1 /*
   2  * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #ifndef _WINDOWS
  27 #include "alloca.h"
  28 #endif
  29 #include "asm/macroAssembler.hpp"
  30 #include "asm/macroAssembler.inline.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "oops/compiledICHolder.hpp"
  36 #include "prims/jvmtiRedefineClassesTrace.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/vframeArray.hpp"
  39 #include "vmreg_x86.inline.hpp"
  40 #ifdef COMPILER1
  41 #include "c1/c1_Runtime1.hpp"
  42 #endif
  43 #ifdef COMPILER2
  44 #include "opto/runtime.hpp"
  45 #endif
  46 
  47 #define __ masm->
  48 
  49 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  50 
  51 class SimpleRuntimeFrame {
  52 
  53   public:
  54 
  55   // Most of the runtime stubs have this simple frame layout.
  56   // This class exists to make the layout shared in one place.
  57   // Offsets are for compiler stack slots, which are jints.
  58   enum layout {
  59     // The frame sender code expects that rbp will be in the "natural" place and
  60     // will override any oopMap setting for it. We must therefore force the layout
  61     // so that it agrees with the frame sender code.
  62     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  63     rbp_off2,
  64     return_off, return_off2,
  65     framesize
  66   };
  67 };
  68 
  69 class RegisterSaver {
  70   // Capture info about frame layout.  Layout offsets are in jint
  71   // units because compiler frame slots are jints.
  72 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  73   enum layout {
  74     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  75     xmm_off       = fpu_state_off + 160/BytesPerInt,            // offset in fxsave save area
  76     DEF_XMM_OFFS(0),
  77     DEF_XMM_OFFS(1),
  78     DEF_XMM_OFFS(2),
  79     DEF_XMM_OFFS(3),
  80     DEF_XMM_OFFS(4),
  81     DEF_XMM_OFFS(5),
  82     DEF_XMM_OFFS(6),
  83     DEF_XMM_OFFS(7),
  84     DEF_XMM_OFFS(8),
  85     DEF_XMM_OFFS(9),
  86     DEF_XMM_OFFS(10),
  87     DEF_XMM_OFFS(11),
  88     DEF_XMM_OFFS(12),
  89     DEF_XMM_OFFS(13),
  90     DEF_XMM_OFFS(14),
  91     DEF_XMM_OFFS(15),
  92     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
  93     fpu_stateH_end,
  94     r15_off, r15H_off,
  95     r14_off, r14H_off,
  96     r13_off, r13H_off,
  97     r12_off, r12H_off,
  98     r11_off, r11H_off,
  99     r10_off, r10H_off,
 100     r9_off,  r9H_off,
 101     r8_off,  r8H_off,
 102     rdi_off, rdiH_off,
 103     rsi_off, rsiH_off,
 104     ignore_off, ignoreH_off,  // extra copy of rbp
 105     rsp_off, rspH_off,
 106     rbx_off, rbxH_off,
 107     rdx_off, rdxH_off,
 108     rcx_off, rcxH_off,
 109     rax_off, raxH_off,
 110     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 111     align_off, alignH_off,
 112     flags_off, flagsH_off,
 113     // The frame sender code expects that rbp will be in the "natural" place and
 114     // will override any oopMap setting for it. We must therefore force the layout
 115     // so that it agrees with the frame sender code.
 116     rbp_off, rbpH_off,        // copy of rbp we will restore
 117     return_off, returnH_off,  // slot for return address
 118     reg_save_size             // size in compiler stack slots
 119   };
 120 
 121  public:
 122   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
 123   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 124 
 125   // Offsets into the register save area
 126   // Used by deoptimization when it is managing result register
 127   // values on its own
 128 
 129   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 130   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 131   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 132   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 133   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 134 
 135   // During deoptimization only the result registers need to be restored,
 136   // all the other values have already been extracted.
 137   static void restore_result_registers(MacroAssembler* masm);
 138 };
 139 
 140 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
 141   int vect_words = 0;
 142 #ifdef COMPILER2
 143   if (save_vectors) {
 144     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
 145     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
 146     // Save upper half of YMM registes
 147     vect_words = 16 * 16 / wordSize;
 148     additional_frame_words += vect_words;
 149   }
 150 #else
 151   assert(!save_vectors, "vectors are generated only by C2");
 152 #endif
 153 
 154   // Always make the frame size 16-byte aligned
 155   int frame_size_in_bytes = round_to(additional_frame_words*wordSize +
 156                                      reg_save_size*BytesPerInt, 16);
 157   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 158   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 159   // The caller will allocate additional_frame_words
 160   int additional_frame_slots = additional_frame_words*wordSize / BytesPerInt;
 161   // CodeBlob frame size is in words.
 162   int frame_size_in_words = frame_size_in_bytes / wordSize;
 163   *total_frame_words = frame_size_in_words;
 164 
 165   // Save registers, fpu state, and flags.
 166   // We assume caller has already pushed the return address onto the
 167   // stack, so rsp is 8-byte aligned here.
 168   // We push rpb twice in this sequence because we want the real rbp
 169   // to be under the return like a normal enter.
 170 
 171   __ enter();          // rsp becomes 16-byte aligned here
 172   __ push_CPU_state(); // Push a multiple of 16 bytes
 173 
 174   if (vect_words > 0) {
 175     assert(vect_words*wordSize == 256, "");
 176     __ subptr(rsp, 256); // Save upper half of YMM registes
 177     __ vextractf128h(Address(rsp,  0),xmm0);
 178     __ vextractf128h(Address(rsp, 16),xmm1);
 179     __ vextractf128h(Address(rsp, 32),xmm2);
 180     __ vextractf128h(Address(rsp, 48),xmm3);
 181     __ vextractf128h(Address(rsp, 64),xmm4);
 182     __ vextractf128h(Address(rsp, 80),xmm5);
 183     __ vextractf128h(Address(rsp, 96),xmm6);
 184     __ vextractf128h(Address(rsp,112),xmm7);
 185     __ vextractf128h(Address(rsp,128),xmm8);
 186     __ vextractf128h(Address(rsp,144),xmm9);
 187     __ vextractf128h(Address(rsp,160),xmm10);
 188     __ vextractf128h(Address(rsp,176),xmm11);
 189     __ vextractf128h(Address(rsp,192),xmm12);
 190     __ vextractf128h(Address(rsp,208),xmm13);
 191     __ vextractf128h(Address(rsp,224),xmm14);
 192     __ vextractf128h(Address(rsp,240),xmm15);
 193   }
 194   if (frame::arg_reg_save_area_bytes != 0) {
 195     // Allocate argument register save area
 196     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 197   }
 198 
 199   // Set an oopmap for the call site.  This oopmap will map all
 200   // oop-registers and debug-info registers as callee-saved.  This
 201   // will allow deoptimization at this safepoint to find all possible
 202   // debug-info recordings, as well as let GC find all oops.
 203 
 204   OopMapSet *oop_maps = new OopMapSet();
 205   OopMap* map = new OopMap(frame_size_in_slots, 0);
 206 
 207 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x) + additional_frame_slots)
 208 
 209   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
 210   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
 211   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
 212   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
 213   // rbp location is known implicitly by the frame sender code, needs no oopmap
 214   // and the location where rbp was saved by is ignored
 215   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
 216   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
 217   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
 218   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
 219   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
 220   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
 221   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
 222   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
 223   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
 224   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
 225   map->set_callee_saved(STACK_OFFSET(xmm0_off ), xmm0->as_VMReg());
 226   map->set_callee_saved(STACK_OFFSET(xmm1_off ), xmm1->as_VMReg());
 227   map->set_callee_saved(STACK_OFFSET(xmm2_off ), xmm2->as_VMReg());
 228   map->set_callee_saved(STACK_OFFSET(xmm3_off ), xmm3->as_VMReg());
 229   map->set_callee_saved(STACK_OFFSET(xmm4_off ), xmm4->as_VMReg());
 230   map->set_callee_saved(STACK_OFFSET(xmm5_off ), xmm5->as_VMReg());
 231   map->set_callee_saved(STACK_OFFSET(xmm6_off ), xmm6->as_VMReg());
 232   map->set_callee_saved(STACK_OFFSET(xmm7_off ), xmm7->as_VMReg());
 233   map->set_callee_saved(STACK_OFFSET(xmm8_off ), xmm8->as_VMReg());
 234   map->set_callee_saved(STACK_OFFSET(xmm9_off ), xmm9->as_VMReg());
 235   map->set_callee_saved(STACK_OFFSET(xmm10_off), xmm10->as_VMReg());
 236   map->set_callee_saved(STACK_OFFSET(xmm11_off), xmm11->as_VMReg());
 237   map->set_callee_saved(STACK_OFFSET(xmm12_off), xmm12->as_VMReg());
 238   map->set_callee_saved(STACK_OFFSET(xmm13_off), xmm13->as_VMReg());
 239   map->set_callee_saved(STACK_OFFSET(xmm14_off), xmm14->as_VMReg());
 240   map->set_callee_saved(STACK_OFFSET(xmm15_off), xmm15->as_VMReg());
 241 
 242   // %%% These should all be a waste but we'll keep things as they were for now
 243   if (true) {
 244     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
 245     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
 246     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
 247     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
 248     // rbp location is known implicitly by the frame sender code, needs no oopmap
 249     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
 250     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
 251     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
 252     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
 253     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
 254     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
 255     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
 256     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
 257     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
 258     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
 259     map->set_callee_saved(STACK_OFFSET(xmm0H_off ), xmm0->as_VMReg()->next());
 260     map->set_callee_saved(STACK_OFFSET(xmm1H_off ), xmm1->as_VMReg()->next());
 261     map->set_callee_saved(STACK_OFFSET(xmm2H_off ), xmm2->as_VMReg()->next());
 262     map->set_callee_saved(STACK_OFFSET(xmm3H_off ), xmm3->as_VMReg()->next());
 263     map->set_callee_saved(STACK_OFFSET(xmm4H_off ), xmm4->as_VMReg()->next());
 264     map->set_callee_saved(STACK_OFFSET(xmm5H_off ), xmm5->as_VMReg()->next());
 265     map->set_callee_saved(STACK_OFFSET(xmm6H_off ), xmm6->as_VMReg()->next());
 266     map->set_callee_saved(STACK_OFFSET(xmm7H_off ), xmm7->as_VMReg()->next());
 267     map->set_callee_saved(STACK_OFFSET(xmm8H_off ), xmm8->as_VMReg()->next());
 268     map->set_callee_saved(STACK_OFFSET(xmm9H_off ), xmm9->as_VMReg()->next());
 269     map->set_callee_saved(STACK_OFFSET(xmm10H_off), xmm10->as_VMReg()->next());
 270     map->set_callee_saved(STACK_OFFSET(xmm11H_off), xmm11->as_VMReg()->next());
 271     map->set_callee_saved(STACK_OFFSET(xmm12H_off), xmm12->as_VMReg()->next());
 272     map->set_callee_saved(STACK_OFFSET(xmm13H_off), xmm13->as_VMReg()->next());
 273     map->set_callee_saved(STACK_OFFSET(xmm14H_off), xmm14->as_VMReg()->next());
 274     map->set_callee_saved(STACK_OFFSET(xmm15H_off), xmm15->as_VMReg()->next());
 275   }
 276 
 277   return map;
 278 }
 279 
 280 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 281   if (frame::arg_reg_save_area_bytes != 0) {
 282     // Pop arg register save area
 283     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 284   }
 285 #ifdef COMPILER2
 286   if (restore_vectors) {
 287     // Restore upper half of YMM registes.
 288     assert(UseAVX > 0, "256bit vectors are supported only with AVX");
 289     assert(MaxVectorSize == 32, "only 256bit vectors are supported now");
 290     __ vinsertf128h(xmm0, Address(rsp,  0));
 291     __ vinsertf128h(xmm1, Address(rsp, 16));
 292     __ vinsertf128h(xmm2, Address(rsp, 32));
 293     __ vinsertf128h(xmm3, Address(rsp, 48));
 294     __ vinsertf128h(xmm4, Address(rsp, 64));
 295     __ vinsertf128h(xmm5, Address(rsp, 80));
 296     __ vinsertf128h(xmm6, Address(rsp, 96));
 297     __ vinsertf128h(xmm7, Address(rsp,112));
 298     __ vinsertf128h(xmm8, Address(rsp,128));
 299     __ vinsertf128h(xmm9, Address(rsp,144));
 300     __ vinsertf128h(xmm10, Address(rsp,160));
 301     __ vinsertf128h(xmm11, Address(rsp,176));
 302     __ vinsertf128h(xmm12, Address(rsp,192));
 303     __ vinsertf128h(xmm13, Address(rsp,208));
 304     __ vinsertf128h(xmm14, Address(rsp,224));
 305     __ vinsertf128h(xmm15, Address(rsp,240));
 306     __ addptr(rsp, 256);
 307   }
 308 #else
 309   assert(!restore_vectors, "vectors are generated only by C2");
 310 #endif
 311   // Recover CPU state
 312   __ pop_CPU_state();
 313   // Get the rbp described implicitly by the calling convention (no oopMap)
 314   __ pop(rbp);
 315 }
 316 
 317 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 318 
 319   // Just restore result register. Only used by deoptimization. By
 320   // now any callee save register that needs to be restored to a c2
 321   // caller of the deoptee has been extracted into the vframeArray
 322   // and will be stuffed into the c2i adapter we create for later
 323   // restoration so only result registers need to be restored here.
 324 
 325   // Restore fp result register
 326   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 327   // Restore integer result register
 328   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 329   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 330 
 331   // Pop all of the register save are off the stack except the return address
 332   __ addptr(rsp, return_offset_in_bytes());
 333 }
 334 
 335 // Is vector's size (in bytes) bigger than a size saved by default?
 336 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
 337 bool SharedRuntime::is_wide_vector(int size) {
 338   return size > 16;
 339 }
 340 
 341 // The java_calling_convention describes stack locations as ideal slots on
 342 // a frame with no abi restrictions. Since we must observe abi restrictions
 343 // (like the placement of the register window) the slots must be biased by
 344 // the following value.
 345 static int reg2offset_in(VMReg r) {
 346   // Account for saved rbp and return address
 347   // This should really be in_preserve_stack_slots
 348   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 349 }
 350 
 351 static int reg2offset_out(VMReg r) {
 352   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 353 }
 354 
 355 // ---------------------------------------------------------------------------
 356 // Read the array of BasicTypes from a signature, and compute where the
 357 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 358 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 359 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 360 // as framesizes are fixed.
 361 // VMRegImpl::stack0 refers to the first slot 0(sp).
 362 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 363 // up to RegisterImpl::number_of_registers) are the 64-bit
 364 // integer registers.
 365 
 366 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 367 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 368 // units regardless of build. Of course for i486 there is no 64 bit build
 369 
 370 // The Java calling convention is a "shifted" version of the C ABI.
 371 // By skipping the first C ABI register we can call non-static jni methods
 372 // with small numbers of arguments without having to shuffle the arguments
 373 // at all. Since we control the java ABI we ought to at least get some
 374 // advantage out of it.
 375 
 376 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 377                                            VMRegPair *regs,
 378                                            int total_args_passed,
 379                                            int is_outgoing) {
 380 
 381   // Create the mapping between argument positions and
 382   // registers.
 383   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 384     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 385   };
 386   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 387     j_farg0, j_farg1, j_farg2, j_farg3,
 388     j_farg4, j_farg5, j_farg6, j_farg7
 389   };
 390 
 391 
 392   uint int_args = 0;
 393   uint fp_args = 0;
 394   uint stk_args = 0; // inc by 2 each time
 395 
 396   for (int i = 0; i < total_args_passed; i++) {
 397     switch (sig_bt[i]) {
 398     case T_BOOLEAN:
 399     case T_CHAR:
 400     case T_BYTE:
 401     case T_SHORT:
 402     case T_INT:
 403       if (int_args < Argument::n_int_register_parameters_j) {
 404         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 405       } else {
 406         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 407         stk_args += 2;
 408       }
 409       break;
 410     case T_VOID:
 411       // halves of T_LONG or T_DOUBLE
 412       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 413       regs[i].set_bad();
 414       break;
 415     case T_LONG:
 416       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 417       // fall through
 418     case T_OBJECT:
 419     case T_ARRAY:
 420     case T_ADDRESS:
 421       if (int_args < Argument::n_int_register_parameters_j) {
 422         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 423       } else {
 424         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 425         stk_args += 2;
 426       }
 427       break;
 428     case T_FLOAT:
 429       if (fp_args < Argument::n_float_register_parameters_j) {
 430         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 431       } else {
 432         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 433         stk_args += 2;
 434       }
 435       break;
 436     case T_DOUBLE:
 437       assert(sig_bt[i + 1] == T_VOID, "expecting half");
 438       if (fp_args < Argument::n_float_register_parameters_j) {
 439         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 440       } else {
 441         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 442         stk_args += 2;
 443       }
 444       break;
 445     default:
 446       ShouldNotReachHere();
 447       break;
 448     }
 449   }
 450 
 451   return round_to(stk_args, 2);
 452 }
 453 
 454 // Patch the callers callsite with entry to compiled code if it exists.
 455 static void patch_callers_callsite(MacroAssembler *masm) {
 456   Label L;
 457   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 458   __ jcc(Assembler::equal, L);
 459 
 460   // Save the current stack pointer
 461   __ mov(r13, rsp);
 462   // Schedule the branch target address early.
 463   // Call into the VM to patch the caller, then jump to compiled callee
 464   // rax isn't live so capture return address while we easily can
 465   __ movptr(rax, Address(rsp, 0));
 466 
 467   // align stack so push_CPU_state doesn't fault
 468   __ andptr(rsp, -(StackAlignmentInBytes));
 469   __ push_CPU_state();
 470 
 471   // VM needs caller's callsite
 472   // VM needs target method
 473   // This needs to be a long call since we will relocate this adapter to
 474   // the codeBuffer and it may not reach
 475 
 476   // Allocate argument register save area
 477   if (frame::arg_reg_save_area_bytes != 0) {
 478     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 479   }
 480   __ mov(c_rarg0, rbx);
 481   __ mov(c_rarg1, rax);
 482   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 483 
 484   // De-allocate argument register save area
 485   if (frame::arg_reg_save_area_bytes != 0) {
 486     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 487   }
 488 
 489   __ pop_CPU_state();
 490   // restore sp
 491   __ mov(rsp, r13);
 492   __ bind(L);
 493 }
 494 
 495 
 496 static void gen_c2i_adapter(MacroAssembler *masm,
 497                             int total_args_passed,
 498                             int comp_args_on_stack,
 499                             const BasicType *sig_bt,
 500                             const VMRegPair *regs,
 501                             Label& skip_fixup) {
 502   // Before we get into the guts of the C2I adapter, see if we should be here
 503   // at all.  We've come from compiled code and are attempting to jump to the
 504   // interpreter, which means the caller made a static call to get here
 505   // (vcalls always get a compiled target if there is one).  Check for a
 506   // compiled target.  If there is one, we need to patch the caller's call.
 507   patch_callers_callsite(masm);
 508 
 509   __ bind(skip_fixup);
 510 
 511   // Since all args are passed on the stack, total_args_passed *
 512   // Interpreter::stackElementSize is the space we need. Plus 1 because
 513   // we also account for the return address location since
 514   // we store it first rather than hold it in rax across all the shuffling
 515 
 516   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 517 
 518   // stack is aligned, keep it that way
 519   extraspace = round_to(extraspace, 2*wordSize);
 520 
 521   // Get return address
 522   __ pop(rax);
 523 
 524   // set senderSP value
 525   __ mov(r13, rsp);
 526 
 527   __ subptr(rsp, extraspace);
 528 
 529   // Store the return address in the expected location
 530   __ movptr(Address(rsp, 0), rax);
 531 
 532   // Now write the args into the outgoing interpreter space
 533   for (int i = 0; i < total_args_passed; i++) {
 534     if (sig_bt[i] == T_VOID) {
 535       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 536       continue;
 537     }
 538 
 539     // offset to start parameters
 540     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 541     int next_off = st_off - Interpreter::stackElementSize;
 542 
 543     // Say 4 args:
 544     // i   st_off
 545     // 0   32 T_LONG
 546     // 1   24 T_VOID
 547     // 2   16 T_OBJECT
 548     // 3    8 T_BOOL
 549     // -    0 return address
 550     //
 551     // However to make thing extra confusing. Because we can fit a long/double in
 552     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 553     // leaves one slot empty and only stores to a single slot. In this case the
 554     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 555 
 556     VMReg r_1 = regs[i].first();
 557     VMReg r_2 = regs[i].second();
 558     if (!r_1->is_valid()) {
 559       assert(!r_2->is_valid(), "");
 560       continue;
 561     }
 562     if (r_1->is_stack()) {
 563       // memory to memory use rax
 564       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 565       if (!r_2->is_valid()) {
 566         // sign extend??
 567         __ movl(rax, Address(rsp, ld_off));
 568         __ movptr(Address(rsp, st_off), rax);
 569 
 570       } else {
 571 
 572         __ movq(rax, Address(rsp, ld_off));
 573 
 574         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 575         // T_DOUBLE and T_LONG use two slots in the interpreter
 576         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 577           // ld_off == LSW, ld_off+wordSize == MSW
 578           // st_off == MSW, next_off == LSW
 579           __ movq(Address(rsp, next_off), rax);
 580 #ifdef ASSERT
 581           // Overwrite the unused slot with known junk
 582           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 583           __ movptr(Address(rsp, st_off), rax);
 584 #endif /* ASSERT */
 585         } else {
 586           __ movq(Address(rsp, st_off), rax);
 587         }
 588       }
 589     } else if (r_1->is_Register()) {
 590       Register r = r_1->as_Register();
 591       if (!r_2->is_valid()) {
 592         // must be only an int (or less ) so move only 32bits to slot
 593         // why not sign extend??
 594         __ movl(Address(rsp, st_off), r);
 595       } else {
 596         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 597         // T_DOUBLE and T_LONG use two slots in the interpreter
 598         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 599           // long/double in gpr
 600 #ifdef ASSERT
 601           // Overwrite the unused slot with known junk
 602           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 603           __ movptr(Address(rsp, st_off), rax);
 604 #endif /* ASSERT */
 605           __ movq(Address(rsp, next_off), r);
 606         } else {
 607           __ movptr(Address(rsp, st_off), r);
 608         }
 609       }
 610     } else {
 611       assert(r_1->is_XMMRegister(), "");
 612       if (!r_2->is_valid()) {
 613         // only a float use just part of the slot
 614         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 615       } else {
 616 #ifdef ASSERT
 617         // Overwrite the unused slot with known junk
 618         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 619         __ movptr(Address(rsp, st_off), rax);
 620 #endif /* ASSERT */
 621         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 622       }
 623     }
 624   }
 625 
 626   // Schedule the branch target address early.
 627   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 628   __ jmp(rcx);
 629 }
 630 
 631 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 632                         address code_start, address code_end,
 633                         Label& L_ok) {
 634   Label L_fail;
 635   __ lea(temp_reg, ExternalAddress(code_start));
 636   __ cmpptr(pc_reg, temp_reg);
 637   __ jcc(Assembler::belowEqual, L_fail);
 638   __ lea(temp_reg, ExternalAddress(code_end));
 639   __ cmpptr(pc_reg, temp_reg);
 640   __ jcc(Assembler::below, L_ok);
 641   __ bind(L_fail);
 642 }
 643 
 644 static void gen_i2c_adapter(MacroAssembler *masm,
 645                             int total_args_passed,
 646                             int comp_args_on_stack,
 647                             const BasicType *sig_bt,
 648                             const VMRegPair *regs) {
 649 
 650   // Note: r13 contains the senderSP on entry. We must preserve it since
 651   // we may do a i2c -> c2i transition if we lose a race where compiled
 652   // code goes non-entrant while we get args ready.
 653   // In addition we use r13 to locate all the interpreter args as
 654   // we must align the stack to 16 bytes on an i2c entry else we
 655   // lose alignment we expect in all compiled code and register
 656   // save code can segv when fxsave instructions find improperly
 657   // aligned stack pointer.
 658 
 659   // Adapters can be frameless because they do not require the caller
 660   // to perform additional cleanup work, such as correcting the stack pointer.
 661   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 662   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 663   // even if a callee has modified the stack pointer.
 664   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 665   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 666   // up via the senderSP register).
 667   // In other words, if *either* the caller or callee is interpreted, we can
 668   // get the stack pointer repaired after a call.
 669   // This is why c2i and i2c adapters cannot be indefinitely composed.
 670   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 671   // both caller and callee would be compiled methods, and neither would
 672   // clean up the stack pointer changes performed by the two adapters.
 673   // If this happens, control eventually transfers back to the compiled
 674   // caller, but with an uncorrected stack, causing delayed havoc.
 675 
 676   // Pick up the return address
 677   __ movptr(rax, Address(rsp, 0));
 678 
 679   if (VerifyAdapterCalls &&
 680       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 681     // So, let's test for cascading c2i/i2c adapters right now.
 682     //  assert(Interpreter::contains($return_addr) ||
 683     //         StubRoutines::contains($return_addr),
 684     //         "i2c adapter must return to an interpreter frame");
 685     __ block_comment("verify_i2c { ");
 686     Label L_ok;
 687     if (Interpreter::code() != NULL)
 688       range_check(masm, rax, r11,
 689                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 690                   L_ok);
 691     if (StubRoutines::code1() != NULL)
 692       range_check(masm, rax, r11,
 693                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 694                   L_ok);
 695     if (StubRoutines::code2() != NULL)
 696       range_check(masm, rax, r11,
 697                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 698                   L_ok);
 699     const char* msg = "i2c adapter must return to an interpreter frame";
 700     __ block_comment(msg);
 701     __ stop(msg);
 702     __ bind(L_ok);
 703     __ block_comment("} verify_i2ce ");
 704   }
 705 
 706   // Must preserve original SP for loading incoming arguments because
 707   // we need to align the outgoing SP for compiled code.
 708   __ movptr(r11, rsp);
 709 
 710   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 711   // in registers, we will occasionally have no stack args.
 712   int comp_words_on_stack = 0;
 713   if (comp_args_on_stack) {
 714     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 715     // registers are below.  By subtracting stack0, we either get a negative
 716     // number (all values in registers) or the maximum stack slot accessed.
 717 
 718     // Convert 4-byte c2 stack slots to words.
 719     comp_words_on_stack = round_to(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 720     // Round up to miminum stack alignment, in wordSize
 721     comp_words_on_stack = round_to(comp_words_on_stack, 2);
 722     __ subptr(rsp, comp_words_on_stack * wordSize);
 723   }
 724 
 725 
 726   // Ensure compiled code always sees stack at proper alignment
 727   __ andptr(rsp, -16);
 728 
 729   // push the return address and misalign the stack that youngest frame always sees
 730   // as far as the placement of the call instruction
 731   __ push(rax);
 732 
 733   // Put saved SP in another register
 734   const Register saved_sp = rax;
 735   __ movptr(saved_sp, r11);
 736 
 737   // Will jump to the compiled code just as if compiled code was doing it.
 738   // Pre-load the register-jump target early, to schedule it better.
 739   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
 740 
 741   // Now generate the shuffle code.  Pick up all register args and move the
 742   // rest through the floating point stack top.
 743   for (int i = 0; i < total_args_passed; i++) {
 744     if (sig_bt[i] == T_VOID) {
 745       // Longs and doubles are passed in native word order, but misaligned
 746       // in the 32-bit build.
 747       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 748       continue;
 749     }
 750 
 751     // Pick up 0, 1 or 2 words from SP+offset.
 752 
 753     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 754             "scrambled load targets?");
 755     // Load in argument order going down.
 756     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 757     // Point to interpreter value (vs. tag)
 758     int next_off = ld_off - Interpreter::stackElementSize;
 759     //
 760     //
 761     //
 762     VMReg r_1 = regs[i].first();
 763     VMReg r_2 = regs[i].second();
 764     if (!r_1->is_valid()) {
 765       assert(!r_2->is_valid(), "");
 766       continue;
 767     }
 768     if (r_1->is_stack()) {
 769       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 770       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 771 
 772       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 773       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 774       // will be generated.
 775       if (!r_2->is_valid()) {
 776         // sign extend???
 777         __ movl(r13, Address(saved_sp, ld_off));
 778         __ movptr(Address(rsp, st_off), r13);
 779       } else {
 780         //
 781         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 782         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 783         // So we must adjust where to pick up the data to match the interpreter.
 784         //
 785         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 786         // are accessed as negative so LSW is at LOW address
 787 
 788         // ld_off is MSW so get LSW
 789         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 790                            next_off : ld_off;
 791         __ movq(r13, Address(saved_sp, offset));
 792         // st_off is LSW (i.e. reg.first())
 793         __ movq(Address(rsp, st_off), r13);
 794       }
 795     } else if (r_1->is_Register()) {  // Register argument
 796       Register r = r_1->as_Register();
 797       assert(r != rax, "must be different");
 798       if (r_2->is_valid()) {
 799         //
 800         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 801         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 802         // So we must adjust where to pick up the data to match the interpreter.
 803 
 804         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 805                            next_off : ld_off;
 806 
 807         // this can be a misaligned move
 808         __ movq(r, Address(saved_sp, offset));
 809       } else {
 810         // sign extend and use a full word?
 811         __ movl(r, Address(saved_sp, ld_off));
 812       }
 813     } else {
 814       if (!r_2->is_valid()) {
 815         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 816       } else {
 817         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 818       }
 819     }
 820   }
 821 
 822   // 6243940 We might end up in handle_wrong_method if
 823   // the callee is deoptimized as we race thru here. If that
 824   // happens we don't want to take a safepoint because the
 825   // caller frame will look interpreted and arguments are now
 826   // "compiled" so it is much better to make this transition
 827   // invisible to the stack walking code. Unfortunately if
 828   // we try and find the callee by normal means a safepoint
 829   // is possible. So we stash the desired callee in the thread
 830   // and the vm will find there should this case occur.
 831 
 832   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 833 
 834   // put Method* where a c2i would expect should we end up there
 835   // only needed becaus eof c2 resolve stubs return Method* as a result in
 836   // rax
 837   __ mov(rax, rbx);
 838   __ jmp(r11);
 839 }
 840 
 841 // ---------------------------------------------------------------
 842 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 843                                                             int total_args_passed,
 844                                                             int comp_args_on_stack,
 845                                                             const BasicType *sig_bt,
 846                                                             const VMRegPair *regs,
 847                                                             AdapterFingerPrint* fingerprint) {
 848   address i2c_entry = __ pc();
 849 
 850   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 851 
 852   // -------------------------------------------------------------------------
 853   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
 854   // to the interpreter.  The args start out packed in the compiled layout.  They
 855   // need to be unpacked into the interpreter layout.  This will almost always
 856   // require some stack space.  We grow the current (compiled) stack, then repack
 857   // the args.  We  finally end in a jump to the generic interpreter entry point.
 858   // On exit from the interpreter, the interpreter will restore our SP (lest the
 859   // compiled code, which relys solely on SP and not RBP, get sick).
 860 
 861   address c2i_unverified_entry = __ pc();
 862   Label skip_fixup;
 863   Label ok;
 864 
 865   Register holder = rax;
 866   Register receiver = j_rarg0;
 867   Register temp = rbx;
 868 
 869   {
 870     __ load_klass(temp, receiver);
 871     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 872     __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
 873     __ jcc(Assembler::equal, ok);
 874     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 875 
 876     __ bind(ok);
 877     // Method might have been compiled since the call site was patched to
 878     // interpreted if that is the case treat it as a miss so we can get
 879     // the call site corrected.
 880     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 881     __ jcc(Assembler::equal, skip_fixup);
 882     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 883   }
 884 
 885   address c2i_entry = __ pc();
 886 
 887   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 888 
 889   __ flush();
 890   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 891 }
 892 
 893 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 894                                          VMRegPair *regs,
 895                                          VMRegPair *regs2,
 896                                          int total_args_passed) {
 897   assert(regs2 == NULL, "not needed on x86");
 898 // We return the amount of VMRegImpl stack slots we need to reserve for all
 899 // the arguments NOT counting out_preserve_stack_slots.
 900 
 901 // NOTE: These arrays will have to change when c1 is ported
 902 #ifdef _WIN64
 903     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 904       c_rarg0, c_rarg1, c_rarg2, c_rarg3
 905     };
 906     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 907       c_farg0, c_farg1, c_farg2, c_farg3
 908     };
 909 #else
 910     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 911       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
 912     };
 913     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 914       c_farg0, c_farg1, c_farg2, c_farg3,
 915       c_farg4, c_farg5, c_farg6, c_farg7
 916     };
 917 #endif // _WIN64
 918 
 919 
 920     uint int_args = 0;
 921     uint fp_args = 0;
 922     uint stk_args = 0; // inc by 2 each time
 923 
 924     for (int i = 0; i < total_args_passed; i++) {
 925       switch (sig_bt[i]) {
 926       case T_BOOLEAN:
 927       case T_CHAR:
 928       case T_BYTE:
 929       case T_SHORT:
 930       case T_INT:
 931         if (int_args < Argument::n_int_register_parameters_c) {
 932           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 933 #ifdef _WIN64
 934           fp_args++;
 935           // Allocate slots for callee to stuff register args the stack.
 936           stk_args += 2;
 937 #endif
 938         } else {
 939           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 940           stk_args += 2;
 941         }
 942         break;
 943       case T_LONG:
 944         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 945         // fall through
 946       case T_OBJECT:
 947       case T_ARRAY:
 948       case T_ADDRESS:
 949       case T_METADATA:
 950         if (int_args < Argument::n_int_register_parameters_c) {
 951           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 952 #ifdef _WIN64
 953           fp_args++;
 954           stk_args += 2;
 955 #endif
 956         } else {
 957           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 958           stk_args += 2;
 959         }
 960         break;
 961       case T_FLOAT:
 962         if (fp_args < Argument::n_float_register_parameters_c) {
 963           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 964 #ifdef _WIN64
 965           int_args++;
 966           // Allocate slots for callee to stuff register args the stack.
 967           stk_args += 2;
 968 #endif
 969         } else {
 970           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 971           stk_args += 2;
 972         }
 973         break;
 974       case T_DOUBLE:
 975         assert(sig_bt[i + 1] == T_VOID, "expecting half");
 976         if (fp_args < Argument::n_float_register_parameters_c) {
 977           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 978 #ifdef _WIN64
 979           int_args++;
 980           // Allocate slots for callee to stuff register args the stack.
 981           stk_args += 2;
 982 #endif
 983         } else {
 984           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 985           stk_args += 2;
 986         }
 987         break;
 988       case T_VOID: // Halves of longs and doubles
 989         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 990         regs[i].set_bad();
 991         break;
 992       default:
 993         ShouldNotReachHere();
 994         break;
 995       }
 996     }
 997 #ifdef _WIN64
 998   // windows abi requires that we always allocate enough stack space
 999   // for 4 64bit registers to be stored down.
1000   if (stk_args < 8) {
1001     stk_args = 8;
1002   }
1003 #endif // _WIN64
1004 
1005   return stk_args;
1006 }
1007 
1008 // On 64 bit we will store integer like items to the stack as
1009 // 64 bits items (sparc abi) even though java would only store
1010 // 32bits for a parameter. On 32bit it will simply be 32 bits
1011 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1012 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1013   if (src.first()->is_stack()) {
1014     if (dst.first()->is_stack()) {
1015       // stack to stack
1016       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
1017       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1018     } else {
1019       // stack to reg
1020       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1021     }
1022   } else if (dst.first()->is_stack()) {
1023     // reg to stack
1024     // Do we really have to sign extend???
1025     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1026     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1027   } else {
1028     // Do we really have to sign extend???
1029     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
1030     if (dst.first() != src.first()) {
1031       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1032     }
1033   }
1034 }
1035 
1036 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1037   if (src.first()->is_stack()) {
1038     if (dst.first()->is_stack()) {
1039       // stack to stack
1040       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1041       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1042     } else {
1043       // stack to reg
1044       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1045     }
1046   } else if (dst.first()->is_stack()) {
1047     // reg to stack
1048     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1049   } else {
1050     if (dst.first() != src.first()) {
1051       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1052     }
1053   }
1054 }
1055 
1056 // An oop arg. Must pass a handle not the oop itself
1057 static void object_move(MacroAssembler* masm,
1058                         OopMap* map,
1059                         int oop_handle_offset,
1060                         int framesize_in_slots,
1061                         VMRegPair src,
1062                         VMRegPair dst,
1063                         bool is_receiver,
1064                         int* receiver_offset) {
1065 
1066   // must pass a handle. First figure out the location we use as a handle
1067 
1068   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
1069 
1070   // See if oop is NULL if it is we need no handle
1071 
1072   if (src.first()->is_stack()) {
1073 
1074     // Oop is already on the stack as an argument
1075     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1076     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1077     if (is_receiver) {
1078       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1079     }
1080 
1081     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1082     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1083     // conditionally move a NULL
1084     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1085   } else {
1086 
1087     // Oop is in an a register we must store it to the space we reserve
1088     // on the stack for oop_handles and pass a handle if oop is non-NULL
1089 
1090     const Register rOop = src.first()->as_Register();
1091     int oop_slot;
1092     if (rOop == j_rarg0)
1093       oop_slot = 0;
1094     else if (rOop == j_rarg1)
1095       oop_slot = 1;
1096     else if (rOop == j_rarg2)
1097       oop_slot = 2;
1098     else if (rOop == j_rarg3)
1099       oop_slot = 3;
1100     else if (rOop == j_rarg4)
1101       oop_slot = 4;
1102     else {
1103       assert(rOop == j_rarg5, "wrong register");
1104       oop_slot = 5;
1105     }
1106 
1107     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1108     int offset = oop_slot*VMRegImpl::stack_slot_size;
1109 
1110     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1111     // Store oop in handle area, may be NULL
1112     __ movptr(Address(rsp, offset), rOop);
1113     if (is_receiver) {
1114       *receiver_offset = offset;
1115     }
1116 
1117     __ cmpptr(rOop, (int32_t)NULL_WORD);
1118     __ lea(rHandle, Address(rsp, offset));
1119     // conditionally move a NULL from the handle area where it was just stored
1120     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1121   }
1122 
1123   // If arg is on the stack then place it otherwise it is already in correct reg.
1124   if (dst.first()->is_stack()) {
1125     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1126   }
1127 }
1128 
1129 // A float arg may have to do float reg int reg conversion
1130 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1131   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1132 
1133   // The calling conventions assures us that each VMregpair is either
1134   // all really one physical register or adjacent stack slots.
1135   // This greatly simplifies the cases here compared to sparc.
1136 
1137   if (src.first()->is_stack()) {
1138     if (dst.first()->is_stack()) {
1139       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1140       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1141     } else {
1142       // stack to reg
1143       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1144       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1145     }
1146   } else if (dst.first()->is_stack()) {
1147     // reg to stack
1148     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1149     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1150   } else {
1151     // reg to reg
1152     // In theory these overlap but the ordering is such that this is likely a nop
1153     if ( src.first() != dst.first()) {
1154       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1155     }
1156   }
1157 }
1158 
1159 // A long move
1160 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1161 
1162   // The calling conventions assures us that each VMregpair is either
1163   // all really one physical register or adjacent stack slots.
1164   // This greatly simplifies the cases here compared to sparc.
1165 
1166   if (src.is_single_phys_reg() ) {
1167     if (dst.is_single_phys_reg()) {
1168       if (dst.first() != src.first()) {
1169         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1170       }
1171     } else {
1172       assert(dst.is_single_reg(), "not a stack pair");
1173       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1174     }
1175   } else if (dst.is_single_phys_reg()) {
1176     assert(src.is_single_reg(),  "not a stack pair");
1177     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1178   } else {
1179     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1180     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1181     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1182   }
1183 }
1184 
1185 // A double move
1186 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1187 
1188   // The calling conventions assures us that each VMregpair is either
1189   // all really one physical register or adjacent stack slots.
1190   // This greatly simplifies the cases here compared to sparc.
1191 
1192   if (src.is_single_phys_reg() ) {
1193     if (dst.is_single_phys_reg()) {
1194       // In theory these overlap but the ordering is such that this is likely a nop
1195       if ( src.first() != dst.first()) {
1196         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1197       }
1198     } else {
1199       assert(dst.is_single_reg(), "not a stack pair");
1200       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1201     }
1202   } else if (dst.is_single_phys_reg()) {
1203     assert(src.is_single_reg(),  "not a stack pair");
1204     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1205   } else {
1206     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1207     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1208     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1209   }
1210 }
1211 
1212 
1213 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1214   // We always ignore the frame_slots arg and just use the space just below frame pointer
1215   // which by this time is free to use
1216   switch (ret_type) {
1217   case T_FLOAT:
1218     __ movflt(Address(rbp, -wordSize), xmm0);
1219     break;
1220   case T_DOUBLE:
1221     __ movdbl(Address(rbp, -wordSize), xmm0);
1222     break;
1223   case T_VOID:  break;
1224   default: {
1225     __ movptr(Address(rbp, -wordSize), rax);
1226     }
1227   }
1228 }
1229 
1230 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1231   // We always ignore the frame_slots arg and just use the space just below frame pointer
1232   // which by this time is free to use
1233   switch (ret_type) {
1234   case T_FLOAT:
1235     __ movflt(xmm0, Address(rbp, -wordSize));
1236     break;
1237   case T_DOUBLE:
1238     __ movdbl(xmm0, Address(rbp, -wordSize));
1239     break;
1240   case T_VOID:  break;
1241   default: {
1242     __ movptr(rax, Address(rbp, -wordSize));
1243     }
1244   }
1245 }
1246 
1247 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1248     for ( int i = first_arg ; i < arg_count ; i++ ) {
1249       if (args[i].first()->is_Register()) {
1250         __ push(args[i].first()->as_Register());
1251       } else if (args[i].first()->is_XMMRegister()) {
1252         __ subptr(rsp, 2*wordSize);
1253         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1254       }
1255     }
1256 }
1257 
1258 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1259     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1260       if (args[i].first()->is_Register()) {
1261         __ pop(args[i].first()->as_Register());
1262       } else if (args[i].first()->is_XMMRegister()) {
1263         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1264         __ addptr(rsp, 2*wordSize);
1265       }
1266     }
1267 }
1268 
1269 
1270 static void save_or_restore_arguments(MacroAssembler* masm,
1271                                       const int stack_slots,
1272                                       const int total_in_args,
1273                                       const int arg_save_area,
1274                                       OopMap* map,
1275                                       VMRegPair* in_regs,
1276                                       BasicType* in_sig_bt) {
1277   // if map is non-NULL then the code should store the values,
1278   // otherwise it should load them.
1279   int slot = arg_save_area;
1280   // Save down double word first
1281   for ( int i = 0; i < total_in_args; i++) {
1282     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1283       int offset = slot * VMRegImpl::stack_slot_size;
1284       slot += VMRegImpl::slots_per_word;
1285       assert(slot <= stack_slots, "overflow");
1286       if (map != NULL) {
1287         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1288       } else {
1289         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1290       }
1291     }
1292     if (in_regs[i].first()->is_Register() &&
1293         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1294       int offset = slot * VMRegImpl::stack_slot_size;
1295       if (map != NULL) {
1296         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1297         if (in_sig_bt[i] == T_ARRAY) {
1298           map->set_oop(VMRegImpl::stack2reg(slot));;
1299         }
1300       } else {
1301         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1302       }
1303       slot += VMRegImpl::slots_per_word;
1304     }
1305   }
1306   // Save or restore single word registers
1307   for ( int i = 0; i < total_in_args; i++) {
1308     if (in_regs[i].first()->is_Register()) {
1309       int offset = slot * VMRegImpl::stack_slot_size;
1310       slot++;
1311       assert(slot <= stack_slots, "overflow");
1312 
1313       // Value is in an input register pass we must flush it to the stack
1314       const Register reg = in_regs[i].first()->as_Register();
1315       switch (in_sig_bt[i]) {
1316         case T_BOOLEAN:
1317         case T_CHAR:
1318         case T_BYTE:
1319         case T_SHORT:
1320         case T_INT:
1321           if (map != NULL) {
1322             __ movl(Address(rsp, offset), reg);
1323           } else {
1324             __ movl(reg, Address(rsp, offset));
1325           }
1326           break;
1327         case T_ARRAY:
1328         case T_LONG:
1329           // handled above
1330           break;
1331         case T_OBJECT:
1332         default: ShouldNotReachHere();
1333       }
1334     } else if (in_regs[i].first()->is_XMMRegister()) {
1335       if (in_sig_bt[i] == T_FLOAT) {
1336         int offset = slot * VMRegImpl::stack_slot_size;
1337         slot++;
1338         assert(slot <= stack_slots, "overflow");
1339         if (map != NULL) {
1340           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1341         } else {
1342           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1343         }
1344       }
1345     } else if (in_regs[i].first()->is_stack()) {
1346       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1347         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1348         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1349       }
1350     }
1351   }
1352 }
1353 
1354 
1355 // Check GC_locker::needs_gc and enter the runtime if it's true.  This
1356 // keeps a new JNI critical region from starting until a GC has been
1357 // forced.  Save down any oops in registers and describe them in an
1358 // OopMap.
1359 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1360                                                int stack_slots,
1361                                                int total_c_args,
1362                                                int total_in_args,
1363                                                int arg_save_area,
1364                                                OopMapSet* oop_maps,
1365                                                VMRegPair* in_regs,
1366                                                BasicType* in_sig_bt) {
1367   __ block_comment("check GC_locker::needs_gc");
1368   Label cont;
1369   __ cmp8(ExternalAddress((address)GC_locker::needs_gc_address()), false);
1370   __ jcc(Assembler::equal, cont);
1371 
1372   // Save down any incoming oops and call into the runtime to halt for a GC
1373 
1374   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1375   save_or_restore_arguments(masm, stack_slots, total_in_args,
1376                             arg_save_area, map, in_regs, in_sig_bt);
1377 
1378   address the_pc = __ pc();
1379   oop_maps->add_gc_map( __ offset(), map);
1380   __ set_last_Java_frame(rsp, noreg, the_pc);
1381 
1382   __ block_comment("block_for_jni_critical");
1383   __ movptr(c_rarg0, r15_thread);
1384   __ mov(r12, rsp); // remember sp
1385   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1386   __ andptr(rsp, -16); // align stack as required by ABI
1387   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1388   __ mov(rsp, r12); // restore sp
1389   __ reinit_heapbase();
1390 
1391   __ reset_last_Java_frame(false);
1392 
1393   save_or_restore_arguments(masm, stack_slots, total_in_args,
1394                             arg_save_area, NULL, in_regs, in_sig_bt);
1395 
1396   __ bind(cont);
1397 #ifdef ASSERT
1398   if (StressCriticalJNINatives) {
1399     // Stress register saving
1400     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1401     save_or_restore_arguments(masm, stack_slots, total_in_args,
1402                               arg_save_area, map, in_regs, in_sig_bt);
1403     // Destroy argument registers
1404     for (int i = 0; i < total_in_args - 1; i++) {
1405       if (in_regs[i].first()->is_Register()) {
1406         const Register reg = in_regs[i].first()->as_Register();
1407         __ xorptr(reg, reg);
1408       } else if (in_regs[i].first()->is_XMMRegister()) {
1409         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1410       } else if (in_regs[i].first()->is_FloatRegister()) {
1411         ShouldNotReachHere();
1412       } else if (in_regs[i].first()->is_stack()) {
1413         // Nothing to do
1414       } else {
1415         ShouldNotReachHere();
1416       }
1417       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1418         i++;
1419       }
1420     }
1421 
1422     save_or_restore_arguments(masm, stack_slots, total_in_args,
1423                               arg_save_area, NULL, in_regs, in_sig_bt);
1424   }
1425 #endif
1426 }
1427 
1428 // Unpack an array argument into a pointer to the body and the length
1429 // if the array is non-null, otherwise pass 0 for both.
1430 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1431   Register tmp_reg = rax;
1432   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1433          "possible collision");
1434   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1435          "possible collision");
1436 
1437   __ block_comment("unpack_array_argument {");
1438 
1439   // Pass the length, ptr pair
1440   Label is_null, done;
1441   VMRegPair tmp;
1442   tmp.set_ptr(tmp_reg->as_VMReg());
1443   if (reg.first()->is_stack()) {
1444     // Load the arg up from the stack
1445     move_ptr(masm, reg, tmp);
1446     reg = tmp;
1447   }
1448   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1449   __ jccb(Assembler::equal, is_null);
1450   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1451   move_ptr(masm, tmp, body_arg);
1452   // load the length relative to the body.
1453   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1454                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1455   move32_64(masm, tmp, length_arg);
1456   __ jmpb(done);
1457   __ bind(is_null);
1458   // Pass zeros
1459   __ xorptr(tmp_reg, tmp_reg);
1460   move_ptr(masm, tmp, body_arg);
1461   move32_64(masm, tmp, length_arg);
1462   __ bind(done);
1463 
1464   __ block_comment("} unpack_array_argument");
1465 }
1466 
1467 
1468 // Different signatures may require very different orders for the move
1469 // to avoid clobbering other arguments.  There's no simple way to
1470 // order them safely.  Compute a safe order for issuing stores and
1471 // break any cycles in those stores.  This code is fairly general but
1472 // it's not necessary on the other platforms so we keep it in the
1473 // platform dependent code instead of moving it into a shared file.
1474 // (See bugs 7013347 & 7145024.)
1475 // Note that this code is specific to LP64.
1476 class ComputeMoveOrder: public StackObj {
1477   class MoveOperation: public ResourceObj {
1478     friend class ComputeMoveOrder;
1479    private:
1480     VMRegPair        _src;
1481     VMRegPair        _dst;
1482     int              _src_index;
1483     int              _dst_index;
1484     bool             _processed;
1485     MoveOperation*  _next;
1486     MoveOperation*  _prev;
1487 
1488     static int get_id(VMRegPair r) {
1489       return r.first()->value();
1490     }
1491 
1492    public:
1493     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1494       _src(src)
1495     , _src_index(src_index)
1496     , _dst(dst)
1497     , _dst_index(dst_index)
1498     , _next(NULL)
1499     , _prev(NULL)
1500     , _processed(false) {
1501     }
1502 
1503     VMRegPair src() const              { return _src; }
1504     int src_id() const                 { return get_id(src()); }
1505     int src_index() const              { return _src_index; }
1506     VMRegPair dst() const              { return _dst; }
1507     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
1508     int dst_index() const              { return _dst_index; }
1509     int dst_id() const                 { return get_id(dst()); }
1510     MoveOperation* next() const       { return _next; }
1511     MoveOperation* prev() const       { return _prev; }
1512     void set_processed()               { _processed = true; }
1513     bool is_processed() const          { return _processed; }
1514 
1515     // insert
1516     void break_cycle(VMRegPair temp_register) {
1517       // create a new store following the last store
1518       // to move from the temp_register to the original
1519       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1520 
1521       // break the cycle of links and insert new_store at the end
1522       // break the reverse link.
1523       MoveOperation* p = prev();
1524       assert(p->next() == this, "must be");
1525       _prev = NULL;
1526       p->_next = new_store;
1527       new_store->_prev = p;
1528 
1529       // change the original store to save it's value in the temp.
1530       set_dst(-1, temp_register);
1531     }
1532 
1533     void link(GrowableArray<MoveOperation*>& killer) {
1534       // link this store in front the store that it depends on
1535       MoveOperation* n = killer.at_grow(src_id(), NULL);
1536       if (n != NULL) {
1537         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1538         _next = n;
1539         n->_prev = this;
1540       }
1541     }
1542   };
1543 
1544  private:
1545   GrowableArray<MoveOperation*> edges;
1546 
1547  public:
1548   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1549                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1550     // Move operations where the dest is the stack can all be
1551     // scheduled first since they can't interfere with the other moves.
1552     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1553       if (in_sig_bt[i] == T_ARRAY) {
1554         c_arg--;
1555         if (out_regs[c_arg].first()->is_stack() &&
1556             out_regs[c_arg + 1].first()->is_stack()) {
1557           arg_order.push(i);
1558           arg_order.push(c_arg);
1559         } else {
1560           if (out_regs[c_arg].first()->is_stack() ||
1561               in_regs[i].first() == out_regs[c_arg].first()) {
1562             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
1563           } else {
1564             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1565           }
1566         }
1567       } else if (in_sig_bt[i] == T_VOID) {
1568         arg_order.push(i);
1569         arg_order.push(c_arg);
1570       } else {
1571         if (out_regs[c_arg].first()->is_stack() ||
1572             in_regs[i].first() == out_regs[c_arg].first()) {
1573           arg_order.push(i);
1574           arg_order.push(c_arg);
1575         } else {
1576           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1577         }
1578       }
1579     }
1580     // Break any cycles in the register moves and emit the in the
1581     // proper order.
1582     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
1583     for (int i = 0; i < stores->length(); i++) {
1584       arg_order.push(stores->at(i)->src_index());
1585       arg_order.push(stores->at(i)->dst_index());
1586     }
1587  }
1588 
1589   // Collected all the move operations
1590   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
1591     if (src.first() == dst.first()) return;
1592     edges.append(new MoveOperation(src_index, src, dst_index, dst));
1593   }
1594 
1595   // Walk the edges breaking cycles between moves.  The result list
1596   // can be walked in order to produce the proper set of loads
1597   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
1598     // Record which moves kill which values
1599     GrowableArray<MoveOperation*> killer;
1600     for (int i = 0; i < edges.length(); i++) {
1601       MoveOperation* s = edges.at(i);
1602       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
1603       killer.at_put_grow(s->dst_id(), s, NULL);
1604     }
1605     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
1606            "make sure temp isn't in the registers that are killed");
1607 
1608     // create links between loads and stores
1609     for (int i = 0; i < edges.length(); i++) {
1610       edges.at(i)->link(killer);
1611     }
1612 
1613     // at this point, all the move operations are chained together
1614     // in a doubly linked list.  Processing it backwards finds
1615     // the beginning of the chain, forwards finds the end.  If there's
1616     // a cycle it can be broken at any point,  so pick an edge and walk
1617     // backward until the list ends or we end where we started.
1618     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
1619     for (int e = 0; e < edges.length(); e++) {
1620       MoveOperation* s = edges.at(e);
1621       if (!s->is_processed()) {
1622         MoveOperation* start = s;
1623         // search for the beginning of the chain or cycle
1624         while (start->prev() != NULL && start->prev() != s) {
1625           start = start->prev();
1626         }
1627         if (start->prev() == s) {
1628           start->break_cycle(temp_register);
1629         }
1630         // walk the chain forward inserting to store list
1631         while (start != NULL) {
1632           stores->append(start);
1633           start->set_processed();
1634           start = start->next();
1635         }
1636       }
1637     }
1638     return stores;
1639   }
1640 };
1641 
1642 static void verify_oop_args(MacroAssembler* masm,
1643                             methodHandle method,
1644                             const BasicType* sig_bt,
1645                             const VMRegPair* regs) {
1646   Register temp_reg = rbx;  // not part of any compiled calling seq
1647   if (VerifyOops) {
1648     for (int i = 0; i < method->size_of_parameters(); i++) {
1649       if (sig_bt[i] == T_OBJECT ||
1650           sig_bt[i] == T_ARRAY) {
1651         VMReg r = regs[i].first();
1652         assert(r->is_valid(), "bad oop arg");
1653         if (r->is_stack()) {
1654           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1655           __ verify_oop(temp_reg);
1656         } else {
1657           __ verify_oop(r->as_Register());
1658         }
1659       }
1660     }
1661   }
1662 }
1663 
1664 static void gen_special_dispatch(MacroAssembler* masm,
1665                                  methodHandle method,
1666                                  const BasicType* sig_bt,
1667                                  const VMRegPair* regs) {
1668   verify_oop_args(masm, method, sig_bt, regs);
1669   vmIntrinsics::ID iid = method->intrinsic_id();
1670 
1671   // Now write the args into the outgoing interpreter space
1672   bool     has_receiver   = false;
1673   Register receiver_reg   = noreg;
1674   int      member_arg_pos = -1;
1675   Register member_reg     = noreg;
1676   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1677   if (ref_kind != 0) {
1678     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1679     member_reg = rbx;  // known to be free at this point
1680     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1681   } else if (iid == vmIntrinsics::_invokeBasic) {
1682     has_receiver = true;
1683   } else {
1684     fatal(err_msg_res("unexpected intrinsic id %d", iid));
1685   }
1686 
1687   if (member_reg != noreg) {
1688     // Load the member_arg into register, if necessary.
1689     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1690     VMReg r = regs[member_arg_pos].first();
1691     if (r->is_stack()) {
1692       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1693     } else {
1694       // no data motion is needed
1695       member_reg = r->as_Register();
1696     }
1697   }
1698 
1699   if (has_receiver) {
1700     // Make sure the receiver is loaded into a register.
1701     assert(method->size_of_parameters() > 0, "oob");
1702     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1703     VMReg r = regs[0].first();
1704     assert(r->is_valid(), "bad receiver arg");
1705     if (r->is_stack()) {
1706       // Porting note:  This assumes that compiled calling conventions always
1707       // pass the receiver oop in a register.  If this is not true on some
1708       // platform, pick a temp and load the receiver from stack.
1709       fatal("receiver always in a register");
1710       receiver_reg = j_rarg0;  // known to be free at this point
1711       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1712     } else {
1713       // no data motion is needed
1714       receiver_reg = r->as_Register();
1715     }
1716   }
1717 
1718   // Figure out which address we are really jumping to:
1719   MethodHandles::generate_method_handle_dispatch(masm, iid,
1720                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1721 }
1722 
1723 // ---------------------------------------------------------------------------
1724 // Generate a native wrapper for a given method.  The method takes arguments
1725 // in the Java compiled code convention, marshals them to the native
1726 // convention (handlizes oops, etc), transitions to native, makes the call,
1727 // returns to java state (possibly blocking), unhandlizes any result and
1728 // returns.
1729 //
1730 // Critical native functions are a shorthand for the use of
1731 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1732 // functions.  The wrapper is expected to unpack the arguments before
1733 // passing them to the callee and perform checks before and after the
1734 // native call to ensure that they GC_locker
1735 // lock_critical/unlock_critical semantics are followed.  Some other
1736 // parts of JNI setup are skipped like the tear down of the JNI handle
1737 // block and the check for pending exceptions it's impossible for them
1738 // to be thrown.
1739 //
1740 // They are roughly structured like this:
1741 //    if (GC_locker::needs_gc())
1742 //      SharedRuntime::block_for_jni_critical();
1743 //    tranistion to thread_in_native
1744 //    unpack arrray arguments and call native entry point
1745 //    check for safepoint in progress
1746 //    check if any thread suspend flags are set
1747 //      call into JVM and possible unlock the JNI critical
1748 //      if a GC was suppressed while in the critical native.
1749 //    transition back to thread_in_Java
1750 //    return to caller
1751 //
1752 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1753                                                 methodHandle method,
1754                                                 int compile_id,
1755                                                 BasicType* in_sig_bt,
1756                                                 VMRegPair* in_regs,
1757                                                 BasicType ret_type) {
1758   if (method->is_method_handle_intrinsic()) {
1759     vmIntrinsics::ID iid = method->intrinsic_id();
1760     intptr_t start = (intptr_t)__ pc();
1761     int vep_offset = ((intptr_t)__ pc()) - start;
1762     gen_special_dispatch(masm,
1763                          method,
1764                          in_sig_bt,
1765                          in_regs);
1766     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1767     __ flush();
1768     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1769     return nmethod::new_native_nmethod(method,
1770                                        compile_id,
1771                                        masm->code(),
1772                                        vep_offset,
1773                                        frame_complete,
1774                                        stack_slots / VMRegImpl::slots_per_word,
1775                                        in_ByteSize(-1),
1776                                        in_ByteSize(-1),
1777                                        (OopMapSet*)NULL);
1778   }
1779   bool is_critical_native = true;
1780   address native_func = method->critical_native_function();
1781   if (native_func == NULL) {
1782     native_func = method->native_function();
1783     is_critical_native = false;
1784   }
1785   assert(native_func != NULL, "must have function");
1786 
1787   // An OopMap for lock (and class if static)
1788   OopMapSet *oop_maps = new OopMapSet();
1789   intptr_t start = (intptr_t)__ pc();
1790 
1791   // We have received a description of where all the java arg are located
1792   // on entry to the wrapper. We need to convert these args to where
1793   // the jni function will expect them. To figure out where they go
1794   // we convert the java signature to a C signature by inserting
1795   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1796 
1797   const int total_in_args = method->size_of_parameters();
1798   int total_c_args = total_in_args;
1799   if (!is_critical_native) {
1800     total_c_args += 1;
1801     if (method->is_static()) {
1802       total_c_args++;
1803     }
1804   } else {
1805     for (int i = 0; i < total_in_args; i++) {
1806       if (in_sig_bt[i] == T_ARRAY) {
1807         total_c_args++;
1808       }
1809     }
1810   }
1811 
1812   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1813   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1814   BasicType* in_elem_bt = NULL;
1815 
1816   int argc = 0;
1817   if (!is_critical_native) {
1818     out_sig_bt[argc++] = T_ADDRESS;
1819     if (method->is_static()) {
1820       out_sig_bt[argc++] = T_OBJECT;
1821     }
1822 
1823     for (int i = 0; i < total_in_args ; i++ ) {
1824       out_sig_bt[argc++] = in_sig_bt[i];
1825     }
1826   } else {
1827     Thread* THREAD = Thread::current();
1828     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1829     SignatureStream ss(method->signature());
1830     for (int i = 0; i < total_in_args ; i++ ) {
1831       if (in_sig_bt[i] == T_ARRAY) {
1832         // Arrays are passed as int, elem* pair
1833         out_sig_bt[argc++] = T_INT;
1834         out_sig_bt[argc++] = T_ADDRESS;
1835         Symbol* atype = ss.as_symbol(CHECK_NULL);
1836         const char* at = atype->as_C_string();
1837         if (strlen(at) == 2) {
1838           assert(at[0] == '[', "must be");
1839           switch (at[1]) {
1840             case 'B': in_elem_bt[i]  = T_BYTE; break;
1841             case 'C': in_elem_bt[i]  = T_CHAR; break;
1842             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1843             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1844             case 'I': in_elem_bt[i]  = T_INT; break;
1845             case 'J': in_elem_bt[i]  = T_LONG; break;
1846             case 'S': in_elem_bt[i]  = T_SHORT; break;
1847             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1848             default: ShouldNotReachHere();
1849           }
1850         }
1851       } else {
1852         out_sig_bt[argc++] = in_sig_bt[i];
1853         in_elem_bt[i] = T_VOID;
1854       }
1855       if (in_sig_bt[i] != T_VOID) {
1856         assert(in_sig_bt[i] == ss.type(), "must match");
1857         ss.next();
1858       }
1859     }
1860   }
1861 
1862   // Now figure out where the args must be stored and how much stack space
1863   // they require.
1864   int out_arg_slots;
1865   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
1866 
1867   // Compute framesize for the wrapper.  We need to handlize all oops in
1868   // incoming registers
1869 
1870   // Calculate the total number of stack slots we will need.
1871 
1872   // First count the abi requirement plus all of the outgoing args
1873   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1874 
1875   // Now the space for the inbound oop handle area
1876   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
1877   if (is_critical_native) {
1878     // Critical natives may have to call out so they need a save area
1879     // for register arguments.
1880     int double_slots = 0;
1881     int single_slots = 0;
1882     for ( int i = 0; i < total_in_args; i++) {
1883       if (in_regs[i].first()->is_Register()) {
1884         const Register reg = in_regs[i].first()->as_Register();
1885         switch (in_sig_bt[i]) {
1886           case T_BOOLEAN:
1887           case T_BYTE:
1888           case T_SHORT:
1889           case T_CHAR:
1890           case T_INT:  single_slots++; break;
1891           case T_ARRAY:  // specific to LP64 (7145024)
1892           case T_LONG: double_slots++; break;
1893           default:  ShouldNotReachHere();
1894         }
1895       } else if (in_regs[i].first()->is_XMMRegister()) {
1896         switch (in_sig_bt[i]) {
1897           case T_FLOAT:  single_slots++; break;
1898           case T_DOUBLE: double_slots++; break;
1899           default:  ShouldNotReachHere();
1900         }
1901       } else if (in_regs[i].first()->is_FloatRegister()) {
1902         ShouldNotReachHere();
1903       }
1904     }
1905     total_save_slots = double_slots * 2 + single_slots;
1906     // align the save area
1907     if (double_slots != 0) {
1908       stack_slots = round_to(stack_slots, 2);
1909     }
1910   }
1911 
1912   int oop_handle_offset = stack_slots;
1913   stack_slots += total_save_slots;
1914 
1915   // Now any space we need for handlizing a klass if static method
1916 
1917   int klass_slot_offset = 0;
1918   int klass_offset = -1;
1919   int lock_slot_offset = 0;
1920   bool is_static = false;
1921 
1922   if (method->is_static()) {
1923     klass_slot_offset = stack_slots;
1924     stack_slots += VMRegImpl::slots_per_word;
1925     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1926     is_static = true;
1927   }
1928 
1929   // Plus a lock if needed
1930 
1931   if (method->is_synchronized()) {
1932     lock_slot_offset = stack_slots;
1933     stack_slots += VMRegImpl::slots_per_word;
1934   }
1935 
1936   // Now a place (+2) to save return values or temp during shuffling
1937   // + 4 for return address (which we own) and saved rbp
1938   stack_slots += 6;
1939 
1940   // Ok The space we have allocated will look like:
1941   //
1942   //
1943   // FP-> |                     |
1944   //      |---------------------|
1945   //      | 2 slots for moves   |
1946   //      |---------------------|
1947   //      | lock box (if sync)  |
1948   //      |---------------------| <- lock_slot_offset
1949   //      | klass (if static)   |
1950   //      |---------------------| <- klass_slot_offset
1951   //      | oopHandle area      |
1952   //      |---------------------| <- oop_handle_offset (6 java arg registers)
1953   //      | outbound memory     |
1954   //      | based arguments     |
1955   //      |                     |
1956   //      |---------------------|
1957   //      |                     |
1958   // SP-> | out_preserved_slots |
1959   //
1960   //
1961 
1962 
1963   // Now compute actual number of stack words we need rounding to make
1964   // stack properly aligned.
1965   stack_slots = round_to(stack_slots, StackAlignmentInSlots);
1966 
1967   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1968 
1969   // First thing make an ic check to see if we should even be here
1970 
1971   // We are free to use all registers as temps without saving them and
1972   // restoring them except rbp. rbp is the only callee save register
1973   // as far as the interpreter and the compiler(s) are concerned.
1974 
1975 
1976   const Register ic_reg = rax;
1977   const Register receiver = j_rarg0;
1978 
1979   Label hit;
1980   Label exception_pending;
1981 
1982   assert_different_registers(ic_reg, receiver, rscratch1);
1983   __ verify_oop(receiver);
1984   __ load_klass(rscratch1, receiver);
1985   __ cmpq(ic_reg, rscratch1);
1986   __ jcc(Assembler::equal, hit);
1987 
1988   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1989 
1990   // Verified entry point must be aligned
1991   __ align(8);
1992 
1993   __ bind(hit);
1994 
1995   int vep_offset = ((intptr_t)__ pc()) - start;
1996 
1997   // The instruction at the verified entry point must be 5 bytes or longer
1998   // because it can be patched on the fly by make_non_entrant. The stack bang
1999   // instruction fits that requirement.
2000 
2001   // Generate stack overflow check
2002 
2003   if (UseStackBanging) {
2004     __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2005   } else {
2006     // need a 5 byte instruction to allow MT safe patching to non-entrant
2007     __ fat_nop();
2008   }
2009 
2010   // Generate a new frame for the wrapper.
2011   __ enter();
2012   // -2 because return address is already present and so is saved rbp
2013   __ subptr(rsp, stack_size - 2*wordSize);
2014 
2015   // Frame is now completed as far as size and linkage.
2016   int frame_complete = ((intptr_t)__ pc()) - start;
2017 
2018     if (UseRTMLocking) {
2019       // Abort RTM transaction before calling JNI
2020       // because critical section will be large and will be
2021       // aborted anyway. Also nmethod could be deoptimized.
2022       __ xabort(0);
2023     }
2024 
2025 #ifdef ASSERT
2026     {
2027       Label L;
2028       __ mov(rax, rsp);
2029       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
2030       __ cmpptr(rax, rsp);
2031       __ jcc(Assembler::equal, L);
2032       __ stop("improperly aligned stack");
2033       __ bind(L);
2034     }
2035 #endif /* ASSERT */
2036 
2037 
2038   // We use r14 as the oop handle for the receiver/klass
2039   // It is callee save so it survives the call to native
2040 
2041   const Register oop_handle_reg = r14;
2042 
2043   if (is_critical_native) {
2044     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
2045                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2046   }
2047 
2048   //
2049   // We immediately shuffle the arguments so that any vm call we have to
2050   // make from here on out (sync slow path, jvmti, etc.) we will have
2051   // captured the oops from our caller and have a valid oopMap for
2052   // them.
2053 
2054   // -----------------
2055   // The Grand Shuffle
2056 
2057   // The Java calling convention is either equal (linux) or denser (win64) than the
2058   // c calling convention. However the because of the jni_env argument the c calling
2059   // convention always has at least one more (and two for static) arguments than Java.
2060   // Therefore if we move the args from java -> c backwards then we will never have
2061   // a register->register conflict and we don't have to build a dependency graph
2062   // and figure out how to break any cycles.
2063   //
2064 
2065   // Record esp-based slot for receiver on stack for non-static methods
2066   int receiver_offset = -1;
2067 
2068   // This is a trick. We double the stack slots so we can claim
2069   // the oops in the caller's frame. Since we are sure to have
2070   // more args than the caller doubling is enough to make
2071   // sure we can capture all the incoming oop args from the
2072   // caller.
2073   //
2074   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2075 
2076   // Mark location of rbp (someday)
2077   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2078 
2079   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2080   // All inbound args are referenced based on rbp and all outbound args via rsp.
2081 
2082 
2083 #ifdef ASSERT
2084   bool reg_destroyed[RegisterImpl::number_of_registers];
2085   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
2086   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2087     reg_destroyed[r] = false;
2088   }
2089   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
2090     freg_destroyed[f] = false;
2091   }
2092 
2093 #endif /* ASSERT */
2094 
2095   // This may iterate in two different directions depending on the
2096   // kind of native it is.  The reason is that for regular JNI natives
2097   // the incoming and outgoing registers are offset upwards and for
2098   // critical natives they are offset down.
2099   GrowableArray<int> arg_order(2 * total_in_args);
2100   VMRegPair tmp_vmreg;
2101   tmp_vmreg.set2(rbx->as_VMReg());
2102 
2103   if (!is_critical_native) {
2104     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2105       arg_order.push(i);
2106       arg_order.push(c_arg);
2107     }
2108   } else {
2109     // Compute a valid move order, using tmp_vmreg to break any cycles
2110     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
2111   }
2112 
2113   int temploc = -1;
2114   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2115     int i = arg_order.at(ai);
2116     int c_arg = arg_order.at(ai + 1);
2117     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2118     if (c_arg == -1) {
2119       assert(is_critical_native, "should only be required for critical natives");
2120       // This arg needs to be moved to a temporary
2121       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
2122       in_regs[i] = tmp_vmreg;
2123       temploc = i;
2124       continue;
2125     } else if (i == -1) {
2126       assert(is_critical_native, "should only be required for critical natives");
2127       // Read from the temporary location
2128       assert(temploc != -1, "must be valid");
2129       i = temploc;
2130       temploc = -1;
2131     }
2132 #ifdef ASSERT
2133     if (in_regs[i].first()->is_Register()) {
2134       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2135     } else if (in_regs[i].first()->is_XMMRegister()) {
2136       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2137     }
2138     if (out_regs[c_arg].first()->is_Register()) {
2139       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2140     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2141       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2142     }
2143 #endif /* ASSERT */
2144     switch (in_sig_bt[i]) {
2145       case T_ARRAY:
2146         if (is_critical_native) {
2147           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2148           c_arg++;
2149 #ifdef ASSERT
2150           if (out_regs[c_arg].first()->is_Register()) {
2151             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2152           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2153             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2154           }
2155 #endif
2156           break;
2157         }
2158       case T_OBJECT:
2159         assert(!is_critical_native, "no oop arguments");
2160         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2161                     ((i == 0) && (!is_static)),
2162                     &receiver_offset);
2163         break;
2164       case T_VOID:
2165         break;
2166 
2167       case T_FLOAT:
2168         float_move(masm, in_regs[i], out_regs[c_arg]);
2169           break;
2170 
2171       case T_DOUBLE:
2172         assert( i + 1 < total_in_args &&
2173                 in_sig_bt[i + 1] == T_VOID &&
2174                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2175         double_move(masm, in_regs[i], out_regs[c_arg]);
2176         break;
2177 
2178       case T_LONG :
2179         long_move(masm, in_regs[i], out_regs[c_arg]);
2180         break;
2181 
2182       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2183 
2184       default:
2185         move32_64(masm, in_regs[i], out_regs[c_arg]);
2186     }
2187   }
2188 
2189   int c_arg;
2190 
2191   // Pre-load a static method's oop into r14.  Used both by locking code and
2192   // the normal JNI call code.
2193   if (!is_critical_native) {
2194     // point c_arg at the first arg that is already loaded in case we
2195     // need to spill before we call out
2196     c_arg = total_c_args - total_in_args;
2197 
2198     if (method->is_static()) {
2199 
2200       //  load oop into a register
2201       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2202 
2203       // Now handlize the static class mirror it's known not-null.
2204       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2205       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2206 
2207       // Now get the handle
2208       __ lea(oop_handle_reg, Address(rsp, klass_offset));
2209       // store the klass handle as second argument
2210       __ movptr(c_rarg1, oop_handle_reg);
2211       // and protect the arg if we must spill
2212       c_arg--;
2213     }
2214   } else {
2215     // For JNI critical methods we need to save all registers in save_args.
2216     c_arg = 0;
2217   }
2218 
2219   // Change state to native (we save the return address in the thread, since it might not
2220   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2221   // points into the right code segment. It does not have to be the correct return pc.
2222   // We use the same pc/oopMap repeatedly when we call out
2223 
2224   intptr_t the_pc = (intptr_t) __ pc();
2225   oop_maps->add_gc_map(the_pc - start, map);
2226 
2227   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
2228 
2229 
2230   // We have all of the arguments setup at this point. We must not touch any register
2231   // argument registers at this point (what if we save/restore them there are no oop?
2232 
2233   {
2234     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2235     // protect the args we've loaded
2236     save_args(masm, total_c_args, c_arg, out_regs);
2237     __ mov_metadata(c_rarg1, method());
2238     __ call_VM_leaf(
2239       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2240       r15_thread, c_rarg1);
2241     restore_args(masm, total_c_args, c_arg, out_regs);
2242   }
2243 
2244   // RedefineClasses() tracing support for obsolete method entry
2245   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
2246     // protect the args we've loaded
2247     save_args(masm, total_c_args, c_arg, out_regs);
2248     __ mov_metadata(c_rarg1, method());
2249     __ call_VM_leaf(
2250       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2251       r15_thread, c_rarg1);
2252     restore_args(masm, total_c_args, c_arg, out_regs);
2253   }
2254 
2255   // Lock a synchronized method
2256 
2257   // Register definitions used by locking and unlocking
2258 
2259   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2260   const Register obj_reg  = rbx;  // Will contain the oop
2261   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2262   const Register old_hdr  = r13;  // value of old header at unlock time
2263 
2264   Label slow_path_lock;
2265   Label lock_done;
2266 
2267   if (method->is_synchronized()) {
2268     assert(!is_critical_native, "unhandled");
2269 
2270 
2271     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2272 
2273     // Get the handle (the 2nd argument)
2274     __ mov(oop_handle_reg, c_rarg1);
2275 
2276     // Get address of the box
2277 
2278     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2279 
2280     // Load the oop from the handle
2281     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2282 
2283     if (UseBiasedLocking) {
2284       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
2285     }
2286 
2287     // Load immediate 1 into swap_reg %rax
2288     __ movl(swap_reg, 1);
2289 
2290     // Load (object->mark() | 1) into swap_reg %rax
2291     __ orptr(swap_reg, Address(obj_reg, 0));
2292 
2293     // Save (object->mark() | 1) into BasicLock's displaced header
2294     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2295 
2296     if (os::is_MP()) {
2297       __ lock();
2298     }
2299 
2300     // src -> dest iff dest == rax else rax <- dest
2301     __ cmpxchgptr(lock_reg, Address(obj_reg, 0));
2302     __ jcc(Assembler::equal, lock_done);
2303 
2304     // Hmm should this move to the slow path code area???
2305 
2306     // Test if the oopMark is an obvious stack pointer, i.e.,
2307     //  1) (mark & 3) == 0, and
2308     //  2) rsp <= mark < mark + os::pagesize()
2309     // These 3 tests can be done by evaluating the following
2310     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2311     // assuming both stack pointer and pagesize have their
2312     // least significant 2 bits clear.
2313     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2314 
2315     __ subptr(swap_reg, rsp);
2316     __ andptr(swap_reg, 3 - os::vm_page_size());
2317 
2318     // Save the test result, for recursive case, the result is zero
2319     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2320     __ jcc(Assembler::notEqual, slow_path_lock);
2321 
2322     // Slow path will re-enter here
2323 
2324     __ bind(lock_done);
2325   }
2326 
2327 
2328   // Finally just about ready to make the JNI call
2329 
2330 
2331   // get JNIEnv* which is first argument to native
2332   if (!is_critical_native) {
2333     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2334   }
2335 
2336   // Now set thread in native
2337   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2338 
2339   __ call(RuntimeAddress(native_func));
2340 
2341   // Verify or restore cpu control state after JNI call
2342   __ restore_cpu_control_state_after_jni();
2343 
2344   // Unpack native results.
2345   switch (ret_type) {
2346   case T_BOOLEAN: __ c2bool(rax);            break;
2347   case T_CHAR   : __ movzwl(rax, rax);      break;
2348   case T_BYTE   : __ sign_extend_byte (rax); break;
2349   case T_SHORT  : __ sign_extend_short(rax); break;
2350   case T_INT    : /* nothing to do */        break;
2351   case T_DOUBLE :
2352   case T_FLOAT  :
2353     // Result is in xmm0 we'll save as needed
2354     break;
2355   case T_ARRAY:                 // Really a handle
2356   case T_OBJECT:                // Really a handle
2357       break; // can't de-handlize until after safepoint check
2358   case T_VOID: break;
2359   case T_LONG: break;
2360   default       : ShouldNotReachHere();
2361   }
2362 
2363   // Switch thread to "native transition" state before reading the synchronization state.
2364   // This additional state is necessary because reading and testing the synchronization
2365   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2366   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2367   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2368   //     Thread A is resumed to finish this native method, but doesn't block here since it
2369   //     didn't see any synchronization is progress, and escapes.
2370   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2371 
2372   if(os::is_MP()) {
2373     if (UseMembar) {
2374       // Force this write out before the read below
2375       __ membar(Assembler::Membar_mask_bits(
2376            Assembler::LoadLoad | Assembler::LoadStore |
2377            Assembler::StoreLoad | Assembler::StoreStore));
2378     } else {
2379       // Write serialization page so VM thread can do a pseudo remote membar.
2380       // We use the current thread pointer to calculate a thread specific
2381       // offset to write to within the page. This minimizes bus traffic
2382       // due to cache line collision.
2383       __ serialize_memory(r15_thread, rcx);
2384     }
2385   }
2386 
2387   Label after_transition;
2388 
2389   // check for safepoint operation in progress and/or pending suspend requests
2390   {
2391     Label Continue;
2392 
2393     __ cmp32(ExternalAddress((address)SafepointSynchronize::address_of_state()),
2394              SafepointSynchronize::_not_synchronized);
2395 
2396     Label L;
2397     __ jcc(Assembler::notEqual, L);
2398     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2399     __ jcc(Assembler::equal, Continue);
2400     __ bind(L);
2401 
2402     // Don't use call_VM as it will see a possible pending exception and forward it
2403     // and never return here preventing us from clearing _last_native_pc down below.
2404     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2405     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2406     // by hand.
2407     //
2408     save_native_result(masm, ret_type, stack_slots);
2409     __ mov(c_rarg0, r15_thread);
2410     __ mov(r12, rsp); // remember sp
2411     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2412     __ andptr(rsp, -16); // align stack as required by ABI
2413     if (!is_critical_native) {
2414       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2415     } else {
2416       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2417     }
2418     __ mov(rsp, r12); // restore sp
2419     __ reinit_heapbase();
2420     // Restore any method result value
2421     restore_native_result(masm, ret_type, stack_slots);
2422 
2423     if (is_critical_native) {
2424       // The call above performed the transition to thread_in_Java so
2425       // skip the transition logic below.
2426       __ jmpb(after_transition);
2427     }
2428 
2429     __ bind(Continue);
2430   }
2431 
2432   // change thread state
2433   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2434   __ bind(after_transition);
2435 
2436   Label reguard;
2437   Label reguard_done;
2438   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_disabled);
2439   __ jcc(Assembler::equal, reguard);
2440   __ bind(reguard_done);
2441 
2442   // native result if any is live
2443 
2444   // Unlock
2445   Label unlock_done;
2446   Label slow_path_unlock;
2447   if (method->is_synchronized()) {
2448 
2449     // Get locked oop from the handle we passed to jni
2450     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2451 
2452     Label done;
2453 
2454     if (UseBiasedLocking) {
2455       __ biased_locking_exit(obj_reg, old_hdr, done);
2456     }
2457 
2458     // Simple recursive lock?
2459 
2460     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2461     __ jcc(Assembler::equal, done);
2462 
2463     // Must save rax if if it is live now because cmpxchg must use it
2464     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2465       save_native_result(masm, ret_type, stack_slots);
2466     }
2467 
2468 
2469     // get address of the stack lock
2470     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2471     //  get old displaced header
2472     __ movptr(old_hdr, Address(rax, 0));
2473 
2474     // Atomic swap old header if oop still contains the stack lock
2475     if (os::is_MP()) {
2476       __ lock();
2477     }
2478     __ cmpxchgptr(old_hdr, Address(obj_reg, 0));
2479     __ jcc(Assembler::notEqual, slow_path_unlock);
2480 
2481     // slow path re-enters here
2482     __ bind(unlock_done);
2483     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2484       restore_native_result(masm, ret_type, stack_slots);
2485     }
2486 
2487     __ bind(done);
2488 
2489   }
2490   {
2491     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2492     save_native_result(masm, ret_type, stack_slots);
2493     __ mov_metadata(c_rarg1, method());
2494     __ call_VM_leaf(
2495          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2496          r15_thread, c_rarg1);
2497     restore_native_result(masm, ret_type, stack_slots);
2498   }
2499 
2500   __ reset_last_Java_frame(false);
2501 
2502   // Unbox oop result, e.g. JNIHandles::resolve value.
2503   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2504     __ resolve_jobject(rax /* value */,
2505                        r15_thread /* thread */,
2506                        rcx /* tmp */);
2507   }
2508 
2509   if (!is_critical_native) {
2510     // reset handle block
2511     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2512     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2513   }
2514 
2515   // pop our frame
2516 
2517   __ leave();
2518 
2519   if (!is_critical_native) {
2520     // Any exception pending?
2521     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2522     __ jcc(Assembler::notEqual, exception_pending);
2523   }
2524 
2525   // Return
2526 
2527   __ ret(0);
2528 
2529   // Unexpected paths are out of line and go here
2530 
2531   if (!is_critical_native) {
2532     // forward the exception
2533     __ bind(exception_pending);
2534 
2535     // and forward the exception
2536     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2537   }
2538 
2539   // Slow path locking & unlocking
2540   if (method->is_synchronized()) {
2541 
2542     // BEGIN Slow path lock
2543     __ bind(slow_path_lock);
2544 
2545     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2546     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2547 
2548     // protect the args we've loaded
2549     save_args(masm, total_c_args, c_arg, out_regs);
2550 
2551     __ mov(c_rarg0, obj_reg);
2552     __ mov(c_rarg1, lock_reg);
2553     __ mov(c_rarg2, r15_thread);
2554 
2555     // Not a leaf but we have last_Java_frame setup as we want
2556     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2557     restore_args(masm, total_c_args, c_arg, out_regs);
2558 
2559 #ifdef ASSERT
2560     { Label L;
2561     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2562     __ jcc(Assembler::equal, L);
2563     __ stop("no pending exception allowed on exit from monitorenter");
2564     __ bind(L);
2565     }
2566 #endif
2567     __ jmp(lock_done);
2568 
2569     // END Slow path lock
2570 
2571     // BEGIN Slow path unlock
2572     __ bind(slow_path_unlock);
2573 
2574     // If we haven't already saved the native result we must save it now as xmm registers
2575     // are still exposed.
2576 
2577     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2578       save_native_result(masm, ret_type, stack_slots);
2579     }
2580 
2581     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2582 
2583     __ mov(c_rarg0, obj_reg);
2584     __ mov(r12, rsp); // remember sp
2585     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2586     __ andptr(rsp, -16); // align stack as required by ABI
2587 
2588     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2589     // NOTE that obj_reg == rbx currently
2590     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2591     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2592 
2593     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2594     __ mov(rsp, r12); // restore sp
2595     __ reinit_heapbase();
2596 #ifdef ASSERT
2597     {
2598       Label L;
2599       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2600       __ jcc(Assembler::equal, L);
2601       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2602       __ bind(L);
2603     }
2604 #endif /* ASSERT */
2605 
2606     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2607 
2608     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2609       restore_native_result(masm, ret_type, stack_slots);
2610     }
2611     __ jmp(unlock_done);
2612 
2613     // END Slow path unlock
2614 
2615   } // synchronized
2616 
2617   // SLOW PATH Reguard the stack if needed
2618 
2619   __ bind(reguard);
2620   save_native_result(masm, ret_type, stack_slots);
2621   __ mov(r12, rsp); // remember sp
2622   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2623   __ andptr(rsp, -16); // align stack as required by ABI
2624   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2625   __ mov(rsp, r12); // restore sp
2626   __ reinit_heapbase();
2627   restore_native_result(masm, ret_type, stack_slots);
2628   // and continue
2629   __ jmp(reguard_done);
2630 
2631 
2632 
2633   __ flush();
2634 
2635   nmethod *nm = nmethod::new_native_nmethod(method,
2636                                             compile_id,
2637                                             masm->code(),
2638                                             vep_offset,
2639                                             frame_complete,
2640                                             stack_slots / VMRegImpl::slots_per_word,
2641                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2642                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2643                                             oop_maps);
2644 
2645   if (is_critical_native) {
2646     nm->set_lazy_critical_native(true);
2647   }
2648 
2649   return nm;
2650 
2651 }
2652 
2653 #ifdef HAVE_DTRACE_H
2654 // ---------------------------------------------------------------------------
2655 // Generate a dtrace nmethod for a given signature.  The method takes arguments
2656 // in the Java compiled code convention, marshals them to the native
2657 // abi and then leaves nops at the position you would expect to call a native
2658 // function. When the probe is enabled the nops are replaced with a trap
2659 // instruction that dtrace inserts and the trace will cause a notification
2660 // to dtrace.
2661 //
2662 // The probes are only able to take primitive types and java/lang/String as
2663 // arguments.  No other java types are allowed. Strings are converted to utf8
2664 // strings so that from dtrace point of view java strings are converted to C
2665 // strings. There is an arbitrary fixed limit on the total space that a method
2666 // can use for converting the strings. (256 chars per string in the signature).
2667 // So any java string larger then this is truncated.
2668 
2669 static int  fp_offset[ConcreteRegisterImpl::number_of_registers] = { 0 };
2670 static bool offsets_initialized = false;
2671 
2672 
2673 nmethod *SharedRuntime::generate_dtrace_nmethod(MacroAssembler *masm,
2674                                                 methodHandle method) {
2675 
2676 
2677   // generate_dtrace_nmethod is guarded by a mutex so we are sure to
2678   // be single threaded in this method.
2679   assert(AdapterHandlerLibrary_lock->owned_by_self(), "must be");
2680 
2681   if (!offsets_initialized) {
2682     fp_offset[c_rarg0->as_VMReg()->value()] = -1 * wordSize;
2683     fp_offset[c_rarg1->as_VMReg()->value()] = -2 * wordSize;
2684     fp_offset[c_rarg2->as_VMReg()->value()] = -3 * wordSize;
2685     fp_offset[c_rarg3->as_VMReg()->value()] = -4 * wordSize;
2686     fp_offset[c_rarg4->as_VMReg()->value()] = -5 * wordSize;
2687     fp_offset[c_rarg5->as_VMReg()->value()] = -6 * wordSize;
2688 
2689     fp_offset[c_farg0->as_VMReg()->value()] = -7 * wordSize;
2690     fp_offset[c_farg1->as_VMReg()->value()] = -8 * wordSize;
2691     fp_offset[c_farg2->as_VMReg()->value()] = -9 * wordSize;
2692     fp_offset[c_farg3->as_VMReg()->value()] = -10 * wordSize;
2693     fp_offset[c_farg4->as_VMReg()->value()] = -11 * wordSize;
2694     fp_offset[c_farg5->as_VMReg()->value()] = -12 * wordSize;
2695     fp_offset[c_farg6->as_VMReg()->value()] = -13 * wordSize;
2696     fp_offset[c_farg7->as_VMReg()->value()] = -14 * wordSize;
2697 
2698     offsets_initialized = true;
2699   }
2700   // Fill in the signature array, for the calling-convention call.
2701   int total_args_passed = method->size_of_parameters();
2702 
2703   BasicType* in_sig_bt  = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2704   VMRegPair  *in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2705 
2706   // The signature we are going to use for the trap that dtrace will see
2707   // java/lang/String is converted. We drop "this" and any other object
2708   // is converted to NULL.  (A one-slot java/lang/Long object reference
2709   // is converted to a two-slot long, which is why we double the allocation).
2710   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed * 2);
2711   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed * 2);
2712 
2713   int i=0;
2714   int total_strings = 0;
2715   int first_arg_to_pass = 0;
2716   int total_c_args = 0;
2717 
2718   // Skip the receiver as dtrace doesn't want to see it
2719   if( !method->is_static() ) {
2720     in_sig_bt[i++] = T_OBJECT;
2721     first_arg_to_pass = 1;
2722   }
2723 
2724   // We need to convert the java args to where a native (non-jni) function
2725   // would expect them. To figure out where they go we convert the java
2726   // signature to a C signature.
2727 
2728   SignatureStream ss(method->signature());
2729   for ( ; !ss.at_return_type(); ss.next()) {
2730     BasicType bt = ss.type();
2731     in_sig_bt[i++] = bt;  // Collect remaining bits of signature
2732     out_sig_bt[total_c_args++] = bt;
2733     if( bt == T_OBJECT) {
2734       Symbol* s = ss.as_symbol_or_null();   // symbol is created
2735       if (s == vmSymbols::java_lang_String()) {
2736         total_strings++;
2737         out_sig_bt[total_c_args-1] = T_ADDRESS;
2738       } else if (s == vmSymbols::java_lang_Boolean() ||
2739                  s == vmSymbols::java_lang_Character() ||
2740                  s == vmSymbols::java_lang_Byte() ||
2741                  s == vmSymbols::java_lang_Short() ||
2742                  s == vmSymbols::java_lang_Integer() ||
2743                  s == vmSymbols::java_lang_Float()) {
2744         out_sig_bt[total_c_args-1] = T_INT;
2745       } else if (s == vmSymbols::java_lang_Long() ||
2746                  s == vmSymbols::java_lang_Double()) {
2747         out_sig_bt[total_c_args-1] = T_LONG;
2748         out_sig_bt[total_c_args++] = T_VOID;
2749       }
2750     } else if ( bt == T_LONG || bt == T_DOUBLE ) {
2751       in_sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2752       // We convert double to long
2753       out_sig_bt[total_c_args-1] = T_LONG;
2754       out_sig_bt[total_c_args++] = T_VOID;
2755     } else if ( bt == T_FLOAT) {
2756       // We convert float to int
2757       out_sig_bt[total_c_args-1] = T_INT;
2758     }
2759   }
2760 
2761   assert(i==total_args_passed, "validly parsed signature");
2762 
2763   // Now get the compiled-Java layout as input arguments
2764   int comp_args_on_stack;
2765   comp_args_on_stack = SharedRuntime::java_calling_convention(
2766       in_sig_bt, in_regs, total_args_passed, false);
2767 
2768   // Now figure out where the args must be stored and how much stack space
2769   // they require (neglecting out_preserve_stack_slots but space for storing
2770   // the 1st six register arguments). It's weird see int_stk_helper.
2771 
2772   int out_arg_slots;
2773   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
2774 
2775   // Calculate the total number of stack slots we will need.
2776 
2777   // First count the abi requirement plus all of the outgoing args
2778   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2779 
2780   // Now space for the string(s) we must convert
2781   int* string_locs   = NEW_RESOURCE_ARRAY(int, total_strings + 1);
2782   for (i = 0; i < total_strings ; i++) {
2783     string_locs[i] = stack_slots;
2784     stack_slots += max_dtrace_string_size / VMRegImpl::stack_slot_size;
2785   }
2786 
2787   // Plus the temps we might need to juggle register args
2788   // regs take two slots each
2789   stack_slots += (Argument::n_int_register_parameters_c +
2790                   Argument::n_float_register_parameters_c) * 2;
2791 
2792 
2793   // + 4 for return address (which we own) and saved rbp,
2794 
2795   stack_slots += 4;
2796 
2797   // Ok The space we have allocated will look like:
2798   //
2799   //
2800   // FP-> |                     |
2801   //      |---------------------|
2802   //      | string[n]           |
2803   //      |---------------------| <- string_locs[n]
2804   //      | string[n-1]         |
2805   //      |---------------------| <- string_locs[n-1]
2806   //      | ...                 |
2807   //      | ...                 |
2808   //      |---------------------| <- string_locs[1]
2809   //      | string[0]           |
2810   //      |---------------------| <- string_locs[0]
2811   //      | outbound memory     |
2812   //      | based arguments     |
2813   //      |                     |
2814   //      |---------------------|
2815   //      |                     |
2816   // SP-> | out_preserved_slots |
2817   //
2818   //
2819 
2820   // Now compute actual number of stack words we need rounding to make
2821   // stack properly aligned.
2822   stack_slots = round_to(stack_slots, 4 * VMRegImpl::slots_per_word);
2823 
2824   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2825 
2826   intptr_t start = (intptr_t)__ pc();
2827 
2828   // First thing make an ic check to see if we should even be here
2829 
2830   // We are free to use all registers as temps without saving them and
2831   // restoring them except rbp. rbp, is the only callee save register
2832   // as far as the interpreter and the compiler(s) are concerned.
2833 
2834   const Register ic_reg = rax;
2835   const Register receiver = rcx;
2836   Label hit;
2837   Label exception_pending;
2838 
2839 
2840   __ verify_oop(receiver);
2841   __ cmpl(ic_reg, Address(receiver, oopDesc::klass_offset_in_bytes()));
2842   __ jcc(Assembler::equal, hit);
2843 
2844   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2845 
2846   // verified entry must be aligned for code patching.
2847   // and the first 5 bytes must be in the same cache line
2848   // if we align at 8 then we will be sure 5 bytes are in the same line
2849   __ align(8);
2850 
2851   __ bind(hit);
2852 
2853   int vep_offset = ((intptr_t)__ pc()) - start;
2854 
2855 
2856   // The instruction at the verified entry point must be 5 bytes or longer
2857   // because it can be patched on the fly by make_non_entrant. The stack bang
2858   // instruction fits that requirement.
2859 
2860   // Generate stack overflow check
2861 
2862   if (UseStackBanging) {
2863     if (stack_size <= StackShadowPages*os::vm_page_size()) {
2864       __ bang_stack_with_offset(StackShadowPages*os::vm_page_size());
2865     } else {
2866       __ movl(rax, stack_size);
2867       __ bang_stack_size(rax, rbx);
2868     }
2869   } else {
2870     // need a 5 byte instruction to allow MT safe patching to non-entrant
2871     __ fat_nop();
2872   }
2873 
2874   assert(((uintptr_t)__ pc() - start - vep_offset) >= 5,
2875          "valid size for make_non_entrant");
2876 
2877   // Generate a new frame for the wrapper.
2878   __ enter();
2879 
2880   // -4 because return address is already present and so is saved rbp,
2881   if (stack_size - 2*wordSize != 0) {
2882     __ subq(rsp, stack_size - 2*wordSize);
2883   }
2884 
2885   // Frame is now completed as far a size and linkage.
2886 
2887   int frame_complete = ((intptr_t)__ pc()) - start;
2888 
2889   int c_arg, j_arg;
2890 
2891   // State of input register args
2892 
2893   bool  live[ConcreteRegisterImpl::number_of_registers];
2894 
2895   live[j_rarg0->as_VMReg()->value()] = false;
2896   live[j_rarg1->as_VMReg()->value()] = false;
2897   live[j_rarg2->as_VMReg()->value()] = false;
2898   live[j_rarg3->as_VMReg()->value()] = false;
2899   live[j_rarg4->as_VMReg()->value()] = false;
2900   live[j_rarg5->as_VMReg()->value()] = false;
2901 
2902   live[j_farg0->as_VMReg()->value()] = false;
2903   live[j_farg1->as_VMReg()->value()] = false;
2904   live[j_farg2->as_VMReg()->value()] = false;
2905   live[j_farg3->as_VMReg()->value()] = false;
2906   live[j_farg4->as_VMReg()->value()] = false;
2907   live[j_farg5->as_VMReg()->value()] = false;
2908   live[j_farg6->as_VMReg()->value()] = false;
2909   live[j_farg7->as_VMReg()->value()] = false;
2910 
2911 
2912   bool rax_is_zero = false;
2913 
2914   // All args (except strings) destined for the stack are moved first
2915   for (j_arg = first_arg_to_pass, c_arg = 0 ;
2916        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
2917     VMRegPair src = in_regs[j_arg];
2918     VMRegPair dst = out_regs[c_arg];
2919 
2920     // Get the real reg value or a dummy (rsp)
2921 
2922     int src_reg = src.first()->is_reg() ?
2923                   src.first()->value() :
2924                   rsp->as_VMReg()->value();
2925 
2926     bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
2927                     (in_sig_bt[j_arg] == T_OBJECT &&
2928                      out_sig_bt[c_arg] != T_INT &&
2929                      out_sig_bt[c_arg] != T_ADDRESS &&
2930                      out_sig_bt[c_arg] != T_LONG);
2931 
2932     live[src_reg] = !useless;
2933 
2934     if (dst.first()->is_stack()) {
2935 
2936       // Even though a string arg in a register is still live after this loop
2937       // after the string conversion loop (next) it will be dead so we take
2938       // advantage of that now for simpler code to manage live.
2939 
2940       live[src_reg] = false;
2941       switch (in_sig_bt[j_arg]) {
2942 
2943         case T_ARRAY:
2944         case T_OBJECT:
2945           {
2946             Address stack_dst(rsp, reg2offset_out(dst.first()));
2947 
2948             if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
2949               // need to unbox a one-word value
2950               Register in_reg = rax;
2951               if ( src.first()->is_reg() ) {
2952                 in_reg = src.first()->as_Register();
2953               } else {
2954                 __ movq(rax, Address(rbp, reg2offset_in(src.first())));
2955                 rax_is_zero = false;
2956               }
2957               Label skipUnbox;
2958               __ movptr(Address(rsp, reg2offset_out(dst.first())),
2959                         (int32_t)NULL_WORD);
2960               __ testq(in_reg, in_reg);
2961               __ jcc(Assembler::zero, skipUnbox);
2962 
2963               BasicType bt = out_sig_bt[c_arg];
2964               int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
2965               Address src1(in_reg, box_offset);
2966               if ( bt == T_LONG ) {
2967                 __ movq(in_reg,  src1);
2968                 __ movq(stack_dst, in_reg);
2969                 assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
2970                 ++c_arg; // skip over T_VOID to keep the loop indices in sync
2971               } else {
2972                 __ movl(in_reg,  src1);
2973                 __ movl(stack_dst, in_reg);
2974               }
2975 
2976               __ bind(skipUnbox);
2977             } else if (out_sig_bt[c_arg] != T_ADDRESS) {
2978               // Convert the arg to NULL
2979               if (!rax_is_zero) {
2980                 __ xorq(rax, rax);
2981                 rax_is_zero = true;
2982               }
2983               __ movq(stack_dst, rax);
2984             }
2985           }
2986           break;
2987 
2988         case T_VOID:
2989           break;
2990 
2991         case T_FLOAT:
2992           // This does the right thing since we know it is destined for the
2993           // stack
2994           float_move(masm, src, dst);
2995           break;
2996 
2997         case T_DOUBLE:
2998           // This does the right thing since we know it is destined for the
2999           // stack
3000           double_move(masm, src, dst);
3001           break;
3002 
3003         case T_LONG :
3004           long_move(masm, src, dst);
3005           break;
3006 
3007         case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
3008 
3009         default:
3010           move32_64(masm, src, dst);
3011       }
3012     }
3013 
3014   }
3015 
3016   // If we have any strings we must store any register based arg to the stack
3017   // This includes any still live xmm registers too.
3018 
3019   int sid = 0;
3020 
3021   if (total_strings > 0 ) {
3022     for (j_arg = first_arg_to_pass, c_arg = 0 ;
3023          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3024       VMRegPair src = in_regs[j_arg];
3025       VMRegPair dst = out_regs[c_arg];
3026 
3027       if (src.first()->is_reg()) {
3028         Address src_tmp(rbp, fp_offset[src.first()->value()]);
3029 
3030         // string oops were left untouched by the previous loop even if the
3031         // eventual (converted) arg is destined for the stack so park them
3032         // away now (except for first)
3033 
3034         if (out_sig_bt[c_arg] == T_ADDRESS) {
3035           Address utf8_addr = Address(
3036               rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
3037           if (sid != 1) {
3038             // The first string arg won't be killed until after the utf8
3039             // conversion
3040             __ movq(utf8_addr, src.first()->as_Register());
3041           }
3042         } else if (dst.first()->is_reg()) {
3043           if (in_sig_bt[j_arg] == T_FLOAT || in_sig_bt[j_arg] == T_DOUBLE) {
3044 
3045             // Convert the xmm register to an int and store it in the reserved
3046             // location for the eventual c register arg
3047             XMMRegister f = src.first()->as_XMMRegister();
3048             if (in_sig_bt[j_arg] == T_FLOAT) {
3049               __ movflt(src_tmp, f);
3050             } else {
3051               __ movdbl(src_tmp, f);
3052             }
3053           } else {
3054             // If the arg is an oop type we don't support don't bother to store
3055             // it remember string was handled above.
3056             bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
3057                             (in_sig_bt[j_arg] == T_OBJECT &&
3058                              out_sig_bt[c_arg] != T_INT &&
3059                              out_sig_bt[c_arg] != T_LONG);
3060 
3061             if (!useless) {
3062               __ movq(src_tmp, src.first()->as_Register());
3063             }
3064           }
3065         }
3066       }
3067       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3068         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3069         ++c_arg; // skip over T_VOID to keep the loop indices in sync
3070       }
3071     }
3072 
3073     // Now that the volatile registers are safe, convert all the strings
3074     sid = 0;
3075 
3076     for (j_arg = first_arg_to_pass, c_arg = 0 ;
3077          j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3078       if (out_sig_bt[c_arg] == T_ADDRESS) {
3079         // It's a string
3080         Address utf8_addr = Address(
3081             rsp, string_locs[sid++] * VMRegImpl::stack_slot_size);
3082         // The first string we find might still be in the original java arg
3083         // register
3084 
3085         VMReg src = in_regs[j_arg].first();
3086 
3087         // We will need to eventually save the final argument to the trap
3088         // in the von-volatile location dedicated to src. This is the offset
3089         // from fp we will use.
3090         int src_off = src->is_reg() ?
3091             fp_offset[src->value()] : reg2offset_in(src);
3092 
3093         // This is where the argument will eventually reside
3094         VMRegPair dst = out_regs[c_arg];
3095 
3096         if (src->is_reg()) {
3097           if (sid == 1) {
3098             __ movq(c_rarg0, src->as_Register());
3099           } else {
3100             __ movq(c_rarg0, utf8_addr);
3101           }
3102         } else {
3103           // arg is still in the original location
3104           __ movq(c_rarg0, Address(rbp, reg2offset_in(src)));
3105         }
3106         Label done, convert;
3107 
3108         // see if the oop is NULL
3109         __ testq(c_rarg0, c_rarg0);
3110         __ jcc(Assembler::notEqual, convert);
3111 
3112         if (dst.first()->is_reg()) {
3113           // Save the ptr to utf string in the origina src loc or the tmp
3114           // dedicated to it
3115           __ movq(Address(rbp, src_off), c_rarg0);
3116         } else {
3117           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg0);
3118         }
3119         __ jmp(done);
3120 
3121         __ bind(convert);
3122 
3123         __ lea(c_rarg1, utf8_addr);
3124         if (dst.first()->is_reg()) {
3125           __ movq(Address(rbp, src_off), c_rarg1);
3126         } else {
3127           __ movq(Address(rsp, reg2offset_out(dst.first())), c_rarg1);
3128         }
3129         // And do the conversion
3130         __ call(RuntimeAddress(
3131                 CAST_FROM_FN_PTR(address, SharedRuntime::get_utf)));
3132 
3133         __ bind(done);
3134       }
3135       if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3136         assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3137         ++c_arg; // skip over T_VOID to keep the loop indices in sync
3138       }
3139     }
3140     // The get_utf call killed all the c_arg registers
3141     live[c_rarg0->as_VMReg()->value()] = false;
3142     live[c_rarg1->as_VMReg()->value()] = false;
3143     live[c_rarg2->as_VMReg()->value()] = false;
3144     live[c_rarg3->as_VMReg()->value()] = false;
3145     live[c_rarg4->as_VMReg()->value()] = false;
3146     live[c_rarg5->as_VMReg()->value()] = false;
3147 
3148     live[c_farg0->as_VMReg()->value()] = false;
3149     live[c_farg1->as_VMReg()->value()] = false;
3150     live[c_farg2->as_VMReg()->value()] = false;
3151     live[c_farg3->as_VMReg()->value()] = false;
3152     live[c_farg4->as_VMReg()->value()] = false;
3153     live[c_farg5->as_VMReg()->value()] = false;
3154     live[c_farg6->as_VMReg()->value()] = false;
3155     live[c_farg7->as_VMReg()->value()] = false;
3156   }
3157 
3158   // Now we can finally move the register args to their desired locations
3159 
3160   rax_is_zero = false;
3161 
3162   for (j_arg = first_arg_to_pass, c_arg = 0 ;
3163        j_arg < total_args_passed ; j_arg++, c_arg++ ) {
3164 
3165     VMRegPair src = in_regs[j_arg];
3166     VMRegPair dst = out_regs[c_arg];
3167 
3168     // Only need to look for args destined for the interger registers (since we
3169     // convert float/double args to look like int/long outbound)
3170     if (dst.first()->is_reg()) {
3171       Register r =  dst.first()->as_Register();
3172 
3173       // Check if the java arg is unsupported and thereofre useless
3174       bool useless =  in_sig_bt[j_arg] == T_ARRAY ||
3175                       (in_sig_bt[j_arg] == T_OBJECT &&
3176                        out_sig_bt[c_arg] != T_INT &&
3177                        out_sig_bt[c_arg] != T_ADDRESS &&
3178                        out_sig_bt[c_arg] != T_LONG);
3179 
3180 
3181       // If we're going to kill an existing arg save it first
3182       if (live[dst.first()->value()]) {
3183         // you can't kill yourself
3184         if (src.first() != dst.first()) {
3185           __ movq(Address(rbp, fp_offset[dst.first()->value()]), r);
3186         }
3187       }
3188       if (src.first()->is_reg()) {
3189         if (live[src.first()->value()] ) {
3190           if (in_sig_bt[j_arg] == T_FLOAT) {
3191             __ movdl(r, src.first()->as_XMMRegister());
3192           } else if (in_sig_bt[j_arg] == T_DOUBLE) {
3193             __ movdq(r, src.first()->as_XMMRegister());
3194           } else if (r != src.first()->as_Register()) {
3195             if (!useless) {
3196               __ movq(r, src.first()->as_Register());
3197             }
3198           }
3199         } else {
3200           // If the arg is an oop type we don't support don't bother to store
3201           // it
3202           if (!useless) {
3203             if (in_sig_bt[j_arg] == T_DOUBLE ||
3204                 in_sig_bt[j_arg] == T_LONG  ||
3205                 in_sig_bt[j_arg] == T_OBJECT ) {
3206               __ movq(r, Address(rbp, fp_offset[src.first()->value()]));
3207             } else {
3208               __ movl(r, Address(rbp, fp_offset[src.first()->value()]));
3209             }
3210           }
3211         }
3212         live[src.first()->value()] = false;
3213       } else if (!useless) {
3214         // full sized move even for int should be ok
3215         __ movq(r, Address(rbp, reg2offset_in(src.first())));
3216       }
3217 
3218       // At this point r has the original java arg in the final location
3219       // (assuming it wasn't useless). If the java arg was an oop
3220       // we have a bit more to do
3221 
3222       if (in_sig_bt[j_arg] == T_ARRAY || in_sig_bt[j_arg] == T_OBJECT ) {
3223         if (out_sig_bt[c_arg] == T_INT || out_sig_bt[c_arg] == T_LONG) {
3224           // need to unbox a one-word value
3225           Label skip;
3226           __ testq(r, r);
3227           __ jcc(Assembler::equal, skip);
3228           BasicType bt = out_sig_bt[c_arg];
3229           int box_offset = java_lang_boxing_object::value_offset_in_bytes(bt);
3230           Address src1(r, box_offset);
3231           if ( bt == T_LONG ) {
3232             __ movq(r, src1);
3233           } else {
3234             __ movl(r, src1);
3235           }
3236           __ bind(skip);
3237 
3238         } else if (out_sig_bt[c_arg] != T_ADDRESS) {
3239           // Convert the arg to NULL
3240           __ xorq(r, r);
3241         }
3242       }
3243 
3244       // dst can longer be holding an input value
3245       live[dst.first()->value()] = false;
3246     }
3247     if (in_sig_bt[j_arg] == T_OBJECT && out_sig_bt[c_arg] == T_LONG) {
3248       assert(out_sig_bt[c_arg+1] == T_VOID, "must be");
3249       ++c_arg; // skip over T_VOID to keep the loop indices in sync
3250     }
3251   }
3252 
3253 
3254   // Ok now we are done. Need to place the nop that dtrace wants in order to
3255   // patch in the trap
3256   int patch_offset = ((intptr_t)__ pc()) - start;
3257 
3258   __ nop();
3259 
3260 
3261   // Return
3262 
3263   __ leave();
3264   __ ret(0);
3265 
3266   __ flush();
3267 
3268   nmethod *nm = nmethod::new_dtrace_nmethod(
3269       method, masm->code(), vep_offset, patch_offset, frame_complete,
3270       stack_slots / VMRegImpl::slots_per_word);
3271   return nm;
3272 
3273 }
3274 
3275 #endif // HAVE_DTRACE_H
3276 
3277 // this function returns the adjust size (in number of words) to a c2i adapter
3278 // activation for use during deoptimization
3279 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
3280   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
3281 }
3282 
3283 
3284 uint SharedRuntime::out_preserve_stack_slots() {
3285   return 0;
3286 }
3287 
3288 //------------------------------generate_deopt_blob----------------------------
3289 void SharedRuntime::generate_deopt_blob() {
3290   // Allocate space for the code
3291   ResourceMark rm;
3292   // Setup code generation tools
3293   CodeBuffer buffer("deopt_blob", 2048, 1024);
3294   MacroAssembler* masm = new MacroAssembler(&buffer);
3295   int frame_size_in_words;
3296   OopMap* map = NULL;
3297   OopMapSet *oop_maps = new OopMapSet();
3298 
3299   // -------------
3300   // This code enters when returning to a de-optimized nmethod.  A return
3301   // address has been pushed on the the stack, and return values are in
3302   // registers.
3303   // If we are doing a normal deopt then we were called from the patched
3304   // nmethod from the point we returned to the nmethod. So the return
3305   // address on the stack is wrong by NativeCall::instruction_size
3306   // We will adjust the value so it looks like we have the original return
3307   // address on the stack (like when we eagerly deoptimized).
3308   // In the case of an exception pending when deoptimizing, we enter
3309   // with a return address on the stack that points after the call we patched
3310   // into the exception handler. We have the following register state from,
3311   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
3312   //    rax: exception oop
3313   //    rbx: exception handler
3314   //    rdx: throwing pc
3315   // So in this case we simply jam rdx into the useless return address and
3316   // the stack looks just like we want.
3317   //
3318   // At this point we need to de-opt.  We save the argument return
3319   // registers.  We call the first C routine, fetch_unroll_info().  This
3320   // routine captures the return values and returns a structure which
3321   // describes the current frame size and the sizes of all replacement frames.
3322   // The current frame is compiled code and may contain many inlined
3323   // functions, each with their own JVM state.  We pop the current frame, then
3324   // push all the new frames.  Then we call the C routine unpack_frames() to
3325   // populate these frames.  Finally unpack_frames() returns us the new target
3326   // address.  Notice that callee-save registers are BLOWN here; they have
3327   // already been captured in the vframeArray at the time the return PC was
3328   // patched.
3329   address start = __ pc();
3330   Label cont;
3331 
3332   // Prolog for non exception case!
3333 
3334   // Save everything in sight.
3335   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3336 
3337   // Normal deoptimization.  Save exec mode for unpack_frames.
3338   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
3339   __ jmp(cont);
3340 
3341   int reexecute_offset = __ pc() - start;
3342 
3343   // Reexecute case
3344   // return address is the pc describes what bci to do re-execute at
3345 
3346   // No need to update map as each call to save_live_registers will produce identical oopmap
3347   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3348 
3349   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
3350   __ jmp(cont);
3351 
3352   int exception_offset = __ pc() - start;
3353 
3354   // Prolog for exception case
3355 
3356   // all registers are dead at this entry point, except for rax, and
3357   // rdx which contain the exception oop and exception pc
3358   // respectively.  Set them in TLS and fall thru to the
3359   // unpack_with_exception_in_tls entry point.
3360 
3361   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3362   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
3363 
3364   int exception_in_tls_offset = __ pc() - start;
3365 
3366   // new implementation because exception oop is now passed in JavaThread
3367 
3368   // Prolog for exception case
3369   // All registers must be preserved because they might be used by LinearScan
3370   // Exceptiop oop and throwing PC are passed in JavaThread
3371   // tos: stack at point of call to method that threw the exception (i.e. only
3372   // args are on the stack, no return address)
3373 
3374   // make room on stack for the return address
3375   // It will be patched later with the throwing pc. The correct value is not
3376   // available now because loading it from memory would destroy registers.
3377   __ push(0);
3378 
3379   // Save everything in sight.
3380   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3381 
3382   // Now it is safe to overwrite any register
3383 
3384   // Deopt during an exception.  Save exec mode for unpack_frames.
3385   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
3386 
3387   // load throwing pc from JavaThread and patch it as the return address
3388   // of the current frame. Then clear the field in JavaThread
3389 
3390   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3391   __ movptr(Address(rbp, wordSize), rdx);
3392   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3393 
3394 #ifdef ASSERT
3395   // verify that there is really an exception oop in JavaThread
3396   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3397   __ verify_oop(rax);
3398 
3399   // verify that there is no pending exception
3400   Label no_pending_exception;
3401   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3402   __ testptr(rax, rax);
3403   __ jcc(Assembler::zero, no_pending_exception);
3404   __ stop("must not have pending exception here");
3405   __ bind(no_pending_exception);
3406 #endif
3407 
3408   __ bind(cont);
3409 
3410   // Call C code.  Need thread and this frame, but NOT official VM entry
3411   // crud.  We cannot block on this call, no GC can happen.
3412   //
3413   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
3414 
3415   // fetch_unroll_info needs to call last_java_frame().
3416 
3417   __ set_last_Java_frame(noreg, noreg, NULL);
3418 #ifdef ASSERT
3419   { Label L;
3420     __ cmpptr(Address(r15_thread,
3421                     JavaThread::last_Java_fp_offset()),
3422             (int32_t)0);
3423     __ jcc(Assembler::equal, L);
3424     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
3425     __ bind(L);
3426   }
3427 #endif // ASSERT
3428   __ mov(c_rarg0, r15_thread);
3429   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
3430 
3431   // Need to have an oopmap that tells fetch_unroll_info where to
3432   // find any register it might need.
3433   oop_maps->add_gc_map(__ pc() - start, map);
3434 
3435   __ reset_last_Java_frame(false);
3436 
3437   // Load UnrollBlock* into rdi
3438   __ mov(rdi, rax);
3439 
3440    Label noException;
3441   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
3442   __ jcc(Assembler::notEqual, noException);
3443   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3444   // QQQ this is useless it was NULL above
3445   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3446   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
3447   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3448 
3449   __ verify_oop(rax);
3450 
3451   // Overwrite the result registers with the exception results.
3452   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3453   // I think this is useless
3454   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
3455 
3456   __ bind(noException);
3457 
3458   // Only register save data is on the stack.
3459   // Now restore the result registers.  Everything else is either dead
3460   // or captured in the vframeArray.
3461   RegisterSaver::restore_result_registers(masm);
3462 
3463   // All of the register save area has been popped of the stack. Only the
3464   // return address remains.
3465 
3466   // Pop all the frames we must move/replace.
3467   //
3468   // Frame picture (youngest to oldest)
3469   // 1: self-frame (no frame link)
3470   // 2: deopting frame  (no frame link)
3471   // 3: caller of deopting frame (could be compiled/interpreted).
3472   //
3473   // Note: by leaving the return address of self-frame on the stack
3474   // and using the size of frame 2 to adjust the stack
3475   // when we are done the return to frame 3 will still be on the stack.
3476 
3477   // Pop deoptimized frame
3478   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3479   __ addptr(rsp, rcx);
3480 
3481   // rsp should be pointing at the return address to the caller (3)
3482 
3483   // Pick up the initial fp we should save
3484   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3485   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3486 
3487 #ifdef ASSERT
3488   // Compilers generate code that bang the stack by as much as the
3489   // interpreter would need. So this stack banging should never
3490   // trigger a fault. Verify that it does not on non product builds.
3491   if (UseStackBanging) {
3492     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3493     __ bang_stack_size(rbx, rcx);
3494   }
3495 #endif
3496 
3497   // Load address of array of frame pcs into rcx
3498   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3499 
3500   // Trash the old pc
3501   __ addptr(rsp, wordSize);
3502 
3503   // Load address of array of frame sizes into rsi
3504   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3505 
3506   // Load counter into rdx
3507   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3508 
3509   // Now adjust the caller's stack to make up for the extra locals
3510   // but record the original sp so that we can save it in the skeletal interpreter
3511   // frame and the stack walking of interpreter_sender will get the unextended sp
3512   // value and not the "real" sp value.
3513 
3514   const Register sender_sp = r8;
3515 
3516   __ mov(sender_sp, rsp);
3517   __ movl(rbx, Address(rdi,
3518                        Deoptimization::UnrollBlock::
3519                        caller_adjustment_offset_in_bytes()));
3520   __ subptr(rsp, rbx);
3521 
3522   // Push interpreter frames in a loop
3523   Label loop;
3524   __ bind(loop);
3525   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3526 #ifdef CC_INTERP
3527   __ subptr(rbx, 4*wordSize);           // we'll push pc and ebp by hand and
3528 #ifdef ASSERT
3529   __ push(0xDEADDEAD);                  // Make a recognizable pattern
3530   __ push(0xDEADDEAD);
3531 #else /* ASSERT */
3532   __ subptr(rsp, 2*wordSize);           // skip the "static long no_param"
3533 #endif /* ASSERT */
3534 #else
3535   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
3536 #endif // CC_INTERP
3537   __ pushptr(Address(rcx, 0));          // Save return address
3538   __ enter();                           // Save old & set new ebp
3539   __ subptr(rsp, rbx);                  // Prolog
3540 #ifdef CC_INTERP
3541   __ movptr(Address(rbp,
3542                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3543             sender_sp); // Make it walkable
3544 #else /* CC_INTERP */
3545   // This value is corrected by layout_activation_impl
3546   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3547   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
3548 #endif /* CC_INTERP */
3549   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
3550   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3551   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3552   __ decrementl(rdx);                   // Decrement counter
3553   __ jcc(Assembler::notZero, loop);
3554   __ pushptr(Address(rcx, 0));          // Save final return address
3555 
3556   // Re-push self-frame
3557   __ enter();                           // Save old & set new ebp
3558 
3559   // Allocate a full sized register save area.
3560   // Return address and rbp are in place, so we allocate two less words.
3561   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
3562 
3563   // Restore frame locals after moving the frame
3564   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
3565   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3566 
3567   // Call C code.  Need thread but NOT official VM entry
3568   // crud.  We cannot block on this call, no GC can happen.  Call should
3569   // restore return values to their stack-slots with the new SP.
3570   //
3571   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
3572 
3573   // Use rbp because the frames look interpreted now
3574   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3575   // Don't need the precise return PC here, just precise enough to point into this code blob.
3576   address the_pc = __ pc();
3577   __ set_last_Java_frame(noreg, rbp, the_pc);
3578 
3579   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
3580   __ mov(c_rarg0, r15_thread);
3581   __ movl(c_rarg1, r14); // second arg: exec_mode
3582   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3583   // Revert SP alignment after call since we're going to do some SP relative addressing below
3584   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
3585 
3586   // Set an oopmap for the call site
3587   // Use the same PC we used for the last java frame
3588   oop_maps->add_gc_map(the_pc - start,
3589                        new OopMap( frame_size_in_words, 0 ));
3590 
3591   // Clear fp AND pc
3592   __ reset_last_Java_frame(true);
3593 
3594   // Collect return values
3595   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
3596   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
3597   // I think this is useless (throwing pc?)
3598   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
3599 
3600   // Pop self-frame.
3601   __ leave();                           // Epilog
3602 
3603   // Jump to interpreter
3604   __ ret(0);
3605 
3606   // Make sure all code is generated
3607   masm->flush();
3608 
3609   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3610   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3611 }
3612 
3613 #ifdef COMPILER2
3614 //------------------------------generate_uncommon_trap_blob--------------------
3615 void SharedRuntime::generate_uncommon_trap_blob() {
3616   // Allocate space for the code
3617   ResourceMark rm;
3618   // Setup code generation tools
3619   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3620   MacroAssembler* masm = new MacroAssembler(&buffer);
3621 
3622   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3623 
3624   address start = __ pc();
3625 
3626   if (UseRTMLocking) {
3627     // Abort RTM transaction before possible nmethod deoptimization.
3628     __ xabort(0);
3629   }
3630 
3631   // Push self-frame.  We get here with a return address on the
3632   // stack, so rsp is 8-byte aligned until we allocate our frame.
3633   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3634 
3635   // No callee saved registers. rbp is assumed implicitly saved
3636   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3637 
3638   // compiler left unloaded_class_index in j_rarg0 move to where the
3639   // runtime expects it.
3640   __ movl(c_rarg1, j_rarg0);
3641 
3642   __ set_last_Java_frame(noreg, noreg, NULL);
3643 
3644   // Call C code.  Need thread but NOT official VM entry
3645   // crud.  We cannot block on this call, no GC can happen.  Call should
3646   // capture callee-saved registers as well as return values.
3647   // Thread is in rdi already.
3648   //
3649   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3650 
3651   __ mov(c_rarg0, r15_thread);
3652   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3653 
3654   // Set an oopmap for the call site
3655   OopMapSet* oop_maps = new OopMapSet();
3656   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3657 
3658   // location of rbp is known implicitly by the frame sender code
3659 
3660   oop_maps->add_gc_map(__ pc() - start, map);
3661 
3662   __ reset_last_Java_frame(false);
3663 
3664   // Load UnrollBlock* into rdi
3665   __ mov(rdi, rax);
3666 
3667   // Pop all the frames we must move/replace.
3668   //
3669   // Frame picture (youngest to oldest)
3670   // 1: self-frame (no frame link)
3671   // 2: deopting frame  (no frame link)
3672   // 3: caller of deopting frame (could be compiled/interpreted).
3673 
3674   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3675   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3676 
3677   // Pop deoptimized frame (int)
3678   __ movl(rcx, Address(rdi,
3679                        Deoptimization::UnrollBlock::
3680                        size_of_deoptimized_frame_offset_in_bytes()));
3681   __ addptr(rsp, rcx);
3682 
3683   // rsp should be pointing at the return address to the caller (3)
3684 
3685   // Pick up the initial fp we should save
3686   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3687   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3688 
3689 #ifdef ASSERT
3690   // Compilers generate code that bang the stack by as much as the
3691   // interpreter would need. So this stack banging should never
3692   // trigger a fault. Verify that it does not on non product builds.
3693   if (UseStackBanging) {
3694     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3695     __ bang_stack_size(rbx, rcx);
3696   }
3697 #endif
3698 
3699   // Load address of array of frame pcs into rcx (address*)
3700   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3701 
3702   // Trash the return pc
3703   __ addptr(rsp, wordSize);
3704 
3705   // Load address of array of frame sizes into rsi (intptr_t*)
3706   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
3707 
3708   // Counter
3709   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
3710 
3711   // Now adjust the caller's stack to make up for the extra locals but
3712   // record the original sp so that we can save it in the skeletal
3713   // interpreter frame and the stack walking of interpreter_sender
3714   // will get the unextended sp value and not the "real" sp value.
3715 
3716   const Register sender_sp = r8;
3717 
3718   __ mov(sender_sp, rsp);
3719   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
3720   __ subptr(rsp, rbx);
3721 
3722   // Push interpreter frames in a loop
3723   Label loop;
3724   __ bind(loop);
3725   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3726   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3727   __ pushptr(Address(rcx, 0));     // Save return address
3728   __ enter();                      // Save old & set new rbp
3729   __ subptr(rsp, rbx);             // Prolog
3730 #ifdef CC_INTERP
3731   __ movptr(Address(rbp,
3732                   -(sizeof(BytecodeInterpreter)) + in_bytes(byte_offset_of(BytecodeInterpreter, _sender_sp))),
3733             sender_sp); // Make it walkable
3734 #else // CC_INTERP
3735   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3736             sender_sp);            // Make it walkable
3737   // This value is corrected by layout_activation_impl
3738   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3739 #endif // CC_INTERP
3740   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3741   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3742   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3743   __ decrementl(rdx);              // Decrement counter
3744   __ jcc(Assembler::notZero, loop);
3745   __ pushptr(Address(rcx, 0));     // Save final return address
3746 
3747   // Re-push self-frame
3748   __ enter();                 // Save old & set new rbp
3749   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3750                               // Prolog
3751 
3752   // Use rbp because the frames look interpreted now
3753   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3754   // Don't need the precise return PC here, just precise enough to point into this code blob.
3755   address the_pc = __ pc();
3756   __ set_last_Java_frame(noreg, rbp, the_pc);
3757 
3758   // Call C code.  Need thread but NOT official VM entry
3759   // crud.  We cannot block on this call, no GC can happen.  Call should
3760   // restore return values to their stack-slots with the new SP.
3761   // Thread is in rdi already.
3762   //
3763   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3764 
3765   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3766   __ mov(c_rarg0, r15_thread);
3767   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3768   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3769 
3770   // Set an oopmap for the call site
3771   // Use the same PC we used for the last java frame
3772   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3773 
3774   // Clear fp AND pc
3775   __ reset_last_Java_frame(true);
3776 
3777   // Pop self-frame.
3778   __ leave();                 // Epilog
3779 
3780   // Jump to interpreter
3781   __ ret(0);
3782 
3783   // Make sure all code is generated
3784   masm->flush();
3785 
3786   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3787                                                  SimpleRuntimeFrame::framesize >> 1);
3788 }
3789 #endif // COMPILER2
3790 
3791 
3792 //------------------------------generate_handler_blob------
3793 //
3794 // Generate a special Compile2Runtime blob that saves all registers,
3795 // and setup oopmap.
3796 //
3797 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3798   assert(StubRoutines::forward_exception_entry() != NULL,
3799          "must be generated before");
3800 
3801   ResourceMark rm;
3802   OopMapSet *oop_maps = new OopMapSet();
3803   OopMap* map;
3804 
3805   // Allocate space for the code.  Setup code generation tools.
3806   CodeBuffer buffer("handler_blob", 2048, 1024);
3807   MacroAssembler* masm = new MacroAssembler(&buffer);
3808 
3809   address start   = __ pc();
3810   address call_pc = NULL;
3811   int frame_size_in_words;
3812   bool cause_return = (poll_type == POLL_AT_RETURN);
3813   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3814 
3815   if (UseRTMLocking) {
3816     // Abort RTM transaction before calling runtime
3817     // because critical section will be large and will be
3818     // aborted anyway. Also nmethod could be deoptimized.
3819     __ xabort(0);
3820   }
3821 
3822   // Make room for return address (or push it again)
3823   if (!cause_return) {
3824     __ push(rbx);
3825   }
3826 
3827   // Save registers, fpu state, and flags
3828   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
3829 
3830   // The following is basically a call_VM.  However, we need the precise
3831   // address of the call in order to generate an oopmap. Hence, we do all the
3832   // work outselves.
3833 
3834   __ set_last_Java_frame(noreg, noreg, NULL);
3835 
3836   // The return address must always be correct so that frame constructor never
3837   // sees an invalid pc.
3838 
3839   if (!cause_return) {
3840     // overwrite the dummy value we pushed on entry
3841     __ movptr(c_rarg0, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3842     __ movptr(Address(rbp, wordSize), c_rarg0);
3843   }
3844 
3845   // Do the call
3846   __ mov(c_rarg0, r15_thread);
3847   __ call(RuntimeAddress(call_ptr));
3848 
3849   // Set an oopmap for the call site.  This oopmap will map all
3850   // oop-registers and debug-info registers as callee-saved.  This
3851   // will allow deoptimization at this safepoint to find all possible
3852   // debug-info recordings, as well as let GC find all oops.
3853 
3854   oop_maps->add_gc_map( __ pc() - start, map);
3855 
3856   Label noException;
3857 
3858   __ reset_last_Java_frame(false);
3859 
3860   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3861   __ jcc(Assembler::equal, noException);
3862 
3863   // Exception pending
3864 
3865   RegisterSaver::restore_live_registers(masm, save_vectors);
3866 
3867   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3868 
3869   // No exception case
3870   __ bind(noException);
3871 
3872   // Normal exit, restore registers and exit.
3873   RegisterSaver::restore_live_registers(masm, save_vectors);
3874 
3875   __ ret(0);
3876 
3877   // Make sure all code is generated
3878   masm->flush();
3879 
3880   // Fill-out other meta info
3881   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3882 }
3883 
3884 //
3885 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3886 //
3887 // Generate a stub that calls into vm to find out the proper destination
3888 // of a java call. All the argument registers are live at this point
3889 // but since this is generic code we don't know what they are and the caller
3890 // must do any gc of the args.
3891 //
3892 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3893   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3894 
3895   // allocate space for the code
3896   ResourceMark rm;
3897 
3898   CodeBuffer buffer(name, 1000, 512);
3899   MacroAssembler* masm                = new MacroAssembler(&buffer);
3900 
3901   int frame_size_in_words;
3902 
3903   OopMapSet *oop_maps = new OopMapSet();
3904   OopMap* map = NULL;
3905 
3906   int start = __ offset();
3907 
3908   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3909 
3910   int frame_complete = __ offset();
3911 
3912   __ set_last_Java_frame(noreg, noreg, NULL);
3913 
3914   __ mov(c_rarg0, r15_thread);
3915 
3916   __ call(RuntimeAddress(destination));
3917 
3918 
3919   // Set an oopmap for the call site.
3920   // We need this not only for callee-saved registers, but also for volatile
3921   // registers that the compiler might be keeping live across a safepoint.
3922 
3923   oop_maps->add_gc_map( __ offset() - start, map);
3924 
3925   // rax contains the address we are going to jump to assuming no exception got installed
3926 
3927   // clear last_Java_sp
3928   __ reset_last_Java_frame(false);
3929   // check for pending exceptions
3930   Label pending;
3931   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3932   __ jcc(Assembler::notEqual, pending);
3933 
3934   // get the returned Method*
3935   __ get_vm_result_2(rbx, r15_thread);
3936   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3937 
3938   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3939 
3940   RegisterSaver::restore_live_registers(masm);
3941 
3942   // We are back the the original state on entry and ready to go.
3943 
3944   __ jmp(rax);
3945 
3946   // Pending exception after the safepoint
3947 
3948   __ bind(pending);
3949 
3950   RegisterSaver::restore_live_registers(masm);
3951 
3952   // exception pending => remove activation and forward to exception handler
3953 
3954   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3955 
3956   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3957   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3958 
3959   // -------------
3960   // make sure all code is generated
3961   masm->flush();
3962 
3963   // return the  blob
3964   // frame_size_words or bytes??
3965   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3966 }
3967 
3968 
3969 //------------------------------Montgomery multiplication------------------------
3970 //
3971 
3972 #ifndef _WINDOWS
3973 
3974 #define ASM_SUBTRACT
3975 
3976 #ifdef ASM_SUBTRACT
3977 // Subtract 0:b from carry:a.  Return carry.
3978 static unsigned long
3979 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
3980   long i = 0, cnt = len;
3981   unsigned long tmp;
3982   asm volatile("clc; "
3983                "0: ; "
3984                "mov (%[b], %[i], 8), %[tmp]; "
3985                "sbb %[tmp], (%[a], %[i], 8); "
3986                "inc %[i]; dec %[cnt]; "
3987                "jne 0b; "
3988                "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
3989                : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
3990                : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
3991                : "memory");
3992   return tmp;
3993 }
3994 #else // ASM_SUBTRACT
3995 typedef int __attribute__((mode(TI))) int128;
3996 
3997 // Subtract 0:b from carry:a.  Return carry.
3998 static unsigned long
3999 sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) {
4000   int128 tmp = 0;
4001   int i;
4002   for (i = 0; i < len; i++) {
4003     tmp += a[i];
4004     tmp -= b[i];
4005     a[i] = tmp;
4006     tmp >>= 64;
4007     assert(-1 <= tmp && tmp <= 0, "invariant");
4008   }
4009   return tmp + carry;
4010 }
4011 #endif // ! ASM_SUBTRACT
4012 
4013 // Multiply (unsigned) Long A by Long B, accumulating the double-
4014 // length result into the accumulator formed of T0, T1, and T2.
4015 #define MACC(A, B, T0, T1, T2)                                      \
4016 do {                                                                \
4017   unsigned long hi, lo;                                             \
4018   asm volatile("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4"   \
4019            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)      \
4020            : "r"(A), "a"(B) : "cc");                                \
4021  } while(0)
4022 
4023 // As above, but add twice the double-length result into the
4024 // accumulator.
4025 #define MACC2(A, B, T0, T1, T2)                                     \
4026 do {                                                                \
4027   unsigned long hi, lo;                                             \
4028   asm volatile("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4;"  \
4029            "add %%rax, %2; adc %%rdx, %3; adc $0, %4"               \
4030            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)      \
4031            : "r"(A), "a"(B) : "cc");                                \
4032  } while(0)
4033 
4034 // Fast Montgomery multiplication.  The derivation of the algorithm is
4035 // in  A Cryptographic Library for the Motorola DSP56000,
4036 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
4037 
4038 static void __attribute__((noinline))
4039 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
4040                     unsigned long m[], unsigned long inv, int len) {
4041   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
4042   int i;
4043 
4044   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
4045 
4046   for (i = 0; i < len; i++) {
4047     int j;
4048     for (j = 0; j < i; j++) {
4049       MACC(a[j], b[i-j], t0, t1, t2);
4050       MACC(m[j], n[i-j], t0, t1, t2);
4051     }
4052     MACC(a[i], b[0], t0, t1, t2);
4053     m[i] = t0 * inv;
4054     MACC(m[i], n[0], t0, t1, t2);
4055 
4056     assert(t0 == 0, "broken Montgomery multiply");
4057 
4058     t0 = t1; t1 = t2; t2 = 0;
4059   }
4060 
4061   for (i = len; i < 2*len; i++) {
4062     int j;
4063     for (j = i-len+1; j < len; j++) {
4064       MACC(a[j], b[i-j], t0, t1, t2);
4065       MACC(m[j], n[i-j], t0, t1, t2);
4066     }
4067     m[i-len] = t0;
4068     t0 = t1; t1 = t2; t2 = 0;
4069   }
4070 
4071   while (t0)
4072     t0 = sub(m, n, t0, len);
4073 }
4074 
4075 // Fast Montgomery squaring.  This uses asymptotically 25% fewer
4076 // multiplies so it should be up to 25% faster than Montgomery
4077 // multiplication.  However, its loop control is more complex and it
4078 // may actually run slower on some machines.
4079 
4080 static void __attribute__((noinline))
4081 montgomery_square(unsigned long a[], unsigned long n[],
4082                   unsigned long m[], unsigned long inv, int len) {
4083   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
4084   int i;
4085 
4086   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
4087 
4088   for (i = 0; i < len; i++) {
4089     int j;
4090     int end = (i+1)/2;
4091     for (j = 0; j < end; j++) {
4092       MACC2(a[j], a[i-j], t0, t1, t2);
4093       MACC(m[j], n[i-j], t0, t1, t2);
4094     }
4095     if ((i & 1) == 0) {
4096       MACC(a[j], a[j], t0, t1, t2);
4097     }
4098     for (; j < i; j++) {
4099       MACC(m[j], n[i-j], t0, t1, t2);
4100     }
4101     m[i] = t0 * inv;
4102     MACC(m[i], n[0], t0, t1, t2);
4103 
4104     assert(t0 == 0, "broken Montgomery square");
4105 
4106     t0 = t1; t1 = t2; t2 = 0;
4107   }
4108 
4109   for (i = len; i < 2*len; i++) {
4110     int start = i-len+1;
4111     int end = start + (len - start)/2;
4112     int j;
4113     for (j = start; j < end; j++) {
4114       MACC2(a[j], a[i-j], t0, t1, t2);
4115       MACC(m[j], n[i-j], t0, t1, t2);
4116     }
4117     if ((i & 1) == 0) {
4118       MACC(a[j], a[j], t0, t1, t2);
4119     }
4120     for (; j < len; j++) {
4121       MACC(m[j], n[i-j], t0, t1, t2);
4122     }
4123     m[i-len] = t0;
4124     t0 = t1; t1 = t2; t2 = 0;
4125   }
4126 
4127   while (t0)
4128     t0 = sub(m, n, t0, len);
4129 }
4130 
4131 // Swap words in a longword.
4132 static unsigned long swap(unsigned long x) {
4133   return (x << 32) | (x >> 32);
4134 }
4135 
4136 // Copy len longwords from s to d, word-swapping as we go.  The
4137 // destination array is reversed.
4138 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
4139   d += len;
4140   while(len-- > 0) {
4141     d--;
4142     *d = swap(*s);
4143     s++;
4144   }
4145 }
4146 
4147 // The threshold at which squaring is advantageous was determined
4148 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
4149 #define MONTGOMERY_SQUARING_THRESHOLD 64
4150 
4151 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
4152                                         jint len, jlong inv,
4153                                         jint *m_ints) {
4154   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
4155   int longwords = len/2;
4156 
4157   // Make very sure we don't use so much space that the stack might
4158   // overflow.  512 jints corresponds to an 16384-bit integer and
4159   // will use here a total of 8k bytes of stack space.
4160   int total_allocation = longwords * sizeof (unsigned long) * 4;
4161   guarantee(total_allocation <= 8192, "must be");
4162   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
4163 
4164   // Local scratch arrays
4165   unsigned long
4166     *a = scratch + 0 * longwords,
4167     *b = scratch + 1 * longwords,
4168     *n = scratch + 2 * longwords,
4169     *m = scratch + 3 * longwords;
4170 
4171   reverse_words((unsigned long *)a_ints, a, longwords);
4172   reverse_words((unsigned long *)b_ints, b, longwords);
4173   reverse_words((unsigned long *)n_ints, n, longwords);
4174 
4175   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
4176 
4177   reverse_words(m, (unsigned long *)m_ints, longwords);
4178 }
4179 
4180 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
4181                                       jint len, jlong inv,
4182                                       jint *m_ints) {
4183   assert(len % 2 == 0, "array length in montgomery_square must be even");
4184   int longwords = len/2;
4185 
4186   // Make very sure we don't use so much space that the stack might
4187   // overflow.  512 jints corresponds to an 16384-bit integer and
4188   // will use here a total of 6k bytes of stack space.
4189   int total_allocation = longwords * sizeof (unsigned long) * 3;
4190   guarantee(total_allocation <= 8192, "must be");
4191   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
4192 
4193   // Local scratch arrays
4194   unsigned long
4195     *a = scratch + 0 * longwords,
4196     *n = scratch + 1 * longwords,
4197     *m = scratch + 2 * longwords;
4198 
4199   reverse_words((unsigned long *)a_ints, a, longwords);
4200   reverse_words((unsigned long *)n_ints, n, longwords);
4201 
4202   //montgomery_square fails to pass BigIntegerTest on solaris amd64
4203   //on jdk7 and jdk8.
4204 #ifndef SOLARIS
4205   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
4206 #else
4207   if (0) {
4208 #endif
4209     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
4210   } else {
4211     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
4212   }
4213 
4214   reverse_words(m, (unsigned long *)m_ints, longwords);
4215 }
4216 
4217 #endif // WINDOWS
4218 
4219 #ifdef COMPILER2
4220 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
4221 //
4222 //------------------------------generate_exception_blob---------------------------
4223 // creates exception blob at the end
4224 // Using exception blob, this code is jumped from a compiled method.
4225 // (see emit_exception_handler in x86_64.ad file)
4226 //
4227 // Given an exception pc at a call we call into the runtime for the
4228 // handler in this method. This handler might merely restore state
4229 // (i.e. callee save registers) unwind the frame and jump to the
4230 // exception handler for the nmethod if there is no Java level handler
4231 // for the nmethod.
4232 //
4233 // This code is entered with a jmp.
4234 //
4235 // Arguments:
4236 //   rax: exception oop
4237 //   rdx: exception pc
4238 //
4239 // Results:
4240 //   rax: exception oop
4241 //   rdx: exception pc in caller or ???
4242 //   destination: exception handler of caller
4243 //
4244 // Note: the exception pc MUST be at a call (precise debug information)
4245 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
4246 //
4247 
4248 void OptoRuntime::generate_exception_blob() {
4249   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
4250   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
4251   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
4252 
4253   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
4254 
4255   // Allocate space for the code
4256   ResourceMark rm;
4257   // Setup code generation tools
4258   CodeBuffer buffer("exception_blob", 2048, 1024);
4259   MacroAssembler* masm = new MacroAssembler(&buffer);
4260 
4261 
4262   address start = __ pc();
4263 
4264   // Exception pc is 'return address' for stack walker
4265   __ push(rdx);
4266   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
4267 
4268   // Save callee-saved registers.  See x86_64.ad.
4269 
4270   // rbp is an implicitly saved callee saved register (i.e., the calling
4271   // convention will save/restore it in the prolog/epilog). Other than that
4272   // there are no callee save registers now that adapter frames are gone.
4273 
4274   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
4275 
4276   // Store exception in Thread object. We cannot pass any arguments to the
4277   // handle_exception call, since we do not want to make any assumption
4278   // about the size of the frame where the exception happened in.
4279   // c_rarg0 is either rdi (Linux) or rcx (Windows).
4280   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
4281   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
4282 
4283   // This call does all the hard work.  It checks if an exception handler
4284   // exists in the method.
4285   // If so, it returns the handler address.
4286   // If not, it prepares for stack-unwinding, restoring the callee-save
4287   // registers of the frame being removed.
4288   //
4289   // address OptoRuntime::handle_exception_C(JavaThread* thread)
4290 
4291   // At a method handle call, the stack may not be properly aligned
4292   // when returning with an exception.
4293   address the_pc = __ pc();
4294   __ set_last_Java_frame(noreg, noreg, the_pc);
4295   __ mov(c_rarg0, r15_thread);
4296   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
4297   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
4298 
4299   // Set an oopmap for the call site.  This oopmap will only be used if we
4300   // are unwinding the stack.  Hence, all locations will be dead.
4301   // Callee-saved registers will be the same as the frame above (i.e.,
4302   // handle_exception_stub), since they were restored when we got the
4303   // exception.
4304 
4305   OopMapSet* oop_maps = new OopMapSet();
4306 
4307   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
4308 
4309   __ reset_last_Java_frame(false);
4310 
4311   // Restore callee-saved registers
4312 
4313   // rbp is an implicitly saved callee-saved register (i.e., the calling
4314   // convention will save restore it in prolog/epilog) Other than that
4315   // there are no callee save registers now that adapter frames are gone.
4316 
4317   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
4318 
4319   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
4320   __ pop(rdx);                  // No need for exception pc anymore
4321 
4322   // rax: exception handler
4323 
4324   // We have a handler in rax (could be deopt blob).
4325   __ mov(r8, rax);
4326 
4327   // Get the exception oop
4328   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
4329   // Get the exception pc in case we are deoptimized
4330   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
4331 #ifdef ASSERT
4332   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
4333   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
4334 #endif
4335   // Clear the exception oop so GC no longer processes it as a root.
4336   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
4337 
4338   // rax: exception oop
4339   // r8:  exception handler
4340   // rdx: exception pc
4341   // Jump to handler
4342 
4343   __ jmp(r8);
4344 
4345   // Make sure all code is generated
4346   masm->flush();
4347 
4348   // Set exception blob
4349   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
4350 }
4351 #endif // COMPILER2