_opto_assembly) {
 678     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 679     if (print_assembly && !Disassembler::can_decode()) {
 680       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 681       print_opto_assembly = true;
 682     }
 683   }
 684   set_print_assembly(print_opto_assembly);
 685   set_parsed_irreducible_loop(false);
 686 
 687   if (method()->has_option("ReplayInline")) {
 688     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 689   }
 690 #endif
 691   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 692   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 693   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 694 
 695   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 696     // Make sure the method being compiled gets its own MDO,
 697     // so we can at least track the decompile_count().
 698     // Need MDO to record RTM code generation state.
 699     method()->ensure_method_data();
 700   }
 701 
 702   Init(::AliasLevel);
 703 
 704 
 705   print_compile_messages();
 706 
 707   _ilt = InlineTree::build_inline_tree_root();
 708 
 709   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 710   assert(num_alias_types() >= AliasIdxRaw, "");
 711 
 712 #define MINIMUM_NODE_HASH  1023
 713   // Node list that Iterative GVN will start with
 714   Unique_Node_List for_igvn(comp_arena());
 715   set_for_igvn(&for_igvn);
 716 
 717   // GVN that will be run immediately on new nodes
 718   uint estimated_size = method()->code_size()*4+64;
 719   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 720   PhaseGVN gvn(node_arena(), estimated_size);
 721   set_initial_gvn(&gvn);
 722 
 723   print_inlining_init();
 724   { // Scope for timing the parser
 725     TracePhase t3("parse", &_t_parser, true);
 726 
 727     // Put top into the hash table ASAP.
 728     initial_gvn()->transform_no_reclaim(top());
 729 
 730     // Set up tf(), start(), and find a CallGenerator.
 731     CallGenerator* cg = NULL;
 732     if (is_osr_compilation()) {
 733       const TypeTuple *domain = StartOSRNode::osr_domain();
 734       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 735       init_tf(TypeFunc::make(domain, range));
 736       StartNode* s = new StartOSRNode(root(), domain);
 737       initial_gvn()->set_type_bottom(s);
 738       init_start(s);
 739       cg = CallGenerator::for_osr(method(), entry_bci());
 740     } else {
 741       // Normal case.
 742       init_tf(TypeFunc::make(method()));
 743       StartNode* s = new StartNode(root(), tf()->domain());
 744       initial_gvn()->set_type_bottom(s);
 745       init_start(s);
 746       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 747         // With java.lang.ref.reference.get() we must go through the
 748         // intrinsic when G1 is enabled - even when get() is the root
 749         // method of the compile - so that, if necessary, the value in
 750         // the referent field of the reference object gets recorded by
 751         // the pre-barrier code.
 752         // Specifically, if G1 is enabled, the value in the referent
 753         // field is recorded by the G1 SATB pre barrier. This will
 754         // result in the referent being marked live and the reference
 755         // object removed from the list of discovered references during
 756         // reference processing.
 757         cg = find_intrinsic(method(), false);
 758       }
 759       if (cg == NULL) {
 760         float past_uses = method()->interpreter_invocation_count();
 761         float expected_uses = past_uses;
 762         cg = CallGenerator::for_inline(method(), expected_uses);
 763       }
 764     }
 765     if (failing())  return;
 766     if (cg == NULL) {
 767       record_method_not_compilable_all_tiers("cannot parse method");
 768       return;
 769     }
 770     JVMState* jvms = build_start_state(start(), tf());
 771     if ((jvms = cg->generate(jvms)) == NULL) {
 772       record_method_not_compilable("method parse failed");
 773       return;
 774     }
 775     GraphKit kit(jvms);
 776 
 777     if (!kit.stopped()) {
 778       // Accept return values, and transfer control we know not where.
 779       // This is done by a special, unique ReturnNode bound to root.
 780       return_values(kit.jvms());
 781     }
 782 
 783     if (kit.has_exceptions()) {
 784       // Any exceptions that escape from this call must be rethrown
 785       // to whatever caller is dynamically above us on the stack.
 786       // This is done by a special, unique RethrowNode bound to root.
 787       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 788     }
 789 
 790     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 791 
 792     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 793       inline_string_calls(true);
 794     }
 795 
 796     if (failing())  return;
 797 
 798     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 799 
 800     // Remove clutter produced by parsing.
 801     if (!failing()) {
 802       ResourceMark rm;
 803       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 804     }
 805   }
 806 
 807   // Note:  Large methods are capped off in do_one_bytecode().
 808   if (failing())  return;
 809 
 810   // After parsing, node notes are no longer automagic.
 811   // They must be propagated by register_new_node_with_optimizer(),
 812   // clone(), or the like.
 813   set_default_node_notes(NULL);
 814 
 815   for (;;) {
 816     int successes = Inline_Warm();
 817     if (failing())  return;
 818     if (successes == 0)  break;
 819   }
 820 
 821   // Drain the list.
 822   Finish_Warm();
 823 #ifndef PRODUCT
 824   if (_printer) {
 825     _printer->print_inlining(this);
 826   }
 827 #endif
 828 
 829   if (failing())  return;
 830   NOT_PRODUCT( verify_graph_edges(); )
 831 
 832   // Now optimize
 833   Optimize();
 834   if (failing())  return;
 835   NOT_PRODUCT( verify_graph_edges(); )
 836 
 837 #ifndef PRODUCT
 838   if (PrintIdeal) {
 839     ttyLocker ttyl;  // keep the following output all in one block
 840     // This output goes directly to the tty, not the compiler log.
 841     // To enable tools to match it up with the compilation activity,
 842     // be sure to tag this tty output with the compile ID.
 843     if (xtty != NULL) {
 844       xtty->head("ideal compile_id='%d'%s", compile_id(),
 845                  is_osr_compilation()    ? " compile_kind='osr'" :
 846                  "");
 847     }
 848     root()->dump(9999);
 849     if (xtty != NULL) {
 850       xtty->tail("ideal");
 851     }
 852   }
 853 #endif
 854 
 855   NOT_PRODUCT( verify_barriers(); )
 856 
 857   // Dump compilation data to replay it.
 858   if (method()->has_option("DumpReplay")) {
 859     env()->dump_replay_data(_compile_id);
 860   }
 861   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 862     env()->dump_inline_data(_compile_id);
 863   }
 864 
 865   // Now that we know the size of all the monitors we can add a fixed slot
 866   // for the original deopt pc.
 867 
 868   _orig_pc_slot =  fixed_slots();
 869   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 870   set_fixed_slots(next_slot);
 871 
 872   // Compute when to use implicit null checks. Used by matching trap based
 873   // nodes and NullCheck optimization.
 874   set_allowed_deopt_reasons();
 875 
 876   // Now generate code
 877   Code_Gen();
 878   if (failing())  return;
 879 
 880   // Check if we want to skip execution of all compiled code.
 881   {
 882 #ifndef PRODUCT
 883     if (OptoNoExecute) {
 884       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 885       return;
 886     }
 887     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 888 #endif
 889 
 890     if (is_osr_compilation()) {
 891       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 892       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 893     } else {
 894       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 895       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 896     }
 897 
 898     env()->register_method(_method, _entry_bci,
 899                            &_code_offsets,
 900                            _orig_pc_slot_offset_in_bytes,
 901                            code_buffer(),
 902                            frame_size_in_words(), _oop_map_set,
 903                            &_handler_table, &_inc_table,
 904                            compiler,
 905                            env()->comp_level(),
 906                            has_unsafe_access(),
 907                            SharedRuntime::is_wide_vector(max_vector_size()),
 908                            rtm_state()
 909                            );
 910 
 911     if (log() != NULL) // Print code cache state into compiler log
 912       log()->code_cache_state();
 913   }
 914 }
 915 
 916 //------------------------------Compile----------------------------------------
 917 // Compile a runtime stub
 918 Compile::Compile( ciEnv* ci_env,
 919                   TypeFunc_generator generator,
 920                   address stub_function,
 921                   const char *stub_name,
 922                   int is_fancy_jump,
 923                   bool pass_tls,
 924                   bool save_arg_registers,
 925                   bool return_pc )
 926   : Phase(Compiler),
 927     _env(ci_env),
 928     _log(ci_env->log()),
 929     _compile_id(0),
 930     _save_argument_registers(save_arg_registers),
 931     _method(NULL),
 932     _stub_name(stub_name),
 933     _stub_function(stub_function),
 934     _stub_entry_point(NULL),
 935     _entry_bci(InvocationEntryBci),
 936     _initial_gvn(NULL),
 937     _for_igvn(NULL),
 938     _warm_calls(NULL),
 939     _orig_pc_slot(0),
 940     _orig_pc_slot_offset_in_bytes(0),
 941     _subsume_loads(true),
 942     _do_escape_analysis(false),
 943     _eliminate_boxing(false),
 944     _failure_reason(NULL),
 945     _code_buffer("Compile::Fill_buffer"),
 946     _has_method_handle_invokes(false),
 947     _mach_constant_base_node(NULL),
 948     _node_bundling_limit(0),
 949     _node_bundling_base(NULL),
 950     _java_calls(0),
 951     _inner_loops(0),
 952 #ifndef PRODUCT
 953     _trace_opto_output(TraceOptoOutput),
 954     _in_dump_cnt(0),
 955     _printer(NULL),
 956 #endif
 957     _dead_node_list(comp_arena()),
 958     _dead_node_count(0),
 959     _congraph(NULL),
 960     _replay_inline_data(NULL),
 961     _number_of_mh_late_inlines(0),
 962     _inlining_progress(false),
 963     _inlining_incrementally(false),
 964     _print_inlining_list(NULL),
 965     _print_inlining_stream(NULL),
 966     _print_inlining_idx(0),
 967     _print_inlining_output(NULL),
 968     _allowed_reasons(0),
 969     _interpreter_frame_size(0) {
 970   C = this;
 971 
 972 #ifndef PRODUCT
 973   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 974   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 975   set_print_assembly(PrintFrameConverterAssembly);
 976   set_parsed_irreducible_loop(false);
 977 #endif
 978   set_has_irreducible_loop(false); // no loops
 979 
 980   CompileWrapper cw(this);
 981   Init(/*AliasLevel=*/ 0);
 982   init_tf((*generator)());
 983 
 984   {
 985     // The following is a dummy for the sake of GraphKit::gen_stub
 986     Unique_Node_List for_igvn(comp_arena());
 987     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 988     PhaseGVN gvn(Thread::current()->resource_area(),255);
 989     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 990     gvn.transform_no_reclaim(top());
 991 
 992     GraphKit kit;
 993     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 994   }
 995 
 996   NOT_PRODUCT( verify_graph_edges(); )
 997   Code_Gen();
 998   if (failing())  return;
 999 
1000 
1001   // Entry point will be accessed using compile->stub_entry_point();
1002   if (code_buffer() == NULL) {
1003     Matcher::soft_match_failure();
1004   } else {
1005     if (PrintAssembly && (WizardMode || Verbose))
1006       tty->print_cr("### Stub::%s", stub_name);
1007 
1008     if (!failing()) {
1009       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1010 
1011       // Make the NMethod
1012       // For now we mark the frame as never safe for profile stackwalking
1013       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1014                                                       code_buffer(),
1015                                                       CodeOffsets::frame_never_safe,
1016                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1017                                                       frame_size_in_words(),
1018                                                       _oop_map_set,
1019                                                       save_arg_registers);
1020       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1021 
1022       _stub_entry_point = rs->entry_point();
1023     }
1024   }
1025 }
1026 
1027 //------------------------------Init-------------------------------------------
1028 // Prepare for a single compilation
1029 void Compile::Init(int aliaslevel) {
1030   _unique  = 0;
1031   _regalloc = NULL;
1032 
1033   _tf      = NULL;  // filled in later
1034   _top     = NULL;  // cached later
1035   _matcher = NULL;  // filled in later
1036   _cfg     = NULL;  // filled in later
1037 
1038   set_24_bit_selection_and_mode(Use24BitFP, false);
1039 
1040   _node_note_array = NULL;
1041   _default_node_notes = NULL;
1042 
1043   _immutable_memory = NULL; // filled in at first inquiry
1044 
1045   // Globally visible Nodes
1046   // First set TOP to NULL to give safe behavior during creation of RootNode
1047   set_cached_top_node(NULL);
1048   set_root(new RootNode());
1049   // Now that you have a Root to point to, create the real TOP
1050   set_cached_top_node( new ConNode(Type::TOP) );
1051   set_recent_alloc(NULL, NULL);
1052 
1053   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1054   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1055   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1056   env()->set_dependencies(new Dependencies(env()));
1057 
1058   _fixed_slots = 0;
1059   set_has_split_ifs(false);
1060   set_has_loops(has_method() && method()->has_loops()); // first approximation
1061   set_has_stringbuilder(false);
1062   set_has_boxed_value(false);
1063   _trap_can_recompile = false;  // no traps emitted yet
1064   _major_progress = true; // start out assuming good things will happen
1065   set_has_unsafe_access(false);
1066   set_max_vector_size(0);
1067   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1068   set_decompile_count(0);
1069 
1070   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1071   set_num_loop_opts(LoopOptsCount);
1072   set_do_inlining(Inline);
1073   set_max_inline_size(MaxInlineSize);
1074   set_freq_inline_size(FreqInlineSize);
1075   set_do_scheduling(OptoScheduling);
1076   set_do_count_invocations(false);
1077   set_do_method_data_update(false);
1078   set_age_code(has_method() && method()->profile_aging());
1079   set_rtm_state(NoRTM); // No RTM lock eliding by default
1080 #if INCLUDE_RTM_OPT
1081   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1082     int rtm_state = method()->method_data()->rtm_state();
1083     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1084       // Don't generate RTM lock eliding code.
1085       set_rtm_state(NoRTM);
1086     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1087       // Generate RTM lock eliding code without abort ratio calculation code.
1088       set_rtm_state(UseRTM);
1089     } else if (UseRTMDeopt) {
1090       // Generate RTM lock eliding code and include abort ratio calculation
1091       // code if UseRTMDeopt is on.
1092       set_rtm_state(ProfileRTM);
1093     }
1094   }
1095 #endif
1096   if (debug_info()->recording_non_safepoints()) {
1097     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1098                         (comp_arena(), 8, 0, NULL));
1099     set_default_node_notes(Node_Notes::make(this));
1100   }
1101 
1102   // // -- Initialize types before each compile --
1103   // // Update cached type information
1104   // if( _method && _method->constants() )
1105   //   Type::update_loaded_types(_method, _method->constants());
1106 
1107   // Init alias_type map.
1108   if (!_do_escape_analysis && aliaslevel == 3)
1109     aliaslevel = 2;  // No unique types without escape analysis
1110   _AliasLevel = aliaslevel;
1111   const int grow_ats = 16;
1112   _max_alias_types = grow_ats;
1113   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1114   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1115   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1116   {
1117     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1118   }
1119   // Initialize the first few types.
1120   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1121   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1122   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1123   _num_alias_types = AliasIdxRaw+1;
1124   // Zero out the alias type cache.
1125   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1126   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1127   probe_alias_cache(NULL)->_index = AliasIdxTop;
1128 
1129   _intrinsics = NULL;
1130   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1131   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1132   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1133   register_library_intrinsics();
1134 }
1135 
1136 //---------------------------init_start----------------------------------------
1137 // Install the StartNode on this compile object.
1138 void Compile::init_start(StartNode* s) {
1139   if (failing())
1140     return; // already failing
1141   assert(s == start(), "");
1142 }
1143 
1144 StartNode* Compile::start() const {
1145   assert(!failing(), "");
1146   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1147     Node* start = root()->fast_out(i);
1148     if( start->is_Start() )
1149       return start->as_Start();
1150   }
1151   fatal("Did not find Start node!");
1152   return NULL;
1153 }
1154 
1155 //-------------------------------immutable_memory-------------------------------------
1156 // Access immutable memory
1157 Node* Compile::immutable_memory() {
1158   if (_immutable_memory != NULL) {
1159     return _immutable_memory;
1160   }
1161   StartNode* s = start();
1162   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1163     Node *p = s->fast_out(i);
1164     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1165       _immutable_memory = p;
1166       return _immutable_memory;
1167     }
1168   }
1169   ShouldNotReachHere();
1170   return NULL;
1171 }
1172 
1173 //----------------------set_cached_top_node------------------------------------
1174 // Install the cached top node, and make sure Node::is_top works correctly.
1175 void Compile::set_cached_top_node(Node* tn) {
1176   if (tn != NULL)  verify_top(tn);
1177   Node* old_top = _top;
1178   _top = tn;
1179   // Calling Node::setup_is_top allows the nodes the chance to adjust
1180   // their _out arrays.
1181   if (_top != NULL)     _top->setup_is_top();
1182   if (old_top != NULL)  old_top->setup_is_top();
1183   assert(_top == NULL || top()->is_top(), "");
1184 }
1185 
1186 #ifdef ASSERT
1187 uint Compile::count_live_nodes_by_graph_walk() {
1188   Unique_Node_List useful(comp_arena());
1189   // Get useful node list by walking the graph.
1190   identify_useful_nodes(useful);
1191   return useful.size();
1192 }
1193 
1194 void Compile::print_missing_nodes() {
1195 
1196   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1197   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1198     return;
1199   }
1200 
1201   // This is an expensive function. It is executed only when the user
1202   // specifies VerifyIdealNodeCount option or otherwise knows the
1203   // additional work that needs to be done to identify reachable nodes
1204   // by walking the flow graph and find the missing ones using
1205   // _dead_node_list.
1206 
1207   Unique_Node_List useful(comp_arena());
1208   // Get useful node list by walking the graph.
1209   identify_useful_nodes(useful);
1210 
1211   uint l_nodes = C->live_nodes();
1212   uint l_nodes_by_walk = useful.size();
1213 
1214   if (l_nodes != l_nodes_by_walk) {
1215     if (_log != NULL) {
1216       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1217       _log->stamp();
1218       _log->end_head();
1219     }
1220     VectorSet& useful_member_set = useful.member_set();
1221     int last_idx = l_nodes_by_walk;
1222     for (int i = 0; i < last_idx; i++) {
1223       if (useful_member_set.test(i)) {
1224         if (_dead_node_list.test(i)) {
1225           if (_log != NULL) {
1226             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1227           }
1228           if (PrintIdealNodeCount) {
1229             // Print the log message to tty
1230               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1231               useful.at(i)->dump();
1232           }
1233         }
1234       }
1235       else if (! _dead_node_list.test(i)) {
1236         if (_log != NULL) {
1237           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1238         }
1239         if (PrintIdealNodeCount) {
1240           // Print the log message to tty
1241           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1242         }
1243       }
1244     }
1245     if (_log != NULL) {
1246       _log->tail("mismatched_nodes");
1247     }
1248   }
1249 }
1250 #endif
1251 
1252 #ifndef PRODUCT
1253 void Compile::verify_top(Node* tn) const {
1254   if (tn != NULL) {
1255     assert(tn->is_Con(), "top node must be a constant");
1256     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1257     assert(tn->in(0) != NULL, "must have live top node");
1258   }
1259 }
1260 #endif
1261 
1262 
1263 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1264 
1265 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1266   guarantee(arr != NULL, "");
1267   int num_blocks = arr->length();
1268   if (grow_by < num_blocks)  grow_by = num_blocks;
1269   int num_notes = grow_by * _node_notes_block_size;
1270   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1271   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1272   while (num_notes > 0) {
1273     arr->append(notes);
1274     notes     += _node_notes_block_size;
1275     num_notes -= _node_notes_block_size;
1276   }
1277   assert(num_notes == 0, "exact multiple, please");
1278 }
1279 
1280 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1281   if (source == NULL || dest == NULL)  return false;
1282 
1283   if (dest->is_Con())
1284     return false;               // Do not push debug info onto constants.
1285 
1286 #ifdef ASSERT
1287   // Leave a bread crumb trail pointing to the original node:
1288   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1289     dest->set_debug_orig(source);
1290   }
1291 #endif
1292 
1293   if (node_note_array() == NULL)
1294     return false;               // Not collecting any notes now.
1295 
1296   // This is a copy onto a pre-existing node, which may already have notes.
1297   // If both nodes have notes, do not overwrite any pre-existing notes.
1298   Node_Notes* source_notes = node_notes_at(source->_idx);
1299   if (source_notes == NULL || source_notes->is_clear())  return false;
1300   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1301   if (dest_notes == NULL || dest_notes->is_clear()) {
1302     return set_node_notes_at(dest->_idx, source_notes);
1303   }
1304 
1305   Node_Notes merged_notes = (*source_notes);
1306   // The order of operations here ensures that dest notes will win...
1307   merged_notes.update_from(dest_notes);
1308   return set_node_notes_at(dest->_idx, &merged_notes);
1309 }
1310 
1311 
1312 //--------------------------allow_range_check_smearing-------------------------
1313 // Gating condition for coalescing similar range checks.
1314 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1315 // single covering check that is at least as strong as any of them.
1316 // If the optimization succeeds, the simplified (strengthened) range check
1317 // will always succeed.  If it fails, we will deopt, and then give up
1318 // on the optimization.
1319 bool Compile::allow_range_check_smearing() const {
1320   // If this method has already thrown a range-check,
1321   // assume it was because we already tried range smearing
1322   // and it failed.
1323   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1324   return !already_trapped;
1325 }
1326 
1327 
1328 //------------------------------flatten_alias_type-----------------------------
1329 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1330   int offset = tj->offset();
1331   TypePtr::PTR ptr = tj->ptr();
1332 
1333   // Known instance (scalarizable allocation) alias only with itself.
1334   bool is_known_inst = tj->isa_oopptr() != NULL &&
1335                        tj->is_oopptr()->is_known_instance();
1336 
1337   // Process weird unsafe references.
1338   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1339     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1340     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1341     tj = TypeOopPtr::BOTTOM;
1342     ptr = tj->ptr();
1343     offset = tj->offset();
1344   }
1345 
1346   // Array pointers need some flattening
1347   const TypeAryPtr *ta = tj->isa_aryptr();
1348   if (ta && ta->is_stable()) {
1349     // Erase stability property for alias analysis.
1350     tj = ta = ta->cast_to_stable(false);
1351   }
1352   if( ta && is_known_inst ) {
1353     if ( offset != Type::OffsetBot &&
1354          offset > arrayOopDesc::length_offset_in_bytes() ) {
1355       offset = Type::OffsetBot; // Flatten constant access into array body only
1356       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1357     }
1358   } else if( ta && _AliasLevel >= 2 ) {
1359     // For arrays indexed by constant indices, we flatten the alias
1360     // space to include all of the array body.  Only the header, klass
1361     // and array length can be accessed un-aliased.
1362     if( offset != Type::OffsetBot ) {
1363       if( ta->const_oop() ) { // MethodData* or Method*
1364         offset = Type::OffsetBot;   // Flatten constant access into array body
1365         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1366       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1367         // range is OK as-is.
1368         tj = ta = TypeAryPtr::RANGE;
1369       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1370         tj = TypeInstPtr::KLASS; // all klass loads look alike
1371         ta = TypeAryPtr::RANGE; // generic ignored junk
1372         ptr = TypePtr::BotPTR;
1373       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1374         tj = TypeInstPtr::MARK;
1375         ta = TypeAryPtr::RANGE; // generic ignored junk
1376         ptr = TypePtr::BotPTR;
1377       } else {                  // Random constant offset into array body
1378         offset = Type::OffsetBot;   // Flatten constant access into array body
1379         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1380       }
1381     }
1382     // Arrays of fixed size alias with arrays of unknown size.
1383     if (ta->size() != TypeInt::POS) {
1384       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1385       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1386     }
1387     // Arrays of known objects become arrays of unknown objects.
1388     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1389       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1390       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1391     }
1392     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1393       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1394       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1395     }
1396     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1397     // cannot be distinguished by bytecode alone.
1398     if (ta->elem() == TypeInt::BOOL) {
1399       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1400       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1401       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1402     }
1403     // During the 2nd round of IterGVN, NotNull castings are removed.
1404     // Make sure the Bottom and NotNull variants alias the same.
1405     // Also, make sure exact and non-exact variants alias the same.
1406     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1407       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1408     }
1409   }
1410 
1411   // Oop pointers need some flattening
1412   const TypeInstPtr *to = tj->isa_instptr();
1413   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1414     ciInstanceKlass *k = to->klass()->as_instance_klass();
1415     if( ptr == TypePtr::Constant ) {
1416       if (to->klass() != ciEnv::current()->Class_klass() ||
1417           offset < k->size_helper() * wordSize) {
1418         // No constant oop pointers (such as Strings); they alias with
1419         // unknown strings.
1420         assert(!is_known_inst, "not scalarizable allocation");
1421         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1422       }
1423     } else if( is_known_inst ) {
1424       tj = to; // Keep NotNull and klass_is_exact for instance type
1425     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1426       // During the 2nd round of IterGVN, NotNull castings are removed.
1427       // Make sure the Bottom and NotNull variants alias the same.
1428       // Also, make sure exact and non-exact variants alias the same.
1429       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1430     }
1431     if (to->speculative() != NULL) {
1432       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1433     }
1434     // Canonicalize the holder of this field
1435     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1436       // First handle header references such as a LoadKlassNode, even if the
1437       // object's klass is unloaded at compile time (4965979).
1438       if (!is_known_inst) { // Do it only for non-instance types
1439         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1440       }
1441     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1442       // Static fields are in the space above the normal instance
1443       // fields in the java.lang.Class instance.
1444       if (to->klass() != ciEnv::current()->Class_klass()) {
1445         to = NULL;
1446         tj = TypeOopPtr::BOTTOM;
1447         offset = tj->offset();
1448       }
1449     } else {
1450       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1451       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1452         if( is_known_inst ) {
1453           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1454         } else {
1455           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1456         }
1457       }
1458     }
1459   }
1460 
1461   // Klass pointers to object array klasses need some flattening
1462   const TypeKlassPtr *tk = tj->isa_klassptr();
1463   if( tk ) {
1464     // If we are referencing a field within a Klass, we need
1465     // to assume the worst case of an Object.  Both exact and
1466     // inexact types must flatten to the same alias class so
1467     // use NotNull as the PTR.
1468     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1469 
1470       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1471                                    TypeKlassPtr::OBJECT->klass(),
1472                                    offset);
1473     }
1474 
1475     ciKlass* klass = tk->klass();
1476     if( klass->is_obj_array_klass() ) {
1477       ciKlass* k = TypeAryPtr::OOPS->klass();
1478       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1479         k = TypeInstPtr::BOTTOM->klass();
1480       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1481     }
1482 
1483     // Check for precise loads from the primary supertype array and force them
1484     // to the supertype cache alias index.  Check for generic array loads from
1485     // the primary supertype array and also force them to the supertype cache
1486     // alias index.  Since the same load can reach both, we need to merge
1487     // these 2 disparate memories into the same alias class.  Since the
1488     // primary supertype array is read-only, there's no chance of confusion
1489     // where we bypass an array load and an array store.
1490     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1491     if (offset == Type::OffsetBot ||
1492         (offset >= primary_supers_offset &&
1493          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1494         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1495       offset = in_bytes(Klass::secondary_super_cache_offset());
1496       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1497     }
1498   }
1499 
1500   // Flatten all Raw pointers together.
1501   if (tj->base() == Type::RawPtr)
1502     tj = TypeRawPtr::BOTTOM;
1503 
1504   if (tj->base() == Type::AnyPtr)
1505     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1506 
1507   // Flatten all to bottom for now
1508   switch( _AliasLevel ) {
1509   case 0:
1510     tj = TypePtr::BOTTOM;
1511     break;
1512   case 1:                       // Flatten to: oop, static, field or array
1513     switch (tj->base()) {
1514     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1515     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1516     case Type::AryPtr:   // do not distinguish arrays at all
1517     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1518     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1519     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1520     default: ShouldNotReachHere();
1521     }
1522     break;
1523   case 2:                       // No collapsing at level 2; keep all splits
1524   case 3:                       // No collapsing at level 3; keep all splits
1525     break;
1526   default:
1527     Unimplemented();
1528   }
1529 
1530   offset = tj->offset();
1531   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1532 
1533   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1534           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1535           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1536           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1537           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1538           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1539           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1540           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1541   assert( tj->ptr() != TypePtr::TopPTR &&
1542           tj->ptr() != TypePtr::AnyNull &&
1543           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1544 //    assert( tj->ptr() != TypePtr::Constant ||
1545 //            tj->base() == Type::RawPtr ||
1546 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1547 
1548   return tj;
1549 }
1550 
1551 void Compile::AliasType::Init(int i, const TypePtr* at) {
1552   _index = i;
1553   _adr_type = at;
1554   _field = NULL;
1555   _element = NULL;
1556   _is_rewritable = true; // default
1557   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1558   if (atoop != NULL && atoop->is_known_instance()) {
1559     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1560     _general_index = Compile::current()->get_alias_index(gt);
1561   } else {
1562     _general_index = 0;
1563   }
1564 }
1565 
1566 //---------------------------------print_on------------------------------------
1567 #ifndef PRODUCT
1568 void Compile::AliasType::print_on(outputStream* st) {
1569   if (index() < 10)
1570         st->print("@ <%d> ", index());
1571   else  st->print("@ <%d>",  index());
1572   st->print(is_rewritable() ? "   " : " RO");
1573   int offset = adr_type()->offset();
1574   if (offset == Type::OffsetBot)
1575         st->print(" +any");
1576   else  st->print(" +%-3d", offset);
1577   st->print(" in ");
1578   adr_type()->dump_on(st);
1579   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1580   if (field() != NULL && tjp) {
1581     if (tjp->klass()  != field()->holder() ||
1582         tjp->offset() != field()->offset_in_bytes()) {
1583       st->print(" != ");
1584       field()->print();
1585       st->print(" ***");
1586     }
1587   }
1588 }
1589 
1590 void print_alias_types() {
1591   Compile* C = Compile::current();
1592   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1593   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1594     C->alias_type(idx)->print_on(tty);
1595     tty->cr();
1596   }
1597 }
1598 #endif
1599 
1600 
1601 //----------------------------probe_alias_cache--------------------------------
1602 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1603   intptr_t key = (intptr_t) adr_type;
1604   key ^= key >> logAliasCacheSize;
1605   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1606 }
1607 
1608 
1609 //-----------------------------grow_alias_types--------------------------------
1610 void Compile::grow_alias_types() {
1611   const int old_ats  = _max_alias_types; // how many before?
1612   const int new_ats  = old_ats;          // how many more?
1613   const int grow_ats = old_ats+new_ats;  // how many now?
1614   _max_alias_types = grow_ats;
1615   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1616   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1617   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1618   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1619 }
1620 
1621 
1622 //--------------------------------find_alias_type------------------------------
1623 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1624   if (_AliasLevel == 0)
1625     return alias_type(AliasIdxBot);
1626 
1627   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1628   if (ace->_adr_type == adr_type) {
1629     return alias_type(ace->_index);
1630   }
1631 
1632   // Handle special cases.
1633   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1634   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1635 
1636   // Do it the slow way.
1637   const TypePtr* flat = flatten_alias_type(adr_type);
1638 
1639 #ifdef ASSERT
1640   assert(flat == flatten_alias_type(flat), "idempotent");
1641   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1642   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1643     const TypeOopPtr* foop = flat->is_oopptr();
1644     // Scalarizable allocations have exact klass always.
1645     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1646     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1647     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1648   }
1649   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1650 #endif
1651 
1652   int idx = AliasIdxTop;
1653   for (int i = 0; i < num_alias_types(); i++) {
1654     if (alias_type(i)->adr_type() == flat) {
1655       idx = i;
1656       break;
1657     }
1658   }
1659 
1660   if (idx == AliasIdxTop) {
1661     if (no_create)  return NULL;
1662     // Grow the array if necessary.
1663     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1664     // Add a new alias type.
1665     idx = _num_alias_types++;
1666     _alias_types[idx]->Init(idx, flat);
1667     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1668     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1669     if (flat->isa_instptr()) {
1670       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1671           && flat->is_instptr()->klass() == env()->Class_klass())
1672         alias_type(idx)->set_rewritable(false);
1673     }
1674     if (flat->isa_aryptr()) {
1675 #ifdef ASSERT
1676       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1677       // (T_BYTE has the weakest alignment and size restrictions...)
1678       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1679 #endif
1680       if (flat->offset() == TypePtr::OffsetBot) {
1681         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1682       }
1683     }
1684     if (flat->isa_klassptr()) {
1685       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1686         alias_type(idx)->set_rewritable(false);
1687       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1688         alias_type(idx)->set_rewritable(false);
1689       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1690         alias_type(idx)->set_rewritable(false);
1691       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1692         alias_type(idx)->set_rewritable(false);
1693     }
1694     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1695     // but the base pointer type is not distinctive enough to identify
1696     // references into JavaThread.)
1697 
1698     // Check for final fields.
1699     const TypeInstPtr* tinst = flat->isa_instptr();
1700     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1701       ciField* field;
1702       if (tinst->const_oop() != NULL &&
1703           tinst->klass() == ciEnv::current()->Class_klass() &&
1704           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1705         // static field
1706         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1707         field = k->get_field_by_offset(tinst->offset(), true);
1708       } else {
1709         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1710         field = k->get_field_by_offset(tinst->offset(), false);
1711       }
1712       assert(field == NULL ||
1713              original_field == NULL ||
1714              (field->holder() == original_field->holder() &&
1715               field->offset() == original_field->offset() &&
1716               field->is_static() == original_field->is_static()), "wrong field?");
1717       // Set field() and is_rewritable() attributes.
1718       if (field != NULL)  alias_type(idx)->set_field(field);
1719     }
1720   }
1721 
1722   // Fill the cache for next time.
1723   ace->_adr_type = adr_type;
1724   ace->_index    = idx;
1725   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1726 
1727   // Might as well try to fill the cache for the flattened version, too.
1728   AliasCacheEntry* face = probe_alias_cache(flat);
1729   if (face->_adr_type == NULL) {
1730     face->_adr_type = flat;
1731     face->_index    = idx;
1732     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1733   }
1734 
1735   return alias_type(idx);
1736 }
1737 
1738 
1739 Compile::AliasType* Compile::alias_type(ciField* field) {
1740   const TypeOopPtr* t;
1741   if (field->is_static())
1742     t = TypeInstPtr::make(field->holder()->java_mirror());
1743   else
1744     t = TypeOopPtr::make_from_klass_raw(field->holder());
1745   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1746   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1747   return atp;
1748 }
1749 
1750 
1751 //------------------------------have_alias_type--------------------------------
1752 bool Compile::have_alias_type(const TypePtr* adr_type) {
1753   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1754   if (ace->_adr_type == adr_type) {
1755     return true;
1756   }
1757 
1758   // Handle special cases.
1759   if (adr_type == NULL)             return true;
1760   if (adr_type == TypePtr::BOTTOM)  return true;
1761 
1762   return find_alias_type(adr_type, true, NULL) != NULL;
1763 }
1764 
1765 //-----------------------------must_alias--------------------------------------
1766 // True if all values of the given address type are in the given alias category.
1767 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1768   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1769   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1770   if (alias_idx == AliasIdxTop)         return false; // the empty category
1771   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1772 
1773   // the only remaining possible overlap is identity
1774   int adr_idx = get_alias_index(adr_type);
1775   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1776   assert(adr_idx == alias_idx ||
1777          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1778           && adr_type                       != TypeOopPtr::BOTTOM),
1779          "should not be testing for overlap with an unsafe pointer");
1780   return adr_idx == alias_idx;
1781 }
1782 
1783 //------------------------------can_alias--------------------------------------
1784 // True if any values of the given address type are in the given alias category.
1785 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1786   if (alias_idx == AliasIdxTop)         return false; // the empty category
1787   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1788   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1789   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1790 
1791   // the only remaining possible overlap is identity
1792   int adr_idx = get_alias_index(adr_type);
1793   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1794   return adr_idx == alias_idx;
1795 }
1796 
1797 
1798 
1799 //---------------------------pop_warm_call-------------------------------------
1800 WarmCallInfo* Compile::pop_warm_call() {
1801   WarmCallInfo* wci = _warm_calls;
1802   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1803   return wci;
1804 }
1805 
1806 //----------------------------Inline_Warm--------------------------------------
1807 int Compile::Inline_Warm() {
1808   // If there is room, try to inline some more warm call sites.
1809   // %%% Do a graph index compaction pass when we think we're out of space?
1810   if (!InlineWarmCalls)  return 0;
1811 
1812   int calls_made_hot = 0;
1813   int room_to_grow   = NodeCountInliningCutoff - unique();
1814   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1815   int amount_grown   = 0;
1816   WarmCallInfo* call;
1817   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1818     int est_size = (int)call->size();
1819     if (est_size > (room_to_grow - amount_grown)) {
1820       // This one won't fit anyway.  Get rid of it.
1821       call->make_cold();
1822       continue;
1823     }
1824     call->make_hot();
1825     calls_made_hot++;
1826     amount_grown   += est_size;
1827     amount_to_grow -= est_size;
1828   }
1829 
1830   if (calls_made_hot > 0)  set_major_progress();
1831   return calls_made_hot;
1832 }
1833 
1834 
1835 //----------------------------Finish_Warm--------------------------------------
1836 void Compile::Finish_Warm() {
1837   if (!InlineWarmCalls)  return;
1838   if (failing())  return;
1839   if (warm_calls() == NULL)  return;
1840 
1841   // Clean up loose ends, if we are out of space for inlining.
1842   WarmCallInfo* call;
1843   while ((call = pop_warm_call()) != NULL) {
1844     call->make_cold();
1845   }
1846 }
1847 
1848 //---------------------cleanup_loop_predicates-----------------------
1849 // Remove the opaque nodes that protect the predicates so that all unused
1850 // checks and uncommon_traps will be eliminated from the ideal graph
1851 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1852   if (predicate_count()==0) return;
1853   for (int i = predicate_count(); i > 0; i--) {
1854     Node * n = predicate_opaque1_node(i-1);
1855     assert(n->Opcode() == Op_Opaque1, "must be");
1856     igvn.replace_node(n, n->in(1));
1857   }
1858   assert(predicate_count()==0, "should be clean!");
1859 }
1860 
1861 // StringOpts and late inlining of string methods
1862 void Compile::inline_string_calls(bool parse_time) {
1863   {
1864     // remove useless nodes to make the usage analysis simpler
1865     ResourceMark rm;
1866     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1867   }
1868 
1869   {
1870     ResourceMark rm;
1871     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1872     PhaseStringOpts pso(initial_gvn(), for_igvn());
1873     print_method(PHASE_AFTER_STRINGOPTS, 3);
1874   }
1875 
1876   // now inline anything that we skipped the first time around
1877   if (!parse_time) {
1878     _late_inlines_pos = _late_inlines.length();
1879   }
1880 
1881   while (_string_late_inlines.length() > 0) {
1882     CallGenerator* cg = _string_late_inlines.pop();
1883     cg->do_late_inline();
1884     if (failing())  return;
1885   }
1886   _string_late_inlines.trunc_to(0);
1887 }
1888 
1889 // Late inlining of boxing methods
1890 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1891   if (_boxing_late_inlines.length() > 0) {
1892     assert(has_boxed_value(), "inconsistent");
1893 
1894     PhaseGVN* gvn = initial_gvn();
1895     set_inlining_incrementally(true);
1896 
1897     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1898     for_igvn()->clear();
1899     gvn->replace_with(&igvn);
1900 
1901     _late_inlines_pos = _late_inlines.length();
1902 
1903     while (_boxing_late_inlines.length() > 0) {
1904       CallGenerator* cg = _boxing_late_inlines.pop();
1905       cg->do_late_inline();
1906       if (failing())  return;
1907     }
1908     _boxing_late_inlines.trunc_to(0);
1909 
1910     {
1911       ResourceMark rm;
1912       PhaseRemoveUseless pru(gvn, for_igvn());
1913     }
1914 
1915     igvn = PhaseIterGVN(gvn);
1916     igvn.optimize();
1917 
1918     set_inlining_progress(false);
1919     set_inlining_incrementally(false);
1920   }
1921 }
1922 
1923 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1924   assert(IncrementalInline, "incremental inlining should be on");
1925   PhaseGVN* gvn = initial_gvn();
1926 
1927   set_inlining_progress(false);
1928   for_igvn()->clear();
1929   gvn->replace_with(&igvn);
1930 
1931   int i = 0;
1932 
1933   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1934     CallGenerator* cg = _late_inlines.at(i);
1935     _late_inlines_pos = i+1;
1936     cg->do_late_inline();
1937     if (failing())  return;
1938   }
1939   int j = 0;
1940   for (; i < _late_inlines.length(); i++, j++) {
1941     _late_inlines.at_put(j, _late_inlines.at(i));
1942   }
1943   _late_inlines.trunc_to(j);
1944 
1945   {
1946     ResourceMark rm;
1947     PhaseRemoveUseless pru(gvn, for_igvn());
1948   }
1949 
1950   igvn = PhaseIterGVN(gvn);
1951 }
1952 
1953 // Perform incremental inlining until bound on number of live nodes is reached
1954 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1955   PhaseGVN* gvn = initial_gvn();
1956 
1957   set_inlining_incrementally(true);
1958   set_inlining_progress(true);
1959   uint low_live_nodes = 0;
1960 
1961   while(inlining_progress() && _late_inlines.length() > 0) {
1962 
1963     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1964       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1965         // PhaseIdealLoop is expensive so we only try it once we are
1966         // out of live nodes and we only try it again if the previous
1967         // helped got the number of nodes down significantly
1968         PhaseIdealLoop ideal_loop( igvn, false, true );
1969         if (failing())  return;
1970         low_live_nodes = live_nodes();
1971         _major_progress = true;
1972       }
1973 
1974       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1975         break;
1976       }
1977     }
1978 
1979     inline_incrementally_one(igvn);
1980 
1981     if (failing())  return;
1982 
1983     igvn.optimize();
1984 
1985     if (failing())  return;
1986   }
1987 
1988   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1989 
1990   if (_string_late_inlines.length() > 0) {
1991     assert(has_stringbuilder(), "inconsistent");
1992     for_igvn()->clear();
1993     initial_gvn()->replace_with(&igvn);
1994 
1995     inline_string_calls(false);
1996 
1997     if (failing())  return;
1998 
1999     {
2000       ResourceMark rm;
2001       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2002     }
2003 
2004     igvn = PhaseIterGVN(gvn);
2005 
2006     igvn.optimize();
2007   }
2008 
2009   set_inlining_incrementally(false);
2010 }
2011 
2012 
2013 //------------------------------Optimize---------------------------------------
2014 // Given a graph, optimize it.
2015 void Compile::Optimize() {
2016   TracePhase t1("optimizer", &_t_optimizer, true);
2017 
2018 #ifndef PRODUCT
2019   if (env()->break_at_compile()) {
2020     BREAKPOINT;
2021   }
2022 
2023 #endif
2024 
2025   ResourceMark rm;
2026   int          loop_opts_cnt;
2027 
2028   print_inlining_reinit();
2029 
2030   NOT_PRODUCT( verify_graph_edges(); )
2031 
2032   print_method(PHASE_AFTER_PARSING);
2033 
2034  {
2035   // Iterative Global Value Numbering, including ideal transforms
2036   // Initialize IterGVN with types and values from parse-time GVN
2037   PhaseIterGVN igvn(initial_gvn());
2038   {
2039     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2040     igvn.optimize();
2041   }
2042 
2043   print_method(PHASE_ITER_GVN1, 2);
2044 
2045   if (failing())  return;
2046 
2047   {
2048     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2049     inline_incrementally(igvn);
2050   }
2051 
2052   print_method(PHASE_INCREMENTAL_INLINE, 2);
2053 
2054   if (failing())  return;
2055 
2056   if (eliminate_boxing()) {
2057     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2058     // Inline valueOf() methods now.
2059     inline_boxing_calls(igvn);
2060 
2061     if (AlwaysIncrementalInline) {
2062       inline_incrementally(igvn);
2063     }
2064 
2065     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2066 
2067     if (failing())  return;
2068   }
2069 
2070   // Remove the speculative part of types and clean up the graph from
2071   // the extra CastPP nodes whose only purpose is to carry them. Do
2072   // that early so that optimizations are not disrupted by the extra
2073   // CastPP nodes.
2074   remove_speculative_types(igvn);
2075 
2076   // No more new expensive nodes will be added to the list from here
2077   // so keep only the actual candidates for optimizations.
2078   cleanup_expensive_nodes(igvn);
2079 
2080   // Perform escape analysis
2081   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2082     if (has_loops()) {
2083       // Cleanup graph (remove dead nodes).
2084       TracePhase t2("idealLoop", &_t_idealLoop, true);
2085       PhaseIdealLoop ideal_loop( igvn, false, true );
2086       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2087       if (failing())  return;
2088     }
2089     ConnectionGraph::do_analysis(this, &igvn);
2090 
2091     if (failing())  return;
2092 
2093     // Optimize out fields loads from scalar replaceable allocations.
2094     igvn.optimize();
2095     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2096 
2097     if (failing())  return;
2098 
2099     if (congraph() != NULL && macro_count() > 0) {
2100       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2101       PhaseMacroExpand mexp(igvn);
2102       mexp.eliminate_macro_nodes();
2103       igvn.set_delay_transform(false);
2104 
2105       igvn.optimize();
2106       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2107 
2108       if (failing())  return;
2109     }
2110   }
2111 
2112   // Loop transforms on the ideal graph.  Range Check Elimination,
2113   // peeling, unrolling, etc.
2114 
2115   // Set loop opts counter
2116   loop_opts_cnt = num_loop_opts();
2117   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2118     {
2119       TracePhase t2("idealLoop", &_t_idealLoop, true);
2120       PhaseIdealLoop ideal_loop( igvn, true );
2121       loop_opts_cnt--;
2122       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2123       if (failing())  return;
2124     }
2125     // Loop opts pass if partial peeling occurred in previous pass
2126     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2127       TracePhase t3("idealLoop", &_t_idealLoop, true);
2128       PhaseIdealLoop ideal_loop( igvn, false );
2129       loop_opts_cnt--;
2130       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2131       if (failing())  return;
2132     }
2133     // Loop opts pass for loop-unrolling before CCP
2134     if(major_progress() && (loop_opts_cnt > 0)) {
2135       TracePhase t4("idealLoop", &_t_idealLoop, true);
2136       PhaseIdealLoop ideal_loop( igvn, false );
2137       loop_opts_cnt--;
2138       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2139     }
2140     if (!failing()) {
2141       // Verify that last round of loop opts produced a valid graph
2142       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2143       PhaseIdealLoop::verify(igvn);
2144     }
2145   }
2146   if (failing())  return;
2147 
2148   // Conditional Constant Propagation;
2149   PhaseCCP ccp( &igvn );
2150   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2151   {
2152     TracePhase t2("ccp", &_t_ccp, true);
2153     ccp.do_transform();
2154   }
2155   print_method(PHASE_CPP1, 2);
2156 
2157   assert( true, "Break here to ccp.dump_old2new_map()");
2158 
2159   // Iterative Global Value Numbering, including ideal transforms
2160   {
2161     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2162     igvn = ccp;
2163     igvn.optimize();
2164   }
2165 
2166   print_method(PHASE_ITER_GVN2, 2);
2167 
2168   if (failing())  return;
2169 
2170   // Loop transforms on the ideal graph.  Range Check Elimination,
2171   // peeling, unrolling, etc.
2172   if(loop_opts_cnt > 0) {
2173     debug_only( int cnt = 0; );
2174     while(major_progress() && (loop_opts_cnt > 0)) {
2175       TracePhase t2("idealLoop", &_t_idealLoop, true);
2176       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2177       PhaseIdealLoop ideal_loop( igvn, true);
2178       loop_opts_cnt--;
2179       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2180       if (failing())  return;
2181     }
2182   }
2183 
2184   {
2185     // Verify that all previous optimizations produced a valid graph
2186     // at least to this point, even if no loop optimizations were done.
2187     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2188     PhaseIdealLoop::verify(igvn);
2189   }
2190 
2191   {
2192     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2193     PhaseMacroExpand  mex(igvn);
2194     if (mex.expand_macro_nodes()) {
2195       assert(failing(), "must bail out w/ explicit message");
2196       return;
2197     }
2198   }
2199 
2200  } // (End scope of igvn; run destructor if necessary for asserts.)
2201 
2202   process_print_inlining();
2203   // A method with only infinite loops has no edges entering loops from root
2204   {
2205     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2206     if (final_graph_reshaping()) {
2207       assert(failing(), "must bail out w/ explicit message");
2208       return;
2209     }
2210   }
2211 
2212   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2213 }
2214 
2215 
2216 //------------------------------Code_Gen---------------------------------------
2217 // Given a graph, generate code for it
2218 void Compile::Code_Gen() {
2219   if (failing()) {
2220     return;
2221   }
2222 
2223   // Perform instruction selection.  You might think we could reclaim Matcher
2224   // memory PDQ, but actually the Matcher is used in generating spill code.
2225   // Internals of the Matcher (including some VectorSets) must remain live
2226   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2227   // set a bit in reclaimed memory.
2228 
2229   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2230   // nodes.  Mapping is only valid at the root of each matched subtree.
2231   NOT_PRODUCT( verify_graph_edges(); )
2232 
2233   Matcher matcher;
2234   _matcher = &matcher;
2235   {
2236     TracePhase t2("matcher", &_t_matcher, true);
2237     matcher.match();
2238   }
2239   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2240   // nodes.  Mapping is only valid at the root of each matched subtree.
2241   NOT_PRODUCT( verify_graph_edges(); )
2242 
2243   // If you have too many nodes, or if matching has failed, bail out
2244   check_node_count(0, "out of nodes matching instructions");
2245   if (failing()) {
2246     return;
2247   }
2248 
2249   // Build a proper-looking CFG
2250   PhaseCFG cfg(node_arena(), root(), matcher);
2251   _cfg = &cfg;
2252   {
2253     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2254     bool success = cfg.do_global_code_motion();
2255     if (!success) {
2256       return;
2257     }
2258 
2259     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2260     NOT_PRODUCT( verify_graph_edges(); )
2261     debug_only( cfg.verify(); )
2262   }
2263 
2264   PhaseChaitin regalloc(unique(), cfg, matcher);
2265   _regalloc = &regalloc;
2266   {
2267     TracePhase t2("regalloc", &_t_registerAllocation, true);
2268     // Perform register allocation.  After Chaitin, use-def chains are
2269     // no longer accurate (at spill code) and so must be ignored.
2270     // Node->LRG->reg mappings are still accurate.
2271     _regalloc->Register_Allocate();
2272 
2273     // Bail out if the allocator builds too many nodes
2274     if (failing()) {
2275       return;
2276     }
2277   }
2278 
2279   // Prior to register allocation we kept empty basic blocks in case the
2280   // the allocator needed a place to spill.  After register allocation we
2281   // are not adding any new instructions.  If any basic block is empty, we
2282   // can now safely remove it.
2283   {
2284     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2285     cfg.remove_empty_blocks();
2286     if (do_freq_based_layout()) {
2287       PhaseBlockLayout layout(cfg);
2288     } else {
2289       cfg.set_loop_alignment();
2290     }
2291     cfg.fixup_flow();
2292   }
2293 
2294   // Apply peephole optimizations
2295   if( OptoPeephole ) {
2296     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2297     PhasePeephole peep( _regalloc, cfg);
2298     peep.do_transform();
2299   }
2300 
2301   // Do late expand if CPU requires this.
2302   if (Matcher::require_postalloc_expand) {
2303     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2304     cfg.postalloc_expand(_regalloc);
2305   }
2306 
2307   // Convert Nodes to instruction bits in a buffer
2308   {
2309     // %%%% workspace merge brought two timers together for one job
2310     TracePhase t2a("output", &_t_output, true);
2311     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2312     Output();
2313   }
2314 
2315   print_method(PHASE_FINAL_CODE);
2316 
2317   // He's dead, Jim.
2318   _cfg     = (PhaseCFG*)0xdeadbeef;
2319   _regalloc = (PhaseChaitin*)0xdeadbeef;
2320 }
2321 
2322 
2323 //------------------------------dump_asm---------------------------------------
2324 // Dump formatted assembly
2325 #ifndef PRODUCT
2326 void Compile::dump_asm(int *pcs, uint pc_limit) {
2327   bool cut_short = false;
2328   tty->print_cr("#");
2329   tty->print("#  ");  _tf->dump();  tty->cr();
2330   tty->print_cr("#");
2331 
2332   // For all blocks
2333   int pc = 0x0;                 // Program counter
2334   char starts_bundle = ' ';
2335   _regalloc->dump_frame();
2336 
2337   Node *n = NULL;
2338   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2339     if (VMThread::should_terminate()) {
2340       cut_short = true;
2341       break;
2342     }
2343     Block* block = _cfg->get_block(i);
2344     if (block->is_connector() && !Verbose) {
2345       continue;
2346     }
2347     n = block->head();
2348     if (pcs && n->_idx < pc_limit) {
2349       tty->print("%3.3x   ", pcs[n->_idx]);
2350     } else {
2351       tty->print("      ");
2352     }
2353     block->dump_head(_cfg);
2354     if (block->is_connector()) {
2355       tty->print_cr("        # Empty connector block");
2356     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2357       tty->print_cr("        # Block is sole successor of call");
2358     }
2359 
2360     // For all instructions
2361     Node *delay = NULL;
2362     for (uint j = 0; j < block->number_of_nodes(); j++) {
2363       if (VMThread::should_terminate()) {
2364         cut_short = true;
2365         break;
2366       }
2367       n = block->get_node(j);
2368       if (valid_bundle_info(n)) {
2369         Bundle* bundle = node_bundling(n);
2370         if (bundle->used_in_unconditional_delay()) {
2371           delay = n;
2372           continue;
2373         }
2374         if (bundle->starts_bundle()) {
2375           starts_bundle = '+';
2376         }
2377       }
2378 
2379       if (WizardMode) {
2380         n->dump();
2381       }
2382 
2383       if( !n->is_Region() &&    // Dont print in the Assembly
2384           !n->is_Phi() &&       // a few noisely useless nodes
2385           !n->is_Proj() &&
2386           !n->is_MachTemp() &&
2387           !n->is_SafePointScalarObject() &&
2388           !n->is_Catch() &&     // Would be nice to print exception table targets
2389           !n->is_MergeMem() &&  // Not very interesting
2390           !n->is_top() &&       // Debug info table constants
2391           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2392           ) {
2393         if (pcs && n->_idx < pc_limit)
2394           tty->print("%3.3x", pcs[n->_idx]);
2395         else
2396           tty->print("   ");
2397         tty->print(" %c ", starts_bundle);
2398         starts_bundle = ' ';
2399         tty->print("\t");
2400         n->format(_regalloc, tty);
2401         tty->cr();
2402       }
2403 
2404       // If we have an instruction with a delay slot, and have seen a delay,
2405       // then back up and print it
2406       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2407         assert(delay != NULL, "no unconditional delay instruction");
2408         if (WizardMode) delay->dump();
2409 
2410         if (node_bundling(delay)->starts_bundle())
2411           starts_bundle = '+';
2412         if (pcs && n->_idx < pc_limit)
2413           tty->print("%3.3x", pcs[n->_idx]);
2414         else
2415           tty->print("   ");
2416         tty->print(" %c ", starts_bundle);
2417         starts_bundle = ' ';
2418         tty->print("\t");
2419         delay->format(_regalloc, tty);
2420         tty->cr();
2421         delay = NULL;
2422       }
2423 
2424       // Dump the exception table as well
2425       if( n->is_Catch() && (Verbose || WizardMode) ) {
2426         // Print the exception table for this offset
2427         _handler_table.print_subtable_for(pc);
2428       }
2429     }
2430 
2431     if (pcs && n->_idx < pc_limit)
2432       tty->print_cr("%3.3x", pcs[n->_idx]);
2433     else
2434       tty->cr();
2435 
2436     assert(cut_short || delay == NULL, "no unconditional delay branch");
2437 
2438   } // End of per-block dump
2439   tty->cr();
2440 
2441   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2442 }
2443 #endif
2444 
2445 //------------------------------Final_Reshape_Counts---------------------------
2446 // This class defines counters to help identify when a method
2447 // may/must be executed using hardware with only 24-bit precision.
2448 struct Final_Reshape_Counts : public StackObj {
2449   int  _call_count;             // count non-inlined 'common' calls
2450   int  _float_count;            // count float ops requiring 24-bit precision
2451   int  _double_count;           // count double ops requiring more precision
2452   int  _java_call_count;        // count non-inlined 'java' calls
2453   int  _inner_loop_count;       // count loops which need alignment
2454   VectorSet _visited;           // Visitation flags
2455   Node_List _tests;             // Set of IfNodes & PCTableNodes
2456 
2457   Final_Reshape_Counts() :
2458     _call_count(0), _float_count(0), _double_count(0),
2459     _java_call_count(0), _inner_loop_count(0),
2460     _visited( Thread::current()->resource_area() ) { }
2461 
2462   void inc_call_count  () { _call_count  ++; }
2463   void inc_float_count () { _float_count ++; }
2464   void inc_double_count() { _double_count++; }
2465   void inc_java_call_count() { _java_call_count++; }
2466   void inc_inner_loop_count() { _inner_loop_count++; }
2467 
2468   int  get_call_count  () const { return _call_count  ; }
2469   int  get_float_count () const { return _float_count ; }
2470   int  get_double_count() const { return _double_count; }
2471   int  get_java_call_count() const { return _java_call_count; }
2472   int  get_inner_loop_count() const { return _inner_loop_count; }
2473 };
2474 
2475 #ifdef ASSERT
2476 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2477   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2478   // Make sure the offset goes inside the instance layout.
2479   return k->contains_field_offset(tp->offset());
2480   // Note that OffsetBot and OffsetTop are very negative.
2481 }
2482 #endif
2483 
2484 // Eliminate trivially redundant StoreCMs and accumulate their
2485 // precedence edges.
2486 void Compile::eliminate_redundant_card_marks(Node* n) {
2487   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2488   if (n->in(MemNode::Address)->outcnt() > 1) {
2489     // There are multiple users of the same address so it might be
2490     // possible to eliminate some of the StoreCMs
2491     Node* mem = n->in(MemNode::Memory);
2492     Node* adr = n->in(MemNode::Address);
2493     Node* val = n->in(MemNode::ValueIn);
2494     Node* prev = n;
2495     bool done = false;
2496     // Walk the chain of StoreCMs eliminating ones that match.  As
2497     // long as it's a chain of single users then the optimization is
2498     // safe.  Eliminating partially redundant StoreCMs would require
2499     // cloning copies down the other paths.
2500     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2501       if (adr == mem->in(MemNode::Address) &&
2502           val == mem->in(MemNode::ValueIn)) {
2503         // redundant StoreCM
2504         if (mem->req() > MemNode::OopStore) {
2505           // Hasn't been processed by this code yet.
2506           n->add_prec(mem->in(MemNode::OopStore));
2507         } else {
2508           // Already converted to precedence edge
2509           for (uint i = mem->req(); i < mem->len(); i++) {
2510             // Accumulate any precedence edges
2511             if (mem->in(i) != NULL) {
2512               n->add_prec(mem->in(i));
2513             }
2514           }
2515           // Everything above this point has been processed.
2516           done = true;
2517         }
2518         // Eliminate the previous StoreCM
2519         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2520         assert(mem->outcnt() == 0, "should be dead");
2521         mem->disconnect_inputs(NULL, this);
2522       } else {
2523         prev = mem;
2524       }
2525       mem = prev->in(MemNode::Memory);
2526     }
2527   }
2528 }
2529 
2530 //------------------------------final_graph_reshaping_impl----------------------
2531 // Implement items 1-5 from final_graph_reshaping below.
2532 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2533 
2534   if ( n->outcnt() == 0 ) return; // dead node
2535   uint nop = n->Opcode();
2536 
2537   // Check for 2-input instruction with "last use" on right input.
2538   // Swap to left input.  Implements item (2).
2539   if( n->req() == 3 &&          // two-input instruction
2540       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2541       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2542       n->in(2)->outcnt() == 1 &&// right use IS a last use
2543       !n->in(2)->is_Con() ) {   // right use is not a constant
2544     // Check for commutative opcode
2545     switch( nop ) {
2546     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2547     case Op_MaxI:  case Op_MinI:
2548     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2549     case Op_AndL:  case Op_XorL:  case Op_OrL:
2550     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2551       // Move "last use" input to left by swapping inputs
2552       n->swap_edges(1, 2);
2553       break;
2554     }
2555     default:
2556       break;
2557     }
2558   }
2559 
2560 #ifdef ASSERT
2561   if( n->is_Mem() ) {
2562     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2563     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2564             // oop will be recorded in oop map if load crosses safepoint
2565             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2566                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2567             "raw memory operations should have control edge");
2568   }
2569 #endif
2570   // Count FPU ops and common calls, implements item (3)
2571   switch( nop ) {
2572   // Count all float operations that may use FPU
2573   case Op_AddF:
2574   case Op_SubF:
2575   case Op_MulF:
2576   case Op_DivF:
2577   case Op_NegF:
2578   case Op_ModF:
2579   case Op_ConvI2F:
2580   case Op_ConF:
2581   case Op_CmpF:
2582   case Op_CmpF3:
2583   // case Op_ConvL2F: // longs are split into 32-bit halves
2584     frc.inc_float_count();
2585     break;
2586 
2587   case Op_ConvF2D:
2588   case Op_ConvD2F:
2589     frc.inc_float_count();
2590     frc.inc_double_count();
2591     break;
2592 
2593   // Count all double operations that may use FPU
2594   case Op_AddD:
2595   case Op_SubD:
2596   case Op_MulD:
2597   case Op_DivD:
2598   case Op_NegD:
2599   case Op_ModD:
2600   case Op_ConvI2D:
2601   case Op_ConvD2I:
2602   // case Op_ConvL2D: // handled by leaf call
2603   // case Op_ConvD2L: // handled by leaf call
2604   case Op_ConD:
2605   case Op_CmpD:
2606   case Op_CmpD3:
2607     frc.inc_double_count();
2608     break;
2609   case Op_Opaque1:              // Remove Opaque Nodes before matching
2610   case Op_Opaque2:              // Remove Opaque Nodes before matching
2611   case Op_Opaque3:
2612     n->subsume_by(n->in(1), this);
2613     break;
2614   case Op_CallStaticJava:
2615   case Op_CallJava:
2616   case Op_CallDynamicJava:
2617     frc.inc_java_call_count(); // Count java call site;
2618   case Op_CallRuntime:
2619   case Op_CallLeaf:
2620   case Op_CallLeafNoFP: {
2621     assert( n->is_Call(), "" );
2622     CallNode *call = n->as_Call();
2623     // Count call sites where the FP mode bit would have to be flipped.
2624     // Do not count uncommon runtime calls:
2625     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2626     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2627     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2628       frc.inc_call_count();   // Count the call site
2629     } else {                  // See if uncommon argument is shared
2630       Node *n = call->in(TypeFunc::Parms);
2631       int nop = n->Opcode();
2632       // Clone shared simple arguments to uncommon calls, item (1).
2633       if( n->outcnt() > 1 &&
2634           !n->is_Proj() &&
2635           nop != Op_CreateEx &&
2636           nop != Op_CheckCastPP &&
2637           nop != Op_DecodeN &&
2638           nop != Op_DecodeNKlass &&
2639           !n->is_Mem() ) {
2640         Node *x = n->clone();
2641         call->set_req( TypeFunc::Parms, x );
2642       }
2643     }
2644     break;
2645   }
2646 
2647   case Op_StoreD:
2648   case Op_LoadD:
2649   case Op_LoadD_unaligned:
2650     frc.inc_double_count();
2651     goto handle_mem;
2652   case Op_StoreF:
2653   case Op_LoadF:
2654     frc.inc_float_count();
2655     goto handle_mem;
2656 
2657   case Op_StoreCM:
2658     {
2659       // Convert OopStore dependence into precedence edge
2660       Node* prec = n->in(MemNode::OopStore);
2661       n->del_req(MemNode::OopStore);
2662       n->add_prec(prec);
2663       eliminate_redundant_card_marks(n);
2664     }
2665 
2666     // fall through
2667 
2668   case Op_StoreB:
2669   case Op_StoreC:
2670   case Op_StorePConditional:
2671   case Op_StoreI:
2672   case Op_StoreL:
2673   case Op_StoreIConditional:
2674   case Op_StoreLConditional:
2675   case Op_CompareAndSwapI:
2676   case Op_CompareAndSwapL:
2677   case Op_CompareAndSwapP:
2678   case Op_CompareAndSwapN:
2679   case Op_GetAndAddI:
2680   case Op_GetAndAddL:
2681   case Op_GetAndSetI:
2682   case Op_GetAndSetL:
2683   case Op_GetAndSetP:
2684   case Op_GetAndSetN:
2685   case Op_StoreP:
2686   case Op_StoreN:
2687   case Op_StoreNKlass:
2688   case Op_LoadB:
2689   case Op_LoadUB:
2690   case Op_LoadUS:
2691   case Op_LoadI:
2692   case Op_LoadKlass:
2693   case Op_LoadNKlass:
2694   case Op_LoadL:
2695   case Op_LoadL_unaligned:
2696   case Op_LoadPLocked:
2697   case Op_LoadP:
2698   case Op_LoadN:
2699   case Op_LoadRange:
2700   case Op_LoadS: {
2701   handle_mem:
2702 #ifdef ASSERT
2703     if( VerifyOptoOopOffsets ) {
2704       assert( n->is_Mem(), "" );
2705       MemNode *mem  = (MemNode*)n;
2706       // Check to see if address types have grounded out somehow.
2707       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2708       assert( !tp || oop_offset_is_sane(tp), "" );
2709     }
2710 #endif
2711     break;
2712   }
2713 
2714   case Op_AddP: {               // Assert sane base pointers
2715     Node *addp = n->in(AddPNode::Address);
2716     assert( !addp->is_AddP() ||
2717             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2718             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2719             "Base pointers must match" );
2720 #ifdef _LP64
2721     if ((UseCompressedOops || UseCompressedClassPointers) &&
2722         addp->Opcode() == Op_ConP &&
2723         addp == n->in(AddPNode::Base) &&
2724         n->in(AddPNode::Offset)->is_Con()) {
2725       // Use addressing with narrow klass to load with offset on x86.
2726       // On sparc loading 32-bits constant and decoding it have less
2727       // instructions (4) then load 64-bits constant (7).
2728       // Do this transformation here since IGVN will convert ConN back to ConP.
2729       const Type* t = addp->bottom_type();
2730       if (t->isa_oopptr() || t->isa_klassptr()) {
2731         Node* nn = NULL;
2732 
2733         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2734 
2735         // Look for existing ConN node of the same exact type.
2736         Node* r  = root();
2737         uint cnt = r->outcnt();
2738         for (uint i = 0; i < cnt; i++) {
2739           Node* m = r->raw_out(i);
2740           if (m!= NULL && m->Opcode() == op &&
2741               m->bottom_type()->make_ptr() == t) {
2742             nn = m;
2743             break;
2744           }
2745         }
2746         if (nn != NULL) {
2747           // Decode a narrow oop to match address
2748           // [R12 + narrow_oop_reg<<3 + offset]
2749           if (t->isa_oopptr()) {
2750             nn = new DecodeNNode(nn, t);
2751           } else {
2752             nn = new DecodeNKlassNode(nn, t);
2753           }
2754           n->set_req(AddPNode::Base, nn);
2755           n->set_req(AddPNode::Address, nn);
2756           if (addp->outcnt() == 0) {
2757             addp->disconnect_inputs(NULL, this);
2758           }
2759         }
2760       }
2761     }
2762 #endif
2763     break;
2764   }
2765 
2766 #ifdef _LP64
2767   case Op_CastPP:
2768     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2769       Node* in1 = n->in(1);
2770       const Type* t = n->bottom_type();
2771       Node* new_in1 = in1->clone();
2772       new_in1->as_DecodeN()->set_type(t);
2773 
2774       if (!Matcher::narrow_oop_use_complex_address()) {
2775         //
2776         // x86, ARM and friends can handle 2 adds in addressing mode
2777         // and Matcher can fold a DecodeN node into address by using
2778         // a narrow oop directly and do implicit NULL check in address:
2779         //
2780         // [R12 + narrow_oop_reg<<3 + offset]
2781         // NullCheck narrow_oop_reg
2782         //
2783         // On other platforms (Sparc) we have to keep new DecodeN node and
2784         // use it to do implicit NULL check in address:
2785         //
2786         // decode_not_null narrow_oop_reg, base_reg
2787         // [base_reg + offset]
2788         // NullCheck base_reg
2789         //
2790         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2791         // to keep the information to which NULL check the new DecodeN node
2792         // corresponds to use it as value in implicit_null_check().
2793         //
2794         new_in1->set_req(0, n->in(0));
2795       }
2796 
2797       n->subsume_by(new_in1, this);
2798       if (in1->outcnt() == 0) {
2799         in1->disconnect_inputs(NULL, this);
2800       }
2801     }
2802     break;
2803 
2804   case Op_CmpP:
2805     // Do this transformation here to preserve CmpPNode::sub() and
2806     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2807     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2808       Node* in1 = n->in(1);
2809       Node* in2 = n->in(2);
2810       if (!in1->is_DecodeNarrowPtr()) {
2811         in2 = in1;
2812         in1 = n->in(2);
2813       }
2814       assert(in1->is_DecodeNarrowPtr(), "sanity");
2815 
2816       Node* new_in2 = NULL;
2817       if (in2->is_DecodeNarrowPtr()) {
2818         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2819         new_in2 = in2->in(1);
2820       } else if (in2->Opcode() == Op_ConP) {
2821         const Type* t = in2->bottom_type();
2822         if (t == TypePtr::NULL_PTR) {
2823           assert(in1->is_DecodeN(), "compare klass to null?");
2824           // Don't convert CmpP null check into CmpN if compressed
2825           // oops implicit null check is not generated.
2826           // This will allow to generate normal oop implicit null check.
2827           if (Matcher::gen_narrow_oop_implicit_null_checks())
2828             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2829           //
2830           // This transformation together with CastPP transformation above
2831           // will generated code for implicit NULL checks for compressed oops.
2832           //
2833           // The original code after Optimize()
2834           //
2835           //    LoadN memory, narrow_oop_reg
2836           //    decode narrow_oop_reg, base_reg
2837           //    CmpP base_reg, NULL
2838           //    CastPP base_reg // NotNull
2839           //    Load [base_reg + offset], val_reg
2840           //
2841           // after these transformations will be
2842           //
2843           //    LoadN memory, narrow_oop_reg
2844           //    CmpN narrow_oop_reg, NULL
2845           //    decode_not_null narrow_oop_reg, base_reg
2846           //    Load [base_reg + offset], val_reg
2847           //
2848           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2849           // since narrow oops can be used in debug info now (see the code in
2850           // final_graph_reshaping_walk()).
2851           //
2852           // At the end the code will be matched to
2853           // on x86:
2854           //
2855           //    Load_narrow_oop memory, narrow_oop_reg
2856           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2857           //    NullCheck narrow_oop_reg
2858           //
2859           // and on sparc:
2860           //
2861           //    Load_narrow_oop memory, narrow_oop_reg
2862           //    decode_not_null narrow_oop_reg, base_reg
2863           //    Load [base_reg + offset], val_reg
2864           //    NullCheck base_reg
2865           //
2866         } else if (t->isa_oopptr()) {
2867           new_in2 = ConNode::make(this, t->make_narrowoop());
2868         } else if (t->isa_klassptr()) {
2869           new_in2 = ConNode::make(this, t->make_narrowklass());
2870         }
2871       }
2872       if (new_in2 != NULL) {
2873         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
2874         n->subsume_by(cmpN, this);
2875         if (in1->outcnt() == 0) {
2876           in1->disconnect_inputs(NULL, this);
2877         }
2878         if (in2->outcnt() == 0) {
2879           in2->disconnect_inputs(NULL, this);
2880         }
2881       }
2882     }
2883     break;
2884 
2885   case Op_DecodeN:
2886   case Op_DecodeNKlass:
2887     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2888     // DecodeN could be pinned when it can't be fold into
2889     // an address expression, see the code for Op_CastPP above.
2890     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2891     break;
2892 
2893   case Op_EncodeP:
2894   case Op_EncodePKlass: {
2895     Node* in1 = n->in(1);
2896     if (in1->is_DecodeNarrowPtr()) {
2897       n->subsume_by(in1->in(1), this);
2898     } else if (in1->Opcode() == Op_ConP) {
2899       const Type* t = in1->bottom_type();
2900       if (t == TypePtr::NULL_PTR) {
2901         assert(t->isa_oopptr(), "null klass?");
2902         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2903       } else if (t->isa_oopptr()) {
2904         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2905       } else if (t->isa_klassptr()) {
2906         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2907       }
2908     }
2909     if (in1->outcnt() == 0) {
2910       in1->disconnect_inputs(NULL, this);
2911     }
2912     break;
2913   }
2914 
2915   case Op_Proj: {
2916     if (OptimizeStringConcat) {
2917       ProjNode* p = n->as_Proj();
2918       if (p->_is_io_use) {
2919         // Separate projections were used for the exception path which
2920         // are normally removed by a late inline.  If it wasn't inlined
2921         // then they will hang around and should just be replaced with
2922         // the original one.
2923         Node* proj = NULL;
2924         // Replace with just one
2925         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2926           Node *use = i.get();
2927           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2928             proj = use;
2929             break;
2930           }
2931         }
2932         assert(proj != NULL, "must be found");
2933         p->subsume_by(proj, this);
2934       }
2935     }
2936     break;
2937   }
2938 
2939   case Op_Phi:
2940     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2941       // The EncodeP optimization may create Phi with the same edges
2942       // for all paths. It is not handled well by Register Allocator.
2943       Node* unique_in = n->in(1);
2944       assert(unique_in != NULL, "");
2945       uint cnt = n->req();
2946       for (uint i = 2; i < cnt; i++) {
2947         Node* m = n->in(i);
2948         assert(m != NULL, "");
2949         if (unique_in != m)
2950           unique_in = NULL;
2951       }
2952       if (unique_in != NULL) {
2953         n->subsume_by(unique_in, this);
2954       }
2955     }
2956     break;
2957 
2958 #endif
2959 
2960   case Op_ModI:
2961     if (UseDivMod) {
2962       // Check if a%b and a/b both exist
2963       Node* d = n->find_similar(Op_DivI);
2964       if (d) {
2965         // Replace them with a fused divmod if supported
2966         if (Matcher::has_match_rule(Op_DivModI)) {
2967           DivModINode* divmod = DivModINode::make(this, n);
2968           d->subsume_by(divmod->div_proj(), this);
2969           n->subsume_by(divmod->mod_proj(), this);
2970         } else {
2971           // replace a%b with a-((a/b)*b)
2972           Node* mult = new MulINode(d, d->in(2));
2973           Node* sub  = new SubINode(d->in(1), mult);
2974           n->subsume_by(sub, this);
2975         }
2976       }
2977     }
2978     break;
2979 
2980   case Op_ModL:
2981     if (UseDivMod) {
2982       // Check if a%b and a/b both exist
2983       Node* d = n->find_similar(Op_DivL);
2984       if (d) {
2985         // Replace them with a fused divmod if supported
2986         if (Matcher::has_match_rule(Op_DivModL)) {
2987           DivModLNode* divmod = DivModLNode::make(this, n);
2988           d->subsume_by(divmod->div_proj(), this);
2989           n->subsume_by(divmod->mod_proj(), this);
2990         } else {
2991           // replace a%b with a-((a/b)*b)
2992           Node* mult = new MulLNode(d, d->in(2));
2993           Node* sub  = new SubLNode(d->in(1), mult);
2994           n->subsume_by(sub, this);
2995         }
2996       }
2997     }
2998     break;
2999 
3000   case Op_LoadVector:
3001   case Op_StoreVector:
3002     break;
3003 
3004   case Op_PackB:
3005   case Op_PackS:
3006   case Op_PackI:
3007   case Op_PackF:
3008   case Op_PackL:
3009   case Op_PackD:
3010     if (n->req()-1 > 2) {
3011       // Replace many operand PackNodes with a binary tree for matching
3012       PackNode* p = (PackNode*) n;
3013       Node* btp = p->binary_tree_pack(this, 1, n->req());
3014       n->subsume_by(btp, this);
3015     }
3016     break;
3017   case Op_Loop:
3018   case Op_CountedLoop:
3019     if (n->as_Loop()->is_inner_loop()) {
3020       frc.inc_inner_loop_count();
3021     }
3022     break;
3023   case Op_LShiftI:
3024   case Op_RShiftI:
3025   case Op_URShiftI:
3026   case Op_LShiftL:
3027   case Op_RShiftL:
3028   case Op_URShiftL:
3029     if (Matcher::need_masked_shift_count) {
3030       // The cpu's shift instructions don't restrict the count to the
3031       // lower 5/6 bits. We need to do the masking ourselves.
3032       Node* in2 = n->in(2);
3033       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3034       const TypeInt* t = in2->find_int_type();
3035       if (t != NULL && t->is_con()) {
3036         juint shift = t->get_con();
3037         if (shift > mask) { // Unsigned cmp
3038           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3039         }
3040       } else {
3041         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3042           Node* shift = new AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3043           n->set_req(2, shift);
3044         }
3045       }
3046       if (in2->outcnt() == 0) { // Remove dead node
3047         in2->disconnect_inputs(NULL, this);
3048       }
3049     }
3050     break;
3051   case Op_MemBarStoreStore:
3052   case Op_MemBarRelease:
3053     // Break the link with AllocateNode: it is no longer useful and
3054     // confuses register allocation.
3055     if (n->req() > MemBarNode::Precedent) {
3056       n->set_req(MemBarNode::Precedent, top());
3057     }
3058     break;
3059   default:
3060     assert( !n->is_Call(), "" );
3061     assert( !n->is_Mem(), "" );
3062     break;
3063   }
3064 
3065   // Collect CFG split points
3066   if (n->is_MultiBranch())
3067     frc._tests.push(n);
3068 }
3069 
3070 //------------------------------final_graph_reshaping_walk---------------------
3071 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3072 // requires that the walk visits a node's inputs before visiting the node.
3073 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3074   ResourceArea *area = Thread::current()->resource_area();
3075   Unique_Node_List sfpt(area);
3076 
3077   frc._visited.set(root->_idx); // first, mark node as visited
3078   uint cnt = root->req();
3079   Node *n = root;
3080   uint  i = 0;
3081   while (true) {
3082     if (i < cnt) {
3083       // Place all non-visited non-null inputs onto stack
3084       Node* m = n->in(i);
3085       ++i;
3086       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3087         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3088           // compute worst case interpreter size in case of a deoptimization
3089           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3090 
3091           sfpt.push(m);
3092         }
3093         cnt = m->req();
3094         nstack.push(n, i); // put on stack parent and next input's index
3095         n = m;
3096         i = 0;
3097       }
3098     } else {
3099       // Now do post-visit work
3100       final_graph_reshaping_impl( n, frc );
3101       if (nstack.is_empty())
3102         break;             // finished
3103       n = nstack.node();   // Get node from stack
3104       cnt = n->req();
3105       i = nstack.index();
3106       nstack.pop();        // Shift to the next node on stack
3107     }
3108   }
3109 
3110   // Skip next transformation if compressed oops are not used.
3111   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3112       (!UseCompressedOops && !UseCompressedClassPointers))
3113     return;
3114 
3115   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3116   // It could be done for an uncommon traps or any safepoints/calls
3117   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3118   while (sfpt.size() > 0) {
3119     n = sfpt.pop();
3120     JVMState *jvms = n->as_SafePoint()->jvms();
3121     assert(jvms != NULL, "sanity");
3122     int start = jvms->debug_start();
3123     int end   = n->req();
3124     bool is_uncommon = (n->is_CallStaticJava() &&
3125                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3126     for (int j = start; j < end; j++) {
3127       Node* in = n->in(j);
3128       if (in->is_DecodeNarrowPtr()) {
3129         bool safe_to_skip = true;
3130         if (!is_uncommon ) {
3131           // Is it safe to skip?
3132           for (uint i = 0; i < in->outcnt(); i++) {
3133             Node* u = in->raw_out(i);
3134             if (!u->is_SafePoint() ||
3135                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3136               safe_to_skip = false;
3137             }
3138           }
3139         }
3140         if (safe_to_skip) {
3141           n->set_req(j, in->in(1));
3142         }
3143         if (in->outcnt() == 0) {
3144           in->disconnect_inputs(NULL, this);
3145         }
3146       }
3147     }
3148   }
3149 }
3150 
3151 //------------------------------final_graph_reshaping--------------------------
3152 // Final Graph Reshaping.
3153 //
3154 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3155 //     and not commoned up and forced early.  Must come after regular
3156 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3157 //     inputs to Loop Phis; these will be split by the allocator anyways.
3158 //     Remove Opaque nodes.
3159 // (2) Move last-uses by commutative operations to the left input to encourage
3160 //     Intel update-in-place two-address operations and better register usage
3161 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3162 //     calls canonicalizing them back.
3163 // (3) Count the number of double-precision FP ops, single-precision FP ops
3164 //     and call sites.  On Intel, we can get correct rounding either by
3165 //     forcing singles to memory (requires extra stores and loads after each
3166 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3167 //     clearing the mode bit around call sites).  The mode bit is only used
3168 //     if the relative frequency of single FP ops to calls is low enough.
3169 //     This is a key transform for SPEC mpeg_audio.
3170 // (4) Detect infinite loops; blobs of code reachable from above but not
3171 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3172 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3173 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3174 //     Detection is by looking for IfNodes where only 1 projection is
3175 //     reachable from below or CatchNodes missing some targets.
3176 // (5) Assert for insane oop offsets in debug mode.
3177 
3178 bool Compile::final_graph_reshaping() {
3179   // an infinite loop may have been eliminated by the optimizer,
3180   // in which case the graph will be empty.
3181   if (root()->req() == 1) {
3182     record_method_not_compilable("trivial infinite loop");
3183     return true;
3184   }
3185 
3186   // Expensive nodes have their control input set to prevent the GVN
3187   // from freely commoning them. There's no GVN beyond this point so
3188   // no need to keep the control input. We want the expensive nodes to
3189   // be freely moved to the least frequent code path by gcm.
3190   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3191   for (int i = 0; i < expensive_count(); i++) {
3192     _expensive_nodes->at(i)->set_req(0, NULL);
3193   }
3194 
3195   Final_Reshape_Counts frc;
3196 
3197   // Visit everybody reachable!
3198   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3199   Node_Stack nstack(unique() >> 1);
3200   final_graph_reshaping_walk(nstack, root(), frc);
3201 
3202   // Check for unreachable (from below) code (i.e., infinite loops).
3203   for( uint i = 0; i < frc._tests.size(); i++ ) {
3204     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3205     // Get number of CFG targets.
3206     // Note that PCTables include exception targets after calls.
3207     uint required_outcnt = n->required_outcnt();
3208     if (n->outcnt() != required_outcnt) {
3209       // Check for a few special cases.  Rethrow Nodes never take the
3210       // 'fall-thru' path, so expected kids is 1 less.
3211       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3212         if (n->in(0)->in(0)->is_Call()) {
3213           CallNode *call = n->in(0)->in(0)->as_Call();
3214           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3215             required_outcnt--;      // Rethrow always has 1 less kid
3216           } else if (call->req() > TypeFunc::Parms &&
3217                      call->is_CallDynamicJava()) {
3218             // Check for null receiver. In such case, the optimizer has
3219             // detected that the virtual call will always result in a null
3220             // pointer exception. The fall-through projection of this CatchNode
3221             // will not be populated.
3222             Node *arg0 = call->in(TypeFunc::Parms);
3223             if (arg0->is_Type() &&
3224                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3225               required_outcnt--;
3226             }
3227           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3228                      call->req() > TypeFunc::Parms+1 &&
3229                      call->is_CallStaticJava()) {
3230             // Check for negative array length. In such case, the optimizer has
3231             // detected that the allocation attempt will always result in an
3232             // exception. There is no fall-through projection of this CatchNode .
3233             Node *arg1 = call->in(TypeFunc::Parms+1);
3234             if (arg1->is_Type() &&
3235                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3236               required_outcnt--;
3237             }
3238           }
3239         }
3240       }
3241       // Recheck with a better notion of 'required_outcnt'
3242       if (n->outcnt() != required_outcnt) {
3243         record_method_not_compilable("malformed control flow");
3244         return true;            // Not all targets reachable!
3245       }
3246     }
3247     // Check that I actually visited all kids.  Unreached kids
3248     // must be infinite loops.
3249     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3250       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3251         record_method_not_compilable("infinite loop");
3252         return true;            // Found unvisited kid; must be unreach
3253       }
3254   }
3255 
3256   // If original bytecodes contained a mixture of floats and doubles
3257   // check if the optimizer has made it homogenous, item (3).
3258   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3259       frc.get_float_count() > 32 &&
3260       frc.get_double_count() == 0 &&
3261       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3262     set_24_bit_selection_and_mode( false,  true );
3263   }
3264 
3265   set_java_calls(frc.get_java_call_count());
3266   set_inner_loops(frc.get_inner_loop_count());
3267 
3268   // No infinite loops, no reason to bail out.
3269   return false;
3270 }
3271 
3272 //-----------------------------too_many_traps----------------------------------
3273 // Report if there are too many traps at the current method and bci.
3274 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3275 bool Compile::too_many_traps(ciMethod* method,
3276                              int bci,
3277                              Deoptimization::DeoptReason reason) {
3278   ciMethodData* md = method->method_data();
3279   if (md->is_empty()) {
3280     // Assume the trap has not occurred, or that it occurred only
3281     // because of a transient condition during start-up in the interpreter.
3282     return false;
3283   }
3284   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3285   if (md->has_trap_at(bci, m, reason) != 0) {
3286     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3287     // Also, if there are multiple reasons, or if there is no per-BCI record,
3288     // assume the worst.
3289     if (log())
3290       log()->elem("observe trap='%s' count='%d'",
3291                   Deoptimization::trap_reason_name(reason),
3292                   md->trap_count(reason));
3293     return true;
3294   } else {
3295     // Ignore method/bci and see if there have been too many globally.
3296     return too_many_traps(reason, md);
3297   }
3298 }
3299 
3300 // Less-accurate variant which does not require a method and bci.
3301 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3302                              ciMethodData* logmd) {
3303   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3304     // Too many traps globally.
3305     // Note that we use cumulative trap_count, not just md->trap_count.
3306     if (log()) {
3307       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3308       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3309                   Deoptimization::trap_reason_name(reason),
3310                   mcount, trap_count(reason));
3311     }
3312     return true;
3313   } else {
3314     // The coast is clear.
3315     return false;
3316   }
3317 }
3318 
3319 //--------------------------too_many_recompiles--------------------------------
3320 // Report if there are too many recompiles at the current method and bci.
3321 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3322 // Is not eager to return true, since this will cause the compiler to use
3323 // Action_none for a trap point, to avoid too many recompilations.
3324 bool Compile::too_many_recompiles(ciMethod* method,
3325                                   int bci,
3326                                   Deoptimization::DeoptReason reason) {
3327   ciMethodData* md = method->method_data();
3328   if (md->is_empty()) {
3329     // Assume the trap has not occurred, or that it occurred only
3330     // because of a transient condition during start-up in the interpreter.
3331     return false;
3332   }
3333   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3334   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3335   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3336   Deoptimization::DeoptReason per_bc_reason
3337     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3338   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3339   if ((per_bc_reason == Deoptimization::Reason_none
3340        || md->has_trap_at(bci, m, reason) != 0)
3341       // The trap frequency measure we care about is the recompile count:
3342       && md->trap_recompiled_at(bci, m)
3343       && md->overflow_recompile_count() >= bc_cutoff) {
3344     // Do not emit a trap here if it has already caused recompilations.
3345     // Also, if there are multiple reasons, or if there is no per-BCI record,
3346     // assume the worst.
3347     if (log())
3348       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3349                   Deoptimization::trap_reason_name(reason),
3350                   md->trap_count(reason),
3351                   md->overflow_recompile_count());
3352     return true;
3353   } else if (trap_count(reason) != 0
3354              && decompile_count() >= m_cutoff) {
3355     // Too many recompiles globally, and we have seen this sort of trap.
3356     // Use cumulative decompile_count, not just md->decompile_count.
3357     if (log())
3358       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3359                   Deoptimization::trap_reason_name(reason),
3360                   md->trap_count(reason), trap_count(reason),
3361                   md->decompile_count(), decompile_count());
3362     return true;
3363   } else {
3364     // The coast is clear.
3365     return false;
3366   }
3367 }
3368 
3369 // Compute when not to trap. Used by matching trap based nodes and
3370 // NullCheck optimization.
3371 void Compile::set_allowed_deopt_reasons() {
3372   _allowed_reasons = 0;
3373   if (is_method_compilation()) {
3374     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3375       assert(rs < BitsPerInt, "recode bit map");
3376       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3377         _allowed_reasons |= nth_bit(rs);
3378       }
3379     }
3380   }
3381 }
3382 
3383 #ifndef PRODUCT
3384 //------------------------------verify_graph_edges---------------------------
3385 // Walk the Graph and verify that there is a one-to-one correspondence
3386 // between Use-Def edges and Def-Use edges in the graph.
3387 void Compile::verify_graph_edges(bool no_dead_code) {
3388   if (VerifyGraphEdges) {
3389     ResourceArea *area = Thread::current()->resource_area();
3390     Unique_Node_List visited(area);
3391     // Call recursive graph walk to check edges
3392     _root->verify_edges(visited);
3393     if (no_dead_code) {
3394       // Now make sure that no visited node is used by an unvisited node.
3395       bool dead_nodes = false;
3396       Unique_Node_List checked(area);
3397       while (visited.size() > 0) {
3398         Node* n = visited.pop();
3399         checked.push(n);
3400         for (uint i = 0; i < n->outcnt(); i++) {
3401           Node* use = n->raw_out(i);
3402           if (checked.member(use))  continue;  // already checked
3403           if (visited.member(use))  continue;  // already in the graph
3404           if (use->is_Con())        continue;  // a dead ConNode is OK
3405           // At this point, we have found a dead node which is DU-reachable.
3406           if (!dead_nodes) {
3407             tty->print_cr("*** Dead nodes reachable via DU edges:");
3408             dead_nodes = true;
3409           }
3410           use->dump(2);
3411           tty->print_cr("---");
3412           checked.push(use);  // No repeats; pretend it is now checked.
3413         }
3414       }
3415       assert(!dead_nodes, "using nodes must be reachable from root");
3416     }
3417   }
3418 }
3419 
3420 // Verify GC barriers consistency
3421 // Currently supported:
3422 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3423 void Compile::verify_barriers() {
3424   if (UseG1GC) {
3425     // Verify G1 pre-barriers
3426     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3427 
3428     ResourceArea *area = Thread::current()->resource_area();
3429     Unique_Node_List visited(area);
3430     Node_List worklist(area);
3431     // We're going to walk control flow backwards starting from the Root
3432     worklist.push(_root);
3433     while (worklist.size() > 0) {
3434       Node* x = worklist.pop();
3435       if (x == NULL || x == top()) continue;
3436       if (visited.member(x)) {
3437         continue;
3438       } else {
3439         visited.push(x);
3440       }
3441 
3442       if (x->is_Region()) {
3443         for (uint i = 1; i < x->req(); i++) {
3444           worklist.push(x->in(i));
3445         }
3446       } else {
3447         worklist.push(x->in(0));
3448         // We are looking for the pattern:
3449         //                            /->ThreadLocal
3450         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3451         //              \->ConI(0)
3452         // We want to verify that the If and the LoadB have the same control
3453         // See GraphKit::g1_write_barrier_pre()
3454         if (x->is_If()) {
3455           IfNode *iff = x->as_If();
3456           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3457             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3458             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3459                 && cmp->in(1)->is_Load()) {
3460               LoadNode* load = cmp->in(1)->as_Load();
3461               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3462                   && load->in(2)->in(3)->is_Con()
3463                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3464 
3465                 Node* if_ctrl = iff->in(0);
3466                 Node* load_ctrl = load->in(0);
3467 
3468                 if (if_ctrl != load_ctrl) {
3469                   // Skip possible CProj->NeverBranch in infinite loops
3470                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3471                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3472                     if_ctrl = if_ctrl->in(0)->in(0);
3473                   }
3474                 }
3475                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3476               }
3477             }
3478           }
3479         }
3480       }
3481     }
3482   }
3483 }
3484 
3485 #endif
3486 
3487 // The Compile object keeps track of failure reasons separately from the ciEnv.
3488 // This is required because there is not quite a 1-1 relation between the
3489 // ciEnv and its compilation task and the Compile object.  Note that one
3490 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3491 // to backtrack and retry without subsuming loads.  Other than this backtracking
3492 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3493 // by the logic in C2Compiler.
3494 void Compile::record_failure(const char* reason) {
3495   if (log() != NULL) {
3496     log()->elem("failure reason='%s' phase='compile'", reason);
3497   }
3498   if (_failure_reason == NULL) {
3499     // Record the first failure reason.
3500     _failure_reason = reason;
3501   }
3502 
3503   EventCompilerFailure event;
3504   if (event.should_commit()) {
3505     event.set_compileID(Compile::compile_id());
3506     event.set_failure(reason);
3507     event.commit();
3508   }
3509 
3510   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3511     C->print_method(PHASE_FAILURE);
3512   }
3513   _root = NULL;  // flush the graph, too
3514 }
3515 
3516 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3517   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3518     _phase_name(name), _dolog(dolog)
3519 {
3520   if (dolog) {
3521     C = Compile::current();
3522     _log = C->log();
3523   } else {
3524     C = NULL;
3525     _log = NULL;
3526   }
3527   if (_log != NULL) {
3528     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3529     _log->stamp();
3530     _log->end_head();
3531   }
3532 }
3533 
3534 Compile::TracePhase::~TracePhase() {
3535 
3536   C = Compile::current();
3537   if (_dolog) {
3538     _log = C->log();
3539   } else {
3540     _log = NULL;
3541   }
3542 
3543 #ifdef ASSERT
3544   if (PrintIdealNodeCount) {
3545     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3546                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3547   }
3548 
3549   if (VerifyIdealNodeCount) {
3550     Compile::current()->print_missing_nodes();
3551   }
3552 #endif
3553 
3554   if (_log != NULL) {
3555     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3556   }
3557 }
3558 
3559 //=============================================================================
3560 // Two Constant's are equal when the type and the value are equal.
3561 bool Compile::Constant::operator==(const Constant& other) {
3562   if (type()          != other.type()         )  return false;
3563   if (can_be_reused() != other.can_be_reused())  return false;
3564   // For floating point values we compare the bit pattern.
3565   switch (type()) {
3566   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3567   case T_LONG:
3568   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3569   case T_OBJECT:
3570   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3571   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3572   case T_METADATA: return (_v._metadata == other._v._metadata);
3573   default: ShouldNotReachHere();
3574   }
3575   return false;
3576 }
3577 
3578 static int type_to_size_in_bytes(BasicType t) {
3579   switch (t) {
3580   case T_LONG:    return sizeof(jlong  );
3581   case T_FLOAT:   return sizeof(jfloat );
3582   case T_DOUBLE:  return sizeof(jdouble);
3583   case T_METADATA: return sizeof(Metadata*);
3584     // We use T_VOID as marker for jump-table entries (labels) which
3585     // need an internal word relocation.
3586   case T_VOID:
3587   case T_ADDRESS:
3588   case T_OBJECT:  return sizeof(jobject);
3589   }
3590 
3591   ShouldNotReachHere();
3592   return -1;
3593 }
3594 
3595 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3596   // sort descending
3597   if (a->freq() > b->freq())  return -1;
3598   if (a->freq() < b->freq())  return  1;
3599   return 0;
3600 }
3601 
3602 void Compile::ConstantTable::calculate_offsets_and_size() {
3603   // First, sort the array by frequencies.
3604   _constants.sort(qsort_comparator);
3605 
3606 #ifdef ASSERT
3607   // Make sure all jump-table entries were sorted to the end of the
3608   // array (they have a negative frequency).
3609   bool found_void = false;
3610   for (int i = 0; i < _constants.length(); i++) {
3611     Constant con = _constants.at(i);
3612     if (con.type() == T_VOID)
3613       found_void = true;  // jump-tables
3614     else
3615       assert(!found_void, "wrong sorting");
3616   }
3617 #endif
3618 
3619   int offset = 0;
3620   for (int i = 0; i < _constants.length(); i++) {
3621     Constant* con = _constants.adr_at(i);
3622 
3623     // Align offset for type.
3624     int typesize = type_to_size_in_bytes(con->type());
3625     offset = align_size_up(offset, typesize);
3626     con->set_offset(offset);   // set constant's offset
3627 
3628     if (con->type() == T_VOID) {
3629       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3630       offset = offset + typesize * n->outcnt();  // expand jump-table
3631     } else {
3632       offset = offset + typesize;
3633     }
3634   }
3635 
3636   // Align size up to the next section start (which is insts; see
3637   // CodeBuffer::align_at_start).
3638   assert(_size == -1, "already set?");
3639   _size = align_size_up(offset, CodeEntryAlignment);
3640 }
3641 
3642 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3643   MacroAssembler _masm(&cb);
3644   for (int i = 0; i < _constants.length(); i++) {
3645     Constant con = _constants.at(i);
3646     address constant_addr;
3647     switch (con.type()) {
3648     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3649     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3650     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3651     case T_OBJECT: {
3652       jobject obj = con.get_jobject();
3653       int oop_index = _masm.oop_recorder()->find_index(obj);
3654       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3655       break;
3656     }
3657     case T_ADDRESS: {
3658       address addr = (address) con.get_jobject();
3659       constant_addr = _masm.address_constant(addr);
3660       break;
3661     }
3662     // We use T_VOID as marker for jump-table entries (labels) which
3663     // need an internal word relocation.
3664     case T_VOID: {
3665       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3666       // Fill the jump-table with a dummy word.  The real value is
3667       // filled in later in fill_jump_table.
3668       address dummy = (address) n;
3669       constant_addr = _masm.address_constant(dummy);
3670       // Expand jump-table
3671       for (uint i = 1; i < n->outcnt(); i++) {
3672         address temp_addr = _masm.address_constant(dummy + i);
3673         assert(temp_addr, "consts section too small");
3674       }
3675       break;
3676     }
3677     case T_METADATA: {
3678       Metadata* obj = con.get_metadata();
3679       int metadata_index = _masm.oop_recorder()->find_index(obj);
3680       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3681       break;
3682     }
3683     default: ShouldNotReachHere();
3684     }
3685     assert(constant_addr, "consts section too small");
3686     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3687             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3688   }
3689 }
3690 
3691 int Compile::ConstantTable::find_offset(Constant& con) const {
3692   int idx = _constants.find(con);
3693   assert(idx != -1, "constant must be in constant table");
3694   int offset = _constants.at(idx).offset();
3695   assert(offset != -1, "constant table not emitted yet?");
3696   return offset;
3697 }
3698 
3699 void Compile::ConstantTable::add(Constant& con) {
3700   if (con.can_be_reused()) {
3701     int idx = _constants.find(con);
3702     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3703       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3704       return;
3705     }
3706   }
3707   (void) _constants.append(con);
3708 }
3709 
3710 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3711   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3712   Constant con(type, value, b->_freq);
3713   add(con);
3714   return con;
3715 }
3716 
3717 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3718   Constant con(metadata);
3719   add(con);
3720   return con;
3721 }
3722 
3723 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3724   jvalue value;
3725   BasicType type = oper->type()->basic_type();
3726   switch (type) {
3727   case T_LONG:    value.j = oper->constantL(); break;
3728   case T_FLOAT:   value.f = oper->constantF(); break;
3729   case T_DOUBLE:  value.d = oper->constantD(); break;
3730   case T_OBJECT:
3731   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3732   case T_METADATA: return add((Metadata*)oper->constant()); break;
3733   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3734   }
3735   return add(n, type, value);
3736 }
3737 
3738 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3739   jvalue value;
3740   // We can use the node pointer here to identify the right jump-table
3741   // as this method is called from Compile::Fill_buffer right before
3742   // the MachNodes are emitted and the jump-table is filled (means the
3743   // MachNode pointers do not change anymore).
3744   value.l = (jobject) n;
3745   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3746   add(con);
3747   return con;
3748 }
3749 
3750 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3751   // If called from Compile::scratch_emit_size do nothing.
3752   if (Compile::current()->in_scratch_emit_size())  return;
3753 
3754   assert(labels.is_nonempty(), "must be");
3755   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3756 
3757   // Since MachConstantNode::constant_offset() also contains
3758   // table_base_offset() we need to subtract the table_base_offset()
3759   // to get the plain offset into the constant table.
3760   int offset = n->constant_offset() - table_base_offset();
3761 
3762   MacroAssembler _masm(&cb);
3763   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3764 
3765   for (uint i = 0; i < n->outcnt(); i++) {
3766     address* constant_addr = &jump_table_base[i];
3767     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3768     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3769     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3770   }
3771 }
3772 
3773 // The message about the current inlining is accumulated in
3774 // _print_inlining_stream and transfered into the _print_inlining_list
3775 // once we know whether inlining succeeds or not. For regular
3776 // inlining, messages are appended to the buffer pointed by
3777 // _print_inlining_idx in the _print_inlining_list. For late inlining,
3778 // a new buffer is added after _print_inlining_idx in the list. This
3779 // way we can update the inlining message for late inlining call site
3780 // when the inlining is attempted again.
3781 void Compile::print_inlining_init() {
3782   if (print_inlining() || print_intrinsics()) {
3783     _print_inlining_stream = new stringStream();
3784     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3785   }
3786 }
3787 
3788 void Compile::print_inlining_reinit() {
3789   if (print_inlining() || print_intrinsics()) {
3790     // Re allocate buffer when we change ResourceMark
3791     _print_inlining_stream = new stringStream();
3792   }
3793 }
3794 
3795 void Compile::print_inlining_reset() {
3796   _print_inlining_stream->reset();
3797 }
3798 
3799 void Compile::print_inlining_commit() {
3800   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
3801   // Transfer the message from _print_inlining_stream to the current
3802   // _print_inlining_list buffer and clear _print_inlining_stream.
3803   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
3804   print_inlining_reset();
3805 }
3806 
3807 void Compile::print_inlining_push() {
3808   // Add new buffer to the _print_inlining_list at current position
3809   _print_inlining_idx++;
3810   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
3811 }
3812 
3813 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
3814   return _print_inlining_list->at(_print_inlining_idx);
3815 }
3816 
3817 void Compile::print_inlining_update(CallGenerator* cg) {
3818   if (print_inlining() || print_intrinsics()) {
3819     if (!cg->is_late_inline()) {
3820       if (print_inlining_current().cg() != NULL) {
3821         print_inlining_push();
3822       }
3823       print_inlining_commit();
3824     } else {
3825       if (print_inlining_current().cg() != cg &&
3826           (print_inlining_current().cg() != NULL ||
3827            print_inlining_current().ss()->size() != 0)) {
3828         print_inlining_push();
3829       }
3830       print_inlining_commit();
3831       print_inlining_current().set_cg(cg);
3832     }
3833   }
3834 }
3835 
3836 void Compile::print_inlining_move_to(CallGenerator* cg) {
3837   // We resume inlining at a late inlining call site. Locate the
3838   // corresponding inlining buffer so that we can update it.
3839   if (print_inlining()) {
3840     for (int i = 0; i < _print_inlining_list->length(); i++) {
3841       if (_print_inlining_list->adr_at(i)->cg() == cg) {
3842         _print_inlining_idx = i;
3843         return;
3844       }
3845     }
3846     ShouldNotReachHere();
3847   }
3848 }
3849 
3850 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
3851   if (print_inlining()) {
3852     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
3853     assert(print_inlining_current().cg() == cg, "wrong entry");
3854     // replace message with new message
3855     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
3856     print_inlining_commit();
3857     print_inlining_current().set_cg(cg);
3858   }
3859 }
3860 
3861 void Compile::print_inlining_assert_ready() {
3862   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
3863 }
3864 
3865 void Compile::process_print_inlining() {
3866   bool do_print_inlining = print_inlining() || print_intrinsics();
3867   if (do_print_inlining || log() != NULL) {
3868     // Print inlining message for candidates that we couldn't inline
3869     // for lack of space
3870     for (int i = 0; i < _late_inlines.length(); i++) {
3871       CallGenerator* cg = _late_inlines.at(i);
3872       if (!cg->is_mh_late_inline()) {
3873         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
3874         if (do_print_inlining) {
3875           cg->print_inlining_late(msg);
3876         }
3877         log_late_inline_failure(cg, msg);
3878       }
3879     }
3880   }
3881   if (do_print_inlining) {
3882     ResourceMark rm;
3883     stringStream ss;
3884     for (int i = 0; i < _print_inlining_list->length(); i++) {
3885       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3886     }
3887     size_t end = ss.size();
3888     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
3889     strncpy(_print_inlining_output, ss.base(), end+1);
3890     _print_inlining_output[end] = 0;
3891   }
3892 }
3893 
3894 void Compile::dump_print_inlining() {
3895   if (_print_inlining_output != NULL) {
3896     tty->print_raw(_print_inlining_output);
3897   }
3898 }
3899 
3900 void Compile::log_late_inline(CallGenerator* cg) {
3901   if (log() != NULL) {
3902     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
3903                 cg->unique_id());
3904     JVMState* p = cg->call_node()->jvms();
3905     while (p != NULL) {
3906       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
3907       p = p->caller();
3908     }
3909     log()->tail("late_inline");
3910   }
3911 }
3912 
3913 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
3914   log_late_inline(cg);
3915   if (log() != NULL) {
3916     log()->inline_fail(msg);
3917   }
3918 }
3919 
3920 void Compile::log_inline_id(CallGenerator* cg) {
3921   if (log() != NULL) {
3922     // The LogCompilation tool needs a unique way to identify late
3923     // inline call sites. This id must be unique for this call site in
3924     // this compilation. Try to have it unique across compilations as
3925     // well because it can be convenient when grepping through the log
3926     // file.
3927     // Distinguish OSR compilations from others in case CICountOSR is
3928     // on.
3929     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
3930     cg->set_unique_id(id);
3931     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
3932   }
3933 }
3934 
3935 void Compile::log_inline_failure(const char* msg) {
3936   if (C->log() != NULL) {
3937     C->log()->inline_fail(msg);
3938   }
3939 }
3940 
3941 
3942 // Dump inlining replay data to the stream.
3943 // Don't change thread state and acquire any locks.
3944 void Compile::dump_inline_data(outputStream* out) {
3945   InlineTree* inl_tree = ilt();
3946   if (inl_tree != NULL) {
3947     out->print(" inline %d", inl_tree->count());
3948     inl_tree->dump_replay_data(out);
3949   }
3950 }
3951 
3952 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3953   if (n1->Opcode() < n2->Opcode())      return -1;
3954   else if (n1->Opcode() > n2->Opcode()) return 1;
3955 
3956   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3957   for (uint i = 1; i < n1->req(); i++) {
3958     if (n1->in(i) < n2->in(i))      return -1;
3959     else if (n1->in(i) > n2->in(i)) return 1;
3960   }
3961 
3962   return 0;
3963 }
3964 
3965 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3966   Node* n1 = *n1p;
3967   Node* n2 = *n2p;
3968 
3969   return cmp_expensive_nodes(n1, n2);
3970 }
3971 
3972 void Compile::sort_expensive_nodes() {
3973   if (!expensive_nodes_sorted()) {
3974     _expensive_nodes->sort(cmp_expensive_nodes);
3975   }
3976 }
3977 
3978 bool Compile::expensive_nodes_sorted() const {
3979   for (int i = 1; i < _expensive_nodes->length(); i++) {
3980     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3981       return false;
3982     }
3983   }
3984   return true;
3985 }
3986 
3987 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3988   if (_expensive_nodes->length() == 0) {
3989     return false;
3990   }
3991 
3992   assert(OptimizeExpensiveOps, "optimization off?");
3993 
3994   // Take this opportunity to remove dead nodes from the list
3995   int j = 0;
3996   for (int i = 0; i < _expensive_nodes->length(); i++) {
3997     Node* n = _expensive_nodes->at(i);
3998     if (!n->is_unreachable(igvn)) {
3999       assert(n->is_expensive(), "should be expensive");
4000       _expensive_nodes->at_put(j, n);
4001       j++;
4002     }
4003   }
4004   _expensive_nodes->trunc_to(j);
4005 
4006   // Then sort the list so that similar nodes are next to each other
4007   // and check for at least two nodes of identical kind with same data
4008   // inputs.
4009   sort_expensive_nodes();
4010 
4011   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4012     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4013       return true;
4014     }
4015   }
4016 
4017   return false;
4018 }
4019 
4020 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4021   if (_expensive_nodes->length() == 0) {
4022     return;
4023   }
4024 
4025   assert(OptimizeExpensiveOps, "optimization off?");
4026 
4027   // Sort to bring similar nodes next to each other and clear the
4028   // control input of nodes for which there's only a single copy.
4029   sort_expensive_nodes();
4030 
4031   int j = 0;
4032   int identical = 0;
4033   int i = 0;
4034   for (; i < _expensive_nodes->length()-1; i++) {
4035     assert(j <= i, "can't write beyond current index");
4036     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4037       identical++;
4038       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4039       continue;
4040     }
4041     if (identical > 0) {
4042       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4043       identical = 0;
4044     } else {
4045       Node* n = _expensive_nodes->at(i);
4046       igvn.hash_delete(n);
4047       n->set_req(0, NULL);
4048       igvn.hash_insert(n);
4049     }
4050   }
4051   if (identical > 0) {
4052     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4053   } else if (_expensive_nodes->length() >= 1) {
4054     Node* n = _expensive_nodes->at(i);
4055     igvn.hash_delete(n);
4056     n->set_req(0, NULL);
4057     igvn.hash_insert(n);
4058   }
4059   _expensive_nodes->trunc_to(j);
4060 }
4061 
4062 void Compile::add_expensive_node(Node * n) {
4063   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4064   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4065   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4066   if (OptimizeExpensiveOps) {
4067     _expensive_nodes->append(n);
4068   } else {
4069     // Clear control input and let IGVN optimize expensive nodes if
4070     // OptimizeExpensiveOps is off.
4071     n->set_req(0, NULL);
4072   }
4073 }
4074 
4075 /**
4076  * Remove the speculative part of types and clean up the graph
4077  */
4078 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4079   if (UseTypeSpeculation) {
4080     Unique_Node_List worklist;
4081     worklist.push(root());
4082     int modified = 0;
4083     // Go over all type nodes that carry a speculative type, drop the
4084     // speculative part of the type and enqueue the node for an igvn
4085     // which may optimize it out.
4086     for (uint next = 0; next < worklist.size(); ++next) {
4087       Node *n  = worklist.at(next);
4088       if (n->is_Type()) {
4089         TypeNode* tn = n->as_Type();
4090         const Type* t = tn->type();
4091         const Type* t_no_spec = t->remove_speculative();
4092         if (t_no_spec != t) {
4093           bool in_hash = igvn.hash_delete(n);
4094           assert(in_hash, "node should be in igvn hash table");
4095           tn->set_type(t_no_spec);
4096           igvn.hash_insert(n);
4097           igvn._worklist.push(n); // give it a chance to go away
4098           modified++;
4099         }
4100       }
4101       uint max = n->len();
4102       for( uint i = 0; i < max; ++i ) {
4103         Node *m = n->in(i);
4104         if (not_a_node(m))  continue;
4105         worklist.push(m);
4106       }
4107     }
4108     // Drop the speculative part of all types in the igvn's type table
4109     igvn.remove_speculative_types();
4110     if (modified > 0) {
4111       igvn.optimize();
4112     }
4113 #ifdef ASSERT
4114     // Verify that after the IGVN is over no speculative type has resurfaced
4115     worklist.clear();
4116     worklist.push(root());
4117     for (uint next = 0; next < worklist.size(); ++next) {
4118       Node *n  = worklist.at(next);
4119       const Type* t = igvn.type_or_null(n);
4120       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4121       if (n->is_Type()) {
4122         t = n->as_Type()->type();
4123         assert(t == t->remove_speculative(), "no more speculative types");
4124       }
4125       uint max = n->len();
4126       for( uint i = 0; i < max; ++i ) {
4127         Node *m = n->in(i);
4128         if (not_a_node(m))  continue;
4129         worklist.push(m);
4130       }
4131     }
4132     igvn.check_no_speculative_types();
4133 #endif
4134   }
4135 }
4136 
4137 // Auxiliary method to support randomized stressing/fuzzing.
4138 //
4139 // This method can be called the arbitrary number of times, with current count
4140 // as the argument. The logic allows selecting a single candidate from the
4141 // running list of candidates as follows:
4142 //    int count = 0;
4143 //    Cand* selected = null;
4144 //    while(cand = cand->next()) {
4145 //      if (randomized_select(++count)) {
4146 //        selected = cand;
4147 //      }
4148 //    }
4149 //
4150 // Including count equalizes the chances any candidate is "selected".
4151 // This is useful when we don't have the complete list of candidates to choose
4152 // from uniformly. In this case, we need to adjust the randomicity of the
4153 // selection, or else we will end up biasing the selection towards the latter
4154 // candidates.
4155 //
4156 // Quick back-envelope calculation shows that for the list of n candidates
4157 // the equal probability for the candidate to persist as "best" can be
4158 // achieved by replacing it with "next" k-th candidate with the probability
4159 // of 1/k. It can be easily shown that by the end of the run, the
4160 // probability for any candidate is converged to 1/n, thus giving the
4161 // uniform distribution among all the candidates.
4162 //
4163 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4164 #define RANDOMIZED_DOMAIN_POW 29
4165 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4166 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4167 bool Compile::randomized_select(int count) {
4168   assert(count > 0, "only positive");
4169   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4170 }