/* * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved. * Copyright 2007, 2008, 2009, 2010 Red Hat, Inc. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ // no precompiled headers #include "assembler_zero.inline.hpp" #include "classfile/classLoader.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "code/icBuffer.hpp" #include "code/vtableStubs.hpp" #include "interpreter/interpreter.hpp" #include "jvm_linux.h" #include "memory/allocation.inline.hpp" #include "mutex_linux.inline.hpp" #include "nativeInst_zero.hpp" #include "os_share_linux.hpp" #include "prims/jniFastGetField.hpp" #include "prims/jvm.h" #include "prims/jvm_misc.hpp" #include "runtime/arguments.hpp" #include "runtime/extendedPC.hpp" #include "runtime/frame.inline.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/java.hpp" #include "runtime/javaCalls.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/osThread.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/thread.inline.hpp" #include "runtime/timer.hpp" #include "utilities/events.hpp" #include "utilities/vmError.hpp" address os::current_stack_pointer() { address dummy = (address) &dummy; return dummy; } frame os::get_sender_for_C_frame(frame* fr) { ShouldNotCallThis(); } frame os::current_frame() { // The only thing that calls this is the stack printing code in // VMError::report: // - Step 110 (printing stack bounds) uses the sp in the frame // to determine the amount of free space on the stack. We // set the sp to a close approximation of the real value in // order to allow this step to complete. // - Step 120 (printing native stack) tries to walk the stack. // The frame we create has a NULL pc, which is ignored as an // invalid frame. frame dummy = frame(); dummy.set_sp((intptr_t *) current_stack_pointer()); return dummy; } char* os::non_memory_address_word() { // Must never look like an address returned by reserve_memory, // even in its subfields (as defined by the CPU immediate fields, // if the CPU splits constants across multiple instructions). #ifdef SPARC // On SPARC, 0 != %hi(any real address), because there is no // allocation in the first 1Kb of the virtual address space. return (char *) 0; #else // This is the value for x86; works pretty well for PPC too. return (char *) -1; #endif // SPARC } void os::initialize_thread(Thread * thr){ // Nothing to do. } address os::Linux::ucontext_get_pc(ucontext_t* uc) { ShouldNotCallThis(); } void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) { ShouldNotCallThis(); } ExtendedPC os::fetch_frame_from_context(void* ucVoid, intptr_t** ret_sp, intptr_t** ret_fp) { ShouldNotCallThis(); } frame os::fetch_frame_from_context(void* ucVoid) { ShouldNotCallThis(); } extern "C" JNIEXPORT int JVM_handle_linux_signal(int sig, siginfo_t* info, void* ucVoid, int abort_if_unrecognized) { ucontext_t* uc = (ucontext_t*) ucVoid; Thread* t = ThreadLocalStorage::get_thread_slow(); SignalHandlerMark shm(t); // Note: it's not uncommon that JNI code uses signal/sigset to // install then restore certain signal handler (e.g. to temporarily // block SIGPIPE, or have a SIGILL handler when detecting CPU // type). When that happens, JVM_handle_linux_signal() might be // invoked with junk info/ucVoid. To avoid unnecessary crash when // libjsig is not preloaded, try handle signals that do not require // siginfo/ucontext first. if (sig == SIGPIPE || sig == SIGXFSZ) { // allow chained handler to go first if (os::Linux::chained_handler(sig, info, ucVoid)) { return true; } else { if (PrintMiscellaneous && (WizardMode || Verbose)) { char buf[64]; warning("Ignoring %s - see bugs 4229104 or 646499219", os::exception_name(sig, buf, sizeof(buf))); } return true; } } JavaThread* thread = NULL; VMThread* vmthread = NULL; if (os::Linux::signal_handlers_are_installed) { if (t != NULL ){ if(t->is_Java_thread()) { thread = (JavaThread*)t; } else if(t->is_VM_thread()){ vmthread = (VMThread *)t; } } } if (info != NULL && thread != NULL) { // Handle ALL stack overflow variations here if (sig == SIGSEGV) { address addr = (address) info->si_addr; // check if fault address is within thread stack if (addr < thread->stack_base() && addr >= thread->stack_base() - thread->stack_size()) { // stack overflow if (thread->in_stack_yellow_zone(addr)) { thread->disable_stack_yellow_zone(); ShouldNotCallThis(); } else if (thread->in_stack_red_zone(addr)) { thread->disable_stack_red_zone(); ShouldNotCallThis(); } else { // Accessing stack address below sp may cause SEGV if // current thread has MAP_GROWSDOWN stack. This should // only happen when current thread was created by user // code with MAP_GROWSDOWN flag and then attached to VM. // See notes in os_linux.cpp. if (thread->osthread()->expanding_stack() == 0) { thread->osthread()->set_expanding_stack(); if (os::Linux::manually_expand_stack(thread, addr)) { thread->osthread()->clear_expanding_stack(); return true; } thread->osthread()->clear_expanding_stack(); } else { fatal("recursive segv. expanding stack."); } } } } /*if (thread->thread_state() == _thread_in_Java) { ShouldNotCallThis(); } else*/ if (thread->thread_state() == _thread_in_vm && sig == SIGBUS && thread->doing_unsafe_access()) { ShouldNotCallThis(); } // jni_fast_GetField can trap at certain pc's if a GC // kicks in and the heap gets shrunk before the field access. /*if (sig == SIGSEGV || sig == SIGBUS) { address addr = JNI_FastGetField::find_slowcase_pc(pc); if (addr != (address)-1) { stub = addr; } }*/ // Check to see if we caught the safepoint code in the process // of write protecting the memory serialization page. It write // enables the page immediately after protecting it so we can // just return to retry the write. if (sig == SIGSEGV && os::is_memory_serialize_page(thread, (address) info->si_addr)) { // Block current thread until permission is restored. os::block_on_serialize_page_trap(); return true; } } // signal-chaining if (os::Linux::chained_handler(sig, info, ucVoid)) { return true; } if (!abort_if_unrecognized) { // caller wants another chance, so give it to him return false; } #ifndef PRODUCT if (sig == SIGSEGV) { fatal("\n#" "\n# /--------------------\\" "\n# | segmentation fault |" "\n# \\---\\ /--------------/" "\n# /" "\n# [-] |\\_/| " "\n# (+)=C |o o|__ " "\n# | | =-*-=__\\ " "\n# OOO c_c_(___)"); } #endif // !PRODUCT const char *fmt = "caught unhandled signal %d"; char buf[64]; sprintf(buf, fmt, sig); fatal(buf); } void os::Linux::init_thread_fpu_state(void) { // Nothing to do } int os::Linux::get_fpu_control_word() { ShouldNotCallThis(); } void os::Linux::set_fpu_control_word(int fpu) { ShouldNotCallThis(); } bool os::is_allocatable(size_t bytes) { #ifdef _LP64 return true; #else if (bytes < 2 * G) { return true; } char* addr = reserve_memory(bytes, NULL); if (addr != NULL) { release_memory(addr, bytes); } return addr != NULL; #endif // _LP64 } /////////////////////////////////////////////////////////////////////////////// // thread stack size_t os::Linux::min_stack_allowed = 64 * K; bool os::Linux::supports_variable_stack_size() { return true; } size_t os::Linux::default_stack_size(os::ThreadType thr_type) { #ifdef _LP64 size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M); #else size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K); #endif // _LP64 return s; } size_t os::Linux::default_guard_size(os::ThreadType thr_type) { // Only enable glibc guard pages for non-Java threads // (Java threads have HotSpot guard pages) return (thr_type == java_thread ? 0 : page_size()); } static void current_stack_region(address *bottom, size_t *size) { pthread_attr_t attr; int res = pthread_getattr_np(pthread_self(), &attr); if (res != 0) { if (res == ENOMEM) { vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np"); } else { fatal(err_msg("pthread_getattr_np failed with errno = %d", res)); } } address stack_bottom; size_t stack_bytes; res = pthread_attr_getstack(&attr, (void **) &stack_bottom, &stack_bytes); if (res != 0) { fatal(err_msg("pthread_attr_getstack failed with errno = %d", res)); } address stack_top = stack_bottom + stack_bytes; // The block of memory returned by pthread_attr_getstack() includes // guard pages where present. We need to trim these off. size_t page_bytes = os::Linux::page_size(); assert(((intptr_t) stack_bottom & (page_bytes - 1)) == 0, "unaligned stack"); size_t guard_bytes; res = pthread_attr_getguardsize(&attr, &guard_bytes); if (res != 0) { fatal(err_msg("pthread_attr_getguardsize failed with errno = %d", res)); } int guard_pages = align_size_up(guard_bytes, page_bytes) / page_bytes; assert(guard_bytes == guard_pages * page_bytes, "unaligned guard"); #ifdef IA64 // IA64 has two stacks sharing the same area of memory, a normal // stack growing downwards and a register stack growing upwards. // Guard pages, if present, are in the centre. This code splits // the stack in two even without guard pages, though in theory // there's nothing to stop us allocating more to the normal stack // or more to the register stack if one or the other were found // to grow faster. int total_pages = align_size_down(stack_bytes, page_bytes) / page_bytes; stack_bottom += (total_pages - guard_pages) / 2 * page_bytes; #endif // IA64 stack_bottom += guard_bytes; pthread_attr_destroy(&attr); // The initial thread has a growable stack, and the size reported // by pthread_attr_getstack is the maximum size it could possibly // be given what currently mapped. This can be huge, so we cap it. if (os::Linux::is_initial_thread()) { stack_bytes = stack_top - stack_bottom; if (stack_bytes > JavaThread::stack_size_at_create()) stack_bytes = JavaThread::stack_size_at_create(); stack_bottom = stack_top - stack_bytes; } assert(os::current_stack_pointer() >= stack_bottom, "should do"); assert(os::current_stack_pointer() < stack_top, "should do"); *bottom = stack_bottom; *size = stack_top - stack_bottom; } address os::current_stack_base() { address bottom; size_t size; current_stack_region(&bottom, &size); return bottom + size; } size_t os::current_stack_size() { // stack size includes normal stack and HotSpot guard pages address bottom; size_t size; current_stack_region(&bottom, &size); return size; } ///////////////////////////////////////////////////////////////////////////// // helper functions for fatal error handler void os::print_context(outputStream* st, void* context) { ShouldNotCallThis(); } void os::print_register_info(outputStream *st, void *context) { ShouldNotCallThis(); } ///////////////////////////////////////////////////////////////////////////// // Stubs for things that would be in linux_zero.s if it existed. // You probably want to disassemble these monkeys to check they're ok. extern "C" { int SpinPause() { } void _Copy_conjoint_jshorts_atomic(jshort* from, jshort* to, size_t count) { if (from > to) { jshort *end = from + count; while (from < end) *(to++) = *(from++); } else if (from < to) { jshort *end = from; from += count - 1; to += count - 1; while (from >= end) *(to--) = *(from--); } } void _Copy_conjoint_jints_atomic(jint* from, jint* to, size_t count) { if (from > to) { jint *end = from + count; while (from < end) *(to++) = *(from++); } else if (from < to) { jint *end = from; from += count - 1; to += count - 1; while (from >= end) *(to--) = *(from--); } } void _Copy_conjoint_jlongs_atomic(jlong* from, jlong* to, size_t count) { if (from > to) { jlong *end = from + count; while (from < end) os::atomic_copy64(from++, to++); } else if (from < to) { jlong *end = from; from += count - 1; to += count - 1; while (from >= end) os::atomic_copy64(from--, to--); } } void _Copy_arrayof_conjoint_bytes(HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count); } void _Copy_arrayof_conjoint_jshorts(HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count * 2); } void _Copy_arrayof_conjoint_jints(HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count * 4); } void _Copy_arrayof_conjoint_jlongs(HeapWord* from, HeapWord* to, size_t count) { memmove(to, from, count * 8); } }; ///////////////////////////////////////////////////////////////////////////// // Implementations of atomic operations not supported by processors. // -- http://gcc.gnu.org/onlinedocs/gcc-4.2.1/gcc/Atomic-Builtins.html #ifndef _LP64 extern "C" { long long unsigned int __sync_val_compare_and_swap_8( volatile void *ptr, long long unsigned int oldval, long long unsigned int newval) { ShouldNotCallThis(); } }; #endif // !_LP64 #ifndef PRODUCT void os::verify_stack_alignment() { } #endif int os::extra_bang_size_in_bytes() { // Zero does not require an additional stack banging. return 0; }