1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_MEMORY_BINARYTREEDICTIONARY_INLINE_HPP
  26 #define SHARE_MEMORY_BINARYTREEDICTIONARY_INLINE_HPP
  27 
  28 #include "gc/shared/spaceDecorator.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/binaryTreeDictionary.hpp"
  32 #include "memory/freeList.inline.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "runtime/mutex.hpp"
  35 #include "runtime/globals.hpp"
  36 #include "utilities/macros.hpp"
  37 #include "utilities/ostream.hpp"
  38 
  39 ////////////////////////////////////////////////////////////////////////////////
  40 // A binary tree based search structure for free blocks.
  41 // This is currently used in the Concurrent Mark&Sweep implementation.
  42 ////////////////////////////////////////////////////////////////////////////////
  43 
  44 template <class Chunk_t, class FreeList_t>
  45 TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
  46   // Do some assertion checking here.
  47   return (TreeChunk<Chunk_t, FreeList_t>*) fc;
  48 }
  49 
  50 template <class Chunk_t, class FreeList_t>
  51 void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
  52   TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
  53   if (prev() != NULL) { // interior list node shouldn't have tree fields
  54     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
  55               embedded_list()->right()  == NULL, "should be clear");
  56   }
  57   if (nextTC != NULL) {
  58     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
  59     guarantee(nextTC->size() == size(), "wrong size");
  60     nextTC->verify_tree_chunk_list();
  61   }
  62 }
  63 
  64 template <class Chunk_t, class FreeList_t>
  65 TreeList<Chunk_t, FreeList_t>::TreeList() : _parent(NULL),
  66   _left(NULL), _right(NULL) {}
  67 
  68 template <class Chunk_t, class FreeList_t>
  69 TreeList<Chunk_t, FreeList_t>*
  70 TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
  71   // This first free chunk in the list will be the tree list.
  72   assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
  73     "Chunk is too small for a TreeChunk");
  74   TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
  75   tl->initialize();
  76   tc->set_list(tl);
  77   tl->set_size(tc->size());
  78   tl->link_head(tc);
  79   tl->link_tail(tc);
  80   tl->set_count(1);
  81   assert(tl->parent() == NULL, "Should be clear");
  82   return tl;
  83 }
  84 
  85 template <class Chunk_t, class FreeList_t>
  86 TreeList<Chunk_t, FreeList_t>*
  87 TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
  88   TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
  89   assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
  90     "Chunk is too small for a TreeChunk");
  91   // The space will have been mangled initially but
  92   // is not remangled when a Chunk_t is returned to the free list
  93   // (since it is used to maintain the chunk on the free list).
  94   tc->assert_is_mangled();
  95   tc->set_size(size);
  96   tc->link_prev(NULL);
  97   tc->link_next(NULL);
  98   TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
  99   return tl;
 100 }
 101 
 102 
 103 template <class Chunk_t, class FreeList_t>
 104 TreeList<Chunk_t, FreeList_t>*
 105 TreeList<Chunk_t, FreeList_t>::get_better_list(
 106   BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
 107   return this;
 108 }
 109 
 110 template <class Chunk_t, class FreeList_t>
 111 TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
 112 
 113   TreeList<Chunk_t, FreeList_t>* retTL = this;
 114   Chunk_t* list = head();
 115   assert(!list || list != list->next(), "Chunk on list twice");
 116   assert(tc != NULL, "Chunk being removed is NULL");
 117   assert(parent() == NULL || this == parent()->left() ||
 118     this == parent()->right(), "list is inconsistent");
 119   assert(tc->is_free(), "Header is not marked correctly");
 120   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 121   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 122 
 123   Chunk_t* prevFC = tc->prev();
 124   TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
 125   assert(list != NULL, "should have at least the target chunk");
 126 
 127   // Is this the first item on the list?
 128   if (tc == list) {
 129     // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
 130     // first chunk in the list unless it is the last chunk in the list
 131     // because the first chunk is also acting as the tree node.
 132     // When coalescing happens, however, the first chunk in the a tree
 133     // list can be the start of a free range.  Free ranges are removed
 134     // from the free lists so that they are not available to be
 135     // allocated when the sweeper yields (giving up the free list lock)
 136     // to allow mutator activity.  If this chunk is the first in the
 137     // list and is not the last in the list, do the work to copy the
 138     // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
 139     // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
 140     if (nextTC == NULL) {
 141       assert(prevFC == NULL, "Not last chunk in the list");
 142       set_tail(NULL);
 143       set_head(NULL);
 144     } else {
 145       // copy embedded list.
 146       nextTC->set_embedded_list(tc->embedded_list());
 147       retTL = nextTC->embedded_list();
 148       // Fix the pointer to the list in each chunk in the list.
 149       // This can be slow for a long list.  Consider having
 150       // an option that does not allow the first chunk on the
 151       // list to be coalesced.
 152       for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
 153           curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
 154         curTC->set_list(retTL);
 155       }
 156       // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
 157       if (retTL->parent() != NULL) {
 158         if (this == retTL->parent()->left()) {
 159           retTL->parent()->set_left(retTL);
 160         } else {
 161           assert(this == retTL->parent()->right(), "Parent is incorrect");
 162           retTL->parent()->set_right(retTL);
 163         }
 164       }
 165       // Fix the children's parent pointers to point to the
 166       // new list.
 167       assert(right() == retTL->right(), "Should have been copied");
 168       if (retTL->right() != NULL) {
 169         retTL->right()->set_parent(retTL);
 170       }
 171       assert(left() == retTL->left(), "Should have been copied");
 172       if (retTL->left() != NULL) {
 173         retTL->left()->set_parent(retTL);
 174       }
 175       retTL->link_head(nextTC);
 176       assert(nextTC->is_free(), "Should be a free chunk");
 177     }
 178   } else {
 179     if (nextTC == NULL) {
 180       // Removing chunk at tail of list
 181       this->link_tail(prevFC);
 182     }
 183     // Chunk is interior to the list
 184     prevFC->link_after(nextTC);
 185   }
 186 
 187   // Below this point the embedded TreeList<Chunk_t, FreeList_t> being used for the
 188   // tree node may have changed. Don't use "this"
 189   // TreeList<Chunk_t, FreeList_t>*.
 190   // chunk should still be a free chunk (bit set in _prev)
 191   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
 192     "Wrong sized chunk in list");
 193   debug_only(
 194     tc->link_prev(NULL);
 195     tc->link_next(NULL);
 196     tc->set_list(NULL);
 197     bool prev_found = false;
 198     bool next_found = false;
 199     for (Chunk_t* curFC = retTL->head();
 200          curFC != NULL; curFC = curFC->next()) {
 201       assert(curFC != tc, "Chunk is still in list");
 202       if (curFC == prevFC) {
 203         prev_found = true;
 204       }
 205       if (curFC == nextTC) {
 206         next_found = true;
 207       }
 208     }
 209     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
 210     assert(nextTC == NULL || next_found, "Chunk was lost from list");
 211     assert(retTL->parent() == NULL ||
 212            retTL == retTL->parent()->left() ||
 213            retTL == retTL->parent()->right(),
 214            "list is inconsistent");
 215   )
 216   retTL->decrement_count();
 217 
 218   assert(tc->is_free(), "Should still be a free chunk");
 219   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
 220     "list invariant");
 221   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
 222     "list invariant");
 223   return retTL;
 224 }
 225 
 226 template <class Chunk_t, class FreeList_t>
 227 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
 228   assert(chunk != NULL, "returning NULL chunk");
 229   assert(chunk->list() == this, "list should be set for chunk");
 230   assert(tail() != NULL, "The tree list is embedded in the first chunk");
 231   // which means that the list can never be empty.
 232   // This is expensive for metaspace
 233   assert(!FLSVerifyDictionary || !this->verify_chunk_in_free_list(chunk), "Double entry");
 234   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 235   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 236 
 237   Chunk_t* fc = tail();
 238   fc->link_after(chunk);
 239   this->link_tail(chunk);
 240 
 241   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
 242   FreeList_t::increment_count();
 243   debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
 244   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 245   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 246 }
 247 
 248 template <class Chunk_t, class FreeList_t>
 249 void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
 250   assert((ZapUnusedHeapArea &&
 251           SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
 252           SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
 253           SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
 254           (size() == 0 && prev() == NULL && next() == NULL),
 255     "Space should be clear or mangled");
 256 }
 257 
 258 template <class Chunk_t, class FreeList_t>
 259 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
 260   assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
 261     "Wrong type of chunk?");
 262   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
 263 }
 264 
 265 template <class Chunk_t, class FreeList_t>
 266 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
 267   assert(head() != NULL, "The head of the list cannot be NULL");
 268   Chunk_t* fc = head()->next();
 269   TreeChunk<Chunk_t, FreeList_t>* retTC;
 270   if (fc == NULL) {
 271     retTC = head_as_TreeChunk();
 272   } else {
 273     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
 274   }
 275   assert(retTC->list() == this, "Wrong type of chunk.");
 276   return retTC;
 277 }
 278 
 279 // Returns the block with the largest heap address amongst
 280 // those in the list for this size; potentially slow and expensive,
 281 // use with caution!
 282 template <class Chunk_t, class FreeList_t>
 283 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
 284   assert(head() != NULL, "The head of the list cannot be NULL");
 285   Chunk_t* fc = head()->next();
 286   TreeChunk<Chunk_t, FreeList_t>* retTC;
 287   if (fc == NULL) {
 288     retTC = head_as_TreeChunk();
 289   } else {
 290     // walk down the list and return the one with the highest
 291     // heap address among chunks of this size.
 292     Chunk_t* last = fc;
 293     while (fc->next() != NULL) {
 294       if ((HeapWord*)last < (HeapWord*)fc) {
 295         last = fc;
 296       }
 297       fc = fc->next();
 298     }
 299     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
 300   }
 301   assert(retTC->list() == this, "Wrong type of chunk.");
 302   return retTC;
 303 }
 304 
 305 template <class Chunk_t, class FreeList_t>
 306 BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
 307   assert((mr.byte_size() > min_size()), "minimum chunk size");
 308 
 309   reset(mr);
 310   assert(root()->left() == NULL, "reset check failed");
 311   assert(root()->right() == NULL, "reset check failed");
 312   assert(root()->head()->next() == NULL, "reset check failed");
 313   assert(root()->head()->prev() == NULL, "reset check failed");
 314   assert(total_size() == root()->size(), "reset check failed");
 315   assert(total_free_blocks() == 1, "reset check failed");
 316 }
 317 
 318 template <class Chunk_t, class FreeList_t>
 319 void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
 320   _total_size = _total_size + inc;
 321 }
 322 
 323 template <class Chunk_t, class FreeList_t>
 324 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
 325   _total_size = _total_size - dec;
 326 }
 327 
 328 template <class Chunk_t, class FreeList_t>
 329 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
 330   assert((mr.byte_size() > min_size()), "minimum chunk size");
 331   set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
 332   set_total_size(mr.word_size());
 333   set_total_free_blocks(1);
 334 }
 335 
 336 template <class Chunk_t, class FreeList_t>
 337 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
 338   MemRegion mr(addr, heap_word_size(byte_size));
 339   reset(mr);
 340 }
 341 
 342 template <class Chunk_t, class FreeList_t>
 343 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
 344   set_root(NULL);
 345   set_total_size(0);
 346   set_total_free_blocks(0);
 347 }
 348 
 349 // Get a free block of size at least size from tree, or NULL.
 350 template <class Chunk_t, class FreeList_t>
 351 TreeChunk<Chunk_t, FreeList_t>*
 352 BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(size_t size)
 353 {
 354   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
 355   TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
 356 
 357   assert((size >= min_size()), "minimum chunk size");
 358   if (FLSVerifyDictionary) {
 359     verify_tree();
 360   }
 361   // starting at the root, work downwards trying to find match.
 362   // Remember the last node of size too great or too small.
 363   for (prevTL = curTL = root(); curTL != NULL;) {
 364     if (curTL->size() == size) {        // exact match
 365       break;
 366     }
 367     prevTL = curTL;
 368     if (curTL->size() < size) {        // proceed to right sub-tree
 369       curTL = curTL->right();
 370     } else {                           // proceed to left sub-tree
 371       assert(curTL->size() > size, "size inconsistency");
 372       curTL = curTL->left();
 373     }
 374   }
 375   if (curTL == NULL) { // couldn't find exact match
 376 
 377     // try and find the next larger size by walking back up the search path
 378     for (curTL = prevTL; curTL != NULL;) {
 379       if (curTL->size() >= size) break;
 380       else curTL = curTL->parent();
 381     }
 382     assert(curTL == NULL || curTL->count() > 0,
 383       "An empty list should not be in the tree");
 384   }
 385   if (curTL != NULL) {
 386     assert(curTL->size() >= size, "size inconsistency");
 387 
 388     curTL = curTL->get_better_list(this);
 389 
 390     retTC = curTL->first_available();
 391     assert((retTC != NULL) && (curTL->count() > 0),
 392       "A list in the binary tree should not be NULL");
 393     assert(retTC->size() >= size,
 394       "A chunk of the wrong size was found");
 395     remove_chunk_from_tree(retTC);
 396     assert(retTC->is_free(), "Header is not marked correctly");
 397   }
 398 
 399   if (FLSVerifyDictionary) {
 400     verify();
 401   }
 402   return retTC;
 403 }
 404 
 405 template <class Chunk_t, class FreeList_t>
 406 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
 407   TreeList<Chunk_t, FreeList_t>* curTL;
 408   for (curTL = root(); curTL != NULL;) {
 409     if (curTL->size() == size) {        // exact match
 410       break;
 411     }
 412 
 413     if (curTL->size() < size) {        // proceed to right sub-tree
 414       curTL = curTL->right();
 415     } else {                           // proceed to left sub-tree
 416       assert(curTL->size() > size, "size inconsistency");
 417       curTL = curTL->left();
 418     }
 419   }
 420   return curTL;
 421 }
 422 
 423 
 424 template <class Chunk_t, class FreeList_t>
 425 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
 426   size_t size = tc->size();
 427   TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
 428   if (tl == NULL) {
 429     return false;
 430   } else {
 431     return tl->verify_chunk_in_free_list(tc);
 432   }
 433 }
 434 
 435 template <class Chunk_t, class FreeList_t>
 436 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
 437   TreeList<Chunk_t, FreeList_t> *curTL = root();
 438   if (curTL != NULL) {
 439     while(curTL->right() != NULL) curTL = curTL->right();
 440     return curTL->largest_address();
 441   } else {
 442     return NULL;
 443   }
 444 }
 445 
 446 // Remove the current chunk from the tree.  If it is not the last
 447 // chunk in a list on a tree node, just unlink it.
 448 // If it is the last chunk in the list (the next link is NULL),
 449 // remove the node and repair the tree.
 450 template <class Chunk_t, class FreeList_t>
 451 TreeChunk<Chunk_t, FreeList_t>*
 452 BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
 453   assert(tc != NULL, "Should not call with a NULL chunk");
 454   assert(tc->is_free(), "Header is not marked correctly");
 455 
 456   TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
 457   TreeChunk<Chunk_t, FreeList_t>* retTC;
 458   TreeList<Chunk_t, FreeList_t>* tl = tc->list();
 459   debug_only(
 460     bool removing_only_chunk = false;
 461     if (tl == _root) {
 462       if ((_root->left() == NULL) && (_root->right() == NULL)) {
 463         if (_root->count() == 1) {
 464           assert(_root->head() == tc, "Should only be this one chunk");
 465           removing_only_chunk = true;
 466         }
 467       }
 468     }
 469   )
 470   assert(tl != NULL, "List should be set");
 471   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
 472          tl == tl->parent()->right(), "list is inconsistent");
 473 
 474   bool complicated_splice = false;
 475 
 476   retTC = tc;
 477   // Removing this chunk can have the side effect of changing the node
 478   // (TreeList<Chunk_t, FreeList_t>*) in the tree.  If the node is the root, update it.
 479   TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
 480   assert(tc->is_free(), "Chunk should still be free");
 481   assert(replacementTL->parent() == NULL ||
 482          replacementTL == replacementTL->parent()->left() ||
 483          replacementTL == replacementTL->parent()->right(),
 484          "list is inconsistent");
 485   if (tl == root()) {
 486     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
 487     set_root(replacementTL);
 488   }
 489 #ifdef ASSERT
 490     if (tl != replacementTL) {
 491       assert(replacementTL->head() != NULL,
 492         "If the tree list was replaced, it should not be a NULL list");
 493       TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
 494       TreeList<Chunk_t, FreeList_t>* rtl =
 495         TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
 496       assert(rhl == replacementTL, "Broken head");
 497       assert(rtl == replacementTL, "Broken tail");
 498       assert(replacementTL->size() == tc->size(),  "Broken size");
 499     }
 500 #endif
 501 
 502   // Does the tree need to be repaired?
 503   if (replacementTL->count() == 0) {
 504     assert(replacementTL->head() == NULL &&
 505            replacementTL->tail() == NULL, "list count is incorrect");
 506     // Find the replacement node for the (soon to be empty) node being removed.
 507     // if we have a single (or no) child, splice child in our stead
 508     if (replacementTL->left() == NULL) {
 509       // left is NULL so pick right.  right may also be NULL.
 510       newTL = replacementTL->right();
 511       debug_only(replacementTL->clear_right();)
 512     } else if (replacementTL->right() == NULL) {
 513       // right is NULL
 514       newTL = replacementTL->left();
 515       debug_only(replacementTL->clear_left();)
 516     } else {  // we have both children, so, by patriarchal convention,
 517               // my replacement is least node in right sub-tree
 518       complicated_splice = true;
 519       newTL = remove_tree_minimum(replacementTL->right());
 520       assert(newTL != NULL && newTL->left() == NULL &&
 521              newTL->right() == NULL, "sub-tree minimum exists");
 522     }
 523     // newTL is the replacement for the (soon to be empty) node.
 524     // newTL may be NULL.
 525     // should verify; we just cleanly excised our replacement
 526     if (FLSVerifyDictionary) {
 527       verify_tree();
 528     }
 529     // first make newTL my parent's child
 530     if ((parentTL = replacementTL->parent()) == NULL) {
 531       // newTL should be root
 532       assert(tl == root(), "Incorrectly replacing root");
 533       set_root(newTL);
 534       if (newTL != NULL) {
 535         newTL->clear_parent();
 536       }
 537     } else if (parentTL->right() == replacementTL) {
 538       // replacementTL is a right child
 539       parentTL->set_right(newTL);
 540     } else {                                // replacementTL is a left child
 541       assert(parentTL->left() == replacementTL, "should be left child");
 542       parentTL->set_left(newTL);
 543     }
 544     debug_only(replacementTL->clear_parent();)
 545     if (complicated_splice) {  // we need newTL to get replacementTL's
 546                               // two children
 547       assert(newTL != NULL &&
 548              newTL->left() == NULL && newTL->right() == NULL,
 549             "newTL should not have encumbrances from the past");
 550       // we'd like to assert as below:
 551       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
 552       //       "else !complicated_splice");
 553       // ... however, the above assertion is too strong because we aren't
 554       // guaranteed that replacementTL->right() is still NULL.
 555       // Recall that we removed
 556       // the right sub-tree minimum from replacementTL.
 557       // That may well have been its right
 558       // child! So we'll just assert half of the above:
 559       assert(replacementTL->left() != NULL, "else !complicated_splice");
 560       newTL->set_left(replacementTL->left());
 561       newTL->set_right(replacementTL->right());
 562       debug_only(
 563         replacementTL->clear_right();
 564         replacementTL->clear_left();
 565       )
 566     }
 567     assert(replacementTL->right() == NULL &&
 568            replacementTL->left() == NULL &&
 569            replacementTL->parent() == NULL,
 570         "delete without encumbrances");
 571   }
 572 
 573   assert(total_size() >= retTC->size(), "Incorrect total size");
 574   dec_total_size(retTC->size());     // size book-keeping
 575   assert(total_free_blocks() > 0, "Incorrect total count");
 576   set_total_free_blocks(total_free_blocks() - 1);
 577 
 578   assert(retTC != NULL, "null chunk?");
 579   assert(retTC->prev() == NULL && retTC->next() == NULL,
 580          "should return without encumbrances");
 581   if (FLSVerifyDictionary) {
 582     verify_tree();
 583   }
 584   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
 585   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
 586 }
 587 
 588 // Remove the leftmost node (lm) in the tree and return it.
 589 // If lm has a right child, link it to the left node of
 590 // the parent of lm.
 591 template <class Chunk_t, class FreeList_t>
 592 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
 593   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
 594   // locate the subtree minimum by walking down left branches
 595   TreeList<Chunk_t, FreeList_t>* curTL = tl;
 596   for (; curTL->left() != NULL; curTL = curTL->left());
 597   // obviously curTL now has at most one child, a right child
 598   if (curTL != root()) {  // Should this test just be removed?
 599     TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
 600     if (parentTL->left() == curTL) { // curTL is a left child
 601       parentTL->set_left(curTL->right());
 602     } else {
 603       // If the list tl has no left child, then curTL may be
 604       // the right child of parentTL.
 605       assert(parentTL->right() == curTL, "should be a right child");
 606       parentTL->set_right(curTL->right());
 607     }
 608   } else {
 609     // The only use of this method would not pass the root of the
 610     // tree (as indicated by the assertion above that the tree list
 611     // has a parent) but the specification does not explicitly exclude the
 612     // passing of the root so accommodate it.
 613     set_root(NULL);
 614   }
 615   debug_only(
 616     curTL->clear_parent();  // Test if this needs to be cleared
 617     curTL->clear_right();    // recall, above, left child is already null
 618   )
 619   // we just excised a (non-root) node, we should still verify all tree invariants
 620   if (FLSVerifyDictionary) {
 621     verify_tree();
 622   }
 623   return curTL;
 624 }
 625 
 626 template <class Chunk_t, class FreeList_t>
 627 void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
 628   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
 629   size_t size = fc->size();
 630 
 631   assert((size >= min_size()),
 632          SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
 633          size, min_size());
 634   if (FLSVerifyDictionary) {
 635     verify_tree();
 636   }
 637 
 638   fc->clear_next();
 639   fc->link_prev(NULL);
 640 
 641   // work down from the _root, looking for insertion point
 642   for (prevTL = curTL = root(); curTL != NULL;) {
 643     if (curTL->size() == size)  // exact match
 644       break;
 645     prevTL = curTL;
 646     if (curTL->size() > size) { // follow left branch
 647       curTL = curTL->left();
 648     } else {                    // follow right branch
 649       assert(curTL->size() < size, "size inconsistency");
 650       curTL = curTL->right();
 651     }
 652   }
 653   TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
 654   // This chunk is being returned to the binary tree.  Its embedded
 655   // TreeList<Chunk_t, FreeList_t> should be unused at this point.
 656   tc->initialize();
 657   if (curTL != NULL) {          // exact match
 658     tc->set_list(curTL);
 659     curTL->return_chunk_at_tail(tc);
 660   } else {                     // need a new node in tree
 661     tc->clear_next();
 662     tc->link_prev(NULL);
 663     TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
 664     assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
 665       "List was not initialized correctly");
 666     if (prevTL == NULL) {      // we are the only tree node
 667       assert(root() == NULL, "control point invariant");
 668       set_root(newTL);
 669     } else {                   // insert under prevTL ...
 670       if (prevTL->size() < size) {   // am right child
 671         assert(prevTL->right() == NULL, "control point invariant");
 672         prevTL->set_right(newTL);
 673       } else {                       // am left child
 674         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
 675         prevTL->set_left(newTL);
 676       }
 677     }
 678   }
 679   assert(tc->list() != NULL, "Tree list should be set");
 680 
 681   inc_total_size(size);
 682   // Method 'total_size_in_tree' walks through the every block in the
 683   // tree, so it can cause significant performance loss if there are
 684   // many blocks in the tree
 685   assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
 686   set_total_free_blocks(total_free_blocks() + 1);
 687   if (FLSVerifyDictionary) {
 688     verify_tree();
 689   }
 690 }
 691 
 692 template <class Chunk_t, class FreeList_t>
 693 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
 694   verify_par_locked();
 695   TreeList<Chunk_t, FreeList_t>* tc = root();
 696   if (tc == NULL) return 0;
 697   for (; tc->right() != NULL; tc = tc->right());
 698   return tc->size();
 699 }
 700 
 701 template <class Chunk_t, class FreeList_t>
 702 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
 703   size_t res;
 704   res = tl->count();
 705 #ifdef ASSERT
 706   size_t cnt;
 707   Chunk_t* tc = tl->head();
 708   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
 709   assert(res == cnt, "The count is not being maintained correctly");
 710 #endif
 711   return res;
 712 }
 713 
 714 template <class Chunk_t, class FreeList_t>
 715 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
 716   if (tl == NULL)
 717     return 0;
 718   return (tl->size() * total_list_length(tl)) +
 719          total_size_in_tree(tl->left())    +
 720          total_size_in_tree(tl->right());
 721 }
 722 
 723 template <class Chunk_t, class FreeList_t>
 724 double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
 725   if (tl == NULL) {
 726     return 0.0;
 727   }
 728   double size = (double)(tl->size());
 729   double curr = size * size * total_list_length(tl);
 730   curr += sum_of_squared_block_sizes(tl->left());
 731   curr += sum_of_squared_block_sizes(tl->right());
 732   return curr;
 733 }
 734 
 735 template <class Chunk_t, class FreeList_t>
 736 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
 737   if (tl == NULL)
 738     return 0;
 739   return total_list_length(tl) +
 740          total_free_blocks_in_tree(tl->left()) +
 741          total_free_blocks_in_tree(tl->right());
 742 }
 743 
 744 template <class Chunk_t, class FreeList_t>
 745 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
 746   assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
 747          "_total_free_blocks inconsistency");
 748   return total_free_blocks();
 749 }
 750 
 751 template <class Chunk_t, class FreeList_t>
 752 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
 753   if (tl == NULL)
 754     return 0;
 755   return 1 + MAX2(tree_height_helper(tl->left()),
 756                   tree_height_helper(tl->right()));
 757 }
 758 
 759 template <class Chunk_t, class FreeList_t>
 760 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
 761   return tree_height_helper(root());
 762 }
 763 
 764 template <class Chunk_t, class FreeList_t>
 765 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
 766   if (tl == NULL) {
 767     return 0;
 768   }
 769   return 1 + total_nodes_helper(tl->left()) +
 770     total_nodes_helper(tl->right());
 771 }
 772 
 773 // Searches the tree for a chunk that ends at the
 774 // specified address.
 775 template <class Chunk_t, class FreeList_t>
 776 class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
 777   HeapWord* _target;
 778   Chunk_t* _found;
 779 
 780  public:
 781   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
 782   bool do_list(FreeList_t* fl) {
 783     Chunk_t* item = fl->head();
 784     while (item != NULL) {
 785       if (item->end() == (uintptr_t*) _target) {
 786         _found = item;
 787         return true;
 788       }
 789       item = item->next();
 790     }
 791     return false;
 792   }
 793   Chunk_t* found() { return _found; }
 794 };
 795 
 796 template <class Chunk_t, class FreeList_t>
 797 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
 798   EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
 799   bool found_target = etsc.do_tree(root());
 800   assert(found_target || etsc.found() == NULL, "Consistency check");
 801   assert(!found_target || etsc.found() != NULL, "Consistency check");
 802   return etsc.found();
 803 }
 804 
 805 // Closures and methods for calculating total bytes returned to the
 806 // free lists in the tree.
 807 #ifndef PRODUCT
 808 template <class Chunk_t, class FreeList_t>
 809 class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
 810    public:
 811   void do_list(FreeList_t* fl) {
 812     fl->set_returned_bytes(0);
 813   }
 814 };
 815 
 816 template <class Chunk_t, class FreeList_t>
 817 void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
 818   InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
 819   idrb.do_tree(root());
 820 }
 821 
 822 template <class Chunk_t, class FreeList_t>
 823 class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
 824   size_t _dict_returned_bytes;
 825  public:
 826   ReturnedBytesClosure() { _dict_returned_bytes = 0; }
 827   void do_list(FreeList_t* fl) {
 828     _dict_returned_bytes += fl->returned_bytes();
 829   }
 830   size_t dict_returned_bytes() { return _dict_returned_bytes; }
 831 };
 832 
 833 template <class Chunk_t, class FreeList_t>
 834 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
 835   ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
 836   rbc.do_tree(root());
 837 
 838   return rbc.dict_returned_bytes();
 839 }
 840 
 841 // Count the number of entries in the tree.
 842 template <class Chunk_t, class FreeList_t>
 843 class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
 844  public:
 845   uint count;
 846   treeCountClosure(uint c) { count = c; }
 847   void do_list(FreeList_t* fl) {
 848     count++;
 849   }
 850 };
 851 
 852 template <class Chunk_t, class FreeList_t>
 853 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
 854   treeCountClosure<Chunk_t, FreeList_t> ctc(0);
 855   ctc.do_tree(root());
 856   return ctc.count;
 857 }
 858 
 859 template <class Chunk_t, class FreeList_t>
 860 Mutex* BinaryTreeDictionary<Chunk_t, FreeList_t>::par_lock() const {
 861   return _lock;
 862 }
 863 
 864 template <class Chunk_t, class FreeList_t>
 865 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_par_lock(Mutex* lock) {
 866   _lock = lock;
 867 }
 868 
 869 template <class Chunk_t, class FreeList_t>
 870 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_par_locked() const {
 871 #ifdef ASSERT
 872   Thread* my_thread = Thread::current();
 873   if (my_thread->is_GC_task_thread()) {
 874     assert(par_lock() != NULL, "Should be using locking?");
 875     assert_lock_strong(par_lock());
 876   }
 877 #endif // ASSERT
 878 }
 879 #endif // PRODUCT
 880 
 881 // Print summary statistics
 882 template <class Chunk_t, class FreeList_t>
 883 void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics(outputStream* st) const {
 884   verify_par_locked();
 885   st->print_cr("Statistics for BinaryTreeDictionary:");
 886   st->print_cr("------------------------------------");
 887   size_t total_size = total_chunk_size(debug_only(NULL));
 888   size_t free_blocks = num_free_blocks();
 889   st->print_cr("Total Free Space: " SIZE_FORMAT, total_size);
 890   st->print_cr("Max   Chunk Size: " SIZE_FORMAT, max_chunk_size());
 891   st->print_cr("Number of Blocks: " SIZE_FORMAT, free_blocks);
 892   if (free_blocks > 0) {
 893     st->print_cr("Av.  Block  Size: " SIZE_FORMAT, total_size/free_blocks);
 894   }
 895   st->print_cr("Tree      Height: " SIZE_FORMAT, tree_height());
 896 }
 897 
 898 template <class Chunk_t, class FreeList_t>
 899 class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
 900   outputStream* _st;
 901   int _print_line;
 902 
 903  public:
 904   PrintFreeListsClosure(outputStream* st) {
 905     _st = st;
 906     _print_line = 0;
 907   }
 908   void do_list(FreeList_t* fl) {
 909     if (++_print_line >= 40) {
 910       FreeList_t::print_labels_on(_st, "size");
 911       _print_line = 0;
 912     }
 913     fl->print_on(_st);
 914     size_t sz = fl->size();
 915     for (Chunk_t* fc = fl->head(); fc != NULL;
 916          fc = fc->next()) {
 917       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
 918                     p2i(fc), p2i((HeapWord*)fc + sz),
 919                     fc->cantCoalesce() ? "\t CC" : "");
 920     }
 921   }
 922 };
 923 
 924 template <class Chunk_t, class FreeList_t>
 925 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
 926 
 927   FreeList_t::print_labels_on(st, "size");
 928   PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
 929   pflc.do_tree(root());
 930 }
 931 
 932 // Verify the following tree invariants:
 933 // . _root has no parent
 934 // . parent and child point to each other
 935 // . each node's key correctly related to that of its child(ren)
 936 template <class Chunk_t, class FreeList_t>
 937 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
 938   guarantee(root() == NULL || total_free_blocks() == 0 ||
 939     total_size() != 0, "_total_size shouldn't be 0?");
 940   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
 941   verify_tree_helper(root());
 942 }
 943 
 944 template <class Chunk_t, class FreeList_t>
 945 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
 946   size_t ct = 0;
 947   for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
 948     ct++;
 949     assert(curFC->prev() == NULL || curFC->prev()->is_free(),
 950       "Chunk should be free");
 951   }
 952   return ct;
 953 }
 954 
 955 // Note: this helper is recursive rather than iterative, so use with
 956 // caution on very deep trees; and watch out for stack overflow errors;
 957 // In general, to be used only for debugging.
 958 template <class Chunk_t, class FreeList_t>
 959 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
 960   if (tl == NULL)
 961     return;
 962   guarantee(tl->size() != 0, "A list must has a size");
 963   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
 964          "parent<-/->left");
 965   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
 966          "parent<-/->right");;
 967   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
 968          "parent !> left");
 969   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
 970          "parent !< left");
 971   guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
 972   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
 973     "list inconsistency");
 974   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
 975     "list count is inconsistent");
 976   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
 977     "list is incorrectly constructed");
 978   size_t count = verify_prev_free_ptrs(tl);
 979   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
 980   if (tl->head() != NULL) {
 981     tl->head_as_TreeChunk()->verify_tree_chunk_list();
 982   }
 983   verify_tree_helper(tl->left());
 984   verify_tree_helper(tl->right());
 985 }
 986 
 987 template <class Chunk_t, class FreeList_t>
 988 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
 989   verify_tree();
 990   guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
 991 }
 992 
 993 template <class Chunk_t, class FreeList_t>
 994 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_chunk_size(debug_only(const Mutex* lock)) const {
 995   debug_only(
 996     if (lock != NULL && lock->owned_by_self()) {
 997       assert(total_size_in_tree(root()) == total_size(),
 998              "_total_size inconsistency");
 999     }
1000   )
1001   return total_size();
1002 }
1003 
1004 #endif // SHARE_MEMORY_BINARYTREEDICTIONARY_INLINE_HPP