1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "services/attachListener.hpp"
  67 #include "services/memTracker.hpp"
  68 #include "services/runtimeService.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 #ifdef _DEBUG
  76 #include <crtdbg.h>
  77 #endif
  78 
  79 
  80 #include <windows.h>
  81 #include <sys/types.h>
  82 #include <sys/stat.h>
  83 #include <sys/timeb.h>
  84 #include <objidl.h>
  85 #include <shlobj.h>
  86 
  87 #include <malloc.h>
  88 #include <signal.h>
  89 #include <direct.h>
  90 #include <errno.h>
  91 #include <fcntl.h>
  92 #include <io.h>
  93 #include <process.h>              // For _beginthreadex(), _endthreadex()
  94 #include <imagehlp.h>             // For os::dll_address_to_function_name
  95 // for enumerating dll libraries
  96 #include <vdmdbg.h>
  97 
  98 // for timer info max values which include all bits
  99 #define ALL_64_BITS CONST64(-1)
 100 
 101 // For DLL loading/load error detection
 102 // Values of PE COFF
 103 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 104 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 105 
 106 static HANDLE main_process;
 107 static HANDLE main_thread;
 108 static int    main_thread_id;
 109 
 110 static FILETIME process_creation_time;
 111 static FILETIME process_exit_time;
 112 static FILETIME process_user_time;
 113 static FILETIME process_kernel_time;
 114 
 115 #ifdef _M_IA64
 116   #define __CPU__ ia64
 117 #elif _M_AMD64
 118   #define __CPU__ amd64
 119 #else
 120   #define __CPU__ i486
 121 #endif
 122 
 123 // save DLL module handle, used by GetModuleFileName
 124 
 125 HINSTANCE vm_lib_handle;
 126 
 127 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 128   switch (reason) {
 129   case DLL_PROCESS_ATTACH:
 130     vm_lib_handle = hinst;
 131     if (ForceTimeHighResolution) {
 132       timeBeginPeriod(1L);
 133     }
 134     break;
 135   case DLL_PROCESS_DETACH:
 136     if (ForceTimeHighResolution) {
 137       timeEndPeriod(1L);
 138     }
 139     break;
 140   default:
 141     break;
 142   }
 143   return true;
 144 }
 145 
 146 static inline double fileTimeAsDouble(FILETIME* time) {
 147   const double high  = (double) ((unsigned int) ~0);
 148   const double split = 10000000.0;
 149   double result = (time->dwLowDateTime / split) +
 150                    time->dwHighDateTime * (high/split);
 151   return result;
 152 }
 153 
 154 // Implementation of os
 155 
 156 bool os::getenv(const char* name, char* buffer, int len) {
 157   int result = GetEnvironmentVariable(name, buffer, len);
 158   return result > 0 && result < len;
 159 }
 160 
 161 bool os::unsetenv(const char* name) {
 162   assert(name != NULL, "Null pointer");
 163   return (SetEnvironmentVariable(name, NULL) == TRUE);
 164 }
 165 
 166 // No setuid programs under Windows.
 167 bool os::have_special_privileges() {
 168   return false;
 169 }
 170 
 171 
 172 // This method is  a periodic task to check for misbehaving JNI applications
 173 // under CheckJNI, we can add any periodic checks here.
 174 // For Windows at the moment does nothing
 175 void os::run_periodic_checks() {
 176   return;
 177 }
 178 
 179 // previous UnhandledExceptionFilter, if there is one
 180 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 181 
 182 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 183 
 184 void os::init_system_properties_values() {
 185   // sysclasspath, java_home, dll_dir
 186   {
 187     char *home_path;
 188     char *dll_path;
 189     char *pslash;
 190     char *bin = "\\bin";
 191     char home_dir[MAX_PATH];
 192 
 193     if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 194       os::jvm_path(home_dir, sizeof(home_dir));
 195       // Found the full path to jvm.dll.
 196       // Now cut the path to <java_home>/jre if we can.
 197       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 198       pslash = strrchr(home_dir, '\\');
 199       if (pslash != NULL) {
 200         *pslash = '\0';                   // get rid of \{client|server}
 201         pslash = strrchr(home_dir, '\\');
 202         if (pslash != NULL) {
 203           *pslash = '\0';                 // get rid of \bin
 204         }
 205       }
 206     }
 207 
 208     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 209     if (home_path == NULL) {
 210       return;
 211     }
 212     strcpy(home_path, home_dir);
 213     Arguments::set_java_home(home_path);
 214     FREE_C_HEAP_ARRAY(char, home_path);
 215 
 216     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 217                                 mtInternal);
 218     if (dll_path == NULL) {
 219       return;
 220     }
 221     strcpy(dll_path, home_dir);
 222     strcat(dll_path, bin);
 223     Arguments::set_dll_dir(dll_path);
 224     FREE_C_HEAP_ARRAY(char, dll_path);
 225 
 226     if (!set_boot_path('\\', ';')) {
 227       return;
 228     }
 229   }
 230 
 231 // library_path
 232 #define EXT_DIR "\\lib\\ext"
 233 #define BIN_DIR "\\bin"
 234 #define PACKAGE_DIR "\\Sun\\Java"
 235   {
 236     // Win32 library search order (See the documentation for LoadLibrary):
 237     //
 238     // 1. The directory from which application is loaded.
 239     // 2. The system wide Java Extensions directory (Java only)
 240     // 3. System directory (GetSystemDirectory)
 241     // 4. Windows directory (GetWindowsDirectory)
 242     // 5. The PATH environment variable
 243     // 6. The current directory
 244 
 245     char *library_path;
 246     char tmp[MAX_PATH];
 247     char *path_str = ::getenv("PATH");
 248 
 249     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 250                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 251 
 252     library_path[0] = '\0';
 253 
 254     GetModuleFileName(NULL, tmp, sizeof(tmp));
 255     *(strrchr(tmp, '\\')) = '\0';
 256     strcat(library_path, tmp);
 257 
 258     GetWindowsDirectory(tmp, sizeof(tmp));
 259     strcat(library_path, ";");
 260     strcat(library_path, tmp);
 261     strcat(library_path, PACKAGE_DIR BIN_DIR);
 262 
 263     GetSystemDirectory(tmp, sizeof(tmp));
 264     strcat(library_path, ";");
 265     strcat(library_path, tmp);
 266 
 267     GetWindowsDirectory(tmp, sizeof(tmp));
 268     strcat(library_path, ";");
 269     strcat(library_path, tmp);
 270 
 271     if (path_str) {
 272       strcat(library_path, ";");
 273       strcat(library_path, path_str);
 274     }
 275 
 276     strcat(library_path, ";.");
 277 
 278     Arguments::set_library_path(library_path);
 279     FREE_C_HEAP_ARRAY(char, library_path);
 280   }
 281 
 282   // Default extensions directory
 283   {
 284     char path[MAX_PATH];
 285     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 286     GetWindowsDirectory(path, MAX_PATH);
 287     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 288             path, PACKAGE_DIR, EXT_DIR);
 289     Arguments::set_ext_dirs(buf);
 290   }
 291   #undef EXT_DIR
 292   #undef BIN_DIR
 293   #undef PACKAGE_DIR
 294 
 295 #ifndef _WIN64
 296   // set our UnhandledExceptionFilter and save any previous one
 297   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 298 #endif
 299 
 300   // Done
 301   return;
 302 }
 303 
 304 void os::breakpoint() {
 305   DebugBreak();
 306 }
 307 
 308 // Invoked from the BREAKPOINT Macro
 309 extern "C" void breakpoint() {
 310   os::breakpoint();
 311 }
 312 
 313 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 314 // So far, this method is only used by Native Memory Tracking, which is
 315 // only supported on Windows XP or later.
 316 //
 317 int os::get_native_stack(address* stack, int frames, int toSkip) {
 318 #ifdef _NMT_NOINLINE_
 319   toSkip++;
 320 #endif
 321   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 322                                                        (PVOID*)stack, NULL);
 323   for (int index = captured; index < frames; index ++) {
 324     stack[index] = NULL;
 325   }
 326   return captured;
 327 }
 328 
 329 
 330 // os::current_stack_base()
 331 //
 332 //   Returns the base of the stack, which is the stack's
 333 //   starting address.  This function must be called
 334 //   while running on the stack of the thread being queried.
 335 
 336 address os::current_stack_base() {
 337   MEMORY_BASIC_INFORMATION minfo;
 338   address stack_bottom;
 339   size_t stack_size;
 340 
 341   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 342   stack_bottom =  (address)minfo.AllocationBase;
 343   stack_size = minfo.RegionSize;
 344 
 345   // Add up the sizes of all the regions with the same
 346   // AllocationBase.
 347   while (1) {
 348     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 349     if (stack_bottom == (address)minfo.AllocationBase) {
 350       stack_size += minfo.RegionSize;
 351     } else {
 352       break;
 353     }
 354   }
 355 
 356 #ifdef _M_IA64
 357   // IA64 has memory and register stacks
 358   //
 359   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 360   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 361   // growing downwards, 2MB summed up)
 362   //
 363   // ...
 364   // ------- top of stack (high address) -----
 365   // |
 366   // |      1MB
 367   // |      Backing Store (Register Stack)
 368   // |
 369   // |         / \
 370   // |          |
 371   // |          |
 372   // |          |
 373   // ------------------------ stack base -----
 374   // |      1MB
 375   // |      Memory Stack
 376   // |
 377   // |          |
 378   // |          |
 379   // |          |
 380   // |         \ /
 381   // |
 382   // ----- bottom of stack (low address) -----
 383   // ...
 384 
 385   stack_size = stack_size / 2;
 386 #endif
 387   return stack_bottom + stack_size;
 388 }
 389 
 390 size_t os::current_stack_size() {
 391   size_t sz;
 392   MEMORY_BASIC_INFORMATION minfo;
 393   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 394   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 395   return sz;
 396 }
 397 
 398 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 399   const struct tm* time_struct_ptr = localtime(clock);
 400   if (time_struct_ptr != NULL) {
 401     *res = *time_struct_ptr;
 402     return res;
 403   }
 404   return NULL;
 405 }
 406 
 407 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 408 
 409 // Thread start routine for all new Java threads
 410 static unsigned __stdcall java_start(Thread* thread) {
 411   // Try to randomize the cache line index of hot stack frames.
 412   // This helps when threads of the same stack traces evict each other's
 413   // cache lines. The threads can be either from the same JVM instance, or
 414   // from different JVM instances. The benefit is especially true for
 415   // processors with hyperthreading technology.
 416   static int counter = 0;
 417   int pid = os::current_process_id();
 418   _alloca(((pid ^ counter++) & 7) * 128);
 419 
 420   OSThread* osthr = thread->osthread();
 421   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 422 
 423   if (UseNUMA) {
 424     int lgrp_id = os::numa_get_group_id();
 425     if (lgrp_id != -1) {
 426       thread->set_lgrp_id(lgrp_id);
 427     }
 428   }
 429 
 430   // Diagnostic code to investigate JDK-6573254
 431   int res = 30115;  // non-java thread
 432   if (thread->is_Java_thread()) {
 433     res = 20115;    // java thread
 434   }
 435 
 436   // Install a win32 structured exception handler around every thread created
 437   // by VM, so VM can generate error dump when an exception occurred in non-
 438   // Java thread (e.g. VM thread).
 439   __try {
 440     thread->run();
 441   } __except(topLevelExceptionFilter(
 442                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 443     // Nothing to do.
 444   }
 445 
 446   // One less thread is executing
 447   // When the VMThread gets here, the main thread may have already exited
 448   // which frees the CodeHeap containing the Atomic::add code
 449   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 450     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 451   }
 452 
 453   // Thread must not return from exit_process_or_thread(), but if it does,
 454   // let it proceed to exit normally
 455   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 456 }
 457 
 458 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 459                                   int thread_id) {
 460   // Allocate the OSThread object
 461   OSThread* osthread = new OSThread(NULL, NULL);
 462   if (osthread == NULL) return NULL;
 463 
 464   // Initialize support for Java interrupts
 465   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 466   if (interrupt_event == NULL) {
 467     delete osthread;
 468     return NULL;
 469   }
 470   osthread->set_interrupt_event(interrupt_event);
 471 
 472   // Store info on the Win32 thread into the OSThread
 473   osthread->set_thread_handle(thread_handle);
 474   osthread->set_thread_id(thread_id);
 475 
 476   if (UseNUMA) {
 477     int lgrp_id = os::numa_get_group_id();
 478     if (lgrp_id != -1) {
 479       thread->set_lgrp_id(lgrp_id);
 480     }
 481   }
 482 
 483   // Initial thread state is INITIALIZED, not SUSPENDED
 484   osthread->set_state(INITIALIZED);
 485 
 486   return osthread;
 487 }
 488 
 489 
 490 bool os::create_attached_thread(JavaThread* thread) {
 491 #ifdef ASSERT
 492   thread->verify_not_published();
 493 #endif
 494   HANDLE thread_h;
 495   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 496                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 497     fatal("DuplicateHandle failed\n");
 498   }
 499   OSThread* osthread = create_os_thread(thread, thread_h,
 500                                         (int)current_thread_id());
 501   if (osthread == NULL) {
 502     return false;
 503   }
 504 
 505   // Initial thread state is RUNNABLE
 506   osthread->set_state(RUNNABLE);
 507 
 508   thread->set_osthread(osthread);
 509   return true;
 510 }
 511 
 512 bool os::create_main_thread(JavaThread* thread) {
 513 #ifdef ASSERT
 514   thread->verify_not_published();
 515 #endif
 516   if (_starting_thread == NULL) {
 517     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 518     if (_starting_thread == NULL) {
 519       return false;
 520     }
 521   }
 522 
 523   // The primordial thread is runnable from the start)
 524   _starting_thread->set_state(RUNNABLE);
 525 
 526   thread->set_osthread(_starting_thread);
 527   return true;
 528 }
 529 
 530 // Allocate and initialize a new OSThread
 531 bool os::create_thread(Thread* thread, ThreadType thr_type,
 532                        size_t stack_size) {
 533   unsigned thread_id;
 534 
 535   // Allocate the OSThread object
 536   OSThread* osthread = new OSThread(NULL, NULL);
 537   if (osthread == NULL) {
 538     return false;
 539   }
 540 
 541   // Initialize support for Java interrupts
 542   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 543   if (interrupt_event == NULL) {
 544     delete osthread;
 545     return NULL;
 546   }
 547   osthread->set_interrupt_event(interrupt_event);
 548   osthread->set_interrupted(false);
 549 
 550   thread->set_osthread(osthread);
 551 
 552   if (stack_size == 0) {
 553     switch (thr_type) {
 554     case os::java_thread:
 555       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 556       if (JavaThread::stack_size_at_create() > 0) {
 557         stack_size = JavaThread::stack_size_at_create();
 558       }
 559       break;
 560     case os::compiler_thread:
 561       if (CompilerThreadStackSize > 0) {
 562         stack_size = (size_t)(CompilerThreadStackSize * K);
 563         break;
 564       } // else fall through:
 565         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 566     case os::vm_thread:
 567     case os::pgc_thread:
 568     case os::cgc_thread:
 569     case os::watcher_thread:
 570       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 571       break;
 572     }
 573   }
 574 
 575   // Create the Win32 thread
 576   //
 577   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 578   // does not specify stack size. Instead, it specifies the size of
 579   // initially committed space. The stack size is determined by
 580   // PE header in the executable. If the committed "stack_size" is larger
 581   // than default value in the PE header, the stack is rounded up to the
 582   // nearest multiple of 1MB. For example if the launcher has default
 583   // stack size of 320k, specifying any size less than 320k does not
 584   // affect the actual stack size at all, it only affects the initial
 585   // commitment. On the other hand, specifying 'stack_size' larger than
 586   // default value may cause significant increase in memory usage, because
 587   // not only the stack space will be rounded up to MB, but also the
 588   // entire space is committed upfront.
 589   //
 590   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 591   // for CreateThread() that can treat 'stack_size' as stack size. However we
 592   // are not supposed to call CreateThread() directly according to MSDN
 593   // document because JVM uses C runtime library. The good news is that the
 594   // flag appears to work with _beginthredex() as well.
 595 
 596 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 597   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 598 #endif
 599 
 600   HANDLE thread_handle =
 601     (HANDLE)_beginthreadex(NULL,
 602                            (unsigned)stack_size,
 603                            (unsigned (__stdcall *)(void*)) java_start,
 604                            thread,
 605                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 606                            &thread_id);
 607   if (thread_handle == NULL) {
 608     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 609     // without the flag.
 610     thread_handle =
 611       (HANDLE)_beginthreadex(NULL,
 612                              (unsigned)stack_size,
 613                              (unsigned (__stdcall *)(void*)) java_start,
 614                              thread,
 615                              CREATE_SUSPENDED,
 616                              &thread_id);
 617   }
 618   if (thread_handle == NULL) {
 619     // Need to clean up stuff we've allocated so far
 620     CloseHandle(osthread->interrupt_event());
 621     thread->set_osthread(NULL);
 622     delete osthread;
 623     return NULL;
 624   }
 625 
 626   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 627 
 628   // Store info on the Win32 thread into the OSThread
 629   osthread->set_thread_handle(thread_handle);
 630   osthread->set_thread_id(thread_id);
 631 
 632   // Initial thread state is INITIALIZED, not SUSPENDED
 633   osthread->set_state(INITIALIZED);
 634 
 635   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 636   return true;
 637 }
 638 
 639 
 640 // Free Win32 resources related to the OSThread
 641 void os::free_thread(OSThread* osthread) {
 642   assert(osthread != NULL, "osthread not set");
 643   CloseHandle(osthread->thread_handle());
 644   CloseHandle(osthread->interrupt_event());
 645   delete osthread;
 646 }
 647 
 648 static jlong first_filetime;
 649 static jlong initial_performance_count;
 650 static jlong performance_frequency;
 651 
 652 
 653 jlong as_long(LARGE_INTEGER x) {
 654   jlong result = 0; // initialization to avoid warning
 655   set_high(&result, x.HighPart);
 656   set_low(&result, x.LowPart);
 657   return result;
 658 }
 659 
 660 
 661 jlong os::elapsed_counter() {
 662   LARGE_INTEGER count;
 663   if (win32::_has_performance_count) {
 664     QueryPerformanceCounter(&count);
 665     return as_long(count) - initial_performance_count;
 666   } else {
 667     FILETIME wt;
 668     GetSystemTimeAsFileTime(&wt);
 669     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 670   }
 671 }
 672 
 673 
 674 jlong os::elapsed_frequency() {
 675   if (win32::_has_performance_count) {
 676     return performance_frequency;
 677   } else {
 678     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 679     return 10000000;
 680   }
 681 }
 682 
 683 
 684 julong os::available_memory() {
 685   return win32::available_memory();
 686 }
 687 
 688 julong os::win32::available_memory() {
 689   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 690   // value if total memory is larger than 4GB
 691   MEMORYSTATUSEX ms;
 692   ms.dwLength = sizeof(ms);
 693   GlobalMemoryStatusEx(&ms);
 694 
 695   return (julong)ms.ullAvailPhys;
 696 }
 697 
 698 julong os::physical_memory() {
 699   return win32::physical_memory();
 700 }
 701 
 702 bool os::has_allocatable_memory_limit(julong* limit) {
 703   MEMORYSTATUSEX ms;
 704   ms.dwLength = sizeof(ms);
 705   GlobalMemoryStatusEx(&ms);
 706 #ifdef _LP64
 707   *limit = (julong)ms.ullAvailVirtual;
 708   return true;
 709 #else
 710   // Limit to 1400m because of the 2gb address space wall
 711   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 712   return true;
 713 #endif
 714 }
 715 
 716 // VC6 lacks DWORD_PTR
 717 #if _MSC_VER < 1300
 718 typedef UINT_PTR DWORD_PTR;
 719 #endif
 720 
 721 int os::active_processor_count() {
 722   DWORD_PTR lpProcessAffinityMask = 0;
 723   DWORD_PTR lpSystemAffinityMask = 0;
 724   int proc_count = processor_count();
 725   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 726       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 727     // Nof active processors is number of bits in process affinity mask
 728     int bitcount = 0;
 729     while (lpProcessAffinityMask != 0) {
 730       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 731       bitcount++;
 732     }
 733     return bitcount;
 734   } else {
 735     return proc_count;
 736   }
 737 }
 738 
 739 void os::set_native_thread_name(const char *name) {
 740 
 741   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 742   //
 743   // Note that unfortunately this only works if the process
 744   // is already attached to a debugger; debugger must observe
 745   // the exception below to show the correct name.
 746 
 747   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 748   struct {
 749     DWORD dwType;     // must be 0x1000
 750     LPCSTR szName;    // pointer to name (in user addr space)
 751     DWORD dwThreadID; // thread ID (-1=caller thread)
 752     DWORD dwFlags;    // reserved for future use, must be zero
 753   } info;
 754 
 755   info.dwType = 0x1000;
 756   info.szName = name;
 757   info.dwThreadID = -1;
 758   info.dwFlags = 0;
 759 
 760   __try {
 761     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 762   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 763 }
 764 
 765 bool os::distribute_processes(uint length, uint* distribution) {
 766   // Not yet implemented.
 767   return false;
 768 }
 769 
 770 bool os::bind_to_processor(uint processor_id) {
 771   // Not yet implemented.
 772   return false;
 773 }
 774 
 775 void os::win32::initialize_performance_counter() {
 776   LARGE_INTEGER count;
 777   if (QueryPerformanceFrequency(&count)) {
 778     win32::_has_performance_count = 1;
 779     performance_frequency = as_long(count);
 780     QueryPerformanceCounter(&count);
 781     initial_performance_count = as_long(count);
 782   } else {
 783     win32::_has_performance_count = 0;
 784     FILETIME wt;
 785     GetSystemTimeAsFileTime(&wt);
 786     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 787   }
 788 }
 789 
 790 
 791 double os::elapsedTime() {
 792   return (double) elapsed_counter() / (double) elapsed_frequency();
 793 }
 794 
 795 
 796 // Windows format:
 797 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 798 // Java format:
 799 //   Java standards require the number of milliseconds since 1/1/1970
 800 
 801 // Constant offset - calculated using offset()
 802 static jlong  _offset   = 116444736000000000;
 803 // Fake time counter for reproducible results when debugging
 804 static jlong  fake_time = 0;
 805 
 806 #ifdef ASSERT
 807 // Just to be safe, recalculate the offset in debug mode
 808 static jlong _calculated_offset = 0;
 809 static int   _has_calculated_offset = 0;
 810 
 811 jlong offset() {
 812   if (_has_calculated_offset) return _calculated_offset;
 813   SYSTEMTIME java_origin;
 814   java_origin.wYear          = 1970;
 815   java_origin.wMonth         = 1;
 816   java_origin.wDayOfWeek     = 0; // ignored
 817   java_origin.wDay           = 1;
 818   java_origin.wHour          = 0;
 819   java_origin.wMinute        = 0;
 820   java_origin.wSecond        = 0;
 821   java_origin.wMilliseconds  = 0;
 822   FILETIME jot;
 823   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 824     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 825   }
 826   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 827   _has_calculated_offset = 1;
 828   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 829   return _calculated_offset;
 830 }
 831 #else
 832 jlong offset() {
 833   return _offset;
 834 }
 835 #endif
 836 
 837 jlong windows_to_java_time(FILETIME wt) {
 838   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 839   return (a - offset()) / 10000;
 840 }
 841 
 842 // Returns time ticks in (10th of micro seconds)
 843 jlong windows_to_time_ticks(FILETIME wt) {
 844   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 845   return (a - offset());
 846 }
 847 
 848 FILETIME java_to_windows_time(jlong l) {
 849   jlong a = (l * 10000) + offset();
 850   FILETIME result;
 851   result.dwHighDateTime = high(a);
 852   result.dwLowDateTime  = low(a);
 853   return result;
 854 }
 855 
 856 bool os::supports_vtime() { return true; }
 857 bool os::enable_vtime() { return false; }
 858 bool os::vtime_enabled() { return false; }
 859 
 860 double os::elapsedVTime() {
 861   FILETIME created;
 862   FILETIME exited;
 863   FILETIME kernel;
 864   FILETIME user;
 865   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 866     // the resolution of windows_to_java_time() should be sufficient (ms)
 867     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 868   } else {
 869     return elapsedTime();
 870   }
 871 }
 872 
 873 jlong os::javaTimeMillis() {
 874   if (UseFakeTimers) {
 875     return fake_time++;
 876   } else {
 877     FILETIME wt;
 878     GetSystemTimeAsFileTime(&wt);
 879     return windows_to_java_time(wt);
 880   }
 881 }
 882 
 883 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 884   FILETIME wt;
 885   GetSystemTimeAsFileTime(&wt);
 886   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 887   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 888   seconds = secs;
 889   nanos = jlong(ticks - (secs*10000000)) * 100;
 890 }
 891 
 892 jlong os::javaTimeNanos() {
 893   if (!win32::_has_performance_count) {
 894     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 895   } else {
 896     LARGE_INTEGER current_count;
 897     QueryPerformanceCounter(&current_count);
 898     double current = as_long(current_count);
 899     double freq = performance_frequency;
 900     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 901     return time;
 902   }
 903 }
 904 
 905 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 906   if (!win32::_has_performance_count) {
 907     // javaTimeMillis() doesn't have much percision,
 908     // but it is not going to wrap -- so all 64 bits
 909     info_ptr->max_value = ALL_64_BITS;
 910 
 911     // this is a wall clock timer, so may skip
 912     info_ptr->may_skip_backward = true;
 913     info_ptr->may_skip_forward = true;
 914   } else {
 915     jlong freq = performance_frequency;
 916     if (freq < NANOSECS_PER_SEC) {
 917       // the performance counter is 64 bits and we will
 918       // be multiplying it -- so no wrap in 64 bits
 919       info_ptr->max_value = ALL_64_BITS;
 920     } else if (freq > NANOSECS_PER_SEC) {
 921       // use the max value the counter can reach to
 922       // determine the max value which could be returned
 923       julong max_counter = (julong)ALL_64_BITS;
 924       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 925     } else {
 926       // the performance counter is 64 bits and we will
 927       // be using it directly -- so no wrap in 64 bits
 928       info_ptr->max_value = ALL_64_BITS;
 929     }
 930 
 931     // using a counter, so no skipping
 932     info_ptr->may_skip_backward = false;
 933     info_ptr->may_skip_forward = false;
 934   }
 935   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 936 }
 937 
 938 char* os::local_time_string(char *buf, size_t buflen) {
 939   SYSTEMTIME st;
 940   GetLocalTime(&st);
 941   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 942                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 943   return buf;
 944 }
 945 
 946 bool os::getTimesSecs(double* process_real_time,
 947                       double* process_user_time,
 948                       double* process_system_time) {
 949   HANDLE h_process = GetCurrentProcess();
 950   FILETIME create_time, exit_time, kernel_time, user_time;
 951   BOOL result = GetProcessTimes(h_process,
 952                                 &create_time,
 953                                 &exit_time,
 954                                 &kernel_time,
 955                                 &user_time);
 956   if (result != 0) {
 957     FILETIME wt;
 958     GetSystemTimeAsFileTime(&wt);
 959     jlong rtc_millis = windows_to_java_time(wt);
 960     jlong user_millis = windows_to_java_time(user_time);
 961     jlong system_millis = windows_to_java_time(kernel_time);
 962     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 963     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 964     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 965     return true;
 966   } else {
 967     return false;
 968   }
 969 }
 970 
 971 void os::shutdown() {
 972   // allow PerfMemory to attempt cleanup of any persistent resources
 973   perfMemory_exit();
 974 
 975   // flush buffered output, finish log files
 976   ostream_abort();
 977 
 978   // Check for abort hook
 979   abort_hook_t abort_hook = Arguments::abort_hook();
 980   if (abort_hook != NULL) {
 981     abort_hook();
 982   }
 983 }
 984 
 985 typedef BOOL  (WINAPI *fun_MiniDumpWriteDump_t) (HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 986                                                    PMINIDUMP_EXCEPTION_INFORMATION,
 987                                                    PMINIDUMP_USER_STREAM_INFORMATION,
 988                                                    PMINIDUMP_CALLBACK_INFORMATION);
 989 typedef LPAPI_VERSION (WINAPI *fun_ImagehlpApiVersion_t) (VOID);
 990 
 991 static fun_MiniDumpWriteDump_t _MiniDumpWriteDump;
 992 static fun_ImagehlpApiVersion_t _ImagehlpApiVersion;
 993 
 994 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 995   HINSTANCE dbghelp;
 996   EXCEPTION_POINTERS ep;
 997   MINIDUMP_EXCEPTION_INFORMATION mei;
 998   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 999 
1000   HANDLE hProcess = GetCurrentProcess();
1001   DWORD processId = GetCurrentProcessId();
1002   HANDLE dumpFile;
1003   MINIDUMP_TYPE dumpType;
1004   static const char* cwd;
1005 
1006 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
1007 #ifndef ASSERT
1008   // If running on a client version of Windows and user has not explicitly enabled dumping
1009   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
1010     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
1011     return;
1012     // If running on a server version of Windows and user has explictly disabled dumping
1013   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
1014     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
1015     return;
1016   }
1017 #else
1018   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
1019     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
1020     return;
1021   }
1022 #endif
1023 
1024   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1025 
1026   if (dbghelp == NULL) {
1027     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
1028     return;
1029   }
1030 
1031   if (_MiniDumpWriteDump == NULL) {
1032     _MiniDumpWriteDump =
1033         CAST_TO_FN_PTR(fun_MiniDumpWriteDump_t, GetProcAddress(dbghelp, "MiniDumpWriteDump"));
1034     _ImagehlpApiVersion =
1035         CAST_TO_FN_PTR(fun_ImagehlpApiVersion_t, GetProcAddress(dbghelp, "ImagehlpApiVersion"));
1036     if (_MiniDumpWriteDump == NULL || _ImagehlpApiVersion == NULL) {
1037       VMError::report_coredump_status("Failed to find MiniDumpWriteDump() or ImagehlpApiVersion() "
1038         "in module dbghelp.dll", false);
1039       return;
1040     }
1041   }
1042 
1043   const API_VERSION* const version = _ImagehlpApiVersion();
1044 
1045   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1046 
1047   // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
1048   // API_VERSION_NUMBER 11 or higher contains the ones we want though
1049   if (version->MajorVersion >= 11) {
1050     dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1051                              MiniDumpWithUnloadedModules);
1052   }
1053 
1054   cwd = get_current_directory(NULL, 0);
1055   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp", cwd, current_process_id());
1056   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1057 
1058   if (dumpFile == INVALID_HANDLE_VALUE) {
1059     VMError::report_coredump_status("Failed to create file for dumping", false);
1060     return;
1061   }
1062   if (exceptionRecord != NULL && contextRecord != NULL) {
1063     ep.ContextRecord = (PCONTEXT) contextRecord;
1064     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1065 
1066     mei.ThreadId = GetCurrentThreadId();
1067     mei.ExceptionPointers = &ep;
1068     pmei = &mei;
1069   } else {
1070     pmei = NULL;
1071   }
1072 
1073 
1074   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1075   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1076   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1077       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1078     DWORD error = GetLastError();
1079     LPTSTR msgbuf = NULL;
1080 
1081     if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1082                       FORMAT_MESSAGE_FROM_SYSTEM |
1083                       FORMAT_MESSAGE_IGNORE_INSERTS,
1084                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1085 
1086       jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1087       LocalFree(msgbuf);
1088     } else {
1089       // Call to FormatMessage failed, just include the result from GetLastError
1090       jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1091     }
1092     VMError::report_coredump_status(buffer, false);
1093   } else {
1094     VMError::report_coredump_status(buffer, true);
1095   }
1096 
1097   CloseHandle(dumpFile);
1098 }
1099 
1100 
1101 void os::abort(bool dump_core) {
1102   os::shutdown();
1103   // no core dump on Windows
1104   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1105 }
1106 
1107 // Die immediately, no exit hook, no abort hook, no cleanup.
1108 void os::die() {
1109   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1110 }
1111 
1112 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1113 //  * dirent_md.c       1.15 00/02/02
1114 //
1115 // The declarations for DIR and struct dirent are in jvm_win32.h.
1116 
1117 // Caller must have already run dirname through JVM_NativePath, which removes
1118 // duplicate slashes and converts all instances of '/' into '\\'.
1119 
1120 DIR * os::opendir(const char *dirname) {
1121   assert(dirname != NULL, "just checking");   // hotspot change
1122   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1123   DWORD fattr;                                // hotspot change
1124   char alt_dirname[4] = { 0, 0, 0, 0 };
1125 
1126   if (dirp == 0) {
1127     errno = ENOMEM;
1128     return 0;
1129   }
1130 
1131   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1132   // as a directory in FindFirstFile().  We detect this case here and
1133   // prepend the current drive name.
1134   //
1135   if (dirname[1] == '\0' && dirname[0] == '\\') {
1136     alt_dirname[0] = _getdrive() + 'A' - 1;
1137     alt_dirname[1] = ':';
1138     alt_dirname[2] = '\\';
1139     alt_dirname[3] = '\0';
1140     dirname = alt_dirname;
1141   }
1142 
1143   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1144   if (dirp->path == 0) {
1145     free(dirp);
1146     errno = ENOMEM;
1147     return 0;
1148   }
1149   strcpy(dirp->path, dirname);
1150 
1151   fattr = GetFileAttributes(dirp->path);
1152   if (fattr == 0xffffffff) {
1153     free(dirp->path);
1154     free(dirp);
1155     errno = ENOENT;
1156     return 0;
1157   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1158     free(dirp->path);
1159     free(dirp);
1160     errno = ENOTDIR;
1161     return 0;
1162   }
1163 
1164   // Append "*.*", or possibly "\\*.*", to path
1165   if (dirp->path[1] == ':' &&
1166       (dirp->path[2] == '\0' ||
1167       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1168     // No '\\' needed for cases like "Z:" or "Z:\"
1169     strcat(dirp->path, "*.*");
1170   } else {
1171     strcat(dirp->path, "\\*.*");
1172   }
1173 
1174   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1175   if (dirp->handle == INVALID_HANDLE_VALUE) {
1176     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1177       free(dirp->path);
1178       free(dirp);
1179       errno = EACCES;
1180       return 0;
1181     }
1182   }
1183   return dirp;
1184 }
1185 
1186 // parameter dbuf unused on Windows
1187 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1188   assert(dirp != NULL, "just checking");      // hotspot change
1189   if (dirp->handle == INVALID_HANDLE_VALUE) {
1190     return 0;
1191   }
1192 
1193   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1194 
1195   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1196     if (GetLastError() == ERROR_INVALID_HANDLE) {
1197       errno = EBADF;
1198       return 0;
1199     }
1200     FindClose(dirp->handle);
1201     dirp->handle = INVALID_HANDLE_VALUE;
1202   }
1203 
1204   return &dirp->dirent;
1205 }
1206 
1207 int os::closedir(DIR *dirp) {
1208   assert(dirp != NULL, "just checking");      // hotspot change
1209   if (dirp->handle != INVALID_HANDLE_VALUE) {
1210     if (!FindClose(dirp->handle)) {
1211       errno = EBADF;
1212       return -1;
1213     }
1214     dirp->handle = INVALID_HANDLE_VALUE;
1215   }
1216   free(dirp->path);
1217   free(dirp);
1218   return 0;
1219 }
1220 
1221 // This must be hard coded because it's the system's temporary
1222 // directory not the java application's temp directory, ala java.io.tmpdir.
1223 const char* os::get_temp_directory() {
1224   static char path_buf[MAX_PATH];
1225   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1226     return path_buf;
1227   } else {
1228     path_buf[0] = '\0';
1229     return path_buf;
1230   }
1231 }
1232 
1233 static bool file_exists(const char* filename) {
1234   if (filename == NULL || strlen(filename) == 0) {
1235     return false;
1236   }
1237   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1238 }
1239 
1240 bool os::dll_build_name(char *buffer, size_t buflen,
1241                         const char* pname, const char* fname) {
1242   bool retval = false;
1243   const size_t pnamelen = pname ? strlen(pname) : 0;
1244   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1245 
1246   // Return error on buffer overflow.
1247   if (pnamelen + strlen(fname) + 10 > buflen) {
1248     return retval;
1249   }
1250 
1251   if (pnamelen == 0) {
1252     jio_snprintf(buffer, buflen, "%s.dll", fname);
1253     retval = true;
1254   } else if (c == ':' || c == '\\') {
1255     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1256     retval = true;
1257   } else if (strchr(pname, *os::path_separator()) != NULL) {
1258     int n;
1259     char** pelements = split_path(pname, &n);
1260     if (pelements == NULL) {
1261       return false;
1262     }
1263     for (int i = 0; i < n; i++) {
1264       char* path = pelements[i];
1265       // Really shouldn't be NULL, but check can't hurt
1266       size_t plen = (path == NULL) ? 0 : strlen(path);
1267       if (plen == 0) {
1268         continue; // skip the empty path values
1269       }
1270       const char lastchar = path[plen - 1];
1271       if (lastchar == ':' || lastchar == '\\') {
1272         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1273       } else {
1274         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1275       }
1276       if (file_exists(buffer)) {
1277         retval = true;
1278         break;
1279       }
1280     }
1281     // release the storage
1282     for (int i = 0; i < n; i++) {
1283       if (pelements[i] != NULL) {
1284         FREE_C_HEAP_ARRAY(char, pelements[i]);
1285       }
1286     }
1287     if (pelements != NULL) {
1288       FREE_C_HEAP_ARRAY(char*, pelements);
1289     }
1290   } else {
1291     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1292     retval = true;
1293   }
1294   return retval;
1295 }
1296 
1297 // Needs to be in os specific directory because windows requires another
1298 // header file <direct.h>
1299 const char* os::get_current_directory(char *buf, size_t buflen) {
1300   int n = static_cast<int>(buflen);
1301   if (buflen > INT_MAX)  n = INT_MAX;
1302   return _getcwd(buf, n);
1303 }
1304 
1305 //-----------------------------------------------------------
1306 // Helper functions for fatal error handler
1307 #ifdef _WIN64
1308 // Helper routine which returns true if address in
1309 // within the NTDLL address space.
1310 //
1311 static bool _addr_in_ntdll(address addr) {
1312   HMODULE hmod;
1313   MODULEINFO minfo;
1314 
1315   hmod = GetModuleHandle("NTDLL.DLL");
1316   if (hmod == NULL) return false;
1317   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1318                                           &minfo, sizeof(MODULEINFO))) {
1319     return false;
1320   }
1321 
1322   if ((addr >= minfo.lpBaseOfDll) &&
1323       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1324     return true;
1325   } else {
1326     return false;
1327   }
1328 }
1329 #endif
1330 
1331 struct _modinfo {
1332   address addr;
1333   char*   full_path;   // point to a char buffer
1334   int     buflen;      // size of the buffer
1335   address base_addr;
1336 };
1337 
1338 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1339                                   address top_address, void * param) {
1340   struct _modinfo *pmod = (struct _modinfo *)param;
1341   if (!pmod) return -1;
1342 
1343   if (base_addr   <= pmod->addr &&
1344       top_address > pmod->addr) {
1345     // if a buffer is provided, copy path name to the buffer
1346     if (pmod->full_path) {
1347       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1348     }
1349     pmod->base_addr = base_addr;
1350     return 1;
1351   }
1352   return 0;
1353 }
1354 
1355 bool os::dll_address_to_library_name(address addr, char* buf,
1356                                      int buflen, int* offset) {
1357   // buf is not optional, but offset is optional
1358   assert(buf != NULL, "sanity check");
1359 
1360 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1361 //       return the full path to the DLL file, sometimes it returns path
1362 //       to the corresponding PDB file (debug info); sometimes it only
1363 //       returns partial path, which makes life painful.
1364 
1365   struct _modinfo mi;
1366   mi.addr      = addr;
1367   mi.full_path = buf;
1368   mi.buflen    = buflen;
1369   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1370     // buf already contains path name
1371     if (offset) *offset = addr - mi.base_addr;
1372     return true;
1373   }
1374 
1375   buf[0] = '\0';
1376   if (offset) *offset = -1;
1377   return false;
1378 }
1379 
1380 bool os::dll_address_to_function_name(address addr, char *buf,
1381                                       int buflen, int *offset) {
1382   // buf is not optional, but offset is optional
1383   assert(buf != NULL, "sanity check");
1384 
1385   if (Decoder::decode(addr, buf, buflen, offset)) {
1386     return true;
1387   }
1388   if (offset != NULL)  *offset  = -1;
1389   buf[0] = '\0';
1390   return false;
1391 }
1392 
1393 // save the start and end address of jvm.dll into param[0] and param[1]
1394 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1395                            address top_address, void * param) {
1396   if (!param) return -1;
1397 
1398   if (base_addr   <= (address)_locate_jvm_dll &&
1399       top_address > (address)_locate_jvm_dll) {
1400     ((address*)param)[0] = base_addr;
1401     ((address*)param)[1] = top_address;
1402     return 1;
1403   }
1404   return 0;
1405 }
1406 
1407 address vm_lib_location[2];    // start and end address of jvm.dll
1408 
1409 // check if addr is inside jvm.dll
1410 bool os::address_is_in_vm(address addr) {
1411   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1412     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1413       assert(false, "Can't find jvm module.");
1414       return false;
1415     }
1416   }
1417 
1418   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1419 }
1420 
1421 // print module info; param is outputStream*
1422 static int _print_module(const char* fname, address base_address,
1423                          address top_address, void* param) {
1424   if (!param) return -1;
1425 
1426   outputStream* st = (outputStream*)param;
1427 
1428   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1429   return 0;
1430 }
1431 
1432 // Loads .dll/.so and
1433 // in case of error it checks if .dll/.so was built for the
1434 // same architecture as Hotspot is running on
1435 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1436   void * result = LoadLibrary(name);
1437   if (result != NULL) {
1438     return result;
1439   }
1440 
1441   DWORD errcode = GetLastError();
1442   if (errcode == ERROR_MOD_NOT_FOUND) {
1443     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1444     ebuf[ebuflen - 1] = '\0';
1445     return NULL;
1446   }
1447 
1448   // Parsing dll below
1449   // If we can read dll-info and find that dll was built
1450   // for an architecture other than Hotspot is running in
1451   // - then print to buffer "DLL was built for a different architecture"
1452   // else call os::lasterror to obtain system error message
1453 
1454   // Read system error message into ebuf
1455   // It may or may not be overwritten below (in the for loop and just above)
1456   lasterror(ebuf, (size_t) ebuflen);
1457   ebuf[ebuflen - 1] = '\0';
1458   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1459   if (fd < 0) {
1460     return NULL;
1461   }
1462 
1463   uint32_t signature_offset;
1464   uint16_t lib_arch = 0;
1465   bool failed_to_get_lib_arch =
1466     ( // Go to position 3c in the dll
1467      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1468      ||
1469      // Read location of signature
1470      (sizeof(signature_offset) !=
1471      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1472      ||
1473      // Go to COFF File Header in dll
1474      // that is located after "signature" (4 bytes long)
1475      (os::seek_to_file_offset(fd,
1476      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1477      ||
1478      // Read field that contains code of architecture
1479      // that dll was built for
1480      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1481     );
1482 
1483   ::close(fd);
1484   if (failed_to_get_lib_arch) {
1485     // file i/o error - report os::lasterror(...) msg
1486     return NULL;
1487   }
1488 
1489   typedef struct {
1490     uint16_t arch_code;
1491     char* arch_name;
1492   } arch_t;
1493 
1494   static const arch_t arch_array[] = {
1495     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1496     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1497     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1498   };
1499 #if   (defined _M_IA64)
1500   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1501 #elif (defined _M_AMD64)
1502   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1503 #elif (defined _M_IX86)
1504   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1505 #else
1506   #error Method os::dll_load requires that one of following \
1507          is defined :_M_IA64,_M_AMD64 or _M_IX86
1508 #endif
1509 
1510 
1511   // Obtain a string for printf operation
1512   // lib_arch_str shall contain string what platform this .dll was built for
1513   // running_arch_str shall string contain what platform Hotspot was built for
1514   char *running_arch_str = NULL, *lib_arch_str = NULL;
1515   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1516     if (lib_arch == arch_array[i].arch_code) {
1517       lib_arch_str = arch_array[i].arch_name;
1518     }
1519     if (running_arch == arch_array[i].arch_code) {
1520       running_arch_str = arch_array[i].arch_name;
1521     }
1522   }
1523 
1524   assert(running_arch_str,
1525          "Didn't find running architecture code in arch_array");
1526 
1527   // If the architecture is right
1528   // but some other error took place - report os::lasterror(...) msg
1529   if (lib_arch == running_arch) {
1530     return NULL;
1531   }
1532 
1533   if (lib_arch_str != NULL) {
1534     ::_snprintf(ebuf, ebuflen - 1,
1535                 "Can't load %s-bit .dll on a %s-bit platform",
1536                 lib_arch_str, running_arch_str);
1537   } else {
1538     // don't know what architecture this dll was build for
1539     ::_snprintf(ebuf, ebuflen - 1,
1540                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1541                 lib_arch, running_arch_str);
1542   }
1543 
1544   return NULL;
1545 }
1546 
1547 void os::print_dll_info(outputStream *st) {
1548   st->print_cr("Dynamic libraries:");
1549   get_loaded_modules_info(_print_module, (void *)st);
1550 }
1551 
1552 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1553   HANDLE   hProcess;
1554 
1555 # define MAX_NUM_MODULES 128
1556   HMODULE     modules[MAX_NUM_MODULES];
1557   static char filename[MAX_PATH];
1558   int         result = 0;
1559 
1560   if (!os::PSApiDll::PSApiAvailable()) {
1561     return 0;
1562   }
1563 
1564   int pid = os::current_process_id();
1565   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1566                          FALSE, pid);
1567   if (hProcess == NULL) return 0;
1568 
1569   DWORD size_needed;
1570   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1571                                         sizeof(modules), &size_needed)) {
1572     CloseHandle(hProcess);
1573     return 0;
1574   }
1575 
1576   // number of modules that are currently loaded
1577   int num_modules = size_needed / sizeof(HMODULE);
1578 
1579   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1580     // Get Full pathname:
1581     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1582                                            filename, sizeof(filename))) {
1583       filename[0] = '\0';
1584     }
1585 
1586     MODULEINFO modinfo;
1587     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1588                                             &modinfo, sizeof(modinfo))) {
1589       modinfo.lpBaseOfDll = NULL;
1590       modinfo.SizeOfImage = 0;
1591     }
1592 
1593     // Invoke callback function
1594     result = callback(filename, (address)modinfo.lpBaseOfDll,
1595                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1596     if (result) break;
1597   }
1598 
1599   CloseHandle(hProcess);
1600   return result;
1601 }
1602 
1603 void os::print_os_info_brief(outputStream* st) {
1604   os::print_os_info(st);
1605 }
1606 
1607 void os::print_os_info(outputStream* st) {
1608 #ifdef ASSERT
1609   char buffer[1024];
1610   DWORD size = sizeof(buffer);
1611   st->print(" HostName: ");
1612   if (GetComputerNameEx(ComputerNameDnsHostname, buffer, &size)) {
1613     st->print("%s", buffer);
1614   } else {
1615     st->print("N/A");
1616   }
1617 #endif
1618   st->print(" OS:");
1619   os::win32::print_windows_version(st);
1620 }
1621 
1622 void os::win32::print_windows_version(outputStream* st) {
1623   OSVERSIONINFOEX osvi;
1624   VS_FIXEDFILEINFO *file_info;
1625   TCHAR kernel32_path[MAX_PATH];
1626   UINT len, ret;
1627 
1628   // Use the GetVersionEx information to see if we're on a server or
1629   // workstation edition of Windows. Starting with Windows 8.1 we can't
1630   // trust the OS version information returned by this API.
1631   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1632   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1633   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1634     st->print_cr("Call to GetVersionEx failed");
1635     return;
1636   }
1637   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1638 
1639   // Get the full path to \Windows\System32\kernel32.dll and use that for
1640   // determining what version of Windows we're running on.
1641   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1642   ret = GetSystemDirectory(kernel32_path, len);
1643   if (ret == 0 || ret > len) {
1644     st->print_cr("Call to GetSystemDirectory failed");
1645     return;
1646   }
1647   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1648 
1649   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1650   if (version_size == 0) {
1651     st->print_cr("Call to GetFileVersionInfoSize failed");
1652     return;
1653   }
1654 
1655   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1656   if (version_info == NULL) {
1657     st->print_cr("Failed to allocate version_info");
1658     return;
1659   }
1660 
1661   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1662     os::free(version_info);
1663     st->print_cr("Call to GetFileVersionInfo failed");
1664     return;
1665   }
1666 
1667   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1668     os::free(version_info);
1669     st->print_cr("Call to VerQueryValue failed");
1670     return;
1671   }
1672 
1673   int major_version = HIWORD(file_info->dwProductVersionMS);
1674   int minor_version = LOWORD(file_info->dwProductVersionMS);
1675   int build_number = HIWORD(file_info->dwProductVersionLS);
1676   int build_minor = LOWORD(file_info->dwProductVersionLS);
1677   int os_vers = major_version * 1000 + minor_version;
1678   os::free(version_info);
1679 
1680   st->print(" Windows ");
1681   switch (os_vers) {
1682 
1683   case 6000:
1684     if (is_workstation) {
1685       st->print("Vista");
1686     } else {
1687       st->print("Server 2008");
1688     }
1689     break;
1690 
1691   case 6001:
1692     if (is_workstation) {
1693       st->print("7");
1694     } else {
1695       st->print("Server 2008 R2");
1696     }
1697     break;
1698 
1699   case 6002:
1700     if (is_workstation) {
1701       st->print("8");
1702     } else {
1703       st->print("Server 2012");
1704     }
1705     break;
1706 
1707   case 6003:
1708     if (is_workstation) {
1709       st->print("8.1");
1710     } else {
1711       st->print("Server 2012 R2");
1712     }
1713     break;
1714 
1715   case 10000:
1716     if (is_workstation) {
1717       st->print("10");
1718     } else {
1719       // The server version name of Windows 10 is not known at this time
1720       st->print("%d.%d", major_version, minor_version);
1721     }
1722     break;
1723 
1724   default:
1725     // Unrecognized windows, print out its major and minor versions
1726     st->print("%d.%d", major_version, minor_version);
1727     break;
1728   }
1729 
1730   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1731   // find out whether we are running on 64 bit processor or not
1732   SYSTEM_INFO si;
1733   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1734   os::Kernel32Dll::GetNativeSystemInfo(&si);
1735   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1736     st->print(" , 64 bit");
1737   }
1738 
1739   st->print(" Build %d", build_number);
1740   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1741   st->cr();
1742 }
1743 
1744 void os::pd_print_cpu_info(outputStream* st) {
1745   // Nothing to do for now.
1746 }
1747 
1748 void os::print_memory_info(outputStream* st) {
1749   st->print("Memory:");
1750   st->print(" %dk page", os::vm_page_size()>>10);
1751 
1752   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1753   // value if total memory is larger than 4GB
1754   MEMORYSTATUSEX ms;
1755   ms.dwLength = sizeof(ms);
1756   GlobalMemoryStatusEx(&ms);
1757 
1758   st->print(", physical %uk", os::physical_memory() >> 10);
1759   st->print("(%uk free)", os::available_memory() >> 10);
1760 
1761   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1762   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1763   st->cr();
1764 }
1765 
1766 void os::print_siginfo(outputStream *st, void *siginfo) {
1767   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1768   st->print("siginfo:");
1769   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1770 
1771   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1772       er->NumberParameters >= 2) {
1773     switch (er->ExceptionInformation[0]) {
1774     case 0: st->print(", reading address"); break;
1775     case 1: st->print(", writing address"); break;
1776     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1777                        er->ExceptionInformation[0]);
1778     }
1779     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1780   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1781              er->NumberParameters >= 2 && UseSharedSpaces) {
1782     FileMapInfo* mapinfo = FileMapInfo::current_info();
1783     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1784       st->print("\n\nError accessing class data sharing archive."       \
1785                 " Mapped file inaccessible during execution, "          \
1786                 " possible disk/network problem.");
1787     }
1788   } else {
1789     int num = er->NumberParameters;
1790     if (num > 0) {
1791       st->print(", ExceptionInformation=");
1792       for (int i = 0; i < num; i++) {
1793         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1794       }
1795     }
1796   }
1797   st->cr();
1798 }
1799 
1800 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1801   // do nothing
1802 }
1803 
1804 static char saved_jvm_path[MAX_PATH] = {0};
1805 
1806 // Find the full path to the current module, jvm.dll
1807 void os::jvm_path(char *buf, jint buflen) {
1808   // Error checking.
1809   if (buflen < MAX_PATH) {
1810     assert(false, "must use a large-enough buffer");
1811     buf[0] = '\0';
1812     return;
1813   }
1814   // Lazy resolve the path to current module.
1815   if (saved_jvm_path[0] != 0) {
1816     strcpy(buf, saved_jvm_path);
1817     return;
1818   }
1819 
1820   buf[0] = '\0';
1821   if (Arguments::sun_java_launcher_is_altjvm()) {
1822     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1823     // for a JAVA_HOME environment variable and fix up the path so it
1824     // looks like jvm.dll is installed there (append a fake suffix
1825     // hotspot/jvm.dll).
1826     char* java_home_var = ::getenv("JAVA_HOME");
1827     if (java_home_var != NULL && java_home_var[0] != 0 &&
1828         strlen(java_home_var) < (size_t)buflen) {
1829       strncpy(buf, java_home_var, buflen);
1830 
1831       // determine if this is a legacy image or modules image
1832       // modules image doesn't have "jre" subdirectory
1833       size_t len = strlen(buf);
1834       char* jrebin_p = buf + len;
1835       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1836       if (0 != _access(buf, 0)) {
1837         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1838       }
1839       len = strlen(buf);
1840       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1841     }
1842   }
1843 
1844   if (buf[0] == '\0') {
1845     GetModuleFileName(vm_lib_handle, buf, buflen);
1846   }
1847   strncpy(saved_jvm_path, buf, MAX_PATH);
1848   saved_jvm_path[MAX_PATH - 1] = '\0';
1849 }
1850 
1851 
1852 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1853 #ifndef _WIN64
1854   st->print("_");
1855 #endif
1856 }
1857 
1858 
1859 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1860 #ifndef _WIN64
1861   st->print("@%d", args_size  * sizeof(int));
1862 #endif
1863 }
1864 
1865 // This method is a copy of JDK's sysGetLastErrorString
1866 // from src/windows/hpi/src/system_md.c
1867 
1868 size_t os::lasterror(char* buf, size_t len) {
1869   DWORD errval;
1870 
1871   if ((errval = GetLastError()) != 0) {
1872     // DOS error
1873     size_t n = (size_t)FormatMessage(
1874                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1875                                      NULL,
1876                                      errval,
1877                                      0,
1878                                      buf,
1879                                      (DWORD)len,
1880                                      NULL);
1881     if (n > 3) {
1882       // Drop final '.', CR, LF
1883       if (buf[n - 1] == '\n') n--;
1884       if (buf[n - 1] == '\r') n--;
1885       if (buf[n - 1] == '.') n--;
1886       buf[n] = '\0';
1887     }
1888     return n;
1889   }
1890 
1891   if (errno != 0) {
1892     // C runtime error that has no corresponding DOS error code
1893     const char* s = strerror(errno);
1894     size_t n = strlen(s);
1895     if (n >= len) n = len - 1;
1896     strncpy(buf, s, n);
1897     buf[n] = '\0';
1898     return n;
1899   }
1900 
1901   return 0;
1902 }
1903 
1904 int os::get_last_error() {
1905   DWORD error = GetLastError();
1906   if (error == 0) {
1907     error = errno;
1908   }
1909   return (int)error;
1910 }
1911 
1912 // sun.misc.Signal
1913 // NOTE that this is a workaround for an apparent kernel bug where if
1914 // a signal handler for SIGBREAK is installed then that signal handler
1915 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1916 // See bug 4416763.
1917 static void (*sigbreakHandler)(int) = NULL;
1918 
1919 static void UserHandler(int sig, void *siginfo, void *context) {
1920   os::signal_notify(sig);
1921   // We need to reinstate the signal handler each time...
1922   os::signal(sig, (void*)UserHandler);
1923 }
1924 
1925 void* os::user_handler() {
1926   return (void*) UserHandler;
1927 }
1928 
1929 void* os::signal(int signal_number, void* handler) {
1930   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1931     void (*oldHandler)(int) = sigbreakHandler;
1932     sigbreakHandler = (void (*)(int)) handler;
1933     return (void*) oldHandler;
1934   } else {
1935     return (void*)::signal(signal_number, (void (*)(int))handler);
1936   }
1937 }
1938 
1939 void os::signal_raise(int signal_number) {
1940   raise(signal_number);
1941 }
1942 
1943 // The Win32 C runtime library maps all console control events other than ^C
1944 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1945 // logoff, and shutdown events.  We therefore install our own console handler
1946 // that raises SIGTERM for the latter cases.
1947 //
1948 static BOOL WINAPI consoleHandler(DWORD event) {
1949   switch (event) {
1950   case CTRL_C_EVENT:
1951     if (is_error_reported()) {
1952       // Ctrl-C is pressed during error reporting, likely because the error
1953       // handler fails to abort. Let VM die immediately.
1954       os::die();
1955     }
1956 
1957     os::signal_raise(SIGINT);
1958     return TRUE;
1959     break;
1960   case CTRL_BREAK_EVENT:
1961     if (sigbreakHandler != NULL) {
1962       (*sigbreakHandler)(SIGBREAK);
1963     }
1964     return TRUE;
1965     break;
1966   case CTRL_LOGOFF_EVENT: {
1967     // Don't terminate JVM if it is running in a non-interactive session,
1968     // such as a service process.
1969     USEROBJECTFLAGS flags;
1970     HANDLE handle = GetProcessWindowStation();
1971     if (handle != NULL &&
1972         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1973         sizeof(USEROBJECTFLAGS), NULL)) {
1974       // If it is a non-interactive session, let next handler to deal
1975       // with it.
1976       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1977         return FALSE;
1978       }
1979     }
1980   }
1981   case CTRL_CLOSE_EVENT:
1982   case CTRL_SHUTDOWN_EVENT:
1983     os::signal_raise(SIGTERM);
1984     return TRUE;
1985     break;
1986   default:
1987     break;
1988   }
1989   return FALSE;
1990 }
1991 
1992 // The following code is moved from os.cpp for making this
1993 // code platform specific, which it is by its very nature.
1994 
1995 // Return maximum OS signal used + 1 for internal use only
1996 // Used as exit signal for signal_thread
1997 int os::sigexitnum_pd() {
1998   return NSIG;
1999 }
2000 
2001 // a counter for each possible signal value, including signal_thread exit signal
2002 static volatile jint pending_signals[NSIG+1] = { 0 };
2003 static HANDLE sig_sem = NULL;
2004 
2005 void os::signal_init_pd() {
2006   // Initialize signal structures
2007   memset((void*)pending_signals, 0, sizeof(pending_signals));
2008 
2009   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2010 
2011   // Programs embedding the VM do not want it to attempt to receive
2012   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2013   // shutdown hooks mechanism introduced in 1.3.  For example, when
2014   // the VM is run as part of a Windows NT service (i.e., a servlet
2015   // engine in a web server), the correct behavior is for any console
2016   // control handler to return FALSE, not TRUE, because the OS's
2017   // "final" handler for such events allows the process to continue if
2018   // it is a service (while terminating it if it is not a service).
2019   // To make this behavior uniform and the mechanism simpler, we
2020   // completely disable the VM's usage of these console events if -Xrs
2021   // (=ReduceSignalUsage) is specified.  This means, for example, that
2022   // the CTRL-BREAK thread dump mechanism is also disabled in this
2023   // case.  See bugs 4323062, 4345157, and related bugs.
2024 
2025   if (!ReduceSignalUsage) {
2026     // Add a CTRL-C handler
2027     SetConsoleCtrlHandler(consoleHandler, TRUE);
2028   }
2029 }
2030 
2031 void os::signal_notify(int signal_number) {
2032   BOOL ret;
2033   if (sig_sem != NULL) {
2034     Atomic::inc(&pending_signals[signal_number]);
2035     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2036     assert(ret != 0, "ReleaseSemaphore() failed");
2037   }
2038 }
2039 
2040 static int check_pending_signals(bool wait_for_signal) {
2041   DWORD ret;
2042   while (true) {
2043     for (int i = 0; i < NSIG + 1; i++) {
2044       jint n = pending_signals[i];
2045       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2046         return i;
2047       }
2048     }
2049     if (!wait_for_signal) {
2050       return -1;
2051     }
2052 
2053     JavaThread *thread = JavaThread::current();
2054 
2055     ThreadBlockInVM tbivm(thread);
2056 
2057     bool threadIsSuspended;
2058     do {
2059       thread->set_suspend_equivalent();
2060       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2061       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2062       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2063 
2064       // were we externally suspended while we were waiting?
2065       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2066       if (threadIsSuspended) {
2067         // The semaphore has been incremented, but while we were waiting
2068         // another thread suspended us. We don't want to continue running
2069         // while suspended because that would surprise the thread that
2070         // suspended us.
2071         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2072         assert(ret != 0, "ReleaseSemaphore() failed");
2073 
2074         thread->java_suspend_self();
2075       }
2076     } while (threadIsSuspended);
2077   }
2078 }
2079 
2080 int os::signal_lookup() {
2081   return check_pending_signals(false);
2082 }
2083 
2084 int os::signal_wait() {
2085   return check_pending_signals(true);
2086 }
2087 
2088 // Implicit OS exception handling
2089 
2090 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2091                       address handler) {
2092   JavaThread* thread = JavaThread::current();
2093   // Save pc in thread
2094 #ifdef _M_IA64
2095   // Do not blow up if no thread info available.
2096   if (thread) {
2097     // Saving PRECISE pc (with slot information) in thread.
2098     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2099     // Convert precise PC into "Unix" format
2100     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2101     thread->set_saved_exception_pc((address)precise_pc);
2102   }
2103   // Set pc to handler
2104   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2105   // Clear out psr.ri (= Restart Instruction) in order to continue
2106   // at the beginning of the target bundle.
2107   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2108   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2109 #elif _M_AMD64
2110   // Do not blow up if no thread info available.
2111   if (thread) {
2112     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2113   }
2114   // Set pc to handler
2115   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2116 #else
2117   // Do not blow up if no thread info available.
2118   if (thread) {
2119     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2120   }
2121   // Set pc to handler
2122   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2123 #endif
2124 
2125   // Continue the execution
2126   return EXCEPTION_CONTINUE_EXECUTION;
2127 }
2128 
2129 
2130 // Used for PostMortemDump
2131 extern "C" void safepoints();
2132 extern "C" void find(int x);
2133 extern "C" void events();
2134 
2135 // According to Windows API documentation, an illegal instruction sequence should generate
2136 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2137 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2138 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2139 
2140 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2141 
2142 // From "Execution Protection in the Windows Operating System" draft 0.35
2143 // Once a system header becomes available, the "real" define should be
2144 // included or copied here.
2145 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2146 
2147 // Handle NAT Bit consumption on IA64.
2148 #ifdef _M_IA64
2149   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2150 #endif
2151 
2152 // Windows Vista/2008 heap corruption check
2153 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2154 
2155 #define def_excpt(val) #val, val
2156 
2157 struct siglabel {
2158   char *name;
2159   int   number;
2160 };
2161 
2162 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2163 // C++ compiler contain this error code. Because this is a compiler-generated
2164 // error, the code is not listed in the Win32 API header files.
2165 // The code is actually a cryptic mnemonic device, with the initial "E"
2166 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2167 // ASCII values of "msc".
2168 
2169 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2170 
2171 
2172 struct siglabel exceptlabels[] = {
2173     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2174     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2175     def_excpt(EXCEPTION_BREAKPOINT),
2176     def_excpt(EXCEPTION_SINGLE_STEP),
2177     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2178     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2179     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2180     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2181     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2182     def_excpt(EXCEPTION_FLT_OVERFLOW),
2183     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2184     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2185     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2186     def_excpt(EXCEPTION_INT_OVERFLOW),
2187     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2188     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2189     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2190     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2191     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2192     def_excpt(EXCEPTION_STACK_OVERFLOW),
2193     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2194     def_excpt(EXCEPTION_GUARD_PAGE),
2195     def_excpt(EXCEPTION_INVALID_HANDLE),
2196     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2197     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2198 #ifdef _M_IA64
2199     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2200 #endif
2201     NULL, 0
2202 };
2203 
2204 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2205   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2206     if (exceptlabels[i].number == exception_code) {
2207       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2208       return buf;
2209     }
2210   }
2211 
2212   return NULL;
2213 }
2214 
2215 //-----------------------------------------------------------------------------
2216 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2217   // handle exception caused by idiv; should only happen for -MinInt/-1
2218   // (division by zero is handled explicitly)
2219 #ifdef _M_IA64
2220   assert(0, "Fix Handle_IDiv_Exception");
2221 #elif _M_AMD64
2222   PCONTEXT ctx = exceptionInfo->ContextRecord;
2223   address pc = (address)ctx->Rip;
2224   assert(pc[0] == 0xF7, "not an idiv opcode");
2225   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2226   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2227   // set correct result values and continue after idiv instruction
2228   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2229   ctx->Rax = (DWORD)min_jint;      // result
2230   ctx->Rdx = (DWORD)0;             // remainder
2231   // Continue the execution
2232 #else
2233   PCONTEXT ctx = exceptionInfo->ContextRecord;
2234   address pc = (address)ctx->Eip;
2235   assert(pc[0] == 0xF7, "not an idiv opcode");
2236   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2237   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2238   // set correct result values and continue after idiv instruction
2239   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2240   ctx->Eax = (DWORD)min_jint;      // result
2241   ctx->Edx = (DWORD)0;             // remainder
2242   // Continue the execution
2243 #endif
2244   return EXCEPTION_CONTINUE_EXECUTION;
2245 }
2246 
2247 //-----------------------------------------------------------------------------
2248 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2249   PCONTEXT ctx = exceptionInfo->ContextRecord;
2250 #ifndef  _WIN64
2251   // handle exception caused by native method modifying control word
2252   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2253 
2254   switch (exception_code) {
2255   case EXCEPTION_FLT_DENORMAL_OPERAND:
2256   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2257   case EXCEPTION_FLT_INEXACT_RESULT:
2258   case EXCEPTION_FLT_INVALID_OPERATION:
2259   case EXCEPTION_FLT_OVERFLOW:
2260   case EXCEPTION_FLT_STACK_CHECK:
2261   case EXCEPTION_FLT_UNDERFLOW:
2262     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2263     if (fp_control_word != ctx->FloatSave.ControlWord) {
2264       // Restore FPCW and mask out FLT exceptions
2265       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2266       // Mask out pending FLT exceptions
2267       ctx->FloatSave.StatusWord &=  0xffffff00;
2268       return EXCEPTION_CONTINUE_EXECUTION;
2269     }
2270   }
2271 
2272   if (prev_uef_handler != NULL) {
2273     // We didn't handle this exception so pass it to the previous
2274     // UnhandledExceptionFilter.
2275     return (prev_uef_handler)(exceptionInfo);
2276   }
2277 #else // !_WIN64
2278   // On Windows, the mxcsr control bits are non-volatile across calls
2279   // See also CR 6192333
2280   //
2281   jint MxCsr = INITIAL_MXCSR;
2282   // we can't use StubRoutines::addr_mxcsr_std()
2283   // because in Win64 mxcsr is not saved there
2284   if (MxCsr != ctx->MxCsr) {
2285     ctx->MxCsr = MxCsr;
2286     return EXCEPTION_CONTINUE_EXECUTION;
2287   }
2288 #endif // !_WIN64
2289 
2290   return EXCEPTION_CONTINUE_SEARCH;
2291 }
2292 
2293 static inline void report_error(Thread* t, DWORD exception_code,
2294                                 address addr, void* siginfo, void* context) {
2295   VMError err(t, exception_code, addr, siginfo, context);
2296   err.report_and_die();
2297 
2298   // If UseOsErrorReporting, this will return here and save the error file
2299   // somewhere where we can find it in the minidump.
2300 }
2301 
2302 //-----------------------------------------------------------------------------
2303 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2304   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2305   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2306 #ifdef _M_IA64
2307   // On Itanium, we need the "precise pc", which has the slot number coded
2308   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2309   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2310   // Convert the pc to "Unix format", which has the slot number coded
2311   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2312   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2313   // information is saved in the Unix format.
2314   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2315 #elif _M_AMD64
2316   address pc = (address) exceptionInfo->ContextRecord->Rip;
2317 #else
2318   address pc = (address) exceptionInfo->ContextRecord->Eip;
2319 #endif
2320   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2321 
2322   // Handle SafeFetch32 and SafeFetchN exceptions.
2323   if (StubRoutines::is_safefetch_fault(pc)) {
2324     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2325   }
2326 
2327 #ifndef _WIN64
2328   // Execution protection violation - win32 running on AMD64 only
2329   // Handled first to avoid misdiagnosis as a "normal" access violation;
2330   // This is safe to do because we have a new/unique ExceptionInformation
2331   // code for this condition.
2332   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2333     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2334     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2335     address addr = (address) exceptionRecord->ExceptionInformation[1];
2336 
2337     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2338       int page_size = os::vm_page_size();
2339 
2340       // Make sure the pc and the faulting address are sane.
2341       //
2342       // If an instruction spans a page boundary, and the page containing
2343       // the beginning of the instruction is executable but the following
2344       // page is not, the pc and the faulting address might be slightly
2345       // different - we still want to unguard the 2nd page in this case.
2346       //
2347       // 15 bytes seems to be a (very) safe value for max instruction size.
2348       bool pc_is_near_addr =
2349         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2350       bool instr_spans_page_boundary =
2351         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2352                          (intptr_t) page_size) > 0);
2353 
2354       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2355         static volatile address last_addr =
2356           (address) os::non_memory_address_word();
2357 
2358         // In conservative mode, don't unguard unless the address is in the VM
2359         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2360             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2361 
2362           // Set memory to RWX and retry
2363           address page_start =
2364             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2365           bool res = os::protect_memory((char*) page_start, page_size,
2366                                         os::MEM_PROT_RWX);
2367 
2368           if (PrintMiscellaneous && Verbose) {
2369             char buf[256];
2370             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2371                          "at " INTPTR_FORMAT
2372                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2373                          page_start, (res ? "success" : strerror(errno)));
2374             tty->print_raw_cr(buf);
2375           }
2376 
2377           // Set last_addr so if we fault again at the same address, we don't
2378           // end up in an endless loop.
2379           //
2380           // There are two potential complications here.  Two threads trapping
2381           // at the same address at the same time could cause one of the
2382           // threads to think it already unguarded, and abort the VM.  Likely
2383           // very rare.
2384           //
2385           // The other race involves two threads alternately trapping at
2386           // different addresses and failing to unguard the page, resulting in
2387           // an endless loop.  This condition is probably even more unlikely
2388           // than the first.
2389           //
2390           // Although both cases could be avoided by using locks or thread
2391           // local last_addr, these solutions are unnecessary complication:
2392           // this handler is a best-effort safety net, not a complete solution.
2393           // It is disabled by default and should only be used as a workaround
2394           // in case we missed any no-execute-unsafe VM code.
2395 
2396           last_addr = addr;
2397 
2398           return EXCEPTION_CONTINUE_EXECUTION;
2399         }
2400       }
2401 
2402       // Last unguard failed or not unguarding
2403       tty->print_raw_cr("Execution protection violation");
2404       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2405                    exceptionInfo->ContextRecord);
2406       return EXCEPTION_CONTINUE_SEARCH;
2407     }
2408   }
2409 #endif // _WIN64
2410 
2411   // Check to see if we caught the safepoint code in the
2412   // process of write protecting the memory serialization page.
2413   // It write enables the page immediately after protecting it
2414   // so just return.
2415   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2416     JavaThread* thread = (JavaThread*) t;
2417     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2418     address addr = (address) exceptionRecord->ExceptionInformation[1];
2419     if (os::is_memory_serialize_page(thread, addr)) {
2420       // Block current thread until the memory serialize page permission restored.
2421       os::block_on_serialize_page_trap();
2422       return EXCEPTION_CONTINUE_EXECUTION;
2423     }
2424   }
2425 
2426   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2427       VM_Version::is_cpuinfo_segv_addr(pc)) {
2428     // Verify that OS save/restore AVX registers.
2429     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2430   }
2431 
2432   if (t != NULL && t->is_Java_thread()) {
2433     JavaThread* thread = (JavaThread*) t;
2434     bool in_java = thread->thread_state() == _thread_in_Java;
2435 
2436     // Handle potential stack overflows up front.
2437     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2438       if (os::uses_stack_guard_pages()) {
2439 #ifdef _M_IA64
2440         // Use guard page for register stack.
2441         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2442         address addr = (address) exceptionRecord->ExceptionInformation[1];
2443         // Check for a register stack overflow on Itanium
2444         if (thread->addr_inside_register_stack_red_zone(addr)) {
2445           // Fatal red zone violation happens if the Java program
2446           // catches a StackOverflow error and does so much processing
2447           // that it runs beyond the unprotected yellow guard zone. As
2448           // a result, we are out of here.
2449           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2450         } else if(thread->addr_inside_register_stack(addr)) {
2451           // Disable the yellow zone which sets the state that
2452           // we've got a stack overflow problem.
2453           if (thread->stack_yellow_zone_enabled()) {
2454             thread->disable_stack_yellow_zone();
2455           }
2456           // Give us some room to process the exception.
2457           thread->disable_register_stack_guard();
2458           // Tracing with +Verbose.
2459           if (Verbose) {
2460             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2461             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2462             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2463             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2464                           thread->register_stack_base(),
2465                           thread->register_stack_base() + thread->stack_size());
2466           }
2467 
2468           // Reguard the permanent register stack red zone just to be sure.
2469           // We saw Windows silently disabling this without telling us.
2470           thread->enable_register_stack_red_zone();
2471 
2472           return Handle_Exception(exceptionInfo,
2473                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2474         }
2475 #endif
2476         if (thread->stack_yellow_zone_enabled()) {
2477           // Yellow zone violation.  The o/s has unprotected the first yellow
2478           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2479           // update the enabled status, even if the zone contains only one page.
2480           thread->disable_stack_yellow_zone();
2481           // If not in java code, return and hope for the best.
2482           return in_java
2483               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2484               :  EXCEPTION_CONTINUE_EXECUTION;
2485         } else {
2486           // Fatal red zone violation.
2487           thread->disable_stack_red_zone();
2488           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2489           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2490                        exceptionInfo->ContextRecord);
2491           return EXCEPTION_CONTINUE_SEARCH;
2492         }
2493       } else if (in_java) {
2494         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2495         // a one-time-only guard page, which it has released to us.  The next
2496         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2497         return Handle_Exception(exceptionInfo,
2498                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2499       } else {
2500         // Can only return and hope for the best.  Further stack growth will
2501         // result in an ACCESS_VIOLATION.
2502         return EXCEPTION_CONTINUE_EXECUTION;
2503       }
2504     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2505       // Either stack overflow or null pointer exception.
2506       if (in_java) {
2507         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2508         address addr = (address) exceptionRecord->ExceptionInformation[1];
2509         address stack_end = thread->stack_base() - thread->stack_size();
2510         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2511           // Stack overflow.
2512           assert(!os::uses_stack_guard_pages(),
2513                  "should be caught by red zone code above.");
2514           return Handle_Exception(exceptionInfo,
2515                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2516         }
2517         // Check for safepoint polling and implicit null
2518         // We only expect null pointers in the stubs (vtable)
2519         // the rest are checked explicitly now.
2520         CodeBlob* cb = CodeCache::find_blob(pc);
2521         if (cb != NULL) {
2522           if (os::is_poll_address(addr)) {
2523             address stub = SharedRuntime::get_poll_stub(pc);
2524             return Handle_Exception(exceptionInfo, stub);
2525           }
2526         }
2527         {
2528 #ifdef _WIN64
2529           // If it's a legal stack address map the entire region in
2530           //
2531           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2532           address addr = (address) exceptionRecord->ExceptionInformation[1];
2533           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2534             addr = (address)((uintptr_t)addr &
2535                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2536             os::commit_memory((char *)addr, thread->stack_base() - addr,
2537                               !ExecMem);
2538             return EXCEPTION_CONTINUE_EXECUTION;
2539           } else
2540 #endif
2541           {
2542             // Null pointer exception.
2543 #ifdef _M_IA64
2544             // Process implicit null checks in compiled code. Note: Implicit null checks
2545             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2546             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2547               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2548               // Handle implicit null check in UEP method entry
2549               if (cb && (cb->is_frame_complete_at(pc) ||
2550                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2551                 if (Verbose) {
2552                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2553                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2554                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2555                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2556                                 *(bundle_start + 1), *bundle_start);
2557                 }
2558                 return Handle_Exception(exceptionInfo,
2559                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2560               }
2561             }
2562 
2563             // Implicit null checks were processed above.  Hence, we should not reach
2564             // here in the usual case => die!
2565             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2566             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2567                          exceptionInfo->ContextRecord);
2568             return EXCEPTION_CONTINUE_SEARCH;
2569 
2570 #else // !IA64
2571 
2572             // Windows 98 reports faulting addresses incorrectly
2573             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2574                 !os::win32::is_nt()) {
2575               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2576               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2577             }
2578             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2579                          exceptionInfo->ContextRecord);
2580             return EXCEPTION_CONTINUE_SEARCH;
2581 #endif
2582           }
2583         }
2584       }
2585 
2586 #ifdef _WIN64
2587       // Special care for fast JNI field accessors.
2588       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2589       // in and the heap gets shrunk before the field access.
2590       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2591         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2592         if (addr != (address)-1) {
2593           return Handle_Exception(exceptionInfo, addr);
2594         }
2595       }
2596 #endif
2597 
2598       // Stack overflow or null pointer exception in native code.
2599       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2600                    exceptionInfo->ContextRecord);
2601       return EXCEPTION_CONTINUE_SEARCH;
2602     } // /EXCEPTION_ACCESS_VIOLATION
2603     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2604 #if defined _M_IA64
2605     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2606               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2607       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2608 
2609       // Compiled method patched to be non entrant? Following conditions must apply:
2610       // 1. must be first instruction in bundle
2611       // 2. must be a break instruction with appropriate code
2612       if ((((uint64_t) pc & 0x0F) == 0) &&
2613           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2614         return Handle_Exception(exceptionInfo,
2615                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2616       }
2617     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2618 #endif
2619 
2620 
2621     if (in_java) {
2622       switch (exception_code) {
2623       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2624         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2625 
2626       case EXCEPTION_INT_OVERFLOW:
2627         return Handle_IDiv_Exception(exceptionInfo);
2628 
2629       } // switch
2630     }
2631     if (((thread->thread_state() == _thread_in_Java) ||
2632          (thread->thread_state() == _thread_in_native)) &&
2633          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2634       LONG result=Handle_FLT_Exception(exceptionInfo);
2635       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2636     }
2637   }
2638 
2639   if (exception_code != EXCEPTION_BREAKPOINT) {
2640     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2641                  exceptionInfo->ContextRecord);
2642   }
2643   return EXCEPTION_CONTINUE_SEARCH;
2644 }
2645 
2646 #ifndef _WIN64
2647 // Special care for fast JNI accessors.
2648 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2649 // the heap gets shrunk before the field access.
2650 // Need to install our own structured exception handler since native code may
2651 // install its own.
2652 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2653   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2654   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2655     address pc = (address) exceptionInfo->ContextRecord->Eip;
2656     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2657     if (addr != (address)-1) {
2658       return Handle_Exception(exceptionInfo, addr);
2659     }
2660   }
2661   return EXCEPTION_CONTINUE_SEARCH;
2662 }
2663 
2664 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2665   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2666                                                      jobject obj,           \
2667                                                      jfieldID fieldID) {    \
2668     __try {                                                                 \
2669       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2670                                                                  obj,       \
2671                                                                  fieldID);  \
2672     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2673                                               _exception_info())) {         \
2674     }                                                                       \
2675     return 0;                                                               \
2676   }
2677 
2678 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2679 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2680 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2681 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2682 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2683 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2684 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2685 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2686 
2687 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2688   switch (type) {
2689   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2690   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2691   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2692   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2693   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2694   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2695   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2696   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2697   default:        ShouldNotReachHere();
2698   }
2699   return (address)-1;
2700 }
2701 #endif
2702 
2703 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2704   // Install a win32 structured exception handler around the test
2705   // function call so the VM can generate an error dump if needed.
2706   __try {
2707     (*funcPtr)();
2708   } __except(topLevelExceptionFilter(
2709                                      (_EXCEPTION_POINTERS*)_exception_info())) {
2710     // Nothing to do.
2711   }
2712 }
2713 
2714 // Virtual Memory
2715 
2716 int os::vm_page_size() { return os::win32::vm_page_size(); }
2717 int os::vm_allocation_granularity() {
2718   return os::win32::vm_allocation_granularity();
2719 }
2720 
2721 // Windows large page support is available on Windows 2003. In order to use
2722 // large page memory, the administrator must first assign additional privilege
2723 // to the user:
2724 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2725 //   + select Local Policies -> User Rights Assignment
2726 //   + double click "Lock pages in memory", add users and/or groups
2727 //   + reboot
2728 // Note the above steps are needed for administrator as well, as administrators
2729 // by default do not have the privilege to lock pages in memory.
2730 //
2731 // Note about Windows 2003: although the API supports committing large page
2732 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2733 // scenario, I found through experiment it only uses large page if the entire
2734 // memory region is reserved and committed in a single VirtualAlloc() call.
2735 // This makes Windows large page support more or less like Solaris ISM, in
2736 // that the entire heap must be committed upfront. This probably will change
2737 // in the future, if so the code below needs to be revisited.
2738 
2739 #ifndef MEM_LARGE_PAGES
2740   #define MEM_LARGE_PAGES 0x20000000
2741 #endif
2742 
2743 static HANDLE    _hProcess;
2744 static HANDLE    _hToken;
2745 
2746 // Container for NUMA node list info
2747 class NUMANodeListHolder {
2748  private:
2749   int *_numa_used_node_list;  // allocated below
2750   int _numa_used_node_count;
2751 
2752   void free_node_list() {
2753     if (_numa_used_node_list != NULL) {
2754       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2755     }
2756   }
2757 
2758  public:
2759   NUMANodeListHolder() {
2760     _numa_used_node_count = 0;
2761     _numa_used_node_list = NULL;
2762     // do rest of initialization in build routine (after function pointers are set up)
2763   }
2764 
2765   ~NUMANodeListHolder() {
2766     free_node_list();
2767   }
2768 
2769   bool build() {
2770     DWORD_PTR proc_aff_mask;
2771     DWORD_PTR sys_aff_mask;
2772     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2773     ULONG highest_node_number;
2774     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2775     free_node_list();
2776     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2777     for (unsigned int i = 0; i <= highest_node_number; i++) {
2778       ULONGLONG proc_mask_numa_node;
2779       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2780       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2781         _numa_used_node_list[_numa_used_node_count++] = i;
2782       }
2783     }
2784     return (_numa_used_node_count > 1);
2785   }
2786 
2787   int get_count() { return _numa_used_node_count; }
2788   int get_node_list_entry(int n) {
2789     // for indexes out of range, returns -1
2790     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2791   }
2792 
2793 } numa_node_list_holder;
2794 
2795 
2796 
2797 static size_t _large_page_size = 0;
2798 
2799 static bool resolve_functions_for_large_page_init() {
2800   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2801     os::Advapi32Dll::AdvapiAvailable();
2802 }
2803 
2804 static bool request_lock_memory_privilege() {
2805   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2806                           os::current_process_id());
2807 
2808   LUID luid;
2809   if (_hProcess != NULL &&
2810       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2811       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2812 
2813     TOKEN_PRIVILEGES tp;
2814     tp.PrivilegeCount = 1;
2815     tp.Privileges[0].Luid = luid;
2816     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2817 
2818     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2819     // privilege. Check GetLastError() too. See MSDN document.
2820     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2821         (GetLastError() == ERROR_SUCCESS)) {
2822       return true;
2823     }
2824   }
2825 
2826   return false;
2827 }
2828 
2829 static void cleanup_after_large_page_init() {
2830   if (_hProcess) CloseHandle(_hProcess);
2831   _hProcess = NULL;
2832   if (_hToken) CloseHandle(_hToken);
2833   _hToken = NULL;
2834 }
2835 
2836 static bool numa_interleaving_init() {
2837   bool success = false;
2838   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2839 
2840   // print a warning if UseNUMAInterleaving flag is specified on command line
2841   bool warn_on_failure = use_numa_interleaving_specified;
2842 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2843 
2844   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2845   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2846   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2847 
2848   if (os::Kernel32Dll::NumaCallsAvailable()) {
2849     if (numa_node_list_holder.build()) {
2850       if (PrintMiscellaneous && Verbose) {
2851         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2852         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2853           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2854         }
2855         tty->print("\n");
2856       }
2857       success = true;
2858     } else {
2859       WARN("Process does not cover multiple NUMA nodes.");
2860     }
2861   } else {
2862     WARN("NUMA Interleaving is not supported by the operating system.");
2863   }
2864   if (!success) {
2865     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2866   }
2867   return success;
2868 #undef WARN
2869 }
2870 
2871 // this routine is used whenever we need to reserve a contiguous VA range
2872 // but we need to make separate VirtualAlloc calls for each piece of the range
2873 // Reasons for doing this:
2874 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2875 //  * UseNUMAInterleaving requires a separate node for each piece
2876 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2877                                          DWORD prot,
2878                                          bool should_inject_error = false) {
2879   char * p_buf;
2880   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2881   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2882   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2883 
2884   // first reserve enough address space in advance since we want to be
2885   // able to break a single contiguous virtual address range into multiple
2886   // large page commits but WS2003 does not allow reserving large page space
2887   // so we just use 4K pages for reserve, this gives us a legal contiguous
2888   // address space. then we will deallocate that reservation, and re alloc
2889   // using large pages
2890   const size_t size_of_reserve = bytes + chunk_size;
2891   if (bytes > size_of_reserve) {
2892     // Overflowed.
2893     return NULL;
2894   }
2895   p_buf = (char *) VirtualAlloc(addr,
2896                                 size_of_reserve,  // size of Reserve
2897                                 MEM_RESERVE,
2898                                 PAGE_READWRITE);
2899   // If reservation failed, return NULL
2900   if (p_buf == NULL) return NULL;
2901   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2902   os::release_memory(p_buf, bytes + chunk_size);
2903 
2904   // we still need to round up to a page boundary (in case we are using large pages)
2905   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2906   // instead we handle this in the bytes_to_rq computation below
2907   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2908 
2909   // now go through and allocate one chunk at a time until all bytes are
2910   // allocated
2911   size_t  bytes_remaining = bytes;
2912   // An overflow of align_size_up() would have been caught above
2913   // in the calculation of size_of_reserve.
2914   char * next_alloc_addr = p_buf;
2915   HANDLE hProc = GetCurrentProcess();
2916 
2917 #ifdef ASSERT
2918   // Variable for the failure injection
2919   long ran_num = os::random();
2920   size_t fail_after = ran_num % bytes;
2921 #endif
2922 
2923   int count=0;
2924   while (bytes_remaining) {
2925     // select bytes_to_rq to get to the next chunk_size boundary
2926 
2927     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2928     // Note allocate and commit
2929     char * p_new;
2930 
2931 #ifdef ASSERT
2932     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2933 #else
2934     const bool inject_error_now = false;
2935 #endif
2936 
2937     if (inject_error_now) {
2938       p_new = NULL;
2939     } else {
2940       if (!UseNUMAInterleaving) {
2941         p_new = (char *) VirtualAlloc(next_alloc_addr,
2942                                       bytes_to_rq,
2943                                       flags,
2944                                       prot);
2945       } else {
2946         // get the next node to use from the used_node_list
2947         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2948         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2949         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2950                                                             next_alloc_addr,
2951                                                             bytes_to_rq,
2952                                                             flags,
2953                                                             prot,
2954                                                             node);
2955       }
2956     }
2957 
2958     if (p_new == NULL) {
2959       // Free any allocated pages
2960       if (next_alloc_addr > p_buf) {
2961         // Some memory was committed so release it.
2962         size_t bytes_to_release = bytes - bytes_remaining;
2963         // NMT has yet to record any individual blocks, so it
2964         // need to create a dummy 'reserve' record to match
2965         // the release.
2966         MemTracker::record_virtual_memory_reserve((address)p_buf,
2967                                                   bytes_to_release, CALLER_PC);
2968         os::release_memory(p_buf, bytes_to_release);
2969       }
2970 #ifdef ASSERT
2971       if (should_inject_error) {
2972         if (TracePageSizes && Verbose) {
2973           tty->print_cr("Reserving pages individually failed.");
2974         }
2975       }
2976 #endif
2977       return NULL;
2978     }
2979 
2980     bytes_remaining -= bytes_to_rq;
2981     next_alloc_addr += bytes_to_rq;
2982     count++;
2983   }
2984   // Although the memory is allocated individually, it is returned as one.
2985   // NMT records it as one block.
2986   if ((flags & MEM_COMMIT) != 0) {
2987     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2988   } else {
2989     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2990   }
2991 
2992   // made it this far, success
2993   return p_buf;
2994 }
2995 
2996 
2997 
2998 void os::large_page_init() {
2999   if (!UseLargePages) return;
3000 
3001   // print a warning if any large page related flag is specified on command line
3002   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3003                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3004   bool success = false;
3005 
3006 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3007   if (resolve_functions_for_large_page_init()) {
3008     if (request_lock_memory_privilege()) {
3009       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3010       if (s) {
3011 #if defined(IA32) || defined(AMD64)
3012         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3013           WARN("JVM cannot use large pages bigger than 4mb.");
3014         } else {
3015 #endif
3016           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3017             _large_page_size = LargePageSizeInBytes;
3018           } else {
3019             _large_page_size = s;
3020           }
3021           success = true;
3022 #if defined(IA32) || defined(AMD64)
3023         }
3024 #endif
3025       } else {
3026         WARN("Large page is not supported by the processor.");
3027       }
3028     } else {
3029       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3030     }
3031   } else {
3032     WARN("Large page is not supported by the operating system.");
3033   }
3034 #undef WARN
3035 
3036   const size_t default_page_size = (size_t) vm_page_size();
3037   if (success && _large_page_size > default_page_size) {
3038     _page_sizes[0] = _large_page_size;
3039     _page_sizes[1] = default_page_size;
3040     _page_sizes[2] = 0;
3041   }
3042 
3043   cleanup_after_large_page_init();
3044   UseLargePages = success;
3045 }
3046 
3047 // On win32, one cannot release just a part of reserved memory, it's an
3048 // all or nothing deal.  When we split a reservation, we must break the
3049 // reservation into two reservations.
3050 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3051                                   bool realloc) {
3052   if (size > 0) {
3053     release_memory(base, size);
3054     if (realloc) {
3055       reserve_memory(split, base);
3056     }
3057     if (size != split) {
3058       reserve_memory(size - split, base + split);
3059     }
3060   }
3061 }
3062 
3063 // Multiple threads can race in this code but it's not possible to unmap small sections of
3064 // virtual space to get requested alignment, like posix-like os's.
3065 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3066 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3067   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3068          "Alignment must be a multiple of allocation granularity (page size)");
3069   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3070 
3071   size_t extra_size = size + alignment;
3072   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3073 
3074   char* aligned_base = NULL;
3075 
3076   do {
3077     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3078     if (extra_base == NULL) {
3079       return NULL;
3080     }
3081     // Do manual alignment
3082     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3083 
3084     os::release_memory(extra_base, extra_size);
3085 
3086     aligned_base = os::reserve_memory(size, aligned_base);
3087 
3088   } while (aligned_base == NULL);
3089 
3090   return aligned_base;
3091 }
3092 
3093 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3094   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3095          "reserve alignment");
3096   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3097   char* res;
3098   // note that if UseLargePages is on, all the areas that require interleaving
3099   // will go thru reserve_memory_special rather than thru here.
3100   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3101   if (!use_individual) {
3102     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3103   } else {
3104     elapsedTimer reserveTimer;
3105     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3106     // in numa interleaving, we have to allocate pages individually
3107     // (well really chunks of NUMAInterleaveGranularity size)
3108     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3109     if (res == NULL) {
3110       warning("NUMA page allocation failed");
3111     }
3112     if (Verbose && PrintMiscellaneous) {
3113       reserveTimer.stop();
3114       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3115                     reserveTimer.milliseconds(), reserveTimer.ticks());
3116     }
3117   }
3118   assert(res == NULL || addr == NULL || addr == res,
3119          "Unexpected address from reserve.");
3120 
3121   return res;
3122 }
3123 
3124 // Reserve memory at an arbitrary address, only if that area is
3125 // available (and not reserved for something else).
3126 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3127   // Windows os::reserve_memory() fails of the requested address range is
3128   // not avilable.
3129   return reserve_memory(bytes, requested_addr);
3130 }
3131 
3132 size_t os::large_page_size() {
3133   return _large_page_size;
3134 }
3135 
3136 bool os::can_commit_large_page_memory() {
3137   // Windows only uses large page memory when the entire region is reserved
3138   // and committed in a single VirtualAlloc() call. This may change in the
3139   // future, but with Windows 2003 it's not possible to commit on demand.
3140   return false;
3141 }
3142 
3143 bool os::can_execute_large_page_memory() {
3144   return true;
3145 }
3146 
3147 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3148                                  bool exec) {
3149   assert(UseLargePages, "only for large pages");
3150 
3151   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3152     return NULL; // Fallback to small pages.
3153   }
3154 
3155   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3156   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3157 
3158   // with large pages, there are two cases where we need to use Individual Allocation
3159   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3160   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3161   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3162     if (TracePageSizes && Verbose) {
3163       tty->print_cr("Reserving large pages individually.");
3164     }
3165     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3166     if (p_buf == NULL) {
3167       // give an appropriate warning message
3168       if (UseNUMAInterleaving) {
3169         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3170       }
3171       if (UseLargePagesIndividualAllocation) {
3172         warning("Individually allocated large pages failed, "
3173                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3174       }
3175       return NULL;
3176     }
3177 
3178     return p_buf;
3179 
3180   } else {
3181     if (TracePageSizes && Verbose) {
3182       tty->print_cr("Reserving large pages in a single large chunk.");
3183     }
3184     // normal policy just allocate it all at once
3185     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3186     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3187     if (res != NULL) {
3188       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3189     }
3190 
3191     return res;
3192   }
3193 }
3194 
3195 bool os::release_memory_special(char* base, size_t bytes) {
3196   assert(base != NULL, "Sanity check");
3197   return release_memory(base, bytes);
3198 }
3199 
3200 void os::print_statistics() {
3201 }
3202 
3203 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3204   int err = os::get_last_error();
3205   char buf[256];
3206   size_t buf_len = os::lasterror(buf, sizeof(buf));
3207   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3208           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3209           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3210 }
3211 
3212 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3213   if (bytes == 0) {
3214     // Don't bother the OS with noops.
3215     return true;
3216   }
3217   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3218   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3219   // Don't attempt to print anything if the OS call fails. We're
3220   // probably low on resources, so the print itself may cause crashes.
3221 
3222   // unless we have NUMAInterleaving enabled, the range of a commit
3223   // is always within a reserve covered by a single VirtualAlloc
3224   // in that case we can just do a single commit for the requested size
3225   if (!UseNUMAInterleaving) {
3226     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3227       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3228       return false;
3229     }
3230     if (exec) {
3231       DWORD oldprot;
3232       // Windows doc says to use VirtualProtect to get execute permissions
3233       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3234         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3235         return false;
3236       }
3237     }
3238     return true;
3239   } else {
3240 
3241     // when NUMAInterleaving is enabled, the commit might cover a range that
3242     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3243     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3244     // returns represents the number of bytes that can be committed in one step.
3245     size_t bytes_remaining = bytes;
3246     char * next_alloc_addr = addr;
3247     while (bytes_remaining > 0) {
3248       MEMORY_BASIC_INFORMATION alloc_info;
3249       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3250       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3251       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3252                        PAGE_READWRITE) == NULL) {
3253         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3254                                             exec);)
3255         return false;
3256       }
3257       if (exec) {
3258         DWORD oldprot;
3259         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3260                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3261           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3262                                               exec);)
3263           return false;
3264         }
3265       }
3266       bytes_remaining -= bytes_to_rq;
3267       next_alloc_addr += bytes_to_rq;
3268     }
3269   }
3270   // if we made it this far, return true
3271   return true;
3272 }
3273 
3274 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3275                           bool exec) {
3276   // alignment_hint is ignored on this OS
3277   return pd_commit_memory(addr, size, exec);
3278 }
3279 
3280 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3281                                   const char* mesg) {
3282   assert(mesg != NULL, "mesg must be specified");
3283   if (!pd_commit_memory(addr, size, exec)) {
3284     warn_fail_commit_memory(addr, size, exec);
3285     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3286   }
3287 }
3288 
3289 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3290                                   size_t alignment_hint, bool exec,
3291                                   const char* mesg) {
3292   // alignment_hint is ignored on this OS
3293   pd_commit_memory_or_exit(addr, size, exec, mesg);
3294 }
3295 
3296 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3297   if (bytes == 0) {
3298     // Don't bother the OS with noops.
3299     return true;
3300   }
3301   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3302   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3303   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3304 }
3305 
3306 bool os::pd_release_memory(char* addr, size_t bytes) {
3307   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3308 }
3309 
3310 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3311   return os::commit_memory(addr, size, !ExecMem);
3312 }
3313 
3314 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3315   return os::uncommit_memory(addr, size);
3316 }
3317 
3318 // Set protections specified
3319 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3320                         bool is_committed) {
3321   unsigned int p = 0;
3322   switch (prot) {
3323   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3324   case MEM_PROT_READ: p = PAGE_READONLY; break;
3325   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3326   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3327   default:
3328     ShouldNotReachHere();
3329   }
3330 
3331   DWORD old_status;
3332 
3333   // Strange enough, but on Win32 one can change protection only for committed
3334   // memory, not a big deal anyway, as bytes less or equal than 64K
3335   if (!is_committed) {
3336     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3337                           "cannot commit protection page");
3338   }
3339   // One cannot use os::guard_memory() here, as on Win32 guard page
3340   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3341   //
3342   // Pages in the region become guard pages. Any attempt to access a guard page
3343   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3344   // the guard page status. Guard pages thus act as a one-time access alarm.
3345   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3346 }
3347 
3348 bool os::guard_memory(char* addr, size_t bytes) {
3349   DWORD old_status;
3350   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3351 }
3352 
3353 bool os::unguard_memory(char* addr, size_t bytes) {
3354   DWORD old_status;
3355   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3356 }
3357 
3358 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3359 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3360 void os::numa_make_global(char *addr, size_t bytes)    { }
3361 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3362 bool os::numa_topology_changed()                       { return false; }
3363 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3364 int os::numa_get_group_id()                            { return 0; }
3365 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3366   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3367     // Provide an answer for UMA systems
3368     ids[0] = 0;
3369     return 1;
3370   } else {
3371     // check for size bigger than actual groups_num
3372     size = MIN2(size, numa_get_groups_num());
3373     for (int i = 0; i < (int)size; i++) {
3374       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3375     }
3376     return size;
3377   }
3378 }
3379 
3380 bool os::get_page_info(char *start, page_info* info) {
3381   return false;
3382 }
3383 
3384 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3385                      page_info* page_found) {
3386   return end;
3387 }
3388 
3389 char* os::non_memory_address_word() {
3390   // Must never look like an address returned by reserve_memory,
3391   // even in its subfields (as defined by the CPU immediate fields,
3392   // if the CPU splits constants across multiple instructions).
3393   return (char*)-1;
3394 }
3395 
3396 #define MAX_ERROR_COUNT 100
3397 #define SYS_THREAD_ERROR 0xffffffffUL
3398 
3399 void os::pd_start_thread(Thread* thread) {
3400   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3401   // Returns previous suspend state:
3402   // 0:  Thread was not suspended
3403   // 1:  Thread is running now
3404   // >1: Thread is still suspended.
3405   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3406 }
3407 
3408 class HighResolutionInterval : public CHeapObj<mtThread> {
3409   // The default timer resolution seems to be 10 milliseconds.
3410   // (Where is this written down?)
3411   // If someone wants to sleep for only a fraction of the default,
3412   // then we set the timer resolution down to 1 millisecond for
3413   // the duration of their interval.
3414   // We carefully set the resolution back, since otherwise we
3415   // seem to incur an overhead (3%?) that we don't need.
3416   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3417   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3418   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3419   // timeBeginPeriod() if the relative error exceeded some threshold.
3420   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3421   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3422   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3423   // resolution timers running.
3424  private:
3425   jlong resolution;
3426  public:
3427   HighResolutionInterval(jlong ms) {
3428     resolution = ms % 10L;
3429     if (resolution != 0) {
3430       MMRESULT result = timeBeginPeriod(1L);
3431     }
3432   }
3433   ~HighResolutionInterval() {
3434     if (resolution != 0) {
3435       MMRESULT result = timeEndPeriod(1L);
3436     }
3437     resolution = 0L;
3438   }
3439 };
3440 
3441 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3442   jlong limit = (jlong) MAXDWORD;
3443 
3444   while (ms > limit) {
3445     int res;
3446     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3447       return res;
3448     }
3449     ms -= limit;
3450   }
3451 
3452   assert(thread == Thread::current(), "thread consistency check");
3453   OSThread* osthread = thread->osthread();
3454   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3455   int result;
3456   if (interruptable) {
3457     assert(thread->is_Java_thread(), "must be java thread");
3458     JavaThread *jt = (JavaThread *) thread;
3459     ThreadBlockInVM tbivm(jt);
3460 
3461     jt->set_suspend_equivalent();
3462     // cleared by handle_special_suspend_equivalent_condition() or
3463     // java_suspend_self() via check_and_wait_while_suspended()
3464 
3465     HANDLE events[1];
3466     events[0] = osthread->interrupt_event();
3467     HighResolutionInterval *phri=NULL;
3468     if (!ForceTimeHighResolution) {
3469       phri = new HighResolutionInterval(ms);
3470     }
3471     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3472       result = OS_TIMEOUT;
3473     } else {
3474       ResetEvent(osthread->interrupt_event());
3475       osthread->set_interrupted(false);
3476       result = OS_INTRPT;
3477     }
3478     delete phri; //if it is NULL, harmless
3479 
3480     // were we externally suspended while we were waiting?
3481     jt->check_and_wait_while_suspended();
3482   } else {
3483     assert(!thread->is_Java_thread(), "must not be java thread");
3484     Sleep((long) ms);
3485     result = OS_TIMEOUT;
3486   }
3487   return result;
3488 }
3489 
3490 // Short sleep, direct OS call.
3491 //
3492 // ms = 0, means allow others (if any) to run.
3493 //
3494 void os::naked_short_sleep(jlong ms) {
3495   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3496   Sleep(ms);
3497 }
3498 
3499 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3500 void os::infinite_sleep() {
3501   while (true) {    // sleep forever ...
3502     Sleep(100000);  // ... 100 seconds at a time
3503   }
3504 }
3505 
3506 typedef BOOL (WINAPI * STTSignature)(void);
3507 
3508 void os::naked_yield() {
3509   // Use either SwitchToThread() or Sleep(0)
3510   // Consider passing back the return value from SwitchToThread().
3511   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3512     SwitchToThread();
3513   } else {
3514     Sleep(0);
3515   }
3516 }
3517 
3518 // Win32 only gives you access to seven real priorities at a time,
3519 // so we compress Java's ten down to seven.  It would be better
3520 // if we dynamically adjusted relative priorities.
3521 
3522 int os::java_to_os_priority[CriticalPriority + 1] = {
3523   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3524   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3525   THREAD_PRIORITY_LOWEST,                       // 2
3526   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3527   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3528   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3529   THREAD_PRIORITY_NORMAL,                       // 6
3530   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3531   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3532   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3533   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3534   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3535 };
3536 
3537 int prio_policy1[CriticalPriority + 1] = {
3538   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3539   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3540   THREAD_PRIORITY_LOWEST,                       // 2
3541   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3542   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3543   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3544   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3545   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3546   THREAD_PRIORITY_HIGHEST,                      // 8
3547   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3548   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3549   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3550 };
3551 
3552 static int prio_init() {
3553   // If ThreadPriorityPolicy is 1, switch tables
3554   if (ThreadPriorityPolicy == 1) {
3555     int i;
3556     for (i = 0; i < CriticalPriority + 1; i++) {
3557       os::java_to_os_priority[i] = prio_policy1[i];
3558     }
3559   }
3560   if (UseCriticalJavaThreadPriority) {
3561     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3562   }
3563   return 0;
3564 }
3565 
3566 OSReturn os::set_native_priority(Thread* thread, int priority) {
3567   if (!UseThreadPriorities) return OS_OK;
3568   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3569   return ret ? OS_OK : OS_ERR;
3570 }
3571 
3572 OSReturn os::get_native_priority(const Thread* const thread,
3573                                  int* priority_ptr) {
3574   if (!UseThreadPriorities) {
3575     *priority_ptr = java_to_os_priority[NormPriority];
3576     return OS_OK;
3577   }
3578   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3579   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3580     assert(false, "GetThreadPriority failed");
3581     return OS_ERR;
3582   }
3583   *priority_ptr = os_prio;
3584   return OS_OK;
3585 }
3586 
3587 
3588 // Hint to the underlying OS that a task switch would not be good.
3589 // Void return because it's a hint and can fail.
3590 void os::hint_no_preempt() {}
3591 
3592 void os::interrupt(Thread* thread) {
3593   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3594          Threads_lock->owned_by_self(),
3595          "possibility of dangling Thread pointer");
3596 
3597   OSThread* osthread = thread->osthread();
3598   osthread->set_interrupted(true);
3599   // More than one thread can get here with the same value of osthread,
3600   // resulting in multiple notifications.  We do, however, want the store
3601   // to interrupted() to be visible to other threads before we post
3602   // the interrupt event.
3603   OrderAccess::release();
3604   SetEvent(osthread->interrupt_event());
3605   // For JSR166:  unpark after setting status
3606   if (thread->is_Java_thread()) {
3607     ((JavaThread*)thread)->parker()->unpark();
3608   }
3609 
3610   ParkEvent * ev = thread->_ParkEvent;
3611   if (ev != NULL) ev->unpark();
3612 }
3613 
3614 
3615 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3616   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3617          "possibility of dangling Thread pointer");
3618 
3619   OSThread* osthread = thread->osthread();
3620   // There is no synchronization between the setting of the interrupt
3621   // and it being cleared here. It is critical - see 6535709 - that
3622   // we only clear the interrupt state, and reset the interrupt event,
3623   // if we are going to report that we were indeed interrupted - else
3624   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3625   // depending on the timing. By checking thread interrupt event to see
3626   // if the thread gets real interrupt thus prevent spurious wakeup.
3627   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3628   if (interrupted && clear_interrupted) {
3629     osthread->set_interrupted(false);
3630     ResetEvent(osthread->interrupt_event());
3631   } // Otherwise leave the interrupted state alone
3632 
3633   return interrupted;
3634 }
3635 
3636 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3637 ExtendedPC os::get_thread_pc(Thread* thread) {
3638   CONTEXT context;
3639   context.ContextFlags = CONTEXT_CONTROL;
3640   HANDLE handle = thread->osthread()->thread_handle();
3641 #ifdef _M_IA64
3642   assert(0, "Fix get_thread_pc");
3643   return ExtendedPC(NULL);
3644 #else
3645   if (GetThreadContext(handle, &context)) {
3646 #ifdef _M_AMD64
3647     return ExtendedPC((address) context.Rip);
3648 #else
3649     return ExtendedPC((address) context.Eip);
3650 #endif
3651   } else {
3652     return ExtendedPC(NULL);
3653   }
3654 #endif
3655 }
3656 
3657 // GetCurrentThreadId() returns DWORD
3658 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3659 
3660 static int _initial_pid = 0;
3661 
3662 int os::current_process_id() {
3663   return (_initial_pid ? _initial_pid : _getpid());
3664 }
3665 
3666 int    os::win32::_vm_page_size              = 0;
3667 int    os::win32::_vm_allocation_granularity = 0;
3668 int    os::win32::_processor_type            = 0;
3669 // Processor level is not available on non-NT systems, use vm_version instead
3670 int    os::win32::_processor_level           = 0;
3671 julong os::win32::_physical_memory           = 0;
3672 size_t os::win32::_default_stack_size        = 0;
3673 
3674 intx          os::win32::_os_thread_limit    = 0;
3675 volatile intx os::win32::_os_thread_count    = 0;
3676 
3677 bool   os::win32::_is_nt                     = false;
3678 bool   os::win32::_is_windows_2003           = false;
3679 bool   os::win32::_is_windows_server         = false;
3680 
3681 // 6573254
3682 // Currently, the bug is observed across all the supported Windows releases,
3683 // including the latest one (as of this writing - Windows Server 2012 R2)
3684 bool   os::win32::_has_exit_bug              = true;
3685 bool   os::win32::_has_performance_count     = 0;
3686 
3687 void os::win32::initialize_system_info() {
3688   SYSTEM_INFO si;
3689   GetSystemInfo(&si);
3690   _vm_page_size    = si.dwPageSize;
3691   _vm_allocation_granularity = si.dwAllocationGranularity;
3692   _processor_type  = si.dwProcessorType;
3693   _processor_level = si.wProcessorLevel;
3694   set_processor_count(si.dwNumberOfProcessors);
3695 
3696   MEMORYSTATUSEX ms;
3697   ms.dwLength = sizeof(ms);
3698 
3699   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3700   // dwMemoryLoad (% of memory in use)
3701   GlobalMemoryStatusEx(&ms);
3702   _physical_memory = ms.ullTotalPhys;
3703 
3704   OSVERSIONINFOEX oi;
3705   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3706   GetVersionEx((OSVERSIONINFO*)&oi);
3707   switch (oi.dwPlatformId) {
3708   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3709   case VER_PLATFORM_WIN32_NT:
3710     _is_nt = true;
3711     {
3712       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3713       if (os_vers == 5002) {
3714         _is_windows_2003 = true;
3715       }
3716       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3717           oi.wProductType == VER_NT_SERVER) {
3718         _is_windows_server = true;
3719       }
3720     }
3721     break;
3722   default: fatal("Unknown platform");
3723   }
3724 
3725   _default_stack_size = os::current_stack_size();
3726   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3727   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3728          "stack size not a multiple of page size");
3729 
3730   initialize_performance_counter();
3731 
3732   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3733   // known to deadlock the system, if the VM issues to thread operations with
3734   // a too high frequency, e.g., such as changing the priorities.
3735   // The 6000 seems to work well - no deadlocks has been notices on the test
3736   // programs that we have seen experience this problem.
3737   if (!os::win32::is_nt()) {
3738     StarvationMonitorInterval = 6000;
3739   }
3740 }
3741 
3742 
3743 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3744                                       int ebuflen) {
3745   char path[MAX_PATH];
3746   DWORD size;
3747   DWORD pathLen = (DWORD)sizeof(path);
3748   HINSTANCE result = NULL;
3749 
3750   // only allow library name without path component
3751   assert(strchr(name, '\\') == NULL, "path not allowed");
3752   assert(strchr(name, ':') == NULL, "path not allowed");
3753   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3754     jio_snprintf(ebuf, ebuflen,
3755                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3756     return NULL;
3757   }
3758 
3759   // search system directory
3760   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3761     if (size >= pathLen) {
3762       return NULL; // truncated
3763     }
3764     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3765       return NULL; // truncated
3766     }
3767     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3768       return result;
3769     }
3770   }
3771 
3772   // try Windows directory
3773   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3774     if (size >= pathLen) {
3775       return NULL; // truncated
3776     }
3777     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3778       return NULL; // truncated
3779     }
3780     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3781       return result;
3782     }
3783   }
3784 
3785   jio_snprintf(ebuf, ebuflen,
3786                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3787   return NULL;
3788 }
3789 
3790 #define EXIT_TIMEOUT     PRODUCT_ONLY(1000) NOT_PRODUCT(4000) /* 1 sec in product, 4 sec in debug */
3791 
3792 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3793   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3794   return TRUE;
3795 }
3796 
3797 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3798   // Basic approach:
3799   //  - Each exiting thread registers its intent to exit and then does so.
3800   //  - A thread trying to terminate the process must wait for all
3801   //    threads currently exiting to complete their exit.
3802 
3803   if (os::win32::has_exit_bug()) {
3804     // The array holds handles of the threads that have started exiting by calling
3805     // _endthreadex().
3806     // Should be large enough to avoid blocking the exiting thread due to lack of
3807     // a free slot.
3808     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3809     static int handle_count = 0;
3810 
3811     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3812     static CRITICAL_SECTION crit_sect;
3813     static volatile jint process_exiting = 0;
3814     int i, j;
3815     DWORD res;
3816     HANDLE hproc, hthr;
3817 
3818     // The first thread that reached this point, initializes the critical section.
3819     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3820       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3821     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3822       EnterCriticalSection(&crit_sect);
3823 
3824       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3825         // Remove from the array those handles of the threads that have completed exiting.
3826         for (i = 0, j = 0; i < handle_count; ++i) {
3827           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3828           if (res == WAIT_TIMEOUT) {
3829             handles[j++] = handles[i];
3830           } else {
3831             if (res == WAIT_FAILED) {
3832               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3833                       GetLastError(), __FILE__, __LINE__);
3834             }
3835             // Don't keep the handle, if we failed waiting for it.
3836             CloseHandle(handles[i]);
3837           }
3838         }
3839 
3840         // If there's no free slot in the array of the kept handles, we'll have to
3841         // wait until at least one thread completes exiting.
3842         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3843           // Raise the priority of the oldest exiting thread to increase its chances
3844           // to complete sooner.
3845           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3846           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3847           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3848             i = (res - WAIT_OBJECT_0);
3849             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3850             for (; i < handle_count; ++i) {
3851               handles[i] = handles[i + 1];
3852             }
3853           } else {
3854             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3855                     (res == WAIT_FAILED ? "failed" : "timed out"),
3856                     GetLastError(), __FILE__, __LINE__);
3857             // Don't keep handles, if we failed waiting for them.
3858             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3859               CloseHandle(handles[i]);
3860             }
3861             handle_count = 0;
3862           }
3863         }
3864 
3865         // Store a duplicate of the current thread handle in the array of handles.
3866         hproc = GetCurrentProcess();
3867         hthr = GetCurrentThread();
3868         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3869                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3870           warning("DuplicateHandle failed (%u) in %s: %d\n",
3871                   GetLastError(), __FILE__, __LINE__);
3872         } else {
3873           ++handle_count;
3874         }
3875 
3876         // The current exiting thread has stored its handle in the array, and now
3877         // should leave the critical section before calling _endthreadex().
3878 
3879       } else if (what != EPT_THREAD) {
3880         if (handle_count > 0) {
3881           // Before ending the process, make sure all the threads that had called
3882           // _endthreadex() completed.
3883 
3884           // Set the priority level of the current thread to the same value as
3885           // the priority level of exiting threads.
3886           // This is to ensure it will be given a fair chance to execute if
3887           // the timeout expires.
3888           hthr = GetCurrentThread();
3889           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3890           for (i = 0; i < handle_count; ++i) {
3891             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3892           }
3893           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3894           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3895             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3896                     (res == WAIT_FAILED ? "failed" : "timed out"),
3897                     GetLastError(), __FILE__, __LINE__);
3898           }
3899           for (i = 0; i < handle_count; ++i) {
3900             CloseHandle(handles[i]);
3901           }
3902           handle_count = 0;
3903         }
3904 
3905         OrderAccess::release_store(&process_exiting, 1);
3906       }
3907 
3908       LeaveCriticalSection(&crit_sect);
3909     }
3910 
3911     if (what == EPT_THREAD) {
3912       while (OrderAccess::load_acquire(&process_exiting) != 0) {
3913         // Some other thread is about to call exit(), so we
3914         // don't let the current thread proceed to _endthreadex()
3915         SuspendThread(GetCurrentThread());
3916         // Avoid busy-wait loop, if SuspendThread() failed.
3917         Sleep(EXIT_TIMEOUT);
3918       }
3919     }
3920   }
3921 
3922   // We are here if either
3923   // - there's no 'race at exit' bug on this OS release;
3924   // - initialization of the critical section failed (unlikely);
3925   // - the current thread has stored its handle and left the critical section;
3926   // - the process-exiting thread has raised the flag and left the critical section.
3927   if (what == EPT_THREAD) {
3928     _endthreadex((unsigned)exit_code);
3929   } else if (what == EPT_PROCESS) {
3930     ::exit(exit_code);
3931   } else {
3932     _exit(exit_code);
3933   }
3934 
3935   // Should not reach here
3936   return exit_code;
3937 }
3938 
3939 #undef EXIT_TIMEOUT
3940 
3941 void os::win32::setmode_streams() {
3942   _setmode(_fileno(stdin), _O_BINARY);
3943   _setmode(_fileno(stdout), _O_BINARY);
3944   _setmode(_fileno(stderr), _O_BINARY);
3945 }
3946 
3947 
3948 bool os::is_debugger_attached() {
3949   return IsDebuggerPresent() ? true : false;
3950 }
3951 
3952 
3953 void os::wait_for_keypress_at_exit(void) {
3954   if (PauseAtExit) {
3955     fprintf(stderr, "Press any key to continue...\n");
3956     fgetc(stdin);
3957   }
3958 }
3959 
3960 
3961 int os::message_box(const char* title, const char* message) {
3962   int result = MessageBox(NULL, message, title,
3963                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3964   return result == IDYES;
3965 }
3966 
3967 int os::allocate_thread_local_storage() {
3968   return TlsAlloc();
3969 }
3970 
3971 
3972 void os::free_thread_local_storage(int index) {
3973   TlsFree(index);
3974 }
3975 
3976 
3977 void os::thread_local_storage_at_put(int index, void* value) {
3978   TlsSetValue(index, value);
3979   assert(thread_local_storage_at(index) == value, "Just checking");
3980 }
3981 
3982 
3983 void* os::thread_local_storage_at(int index) {
3984   return TlsGetValue(index);
3985 }
3986 
3987 
3988 #ifndef PRODUCT
3989 #ifndef _WIN64
3990 // Helpers to check whether NX protection is enabled
3991 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3992   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3993       pex->ExceptionRecord->NumberParameters > 0 &&
3994       pex->ExceptionRecord->ExceptionInformation[0] ==
3995       EXCEPTION_INFO_EXEC_VIOLATION) {
3996     return EXCEPTION_EXECUTE_HANDLER;
3997   }
3998   return EXCEPTION_CONTINUE_SEARCH;
3999 }
4000 
4001 void nx_check_protection() {
4002   // If NX is enabled we'll get an exception calling into code on the stack
4003   char code[] = { (char)0xC3 }; // ret
4004   void *code_ptr = (void *)code;
4005   __try {
4006     __asm call code_ptr
4007   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4008     tty->print_raw_cr("NX protection detected.");
4009   }
4010 }
4011 #endif // _WIN64
4012 #endif // PRODUCT
4013 
4014 // this is called _before_ the global arguments have been parsed
4015 void os::init(void) {
4016   _initial_pid = _getpid();
4017 
4018   init_random(1234567);
4019 
4020   win32::initialize_system_info();
4021   win32::setmode_streams();
4022   init_page_sizes((size_t) win32::vm_page_size());
4023 
4024   // This may be overridden later when argument processing is done.
4025   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4026                 os::win32::is_windows_2003());
4027 
4028   // Initialize main_process and main_thread
4029   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4030   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4031                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4032     fatal("DuplicateHandle failed\n");
4033   }
4034   main_thread_id = (int) GetCurrentThreadId();
4035 }
4036 
4037 // To install functions for atexit processing
4038 extern "C" {
4039   static void perfMemory_exit_helper() {
4040     perfMemory_exit();
4041   }
4042 }
4043 
4044 static jint initSock();
4045 
4046 // this is called _after_ the global arguments have been parsed
4047 jint os::init_2(void) {
4048   // Allocate a single page and mark it as readable for safepoint polling
4049   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4050   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4051 
4052   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4053   guarantee(return_page != NULL, "Commit Failed for polling page");
4054 
4055   os::set_polling_page(polling_page);
4056 
4057 #ifndef PRODUCT
4058   if (Verbose && PrintMiscellaneous) {
4059     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4060                (intptr_t)polling_page);
4061   }
4062 #endif
4063 
4064   if (!UseMembar) {
4065     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4066     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4067 
4068     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4069     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4070 
4071     os::set_memory_serialize_page(mem_serialize_page);
4072 
4073 #ifndef PRODUCT
4074     if (Verbose && PrintMiscellaneous) {
4075       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4076                  (intptr_t)mem_serialize_page);
4077     }
4078 #endif
4079   }
4080 
4081   // Setup Windows Exceptions
4082 
4083   // for debugging float code generation bugs
4084   if (ForceFloatExceptions) {
4085 #ifndef  _WIN64
4086     static long fp_control_word = 0;
4087     __asm { fstcw fp_control_word }
4088     // see Intel PPro Manual, Vol. 2, p 7-16
4089     const long precision = 0x20;
4090     const long underflow = 0x10;
4091     const long overflow  = 0x08;
4092     const long zero_div  = 0x04;
4093     const long denorm    = 0x02;
4094     const long invalid   = 0x01;
4095     fp_control_word |= invalid;
4096     __asm { fldcw fp_control_word }
4097 #endif
4098   }
4099 
4100   // If stack_commit_size is 0, windows will reserve the default size,
4101   // but only commit a small portion of it.
4102   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4103   size_t default_reserve_size = os::win32::default_stack_size();
4104   size_t actual_reserve_size = stack_commit_size;
4105   if (stack_commit_size < default_reserve_size) {
4106     // If stack_commit_size == 0, we want this too
4107     actual_reserve_size = default_reserve_size;
4108   }
4109 
4110   // Check minimum allowable stack size for thread creation and to initialize
4111   // the java system classes, including StackOverflowError - depends on page
4112   // size.  Add a page for compiler2 recursion in main thread.
4113   // Add in 2*BytesPerWord times page size to account for VM stack during
4114   // class initialization depending on 32 or 64 bit VM.
4115   size_t min_stack_allowed =
4116             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4117                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4118   if (actual_reserve_size < min_stack_allowed) {
4119     tty->print_cr("\nThe stack size specified is too small, "
4120                   "Specify at least %dk",
4121                   min_stack_allowed / K);
4122     return JNI_ERR;
4123   }
4124 
4125   JavaThread::set_stack_size_at_create(stack_commit_size);
4126 
4127   // Calculate theoretical max. size of Threads to guard gainst artifical
4128   // out-of-memory situations, where all available address-space has been
4129   // reserved by thread stacks.
4130   assert(actual_reserve_size != 0, "Must have a stack");
4131 
4132   // Calculate the thread limit when we should start doing Virtual Memory
4133   // banging. Currently when the threads will have used all but 200Mb of space.
4134   //
4135   // TODO: consider performing a similar calculation for commit size instead
4136   // as reserve size, since on a 64-bit platform we'll run into that more
4137   // often than running out of virtual memory space.  We can use the
4138   // lower value of the two calculations as the os_thread_limit.
4139   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4140   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4141 
4142   // at exit methods are called in the reverse order of their registration.
4143   // there is no limit to the number of functions registered. atexit does
4144   // not set errno.
4145 
4146   if (PerfAllowAtExitRegistration) {
4147     // only register atexit functions if PerfAllowAtExitRegistration is set.
4148     // atexit functions can be delayed until process exit time, which
4149     // can be problematic for embedded VM situations. Embedded VMs should
4150     // call DestroyJavaVM() to assure that VM resources are released.
4151 
4152     // note: perfMemory_exit_helper atexit function may be removed in
4153     // the future if the appropriate cleanup code can be added to the
4154     // VM_Exit VMOperation's doit method.
4155     if (atexit(perfMemory_exit_helper) != 0) {
4156       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4157     }
4158   }
4159 
4160 #ifndef _WIN64
4161   // Print something if NX is enabled (win32 on AMD64)
4162   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4163 #endif
4164 
4165   // initialize thread priority policy
4166   prio_init();
4167 
4168   if (UseNUMA && !ForceNUMA) {
4169     UseNUMA = false; // We don't fully support this yet
4170   }
4171 
4172   if (UseNUMAInterleaving) {
4173     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4174     bool success = numa_interleaving_init();
4175     if (!success) UseNUMAInterleaving = false;
4176   }
4177 
4178   if (initSock() != JNI_OK) {
4179     return JNI_ERR;
4180   }
4181 
4182   return JNI_OK;
4183 }
4184 
4185 // Mark the polling page as unreadable
4186 void os::make_polling_page_unreadable(void) {
4187   DWORD old_status;
4188   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4189                       PAGE_NOACCESS, &old_status)) {
4190     fatal("Could not disable polling page");
4191   }
4192 }
4193 
4194 // Mark the polling page as readable
4195 void os::make_polling_page_readable(void) {
4196   DWORD old_status;
4197   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4198                       PAGE_READONLY, &old_status)) {
4199     fatal("Could not enable polling page");
4200   }
4201 }
4202 
4203 
4204 int os::stat(const char *path, struct stat *sbuf) {
4205   char pathbuf[MAX_PATH];
4206   if (strlen(path) > MAX_PATH - 1) {
4207     errno = ENAMETOOLONG;
4208     return -1;
4209   }
4210   os::native_path(strcpy(pathbuf, path));
4211   int ret = ::stat(pathbuf, sbuf);
4212   if (sbuf != NULL && UseUTCFileTimestamp) {
4213     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4214     // the system timezone and so can return different values for the
4215     // same file if/when daylight savings time changes.  This adjustment
4216     // makes sure the same timestamp is returned regardless of the TZ.
4217     //
4218     // See:
4219     // http://msdn.microsoft.com/library/
4220     //   default.asp?url=/library/en-us/sysinfo/base/
4221     //   time_zone_information_str.asp
4222     // and
4223     // http://msdn.microsoft.com/library/default.asp?url=
4224     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4225     //
4226     // NOTE: there is a insidious bug here:  If the timezone is changed
4227     // after the call to stat() but before 'GetTimeZoneInformation()', then
4228     // the adjustment we do here will be wrong and we'll return the wrong
4229     // value (which will likely end up creating an invalid class data
4230     // archive).  Absent a better API for this, or some time zone locking
4231     // mechanism, we'll have to live with this risk.
4232     TIME_ZONE_INFORMATION tz;
4233     DWORD tzid = GetTimeZoneInformation(&tz);
4234     int daylightBias =
4235       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4236     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4237   }
4238   return ret;
4239 }
4240 
4241 
4242 #define FT2INT64(ft) \
4243   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4244 
4245 
4246 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4247 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4248 // of a thread.
4249 //
4250 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4251 // the fast estimate available on the platform.
4252 
4253 // current_thread_cpu_time() is not optimized for Windows yet
4254 jlong os::current_thread_cpu_time() {
4255   // return user + sys since the cost is the same
4256   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4257 }
4258 
4259 jlong os::thread_cpu_time(Thread* thread) {
4260   // consistent with what current_thread_cpu_time() returns.
4261   return os::thread_cpu_time(thread, true /* user+sys */);
4262 }
4263 
4264 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4265   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4266 }
4267 
4268 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4269   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4270   // If this function changes, os::is_thread_cpu_time_supported() should too
4271   if (os::win32::is_nt()) {
4272     FILETIME CreationTime;
4273     FILETIME ExitTime;
4274     FILETIME KernelTime;
4275     FILETIME UserTime;
4276 
4277     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4278                        &ExitTime, &KernelTime, &UserTime) == 0) {
4279       return -1;
4280     } else if (user_sys_cpu_time) {
4281       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4282     } else {
4283       return FT2INT64(UserTime) * 100;
4284     }
4285   } else {
4286     return (jlong) timeGetTime() * 1000000;
4287   }
4288 }
4289 
4290 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4291   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4292   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4293   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4294   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4295 }
4296 
4297 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4298   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4299   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4300   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4301   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4302 }
4303 
4304 bool os::is_thread_cpu_time_supported() {
4305   // see os::thread_cpu_time
4306   if (os::win32::is_nt()) {
4307     FILETIME CreationTime;
4308     FILETIME ExitTime;
4309     FILETIME KernelTime;
4310     FILETIME UserTime;
4311 
4312     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4313                        &KernelTime, &UserTime) == 0) {
4314       return false;
4315     } else {
4316       return true;
4317     }
4318   } else {
4319     return false;
4320   }
4321 }
4322 
4323 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4324 // It does have primitives (PDH API) to get CPU usage and run queue length.
4325 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4326 // If we wanted to implement loadavg on Windows, we have a few options:
4327 //
4328 // a) Query CPU usage and run queue length and "fake" an answer by
4329 //    returning the CPU usage if it's under 100%, and the run queue
4330 //    length otherwise.  It turns out that querying is pretty slow
4331 //    on Windows, on the order of 200 microseconds on a fast machine.
4332 //    Note that on the Windows the CPU usage value is the % usage
4333 //    since the last time the API was called (and the first call
4334 //    returns 100%), so we'd have to deal with that as well.
4335 //
4336 // b) Sample the "fake" answer using a sampling thread and store
4337 //    the answer in a global variable.  The call to loadavg would
4338 //    just return the value of the global, avoiding the slow query.
4339 //
4340 // c) Sample a better answer using exponential decay to smooth the
4341 //    value.  This is basically the algorithm used by UNIX kernels.
4342 //
4343 // Note that sampling thread starvation could affect both (b) and (c).
4344 int os::loadavg(double loadavg[], int nelem) {
4345   return -1;
4346 }
4347 
4348 
4349 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4350 bool os::dont_yield() {
4351   return DontYieldALot;
4352 }
4353 
4354 // This method is a slightly reworked copy of JDK's sysOpen
4355 // from src/windows/hpi/src/sys_api_md.c
4356 
4357 int os::open(const char *path, int oflag, int mode) {
4358   char pathbuf[MAX_PATH];
4359 
4360   if (strlen(path) > MAX_PATH - 1) {
4361     errno = ENAMETOOLONG;
4362     return -1;
4363   }
4364   os::native_path(strcpy(pathbuf, path));
4365   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4366 }
4367 
4368 FILE* os::open(int fd, const char* mode) {
4369   return ::_fdopen(fd, mode);
4370 }
4371 
4372 // Is a (classpath) directory empty?
4373 bool os::dir_is_empty(const char* path) {
4374   WIN32_FIND_DATA fd;
4375   HANDLE f = FindFirstFile(path, &fd);
4376   if (f == INVALID_HANDLE_VALUE) {
4377     return true;
4378   }
4379   FindClose(f);
4380   return false;
4381 }
4382 
4383 // create binary file, rewriting existing file if required
4384 int os::create_binary_file(const char* path, bool rewrite_existing) {
4385   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4386   if (!rewrite_existing) {
4387     oflags |= _O_EXCL;
4388   }
4389   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4390 }
4391 
4392 // return current position of file pointer
4393 jlong os::current_file_offset(int fd) {
4394   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4395 }
4396 
4397 // move file pointer to the specified offset
4398 jlong os::seek_to_file_offset(int fd, jlong offset) {
4399   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4400 }
4401 
4402 
4403 jlong os::lseek(int fd, jlong offset, int whence) {
4404   return (jlong) ::_lseeki64(fd, offset, whence);
4405 }
4406 
4407 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4408   OVERLAPPED ov;
4409   DWORD nread;
4410   BOOL result;
4411 
4412   ZeroMemory(&ov, sizeof(ov));
4413   ov.Offset = (DWORD)offset;
4414   ov.OffsetHigh = (DWORD)(offset >> 32);
4415 
4416   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4417 
4418   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4419 
4420   return result ? nread : 0;
4421 }
4422 
4423 
4424 // This method is a slightly reworked copy of JDK's sysNativePath
4425 // from src/windows/hpi/src/path_md.c
4426 
4427 // Convert a pathname to native format.  On win32, this involves forcing all
4428 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4429 // sometimes rejects '/') and removing redundant separators.  The input path is
4430 // assumed to have been converted into the character encoding used by the local
4431 // system.  Because this might be a double-byte encoding, care is taken to
4432 // treat double-byte lead characters correctly.
4433 //
4434 // This procedure modifies the given path in place, as the result is never
4435 // longer than the original.  There is no error return; this operation always
4436 // succeeds.
4437 char * os::native_path(char *path) {
4438   char *src = path, *dst = path, *end = path;
4439   char *colon = NULL;  // If a drive specifier is found, this will
4440                        // point to the colon following the drive letter
4441 
4442   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4443   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4444           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4445 
4446   // Check for leading separators
4447 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4448   while (isfilesep(*src)) {
4449     src++;
4450   }
4451 
4452   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4453     // Remove leading separators if followed by drive specifier.  This
4454     // hack is necessary to support file URLs containing drive
4455     // specifiers (e.g., "file://c:/path").  As a side effect,
4456     // "/c:/path" can be used as an alternative to "c:/path".
4457     *dst++ = *src++;
4458     colon = dst;
4459     *dst++ = ':';
4460     src++;
4461   } else {
4462     src = path;
4463     if (isfilesep(src[0]) && isfilesep(src[1])) {
4464       // UNC pathname: Retain first separator; leave src pointed at
4465       // second separator so that further separators will be collapsed
4466       // into the second separator.  The result will be a pathname
4467       // beginning with "\\\\" followed (most likely) by a host name.
4468       src = dst = path + 1;
4469       path[0] = '\\';     // Force first separator to '\\'
4470     }
4471   }
4472 
4473   end = dst;
4474 
4475   // Remove redundant separators from remainder of path, forcing all
4476   // separators to be '\\' rather than '/'. Also, single byte space
4477   // characters are removed from the end of the path because those
4478   // are not legal ending characters on this operating system.
4479   //
4480   while (*src != '\0') {
4481     if (isfilesep(*src)) {
4482       *dst++ = '\\'; src++;
4483       while (isfilesep(*src)) src++;
4484       if (*src == '\0') {
4485         // Check for trailing separator
4486         end = dst;
4487         if (colon == dst - 2) break;  // "z:\\"
4488         if (dst == path + 1) break;   // "\\"
4489         if (dst == path + 2 && isfilesep(path[0])) {
4490           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4491           // beginning of a UNC pathname.  Even though it is not, by
4492           // itself, a valid UNC pathname, we leave it as is in order
4493           // to be consistent with the path canonicalizer as well
4494           // as the win32 APIs, which treat this case as an invalid
4495           // UNC pathname rather than as an alias for the root
4496           // directory of the current drive.
4497           break;
4498         }
4499         end = --dst;  // Path does not denote a root directory, so
4500                       // remove trailing separator
4501         break;
4502       }
4503       end = dst;
4504     } else {
4505       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4506         *dst++ = *src++;
4507         if (*src) *dst++ = *src++;
4508         end = dst;
4509       } else {  // Copy a single-byte character
4510         char c = *src++;
4511         *dst++ = c;
4512         // Space is not a legal ending character
4513         if (c != ' ') end = dst;
4514       }
4515     }
4516   }
4517 
4518   *end = '\0';
4519 
4520   // For "z:", add "." to work around a bug in the C runtime library
4521   if (colon == dst - 1) {
4522     path[2] = '.';
4523     path[3] = '\0';
4524   }
4525 
4526   return path;
4527 }
4528 
4529 // This code is a copy of JDK's sysSetLength
4530 // from src/windows/hpi/src/sys_api_md.c
4531 
4532 int os::ftruncate(int fd, jlong length) {
4533   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4534   long high = (long)(length >> 32);
4535   DWORD ret;
4536 
4537   if (h == (HANDLE)(-1)) {
4538     return -1;
4539   }
4540 
4541   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4542   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4543     return -1;
4544   }
4545 
4546   if (::SetEndOfFile(h) == FALSE) {
4547     return -1;
4548   }
4549 
4550   return 0;
4551 }
4552 
4553 
4554 // This code is a copy of JDK's sysSync
4555 // from src/windows/hpi/src/sys_api_md.c
4556 // except for the legacy workaround for a bug in Win 98
4557 
4558 int os::fsync(int fd) {
4559   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4560 
4561   if ((!::FlushFileBuffers(handle)) &&
4562       (GetLastError() != ERROR_ACCESS_DENIED)) {
4563     // from winerror.h
4564     return -1;
4565   }
4566   return 0;
4567 }
4568 
4569 static int nonSeekAvailable(int, long *);
4570 static int stdinAvailable(int, long *);
4571 
4572 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4573 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4574 
4575 // This code is a copy of JDK's sysAvailable
4576 // from src/windows/hpi/src/sys_api_md.c
4577 
4578 int os::available(int fd, jlong *bytes) {
4579   jlong cur, end;
4580   struct _stati64 stbuf64;
4581 
4582   if (::_fstati64(fd, &stbuf64) >= 0) {
4583     int mode = stbuf64.st_mode;
4584     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4585       int ret;
4586       long lpbytes;
4587       if (fd == 0) {
4588         ret = stdinAvailable(fd, &lpbytes);
4589       } else {
4590         ret = nonSeekAvailable(fd, &lpbytes);
4591       }
4592       (*bytes) = (jlong)(lpbytes);
4593       return ret;
4594     }
4595     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4596       return FALSE;
4597     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4598       return FALSE;
4599     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4600       return FALSE;
4601     }
4602     *bytes = end - cur;
4603     return TRUE;
4604   } else {
4605     return FALSE;
4606   }
4607 }
4608 
4609 // This code is a copy of JDK's nonSeekAvailable
4610 // from src/windows/hpi/src/sys_api_md.c
4611 
4612 static int nonSeekAvailable(int fd, long *pbytes) {
4613   // This is used for available on non-seekable devices
4614   // (like both named and anonymous pipes, such as pipes
4615   //  connected to an exec'd process).
4616   // Standard Input is a special case.
4617   HANDLE han;
4618 
4619   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4620     return FALSE;
4621   }
4622 
4623   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4624     // PeekNamedPipe fails when at EOF.  In that case we
4625     // simply make *pbytes = 0 which is consistent with the
4626     // behavior we get on Solaris when an fd is at EOF.
4627     // The only alternative is to raise an Exception,
4628     // which isn't really warranted.
4629     //
4630     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4631       return FALSE;
4632     }
4633     *pbytes = 0;
4634   }
4635   return TRUE;
4636 }
4637 
4638 #define MAX_INPUT_EVENTS 2000
4639 
4640 // This code is a copy of JDK's stdinAvailable
4641 // from src/windows/hpi/src/sys_api_md.c
4642 
4643 static int stdinAvailable(int fd, long *pbytes) {
4644   HANDLE han;
4645   DWORD numEventsRead = 0;  // Number of events read from buffer
4646   DWORD numEvents = 0;      // Number of events in buffer
4647   DWORD i = 0;              // Loop index
4648   DWORD curLength = 0;      // Position marker
4649   DWORD actualLength = 0;   // Number of bytes readable
4650   BOOL error = FALSE;       // Error holder
4651   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4652 
4653   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4654     return FALSE;
4655   }
4656 
4657   // Construct an array of input records in the console buffer
4658   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4659   if (error == 0) {
4660     return nonSeekAvailable(fd, pbytes);
4661   }
4662 
4663   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4664   if (numEvents > MAX_INPUT_EVENTS) {
4665     numEvents = MAX_INPUT_EVENTS;
4666   }
4667 
4668   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4669   if (lpBuffer == NULL) {
4670     return FALSE;
4671   }
4672 
4673   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4674   if (error == 0) {
4675     os::free(lpBuffer);
4676     return FALSE;
4677   }
4678 
4679   // Examine input records for the number of bytes available
4680   for (i=0; i<numEvents; i++) {
4681     if (lpBuffer[i].EventType == KEY_EVENT) {
4682 
4683       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4684                                       &(lpBuffer[i].Event);
4685       if (keyRecord->bKeyDown == TRUE) {
4686         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4687         curLength++;
4688         if (*keyPressed == '\r') {
4689           actualLength = curLength;
4690         }
4691       }
4692     }
4693   }
4694 
4695   if (lpBuffer != NULL) {
4696     os::free(lpBuffer);
4697   }
4698 
4699   *pbytes = (long) actualLength;
4700   return TRUE;
4701 }
4702 
4703 // Map a block of memory.
4704 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4705                         char *addr, size_t bytes, bool read_only,
4706                         bool allow_exec) {
4707   HANDLE hFile;
4708   char* base;
4709 
4710   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4711                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4712   if (hFile == NULL) {
4713     if (PrintMiscellaneous && Verbose) {
4714       DWORD err = GetLastError();
4715       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4716     }
4717     return NULL;
4718   }
4719 
4720   if (allow_exec) {
4721     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4722     // unless it comes from a PE image (which the shared archive is not.)
4723     // Even VirtualProtect refuses to give execute access to mapped memory
4724     // that was not previously executable.
4725     //
4726     // Instead, stick the executable region in anonymous memory.  Yuck.
4727     // Penalty is that ~4 pages will not be shareable - in the future
4728     // we might consider DLLizing the shared archive with a proper PE
4729     // header so that mapping executable + sharing is possible.
4730 
4731     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4732                                 PAGE_READWRITE);
4733     if (base == NULL) {
4734       if (PrintMiscellaneous && Verbose) {
4735         DWORD err = GetLastError();
4736         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4737       }
4738       CloseHandle(hFile);
4739       return NULL;
4740     }
4741 
4742     DWORD bytes_read;
4743     OVERLAPPED overlapped;
4744     overlapped.Offset = (DWORD)file_offset;
4745     overlapped.OffsetHigh = 0;
4746     overlapped.hEvent = NULL;
4747     // ReadFile guarantees that if the return value is true, the requested
4748     // number of bytes were read before returning.
4749     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4750     if (!res) {
4751       if (PrintMiscellaneous && Verbose) {
4752         DWORD err = GetLastError();
4753         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4754       }
4755       release_memory(base, bytes);
4756       CloseHandle(hFile);
4757       return NULL;
4758     }
4759   } else {
4760     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4761                                     NULL /* file_name */);
4762     if (hMap == NULL) {
4763       if (PrintMiscellaneous && Verbose) {
4764         DWORD err = GetLastError();
4765         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4766       }
4767       CloseHandle(hFile);
4768       return NULL;
4769     }
4770 
4771     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4772     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4773                                   (DWORD)bytes, addr);
4774     if (base == NULL) {
4775       if (PrintMiscellaneous && Verbose) {
4776         DWORD err = GetLastError();
4777         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4778       }
4779       CloseHandle(hMap);
4780       CloseHandle(hFile);
4781       return NULL;
4782     }
4783 
4784     if (CloseHandle(hMap) == 0) {
4785       if (PrintMiscellaneous && Verbose) {
4786         DWORD err = GetLastError();
4787         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4788       }
4789       CloseHandle(hFile);
4790       return base;
4791     }
4792   }
4793 
4794   if (allow_exec) {
4795     DWORD old_protect;
4796     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4797     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4798 
4799     if (!res) {
4800       if (PrintMiscellaneous && Verbose) {
4801         DWORD err = GetLastError();
4802         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4803       }
4804       // Don't consider this a hard error, on IA32 even if the
4805       // VirtualProtect fails, we should still be able to execute
4806       CloseHandle(hFile);
4807       return base;
4808     }
4809   }
4810 
4811   if (CloseHandle(hFile) == 0) {
4812     if (PrintMiscellaneous && Verbose) {
4813       DWORD err = GetLastError();
4814       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4815     }
4816     return base;
4817   }
4818 
4819   return base;
4820 }
4821 
4822 
4823 // Remap a block of memory.
4824 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4825                           char *addr, size_t bytes, bool read_only,
4826                           bool allow_exec) {
4827   // This OS does not allow existing memory maps to be remapped so we
4828   // have to unmap the memory before we remap it.
4829   if (!os::unmap_memory(addr, bytes)) {
4830     return NULL;
4831   }
4832 
4833   // There is a very small theoretical window between the unmap_memory()
4834   // call above and the map_memory() call below where a thread in native
4835   // code may be able to access an address that is no longer mapped.
4836 
4837   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4838                         read_only, allow_exec);
4839 }
4840 
4841 
4842 // Unmap a block of memory.
4843 // Returns true=success, otherwise false.
4844 
4845 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4846   BOOL result = UnmapViewOfFile(addr);
4847   if (result == 0) {
4848     if (PrintMiscellaneous && Verbose) {
4849       DWORD err = GetLastError();
4850       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4851     }
4852     return false;
4853   }
4854   return true;
4855 }
4856 
4857 void os::pause() {
4858   char filename[MAX_PATH];
4859   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4860     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4861   } else {
4862     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4863   }
4864 
4865   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4866   if (fd != -1) {
4867     struct stat buf;
4868     ::close(fd);
4869     while (::stat(filename, &buf) == 0) {
4870       Sleep(100);
4871     }
4872   } else {
4873     jio_fprintf(stderr,
4874                 "Could not open pause file '%s', continuing immediately.\n", filename);
4875   }
4876 }
4877 
4878 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4879   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4880 }
4881 
4882 // See the caveats for this class in os_windows.hpp
4883 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4884 // into this method and returns false. If no OS EXCEPTION was raised, returns
4885 // true.
4886 // The callback is supposed to provide the method that should be protected.
4887 //
4888 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4889   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4890   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4891          "crash_protection already set?");
4892 
4893   bool success = true;
4894   __try {
4895     WatcherThread::watcher_thread()->set_crash_protection(this);
4896     cb.call();
4897   } __except(EXCEPTION_EXECUTE_HANDLER) {
4898     // only for protection, nothing to do
4899     success = false;
4900   }
4901   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4902   return success;
4903 }
4904 
4905 // An Event wraps a win32 "CreateEvent" kernel handle.
4906 //
4907 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4908 //
4909 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4910 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4911 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4912 //     In addition, an unpark() operation might fetch the handle field, but the
4913 //     event could recycle between the fetch and the SetEvent() operation.
4914 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4915 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4916 //     on an stale but recycled handle would be harmless, but in practice this might
4917 //     confuse other non-Sun code, so it's not a viable approach.
4918 //
4919 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4920 //     with the Event.  The event handle is never closed.  This could be construed
4921 //     as handle leakage, but only up to the maximum # of threads that have been extant
4922 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4923 //     permit a process to have hundreds of thousands of open handles.
4924 //
4925 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4926 //     and release unused handles.
4927 //
4928 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4929 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4930 //
4931 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4932 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4933 //
4934 // We use (2).
4935 //
4936 // TODO-FIXME:
4937 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4938 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4939 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4940 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4941 //     into a single win32 CreateEvent() handle.
4942 //
4943 // Assumption:
4944 //    Only one parker can exist on an event, which is why we allocate
4945 //    them per-thread. Multiple unparkers can coexist.
4946 //
4947 // _Event transitions in park()
4948 //   -1 => -1 : illegal
4949 //    1 =>  0 : pass - return immediately
4950 //    0 => -1 : block; then set _Event to 0 before returning
4951 //
4952 // _Event transitions in unpark()
4953 //    0 => 1 : just return
4954 //    1 => 1 : just return
4955 //   -1 => either 0 or 1; must signal target thread
4956 //         That is, we can safely transition _Event from -1 to either
4957 //         0 or 1.
4958 //
4959 // _Event serves as a restricted-range semaphore.
4960 //   -1 : thread is blocked, i.e. there is a waiter
4961 //    0 : neutral: thread is running or ready,
4962 //        could have been signaled after a wait started
4963 //    1 : signaled - thread is running or ready
4964 //
4965 // Another possible encoding of _Event would be with
4966 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
4967 //
4968 
4969 int os::PlatformEvent::park(jlong Millis) {
4970   // Transitions for _Event:
4971   //   -1 => -1 : illegal
4972   //    1 =>  0 : pass - return immediately
4973   //    0 => -1 : block; then set _Event to 0 before returning
4974 
4975   guarantee(_ParkHandle != NULL , "Invariant");
4976   guarantee(Millis > 0          , "Invariant");
4977 
4978   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4979   // the initial park() operation.
4980   // Consider: use atomic decrement instead of CAS-loop
4981 
4982   int v;
4983   for (;;) {
4984     v = _Event;
4985     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4986   }
4987   guarantee((v == 0) || (v == 1), "invariant");
4988   if (v != 0) return OS_OK;
4989 
4990   // Do this the hard way by blocking ...
4991   // TODO: consider a brief spin here, gated on the success of recent
4992   // spin attempts by this thread.
4993   //
4994   // We decompose long timeouts into series of shorter timed waits.
4995   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4996   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4997   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4998   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4999   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5000   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5001   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5002   // for the already waited time.  This policy does not admit any new outcomes.
5003   // In the future, however, we might want to track the accumulated wait time and
5004   // adjust Millis accordingly if we encounter a spurious wakeup.
5005 
5006   const int MAXTIMEOUT = 0x10000000;
5007   DWORD rv = WAIT_TIMEOUT;
5008   while (_Event < 0 && Millis > 0) {
5009     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5010     if (Millis > MAXTIMEOUT) {
5011       prd = MAXTIMEOUT;
5012     }
5013     rv = ::WaitForSingleObject(_ParkHandle, prd);
5014     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5015     if (rv == WAIT_TIMEOUT) {
5016       Millis -= prd;
5017     }
5018   }
5019   v = _Event;
5020   _Event = 0;
5021   // see comment at end of os::PlatformEvent::park() below:
5022   OrderAccess::fence();
5023   // If we encounter a nearly simultanous timeout expiry and unpark()
5024   // we return OS_OK indicating we awoke via unpark().
5025   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5026   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5027 }
5028 
5029 void os::PlatformEvent::park() {
5030   // Transitions for _Event:
5031   //   -1 => -1 : illegal
5032   //    1 =>  0 : pass - return immediately
5033   //    0 => -1 : block; then set _Event to 0 before returning
5034 
5035   guarantee(_ParkHandle != NULL, "Invariant");
5036   // Invariant: Only the thread associated with the Event/PlatformEvent
5037   // may call park().
5038   // Consider: use atomic decrement instead of CAS-loop
5039   int v;
5040   for (;;) {
5041     v = _Event;
5042     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5043   }
5044   guarantee((v == 0) || (v == 1), "invariant");
5045   if (v != 0) return;
5046 
5047   // Do this the hard way by blocking ...
5048   // TODO: consider a brief spin here, gated on the success of recent
5049   // spin attempts by this thread.
5050   while (_Event < 0) {
5051     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5052     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5053   }
5054 
5055   // Usually we'll find _Event == 0 at this point, but as
5056   // an optional optimization we clear it, just in case can
5057   // multiple unpark() operations drove _Event up to 1.
5058   _Event = 0;
5059   OrderAccess::fence();
5060   guarantee(_Event >= 0, "invariant");
5061 }
5062 
5063 void os::PlatformEvent::unpark() {
5064   guarantee(_ParkHandle != NULL, "Invariant");
5065 
5066   // Transitions for _Event:
5067   //    0 => 1 : just return
5068   //    1 => 1 : just return
5069   //   -1 => either 0 or 1; must signal target thread
5070   //         That is, we can safely transition _Event from -1 to either
5071   //         0 or 1.
5072   // See also: "Semaphores in Plan 9" by Mullender & Cox
5073   //
5074   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5075   // that it will take two back-to-back park() calls for the owning
5076   // thread to block. This has the benefit of forcing a spurious return
5077   // from the first park() call after an unpark() call which will help
5078   // shake out uses of park() and unpark() without condition variables.
5079 
5080   if (Atomic::xchg(1, &_Event) >= 0) return;
5081 
5082   ::SetEvent(_ParkHandle);
5083 }
5084 
5085 
5086 // JSR166
5087 // -------------------------------------------------------
5088 
5089 // The Windows implementation of Park is very straightforward: Basic
5090 // operations on Win32 Events turn out to have the right semantics to
5091 // use them directly. We opportunistically resuse the event inherited
5092 // from Monitor.
5093 
5094 void Parker::park(bool isAbsolute, jlong time) {
5095   guarantee(_ParkEvent != NULL, "invariant");
5096   // First, demultiplex/decode time arguments
5097   if (time < 0) { // don't wait
5098     return;
5099   } else if (time == 0 && !isAbsolute) {
5100     time = INFINITE;
5101   } else if (isAbsolute) {
5102     time -= os::javaTimeMillis(); // convert to relative time
5103     if (time <= 0) {  // already elapsed
5104       return;
5105     }
5106   } else { // relative
5107     time /= 1000000;  // Must coarsen from nanos to millis
5108     if (time == 0) {  // Wait for the minimal time unit if zero
5109       time = 1;
5110     }
5111   }
5112 
5113   JavaThread* thread = (JavaThread*)(Thread::current());
5114   assert(thread->is_Java_thread(), "Must be JavaThread");
5115   JavaThread *jt = (JavaThread *)thread;
5116 
5117   // Don't wait if interrupted or already triggered
5118   if (Thread::is_interrupted(thread, false) ||
5119       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5120     ResetEvent(_ParkEvent);
5121     return;
5122   } else {
5123     ThreadBlockInVM tbivm(jt);
5124     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5125     jt->set_suspend_equivalent();
5126 
5127     WaitForSingleObject(_ParkEvent, time);
5128     ResetEvent(_ParkEvent);
5129 
5130     // If externally suspended while waiting, re-suspend
5131     if (jt->handle_special_suspend_equivalent_condition()) {
5132       jt->java_suspend_self();
5133     }
5134   }
5135 }
5136 
5137 void Parker::unpark() {
5138   guarantee(_ParkEvent != NULL, "invariant");
5139   SetEvent(_ParkEvent);
5140 }
5141 
5142 // Run the specified command in a separate process. Return its exit value,
5143 // or -1 on failure (e.g. can't create a new process).
5144 int os::fork_and_exec(char* cmd) {
5145   STARTUPINFO si;
5146   PROCESS_INFORMATION pi;
5147 
5148   memset(&si, 0, sizeof(si));
5149   si.cb = sizeof(si);
5150   memset(&pi, 0, sizeof(pi));
5151   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5152                             cmd,    // command line
5153                             NULL,   // process security attribute
5154                             NULL,   // thread security attribute
5155                             TRUE,   // inherits system handles
5156                             0,      // no creation flags
5157                             NULL,   // use parent's environment block
5158                             NULL,   // use parent's starting directory
5159                             &si,    // (in) startup information
5160                             &pi);   // (out) process information
5161 
5162   if (rslt) {
5163     // Wait until child process exits.
5164     WaitForSingleObject(pi.hProcess, INFINITE);
5165 
5166     DWORD exit_code;
5167     GetExitCodeProcess(pi.hProcess, &exit_code);
5168 
5169     // Close process and thread handles.
5170     CloseHandle(pi.hProcess);
5171     CloseHandle(pi.hThread);
5172 
5173     return (int)exit_code;
5174   } else {
5175     return -1;
5176   }
5177 }
5178 
5179 //--------------------------------------------------------------------------------------------------
5180 // Non-product code
5181 
5182 static int mallocDebugIntervalCounter = 0;
5183 static int mallocDebugCounter = 0;
5184 bool os::check_heap(bool force) {
5185   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5186   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5187     // Note: HeapValidate executes two hardware breakpoints when it finds something
5188     // wrong; at these points, eax contains the address of the offending block (I think).
5189     // To get to the exlicit error message(s) below, just continue twice.
5190     HANDLE heap = GetProcessHeap();
5191 
5192     // If we fail to lock the heap, then gflags.exe has been used
5193     // or some other special heap flag has been set that prevents
5194     // locking. We don't try to walk a heap we can't lock.
5195     if (HeapLock(heap) != 0) {
5196       PROCESS_HEAP_ENTRY phe;
5197       phe.lpData = NULL;
5198       while (HeapWalk(heap, &phe) != 0) {
5199         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5200             !HeapValidate(heap, 0, phe.lpData)) {
5201           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5202           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5203           fatal("corrupted C heap");
5204         }
5205       }
5206       DWORD err = GetLastError();
5207       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5208         fatal(err_msg("heap walk aborted with error %d", err));
5209       }
5210       HeapUnlock(heap);
5211     }
5212     mallocDebugIntervalCounter = 0;
5213   }
5214   return true;
5215 }
5216 
5217 
5218 bool os::find(address addr, outputStream* st) {
5219   // Nothing yet
5220   return false;
5221 }
5222 
5223 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5224   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5225 
5226   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5227     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5228     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5229     address addr = (address) exceptionRecord->ExceptionInformation[1];
5230 
5231     if (os::is_memory_serialize_page(thread, addr)) {
5232       return EXCEPTION_CONTINUE_EXECUTION;
5233     }
5234   }
5235 
5236   return EXCEPTION_CONTINUE_SEARCH;
5237 }
5238 
5239 // We don't build a headless jre for Windows
5240 bool os::is_headless_jre() { return false; }
5241 
5242 static jint initSock() {
5243   WSADATA wsadata;
5244 
5245   if (!os::WinSock2Dll::WinSock2Available()) {
5246     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5247                 ::GetLastError());
5248     return JNI_ERR;
5249   }
5250 
5251   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5252     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5253                 ::GetLastError());
5254     return JNI_ERR;
5255   }
5256   return JNI_OK;
5257 }
5258 
5259 struct hostent* os::get_host_by_name(char* name) {
5260   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5261 }
5262 
5263 int os::socket_close(int fd) {
5264   return ::closesocket(fd);
5265 }
5266 
5267 int os::socket(int domain, int type, int protocol) {
5268   return ::socket(domain, type, protocol);
5269 }
5270 
5271 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5272   return ::connect(fd, him, len);
5273 }
5274 
5275 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5276   return ::recv(fd, buf, (int)nBytes, flags);
5277 }
5278 
5279 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5280   return ::send(fd, buf, (int)nBytes, flags);
5281 }
5282 
5283 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5284   return ::send(fd, buf, (int)nBytes, flags);
5285 }
5286 
5287 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5288 #if defined(IA32)
5289   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5290 #elif defined (AMD64)
5291   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5292 #endif
5293 
5294 // returns true if thread could be suspended,
5295 // false otherwise
5296 static bool do_suspend(HANDLE* h) {
5297   if (h != NULL) {
5298     if (SuspendThread(*h) != ~0) {
5299       return true;
5300     }
5301   }
5302   return false;
5303 }
5304 
5305 // resume the thread
5306 // calling resume on an active thread is a no-op
5307 static void do_resume(HANDLE* h) {
5308   if (h != NULL) {
5309     ResumeThread(*h);
5310   }
5311 }
5312 
5313 // retrieve a suspend/resume context capable handle
5314 // from the tid. Caller validates handle return value.
5315 void get_thread_handle_for_extended_context(HANDLE* h,
5316                                             OSThread::thread_id_t tid) {
5317   if (h != NULL) {
5318     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5319   }
5320 }
5321 
5322 // Thread sampling implementation
5323 //
5324 void os::SuspendedThreadTask::internal_do_task() {
5325   CONTEXT    ctxt;
5326   HANDLE     h = NULL;
5327 
5328   // get context capable handle for thread
5329   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5330 
5331   // sanity
5332   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5333     return;
5334   }
5335 
5336   // suspend the thread
5337   if (do_suspend(&h)) {
5338     ctxt.ContextFlags = sampling_context_flags;
5339     // get thread context
5340     GetThreadContext(h, &ctxt);
5341     SuspendedThreadTaskContext context(_thread, &ctxt);
5342     // pass context to Thread Sampling impl
5343     do_task(context);
5344     // resume thread
5345     do_resume(&h);
5346   }
5347 
5348   // close handle
5349   CloseHandle(h);
5350 }
5351 
5352 
5353 // Kernel32 API
5354 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5355 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5356 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5357 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5358 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5359 
5360 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5361 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5362 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5363 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5364 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5365 
5366 
5367 BOOL                        os::Kernel32Dll::initialized = FALSE;
5368 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5369   assert(initialized && _GetLargePageMinimum != NULL,
5370          "GetLargePageMinimumAvailable() not yet called");
5371   return _GetLargePageMinimum();
5372 }
5373 
5374 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5375   if (!initialized) {
5376     initialize();
5377   }
5378   return _GetLargePageMinimum != NULL;
5379 }
5380 
5381 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5382   if (!initialized) {
5383     initialize();
5384   }
5385   return _VirtualAllocExNuma != NULL;
5386 }
5387 
5388 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5389                                            SIZE_T bytes, DWORD flags,
5390                                            DWORD prot, DWORD node) {
5391   assert(initialized && _VirtualAllocExNuma != NULL,
5392          "NUMACallsAvailable() not yet called");
5393 
5394   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5395 }
5396 
5397 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5398   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5399          "NUMACallsAvailable() not yet called");
5400 
5401   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5402 }
5403 
5404 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5405                                                PULONGLONG proc_mask) {
5406   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5407          "NUMACallsAvailable() not yet called");
5408 
5409   return _GetNumaNodeProcessorMask(node, proc_mask);
5410 }
5411 
5412 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5413                                                  ULONG FrameToCapture,
5414                                                  PVOID* BackTrace,
5415                                                  PULONG BackTraceHash) {
5416   if (!initialized) {
5417     initialize();
5418   }
5419 
5420   if (_RtlCaptureStackBackTrace != NULL) {
5421     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5422                                      BackTrace, BackTraceHash);
5423   } else {
5424     return 0;
5425   }
5426 }
5427 
5428 void os::Kernel32Dll::initializeCommon() {
5429   if (!initialized) {
5430     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5431     assert(handle != NULL, "Just check");
5432     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5433     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5434     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5435     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5436     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5437     initialized = TRUE;
5438   }
5439 }
5440 
5441 
5442 
5443 #ifndef JDK6_OR_EARLIER
5444 
5445 void os::Kernel32Dll::initialize() {
5446   initializeCommon();
5447 }
5448 
5449 
5450 // Kernel32 API
5451 inline BOOL os::Kernel32Dll::SwitchToThread() {
5452   return ::SwitchToThread();
5453 }
5454 
5455 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5456   return true;
5457 }
5458 
5459 // Help tools
5460 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5461   return true;
5462 }
5463 
5464 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5465                                                         DWORD th32ProcessId) {
5466   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5467 }
5468 
5469 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5470                                            LPMODULEENTRY32 lpme) {
5471   return ::Module32First(hSnapshot, lpme);
5472 }
5473 
5474 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5475                                           LPMODULEENTRY32 lpme) {
5476   return ::Module32Next(hSnapshot, lpme);
5477 }
5478 
5479 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5480   ::GetNativeSystemInfo(lpSystemInfo);
5481 }
5482 
5483 // PSAPI API
5484 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5485                                              HMODULE *lpModule, DWORD cb,
5486                                              LPDWORD lpcbNeeded) {
5487   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5488 }
5489 
5490 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5491                                                HMODULE hModule,
5492                                                LPTSTR lpFilename,
5493                                                DWORD nSize) {
5494   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5495 }
5496 
5497 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5498                                                HMODULE hModule,
5499                                                LPMODULEINFO lpmodinfo,
5500                                                DWORD cb) {
5501   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5502 }
5503 
5504 inline BOOL os::PSApiDll::PSApiAvailable() {
5505   return true;
5506 }
5507 
5508 
5509 // WinSock2 API
5510 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5511                                         LPWSADATA lpWSAData) {
5512   return ::WSAStartup(wVersionRequested, lpWSAData);
5513 }
5514 
5515 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5516   return ::gethostbyname(name);
5517 }
5518 
5519 inline BOOL os::WinSock2Dll::WinSock2Available() {
5520   return true;
5521 }
5522 
5523 // Advapi API
5524 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5525                                                    BOOL DisableAllPrivileges,
5526                                                    PTOKEN_PRIVILEGES NewState,
5527                                                    DWORD BufferLength,
5528                                                    PTOKEN_PRIVILEGES PreviousState,
5529                                                    PDWORD ReturnLength) {
5530   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5531                                  BufferLength, PreviousState, ReturnLength);
5532 }
5533 
5534 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5535                                               DWORD DesiredAccess,
5536                                               PHANDLE TokenHandle) {
5537   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5538 }
5539 
5540 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5541                                                   LPCTSTR lpName,
5542                                                   PLUID lpLuid) {
5543   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5544 }
5545 
5546 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5547   return true;
5548 }
5549 
5550 void* os::get_default_process_handle() {
5551   return (void*)GetModuleHandle(NULL);
5552 }
5553 
5554 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5555 // which is used to find statically linked in agents.
5556 // Additionally for windows, takes into account __stdcall names.
5557 // Parameters:
5558 //            sym_name: Symbol in library we are looking for
5559 //            lib_name: Name of library to look in, NULL for shared libs.
5560 //            is_absolute_path == true if lib_name is absolute path to agent
5561 //                                     such as "C:/a/b/L.dll"
5562 //            == false if only the base name of the library is passed in
5563 //               such as "L"
5564 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5565                                     bool is_absolute_path) {
5566   char *agent_entry_name;
5567   size_t len;
5568   size_t name_len;
5569   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5570   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5571   const char *start;
5572 
5573   if (lib_name != NULL) {
5574     len = name_len = strlen(lib_name);
5575     if (is_absolute_path) {
5576       // Need to strip path, prefix and suffix
5577       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5578         lib_name = ++start;
5579       } else {
5580         // Need to check for drive prefix
5581         if ((start = strchr(lib_name, ':')) != NULL) {
5582           lib_name = ++start;
5583         }
5584       }
5585       if (len <= (prefix_len + suffix_len)) {
5586         return NULL;
5587       }
5588       lib_name += prefix_len;
5589       name_len = strlen(lib_name) - suffix_len;
5590     }
5591   }
5592   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5593   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5594   if (agent_entry_name == NULL) {
5595     return NULL;
5596   }
5597   if (lib_name != NULL) {
5598     const char *p = strrchr(sym_name, '@');
5599     if (p != NULL && p != sym_name) {
5600       // sym_name == _Agent_OnLoad@XX
5601       strncpy(agent_entry_name, sym_name, (p - sym_name));
5602       agent_entry_name[(p-sym_name)] = '\0';
5603       // agent_entry_name == _Agent_OnLoad
5604       strcat(agent_entry_name, "_");
5605       strncat(agent_entry_name, lib_name, name_len);
5606       strcat(agent_entry_name, p);
5607       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5608     } else {
5609       strcpy(agent_entry_name, sym_name);
5610       strcat(agent_entry_name, "_");
5611       strncat(agent_entry_name, lib_name, name_len);
5612     }
5613   } else {
5614     strcpy(agent_entry_name, sym_name);
5615   }
5616   return agent_entry_name;
5617 }
5618 
5619 #else
5620 // Kernel32 API
5621 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5622 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5623 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5624 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5625 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5626 
5627 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5628 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5629 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5630 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5631 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5632 
5633 void os::Kernel32Dll::initialize() {
5634   if (!initialized) {
5635     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5636     assert(handle != NULL, "Just check");
5637 
5638     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5639     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5640       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5641     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5642     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5643     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5644     initializeCommon();  // resolve the functions that always need resolving
5645 
5646     initialized = TRUE;
5647   }
5648 }
5649 
5650 BOOL os::Kernel32Dll::SwitchToThread() {
5651   assert(initialized && _SwitchToThread != NULL,
5652          "SwitchToThreadAvailable() not yet called");
5653   return _SwitchToThread();
5654 }
5655 
5656 
5657 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5658   if (!initialized) {
5659     initialize();
5660   }
5661   return _SwitchToThread != NULL;
5662 }
5663 
5664 // Help tools
5665 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5666   if (!initialized) {
5667     initialize();
5668   }
5669   return _CreateToolhelp32Snapshot != NULL &&
5670          _Module32First != NULL &&
5671          _Module32Next != NULL;
5672 }
5673 
5674 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5675                                                  DWORD th32ProcessId) {
5676   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5677          "HelpToolsAvailable() not yet called");
5678 
5679   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5680 }
5681 
5682 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5683   assert(initialized && _Module32First != NULL,
5684          "HelpToolsAvailable() not yet called");
5685 
5686   return _Module32First(hSnapshot, lpme);
5687 }
5688 
5689 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5690                                           LPMODULEENTRY32 lpme) {
5691   assert(initialized && _Module32Next != NULL,
5692          "HelpToolsAvailable() not yet called");
5693 
5694   return _Module32Next(hSnapshot, lpme);
5695 }
5696 
5697 
5698 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5699   if (!initialized) {
5700     initialize();
5701   }
5702   return _GetNativeSystemInfo != NULL;
5703 }
5704 
5705 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5706   assert(initialized && _GetNativeSystemInfo != NULL,
5707          "GetNativeSystemInfoAvailable() not yet called");
5708 
5709   _GetNativeSystemInfo(lpSystemInfo);
5710 }
5711 
5712 // PSAPI API
5713 
5714 
5715 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5716 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5717 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5718 
5719 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5720 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5721 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5722 BOOL                    os::PSApiDll::initialized = FALSE;
5723 
5724 void os::PSApiDll::initialize() {
5725   if (!initialized) {
5726     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5727     if (handle != NULL) {
5728       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5729                                                                     "EnumProcessModules");
5730       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5731                                                                       "GetModuleFileNameExA");
5732       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5733                                                                         "GetModuleInformation");
5734     }
5735     initialized = TRUE;
5736   }
5737 }
5738 
5739 
5740 
5741 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5742                                       DWORD cb, LPDWORD lpcbNeeded) {
5743   assert(initialized && _EnumProcessModules != NULL,
5744          "PSApiAvailable() not yet called");
5745   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5746 }
5747 
5748 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5749                                         LPTSTR lpFilename, DWORD nSize) {
5750   assert(initialized && _GetModuleFileNameEx != NULL,
5751          "PSApiAvailable() not yet called");
5752   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5753 }
5754 
5755 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5756                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5757   assert(initialized && _GetModuleInformation != NULL,
5758          "PSApiAvailable() not yet called");
5759   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5760 }
5761 
5762 BOOL os::PSApiDll::PSApiAvailable() {
5763   if (!initialized) {
5764     initialize();
5765   }
5766   return _EnumProcessModules != NULL &&
5767     _GetModuleFileNameEx != NULL &&
5768     _GetModuleInformation != NULL;
5769 }
5770 
5771 
5772 // WinSock2 API
5773 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5774 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5775 
5776 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5777 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5778 BOOL             os::WinSock2Dll::initialized = FALSE;
5779 
5780 void os::WinSock2Dll::initialize() {
5781   if (!initialized) {
5782     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5783     if (handle != NULL) {
5784       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5785       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5786     }
5787     initialized = TRUE;
5788   }
5789 }
5790 
5791 
5792 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5793   assert(initialized && _WSAStartup != NULL,
5794          "WinSock2Available() not yet called");
5795   return _WSAStartup(wVersionRequested, lpWSAData);
5796 }
5797 
5798 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5799   assert(initialized && _gethostbyname != NULL,
5800          "WinSock2Available() not yet called");
5801   return _gethostbyname(name);
5802 }
5803 
5804 BOOL os::WinSock2Dll::WinSock2Available() {
5805   if (!initialized) {
5806     initialize();
5807   }
5808   return _WSAStartup != NULL &&
5809     _gethostbyname != NULL;
5810 }
5811 
5812 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5813 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5814 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5815 
5816 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5817 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5818 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5819 BOOL                     os::Advapi32Dll::initialized = FALSE;
5820 
5821 void os::Advapi32Dll::initialize() {
5822   if (!initialized) {
5823     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5824     if (handle != NULL) {
5825       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5826                                                                           "AdjustTokenPrivileges");
5827       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5828                                                                 "OpenProcessToken");
5829       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5830                                                                         "LookupPrivilegeValueA");
5831     }
5832     initialized = TRUE;
5833   }
5834 }
5835 
5836 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5837                                             BOOL DisableAllPrivileges,
5838                                             PTOKEN_PRIVILEGES NewState,
5839                                             DWORD BufferLength,
5840                                             PTOKEN_PRIVILEGES PreviousState,
5841                                             PDWORD ReturnLength) {
5842   assert(initialized && _AdjustTokenPrivileges != NULL,
5843          "AdvapiAvailable() not yet called");
5844   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5845                                 BufferLength, PreviousState, ReturnLength);
5846 }
5847 
5848 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5849                                        DWORD DesiredAccess,
5850                                        PHANDLE TokenHandle) {
5851   assert(initialized && _OpenProcessToken != NULL,
5852          "AdvapiAvailable() not yet called");
5853   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5854 }
5855 
5856 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5857                                            LPCTSTR lpName, PLUID lpLuid) {
5858   assert(initialized && _LookupPrivilegeValue != NULL,
5859          "AdvapiAvailable() not yet called");
5860   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5861 }
5862 
5863 BOOL os::Advapi32Dll::AdvapiAvailable() {
5864   if (!initialized) {
5865     initialize();
5866   }
5867   return _AdjustTokenPrivileges != NULL &&
5868     _OpenProcessToken != NULL &&
5869     _LookupPrivilegeValue != NULL;
5870 }
5871 
5872 #endif
5873 
5874 #ifndef PRODUCT
5875 
5876 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5877 // contiguous memory block at a particular address.
5878 // The test first tries to find a good approximate address to allocate at by using the same
5879 // method to allocate some memory at any address. The test then tries to allocate memory in
5880 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5881 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5882 // the previously allocated memory is available for allocation. The only actual failure
5883 // that is reported is when the test tries to allocate at a particular location but gets a
5884 // different valid one. A NULL return value at this point is not considered an error but may
5885 // be legitimate.
5886 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5887 void TestReserveMemorySpecial_test() {
5888   if (!UseLargePages) {
5889     if (VerboseInternalVMTests) {
5890       gclog_or_tty->print("Skipping test because large pages are disabled");
5891     }
5892     return;
5893   }
5894   // save current value of globals
5895   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5896   bool old_use_numa_interleaving = UseNUMAInterleaving;
5897 
5898   // set globals to make sure we hit the correct code path
5899   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5900 
5901   // do an allocation at an address selected by the OS to get a good one.
5902   const size_t large_allocation_size = os::large_page_size() * 4;
5903   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5904   if (result == NULL) {
5905     if (VerboseInternalVMTests) {
5906       gclog_or_tty->print("Failed to allocate control block with size "SIZE_FORMAT". Skipping remainder of test.",
5907                           large_allocation_size);
5908     }
5909   } else {
5910     os::release_memory_special(result, large_allocation_size);
5911 
5912     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5913     // we managed to get it once.
5914     const size_t expected_allocation_size = os::large_page_size();
5915     char* expected_location = result + os::large_page_size();
5916     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5917     if (actual_location == NULL) {
5918       if (VerboseInternalVMTests) {
5919         gclog_or_tty->print("Failed to allocate any memory at "PTR_FORMAT" size "SIZE_FORMAT". Skipping remainder of test.",
5920                             expected_location, large_allocation_size);
5921       }
5922     } else {
5923       // release memory
5924       os::release_memory_special(actual_location, expected_allocation_size);
5925       // only now check, after releasing any memory to avoid any leaks.
5926       assert(actual_location == expected_location,
5927              err_msg("Failed to allocate memory at requested location "PTR_FORMAT" of size "SIZE_FORMAT", is "PTR_FORMAT" instead",
5928              expected_location, expected_allocation_size, actual_location));
5929     }
5930   }
5931 
5932   // restore globals
5933   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5934   UseNUMAInterleaving = old_use_numa_interleaving;
5935 }
5936 #endif // PRODUCT
5937