1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_bsd.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "mutex_bsd.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_bsd.inline.hpp"
  41 #include "os_share_bsd.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm.h"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.inline.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_bsd.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/vmError.hpp"
  72 
  73 // put OS-includes here
  74 # include <sys/types.h>
  75 # include <sys/mman.h>
  76 # include <sys/stat.h>
  77 # include <sys/select.h>
  78 # include <pthread.h>
  79 # include <signal.h>
  80 # include <errno.h>
  81 # include <dlfcn.h>
  82 # include <stdio.h>
  83 # include <unistd.h>
  84 # include <sys/resource.h>
  85 # include <pthread.h>
  86 # include <sys/stat.h>
  87 # include <sys/time.h>
  88 # include <sys/times.h>
  89 # include <sys/utsname.h>
  90 # include <sys/socket.h>
  91 # include <sys/wait.h>
  92 # include <time.h>
  93 # include <pwd.h>
  94 # include <poll.h>
  95 # include <semaphore.h>
  96 # include <fcntl.h>
  97 # include <string.h>
  98 # include <sys/param.h>
  99 # include <sys/sysctl.h>
 100 # include <sys/ipc.h>
 101 # include <sys/shm.h>
 102 #ifndef __APPLE__
 103 # include <link.h>
 104 #endif
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 # include <sys/syscall.h>
 109 
 110 #if defined(__FreeBSD__) || defined(__NetBSD__)
 111   #include <elf.h>
 112 #endif
 113 
 114 #ifdef __APPLE__
 115   #include <mach/mach.h> // semaphore_* API
 116   #include <mach-o/dyld.h>
 117   #include <sys/proc_info.h>
 118   #include <objc/objc-auto.h>
 119 #endif
 120 
 121 #ifndef MAP_ANONYMOUS
 122   #define MAP_ANONYMOUS MAP_ANON
 123 #endif
 124 
 125 #define MAX_PATH    (2 * K)
 126 
 127 // for timer info max values which include all bits
 128 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 129 
 130 #define LARGEPAGES_BIT (1 << 6)
 131 
 132 ////////////////////////////////////////////////////////////////////////////////
 133 // global variables
 134 julong os::Bsd::_physical_memory = 0;
 135 
 136 #ifdef __APPLE__
 137 mach_timebase_info_data_t os::Bsd::_timebase_info = {0, 0};
 138 volatile uint64_t         os::Bsd::_max_abstime   = 0;
 139 #else
 140 int (*os::Bsd::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 141 #endif
 142 pthread_t os::Bsd::_main_thread;
 143 int os::Bsd::_page_size = -1;
 144 
 145 static jlong initial_time_count=0;
 146 
 147 static int clock_tics_per_sec = 100;
 148 
 149 // For diagnostics to print a message once. see run_periodic_checks
 150 static sigset_t check_signal_done;
 151 static bool check_signals = true;
 152 
 153 static pid_t _initial_pid = 0;
 154 
 155 // Signal number used to suspend/resume a thread
 156 
 157 // do not use any signal number less than SIGSEGV, see 4355769
 158 static int SR_signum = SIGUSR2;
 159 sigset_t SR_sigset;
 160 
 161 
 162 ////////////////////////////////////////////////////////////////////////////////
 163 // utility functions
 164 
 165 static int SR_initialize();
 166 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 167 
 168 julong os::available_memory() {
 169   return Bsd::available_memory();
 170 }
 171 
 172 // available here means free
 173 julong os::Bsd::available_memory() {
 174   uint64_t available = physical_memory() >> 2;
 175 #ifdef __APPLE__
 176   mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
 177   vm_statistics64_data_t vmstat;
 178   kern_return_t kerr = host_statistics64(mach_host_self(), HOST_VM_INFO64,
 179                                          (host_info64_t)&vmstat, &count);
 180   assert(kerr == KERN_SUCCESS,
 181          "host_statistics64 failed - check mach_host_self() and count");
 182   if (kerr == KERN_SUCCESS) {
 183     available = vmstat.free_count * os::vm_page_size();
 184   }
 185 #endif
 186   return available;
 187 }
 188 
 189 julong os::physical_memory() {
 190   return Bsd::physical_memory();
 191 }
 192 
 193 // Return true if user is running as root.
 194 
 195 bool os::have_special_privileges() {
 196   static bool init = false;
 197   static bool privileges = false;
 198   if (!init) {
 199     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 200     init = true;
 201   }
 202   return privileges;
 203 }
 204 
 205 
 206 
 207 // Cpu architecture string
 208 #if   defined(ZERO)
 209 static char cpu_arch[] = ZERO_LIBARCH;
 210 #elif defined(IA64)
 211 static char cpu_arch[] = "ia64";
 212 #elif defined(IA32)
 213 static char cpu_arch[] = "i386";
 214 #elif defined(AMD64)
 215 static char cpu_arch[] = "amd64";
 216 #elif defined(ARM)
 217 static char cpu_arch[] = "arm";
 218 #elif defined(PPC32)
 219 static char cpu_arch[] = "ppc";
 220 #elif defined(SPARC)
 221   #ifdef _LP64
 222 static char cpu_arch[] = "sparcv9";
 223   #else
 224 static char cpu_arch[] = "sparc";
 225   #endif
 226 #else
 227   #error Add appropriate cpu_arch setting
 228 #endif
 229 
 230 // Compiler variant
 231 #ifdef COMPILER2
 232   #define COMPILER_VARIANT "server"
 233 #else
 234   #define COMPILER_VARIANT "client"
 235 #endif
 236 
 237 
 238 void os::Bsd::initialize_system_info() {
 239   int mib[2];
 240   size_t len;
 241   int cpu_val;
 242   julong mem_val;
 243 
 244   // get processors count via hw.ncpus sysctl
 245   mib[0] = CTL_HW;
 246   mib[1] = HW_NCPU;
 247   len = sizeof(cpu_val);
 248   if (sysctl(mib, 2, &cpu_val, &len, NULL, 0) != -1 && cpu_val >= 1) {
 249     assert(len == sizeof(cpu_val), "unexpected data size");
 250     set_processor_count(cpu_val);
 251   } else {
 252     set_processor_count(1);   // fallback
 253   }
 254 
 255   // get physical memory via hw.memsize sysctl (hw.memsize is used
 256   // since it returns a 64 bit value)
 257   mib[0] = CTL_HW;
 258 
 259 #if defined (HW_MEMSIZE) // Apple
 260   mib[1] = HW_MEMSIZE;
 261 #elif defined(HW_PHYSMEM) // Most of BSD
 262   mib[1] = HW_PHYSMEM;
 263 #elif defined(HW_REALMEM) // Old FreeBSD
 264   mib[1] = HW_REALMEM;
 265 #else
 266   #error No ways to get physmem
 267 #endif
 268 
 269   len = sizeof(mem_val);
 270   if (sysctl(mib, 2, &mem_val, &len, NULL, 0) != -1) {
 271     assert(len == sizeof(mem_val), "unexpected data size");
 272     _physical_memory = mem_val;
 273   } else {
 274     _physical_memory = 256 * 1024 * 1024;       // fallback (XXXBSD?)
 275   }
 276 
 277 #ifdef __OpenBSD__
 278   {
 279     // limit _physical_memory memory view on OpenBSD since
 280     // datasize rlimit restricts us anyway.
 281     struct rlimit limits;
 282     getrlimit(RLIMIT_DATA, &limits);
 283     _physical_memory = MIN2(_physical_memory, (julong)limits.rlim_cur);
 284   }
 285 #endif
 286 }
 287 
 288 #ifdef __APPLE__
 289 static const char *get_home() {
 290   const char *home_dir = ::getenv("HOME");
 291   if ((home_dir == NULL) || (*home_dir == '\0')) {
 292     struct passwd *passwd_info = getpwuid(geteuid());
 293     if (passwd_info != NULL) {
 294       home_dir = passwd_info->pw_dir;
 295     }
 296   }
 297 
 298   return home_dir;
 299 }
 300 #endif
 301 
 302 void os::init_system_properties_values() {
 303   // The next steps are taken in the product version:
 304   //
 305   // Obtain the JAVA_HOME value from the location of libjvm.so.
 306   // This library should be located at:
 307   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 308   //
 309   // If "/jre/lib/" appears at the right place in the path, then we
 310   // assume libjvm.so is installed in a JDK and we use this path.
 311   //
 312   // Otherwise exit with message: "Could not create the Java virtual machine."
 313   //
 314   // The following extra steps are taken in the debugging version:
 315   //
 316   // If "/jre/lib/" does NOT appear at the right place in the path
 317   // instead of exit check for $JAVA_HOME environment variable.
 318   //
 319   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 320   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 321   // it looks like libjvm.so is installed there
 322   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 323   //
 324   // Otherwise exit.
 325   //
 326   // Important note: if the location of libjvm.so changes this
 327   // code needs to be changed accordingly.
 328 
 329   // See ld(1):
 330   //      The linker uses the following search paths to locate required
 331   //      shared libraries:
 332   //        1: ...
 333   //        ...
 334   //        7: The default directories, normally /lib and /usr/lib.
 335 #ifndef DEFAULT_LIBPATH
 336   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 337 #endif
 338 
 339 // Base path of extensions installed on the system.
 340 #define SYS_EXT_DIR     "/usr/java/packages"
 341 #define EXTENSIONS_DIR  "/lib/ext"
 342 
 343 #ifndef __APPLE__
 344 
 345   // Buffer that fits several sprintfs.
 346   // Note that the space for the colon and the trailing null are provided
 347   // by the nulls included by the sizeof operator.
 348   const size_t bufsize =
 349     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 350          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 351   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 352 
 353   // sysclasspath, java_home, dll_dir
 354   {
 355     char *pslash;
 356     os::jvm_path(buf, bufsize);
 357 
 358     // Found the full path to libjvm.so.
 359     // Now cut the path to <java_home>/jre if we can.
 360     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 361     pslash = strrchr(buf, '/');
 362     if (pslash != NULL) {
 363       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 364     }
 365     Arguments::set_dll_dir(buf);
 366 
 367     if (pslash != NULL) {
 368       pslash = strrchr(buf, '/');
 369       if (pslash != NULL) {
 370         *pslash = '\0';          // Get rid of /<arch>.
 371         pslash = strrchr(buf, '/');
 372         if (pslash != NULL) {
 373           *pslash = '\0';        // Get rid of /lib.
 374         }
 375       }
 376     }
 377     Arguments::set_java_home(buf);
 378     set_boot_path('/', ':');
 379   }
 380 
 381   // Where to look for native libraries.
 382   //
 383   // Note: Due to a legacy implementation, most of the library path
 384   // is set in the launcher. This was to accomodate linking restrictions
 385   // on legacy Bsd implementations (which are no longer supported).
 386   // Eventually, all the library path setting will be done here.
 387   //
 388   // However, to prevent the proliferation of improperly built native
 389   // libraries, the new path component /usr/java/packages is added here.
 390   // Eventually, all the library path setting will be done here.
 391   {
 392     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 393     // should always exist (until the legacy problem cited above is
 394     // addressed).
 395     const char *v = ::getenv("LD_LIBRARY_PATH");
 396     const char *v_colon = ":";
 397     if (v == NULL) { v = ""; v_colon = ""; }
 398     // That's +1 for the colon and +1 for the trailing '\0'.
 399     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 400                                                      strlen(v) + 1 +
 401                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 402                                                      mtInternal);
 403     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 404     Arguments::set_library_path(ld_library_path);
 405     FREE_C_HEAP_ARRAY(char, ld_library_path);
 406   }
 407 
 408   // Extensions directories.
 409   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 410   Arguments::set_ext_dirs(buf);
 411 
 412   FREE_C_HEAP_ARRAY(char, buf);
 413 
 414 #else // __APPLE__
 415 
 416   #define SYS_EXTENSIONS_DIR   "/Library/Java/Extensions"
 417   #define SYS_EXTENSIONS_DIRS  SYS_EXTENSIONS_DIR ":/Network" SYS_EXTENSIONS_DIR ":/System" SYS_EXTENSIONS_DIR ":/usr/lib/java"
 418 
 419   const char *user_home_dir = get_home();
 420   // The null in SYS_EXTENSIONS_DIRS counts for the size of the colon after user_home_dir.
 421   size_t system_ext_size = strlen(user_home_dir) + sizeof(SYS_EXTENSIONS_DIR) +
 422     sizeof(SYS_EXTENSIONS_DIRS);
 423 
 424   // Buffer that fits several sprintfs.
 425   // Note that the space for the colon and the trailing null are provided
 426   // by the nulls included by the sizeof operator.
 427   const size_t bufsize =
 428     MAX2((size_t)MAXPATHLEN,  // for dll_dir & friends.
 429          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + system_ext_size); // extensions dir
 430   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 431 
 432   // sysclasspath, java_home, dll_dir
 433   {
 434     char *pslash;
 435     os::jvm_path(buf, bufsize);
 436 
 437     // Found the full path to libjvm.so.
 438     // Now cut the path to <java_home>/jre if we can.
 439     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 440     pslash = strrchr(buf, '/');
 441     if (pslash != NULL) {
 442       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 443     }
 444 #ifdef STATIC_BUILD
 445     strcat(buf, "/lib");
 446 #endif
 447 
 448     Arguments::set_dll_dir(buf);
 449 
 450     if (pslash != NULL) {
 451       pslash = strrchr(buf, '/');
 452       if (pslash != NULL) {
 453         *pslash = '\0';          // Get rid of /lib.
 454       }
 455     }
 456     Arguments::set_java_home(buf);
 457     set_boot_path('/', ':');
 458   }
 459 
 460   // Where to look for native libraries.
 461   //
 462   // Note: Due to a legacy implementation, most of the library path
 463   // is set in the launcher. This was to accomodate linking restrictions
 464   // on legacy Bsd implementations (which are no longer supported).
 465   // Eventually, all the library path setting will be done here.
 466   //
 467   // However, to prevent the proliferation of improperly built native
 468   // libraries, the new path component /usr/java/packages is added here.
 469   // Eventually, all the library path setting will be done here.
 470   {
 471     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 472     // should always exist (until the legacy problem cited above is
 473     // addressed).
 474     // Prepend the default path with the JAVA_LIBRARY_PATH so that the app launcher code
 475     // can specify a directory inside an app wrapper
 476     const char *l = ::getenv("JAVA_LIBRARY_PATH");
 477     const char *l_colon = ":";
 478     if (l == NULL) { l = ""; l_colon = ""; }
 479 
 480     const char *v = ::getenv("DYLD_LIBRARY_PATH");
 481     const char *v_colon = ":";
 482     if (v == NULL) { v = ""; v_colon = ""; }
 483 
 484     // Apple's Java6 has "." at the beginning of java.library.path.
 485     // OpenJDK on Windows has "." at the end of java.library.path.
 486     // OpenJDK on Linux and Solaris don't have "." in java.library.path
 487     // at all. To ease the transition from Apple's Java6 to OpenJDK7,
 488     // "." is appended to the end of java.library.path. Yes, this
 489     // could cause a change in behavior, but Apple's Java6 behavior
 490     // can be achieved by putting "." at the beginning of the
 491     // JAVA_LIBRARY_PATH environment variable.
 492     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 493                                                      strlen(v) + 1 + strlen(l) + 1 +
 494                                                      system_ext_size + 3,
 495                                                      mtInternal);
 496     sprintf(ld_library_path, "%s%s%s%s%s" SYS_EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS ":.",
 497             v, v_colon, l, l_colon, user_home_dir);
 498     Arguments::set_library_path(ld_library_path);
 499     FREE_C_HEAP_ARRAY(char, ld_library_path);
 500   }
 501 
 502   // Extensions directories.
 503   //
 504   // Note that the space for the colon and the trailing null are provided
 505   // by the nulls included by the sizeof operator (so actually one byte more
 506   // than necessary is allocated).
 507   sprintf(buf, "%s" SYS_EXTENSIONS_DIR ":%s" EXTENSIONS_DIR ":" SYS_EXTENSIONS_DIRS,
 508           user_home_dir, Arguments::get_java_home());
 509   Arguments::set_ext_dirs(buf);
 510 
 511   FREE_C_HEAP_ARRAY(char, buf);
 512 
 513 #undef SYS_EXTENSIONS_DIR
 514 #undef SYS_EXTENSIONS_DIRS
 515 
 516 #endif // __APPLE__
 517 
 518 #undef SYS_EXT_DIR
 519 #undef EXTENSIONS_DIR
 520 }
 521 
 522 ////////////////////////////////////////////////////////////////////////////////
 523 // breakpoint support
 524 
 525 void os::breakpoint() {
 526   BREAKPOINT;
 527 }
 528 
 529 extern "C" void breakpoint() {
 530   // use debugger to set breakpoint here
 531 }
 532 
 533 ////////////////////////////////////////////////////////////////////////////////
 534 // signal support
 535 
 536 debug_only(static bool signal_sets_initialized = false);
 537 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 538 
 539 bool os::Bsd::is_sig_ignored(int sig) {
 540   struct sigaction oact;
 541   sigaction(sig, (struct sigaction*)NULL, &oact);
 542   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 543                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 544   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 545     return true;
 546   } else {
 547     return false;
 548   }
 549 }
 550 
 551 void os::Bsd::signal_sets_init() {
 552   // Should also have an assertion stating we are still single-threaded.
 553   assert(!signal_sets_initialized, "Already initialized");
 554   // Fill in signals that are necessarily unblocked for all threads in
 555   // the VM. Currently, we unblock the following signals:
 556   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 557   //                         by -Xrs (=ReduceSignalUsage));
 558   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 559   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 560   // the dispositions or masks wrt these signals.
 561   // Programs embedding the VM that want to use the above signals for their
 562   // own purposes must, at this time, use the "-Xrs" option to prevent
 563   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 564   // (See bug 4345157, and other related bugs).
 565   // In reality, though, unblocking these signals is really a nop, since
 566   // these signals are not blocked by default.
 567   sigemptyset(&unblocked_sigs);
 568   sigemptyset(&allowdebug_blocked_sigs);
 569   sigaddset(&unblocked_sigs, SIGILL);
 570   sigaddset(&unblocked_sigs, SIGSEGV);
 571   sigaddset(&unblocked_sigs, SIGBUS);
 572   sigaddset(&unblocked_sigs, SIGFPE);
 573   sigaddset(&unblocked_sigs, SR_signum);
 574 
 575   if (!ReduceSignalUsage) {
 576     if (!os::Bsd::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 577       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 578       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 579     }
 580     if (!os::Bsd::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 581       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 582       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 583     }
 584     if (!os::Bsd::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 585       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 586       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 587     }
 588   }
 589   // Fill in signals that are blocked by all but the VM thread.
 590   sigemptyset(&vm_sigs);
 591   if (!ReduceSignalUsage) {
 592     sigaddset(&vm_sigs, BREAK_SIGNAL);
 593   }
 594   debug_only(signal_sets_initialized = true);
 595 
 596 }
 597 
 598 // These are signals that are unblocked while a thread is running Java.
 599 // (For some reason, they get blocked by default.)
 600 sigset_t* os::Bsd::unblocked_signals() {
 601   assert(signal_sets_initialized, "Not initialized");
 602   return &unblocked_sigs;
 603 }
 604 
 605 // These are the signals that are blocked while a (non-VM) thread is
 606 // running Java. Only the VM thread handles these signals.
 607 sigset_t* os::Bsd::vm_signals() {
 608   assert(signal_sets_initialized, "Not initialized");
 609   return &vm_sigs;
 610 }
 611 
 612 // These are signals that are blocked during cond_wait to allow debugger in
 613 sigset_t* os::Bsd::allowdebug_blocked_signals() {
 614   assert(signal_sets_initialized, "Not initialized");
 615   return &allowdebug_blocked_sigs;
 616 }
 617 
 618 void os::Bsd::hotspot_sigmask(Thread* thread) {
 619 
 620   //Save caller's signal mask before setting VM signal mask
 621   sigset_t caller_sigmask;
 622   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 623 
 624   OSThread* osthread = thread->osthread();
 625   osthread->set_caller_sigmask(caller_sigmask);
 626 
 627   pthread_sigmask(SIG_UNBLOCK, os::Bsd::unblocked_signals(), NULL);
 628 
 629   if (!ReduceSignalUsage) {
 630     if (thread->is_VM_thread()) {
 631       // Only the VM thread handles BREAK_SIGNAL ...
 632       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 633     } else {
 634       // ... all other threads block BREAK_SIGNAL
 635       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 636     }
 637   }
 638 }
 639 
 640 
 641 //////////////////////////////////////////////////////////////////////////////
 642 // create new thread
 643 
 644 #ifdef __APPLE__
 645 // library handle for calling objc_registerThreadWithCollector()
 646 // without static linking to the libobjc library
 647   #define OBJC_LIB "/usr/lib/libobjc.dylib"
 648   #define OBJC_GCREGISTER "objc_registerThreadWithCollector"
 649 typedef void (*objc_registerThreadWithCollector_t)();
 650 extern "C" objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction;
 651 objc_registerThreadWithCollector_t objc_registerThreadWithCollectorFunction = NULL;
 652 #endif
 653 
 654 #ifdef __APPLE__
 655 static uint64_t locate_unique_thread_id(mach_port_t mach_thread_port) {
 656   // Additional thread_id used to correlate threads in SA
 657   thread_identifier_info_data_t     m_ident_info;
 658   mach_msg_type_number_t            count = THREAD_IDENTIFIER_INFO_COUNT;
 659 
 660   thread_info(mach_thread_port, THREAD_IDENTIFIER_INFO,
 661               (thread_info_t) &m_ident_info, &count);
 662 
 663   return m_ident_info.thread_id;
 664 }
 665 #endif
 666 
 667 // Thread start routine for all newly created threads
 668 static void *java_start(Thread *thread) {
 669   // Try to randomize the cache line index of hot stack frames.
 670   // This helps when threads of the same stack traces evict each other's
 671   // cache lines. The threads can be either from the same JVM instance, or
 672   // from different JVM instances. The benefit is especially true for
 673   // processors with hyperthreading technology.
 674   static int counter = 0;
 675   int pid = os::current_process_id();
 676   alloca(((pid ^ counter++) & 7) * 128);
 677 
 678   thread->initialize_thread_current();
 679 
 680   OSThread* osthread = thread->osthread();
 681   Monitor* sync = osthread->startThread_lock();
 682 
 683   osthread->set_thread_id(os::Bsd::gettid());
 684 
 685   log_debug(os)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ".",
 686     os::current_thread_id(), (uintx) pthread_self());
 687 
 688 #ifdef __APPLE__
 689   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 690   guarantee(unique_thread_id != 0, "unique thread id was not found");
 691   osthread->set_unique_thread_id(unique_thread_id);
 692 #endif
 693   // initialize signal mask for this thread
 694   os::Bsd::hotspot_sigmask(thread);
 695 
 696   // initialize floating point control register
 697   os::Bsd::init_thread_fpu_state();
 698 
 699 #ifdef __APPLE__
 700   // register thread with objc gc
 701   if (objc_registerThreadWithCollectorFunction != NULL) {
 702     objc_registerThreadWithCollectorFunction();
 703   }
 704 #endif
 705 
 706   // handshaking with parent thread
 707   {
 708     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 709 
 710     // notify parent thread
 711     osthread->set_state(INITIALIZED);
 712     sync->notify_all();
 713 
 714     // wait until os::start_thread()
 715     while (osthread->get_state() == INITIALIZED) {
 716       sync->wait(Mutex::_no_safepoint_check_flag);
 717     }
 718   }
 719 
 720   // call one more level start routine
 721   thread->run();
 722 
 723   log_debug(os)("Thread finished (tid " UINTX_FORMAT ", pthread id " UINTX_FORMAT ").",
 724     os::current_thread_id(), (uintx) pthread_self());
 725 
 726   return 0;
 727 }
 728 
 729 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 730   assert(thread->osthread() == NULL, "caller responsible");
 731 
 732   // Allocate the OSThread object
 733   OSThread* osthread = new OSThread(NULL, NULL);
 734   if (osthread == NULL) {
 735     return false;
 736   }
 737 
 738   // set the correct thread state
 739   osthread->set_thread_type(thr_type);
 740 
 741   // Initial state is ALLOCATED but not INITIALIZED
 742   osthread->set_state(ALLOCATED);
 743 
 744   thread->set_osthread(osthread);
 745 
 746   // init thread attributes
 747   pthread_attr_t attr;
 748   pthread_attr_init(&attr);
 749   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 750 
 751   // calculate stack size if it's not specified by caller
 752   if (stack_size == 0) {
 753     stack_size = os::Bsd::default_stack_size(thr_type);
 754 
 755     switch (thr_type) {
 756     case os::java_thread:
 757       // Java threads use ThreadStackSize which default value can be
 758       // changed with the flag -Xss
 759       assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 760       stack_size = JavaThread::stack_size_at_create();
 761       break;
 762     case os::compiler_thread:
 763       if (CompilerThreadStackSize > 0) {
 764         stack_size = (size_t)(CompilerThreadStackSize * K);
 765         break;
 766       } // else fall through:
 767         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 768     case os::vm_thread:
 769     case os::pgc_thread:
 770     case os::cgc_thread:
 771     case os::watcher_thread:
 772       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 773       break;
 774     }
 775   }
 776 
 777   stack_size = MAX2(stack_size, os::Bsd::min_stack_allowed);
 778   pthread_attr_setstacksize(&attr, stack_size);
 779 
 780   ThreadState state;
 781 
 782   {
 783     pthread_t tid;
 784     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 785 
 786     LogHandle(os) log;
 787     if (log.is_debug()) {
 788       char buf[64];
 789       if (ret == 0) {
 790         log.debug("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 791           (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 792       } else {
 793         log.warning("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 794           os::errno_name(errno), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 795       }
 796     }
 797 
 798     pthread_attr_destroy(&attr);
 799 
 800     if (ret != 0) {
 801       // Need to clean up stuff we've allocated so far
 802       thread->set_osthread(NULL);
 803       delete osthread;
 804       return false;
 805     }
 806 
 807     // Store pthread info into the OSThread
 808     osthread->set_pthread_id(tid);
 809 
 810     // Wait until child thread is either initialized or aborted
 811     {
 812       Monitor* sync_with_child = osthread->startThread_lock();
 813       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 814       while ((state = osthread->get_state()) == ALLOCATED) {
 815         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 816       }
 817     }
 818 
 819   }
 820 
 821   // Aborted due to thread limit being reached
 822   if (state == ZOMBIE) {
 823     thread->set_osthread(NULL);
 824     delete osthread;
 825     return false;
 826   }
 827 
 828   // The thread is returned suspended (in state INITIALIZED),
 829   // and is started higher up in the call chain
 830   assert(state == INITIALIZED, "race condition");
 831   return true;
 832 }
 833 
 834 /////////////////////////////////////////////////////////////////////////////
 835 // attach existing thread
 836 
 837 // bootstrap the main thread
 838 bool os::create_main_thread(JavaThread* thread) {
 839   assert(os::Bsd::_main_thread == pthread_self(), "should be called inside main thread");
 840   return create_attached_thread(thread);
 841 }
 842 
 843 bool os::create_attached_thread(JavaThread* thread) {
 844 #ifdef ASSERT
 845   thread->verify_not_published();
 846 #endif
 847 
 848   // Allocate the OSThread object
 849   OSThread* osthread = new OSThread(NULL, NULL);
 850 
 851   if (osthread == NULL) {
 852     return false;
 853   }
 854 
 855   osthread->set_thread_id(os::Bsd::gettid());
 856 
 857   // Store pthread info into the OSThread
 858 #ifdef __APPLE__
 859   uint64_t unique_thread_id = locate_unique_thread_id(osthread->thread_id());
 860   guarantee(unique_thread_id != 0, "just checking");
 861   osthread->set_unique_thread_id(unique_thread_id);
 862 #endif
 863   osthread->set_pthread_id(::pthread_self());
 864 
 865   // initialize floating point control register
 866   os::Bsd::init_thread_fpu_state();
 867 
 868   // Initial thread state is RUNNABLE
 869   osthread->set_state(RUNNABLE);
 870 
 871   thread->set_osthread(osthread);
 872 
 873   // initialize signal mask for this thread
 874   // and save the caller's signal mask
 875   os::Bsd::hotspot_sigmask(thread);
 876 
 877   log_debug(os)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ".",
 878     os::current_thread_id(), (uintx) pthread_self());
 879 
 880   return true;
 881 }
 882 
 883 void os::pd_start_thread(Thread* thread) {
 884   OSThread * osthread = thread->osthread();
 885   assert(osthread->get_state() != INITIALIZED, "just checking");
 886   Monitor* sync_with_child = osthread->startThread_lock();
 887   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 888   sync_with_child->notify();
 889 }
 890 
 891 // Free Bsd resources related to the OSThread
 892 void os::free_thread(OSThread* osthread) {
 893   assert(osthread != NULL, "osthread not set");
 894 
 895   if (Thread::current()->osthread() == osthread) {
 896     // Restore caller's signal mask
 897     sigset_t sigmask = osthread->caller_sigmask();
 898     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 899   }
 900 
 901   delete osthread;
 902 }
 903 
 904 ////////////////////////////////////////////////////////////////////////////////
 905 // time support
 906 
 907 // Time since start-up in seconds to a fine granularity.
 908 // Used by VMSelfDestructTimer and the MemProfiler.
 909 double os::elapsedTime() {
 910 
 911   return ((double)os::elapsed_counter()) / os::elapsed_frequency();
 912 }
 913 
 914 jlong os::elapsed_counter() {
 915   return javaTimeNanos() - initial_time_count;
 916 }
 917 
 918 jlong os::elapsed_frequency() {
 919   return NANOSECS_PER_SEC; // nanosecond resolution
 920 }
 921 
 922 bool os::supports_vtime() { return true; }
 923 bool os::enable_vtime()   { return false; }
 924 bool os::vtime_enabled()  { return false; }
 925 
 926 double os::elapsedVTime() {
 927   // better than nothing, but not much
 928   return elapsedTime();
 929 }
 930 
 931 jlong os::javaTimeMillis() {
 932   timeval time;
 933   int status = gettimeofday(&time, NULL);
 934   assert(status != -1, "bsd error");
 935   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
 936 }
 937 
 938 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 939   timeval time;
 940   int status = gettimeofday(&time, NULL);
 941   assert(status != -1, "bsd error");
 942   seconds = jlong(time.tv_sec);
 943   nanos = jlong(time.tv_usec) * 1000;
 944 }
 945 
 946 #ifndef __APPLE__
 947   #ifndef CLOCK_MONOTONIC
 948     #define CLOCK_MONOTONIC (1)
 949   #endif
 950 #endif
 951 
 952 #ifdef __APPLE__
 953 void os::Bsd::clock_init() {
 954   mach_timebase_info(&_timebase_info);
 955 }
 956 #else
 957 void os::Bsd::clock_init() {
 958   struct timespec res;
 959   struct timespec tp;
 960   if (::clock_getres(CLOCK_MONOTONIC, &res) == 0 &&
 961       ::clock_gettime(CLOCK_MONOTONIC, &tp)  == 0) {
 962     // yes, monotonic clock is supported
 963     _clock_gettime = ::clock_gettime;
 964   }
 965 }
 966 #endif
 967 
 968 
 969 
 970 #ifdef __APPLE__
 971 
 972 jlong os::javaTimeNanos() {
 973   const uint64_t tm = mach_absolute_time();
 974   const uint64_t now = (tm * Bsd::_timebase_info.numer) / Bsd::_timebase_info.denom;
 975   const uint64_t prev = Bsd::_max_abstime;
 976   if (now <= prev) {
 977     return prev;   // same or retrograde time;
 978   }
 979   const uint64_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&Bsd::_max_abstime, prev);
 980   assert(obsv >= prev, "invariant");   // Monotonicity
 981   // If the CAS succeeded then we're done and return "now".
 982   // If the CAS failed and the observed value "obsv" is >= now then
 983   // we should return "obsv".  If the CAS failed and now > obsv > prv then
 984   // some other thread raced this thread and installed a new value, in which case
 985   // we could either (a) retry the entire operation, (b) retry trying to install now
 986   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
 987   // we might discard a higher "now" value in deference to a slightly lower but freshly
 988   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
 989   // to (a) or (b) -- and greatly reduces coherence traffic.
 990   // We might also condition (c) on the magnitude of the delta between obsv and now.
 991   // Avoiding excessive CAS operations to hot RW locations is critical.
 992   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
 993   return (prev == obsv) ? now : obsv;
 994 }
 995 
 996 #else // __APPLE__
 997 
 998 jlong os::javaTimeNanos() {
 999   if (os::supports_monotonic_clock()) {
1000     struct timespec tp;
1001     int status = Bsd::_clock_gettime(CLOCK_MONOTONIC, &tp);
1002     assert(status == 0, "gettime error");
1003     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1004     return result;
1005   } else {
1006     timeval time;
1007     int status = gettimeofday(&time, NULL);
1008     assert(status != -1, "bsd error");
1009     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1010     return 1000 * usecs;
1011   }
1012 }
1013 
1014 #endif // __APPLE__
1015 
1016 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1017   if (os::supports_monotonic_clock()) {
1018     info_ptr->max_value = ALL_64_BITS;
1019 
1020     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1021     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1022     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1023   } else {
1024     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1025     info_ptr->max_value = ALL_64_BITS;
1026 
1027     // gettimeofday is a real time clock so it skips
1028     info_ptr->may_skip_backward = true;
1029     info_ptr->may_skip_forward = true;
1030   }
1031 
1032   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1033 }
1034 
1035 // Return the real, user, and system times in seconds from an
1036 // arbitrary fixed point in the past.
1037 bool os::getTimesSecs(double* process_real_time,
1038                       double* process_user_time,
1039                       double* process_system_time) {
1040   struct tms ticks;
1041   clock_t real_ticks = times(&ticks);
1042 
1043   if (real_ticks == (clock_t) (-1)) {
1044     return false;
1045   } else {
1046     double ticks_per_second = (double) clock_tics_per_sec;
1047     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1048     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1049     *process_real_time = ((double) real_ticks) / ticks_per_second;
1050 
1051     return true;
1052   }
1053 }
1054 
1055 
1056 char * os::local_time_string(char *buf, size_t buflen) {
1057   struct tm t;
1058   time_t long_time;
1059   time(&long_time);
1060   localtime_r(&long_time, &t);
1061   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1062                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1063                t.tm_hour, t.tm_min, t.tm_sec);
1064   return buf;
1065 }
1066 
1067 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1068   return localtime_r(clock, res);
1069 }
1070 
1071 ////////////////////////////////////////////////////////////////////////////////
1072 // runtime exit support
1073 
1074 // Note: os::shutdown() might be called very early during initialization, or
1075 // called from signal handler. Before adding something to os::shutdown(), make
1076 // sure it is async-safe and can handle partially initialized VM.
1077 void os::shutdown() {
1078 
1079   // allow PerfMemory to attempt cleanup of any persistent resources
1080   perfMemory_exit();
1081 
1082   // needs to remove object in file system
1083   AttachListener::abort();
1084 
1085   // flush buffered output, finish log files
1086   ostream_abort();
1087 
1088   // Check for abort hook
1089   abort_hook_t abort_hook = Arguments::abort_hook();
1090   if (abort_hook != NULL) {
1091     abort_hook();
1092   }
1093 
1094 }
1095 
1096 // Note: os::abort() might be called very early during initialization, or
1097 // called from signal handler. Before adding something to os::abort(), make
1098 // sure it is async-safe and can handle partially initialized VM.
1099 void os::abort(bool dump_core, void* siginfo, const void* context) {
1100   os::shutdown();
1101   if (dump_core) {
1102 #ifndef PRODUCT
1103     fdStream out(defaultStream::output_fd());
1104     out.print_raw("Current thread is ");
1105     char buf[16];
1106     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1107     out.print_raw_cr(buf);
1108     out.print_raw_cr("Dumping core ...");
1109 #endif
1110     ::abort(); // dump core
1111   }
1112 
1113   ::exit(1);
1114 }
1115 
1116 // Die immediately, no exit hook, no abort hook, no cleanup.
1117 void os::die() {
1118   // _exit() on BsdThreads only kills current thread
1119   ::abort();
1120 }
1121 
1122 // This method is a copy of JDK's sysGetLastErrorString
1123 // from src/solaris/hpi/src/system_md.c
1124 
1125 size_t os::lasterror(char *buf, size_t len) {
1126   if (errno == 0)  return 0;
1127 
1128   const char *s = ::strerror(errno);
1129   size_t n = ::strlen(s);
1130   if (n >= len) {
1131     n = len - 1;
1132   }
1133   ::strncpy(buf, s, n);
1134   buf[n] = '\0';
1135   return n;
1136 }
1137 
1138 // Information of current thread in variety of formats
1139 pid_t os::Bsd::gettid() {
1140   int retval = -1;
1141 
1142 #ifdef __APPLE__ //XNU kernel
1143   // despite the fact mach port is actually not a thread id use it
1144   // instead of syscall(SYS_thread_selfid) as it certainly fits to u4
1145   retval = ::pthread_mach_thread_np(::pthread_self());
1146   guarantee(retval != 0, "just checking");
1147   return retval;
1148 
1149 #else
1150   #ifdef __FreeBSD__
1151   retval = syscall(SYS_thr_self);
1152   #else
1153     #ifdef __OpenBSD__
1154   retval = syscall(SYS_getthrid);
1155     #else
1156       #ifdef __NetBSD__
1157   retval = (pid_t) syscall(SYS__lwp_self);
1158       #endif
1159     #endif
1160   #endif
1161 #endif
1162 
1163   if (retval == -1) {
1164     return getpid();
1165   }
1166 }
1167 
1168 intx os::current_thread_id() {
1169 #ifdef __APPLE__
1170   return (intx)::pthread_mach_thread_np(::pthread_self());
1171 #else
1172   return (intx)::pthread_self();
1173 #endif
1174 }
1175 
1176 int os::current_process_id() {
1177 
1178   // Under the old bsd thread library, bsd gives each thread
1179   // its own process id. Because of this each thread will return
1180   // a different pid if this method were to return the result
1181   // of getpid(2). Bsd provides no api that returns the pid
1182   // of the launcher thread for the vm. This implementation
1183   // returns a unique pid, the pid of the launcher thread
1184   // that starts the vm 'process'.
1185 
1186   // Under the NPTL, getpid() returns the same pid as the
1187   // launcher thread rather than a unique pid per thread.
1188   // Use gettid() if you want the old pre NPTL behaviour.
1189 
1190   // if you are looking for the result of a call to getpid() that
1191   // returns a unique pid for the calling thread, then look at the
1192   // OSThread::thread_id() method in osThread_bsd.hpp file
1193 
1194   return (int)(_initial_pid ? _initial_pid : getpid());
1195 }
1196 
1197 // DLL functions
1198 
1199 #define JNI_LIB_PREFIX "lib"
1200 #ifdef __APPLE__
1201   #define JNI_LIB_SUFFIX ".dylib"
1202 #else
1203   #define JNI_LIB_SUFFIX ".so"
1204 #endif
1205 
1206 const char* os::dll_file_extension() { return JNI_LIB_SUFFIX; }
1207 
1208 // This must be hard coded because it's the system's temporary
1209 // directory not the java application's temp directory, ala java.io.tmpdir.
1210 #ifdef __APPLE__
1211 // macosx has a secure per-user temporary directory
1212 char temp_path_storage[PATH_MAX];
1213 const char* os::get_temp_directory() {
1214   static char *temp_path = NULL;
1215   if (temp_path == NULL) {
1216     int pathSize = confstr(_CS_DARWIN_USER_TEMP_DIR, temp_path_storage, PATH_MAX);
1217     if (pathSize == 0 || pathSize > PATH_MAX) {
1218       strlcpy(temp_path_storage, "/tmp/", sizeof(temp_path_storage));
1219     }
1220     temp_path = temp_path_storage;
1221   }
1222   return temp_path;
1223 }
1224 #else // __APPLE__
1225 const char* os::get_temp_directory() { return "/tmp"; }
1226 #endif // __APPLE__
1227 
1228 static bool file_exists(const char* filename) {
1229   struct stat statbuf;
1230   if (filename == NULL || strlen(filename) == 0) {
1231     return false;
1232   }
1233   return os::stat(filename, &statbuf) == 0;
1234 }
1235 
1236 bool os::dll_build_name(char* buffer, size_t buflen,
1237                         const char* pname, const char* fname) {
1238   bool retval = false;
1239   // Copied from libhpi
1240   const size_t pnamelen = pname ? strlen(pname) : 0;
1241 
1242   // Return error on buffer overflow.
1243   if (pnamelen + strlen(fname) + strlen(JNI_LIB_PREFIX) + strlen(JNI_LIB_SUFFIX) + 2 > buflen) {
1244     return retval;
1245   }
1246 
1247   if (pnamelen == 0) {
1248     snprintf(buffer, buflen, JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, fname);
1249     retval = true;
1250   } else if (strchr(pname, *os::path_separator()) != NULL) {
1251     int n;
1252     char** pelements = split_path(pname, &n);
1253     if (pelements == NULL) {
1254       return false;
1255     }
1256     for (int i = 0; i < n; i++) {
1257       // Really shouldn't be NULL, but check can't hurt
1258       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1259         continue; // skip the empty path values
1260       }
1261       snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX,
1262                pelements[i], fname);
1263       if (file_exists(buffer)) {
1264         retval = true;
1265         break;
1266       }
1267     }
1268     // release the storage
1269     for (int i = 0; i < n; i++) {
1270       if (pelements[i] != NULL) {
1271         FREE_C_HEAP_ARRAY(char, pelements[i]);
1272       }
1273     }
1274     if (pelements != NULL) {
1275       FREE_C_HEAP_ARRAY(char*, pelements);
1276     }
1277   } else {
1278     snprintf(buffer, buflen, "%s/" JNI_LIB_PREFIX "%s" JNI_LIB_SUFFIX, pname, fname);
1279     retval = true;
1280   }
1281   return retval;
1282 }
1283 
1284 // check if addr is inside libjvm.so
1285 bool os::address_is_in_vm(address addr) {
1286   static address libjvm_base_addr;
1287   Dl_info dlinfo;
1288 
1289   if (libjvm_base_addr == NULL) {
1290     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1291       libjvm_base_addr = (address)dlinfo.dli_fbase;
1292     }
1293     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1294   }
1295 
1296   if (dladdr((void *)addr, &dlinfo) != 0) {
1297     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1298   }
1299 
1300   return false;
1301 }
1302 
1303 
1304 #define MACH_MAXSYMLEN 256
1305 
1306 bool os::dll_address_to_function_name(address addr, char *buf,
1307                                       int buflen, int *offset,
1308                                       bool demangle) {
1309   // buf is not optional, but offset is optional
1310   assert(buf != NULL, "sanity check");
1311 
1312   Dl_info dlinfo;
1313   char localbuf[MACH_MAXSYMLEN];
1314 
1315   if (dladdr((void*)addr, &dlinfo) != 0) {
1316     // see if we have a matching symbol
1317     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1318       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1319         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1320       }
1321       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1322       return true;
1323     }
1324     // no matching symbol so try for just file info
1325     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1326       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1327                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1328         return true;
1329       }
1330     }
1331 
1332     // Handle non-dynamic manually:
1333     if (dlinfo.dli_fbase != NULL &&
1334         Decoder::decode(addr, localbuf, MACH_MAXSYMLEN, offset,
1335                         dlinfo.dli_fbase)) {
1336       if (!(demangle && Decoder::demangle(localbuf, buf, buflen))) {
1337         jio_snprintf(buf, buflen, "%s", localbuf);
1338       }
1339       return true;
1340     }
1341   }
1342   buf[0] = '\0';
1343   if (offset != NULL) *offset = -1;
1344   return false;
1345 }
1346 
1347 // ported from solaris version
1348 bool os::dll_address_to_library_name(address addr, char* buf,
1349                                      int buflen, int* offset) {
1350   // buf is not optional, but offset is optional
1351   assert(buf != NULL, "sanity check");
1352 
1353   Dl_info dlinfo;
1354 
1355   if (dladdr((void*)addr, &dlinfo) != 0) {
1356     if (dlinfo.dli_fname != NULL) {
1357       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1358     }
1359     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1360       *offset = addr - (address)dlinfo.dli_fbase;
1361     }
1362     return true;
1363   }
1364 
1365   buf[0] = '\0';
1366   if (offset) *offset = -1;
1367   return false;
1368 }
1369 
1370 // Loads .dll/.so and
1371 // in case of error it checks if .dll/.so was built for the
1372 // same architecture as Hotspot is running on
1373 
1374 #ifdef __APPLE__
1375 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1376 #ifdef STATIC_BUILD
1377   return os::get_default_process_handle();
1378 #else
1379   void * result= ::dlopen(filename, RTLD_LAZY);
1380   if (result != NULL) {
1381     // Successful loading
1382     return result;
1383   }
1384 
1385   // Read system error message into ebuf
1386   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1387   ebuf[ebuflen-1]='\0';
1388 
1389   return NULL;
1390 #endif // STATIC_BUILD
1391 }
1392 #else
1393 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1394 #ifdef STATIC_BUILD
1395   return os::get_default_process_handle();
1396 #else
1397   void * result= ::dlopen(filename, RTLD_LAZY);
1398   if (result != NULL) {
1399     // Successful loading
1400     return result;
1401   }
1402 
1403   Elf32_Ehdr elf_head;
1404 
1405   // Read system error message into ebuf
1406   // It may or may not be overwritten below
1407   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1408   ebuf[ebuflen-1]='\0';
1409   int diag_msg_max_length=ebuflen-strlen(ebuf);
1410   char* diag_msg_buf=ebuf+strlen(ebuf);
1411 
1412   if (diag_msg_max_length==0) {
1413     // No more space in ebuf for additional diagnostics message
1414     return NULL;
1415   }
1416 
1417 
1418   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1419 
1420   if (file_descriptor < 0) {
1421     // Can't open library, report dlerror() message
1422     return NULL;
1423   }
1424 
1425   bool failed_to_read_elf_head=
1426     (sizeof(elf_head)!=
1427      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1428 
1429   ::close(file_descriptor);
1430   if (failed_to_read_elf_head) {
1431     // file i/o error - report dlerror() msg
1432     return NULL;
1433   }
1434 
1435   typedef struct {
1436     Elf32_Half  code;         // Actual value as defined in elf.h
1437     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1438     char        elf_class;    // 32 or 64 bit
1439     char        endianess;    // MSB or LSB
1440     char*       name;         // String representation
1441   } arch_t;
1442 
1443   #ifndef EM_486
1444     #define EM_486          6               /* Intel 80486 */
1445   #endif
1446 
1447   #ifndef EM_MIPS_RS3_LE
1448     #define EM_MIPS_RS3_LE  10              /* MIPS */
1449   #endif
1450 
1451   #ifndef EM_PPC64
1452     #define EM_PPC64        21              /* PowerPC64 */
1453   #endif
1454 
1455   #ifndef EM_S390
1456     #define EM_S390         22              /* IBM System/390 */
1457   #endif
1458 
1459   #ifndef EM_IA_64
1460     #define EM_IA_64        50              /* HP/Intel IA-64 */
1461   #endif
1462 
1463   #ifndef EM_X86_64
1464     #define EM_X86_64       62              /* AMD x86-64 */
1465   #endif
1466 
1467   static const arch_t arch_array[]={
1468     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1469     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1470     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1471     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1472     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1473     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1474     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1475     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1476     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1477     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1478     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1479     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1480     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1481     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1482     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1483     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1484   };
1485 
1486   #if  (defined IA32)
1487   static  Elf32_Half running_arch_code=EM_386;
1488   #elif   (defined AMD64)
1489   static  Elf32_Half running_arch_code=EM_X86_64;
1490   #elif  (defined IA64)
1491   static  Elf32_Half running_arch_code=EM_IA_64;
1492   #elif  (defined __sparc) && (defined _LP64)
1493   static  Elf32_Half running_arch_code=EM_SPARCV9;
1494   #elif  (defined __sparc) && (!defined _LP64)
1495   static  Elf32_Half running_arch_code=EM_SPARC;
1496   #elif  (defined __powerpc64__)
1497   static  Elf32_Half running_arch_code=EM_PPC64;
1498   #elif  (defined __powerpc__)
1499   static  Elf32_Half running_arch_code=EM_PPC;
1500   #elif  (defined ARM)
1501   static  Elf32_Half running_arch_code=EM_ARM;
1502   #elif  (defined S390)
1503   static  Elf32_Half running_arch_code=EM_S390;
1504   #elif  (defined ALPHA)
1505   static  Elf32_Half running_arch_code=EM_ALPHA;
1506   #elif  (defined MIPSEL)
1507   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1508   #elif  (defined PARISC)
1509   static  Elf32_Half running_arch_code=EM_PARISC;
1510   #elif  (defined MIPS)
1511   static  Elf32_Half running_arch_code=EM_MIPS;
1512   #elif  (defined M68K)
1513   static  Elf32_Half running_arch_code=EM_68K;
1514   #else
1515     #error Method os::dll_load requires that one of following is defined:\
1516          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1517   #endif
1518 
1519   // Identify compatability class for VM's architecture and library's architecture
1520   // Obtain string descriptions for architectures
1521 
1522   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1523   int running_arch_index=-1;
1524 
1525   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1526     if (running_arch_code == arch_array[i].code) {
1527       running_arch_index    = i;
1528     }
1529     if (lib_arch.code == arch_array[i].code) {
1530       lib_arch.compat_class = arch_array[i].compat_class;
1531       lib_arch.name         = arch_array[i].name;
1532     }
1533   }
1534 
1535   assert(running_arch_index != -1,
1536          "Didn't find running architecture code (running_arch_code) in arch_array");
1537   if (running_arch_index == -1) {
1538     // Even though running architecture detection failed
1539     // we may still continue with reporting dlerror() message
1540     return NULL;
1541   }
1542 
1543   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1544     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1545     return NULL;
1546   }
1547 
1548 #ifndef S390
1549   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1550     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1551     return NULL;
1552   }
1553 #endif // !S390
1554 
1555   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1556     if (lib_arch.name!=NULL) {
1557       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1558                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1559                  lib_arch.name, arch_array[running_arch_index].name);
1560     } else {
1561       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1562                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1563                  lib_arch.code,
1564                  arch_array[running_arch_index].name);
1565     }
1566   }
1567 
1568   return NULL;
1569 #endif // STATIC_BUILD
1570 }
1571 #endif // !__APPLE__
1572 
1573 void* os::get_default_process_handle() {
1574 #ifdef __APPLE__
1575   // MacOS X needs to use RTLD_FIRST instead of RTLD_LAZY
1576   // to avoid finding unexpected symbols on second (or later)
1577   // loads of a library.
1578   return (void*)::dlopen(NULL, RTLD_FIRST);
1579 #else
1580   return (void*)::dlopen(NULL, RTLD_LAZY);
1581 #endif
1582 }
1583 
1584 // XXX: Do we need a lock around this as per Linux?
1585 void* os::dll_lookup(void* handle, const char* name) {
1586   return dlsym(handle, name);
1587 }
1588 
1589 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1590   outputStream * out = (outputStream *) param;
1591   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1592   return 0;
1593 }
1594 
1595 void os::print_dll_info(outputStream *st) {
1596   st->print_cr("Dynamic libraries:");
1597   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1598     st->print_cr("Error: Cannot print dynamic libraries.");
1599   }
1600 }
1601 
1602 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1603 #ifdef RTLD_DI_LINKMAP
1604   Dl_info dli;
1605   void *handle;
1606   Link_map *map;
1607   Link_map *p;
1608 
1609   if (dladdr(CAST_FROM_FN_PTR(void *, os::print_dll_info), &dli) == 0 ||
1610       dli.dli_fname == NULL) {
1611     return 1;
1612   }
1613   handle = dlopen(dli.dli_fname, RTLD_LAZY);
1614   if (handle == NULL) {
1615     return 1;
1616   }
1617   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1618   if (map == NULL) {
1619     dlclose(handle);
1620     return 1;
1621   }
1622 
1623   while (map->l_prev != NULL)
1624     map = map->l_prev;
1625 
1626   while (map != NULL) {
1627     // Value for top_address is returned as 0 since we don't have any information about module size
1628     if (callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1629       dlclose(handle);
1630       return 1;
1631     }
1632     map = map->l_next;
1633   }
1634 
1635   dlclose(handle);
1636 #elif defined(__APPLE__)
1637   for (uint32_t i = 1; i < _dyld_image_count(); i++) {
1638     // Value for top_address is returned as 0 since we don't have any information about module size
1639     if (callback(_dyld_get_image_name(i), (address)_dyld_get_image_header(i), (address)0, param)) {
1640       return 1;
1641     }
1642   }
1643   return 0;
1644 #else
1645   return 1;
1646 #endif
1647 }
1648 
1649 void os::get_summary_os_info(char* buf, size_t buflen) {
1650   // These buffers are small because we want this to be brief
1651   // and not use a lot of stack while generating the hs_err file.
1652   char os[100];
1653   size_t size = sizeof(os);
1654   int mib_kern[] = { CTL_KERN, KERN_OSTYPE };
1655   if (sysctl(mib_kern, 2, os, &size, NULL, 0) < 0) {
1656 #ifdef __APPLE__
1657       strncpy(os, "Darwin", sizeof(os));
1658 #elif __OpenBSD__
1659       strncpy(os, "OpenBSD", sizeof(os));
1660 #else
1661       strncpy(os, "BSD", sizeof(os));
1662 #endif
1663   }
1664 
1665   char release[100];
1666   size = sizeof(release);
1667   int mib_release[] = { CTL_KERN, KERN_OSRELEASE };
1668   if (sysctl(mib_release, 2, release, &size, NULL, 0) < 0) {
1669       // if error, leave blank
1670       strncpy(release, "", sizeof(release));
1671   }
1672   snprintf(buf, buflen, "%s %s", os, release);
1673 }
1674 
1675 void os::print_os_info_brief(outputStream* st) {
1676   os::Posix::print_uname_info(st);
1677 }
1678 
1679 void os::print_os_info(outputStream* st) {
1680   st->print("OS:");
1681 
1682   os::Posix::print_uname_info(st);
1683 
1684   os::Posix::print_rlimit_info(st);
1685 
1686   os::Posix::print_load_average(st);
1687 }
1688 
1689 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1690   // Nothing to do for now.
1691 }
1692 
1693 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1694   unsigned int mhz;
1695   size_t size = sizeof(mhz);
1696   int mib[] = { CTL_HW, HW_CPU_FREQ };
1697   if (sysctl(mib, 2, &mhz, &size, NULL, 0) < 0) {
1698     mhz = 1;  // looks like an error but can be divided by
1699   } else {
1700     mhz /= 1000000;  // reported in millions
1701   }
1702 
1703   char model[100];
1704   size = sizeof(model);
1705   int mib_model[] = { CTL_HW, HW_MODEL };
1706   if (sysctl(mib_model, 2, model, &size, NULL, 0) < 0) {
1707     strncpy(model, cpu_arch, sizeof(model));
1708   }
1709 
1710   char machine[100];
1711   size = sizeof(machine);
1712   int mib_machine[] = { CTL_HW, HW_MACHINE };
1713   if (sysctl(mib_machine, 2, machine, &size, NULL, 0) < 0) {
1714       strncpy(machine, "", sizeof(machine));
1715   }
1716 
1717   snprintf(buf, buflen, "%s %s %d MHz", model, machine, mhz);
1718 }
1719 
1720 void os::print_memory_info(outputStream* st) {
1721 
1722   st->print("Memory:");
1723   st->print(" %dk page", os::vm_page_size()>>10);
1724 
1725   st->print(", physical " UINT64_FORMAT "k",
1726             os::physical_memory() >> 10);
1727   st->print("(" UINT64_FORMAT "k free)",
1728             os::available_memory() >> 10);
1729   st->cr();
1730 }
1731 
1732 static void print_signal_handler(outputStream* st, int sig,
1733                                  char* buf, size_t buflen);
1734 
1735 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1736   st->print_cr("Signal Handlers:");
1737   print_signal_handler(st, SIGSEGV, buf, buflen);
1738   print_signal_handler(st, SIGBUS , buf, buflen);
1739   print_signal_handler(st, SIGFPE , buf, buflen);
1740   print_signal_handler(st, SIGPIPE, buf, buflen);
1741   print_signal_handler(st, SIGXFSZ, buf, buflen);
1742   print_signal_handler(st, SIGILL , buf, buflen);
1743   print_signal_handler(st, SR_signum, buf, buflen);
1744   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1745   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1746   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1747   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1748 }
1749 
1750 static char saved_jvm_path[MAXPATHLEN] = {0};
1751 
1752 // Find the full path to the current module, libjvm
1753 void os::jvm_path(char *buf, jint buflen) {
1754   // Error checking.
1755   if (buflen < MAXPATHLEN) {
1756     assert(false, "must use a large-enough buffer");
1757     buf[0] = '\0';
1758     return;
1759   }
1760   // Lazy resolve the path to current module.
1761   if (saved_jvm_path[0] != 0) {
1762     strcpy(buf, saved_jvm_path);
1763     return;
1764   }
1765 
1766   char dli_fname[MAXPATHLEN];
1767   bool ret = dll_address_to_library_name(
1768                                          CAST_FROM_FN_PTR(address, os::jvm_path),
1769                                          dli_fname, sizeof(dli_fname), NULL);
1770   assert(ret, "cannot locate libjvm");
1771   char *rp = NULL;
1772   if (ret && dli_fname[0] != '\0') {
1773     rp = realpath(dli_fname, buf);
1774   }
1775   if (rp == NULL) {
1776     return;
1777   }
1778 
1779   if (Arguments::sun_java_launcher_is_altjvm()) {
1780     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1781     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so"
1782     // or "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.dylib". If "/jre/lib/"
1783     // appears at the right place in the string, then assume we are
1784     // installed in a JDK and we're done. Otherwise, check for a
1785     // JAVA_HOME environment variable and construct a path to the JVM
1786     // being overridden.
1787 
1788     const char *p = buf + strlen(buf) - 1;
1789     for (int count = 0; p > buf && count < 5; ++count) {
1790       for (--p; p > buf && *p != '/'; --p)
1791         /* empty */ ;
1792     }
1793 
1794     if (strncmp(p, "/jre/lib/", 9) != 0) {
1795       // Look for JAVA_HOME in the environment.
1796       char* java_home_var = ::getenv("JAVA_HOME");
1797       if (java_home_var != NULL && java_home_var[0] != 0) {
1798         char* jrelib_p;
1799         int len;
1800 
1801         // Check the current module name "libjvm"
1802         p = strrchr(buf, '/');
1803         assert(strstr(p, "/libjvm") == p, "invalid library name");
1804 
1805         rp = realpath(java_home_var, buf);
1806         if (rp == NULL) {
1807           return;
1808         }
1809 
1810         // determine if this is a legacy image or modules image
1811         // modules image doesn't have "jre" subdirectory
1812         len = strlen(buf);
1813         assert(len < buflen, "Ran out of buffer space");
1814         jrelib_p = buf + len;
1815 
1816         // Add the appropriate library subdir
1817         snprintf(jrelib_p, buflen-len, "/jre/lib");
1818         if (0 != access(buf, F_OK)) {
1819           snprintf(jrelib_p, buflen-len, "/lib");
1820         }
1821 
1822         // Add the appropriate client or server subdir
1823         len = strlen(buf);
1824         jrelib_p = buf + len;
1825         snprintf(jrelib_p, buflen-len, "/%s", COMPILER_VARIANT);
1826         if (0 != access(buf, F_OK)) {
1827           snprintf(jrelib_p, buflen-len, "%s", "");
1828         }
1829 
1830         // If the path exists within JAVA_HOME, add the JVM library name
1831         // to complete the path to JVM being overridden.  Otherwise fallback
1832         // to the path to the current library.
1833         if (0 == access(buf, F_OK)) {
1834           // Use current module name "libjvm"
1835           len = strlen(buf);
1836           snprintf(buf + len, buflen-len, "/libjvm%s", JNI_LIB_SUFFIX);
1837         } else {
1838           // Fall back to path of current library
1839           rp = realpath(dli_fname, buf);
1840           if (rp == NULL) {
1841             return;
1842           }
1843         }
1844       }
1845     }
1846   }
1847 
1848   strncpy(saved_jvm_path, buf, MAXPATHLEN);
1849   saved_jvm_path[MAXPATHLEN - 1] = '\0';
1850 }
1851 
1852 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1853   // no prefix required, not even "_"
1854 }
1855 
1856 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1857   // no suffix required
1858 }
1859 
1860 ////////////////////////////////////////////////////////////////////////////////
1861 // sun.misc.Signal support
1862 
1863 static volatile jint sigint_count = 0;
1864 
1865 static void UserHandler(int sig, void *siginfo, void *context) {
1866   // 4511530 - sem_post is serialized and handled by the manager thread. When
1867   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1868   // don't want to flood the manager thread with sem_post requests.
1869   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
1870     return;
1871   }
1872 
1873   // Ctrl-C is pressed during error reporting, likely because the error
1874   // handler fails to abort. Let VM die immediately.
1875   if (sig == SIGINT && is_error_reported()) {
1876     os::die();
1877   }
1878 
1879   os::signal_notify(sig);
1880 }
1881 
1882 void* os::user_handler() {
1883   return CAST_FROM_FN_PTR(void*, UserHandler);
1884 }
1885 
1886 extern "C" {
1887   typedef void (*sa_handler_t)(int);
1888   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1889 }
1890 
1891 void* os::signal(int signal_number, void* handler) {
1892   struct sigaction sigAct, oldSigAct;
1893 
1894   sigfillset(&(sigAct.sa_mask));
1895   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1896   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1897 
1898   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1899     // -1 means registration failed
1900     return (void *)-1;
1901   }
1902 
1903   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1904 }
1905 
1906 void os::signal_raise(int signal_number) {
1907   ::raise(signal_number);
1908 }
1909 
1910 // The following code is moved from os.cpp for making this
1911 // code platform specific, which it is by its very nature.
1912 
1913 // Will be modified when max signal is changed to be dynamic
1914 int os::sigexitnum_pd() {
1915   return NSIG;
1916 }
1917 
1918 // a counter for each possible signal value
1919 static volatile jint pending_signals[NSIG+1] = { 0 };
1920 
1921 // Bsd(POSIX) specific hand shaking semaphore.
1922 #ifdef __APPLE__
1923 typedef semaphore_t os_semaphore_t;
1924 
1925   #define SEM_INIT(sem, value)    semaphore_create(mach_task_self(), &sem, SYNC_POLICY_FIFO, value)
1926   #define SEM_WAIT(sem)           semaphore_wait(sem)
1927   #define SEM_POST(sem)           semaphore_signal(sem)
1928   #define SEM_DESTROY(sem)        semaphore_destroy(mach_task_self(), sem)
1929 #else
1930 typedef sem_t os_semaphore_t;
1931 
1932   #define SEM_INIT(sem, value)    sem_init(&sem, 0, value)
1933   #define SEM_WAIT(sem)           sem_wait(&sem)
1934   #define SEM_POST(sem)           sem_post(&sem)
1935   #define SEM_DESTROY(sem)        sem_destroy(&sem)
1936 #endif
1937 
1938 #ifdef __APPLE__
1939 // OS X doesn't support unamed POSIX semaphores, so the implementation in os_posix.cpp can't be used.
1940 
1941 static const char* sem_init_strerror(kern_return_t value) {
1942   switch (value) {
1943     case KERN_INVALID_ARGUMENT:  return "Invalid argument";
1944     case KERN_RESOURCE_SHORTAGE: return "Resource shortage";
1945     default:                     return "Unknown";
1946   }
1947 }
1948 
1949 OSXSemaphore::OSXSemaphore(uint value) {
1950   kern_return_t ret = SEM_INIT(_semaphore, value);
1951 
1952   guarantee(ret == KERN_SUCCESS, "Failed to create semaphore: %s", sem_init_strerror(ret));
1953 }
1954 
1955 OSXSemaphore::~OSXSemaphore() {
1956   SEM_DESTROY(_semaphore);
1957 }
1958 
1959 void OSXSemaphore::signal(uint count) {
1960   for (uint i = 0; i < count; i++) {
1961     kern_return_t ret = SEM_POST(_semaphore);
1962 
1963     assert(ret == KERN_SUCCESS, "Failed to signal semaphore");
1964   }
1965 }
1966 
1967 void OSXSemaphore::wait() {
1968   kern_return_t ret;
1969   while ((ret = SEM_WAIT(_semaphore)) == KERN_ABORTED) {
1970     // Semaphore was interrupted. Retry.
1971   }
1972   assert(ret == KERN_SUCCESS, "Failed to wait on semaphore");
1973 }
1974 
1975 jlong OSXSemaphore::currenttime() {
1976   struct timeval tv;
1977   gettimeofday(&tv, NULL);
1978   return (tv.tv_sec * NANOSECS_PER_SEC) + (tv.tv_usec * 1000);
1979 }
1980 
1981 bool OSXSemaphore::trywait() {
1982   return timedwait(0, 0);
1983 }
1984 
1985 bool OSXSemaphore::timedwait(unsigned int sec, int nsec) {
1986   kern_return_t kr = KERN_ABORTED;
1987   mach_timespec_t waitspec;
1988   waitspec.tv_sec = sec;
1989   waitspec.tv_nsec = nsec;
1990 
1991   jlong starttime = currenttime();
1992 
1993   kr = semaphore_timedwait(_semaphore, waitspec);
1994   while (kr == KERN_ABORTED) {
1995     jlong totalwait = (sec * NANOSECS_PER_SEC) + nsec;
1996 
1997     jlong current = currenttime();
1998     jlong passedtime = current - starttime;
1999 
2000     if (passedtime >= totalwait) {
2001       waitspec.tv_sec = 0;
2002       waitspec.tv_nsec = 0;
2003     } else {
2004       jlong waittime = totalwait - (current - starttime);
2005       waitspec.tv_sec = waittime / NANOSECS_PER_SEC;
2006       waitspec.tv_nsec = waittime % NANOSECS_PER_SEC;
2007     }
2008 
2009     kr = semaphore_timedwait(_semaphore, waitspec);
2010   }
2011 
2012   return kr == KERN_SUCCESS;
2013 }
2014 
2015 #else
2016 // Use POSIX implementation of semaphores.
2017 
2018 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2019   struct timespec ts;
2020   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2021 
2022   return ts;
2023 }
2024 
2025 #endif // __APPLE__
2026 
2027 static os_semaphore_t sig_sem;
2028 
2029 #ifdef __APPLE__
2030 static OSXSemaphore sr_semaphore;
2031 #else
2032 static PosixSemaphore sr_semaphore;
2033 #endif
2034 
2035 void os::signal_init_pd() {
2036   // Initialize signal structures
2037   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2038 
2039   // Initialize signal semaphore
2040   ::SEM_INIT(sig_sem, 0);
2041 }
2042 
2043 void os::signal_notify(int sig) {
2044   Atomic::inc(&pending_signals[sig]);
2045   ::SEM_POST(sig_sem);
2046 }
2047 
2048 static int check_pending_signals(bool wait) {
2049   Atomic::store(0, &sigint_count);
2050   for (;;) {
2051     for (int i = 0; i < NSIG + 1; i++) {
2052       jint n = pending_signals[i];
2053       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2054         return i;
2055       }
2056     }
2057     if (!wait) {
2058       return -1;
2059     }
2060     JavaThread *thread = JavaThread::current();
2061     ThreadBlockInVM tbivm(thread);
2062 
2063     bool threadIsSuspended;
2064     do {
2065       thread->set_suspend_equivalent();
2066       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2067       ::SEM_WAIT(sig_sem);
2068 
2069       // were we externally suspended while we were waiting?
2070       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2071       if (threadIsSuspended) {
2072         // The semaphore has been incremented, but while we were waiting
2073         // another thread suspended us. We don't want to continue running
2074         // while suspended because that would surprise the thread that
2075         // suspended us.
2076         ::SEM_POST(sig_sem);
2077 
2078         thread->java_suspend_self();
2079       }
2080     } while (threadIsSuspended);
2081   }
2082 }
2083 
2084 int os::signal_lookup() {
2085   return check_pending_signals(false);
2086 }
2087 
2088 int os::signal_wait() {
2089   return check_pending_signals(true);
2090 }
2091 
2092 ////////////////////////////////////////////////////////////////////////////////
2093 // Virtual Memory
2094 
2095 int os::vm_page_size() {
2096   // Seems redundant as all get out
2097   assert(os::Bsd::page_size() != -1, "must call os::init");
2098   return os::Bsd::page_size();
2099 }
2100 
2101 // Solaris allocates memory by pages.
2102 int os::vm_allocation_granularity() {
2103   assert(os::Bsd::page_size() != -1, "must call os::init");
2104   return os::Bsd::page_size();
2105 }
2106 
2107 // Rationale behind this function:
2108 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2109 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2110 //  samples for JITted code. Here we create private executable mapping over the code cache
2111 //  and then we can use standard (well, almost, as mapping can change) way to provide
2112 //  info for the reporting script by storing timestamp and location of symbol
2113 void bsd_wrap_code(char* base, size_t size) {
2114   static volatile jint cnt = 0;
2115 
2116   if (!UseOprofile) {
2117     return;
2118   }
2119 
2120   char buf[PATH_MAX + 1];
2121   int num = Atomic::add(1, &cnt);
2122 
2123   snprintf(buf, PATH_MAX + 1, "%s/hs-vm-%d-%d",
2124            os::get_temp_directory(), os::current_process_id(), num);
2125   unlink(buf);
2126 
2127   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2128 
2129   if (fd != -1) {
2130     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2131     if (rv != (off_t)-1) {
2132       if (::write(fd, "", 1) == 1) {
2133         mmap(base, size,
2134              PROT_READ|PROT_WRITE|PROT_EXEC,
2135              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2136       }
2137     }
2138     ::close(fd);
2139     unlink(buf);
2140   }
2141 }
2142 
2143 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2144                                     int err) {
2145   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2146           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2147           strerror(err), err);
2148 }
2149 
2150 // NOTE: Bsd kernel does not really reserve the pages for us.
2151 //       All it does is to check if there are enough free pages
2152 //       left at the time of mmap(). This could be a potential
2153 //       problem.
2154 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2155   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2156 #ifdef __OpenBSD__
2157   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2158   if (::mprotect(addr, size, prot) == 0) {
2159     return true;
2160   }
2161 #else
2162   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2163                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2164   if (res != (uintptr_t) MAP_FAILED) {
2165     return true;
2166   }
2167 #endif
2168 
2169   // Warn about any commit errors we see in non-product builds just
2170   // in case mmap() doesn't work as described on the man page.
2171   NOT_PRODUCT(warn_fail_commit_memory(addr, size, exec, errno);)
2172 
2173   return false;
2174 }
2175 
2176 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2177                           bool exec) {
2178   // alignment_hint is ignored on this OS
2179   return pd_commit_memory(addr, size, exec);
2180 }
2181 
2182 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2183                                   const char* mesg) {
2184   assert(mesg != NULL, "mesg must be specified");
2185   if (!pd_commit_memory(addr, size, exec)) {
2186     // add extra info in product mode for vm_exit_out_of_memory():
2187     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2188     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2189   }
2190 }
2191 
2192 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2193                                   size_t alignment_hint, bool exec,
2194                                   const char* mesg) {
2195   // alignment_hint is ignored on this OS
2196   pd_commit_memory_or_exit(addr, size, exec, mesg);
2197 }
2198 
2199 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2200 }
2201 
2202 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2203   ::madvise(addr, bytes, MADV_DONTNEED);
2204 }
2205 
2206 void os::numa_make_global(char *addr, size_t bytes) {
2207 }
2208 
2209 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2210 }
2211 
2212 bool os::numa_topology_changed()   { return false; }
2213 
2214 size_t os::numa_get_groups_num() {
2215   return 1;
2216 }
2217 
2218 int os::numa_get_group_id() {
2219   return 0;
2220 }
2221 
2222 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2223   if (size > 0) {
2224     ids[0] = 0;
2225     return 1;
2226   }
2227   return 0;
2228 }
2229 
2230 bool os::get_page_info(char *start, page_info* info) {
2231   return false;
2232 }
2233 
2234 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2235   return end;
2236 }
2237 
2238 
2239 bool os::pd_uncommit_memory(char* addr, size_t size) {
2240 #ifdef __OpenBSD__
2241   // XXX: Work-around mmap/MAP_FIXED bug temporarily on OpenBSD
2242   return ::mprotect(addr, size, PROT_NONE) == 0;
2243 #else
2244   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2245                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2246   return res  != (uintptr_t) MAP_FAILED;
2247 #endif
2248 }
2249 
2250 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2251   return os::commit_memory(addr, size, !ExecMem);
2252 }
2253 
2254 // If this is a growable mapping, remove the guard pages entirely by
2255 // munmap()ping them.  If not, just call uncommit_memory().
2256 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2257   return os::uncommit_memory(addr, size);
2258 }
2259 
2260 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2261 // at 'requested_addr'. If there are existing memory mappings at the same
2262 // location, however, they will be overwritten. If 'fixed' is false,
2263 // 'requested_addr' is only treated as a hint, the return value may or
2264 // may not start from the requested address. Unlike Bsd mmap(), this
2265 // function returns NULL to indicate failure.
2266 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2267   char * addr;
2268   int flags;
2269 
2270   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2271   if (fixed) {
2272     assert((uintptr_t)requested_addr % os::Bsd::page_size() == 0, "unaligned address");
2273     flags |= MAP_FIXED;
2274   }
2275 
2276   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2277   // touch an uncommitted page. Otherwise, the read/write might
2278   // succeed if we have enough swap space to back the physical page.
2279   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2280                        flags, -1, 0);
2281 
2282   return addr == MAP_FAILED ? NULL : addr;
2283 }
2284 
2285 static int anon_munmap(char * addr, size_t size) {
2286   return ::munmap(addr, size) == 0;
2287 }
2288 
2289 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2290                             size_t alignment_hint) {
2291   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2292 }
2293 
2294 bool os::pd_release_memory(char* addr, size_t size) {
2295   return anon_munmap(addr, size);
2296 }
2297 
2298 static bool bsd_mprotect(char* addr, size_t size, int prot) {
2299   // Bsd wants the mprotect address argument to be page aligned.
2300   char* bottom = (char*)align_size_down((intptr_t)addr, os::Bsd::page_size());
2301 
2302   // According to SUSv3, mprotect() should only be used with mappings
2303   // established by mmap(), and mmap() always maps whole pages. Unaligned
2304   // 'addr' likely indicates problem in the VM (e.g. trying to change
2305   // protection of malloc'ed or statically allocated memory). Check the
2306   // caller if you hit this assert.
2307   assert(addr == bottom, "sanity check");
2308 
2309   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Bsd::page_size());
2310   return ::mprotect(bottom, size, prot) == 0;
2311 }
2312 
2313 // Set protections specified
2314 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2315                         bool is_committed) {
2316   unsigned int p = 0;
2317   switch (prot) {
2318   case MEM_PROT_NONE: p = PROT_NONE; break;
2319   case MEM_PROT_READ: p = PROT_READ; break;
2320   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2321   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2322   default:
2323     ShouldNotReachHere();
2324   }
2325   // is_committed is unused.
2326   return bsd_mprotect(addr, bytes, p);
2327 }
2328 
2329 bool os::guard_memory(char* addr, size_t size) {
2330   return bsd_mprotect(addr, size, PROT_NONE);
2331 }
2332 
2333 bool os::unguard_memory(char* addr, size_t size) {
2334   return bsd_mprotect(addr, size, PROT_READ|PROT_WRITE);
2335 }
2336 
2337 bool os::Bsd::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2338   return false;
2339 }
2340 
2341 // Large page support
2342 
2343 static size_t _large_page_size = 0;
2344 
2345 void os::large_page_init() {
2346 }
2347 
2348 
2349 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2350   fatal("This code is not used or maintained.");
2351 
2352   // "exec" is passed in but not used.  Creating the shared image for
2353   // the code cache doesn't have an SHM_X executable permission to check.
2354   assert(UseLargePages && UseSHM, "only for SHM large pages");
2355 
2356   key_t key = IPC_PRIVATE;
2357   char *addr;
2358 
2359   bool warn_on_failure = UseLargePages &&
2360                          (!FLAG_IS_DEFAULT(UseLargePages) ||
2361                           !FLAG_IS_DEFAULT(LargePageSizeInBytes));
2362 
2363   // Create a large shared memory region to attach to based on size.
2364   // Currently, size is the total size of the heap
2365   int shmid = shmget(key, bytes, IPC_CREAT|SHM_R|SHM_W);
2366   if (shmid == -1) {
2367     // Possible reasons for shmget failure:
2368     // 1. shmmax is too small for Java heap.
2369     //    > check shmmax value: cat /proc/sys/kernel/shmmax
2370     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
2371     // 2. not enough large page memory.
2372     //    > check available large pages: cat /proc/meminfo
2373     //    > increase amount of large pages:
2374     //          echo new_value > /proc/sys/vm/nr_hugepages
2375     //      Note 1: different Bsd may use different name for this property,
2376     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
2377     //      Note 2: it's possible there's enough physical memory available but
2378     //            they are so fragmented after a long run that they can't
2379     //            coalesce into large pages. Try to reserve large pages when
2380     //            the system is still "fresh".
2381     if (warn_on_failure) {
2382       warning("Failed to reserve shared memory (errno = %d).", errno);
2383     }
2384     return NULL;
2385   }
2386 
2387   // attach to the region
2388   addr = (char*)shmat(shmid, req_addr, 0);
2389   int err = errno;
2390 
2391   // Remove shmid. If shmat() is successful, the actual shared memory segment
2392   // will be deleted when it's detached by shmdt() or when the process
2393   // terminates. If shmat() is not successful this will remove the shared
2394   // segment immediately.
2395   shmctl(shmid, IPC_RMID, NULL);
2396 
2397   if ((intptr_t)addr == -1) {
2398     if (warn_on_failure) {
2399       warning("Failed to attach shared memory (errno = %d).", err);
2400     }
2401     return NULL;
2402   }
2403 
2404   // The memory is committed
2405   MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
2406 
2407   return addr;
2408 }
2409 
2410 bool os::release_memory_special(char* base, size_t bytes) {
2411   if (MemTracker::tracking_level() > NMT_minimal) {
2412     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
2413     // detaching the SHM segment will also delete it, see reserve_memory_special()
2414     int rslt = shmdt(base);
2415     if (rslt == 0) {
2416       tkr.record((address)base, bytes);
2417       return true;
2418     } else {
2419       return false;
2420     }
2421   } else {
2422     return shmdt(base) == 0;
2423   }
2424 }
2425 
2426 size_t os::large_page_size() {
2427   return _large_page_size;
2428 }
2429 
2430 // HugeTLBFS allows application to commit large page memory on demand;
2431 // with SysV SHM the entire memory region must be allocated as shared
2432 // memory.
2433 bool os::can_commit_large_page_memory() {
2434   return UseHugeTLBFS;
2435 }
2436 
2437 bool os::can_execute_large_page_memory() {
2438   return UseHugeTLBFS;
2439 }
2440 
2441 // Reserve memory at an arbitrary address, only if that area is
2442 // available (and not reserved for something else).
2443 
2444 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2445   const int max_tries = 10;
2446   char* base[max_tries];
2447   size_t size[max_tries];
2448   const size_t gap = 0x000000;
2449 
2450   // Assert only that the size is a multiple of the page size, since
2451   // that's all that mmap requires, and since that's all we really know
2452   // about at this low abstraction level.  If we need higher alignment,
2453   // we can either pass an alignment to this method or verify alignment
2454   // in one of the methods further up the call chain.  See bug 5044738.
2455   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2456 
2457   // Repeatedly allocate blocks until the block is allocated at the
2458   // right spot.
2459 
2460   // Bsd mmap allows caller to pass an address as hint; give it a try first,
2461   // if kernel honors the hint then we can return immediately.
2462   char * addr = anon_mmap(requested_addr, bytes, false);
2463   if (addr == requested_addr) {
2464     return requested_addr;
2465   }
2466 
2467   if (addr != NULL) {
2468     // mmap() is successful but it fails to reserve at the requested address
2469     anon_munmap(addr, bytes);
2470   }
2471 
2472   int i;
2473   for (i = 0; i < max_tries; ++i) {
2474     base[i] = reserve_memory(bytes);
2475 
2476     if (base[i] != NULL) {
2477       // Is this the block we wanted?
2478       if (base[i] == requested_addr) {
2479         size[i] = bytes;
2480         break;
2481       }
2482 
2483       // Does this overlap the block we wanted? Give back the overlapped
2484       // parts and try again.
2485 
2486       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2487       if (top_overlap >= 0 && top_overlap < bytes) {
2488         unmap_memory(base[i], top_overlap);
2489         base[i] += top_overlap;
2490         size[i] = bytes - top_overlap;
2491       } else {
2492         size_t bottom_overlap = base[i] + bytes - requested_addr;
2493         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2494           unmap_memory(requested_addr, bottom_overlap);
2495           size[i] = bytes - bottom_overlap;
2496         } else {
2497           size[i] = bytes;
2498         }
2499       }
2500     }
2501   }
2502 
2503   // Give back the unused reserved pieces.
2504 
2505   for (int j = 0; j < i; ++j) {
2506     if (base[j] != NULL) {
2507       unmap_memory(base[j], size[j]);
2508     }
2509   }
2510 
2511   if (i < max_tries) {
2512     return requested_addr;
2513   } else {
2514     return NULL;
2515   }
2516 }
2517 
2518 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2519   RESTARTABLE_RETURN_INT(::read(fd, buf, nBytes));
2520 }
2521 
2522 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2523   RESTARTABLE_RETURN_INT(::pread(fd, buf, nBytes, offset));
2524 }
2525 
2526 void os::naked_short_sleep(jlong ms) {
2527   struct timespec req;
2528 
2529   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2530   req.tv_sec = 0;
2531   if (ms > 0) {
2532     req.tv_nsec = (ms % 1000) * 1000000;
2533   } else {
2534     req.tv_nsec = 1;
2535   }
2536 
2537   nanosleep(&req, NULL);
2538 
2539   return;
2540 }
2541 
2542 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2543 void os::infinite_sleep() {
2544   while (true) {    // sleep forever ...
2545     ::sleep(100);   // ... 100 seconds at a time
2546   }
2547 }
2548 
2549 // Used to convert frequent JVM_Yield() to nops
2550 bool os::dont_yield() {
2551   return DontYieldALot;
2552 }
2553 
2554 void os::naked_yield() {
2555   sched_yield();
2556 }
2557 
2558 ////////////////////////////////////////////////////////////////////////////////
2559 // thread priority support
2560 
2561 // Note: Normal Bsd applications are run with SCHED_OTHER policy. SCHED_OTHER
2562 // only supports dynamic priority, static priority must be zero. For real-time
2563 // applications, Bsd supports SCHED_RR which allows static priority (1-99).
2564 // However, for large multi-threaded applications, SCHED_RR is not only slower
2565 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
2566 // of 5 runs - Sep 2005).
2567 //
2568 // The following code actually changes the niceness of kernel-thread/LWP. It
2569 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
2570 // not the entire user process, and user level threads are 1:1 mapped to kernel
2571 // threads. It has always been the case, but could change in the future. For
2572 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
2573 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
2574 
2575 #if !defined(__APPLE__)
2576 int os::java_to_os_priority[CriticalPriority + 1] = {
2577   19,              // 0 Entry should never be used
2578 
2579    0,              // 1 MinPriority
2580    3,              // 2
2581    6,              // 3
2582 
2583   10,              // 4
2584   15,              // 5 NormPriority
2585   18,              // 6
2586 
2587   21,              // 7
2588   25,              // 8
2589   28,              // 9 NearMaxPriority
2590 
2591   31,              // 10 MaxPriority
2592 
2593   31               // 11 CriticalPriority
2594 };
2595 #else
2596 // Using Mach high-level priority assignments
2597 int os::java_to_os_priority[CriticalPriority + 1] = {
2598    0,              // 0 Entry should never be used (MINPRI_USER)
2599 
2600   27,              // 1 MinPriority
2601   28,              // 2
2602   29,              // 3
2603 
2604   30,              // 4
2605   31,              // 5 NormPriority (BASEPRI_DEFAULT)
2606   32,              // 6
2607 
2608   33,              // 7
2609   34,              // 8
2610   35,              // 9 NearMaxPriority
2611 
2612   36,              // 10 MaxPriority
2613 
2614   36               // 11 CriticalPriority
2615 };
2616 #endif
2617 
2618 static int prio_init() {
2619   if (ThreadPriorityPolicy == 1) {
2620     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
2621     // if effective uid is not root. Perhaps, a more elegant way of doing
2622     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
2623     if (geteuid() != 0) {
2624       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
2625         warning("-XX:ThreadPriorityPolicy requires root privilege on Bsd");
2626       }
2627       ThreadPriorityPolicy = 0;
2628     }
2629   }
2630   if (UseCriticalJavaThreadPriority) {
2631     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
2632   }
2633   return 0;
2634 }
2635 
2636 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2637   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
2638 
2639 #ifdef __OpenBSD__
2640   // OpenBSD pthread_setprio starves low priority threads
2641   return OS_OK;
2642 #elif defined(__FreeBSD__)
2643   int ret = pthread_setprio(thread->osthread()->pthread_id(), newpri);
2644 #elif defined(__APPLE__) || defined(__NetBSD__)
2645   struct sched_param sp;
2646   int policy;
2647   pthread_t self = pthread_self();
2648 
2649   if (pthread_getschedparam(self, &policy, &sp) != 0) {
2650     return OS_ERR;
2651   }
2652 
2653   sp.sched_priority = newpri;
2654   if (pthread_setschedparam(self, policy, &sp) != 0) {
2655     return OS_ERR;
2656   }
2657 
2658   return OS_OK;
2659 #else
2660   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
2661   return (ret == 0) ? OS_OK : OS_ERR;
2662 #endif
2663 }
2664 
2665 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2666   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
2667     *priority_ptr = java_to_os_priority[NormPriority];
2668     return OS_OK;
2669   }
2670 
2671   errno = 0;
2672 #if defined(__OpenBSD__) || defined(__FreeBSD__)
2673   *priority_ptr = pthread_getprio(thread->osthread()->pthread_id());
2674 #elif defined(__APPLE__) || defined(__NetBSD__)
2675   int policy;
2676   struct sched_param sp;
2677 
2678   pthread_getschedparam(pthread_self(), &policy, &sp);
2679   *priority_ptr = sp.sched_priority;
2680 #else
2681   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
2682 #endif
2683   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
2684 }
2685 
2686 // Hint to the underlying OS that a task switch would not be good.
2687 // Void return because it's a hint and can fail.
2688 void os::hint_no_preempt() {}
2689 
2690 ////////////////////////////////////////////////////////////////////////////////
2691 // suspend/resume support
2692 
2693 //  the low-level signal-based suspend/resume support is a remnant from the
2694 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2695 //  within hotspot. Now there is a single use-case for this:
2696 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
2697 //      that runs in the watcher thread.
2698 //  The remaining code is greatly simplified from the more general suspension
2699 //  code that used to be used.
2700 //
2701 //  The protocol is quite simple:
2702 //  - suspend:
2703 //      - sends a signal to the target thread
2704 //      - polls the suspend state of the osthread using a yield loop
2705 //      - target thread signal handler (SR_handler) sets suspend state
2706 //        and blocks in sigsuspend until continued
2707 //  - resume:
2708 //      - sets target osthread state to continue
2709 //      - sends signal to end the sigsuspend loop in the SR_handler
2710 //
2711 //  Note that the SR_lock plays no role in this suspend/resume protocol.
2712 
2713 static void resume_clear_context(OSThread *osthread) {
2714   osthread->set_ucontext(NULL);
2715   osthread->set_siginfo(NULL);
2716 }
2717 
2718 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2719   osthread->set_ucontext(context);
2720   osthread->set_siginfo(siginfo);
2721 }
2722 
2723 // Handler function invoked when a thread's execution is suspended or
2724 // resumed. We have to be careful that only async-safe functions are
2725 // called here (Note: most pthread functions are not async safe and
2726 // should be avoided.)
2727 //
2728 // Note: sigwait() is a more natural fit than sigsuspend() from an
2729 // interface point of view, but sigwait() prevents the signal hander
2730 // from being run. libpthread would get very confused by not having
2731 // its signal handlers run and prevents sigwait()'s use with the
2732 // mutex granting granting signal.
2733 //
2734 // Currently only ever called on the VMThread or JavaThread
2735 //
2736 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2737   // Save and restore errno to avoid confusing native code with EINTR
2738   // after sigsuspend.
2739   int old_errno = errno;
2740 
2741   Thread* thread = Thread::current();
2742   OSThread* osthread = thread->osthread();
2743   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2744 
2745   os::SuspendResume::State current = osthread->sr.state();
2746   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2747     suspend_save_context(osthread, siginfo, context);
2748 
2749     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2750     os::SuspendResume::State state = osthread->sr.suspended();
2751     if (state == os::SuspendResume::SR_SUSPENDED) {
2752       sigset_t suspend_set;  // signals for sigsuspend()
2753 
2754       // get current set of blocked signals and unblock resume signal
2755       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2756       sigdelset(&suspend_set, SR_signum);
2757 
2758       sr_semaphore.signal();
2759       // wait here until we are resumed
2760       while (1) {
2761         sigsuspend(&suspend_set);
2762 
2763         os::SuspendResume::State result = osthread->sr.running();
2764         if (result == os::SuspendResume::SR_RUNNING) {
2765           sr_semaphore.signal();
2766           break;
2767         } else if (result != os::SuspendResume::SR_SUSPENDED) {
2768           ShouldNotReachHere();
2769         }
2770       }
2771 
2772     } else if (state == os::SuspendResume::SR_RUNNING) {
2773       // request was cancelled, continue
2774     } else {
2775       ShouldNotReachHere();
2776     }
2777 
2778     resume_clear_context(osthread);
2779   } else if (current == os::SuspendResume::SR_RUNNING) {
2780     // request was cancelled, continue
2781   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2782     // ignore
2783   } else {
2784     // ignore
2785   }
2786 
2787   errno = old_errno;
2788 }
2789 
2790 
2791 static int SR_initialize() {
2792   struct sigaction act;
2793   char *s;
2794   // Get signal number to use for suspend/resume
2795   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2796     int sig = ::strtol(s, 0, 10);
2797     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2798         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2799       SR_signum = sig;
2800     } else {
2801       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2802               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2803     }
2804   }
2805 
2806   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2807          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2808 
2809   sigemptyset(&SR_sigset);
2810   sigaddset(&SR_sigset, SR_signum);
2811 
2812   // Set up signal handler for suspend/resume
2813   act.sa_flags = SA_RESTART|SA_SIGINFO;
2814   act.sa_handler = (void (*)(int)) SR_handler;
2815 
2816   // SR_signum is blocked by default.
2817   // 4528190 - We also need to block pthread restart signal (32 on all
2818   // supported Bsd platforms). Note that BsdThreads need to block
2819   // this signal for all threads to work properly. So we don't have
2820   // to use hard-coded signal number when setting up the mask.
2821   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2822 
2823   if (sigaction(SR_signum, &act, 0) == -1) {
2824     return -1;
2825   }
2826 
2827   // Save signal flag
2828   os::Bsd::set_our_sigflags(SR_signum, act.sa_flags);
2829   return 0;
2830 }
2831 
2832 static int sr_notify(OSThread* osthread) {
2833   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2834   assert_status(status == 0, status, "pthread_kill");
2835   return status;
2836 }
2837 
2838 // "Randomly" selected value for how long we want to spin
2839 // before bailing out on suspending a thread, also how often
2840 // we send a signal to a thread we want to resume
2841 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2842 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2843 
2844 // returns true on success and false on error - really an error is fatal
2845 // but this seems the normal response to library errors
2846 static bool do_suspend(OSThread* osthread) {
2847   assert(osthread->sr.is_running(), "thread should be running");
2848   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
2849 
2850   // mark as suspended and send signal
2851   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2852     // failed to switch, state wasn't running?
2853     ShouldNotReachHere();
2854     return false;
2855   }
2856 
2857   if (sr_notify(osthread) != 0) {
2858     ShouldNotReachHere();
2859   }
2860 
2861   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2862   while (true) {
2863     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2864       break;
2865     } else {
2866       // timeout
2867       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2868       if (cancelled == os::SuspendResume::SR_RUNNING) {
2869         return false;
2870       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2871         // make sure that we consume the signal on the semaphore as well
2872         sr_semaphore.wait();
2873         break;
2874       } else {
2875         ShouldNotReachHere();
2876         return false;
2877       }
2878     }
2879   }
2880 
2881   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2882   return true;
2883 }
2884 
2885 static void do_resume(OSThread* osthread) {
2886   assert(osthread->sr.is_suspended(), "thread should be suspended");
2887   assert(!sr_semaphore.trywait(), "invalid semaphore state");
2888 
2889   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2890     // failed to switch to WAKEUP_REQUEST
2891     ShouldNotReachHere();
2892     return;
2893   }
2894 
2895   while (true) {
2896     if (sr_notify(osthread) == 0) {
2897       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
2898         if (osthread->sr.is_running()) {
2899           return;
2900         }
2901       }
2902     } else {
2903       ShouldNotReachHere();
2904     }
2905   }
2906 
2907   guarantee(osthread->sr.is_running(), "Must be running!");
2908 }
2909 
2910 ///////////////////////////////////////////////////////////////////////////////////
2911 // signal handling (except suspend/resume)
2912 
2913 // This routine may be used by user applications as a "hook" to catch signals.
2914 // The user-defined signal handler must pass unrecognized signals to this
2915 // routine, and if it returns true (non-zero), then the signal handler must
2916 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
2917 // routine will never retun false (zero), but instead will execute a VM panic
2918 // routine kill the process.
2919 //
2920 // If this routine returns false, it is OK to call it again.  This allows
2921 // the user-defined signal handler to perform checks either before or after
2922 // the VM performs its own checks.  Naturally, the user code would be making
2923 // a serious error if it tried to handle an exception (such as a null check
2924 // or breakpoint) that the VM was generating for its own correct operation.
2925 //
2926 // This routine may recognize any of the following kinds of signals:
2927 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2928 // It should be consulted by handlers for any of those signals.
2929 //
2930 // The caller of this routine must pass in the three arguments supplied
2931 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2932 // field of the structure passed to sigaction().  This routine assumes that
2933 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2934 //
2935 // Note that the VM will print warnings if it detects conflicting signal
2936 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2937 //
2938 extern "C" JNIEXPORT int JVM_handle_bsd_signal(int signo, siginfo_t* siginfo,
2939                                                void* ucontext,
2940                                                int abort_if_unrecognized);
2941 
2942 void signalHandler(int sig, siginfo_t* info, void* uc) {
2943   assert(info != NULL && uc != NULL, "it must be old kernel");
2944   int orig_errno = errno;  // Preserve errno value over signal handler.
2945   JVM_handle_bsd_signal(sig, info, uc, true);
2946   errno = orig_errno;
2947 }
2948 
2949 
2950 // This boolean allows users to forward their own non-matching signals
2951 // to JVM_handle_bsd_signal, harmlessly.
2952 bool os::Bsd::signal_handlers_are_installed = false;
2953 
2954 // For signal-chaining
2955 struct sigaction sigact[NSIG];
2956 uint32_t sigs = 0;
2957 #if (32 < NSIG-1)
2958 #error "Not all signals can be encoded in sigs. Adapt its type!"
2959 #endif
2960 bool os::Bsd::libjsig_is_loaded = false;
2961 typedef struct sigaction *(*get_signal_t)(int);
2962 get_signal_t os::Bsd::get_signal_action = NULL;
2963 
2964 struct sigaction* os::Bsd::get_chained_signal_action(int sig) {
2965   struct sigaction *actp = NULL;
2966 
2967   if (libjsig_is_loaded) {
2968     // Retrieve the old signal handler from libjsig
2969     actp = (*get_signal_action)(sig);
2970   }
2971   if (actp == NULL) {
2972     // Retrieve the preinstalled signal handler from jvm
2973     actp = get_preinstalled_handler(sig);
2974   }
2975 
2976   return actp;
2977 }
2978 
2979 static bool call_chained_handler(struct sigaction *actp, int sig,
2980                                  siginfo_t *siginfo, void *context) {
2981   // Call the old signal handler
2982   if (actp->sa_handler == SIG_DFL) {
2983     // It's more reasonable to let jvm treat it as an unexpected exception
2984     // instead of taking the default action.
2985     return false;
2986   } else if (actp->sa_handler != SIG_IGN) {
2987     if ((actp->sa_flags & SA_NODEFER) == 0) {
2988       // automaticlly block the signal
2989       sigaddset(&(actp->sa_mask), sig);
2990     }
2991 
2992     sa_handler_t hand;
2993     sa_sigaction_t sa;
2994     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
2995     // retrieve the chained handler
2996     if (siginfo_flag_set) {
2997       sa = actp->sa_sigaction;
2998     } else {
2999       hand = actp->sa_handler;
3000     }
3001 
3002     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3003       actp->sa_handler = SIG_DFL;
3004     }
3005 
3006     // try to honor the signal mask
3007     sigset_t oset;
3008     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3009 
3010     // call into the chained handler
3011     if (siginfo_flag_set) {
3012       (*sa)(sig, siginfo, context);
3013     } else {
3014       (*hand)(sig);
3015     }
3016 
3017     // restore the signal mask
3018     pthread_sigmask(SIG_SETMASK, &oset, 0);
3019   }
3020   // Tell jvm's signal handler the signal is taken care of.
3021   return true;
3022 }
3023 
3024 bool os::Bsd::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3025   bool chained = false;
3026   // signal-chaining
3027   if (UseSignalChaining) {
3028     struct sigaction *actp = get_chained_signal_action(sig);
3029     if (actp != NULL) {
3030       chained = call_chained_handler(actp, sig, siginfo, context);
3031     }
3032   }
3033   return chained;
3034 }
3035 
3036 struct sigaction* os::Bsd::get_preinstalled_handler(int sig) {
3037   if ((((uint32_t)1 << (sig-1)) & sigs) != 0) {
3038     return &sigact[sig];
3039   }
3040   return NULL;
3041 }
3042 
3043 void os::Bsd::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3044   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3045   sigact[sig] = oldAct;
3046   sigs |= (uint32_t)1 << (sig-1);
3047 }
3048 
3049 // for diagnostic
3050 int sigflags[NSIG];
3051 
3052 int os::Bsd::get_our_sigflags(int sig) {
3053   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3054   return sigflags[sig];
3055 }
3056 
3057 void os::Bsd::set_our_sigflags(int sig, int flags) {
3058   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3059   if (sig > 0 && sig < NSIG) {
3060     sigflags[sig] = flags;
3061   }
3062 }
3063 
3064 void os::Bsd::set_signal_handler(int sig, bool set_installed) {
3065   // Check for overwrite.
3066   struct sigaction oldAct;
3067   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3068 
3069   void* oldhand = oldAct.sa_sigaction
3070                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3071                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3072   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3073       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3074       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3075     if (AllowUserSignalHandlers || !set_installed) {
3076       // Do not overwrite; user takes responsibility to forward to us.
3077       return;
3078     } else if (UseSignalChaining) {
3079       // save the old handler in jvm
3080       save_preinstalled_handler(sig, oldAct);
3081       // libjsig also interposes the sigaction() call below and saves the
3082       // old sigaction on it own.
3083     } else {
3084       fatal("Encountered unexpected pre-existing sigaction handler "
3085             "%#lx for signal %d.", (long)oldhand, sig);
3086     }
3087   }
3088 
3089   struct sigaction sigAct;
3090   sigfillset(&(sigAct.sa_mask));
3091   sigAct.sa_handler = SIG_DFL;
3092   if (!set_installed) {
3093     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3094   } else {
3095     sigAct.sa_sigaction = signalHandler;
3096     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3097   }
3098 #ifdef __APPLE__
3099   // Needed for main thread as XNU (Mac OS X kernel) will only deliver SIGSEGV
3100   // (which starts as SIGBUS) on main thread with faulting address inside "stack+guard pages"
3101   // if the signal handler declares it will handle it on alternate stack.
3102   // Notice we only declare we will handle it on alt stack, but we are not
3103   // actually going to use real alt stack - this is just a workaround.
3104   // Please see ux_exception.c, method catch_mach_exception_raise for details
3105   // link http://www.opensource.apple.com/source/xnu/xnu-2050.18.24/bsd/uxkern/ux_exception.c
3106   if (sig == SIGSEGV) {
3107     sigAct.sa_flags |= SA_ONSTACK;
3108   }
3109 #endif
3110 
3111   // Save flags, which are set by ours
3112   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3113   sigflags[sig] = sigAct.sa_flags;
3114 
3115   int ret = sigaction(sig, &sigAct, &oldAct);
3116   assert(ret == 0, "check");
3117 
3118   void* oldhand2  = oldAct.sa_sigaction
3119                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3120                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3121   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3122 }
3123 
3124 // install signal handlers for signals that HotSpot needs to
3125 // handle in order to support Java-level exception handling.
3126 
3127 void os::Bsd::install_signal_handlers() {
3128   if (!signal_handlers_are_installed) {
3129     signal_handlers_are_installed = true;
3130 
3131     // signal-chaining
3132     typedef void (*signal_setting_t)();
3133     signal_setting_t begin_signal_setting = NULL;
3134     signal_setting_t end_signal_setting = NULL;
3135     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3136                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3137     if (begin_signal_setting != NULL) {
3138       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3139                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3140       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3141                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3142       libjsig_is_loaded = true;
3143       assert(UseSignalChaining, "should enable signal-chaining");
3144     }
3145     if (libjsig_is_loaded) {
3146       // Tell libjsig jvm is setting signal handlers
3147       (*begin_signal_setting)();
3148     }
3149 
3150     set_signal_handler(SIGSEGV, true);
3151     set_signal_handler(SIGPIPE, true);
3152     set_signal_handler(SIGBUS, true);
3153     set_signal_handler(SIGILL, true);
3154     set_signal_handler(SIGFPE, true);
3155     set_signal_handler(SIGXFSZ, true);
3156 
3157 #if defined(__APPLE__)
3158     // In Mac OS X 10.4, CrashReporter will write a crash log for all 'fatal' signals, including
3159     // signals caught and handled by the JVM. To work around this, we reset the mach task
3160     // signal handler that's placed on our process by CrashReporter. This disables
3161     // CrashReporter-based reporting.
3162     //
3163     // This work-around is not necessary for 10.5+, as CrashReporter no longer intercedes
3164     // on caught fatal signals.
3165     //
3166     // Additionally, gdb installs both standard BSD signal handlers, and mach exception
3167     // handlers. By replacing the existing task exception handler, we disable gdb's mach
3168     // exception handling, while leaving the standard BSD signal handlers functional.
3169     kern_return_t kr;
3170     kr = task_set_exception_ports(mach_task_self(),
3171                                   EXC_MASK_BAD_ACCESS | EXC_MASK_ARITHMETIC,
3172                                   MACH_PORT_NULL,
3173                                   EXCEPTION_STATE_IDENTITY,
3174                                   MACHINE_THREAD_STATE);
3175 
3176     assert(kr == KERN_SUCCESS, "could not set mach task signal handler");
3177 #endif
3178 
3179     if (libjsig_is_loaded) {
3180       // Tell libjsig jvm finishes setting signal handlers
3181       (*end_signal_setting)();
3182     }
3183 
3184     // We don't activate signal checker if libjsig is in place, we trust ourselves
3185     // and if UserSignalHandler is installed all bets are off
3186     if (CheckJNICalls) {
3187       if (libjsig_is_loaded) {
3188         if (PrintJNIResolving) {
3189           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3190         }
3191         check_signals = false;
3192       }
3193       if (AllowUserSignalHandlers) {
3194         if (PrintJNIResolving) {
3195           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3196         }
3197         check_signals = false;
3198       }
3199     }
3200   }
3201 }
3202 
3203 
3204 /////
3205 // glibc on Bsd platform uses non-documented flag
3206 // to indicate, that some special sort of signal
3207 // trampoline is used.
3208 // We will never set this flag, and we should
3209 // ignore this flag in our diagnostic
3210 #ifdef SIGNIFICANT_SIGNAL_MASK
3211   #undef SIGNIFICANT_SIGNAL_MASK
3212 #endif
3213 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3214 
3215 static const char* get_signal_handler_name(address handler,
3216                                            char* buf, int buflen) {
3217   int offset;
3218   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3219   if (found) {
3220     // skip directory names
3221     const char *p1, *p2;
3222     p1 = buf;
3223     size_t len = strlen(os::file_separator());
3224     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3225     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3226   } else {
3227     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3228   }
3229   return buf;
3230 }
3231 
3232 static void print_signal_handler(outputStream* st, int sig,
3233                                  char* buf, size_t buflen) {
3234   struct sigaction sa;
3235 
3236   sigaction(sig, NULL, &sa);
3237 
3238   // See comment for SIGNIFICANT_SIGNAL_MASK define
3239   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3240 
3241   st->print("%s: ", os::exception_name(sig, buf, buflen));
3242 
3243   address handler = (sa.sa_flags & SA_SIGINFO)
3244     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3245     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3246 
3247   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3248     st->print("SIG_DFL");
3249   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3250     st->print("SIG_IGN");
3251   } else {
3252     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3253   }
3254 
3255   st->print(", sa_mask[0]=");
3256   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3257 
3258   address rh = VMError::get_resetted_sighandler(sig);
3259   // May be, handler was resetted by VMError?
3260   if (rh != NULL) {
3261     handler = rh;
3262     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3263   }
3264 
3265   st->print(", sa_flags=");
3266   os::Posix::print_sa_flags(st, sa.sa_flags);
3267 
3268   // Check: is it our handler?
3269   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3270       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3271     // It is our signal handler
3272     // check for flags, reset system-used one!
3273     if ((int)sa.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3274       st->print(
3275                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3276                 os::Bsd::get_our_sigflags(sig));
3277     }
3278   }
3279   st->cr();
3280 }
3281 
3282 
3283 #define DO_SIGNAL_CHECK(sig)                      \
3284   do {                                            \
3285     if (!sigismember(&check_signal_done, sig)) {  \
3286       os::Bsd::check_signal_handler(sig);         \
3287     }                                             \
3288   } while (0)
3289 
3290 // This method is a periodic task to check for misbehaving JNI applications
3291 // under CheckJNI, we can add any periodic checks here
3292 
3293 void os::run_periodic_checks() {
3294 
3295   if (check_signals == false) return;
3296 
3297   // SEGV and BUS if overridden could potentially prevent
3298   // generation of hs*.log in the event of a crash, debugging
3299   // such a case can be very challenging, so we absolutely
3300   // check the following for a good measure:
3301   DO_SIGNAL_CHECK(SIGSEGV);
3302   DO_SIGNAL_CHECK(SIGILL);
3303   DO_SIGNAL_CHECK(SIGFPE);
3304   DO_SIGNAL_CHECK(SIGBUS);
3305   DO_SIGNAL_CHECK(SIGPIPE);
3306   DO_SIGNAL_CHECK(SIGXFSZ);
3307 
3308 
3309   // ReduceSignalUsage allows the user to override these handlers
3310   // see comments at the very top and jvm_solaris.h
3311   if (!ReduceSignalUsage) {
3312     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3313     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3314     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3315     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3316   }
3317 
3318   DO_SIGNAL_CHECK(SR_signum);
3319 }
3320 
3321 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3322 
3323 static os_sigaction_t os_sigaction = NULL;
3324 
3325 void os::Bsd::check_signal_handler(int sig) {
3326   char buf[O_BUFLEN];
3327   address jvmHandler = NULL;
3328 
3329 
3330   struct sigaction act;
3331   if (os_sigaction == NULL) {
3332     // only trust the default sigaction, in case it has been interposed
3333     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3334     if (os_sigaction == NULL) return;
3335   }
3336 
3337   os_sigaction(sig, (struct sigaction*)NULL, &act);
3338 
3339 
3340   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3341 
3342   address thisHandler = (act.sa_flags & SA_SIGINFO)
3343     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3344     : CAST_FROM_FN_PTR(address, act.sa_handler);
3345 
3346 
3347   switch (sig) {
3348   case SIGSEGV:
3349   case SIGBUS:
3350   case SIGFPE:
3351   case SIGPIPE:
3352   case SIGILL:
3353   case SIGXFSZ:
3354     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
3355     break;
3356 
3357   case SHUTDOWN1_SIGNAL:
3358   case SHUTDOWN2_SIGNAL:
3359   case SHUTDOWN3_SIGNAL:
3360   case BREAK_SIGNAL:
3361     jvmHandler = (address)user_handler();
3362     break;
3363 
3364   default:
3365     if (sig == SR_signum) {
3366       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3367     } else {
3368       return;
3369     }
3370     break;
3371   }
3372 
3373   if (thisHandler != jvmHandler) {
3374     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3375     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3376     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3377     // No need to check this sig any longer
3378     sigaddset(&check_signal_done, sig);
3379     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3380     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3381       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3382                     exception_name(sig, buf, O_BUFLEN));
3383     }
3384   } else if(os::Bsd::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Bsd::get_our_sigflags(sig)) {
3385     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3386     tty->print("expected:");
3387     os::Posix::print_sa_flags(tty, os::Bsd::get_our_sigflags(sig));
3388     tty->cr();
3389     tty->print("  found:");
3390     os::Posix::print_sa_flags(tty, act.sa_flags);
3391     tty->cr();
3392     // No need to check this sig any longer
3393     sigaddset(&check_signal_done, sig);
3394   }
3395 
3396   // Dump all the signal
3397   if (sigismember(&check_signal_done, sig)) {
3398     print_signal_handlers(tty, buf, O_BUFLEN);
3399   }
3400 }
3401 
3402 extern void report_error(char* file_name, int line_no, char* title,
3403                          char* format, ...);
3404 
3405 // this is called _before_ the most of global arguments have been parsed
3406 void os::init(void) {
3407   char dummy;   // used to get a guess on initial stack address
3408 //  first_hrtime = gethrtime();
3409 
3410   // With BsdThreads the JavaMain thread pid (primordial thread)
3411   // is different than the pid of the java launcher thread.
3412   // So, on Bsd, the launcher thread pid is passed to the VM
3413   // via the sun.java.launcher.pid property.
3414   // Use this property instead of getpid() if it was correctly passed.
3415   // See bug 6351349.
3416   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
3417 
3418   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
3419 
3420   clock_tics_per_sec = CLK_TCK;
3421 
3422   init_random(1234567);
3423 
3424   ThreadCritical::initialize();
3425 
3426   Bsd::set_page_size(getpagesize());
3427   if (Bsd::page_size() == -1) {
3428     fatal("os_bsd.cpp: os::init: sysconf failed (%s)", strerror(errno));
3429   }
3430   init_page_sizes((size_t) Bsd::page_size());
3431 
3432   Bsd::initialize_system_info();
3433 
3434   // main_thread points to the aboriginal thread
3435   Bsd::_main_thread = pthread_self();
3436 
3437   Bsd::clock_init();
3438   initial_time_count = javaTimeNanos();
3439 
3440 #ifdef __APPLE__
3441   // XXXDARWIN
3442   // Work around the unaligned VM callbacks in hotspot's
3443   // sharedRuntime. The callbacks don't use SSE2 instructions, and work on
3444   // Linux, Solaris, and FreeBSD. On Mac OS X, dyld (rightly so) enforces
3445   // alignment when doing symbol lookup. To work around this, we force early
3446   // binding of all symbols now, thus binding when alignment is known-good.
3447   _dyld_bind_fully_image_containing_address((const void *) &os::init);
3448 #endif
3449 }
3450 
3451 // To install functions for atexit system call
3452 extern "C" {
3453   static void perfMemory_exit_helper() {
3454     perfMemory_exit();
3455   }
3456 }
3457 
3458 // this is called _after_ the global arguments have been parsed
3459 jint os::init_2(void) {
3460   // Allocate a single page and mark it as readable for safepoint polling
3461   address polling_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3462   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
3463 
3464   os::set_polling_page(polling_page);
3465 
3466 #ifndef PRODUCT
3467   if (Verbose && PrintMiscellaneous) {
3468     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
3469                (intptr_t)polling_page);
3470   }
3471 #endif
3472 
3473   if (!UseMembar) {
3474     address mem_serialize_page = (address) ::mmap(NULL, Bsd::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
3475     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
3476     os::set_memory_serialize_page(mem_serialize_page);
3477 
3478 #ifndef PRODUCT
3479     if (Verbose && PrintMiscellaneous) {
3480       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
3481                  (intptr_t)mem_serialize_page);
3482     }
3483 #endif
3484   }
3485 
3486   // initialize suspend/resume support - must do this before signal_sets_init()
3487   if (SR_initialize() != 0) {
3488     perror("SR_initialize failed");
3489     return JNI_ERR;
3490   }
3491 
3492   Bsd::signal_sets_init();
3493   Bsd::install_signal_handlers();
3494 
3495   // Check minimum allowable stack size for thread creation and to initialize
3496   // the java system classes, including StackOverflowError - depends on page
3497   // size.  Add a page for compiler2 recursion in main thread.
3498   // Add in 2*BytesPerWord times page size to account for VM stack during
3499   // class initialization depending on 32 or 64 bit VM.
3500   os::Bsd::min_stack_allowed = MAX2(os::Bsd::min_stack_allowed,
3501                                     JavaThread::stack_guard_zone_size() +
3502                                     JavaThread::stack_shadow_zone_size() +
3503                                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Bsd::page_size());
3504 
3505   size_t threadStackSizeInBytes = ThreadStackSize * K;
3506   if (threadStackSizeInBytes != 0 &&
3507       threadStackSizeInBytes < os::Bsd::min_stack_allowed) {
3508     tty->print_cr("\nThe stack size specified is too small, "
3509                   "Specify at least %dk",
3510                   os::Bsd::min_stack_allowed/ K);
3511     return JNI_ERR;
3512   }
3513 
3514   // Make the stack size a multiple of the page size so that
3515   // the yellow/red zones can be guarded.
3516   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
3517                                                 vm_page_size()));
3518 
3519   if (MaxFDLimit) {
3520     // set the number of file descriptors to max. print out error
3521     // if getrlimit/setrlimit fails but continue regardless.
3522     struct rlimit nbr_files;
3523     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3524     if (status != 0) {
3525       if (PrintMiscellaneous && (Verbose || WizardMode)) {
3526         perror("os::init_2 getrlimit failed");
3527       }
3528     } else {
3529       nbr_files.rlim_cur = nbr_files.rlim_max;
3530 
3531 #ifdef __APPLE__
3532       // Darwin returns RLIM_INFINITY for rlim_max, but fails with EINVAL if
3533       // you attempt to use RLIM_INFINITY. As per setrlimit(2), OPEN_MAX must
3534       // be used instead
3535       nbr_files.rlim_cur = MIN(OPEN_MAX, nbr_files.rlim_cur);
3536 #endif
3537 
3538       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3539       if (status != 0) {
3540         if (PrintMiscellaneous && (Verbose || WizardMode)) {
3541           perror("os::init_2 setrlimit failed");
3542         }
3543       }
3544     }
3545   }
3546 
3547   // at-exit methods are called in the reverse order of their registration.
3548   // atexit functions are called on return from main or as a result of a
3549   // call to exit(3C). There can be only 32 of these functions registered
3550   // and atexit() does not set errno.
3551 
3552   if (PerfAllowAtExitRegistration) {
3553     // only register atexit functions if PerfAllowAtExitRegistration is set.
3554     // atexit functions can be delayed until process exit time, which
3555     // can be problematic for embedded VM situations. Embedded VMs should
3556     // call DestroyJavaVM() to assure that VM resources are released.
3557 
3558     // note: perfMemory_exit_helper atexit function may be removed in
3559     // the future if the appropriate cleanup code can be added to the
3560     // VM_Exit VMOperation's doit method.
3561     if (atexit(perfMemory_exit_helper) != 0) {
3562       warning("os::init2 atexit(perfMemory_exit_helper) failed");
3563     }
3564   }
3565 
3566   // initialize thread priority policy
3567   prio_init();
3568 
3569 #ifdef __APPLE__
3570   // dynamically link to objective c gc registration
3571   void *handleLibObjc = dlopen(OBJC_LIB, RTLD_LAZY);
3572   if (handleLibObjc != NULL) {
3573     objc_registerThreadWithCollectorFunction = (objc_registerThreadWithCollector_t) dlsym(handleLibObjc, OBJC_GCREGISTER);
3574   }
3575 #endif
3576 
3577   return JNI_OK;
3578 }
3579 
3580 // Mark the polling page as unreadable
3581 void os::make_polling_page_unreadable(void) {
3582   if (!guard_memory((char*)_polling_page, Bsd::page_size())) {
3583     fatal("Could not disable polling page");
3584   }
3585 }
3586 
3587 // Mark the polling page as readable
3588 void os::make_polling_page_readable(void) {
3589   if (!bsd_mprotect((char *)_polling_page, Bsd::page_size(), PROT_READ)) {
3590     fatal("Could not enable polling page");
3591   }
3592 }
3593 
3594 int os::active_processor_count() {
3595   return _processor_count;
3596 }
3597 
3598 void os::set_native_thread_name(const char *name) {
3599 #if defined(__APPLE__) && MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_5
3600   // This is only supported in Snow Leopard and beyond
3601   if (name != NULL) {
3602     // Add a "Java: " prefix to the name
3603     char buf[MAXTHREADNAMESIZE];
3604     snprintf(buf, sizeof(buf), "Java: %s", name);
3605     pthread_setname_np(buf);
3606   }
3607 #endif
3608 }
3609 
3610 bool os::distribute_processes(uint length, uint* distribution) {
3611   // Not yet implemented.
3612   return false;
3613 }
3614 
3615 bool os::bind_to_processor(uint processor_id) {
3616   // Not yet implemented.
3617   return false;
3618 }
3619 
3620 void os::SuspendedThreadTask::internal_do_task() {
3621   if (do_suspend(_thread->osthread())) {
3622     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3623     do_task(context);
3624     do_resume(_thread->osthread());
3625   }
3626 }
3627 
3628 ///
3629 class PcFetcher : public os::SuspendedThreadTask {
3630  public:
3631   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3632   ExtendedPC result();
3633  protected:
3634   void do_task(const os::SuspendedThreadTaskContext& context);
3635  private:
3636   ExtendedPC _epc;
3637 };
3638 
3639 ExtendedPC PcFetcher::result() {
3640   guarantee(is_done(), "task is not done yet.");
3641   return _epc;
3642 }
3643 
3644 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3645   Thread* thread = context.thread();
3646   OSThread* osthread = thread->osthread();
3647   if (osthread->ucontext() != NULL) {
3648     _epc = os::Bsd::ucontext_get_pc((const ucontext_t *) context.ucontext());
3649   } else {
3650     // NULL context is unexpected, double-check this is the VMThread
3651     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3652   }
3653 }
3654 
3655 // Suspends the target using the signal mechanism and then grabs the PC before
3656 // resuming the target. Used by the flat-profiler only
3657 ExtendedPC os::get_thread_pc(Thread* thread) {
3658   // Make sure that it is called by the watcher for the VMThread
3659   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
3660   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3661 
3662   PcFetcher fetcher(thread);
3663   fetcher.run();
3664   return fetcher.result();
3665 }
3666 
3667 ////////////////////////////////////////////////////////////////////////////////
3668 // debug support
3669 
3670 bool os::find(address addr, outputStream* st) {
3671   Dl_info dlinfo;
3672   memset(&dlinfo, 0, sizeof(dlinfo));
3673   if (dladdr(addr, &dlinfo) != 0) {
3674     st->print(PTR_FORMAT ": ", addr);
3675     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
3676       st->print("%s+%#x", dlinfo.dli_sname,
3677                 addr - (intptr_t)dlinfo.dli_saddr);
3678     } else if (dlinfo.dli_fbase != NULL) {
3679       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
3680     } else {
3681       st->print("<absolute address>");
3682     }
3683     if (dlinfo.dli_fname != NULL) {
3684       st->print(" in %s", dlinfo.dli_fname);
3685     }
3686     if (dlinfo.dli_fbase != NULL) {
3687       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
3688     }
3689     st->cr();
3690 
3691     if (Verbose) {
3692       // decode some bytes around the PC
3693       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
3694       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
3695       address       lowest = (address) dlinfo.dli_sname;
3696       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
3697       if (begin < lowest)  begin = lowest;
3698       Dl_info dlinfo2;
3699       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
3700           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
3701         end = (address) dlinfo2.dli_saddr;
3702       }
3703       Disassembler::decode(begin, end, st);
3704     }
3705     return true;
3706   }
3707   return false;
3708 }
3709 
3710 ////////////////////////////////////////////////////////////////////////////////
3711 // misc
3712 
3713 // This does not do anything on Bsd. This is basically a hook for being
3714 // able to use structured exception handling (thread-local exception filters)
3715 // on, e.g., Win32.
3716 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3717                               const methodHandle& method, JavaCallArguments* args,
3718                               Thread* thread) {
3719   f(value, method, args, thread);
3720 }
3721 
3722 void os::print_statistics() {
3723 }
3724 
3725 bool os::message_box(const char* title, const char* message) {
3726   int i;
3727   fdStream err(defaultStream::error_fd());
3728   for (i = 0; i < 78; i++) err.print_raw("=");
3729   err.cr();
3730   err.print_raw_cr(title);
3731   for (i = 0; i < 78; i++) err.print_raw("-");
3732   err.cr();
3733   err.print_raw_cr(message);
3734   for (i = 0; i < 78; i++) err.print_raw("=");
3735   err.cr();
3736 
3737   char buf[16];
3738   // Prevent process from exiting upon "read error" without consuming all CPU
3739   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3740 
3741   return buf[0] == 'y' || buf[0] == 'Y';
3742 }
3743 
3744 int os::stat(const char *path, struct stat *sbuf) {
3745   char pathbuf[MAX_PATH];
3746   if (strlen(path) > MAX_PATH - 1) {
3747     errno = ENAMETOOLONG;
3748     return -1;
3749   }
3750   os::native_path(strcpy(pathbuf, path));
3751   return ::stat(pathbuf, sbuf);
3752 }
3753 
3754 bool os::check_heap(bool force) {
3755   return true;
3756 }
3757 
3758 // Is a (classpath) directory empty?
3759 bool os::dir_is_empty(const char* path) {
3760   DIR *dir = NULL;
3761   struct dirent *ptr;
3762 
3763   dir = opendir(path);
3764   if (dir == NULL) return true;
3765 
3766   // Scan the directory
3767   bool result = true;
3768   char buf[sizeof(struct dirent) + MAX_PATH];
3769   while (result && (ptr = ::readdir(dir)) != NULL) {
3770     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3771       result = false;
3772     }
3773   }
3774   closedir(dir);
3775   return result;
3776 }
3777 
3778 // This code originates from JDK's sysOpen and open64_w
3779 // from src/solaris/hpi/src/system_md.c
3780 
3781 int os::open(const char *path, int oflag, int mode) {
3782   if (strlen(path) > MAX_PATH - 1) {
3783     errno = ENAMETOOLONG;
3784     return -1;
3785   }
3786   int fd;
3787 
3788   fd = ::open(path, oflag, mode);
3789   if (fd == -1) return -1;
3790 
3791   // If the open succeeded, the file might still be a directory
3792   {
3793     struct stat buf;
3794     int ret = ::fstat(fd, &buf);
3795     int st_mode = buf.st_mode;
3796 
3797     if (ret != -1) {
3798       if ((st_mode & S_IFMT) == S_IFDIR) {
3799         errno = EISDIR;
3800         ::close(fd);
3801         return -1;
3802       }
3803     } else {
3804       ::close(fd);
3805       return -1;
3806     }
3807   }
3808 
3809   // All file descriptors that are opened in the JVM and not
3810   // specifically destined for a subprocess should have the
3811   // close-on-exec flag set.  If we don't set it, then careless 3rd
3812   // party native code might fork and exec without closing all
3813   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3814   // UNIXProcess.c), and this in turn might:
3815   //
3816   // - cause end-of-file to fail to be detected on some file
3817   //   descriptors, resulting in mysterious hangs, or
3818   //
3819   // - might cause an fopen in the subprocess to fail on a system
3820   //   suffering from bug 1085341.
3821   //
3822   // (Yes, the default setting of the close-on-exec flag is a Unix
3823   // design flaw)
3824   //
3825   // See:
3826   // 1085341: 32-bit stdio routines should support file descriptors >255
3827   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3828   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3829   //
3830 #ifdef FD_CLOEXEC
3831   {
3832     int flags = ::fcntl(fd, F_GETFD);
3833     if (flags != -1) {
3834       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3835     }
3836   }
3837 #endif
3838 
3839   return fd;
3840 }
3841 
3842 
3843 // create binary file, rewriting existing file if required
3844 int os::create_binary_file(const char* path, bool rewrite_existing) {
3845   int oflags = O_WRONLY | O_CREAT;
3846   if (!rewrite_existing) {
3847     oflags |= O_EXCL;
3848   }
3849   return ::open(path, oflags, S_IREAD | S_IWRITE);
3850 }
3851 
3852 // return current position of file pointer
3853 jlong os::current_file_offset(int fd) {
3854   return (jlong)::lseek(fd, (off_t)0, SEEK_CUR);
3855 }
3856 
3857 // move file pointer to the specified offset
3858 jlong os::seek_to_file_offset(int fd, jlong offset) {
3859   return (jlong)::lseek(fd, (off_t)offset, SEEK_SET);
3860 }
3861 
3862 // This code originates from JDK's sysAvailable
3863 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3864 
3865 int os::available(int fd, jlong *bytes) {
3866   jlong cur, end;
3867   int mode;
3868   struct stat buf;
3869 
3870   if (::fstat(fd, &buf) >= 0) {
3871     mode = buf.st_mode;
3872     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3873       int n;
3874       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3875         *bytes = n;
3876         return 1;
3877       }
3878     }
3879   }
3880   if ((cur = ::lseek(fd, 0L, SEEK_CUR)) == -1) {
3881     return 0;
3882   } else if ((end = ::lseek(fd, 0L, SEEK_END)) == -1) {
3883     return 0;
3884   } else if (::lseek(fd, cur, SEEK_SET) == -1) {
3885     return 0;
3886   }
3887   *bytes = end - cur;
3888   return 1;
3889 }
3890 
3891 // Map a block of memory.
3892 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3893                         char *addr, size_t bytes, bool read_only,
3894                         bool allow_exec) {
3895   int prot;
3896   int flags;
3897 
3898   if (read_only) {
3899     prot = PROT_READ;
3900     flags = MAP_SHARED;
3901   } else {
3902     prot = PROT_READ | PROT_WRITE;
3903     flags = MAP_PRIVATE;
3904   }
3905 
3906   if (allow_exec) {
3907     prot |= PROT_EXEC;
3908   }
3909 
3910   if (addr != NULL) {
3911     flags |= MAP_FIXED;
3912   }
3913 
3914   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
3915                                      fd, file_offset);
3916   if (mapped_address == MAP_FAILED) {
3917     return NULL;
3918   }
3919   return mapped_address;
3920 }
3921 
3922 
3923 // Remap a block of memory.
3924 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3925                           char *addr, size_t bytes, bool read_only,
3926                           bool allow_exec) {
3927   // same as map_memory() on this OS
3928   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3929                         allow_exec);
3930 }
3931 
3932 
3933 // Unmap a block of memory.
3934 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3935   return munmap(addr, bytes) == 0;
3936 }
3937 
3938 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3939 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3940 // of a thread.
3941 //
3942 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3943 // the fast estimate available on the platform.
3944 
3945 jlong os::current_thread_cpu_time() {
3946 #ifdef __APPLE__
3947   return os::thread_cpu_time(Thread::current(), true /* user + sys */);
3948 #else
3949   Unimplemented();
3950   return 0;
3951 #endif
3952 }
3953 
3954 jlong os::thread_cpu_time(Thread* thread) {
3955 #ifdef __APPLE__
3956   return os::thread_cpu_time(thread, true /* user + sys */);
3957 #else
3958   Unimplemented();
3959   return 0;
3960 #endif
3961 }
3962 
3963 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3964 #ifdef __APPLE__
3965   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3966 #else
3967   Unimplemented();
3968   return 0;
3969 #endif
3970 }
3971 
3972 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3973 #ifdef __APPLE__
3974   struct thread_basic_info tinfo;
3975   mach_msg_type_number_t tcount = THREAD_INFO_MAX;
3976   kern_return_t kr;
3977   thread_t mach_thread;
3978 
3979   mach_thread = thread->osthread()->thread_id();
3980   kr = thread_info(mach_thread, THREAD_BASIC_INFO, (thread_info_t)&tinfo, &tcount);
3981   if (kr != KERN_SUCCESS) {
3982     return -1;
3983   }
3984 
3985   if (user_sys_cpu_time) {
3986     jlong nanos;
3987     nanos = ((jlong) tinfo.system_time.seconds + tinfo.user_time.seconds) * (jlong)1000000000;
3988     nanos += ((jlong) tinfo.system_time.microseconds + (jlong) tinfo.user_time.microseconds) * (jlong)1000;
3989     return nanos;
3990   } else {
3991     return ((jlong)tinfo.user_time.seconds * 1000000000) + ((jlong)tinfo.user_time.microseconds * (jlong)1000);
3992   }
3993 #else
3994   Unimplemented();
3995   return 0;
3996 #endif
3997 }
3998 
3999 
4000 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4001   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4002   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4003   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4004   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4005 }
4006 
4007 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4008   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4009   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4010   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4011   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4012 }
4013 
4014 bool os::is_thread_cpu_time_supported() {
4015 #ifdef __APPLE__
4016   return true;
4017 #else
4018   return false;
4019 #endif
4020 }
4021 
4022 // System loadavg support.  Returns -1 if load average cannot be obtained.
4023 // Bsd doesn't yet have a (official) notion of processor sets,
4024 // so just return the system wide load average.
4025 int os::loadavg(double loadavg[], int nelem) {
4026   return ::getloadavg(loadavg, nelem);
4027 }
4028 
4029 void os::pause() {
4030   char filename[MAX_PATH];
4031   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4032     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4033   } else {
4034     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4035   }
4036 
4037   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4038   if (fd != -1) {
4039     struct stat buf;
4040     ::close(fd);
4041     while (::stat(filename, &buf) == 0) {
4042       (void)::poll(NULL, 0, 100);
4043     }
4044   } else {
4045     jio_fprintf(stderr,
4046                 "Could not open pause file '%s', continuing immediately.\n", filename);
4047   }
4048 }
4049 
4050 
4051 // Refer to the comments in os_solaris.cpp park-unpark. The next two
4052 // comment paragraphs are worth repeating here:
4053 //
4054 // Assumption:
4055 //    Only one parker can exist on an event, which is why we allocate
4056 //    them per-thread. Multiple unparkers can coexist.
4057 //
4058 // _Event serves as a restricted-range semaphore.
4059 //   -1 : thread is blocked, i.e. there is a waiter
4060 //    0 : neutral: thread is running or ready,
4061 //        could have been signaled after a wait started
4062 //    1 : signaled - thread is running or ready
4063 //
4064 
4065 // utility to compute the abstime argument to timedwait:
4066 // millis is the relative timeout time
4067 // abstime will be the absolute timeout time
4068 // TODO: replace compute_abstime() with unpackTime()
4069 
4070 static struct timespec* compute_abstime(struct timespec* abstime,
4071                                         jlong millis) {
4072   if (millis < 0)  millis = 0;
4073   struct timeval now;
4074   int status = gettimeofday(&now, NULL);
4075   assert(status == 0, "gettimeofday");
4076   jlong seconds = millis / 1000;
4077   millis %= 1000;
4078   if (seconds > 50000000) { // see man cond_timedwait(3T)
4079     seconds = 50000000;
4080   }
4081   abstime->tv_sec = now.tv_sec  + seconds;
4082   long       usec = now.tv_usec + millis * 1000;
4083   if (usec >= 1000000) {
4084     abstime->tv_sec += 1;
4085     usec -= 1000000;
4086   }
4087   abstime->tv_nsec = usec * 1000;
4088   return abstime;
4089 }
4090 
4091 void os::PlatformEvent::park() {       // AKA "down()"
4092   // Transitions for _Event:
4093   //   -1 => -1 : illegal
4094   //    1 =>  0 : pass - return immediately
4095   //    0 => -1 : block; then set _Event to 0 before returning
4096 
4097   // Invariant: Only the thread associated with the Event/PlatformEvent
4098   // may call park().
4099   // TODO: assert that _Assoc != NULL or _Assoc == Self
4100   assert(_nParked == 0, "invariant");
4101 
4102   int v;
4103   for (;;) {
4104     v = _Event;
4105     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4106   }
4107   guarantee(v >= 0, "invariant");
4108   if (v == 0) {
4109     // Do this the hard way by blocking ...
4110     int status = pthread_mutex_lock(_mutex);
4111     assert_status(status == 0, status, "mutex_lock");
4112     guarantee(_nParked == 0, "invariant");
4113     ++_nParked;
4114     while (_Event < 0) {
4115       status = pthread_cond_wait(_cond, _mutex);
4116       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4117       // Treat this the same as if the wait was interrupted
4118       if (status == ETIMEDOUT) { status = EINTR; }
4119       assert_status(status == 0 || status == EINTR, status, "cond_wait");
4120     }
4121     --_nParked;
4122 
4123     _Event = 0;
4124     status = pthread_mutex_unlock(_mutex);
4125     assert_status(status == 0, status, "mutex_unlock");
4126     // Paranoia to ensure our locked and lock-free paths interact
4127     // correctly with each other.
4128     OrderAccess::fence();
4129   }
4130   guarantee(_Event >= 0, "invariant");
4131 }
4132 
4133 int os::PlatformEvent::park(jlong millis) {
4134   // Transitions for _Event:
4135   //   -1 => -1 : illegal
4136   //    1 =>  0 : pass - return immediately
4137   //    0 => -1 : block; then set _Event to 0 before returning
4138 
4139   guarantee(_nParked == 0, "invariant");
4140 
4141   int v;
4142   for (;;) {
4143     v = _Event;
4144     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
4145   }
4146   guarantee(v >= 0, "invariant");
4147   if (v != 0) return OS_OK;
4148 
4149   // We do this the hard way, by blocking the thread.
4150   // Consider enforcing a minimum timeout value.
4151   struct timespec abst;
4152   compute_abstime(&abst, millis);
4153 
4154   int ret = OS_TIMEOUT;
4155   int status = pthread_mutex_lock(_mutex);
4156   assert_status(status == 0, status, "mutex_lock");
4157   guarantee(_nParked == 0, "invariant");
4158   ++_nParked;
4159 
4160   // Object.wait(timo) will return because of
4161   // (a) notification
4162   // (b) timeout
4163   // (c) thread.interrupt
4164   //
4165   // Thread.interrupt and object.notify{All} both call Event::set.
4166   // That is, we treat thread.interrupt as a special case of notification.
4167   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
4168   // We assume all ETIME returns are valid.
4169   //
4170   // TODO: properly differentiate simultaneous notify+interrupt.
4171   // In that case, we should propagate the notify to another waiter.
4172 
4173   while (_Event < 0) {
4174     status = pthread_cond_timedwait(_cond, _mutex, &abst);
4175     assert_status(status == 0 || status == EINTR ||
4176                   status == ETIMEDOUT,
4177                   status, "cond_timedwait");
4178     if (!FilterSpuriousWakeups) break;                 // previous semantics
4179     if (status == ETIMEDOUT) break;
4180     // We consume and ignore EINTR and spurious wakeups.
4181   }
4182   --_nParked;
4183   if (_Event >= 0) {
4184     ret = OS_OK;
4185   }
4186   _Event = 0;
4187   status = pthread_mutex_unlock(_mutex);
4188   assert_status(status == 0, status, "mutex_unlock");
4189   assert(_nParked == 0, "invariant");
4190   // Paranoia to ensure our locked and lock-free paths interact
4191   // correctly with each other.
4192   OrderAccess::fence();
4193   return ret;
4194 }
4195 
4196 void os::PlatformEvent::unpark() {
4197   // Transitions for _Event:
4198   //    0 => 1 : just return
4199   //    1 => 1 : just return
4200   //   -1 => either 0 or 1; must signal target thread
4201   //         That is, we can safely transition _Event from -1 to either
4202   //         0 or 1.
4203   // See also: "Semaphores in Plan 9" by Mullender & Cox
4204   //
4205   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4206   // that it will take two back-to-back park() calls for the owning
4207   // thread to block. This has the benefit of forcing a spurious return
4208   // from the first park() call after an unpark() call which will help
4209   // shake out uses of park() and unpark() without condition variables.
4210 
4211   if (Atomic::xchg(1, &_Event) >= 0) return;
4212 
4213   // Wait for the thread associated with the event to vacate
4214   int status = pthread_mutex_lock(_mutex);
4215   assert_status(status == 0, status, "mutex_lock");
4216   int AnyWaiters = _nParked;
4217   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
4218   status = pthread_mutex_unlock(_mutex);
4219   assert_status(status == 0, status, "mutex_unlock");
4220   if (AnyWaiters != 0) {
4221     // Note that we signal() *after* dropping the lock for "immortal" Events.
4222     // This is safe and avoids a common class of  futile wakeups.  In rare
4223     // circumstances this can cause a thread to return prematurely from
4224     // cond_{timed}wait() but the spurious wakeup is benign and the victim
4225     // will simply re-test the condition and re-park itself.
4226     // This provides particular benefit if the underlying platform does not
4227     // provide wait morphing.
4228     status = pthread_cond_signal(_cond);
4229     assert_status(status == 0, status, "cond_signal");
4230   }
4231 }
4232 
4233 
4234 // JSR166
4235 // -------------------------------------------------------
4236 
4237 // The solaris and bsd implementations of park/unpark are fairly
4238 // conservative for now, but can be improved. They currently use a
4239 // mutex/condvar pair, plus a a count.
4240 // Park decrements count if > 0, else does a condvar wait.  Unpark
4241 // sets count to 1 and signals condvar.  Only one thread ever waits
4242 // on the condvar. Contention seen when trying to park implies that someone
4243 // is unparking you, so don't wait. And spurious returns are fine, so there
4244 // is no need to track notifications.
4245 
4246 #define MAX_SECS 100000000
4247 
4248 // This code is common to bsd and solaris and will be moved to a
4249 // common place in dolphin.
4250 //
4251 // The passed in time value is either a relative time in nanoseconds
4252 // or an absolute time in milliseconds. Either way it has to be unpacked
4253 // into suitable seconds and nanoseconds components and stored in the
4254 // given timespec structure.
4255 // Given time is a 64-bit value and the time_t used in the timespec is only
4256 // a signed-32-bit value (except on 64-bit Bsd) we have to watch for
4257 // overflow if times way in the future are given. Further on Solaris versions
4258 // prior to 10 there is a restriction (see cond_timedwait) that the specified
4259 // number of seconds, in abstime, is less than current_time  + 100,000,000.
4260 // As it will be 28 years before "now + 100000000" will overflow we can
4261 // ignore overflow and just impose a hard-limit on seconds using the value
4262 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
4263 // years from "now".
4264 
4265 static void unpackTime(struct timespec* absTime, bool isAbsolute, jlong time) {
4266   assert(time > 0, "convertTime");
4267 
4268   struct timeval now;
4269   int status = gettimeofday(&now, NULL);
4270   assert(status == 0, "gettimeofday");
4271 
4272   time_t max_secs = now.tv_sec + MAX_SECS;
4273 
4274   if (isAbsolute) {
4275     jlong secs = time / 1000;
4276     if (secs > max_secs) {
4277       absTime->tv_sec = max_secs;
4278     } else {
4279       absTime->tv_sec = secs;
4280     }
4281     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
4282   } else {
4283     jlong secs = time / NANOSECS_PER_SEC;
4284     if (secs >= MAX_SECS) {
4285       absTime->tv_sec = max_secs;
4286       absTime->tv_nsec = 0;
4287     } else {
4288       absTime->tv_sec = now.tv_sec + secs;
4289       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
4290       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
4291         absTime->tv_nsec -= NANOSECS_PER_SEC;
4292         ++absTime->tv_sec; // note: this must be <= max_secs
4293       }
4294     }
4295   }
4296   assert(absTime->tv_sec >= 0, "tv_sec < 0");
4297   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
4298   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
4299   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
4300 }
4301 
4302 void Parker::park(bool isAbsolute, jlong time) {
4303   // Ideally we'd do something useful while spinning, such
4304   // as calling unpackTime().
4305 
4306   // Optional fast-path check:
4307   // Return immediately if a permit is available.
4308   // We depend on Atomic::xchg() having full barrier semantics
4309   // since we are doing a lock-free update to _counter.
4310   if (Atomic::xchg(0, &_counter) > 0) return;
4311 
4312   Thread* thread = Thread::current();
4313   assert(thread->is_Java_thread(), "Must be JavaThread");
4314   JavaThread *jt = (JavaThread *)thread;
4315 
4316   // Optional optimization -- avoid state transitions if there's an interrupt pending.
4317   // Check interrupt before trying to wait
4318   if (Thread::is_interrupted(thread, false)) {
4319     return;
4320   }
4321 
4322   // Next, demultiplex/decode time arguments
4323   struct timespec absTime;
4324   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
4325     return;
4326   }
4327   if (time > 0) {
4328     unpackTime(&absTime, isAbsolute, time);
4329   }
4330 
4331 
4332   // Enter safepoint region
4333   // Beware of deadlocks such as 6317397.
4334   // The per-thread Parker:: mutex is a classic leaf-lock.
4335   // In particular a thread must never block on the Threads_lock while
4336   // holding the Parker:: mutex.  If safepoints are pending both the
4337   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
4338   ThreadBlockInVM tbivm(jt);
4339 
4340   // Don't wait if cannot get lock since interference arises from
4341   // unblocking.  Also. check interrupt before trying wait
4342   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
4343     return;
4344   }
4345 
4346   int status;
4347   if (_counter > 0)  { // no wait needed
4348     _counter = 0;
4349     status = pthread_mutex_unlock(_mutex);
4350     assert_status(status == 0, status, "invariant");
4351     // Paranoia to ensure our locked and lock-free paths interact
4352     // correctly with each other and Java-level accesses.
4353     OrderAccess::fence();
4354     return;
4355   }
4356 
4357 #ifdef ASSERT
4358   // Don't catch signals while blocked; let the running threads have the signals.
4359   // (This allows a debugger to break into the running thread.)
4360   sigset_t oldsigs;
4361   sigset_t* allowdebug_blocked = os::Bsd::allowdebug_blocked_signals();
4362   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
4363 #endif
4364 
4365   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4366   jt->set_suspend_equivalent();
4367   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
4368 
4369   if (time == 0) {
4370     status = pthread_cond_wait(_cond, _mutex);
4371   } else {
4372     status = pthread_cond_timedwait(_cond, _mutex, &absTime);
4373   }
4374   assert_status(status == 0 || status == EINTR ||
4375                 status == ETIMEDOUT,
4376                 status, "cond_timedwait");
4377 
4378 #ifdef ASSERT
4379   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
4380 #endif
4381 
4382   _counter = 0;
4383   status = pthread_mutex_unlock(_mutex);
4384   assert_status(status == 0, status, "invariant");
4385   // Paranoia to ensure our locked and lock-free paths interact
4386   // correctly with each other and Java-level accesses.
4387   OrderAccess::fence();
4388 
4389   // If externally suspended while waiting, re-suspend
4390   if (jt->handle_special_suspend_equivalent_condition()) {
4391     jt->java_suspend_self();
4392   }
4393 }
4394 
4395 void Parker::unpark() {
4396   int status = pthread_mutex_lock(_mutex);
4397   assert_status(status == 0, status, "invariant");
4398   const int s = _counter;
4399   _counter = 1;
4400   status = pthread_mutex_unlock(_mutex);
4401   assert_status(status == 0, status, "invariant");
4402   if (s < 1) {
4403     status = pthread_cond_signal(_cond);
4404     assert_status(status == 0, status, "invariant");
4405   }
4406 }
4407 
4408 
4409 // Darwin has no "environ" in a dynamic library.
4410 #ifdef __APPLE__
4411   #include <crt_externs.h>
4412   #define environ (*_NSGetEnviron())
4413 #else
4414 extern char** environ;
4415 #endif
4416 
4417 // Run the specified command in a separate process. Return its exit value,
4418 // or -1 on failure (e.g. can't fork a new process).
4419 // Unlike system(), this function can be called from signal handler. It
4420 // doesn't block SIGINT et al.
4421 int os::fork_and_exec(char* cmd) {
4422   const char * argv[4] = {"sh", "-c", cmd, NULL};
4423 
4424   // fork() in BsdThreads/NPTL is not async-safe. It needs to run
4425   // pthread_atfork handlers and reset pthread library. All we need is a
4426   // separate process to execve. Make a direct syscall to fork process.
4427   // On IA64 there's no fork syscall, we have to use fork() and hope for
4428   // the best...
4429   pid_t pid = fork();
4430 
4431   if (pid < 0) {
4432     // fork failed
4433     return -1;
4434 
4435   } else if (pid == 0) {
4436     // child process
4437 
4438     // execve() in BsdThreads will call pthread_kill_other_threads_np()
4439     // first to kill every thread on the thread list. Because this list is
4440     // not reset by fork() (see notes above), execve() will instead kill
4441     // every thread in the parent process. We know this is the only thread
4442     // in the new process, so make a system call directly.
4443     // IA64 should use normal execve() from glibc to match the glibc fork()
4444     // above.
4445     execve("/bin/sh", (char* const*)argv, environ);
4446 
4447     // execve failed
4448     _exit(-1);
4449 
4450   } else  {
4451     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4452     // care about the actual exit code, for now.
4453 
4454     int status;
4455 
4456     // Wait for the child process to exit.  This returns immediately if
4457     // the child has already exited. */
4458     while (waitpid(pid, &status, 0) < 0) {
4459       switch (errno) {
4460       case ECHILD: return 0;
4461       case EINTR: break;
4462       default: return -1;
4463       }
4464     }
4465 
4466     if (WIFEXITED(status)) {
4467       // The child exited normally; get its exit code.
4468       return WEXITSTATUS(status);
4469     } else if (WIFSIGNALED(status)) {
4470       // The child exited because of a signal
4471       // The best value to return is 0x80 + signal number,
4472       // because that is what all Unix shells do, and because
4473       // it allows callers to distinguish between process exit and
4474       // process death by signal.
4475       return 0x80 + WTERMSIG(status);
4476     } else {
4477       // Unknown exit code; pass it through
4478       return status;
4479     }
4480   }
4481 }
4482 
4483 // is_headless_jre()
4484 //
4485 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
4486 // in order to report if we are running in a headless jre
4487 //
4488 // Since JDK8 xawt/libmawt.so was moved into the same directory
4489 // as libawt.so, and renamed libawt_xawt.so
4490 //
4491 bool os::is_headless_jre() {
4492 #ifdef __APPLE__
4493   // We no longer build headless-only on Mac OS X
4494   return false;
4495 #else
4496   struct stat statbuf;
4497   char buf[MAXPATHLEN];
4498   char libmawtpath[MAXPATHLEN];
4499   const char *xawtstr  = "/xawt/libmawt" JNI_LIB_SUFFIX;
4500   const char *new_xawtstr = "/libawt_xawt" JNI_LIB_SUFFIX;
4501   char *p;
4502 
4503   // Get path to libjvm.so
4504   os::jvm_path(buf, sizeof(buf));
4505 
4506   // Get rid of libjvm.so
4507   p = strrchr(buf, '/');
4508   if (p == NULL) {
4509     return false;
4510   } else {
4511     *p = '\0';
4512   }
4513 
4514   // Get rid of client or server
4515   p = strrchr(buf, '/');
4516   if (p == NULL) {
4517     return false;
4518   } else {
4519     *p = '\0';
4520   }
4521 
4522   // check xawt/libmawt.so
4523   strcpy(libmawtpath, buf);
4524   strcat(libmawtpath, xawtstr);
4525   if (::stat(libmawtpath, &statbuf) == 0) return false;
4526 
4527   // check libawt_xawt.so
4528   strcpy(libmawtpath, buf);
4529   strcat(libmawtpath, new_xawtstr);
4530   if (::stat(libmawtpath, &statbuf) == 0) return false;
4531 
4532   return true;
4533 #endif
4534 }
4535 
4536 // Get the default path to the core file
4537 // Returns the length of the string
4538 int os::get_core_path(char* buffer, size_t bufferSize) {
4539   int n = jio_snprintf(buffer, bufferSize, "/cores/core.%d", current_process_id());
4540 
4541   // Truncate if theoretical string was longer than bufferSize
4542   n = MIN2(n, (int)bufferSize);
4543 
4544   return n;
4545 }
4546 
4547 #ifndef PRODUCT
4548 void TestReserveMemorySpecial_test() {
4549   // No tests available for this platform
4550 }
4551 #endif
4552 
4553 bool os::start_debugging(char *buf, int buflen) {
4554   int len = (int)strlen(buf);
4555   char *p = &buf[len];
4556 
4557   jio_snprintf(p, buflen-len,
4558              "\n\n"
4559              "Do you want to debug the problem?\n\n"
4560              "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " INTX_FORMAT " (" INTPTR_FORMAT ")\n"
4561              "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
4562              "Otherwise, press RETURN to abort...",
4563              os::current_process_id(), os::current_process_id(),
4564              os::current_thread_id(), os::current_thread_id());
4565 
4566   bool yes = os::message_box("Unexpected Error", buf);
4567 
4568   if (yes) {
4569     // yes, user asked VM to launch debugger
4570     jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
4571                      os::current_process_id(), os::current_process_id());
4572 
4573     os::fork_and_exec(buf);
4574     yes = false;
4575   }
4576   return yes;
4577 }