/* * Copyright (c) 2015, 2020, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/shared/cardTableRS.hpp" #include "gc/shared/collectedHeap.hpp" #include "gc/shared/gcArguments.hpp" #include "gc/shared/gcConfig.hpp" #include "gc/shared/jvmFlagConstraintsGC.hpp" #include "gc/shared/plab.hpp" #include "gc/shared/threadLocalAllocBuffer.hpp" #include "runtime/arguments.hpp" #include "runtime/globals.hpp" #include "runtime/globals_extension.hpp" #include "runtime/thread.inline.hpp" #include "utilities/align.hpp" #include "utilities/macros.hpp" #include "utilities/powerOfTwo.hpp" #if INCLUDE_G1GC #include "gc/g1/jvmFlagConstraintsG1.hpp" #endif #if INCLUDE_PARALLELGC #include "gc/parallel/jvmFlagConstraintsParallel.hpp" #endif // Some flags that have default values that indicate that the // JVM should automatically determine an appropriate value // for that flag. In those cases it is only appropriate for the // constraint checking to be done if the user has specified the // value(s) of the flag(s) on the command line. In the constraint // checking functions, FLAG_IS_CMDLINE() is used to check if // the flag has been set by the user and so should be checked. // As ParallelGCThreads differs among GC modes, we need constraint function. JVMFlag::Error ParallelGCThreadsConstraintFunc(uint value, bool verbose) { JVMFlag::Error status = JVMFlag::SUCCESS; #if INCLUDE_PARALLELGC status = ParallelGCThreadsConstraintFuncParallel(value, verbose); if (status != JVMFlag::SUCCESS) { return status; } #endif return status; } // As ConcGCThreads should be smaller than ParallelGCThreads, // we need constraint function. JVMFlag::Error ConcGCThreadsConstraintFunc(uint value, bool verbose) { // G1 GC use ConcGCThreads. if (GCConfig::is_gc_selected(CollectedHeap::G1) && (value > ParallelGCThreads)) { JVMFlag::printError(verbose, "ConcGCThreads (" UINT32_FORMAT ") must be " "less than or equal to ParallelGCThreads (" UINT32_FORMAT ")\n", value, ParallelGCThreads); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } static JVMFlag::Error MinPLABSizeBounds(const char* name, size_t value, bool verbose) { if ((GCConfig::is_gc_selected(CollectedHeap::G1) || GCConfig::is_gc_selected(CollectedHeap::Parallel)) && (value < PLAB::min_size())) { JVMFlag::printError(verbose, "%s (" SIZE_FORMAT ") must be " "greater than or equal to ergonomic PLAB minimum size (" SIZE_FORMAT ")\n", name, value, PLAB::min_size()); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } JVMFlag::Error MaxPLABSizeBounds(const char* name, size_t value, bool verbose) { if ((GCConfig::is_gc_selected(CollectedHeap::G1) || GCConfig::is_gc_selected(CollectedHeap::Parallel)) && (value > PLAB::max_size())) { JVMFlag::printError(verbose, "%s (" SIZE_FORMAT ") must be " "less than or equal to ergonomic PLAB maximum size (" SIZE_FORMAT ")\n", name, value, PLAB::max_size()); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } static JVMFlag::Error MinMaxPLABSizeBounds(const char* name, size_t value, bool verbose) { JVMFlag::Error status = MinPLABSizeBounds(name, value, verbose); if (status == JVMFlag::SUCCESS) { return MaxPLABSizeBounds(name, value, verbose); } return status; } JVMFlag::Error YoungPLABSizeConstraintFunc(size_t value, bool verbose) { return MinMaxPLABSizeBounds("YoungPLABSize", value, verbose); } JVMFlag::Error OldPLABSizeConstraintFunc(size_t value, bool verbose) { JVMFlag::Error status = JVMFlag::SUCCESS; { status = MinMaxPLABSizeBounds("OldPLABSize", value, verbose); } return status; } JVMFlag::Error MinHeapFreeRatioConstraintFunc(uintx value, bool verbose) { if (value > MaxHeapFreeRatio) { JVMFlag::printError(verbose, "MinHeapFreeRatio (" UINTX_FORMAT ") must be " "less than or equal to MaxHeapFreeRatio (" UINTX_FORMAT ")\n", value, MaxHeapFreeRatio); return JVMFlag::VIOLATES_CONSTRAINT; } else { return JVMFlag::SUCCESS; } } JVMFlag::Error MaxHeapFreeRatioConstraintFunc(uintx value, bool verbose) { if (value < MinHeapFreeRatio) { JVMFlag::printError(verbose, "MaxHeapFreeRatio (" UINTX_FORMAT ") must be " "greater than or equal to MinHeapFreeRatio (" UINTX_FORMAT ")\n", value, MinHeapFreeRatio); return JVMFlag::VIOLATES_CONSTRAINT; } else { return JVMFlag::SUCCESS; } } static JVMFlag::Error CheckMaxHeapSizeAndSoftRefLRUPolicyMSPerMB(size_t maxHeap, intx softRef, bool verbose) { if ((softRef > 0) && ((maxHeap / M) > (max_uintx / softRef))) { JVMFlag::printError(verbose, "Desired lifetime of SoftReferences cannot be expressed correctly. " "MaxHeapSize (" SIZE_FORMAT ") or SoftRefLRUPolicyMSPerMB " "(" INTX_FORMAT ") is too large\n", maxHeap, softRef); return JVMFlag::VIOLATES_CONSTRAINT; } else { return JVMFlag::SUCCESS; } } JVMFlag::Error SoftRefLRUPolicyMSPerMBConstraintFunc(intx value, bool verbose) { return CheckMaxHeapSizeAndSoftRefLRUPolicyMSPerMB(MaxHeapSize, value, verbose); } JVMFlag::Error MarkStackSizeConstraintFunc(size_t value, bool verbose) { // value == 0 is handled by the range constraint. if (value > MarkStackSizeMax) { JVMFlag::printError(verbose, "MarkStackSize (" SIZE_FORMAT ") must be " "less than or equal to MarkStackSizeMax (" SIZE_FORMAT ")\n", value, MarkStackSizeMax); return JVMFlag::VIOLATES_CONSTRAINT; } else { return JVMFlag::SUCCESS; } } JVMFlag::Error MinMetaspaceFreeRatioConstraintFunc(uintx value, bool verbose) { if (value > MaxMetaspaceFreeRatio) { JVMFlag::printError(verbose, "MinMetaspaceFreeRatio (" UINTX_FORMAT ") must be " "less than or equal to MaxMetaspaceFreeRatio (" UINTX_FORMAT ")\n", value, MaxMetaspaceFreeRatio); return JVMFlag::VIOLATES_CONSTRAINT; } else { return JVMFlag::SUCCESS; } } JVMFlag::Error MaxMetaspaceFreeRatioConstraintFunc(uintx value, bool verbose) { if (value < MinMetaspaceFreeRatio) { JVMFlag::printError(verbose, "MaxMetaspaceFreeRatio (" UINTX_FORMAT ") must be " "greater than or equal to MinMetaspaceFreeRatio (" UINTX_FORMAT ")\n", value, MinMetaspaceFreeRatio); return JVMFlag::VIOLATES_CONSTRAINT; } else { return JVMFlag::SUCCESS; } } JVMFlag::Error InitialTenuringThresholdConstraintFunc(uintx value, bool verbose) { #if INCLUDE_PARALLELGC JVMFlag::Error status = InitialTenuringThresholdConstraintFuncParallel(value, verbose); if (status != JVMFlag::SUCCESS) { return status; } #endif return JVMFlag::SUCCESS; } JVMFlag::Error MaxTenuringThresholdConstraintFunc(uintx value, bool verbose) { #if INCLUDE_PARALLELGC JVMFlag::Error status = MaxTenuringThresholdConstraintFuncParallel(value, verbose); if (status != JVMFlag::SUCCESS) { return status; } #endif // MaxTenuringThreshold=0 means NeverTenure=false && AlwaysTenure=true if ((value == 0) && (NeverTenure || !AlwaysTenure)) { JVMFlag::printError(verbose, "MaxTenuringThreshold (0) should match to NeverTenure=false " "&& AlwaysTenure=true. But we have NeverTenure=%s " "AlwaysTenure=%s\n", NeverTenure ? "true" : "false", AlwaysTenure ? "true" : "false"); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } JVMFlag::Error MaxGCPauseMillisConstraintFunc(uintx value, bool verbose) { #if INCLUDE_G1GC JVMFlag::Error status = MaxGCPauseMillisConstraintFuncG1(value, verbose); if (status != JVMFlag::SUCCESS) { return status; } #endif return JVMFlag::SUCCESS; } JVMFlag::Error GCPauseIntervalMillisConstraintFunc(uintx value, bool verbose) { #if INCLUDE_G1GC JVMFlag::Error status = GCPauseIntervalMillisConstraintFuncG1(value, verbose); if (status != JVMFlag::SUCCESS) { return status; } #endif return JVMFlag::SUCCESS; } // To avoid an overflow by 'align_up(value, alignment)'. static JVMFlag::Error MaxSizeForAlignment(const char* name, size_t value, size_t alignment, bool verbose) { size_t aligned_max = ((max_uintx - alignment) & ~(alignment-1)); if (value > aligned_max) { JVMFlag::printError(verbose, "%s (" SIZE_FORMAT ") must be " "less than or equal to aligned maximum value (" SIZE_FORMAT ")\n", name, value, aligned_max); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } static JVMFlag::Error MaxSizeForHeapAlignment(const char* name, size_t value, bool verbose) { size_t heap_alignment; #if INCLUDE_G1GC if (UseG1GC) { // For G1 GC, we don't know until G1CollectedHeap is created. heap_alignment = MaxSizeForHeapAlignmentG1(); } else #endif { heap_alignment = GCArguments::compute_heap_alignment(); } return MaxSizeForAlignment(name, value, heap_alignment, verbose); } JVMFlag::Error MinHeapSizeConstraintFunc(size_t value, bool verbose) { return MaxSizeForHeapAlignment("MinHeapSize", value, verbose); } JVMFlag::Error InitialHeapSizeConstraintFunc(size_t value, bool verbose) { return MaxSizeForHeapAlignment("InitialHeapSize", value, verbose); } JVMFlag::Error MaxHeapSizeConstraintFunc(size_t value, bool verbose) { JVMFlag::Error status = MaxSizeForHeapAlignment("MaxHeapSize", value, verbose); if (status == JVMFlag::SUCCESS) { status = CheckMaxHeapSizeAndSoftRefLRUPolicyMSPerMB(value, SoftRefLRUPolicyMSPerMB, verbose); } return status; } JVMFlag::Error SoftMaxHeapSizeConstraintFunc(size_t value, bool verbose) { if (value > MaxHeapSize) { JVMFlag::printError(verbose, "SoftMaxHeapSize must be less than or equal to the maximum heap size\n"); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } JVMFlag::Error HeapBaseMinAddressConstraintFunc(size_t value, bool verbose) { // If an overflow happened in Arguments::set_heap_size(), MaxHeapSize will have too large a value. // Check for this by ensuring that MaxHeapSize plus the requested min base address still fit within max_uintx. if (UseCompressedOops && FLAG_IS_ERGO(MaxHeapSize) && (value > (max_uintx - MaxHeapSize))) { JVMFlag::printError(verbose, "HeapBaseMinAddress (" SIZE_FORMAT ") or MaxHeapSize (" SIZE_FORMAT ") is too large. " "Sum of them must be less than or equal to maximum of size_t (" SIZE_FORMAT ")\n", value, MaxHeapSize, max_uintx); return JVMFlag::VIOLATES_CONSTRAINT; } return MaxSizeForHeapAlignment("HeapBaseMinAddress", value, verbose); } JVMFlag::Error NewSizeConstraintFunc(size_t value, bool verbose) { #if INCLUDE_G1GC JVMFlag::Error status = NewSizeConstraintFuncG1(value, verbose); if (status != JVMFlag::SUCCESS) { return status; } #endif return JVMFlag::SUCCESS; } JVMFlag::Error MinTLABSizeConstraintFunc(size_t value, bool verbose) { // At least, alignment reserve area is needed. if (value < ThreadLocalAllocBuffer::alignment_reserve_in_bytes()) { JVMFlag::printError(verbose, "MinTLABSize (" SIZE_FORMAT ") must be " "greater than or equal to reserved area in TLAB (" SIZE_FORMAT ")\n", value, ThreadLocalAllocBuffer::alignment_reserve_in_bytes()); return JVMFlag::VIOLATES_CONSTRAINT; } if (value > (ThreadLocalAllocBuffer::max_size() * HeapWordSize)) { JVMFlag::printError(verbose, "MinTLABSize (" SIZE_FORMAT ") must be " "less than or equal to ergonomic TLAB maximum (" SIZE_FORMAT ")\n", value, ThreadLocalAllocBuffer::max_size() * HeapWordSize); return JVMFlag::VIOLATES_CONSTRAINT; } return JVMFlag::SUCCESS; } JVMFlag::Error TLABSizeConstraintFunc(size_t value, bool verbose) { // Skip for default value of zero which means set ergonomically. if (FLAG_IS_CMDLINE(TLABSize)) { if (value < MinTLABSize) { JVMFlag::printError(verbose, "TLABSize (" SIZE_FORMAT ") must be " "greater than or equal to MinTLABSize (" SIZE_FORMAT ")\n", value, MinTLABSize); return JVMFlag::VIOLATES_CONSTRAINT; } if (value > (ThreadLocalAllocBuffer::max_size() * HeapWordSize)) { JVMFlag::printError(verbose, "TLABSize (" SIZE_FORMAT ") must be " "less than or equal to ergonomic TLAB maximum size (" SIZE_FORMAT ")\n", value, (ThreadLocalAllocBuffer::max_size() * HeapWordSize)); return JVMFlag::VIOLATES_CONSTRAINT; } } return JVMFlag::SUCCESS; } // We will protect overflow from ThreadLocalAllocBuffer::record_slow_allocation(), // so AfterMemoryInit type is enough to check. JVMFlag::Error TLABWasteIncrementConstraintFunc(uintx value, bool verbose) { if (UseTLAB) { size_t refill_waste_limit = Thread::current()->tlab().refill_waste_limit(); // Compare with 'max_uintx' as ThreadLocalAllocBuffer::_refill_waste_limit is 'size_t'. if (refill_waste_limit > (max_uintx - value)) { JVMFlag::printError(verbose, "TLABWasteIncrement (" UINTX_FORMAT ") must be " "less than or equal to ergonomic TLAB waste increment maximum size(" SIZE_FORMAT ")\n", value, (max_uintx - refill_waste_limit)); return JVMFlag::VIOLATES_CONSTRAINT; } } return JVMFlag::SUCCESS; } JVMFlag::Error SurvivorRatioConstraintFunc(uintx value, bool verbose) { if (FLAG_IS_CMDLINE(SurvivorRatio) && (value > (MaxHeapSize / SpaceAlignment))) { JVMFlag::printError(verbose, "SurvivorRatio (" UINTX_FORMAT ") must be " "less than or equal to ergonomic SurvivorRatio maximum (" SIZE_FORMAT ")\n", value, (MaxHeapSize / SpaceAlignment)); return JVMFlag::VIOLATES_CONSTRAINT; } else { return JVMFlag::SUCCESS; } } JVMFlag::Error MetaspaceSizeConstraintFunc(size_t value, bool verbose) { if (value > MaxMetaspaceSize) { JVMFlag::printError(verbose, "MetaspaceSize (" SIZE_FORMAT ") must be " "less than or equal to MaxMetaspaceSize (" SIZE_FORMAT ")\n", value, MaxMetaspaceSize); return JVMFlag::VIOLATES_CONSTRAINT; } else { return JVMFlag::SUCCESS; } } JVMFlag::Error MaxMetaspaceSizeConstraintFunc(size_t value, bool verbose) { if (value < MetaspaceSize) { JVMFlag::printError(verbose, "MaxMetaspaceSize (" SIZE_FORMAT ") must be " "greater than or equal to MetaspaceSize (" SIZE_FORMAT ")\n", value, MaxMetaspaceSize); return JVMFlag::VIOLATES_CONSTRAINT; } else { return JVMFlag::SUCCESS; } } JVMFlag::Error SurvivorAlignmentInBytesConstraintFunc(intx value, bool verbose) { if (value != 0) { if (!is_power_of_2(value)) { JVMFlag::printError(verbose, "SurvivorAlignmentInBytes (" INTX_FORMAT ") must be " "power of 2\n", value); return JVMFlag::VIOLATES_CONSTRAINT; } if (value < ObjectAlignmentInBytes) { JVMFlag::printError(verbose, "SurvivorAlignmentInBytes (" INTX_FORMAT ") must be " "greater than or equal to ObjectAlignmentInBytes (" INTX_FORMAT ")\n", value, ObjectAlignmentInBytes); return JVMFlag::VIOLATES_CONSTRAINT; } } return JVMFlag::SUCCESS; }