1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_solaris.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "mutex_solaris.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_share_solaris.hpp"
  41 #include "os_solaris.inline.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm.h"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.inline.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "runtime/vm_version.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/decoder.hpp"
  69 #include "utilities/defaultStream.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/vmError.hpp"
  73 
  74 // put OS-includes here
  75 # include <dlfcn.h>
  76 # include <errno.h>
  77 # include <exception>
  78 # include <link.h>
  79 # include <poll.h>
  80 # include <pthread.h>
  81 # include <pwd.h>
  82 # include <schedctl.h>
  83 # include <setjmp.h>
  84 # include <signal.h>
  85 # include <stdio.h>
  86 # include <alloca.h>
  87 # include <sys/filio.h>
  88 # include <sys/ipc.h>
  89 # include <sys/lwp.h>
  90 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  91 # include <sys/mman.h>
  92 # include <sys/processor.h>
  93 # include <sys/procset.h>
  94 # include <sys/pset.h>
  95 # include <sys/resource.h>
  96 # include <sys/shm.h>
  97 # include <sys/socket.h>
  98 # include <sys/stat.h>
  99 # include <sys/systeminfo.h>
 100 # include <sys/time.h>
 101 # include <sys/times.h>
 102 # include <sys/types.h>
 103 # include <sys/wait.h>
 104 # include <sys/utsname.h>
 105 # include <thread.h>
 106 # include <unistd.h>
 107 # include <sys/priocntl.h>
 108 # include <sys/rtpriocntl.h>
 109 # include <sys/tspriocntl.h>
 110 # include <sys/iapriocntl.h>
 111 # include <sys/fxpriocntl.h>
 112 # include <sys/loadavg.h>
 113 # include <string.h>
 114 # include <stdio.h>
 115 
 116 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 117 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 118 
 119 #define MAX_PATH (2 * K)
 120 
 121 // for timer info max values which include all bits
 122 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 123 
 124 
 125 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 126 // compile on older systems without this header file.
 127 
 128 #ifndef MADV_ACCESS_LWP
 129   #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
 130 #endif
 131 #ifndef MADV_ACCESS_MANY
 132   #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
 133 #endif
 134 
 135 #ifndef LGRP_RSRC_CPU
 136   #define LGRP_RSRC_CPU      0       /* CPU resources */
 137 #endif
 138 #ifndef LGRP_RSRC_MEM
 139   #define LGRP_RSRC_MEM      1       /* memory resources */
 140 #endif
 141 
 142 // Values for ThreadPriorityPolicy == 1
 143 int prio_policy1[CriticalPriority+1] = {
 144   -99999,  0, 16,  32,  48,  64,
 145           80, 96, 112, 124, 127, 127 };
 146 
 147 // System parameters used internally
 148 static clock_t clock_tics_per_sec = 100;
 149 
 150 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 151 static bool enabled_extended_FILE_stdio = false;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static bool check_addr0_done = false;
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 159 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 160 
 161 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 162 
 163 
 164 // "default" initializers for missing libc APIs
 165 extern "C" {
 166   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 167   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 168 
 169   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 170   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 171 }
 172 
 173 // "default" initializers for pthread-based synchronization
 174 extern "C" {
 175   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 176   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 177 }
 178 
 179 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 180 
 181 static inline size_t adjust_stack_size(address base, size_t size) {
 182   if ((ssize_t)size < 0) {
 183     // 4759953: Compensate for ridiculous stack size.
 184     size = max_intx;
 185   }
 186   if (size > (size_t)base) {
 187     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 188     size = (size_t)base;
 189   }
 190   return size;
 191 }
 192 
 193 static inline stack_t get_stack_info() {
 194   stack_t st;
 195   int retval = thr_stksegment(&st);
 196   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 197   assert(retval == 0, "incorrect return value from thr_stksegment");
 198   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 199   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 200   return st;
 201 }
 202 
 203 address os::current_stack_base() {
 204   int r = thr_main();
 205   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 206   bool is_primordial_thread = r;
 207 
 208   // Workaround 4352906, avoid calls to thr_stksegment by
 209   // thr_main after the first one (it looks like we trash
 210   // some data, causing the value for ss_sp to be incorrect).
 211   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 212     stack_t st = get_stack_info();
 213     if (is_primordial_thread) {
 214       // cache initial value of stack base
 215       os::Solaris::_main_stack_base = (address)st.ss_sp;
 216     }
 217     return (address)st.ss_sp;
 218   } else {
 219     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 220     return os::Solaris::_main_stack_base;
 221   }
 222 }
 223 
 224 size_t os::current_stack_size() {
 225   size_t size;
 226 
 227   int r = thr_main();
 228   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 229   if (!r) {
 230     size = get_stack_info().ss_size;
 231   } else {
 232     struct rlimit limits;
 233     getrlimit(RLIMIT_STACK, &limits);
 234     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 235   }
 236   // base may not be page aligned
 237   address base = current_stack_base();
 238   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
 239   return (size_t)(base - bottom);
 240 }
 241 
 242 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 243   return localtime_r(clock, res);
 244 }
 245 
 246 void os::Solaris::try_enable_extended_io() {
 247   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 248 
 249   if (!UseExtendedFileIO) {
 250     return;
 251   }
 252 
 253   enable_extended_FILE_stdio_t enabler =
 254     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 255                                          "enable_extended_FILE_stdio");
 256   if (enabler) {
 257     enabler(-1, -1);
 258   }
 259 }
 260 
 261 static int _processors_online = 0;
 262 
 263 jint os::Solaris::_os_thread_limit = 0;
 264 volatile jint os::Solaris::_os_thread_count = 0;
 265 
 266 julong os::available_memory() {
 267   return Solaris::available_memory();
 268 }
 269 
 270 julong os::Solaris::available_memory() {
 271   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 272 }
 273 
 274 julong os::Solaris::_physical_memory = 0;
 275 
 276 julong os::physical_memory() {
 277   return Solaris::physical_memory();
 278 }
 279 
 280 static hrtime_t first_hrtime = 0;
 281 static const hrtime_t hrtime_hz = 1000*1000*1000;
 282 static volatile hrtime_t max_hrtime = 0;
 283 
 284 
 285 void os::Solaris::initialize_system_info() {
 286   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 287   _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
 288   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
 289                                      (julong)sysconf(_SC_PAGESIZE);
 290 }
 291 
 292 int os::active_processor_count() {
 293   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 294   pid_t pid = getpid();
 295   psetid_t pset = PS_NONE;
 296   // Are we running in a processor set or is there any processor set around?
 297   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 298     uint_t pset_cpus;
 299     // Query the number of cpus available to us.
 300     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 301       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 302       _processors_online = pset_cpus;
 303       return pset_cpus;
 304     }
 305   }
 306   // Otherwise return number of online cpus
 307   return online_cpus;
 308 }
 309 
 310 static bool find_processors_in_pset(psetid_t        pset,
 311                                     processorid_t** id_array,
 312                                     uint_t*         id_length) {
 313   bool result = false;
 314   // Find the number of processors in the processor set.
 315   if (pset_info(pset, NULL, id_length, NULL) == 0) {
 316     // Make up an array to hold their ids.
 317     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 318     // Fill in the array with their processor ids.
 319     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
 320       result = true;
 321     }
 322   }
 323   return result;
 324 }
 325 
 326 // Callers of find_processors_online() must tolerate imprecise results --
 327 // the system configuration can change asynchronously because of DR
 328 // or explicit psradm operations.
 329 //
 330 // We also need to take care that the loop (below) terminates as the
 331 // number of processors online can change between the _SC_NPROCESSORS_ONLN
 332 // request and the loop that builds the list of processor ids.   Unfortunately
 333 // there's no reliable way to determine the maximum valid processor id,
 334 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
 335 // man pages, which claim the processor id set is "sparse, but
 336 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
 337 // exit the loop.
 338 //
 339 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
 340 // not available on S8.0.
 341 
 342 static bool find_processors_online(processorid_t** id_array,
 343                                    uint*           id_length) {
 344   const processorid_t MAX_PROCESSOR_ID = 100000;
 345   // Find the number of processors online.
 346   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
 347   // Make up an array to hold their ids.
 348   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 349   // Processors need not be numbered consecutively.
 350   long found = 0;
 351   processorid_t next = 0;
 352   while (found < *id_length && next < MAX_PROCESSOR_ID) {
 353     processor_info_t info;
 354     if (processor_info(next, &info) == 0) {
 355       // NB, PI_NOINTR processors are effectively online ...
 356       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
 357         (*id_array)[found] = next;
 358         found += 1;
 359       }
 360     }
 361     next += 1;
 362   }
 363   if (found < *id_length) {
 364     // The loop above didn't identify the expected number of processors.
 365     // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
 366     // and re-running the loop, above, but there's no guarantee of progress
 367     // if the system configuration is in flux.  Instead, we just return what
 368     // we've got.  Note that in the worst case find_processors_online() could
 369     // return an empty set.  (As a fall-back in the case of the empty set we
 370     // could just return the ID of the current processor).
 371     *id_length = found;
 372   }
 373 
 374   return true;
 375 }
 376 
 377 static bool assign_distribution(processorid_t* id_array,
 378                                 uint           id_length,
 379                                 uint*          distribution,
 380                                 uint           distribution_length) {
 381   // We assume we can assign processorid_t's to uint's.
 382   assert(sizeof(processorid_t) == sizeof(uint),
 383          "can't convert processorid_t to uint");
 384   // Quick check to see if we won't succeed.
 385   if (id_length < distribution_length) {
 386     return false;
 387   }
 388   // Assign processor ids to the distribution.
 389   // Try to shuffle processors to distribute work across boards,
 390   // assuming 4 processors per board.
 391   const uint processors_per_board = ProcessDistributionStride;
 392   // Find the maximum processor id.
 393   processorid_t max_id = 0;
 394   for (uint m = 0; m < id_length; m += 1) {
 395     max_id = MAX2(max_id, id_array[m]);
 396   }
 397   // The next id, to limit loops.
 398   const processorid_t limit_id = max_id + 1;
 399   // Make up markers for available processors.
 400   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
 401   for (uint c = 0; c < limit_id; c += 1) {
 402     available_id[c] = false;
 403   }
 404   for (uint a = 0; a < id_length; a += 1) {
 405     available_id[id_array[a]] = true;
 406   }
 407   // Step by "boards", then by "slot", copying to "assigned".
 408   // NEEDS_CLEANUP: The assignment of processors should be stateful,
 409   //                remembering which processors have been assigned by
 410   //                previous calls, etc., so as to distribute several
 411   //                independent calls of this method.  What we'd like is
 412   //                It would be nice to have an API that let us ask
 413   //                how many processes are bound to a processor,
 414   //                but we don't have that, either.
 415   //                In the short term, "board" is static so that
 416   //                subsequent distributions don't all start at board 0.
 417   static uint board = 0;
 418   uint assigned = 0;
 419   // Until we've found enough processors ....
 420   while (assigned < distribution_length) {
 421     // ... find the next available processor in the board.
 422     for (uint slot = 0; slot < processors_per_board; slot += 1) {
 423       uint try_id = board * processors_per_board + slot;
 424       if ((try_id < limit_id) && (available_id[try_id] == true)) {
 425         distribution[assigned] = try_id;
 426         available_id[try_id] = false;
 427         assigned += 1;
 428         break;
 429       }
 430     }
 431     board += 1;
 432     if (board * processors_per_board + 0 >= limit_id) {
 433       board = 0;
 434     }
 435   }
 436   if (available_id != NULL) {
 437     FREE_C_HEAP_ARRAY(bool, available_id);
 438   }
 439   return true;
 440 }
 441 
 442 void os::set_native_thread_name(const char *name) {
 443   // Not yet implemented.
 444   return;
 445 }
 446 
 447 bool os::distribute_processes(uint length, uint* distribution) {
 448   bool result = false;
 449   // Find the processor id's of all the available CPUs.
 450   processorid_t* id_array  = NULL;
 451   uint           id_length = 0;
 452   // There are some races between querying information and using it,
 453   // since processor sets can change dynamically.
 454   psetid_t pset = PS_NONE;
 455   // Are we running in a processor set?
 456   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
 457     result = find_processors_in_pset(pset, &id_array, &id_length);
 458   } else {
 459     result = find_processors_online(&id_array, &id_length);
 460   }
 461   if (result == true) {
 462     if (id_length >= length) {
 463       result = assign_distribution(id_array, id_length, distribution, length);
 464     } else {
 465       result = false;
 466     }
 467   }
 468   if (id_array != NULL) {
 469     FREE_C_HEAP_ARRAY(processorid_t, id_array);
 470   }
 471   return result;
 472 }
 473 
 474 bool os::bind_to_processor(uint processor_id) {
 475   // We assume that a processorid_t can be stored in a uint.
 476   assert(sizeof(uint) == sizeof(processorid_t),
 477          "can't convert uint to processorid_t");
 478   int bind_result =
 479     processor_bind(P_LWPID,                       // bind LWP.
 480                    P_MYID,                        // bind current LWP.
 481                    (processorid_t) processor_id,  // id.
 482                    NULL);                         // don't return old binding.
 483   return (bind_result == 0);
 484 }
 485 
 486 // Return true if user is running as root.
 487 
 488 bool os::have_special_privileges() {
 489   static bool init = false;
 490   static bool privileges = false;
 491   if (!init) {
 492     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 493     init = true;
 494   }
 495   return privileges;
 496 }
 497 
 498 
 499 void os::init_system_properties_values() {
 500   // The next steps are taken in the product version:
 501   //
 502   // Obtain the JAVA_HOME value from the location of libjvm.so.
 503   // This library should be located at:
 504   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 505   //
 506   // If "/jre/lib/" appears at the right place in the path, then we
 507   // assume libjvm.so is installed in a JDK and we use this path.
 508   //
 509   // Otherwise exit with message: "Could not create the Java virtual machine."
 510   //
 511   // The following extra steps are taken in the debugging version:
 512   //
 513   // If "/jre/lib/" does NOT appear at the right place in the path
 514   // instead of exit check for $JAVA_HOME environment variable.
 515   //
 516   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 517   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 518   // it looks like libjvm.so is installed there
 519   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 520   //
 521   // Otherwise exit.
 522   //
 523   // Important note: if the location of libjvm.so changes this
 524   // code needs to be changed accordingly.
 525 
 526 // Base path of extensions installed on the system.
 527 #define SYS_EXT_DIR     "/usr/jdk/packages"
 528 #define EXTENSIONS_DIR  "/lib/ext"
 529 
 530   char cpu_arch[12];
 531   // Buffer that fits several sprintfs.
 532   // Note that the space for the colon and the trailing null are provided
 533   // by the nulls included by the sizeof operator.
 534   const size_t bufsize =
 535     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 536          sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch), // invariant ld_library_path
 537          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 538   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 539 
 540   // sysclasspath, java_home, dll_dir
 541   {
 542     char *pslash;
 543     os::jvm_path(buf, bufsize);
 544 
 545     // Found the full path to libjvm.so.
 546     // Now cut the path to <java_home>/jre if we can.
 547     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 548     pslash = strrchr(buf, '/');
 549     if (pslash != NULL) {
 550       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 551     }
 552     Arguments::set_dll_dir(buf);
 553 
 554     if (pslash != NULL) {
 555       pslash = strrchr(buf, '/');
 556       if (pslash != NULL) {
 557         *pslash = '\0';          // Get rid of /<arch>.
 558         pslash = strrchr(buf, '/');
 559         if (pslash != NULL) {
 560           *pslash = '\0';        // Get rid of /lib.
 561         }
 562       }
 563     }
 564     Arguments::set_java_home(buf);
 565     set_boot_path('/', ':');
 566   }
 567 
 568   // Where to look for native libraries.
 569   {
 570     // Use dlinfo() to determine the correct java.library.path.
 571     //
 572     // If we're launched by the Java launcher, and the user
 573     // does not set java.library.path explicitly on the commandline,
 574     // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 575     // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 576     // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 577     // /usr/lib), which is exactly what we want.
 578     //
 579     // If the user does set java.library.path, it completely
 580     // overwrites this setting, and always has.
 581     //
 582     // If we're not launched by the Java launcher, we may
 583     // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 584     // settings.  Again, dlinfo does exactly what we want.
 585 
 586     Dl_serinfo     info_sz, *info = &info_sz;
 587     Dl_serpath     *path;
 588     char           *library_path;
 589     char           *common_path = buf;
 590 
 591     // Determine search path count and required buffer size.
 592     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 593       FREE_C_HEAP_ARRAY(char, buf);
 594       vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 595     }
 596 
 597     // Allocate new buffer and initialize.
 598     info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
 599     info->dls_size = info_sz.dls_size;
 600     info->dls_cnt = info_sz.dls_cnt;
 601 
 602     // Obtain search path information.
 603     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 604       FREE_C_HEAP_ARRAY(char, buf);
 605       FREE_C_HEAP_ARRAY(char, info);
 606       vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 607     }
 608 
 609     path = &info->dls_serpath[0];
 610 
 611     // Note: Due to a legacy implementation, most of the library path
 612     // is set in the launcher. This was to accomodate linking restrictions
 613     // on legacy Solaris implementations (which are no longer supported).
 614     // Eventually, all the library path setting will be done here.
 615     //
 616     // However, to prevent the proliferation of improperly built native
 617     // libraries, the new path component /usr/jdk/packages is added here.
 618 
 619     // Determine the actual CPU architecture.
 620     sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
 621 #ifdef _LP64
 622     // If we are a 64-bit vm, perform the following translations:
 623     //   sparc   -> sparcv9
 624     //   i386    -> amd64
 625     if (strcmp(cpu_arch, "sparc") == 0) {
 626       strcat(cpu_arch, "v9");
 627     } else if (strcmp(cpu_arch, "i386") == 0) {
 628       strcpy(cpu_arch, "amd64");
 629     }
 630 #endif
 631 
 632     // Construct the invariant part of ld_library_path.
 633     sprintf(common_path, SYS_EXT_DIR "/lib/%s", cpu_arch);
 634 
 635     // Struct size is more than sufficient for the path components obtained
 636     // through the dlinfo() call, so only add additional space for the path
 637     // components explicitly added here.
 638     size_t library_path_size = info->dls_size + strlen(common_path);
 639     library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
 640     library_path[0] = '\0';
 641 
 642     // Construct the desired Java library path from the linker's library
 643     // search path.
 644     //
 645     // For compatibility, it is optimal that we insert the additional path
 646     // components specific to the Java VM after those components specified
 647     // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 648     // infrastructure.
 649     if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
 650       strcpy(library_path, common_path);
 651     } else {
 652       int inserted = 0;
 653       int i;
 654       for (i = 0; i < info->dls_cnt; i++, path++) {
 655         uint_t flags = path->dls_flags & LA_SER_MASK;
 656         if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 657           strcat(library_path, common_path);
 658           strcat(library_path, os::path_separator());
 659           inserted = 1;
 660         }
 661         strcat(library_path, path->dls_name);
 662         strcat(library_path, os::path_separator());
 663       }
 664       // Eliminate trailing path separator.
 665       library_path[strlen(library_path)-1] = '\0';
 666     }
 667 
 668     // happens before argument parsing - can't use a trace flag
 669     // tty->print_raw("init_system_properties_values: native lib path: ");
 670     // tty->print_raw_cr(library_path);
 671 
 672     // Callee copies into its own buffer.
 673     Arguments::set_library_path(library_path);
 674 
 675     FREE_C_HEAP_ARRAY(char, library_path);
 676     FREE_C_HEAP_ARRAY(char, info);
 677   }
 678 
 679   // Extensions directories.
 680   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 681   Arguments::set_ext_dirs(buf);
 682 
 683   FREE_C_HEAP_ARRAY(char, buf);
 684 
 685 #undef SYS_EXT_DIR
 686 #undef EXTENSIONS_DIR
 687 }
 688 
 689 void os::breakpoint() {
 690   BREAKPOINT;
 691 }
 692 
 693 bool os::obsolete_option(const JavaVMOption *option) {
 694   if (!strncmp(option->optionString, "-Xt", 3)) {
 695     return true;
 696   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
 697     return true;
 698   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
 699     return true;
 700   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
 701     return true;
 702   }
 703   return false;
 704 }
 705 
 706 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
 707   address  stackStart  = (address)thread->stack_base();
 708   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
 709   if (sp < stackStart && sp >= stackEnd) return true;
 710   return false;
 711 }
 712 
 713 extern "C" void breakpoint() {
 714   // use debugger to set breakpoint here
 715 }
 716 
 717 static thread_t main_thread;
 718 
 719 // Thread start routine for all new Java threads
 720 extern "C" void* java_start(void* thread_addr) {
 721   // Try to randomize the cache line index of hot stack frames.
 722   // This helps when threads of the same stack traces evict each other's
 723   // cache lines. The threads can be either from the same JVM instance, or
 724   // from different JVM instances. The benefit is especially true for
 725   // processors with hyperthreading technology.
 726   static int counter = 0;
 727   int pid = os::current_process_id();
 728   alloca(((pid ^ counter++) & 7) * 128);
 729 
 730   int prio;
 731   Thread* thread = (Thread*)thread_addr;
 732 
 733   thread->initialize_thread_current();
 734 
 735   OSThread* osthr = thread->osthread();
 736 
 737   osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
 738   thread->_schedctl = (void *) schedctl_init();
 739 
 740   log_debug(os)("Thread is alive (tid: " UINTX_FORMAT ").",
 741     os::current_thread_id());
 742 
 743   if (UseNUMA) {
 744     int lgrp_id = os::numa_get_group_id();
 745     if (lgrp_id != -1) {
 746       thread->set_lgrp_id(lgrp_id);
 747     }
 748   }
 749 
 750   // If the creator called set priority before we started,
 751   // we need to call set_native_priority now that we have an lwp.
 752   // We used to get the priority from thr_getprio (we called
 753   // thr_setprio way back in create_thread) and pass it to
 754   // set_native_priority, but Solaris scales the priority
 755   // in java_to_os_priority, so when we read it back here,
 756   // we pass trash to set_native_priority instead of what's
 757   // in java_to_os_priority. So we save the native priority
 758   // in the osThread and recall it here.
 759 
 760   if (osthr->thread_id() != -1) {
 761     if (UseThreadPriorities) {
 762       int prio = osthr->native_priority();
 763       if (ThreadPriorityVerbose) {
 764         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
 765                       INTPTR_FORMAT ", setting priority: %d\n",
 766                       osthr->thread_id(), osthr->lwp_id(), prio);
 767       }
 768       os::set_native_priority(thread, prio);
 769     }
 770   } else if (ThreadPriorityVerbose) {
 771     warning("Can't set priority in _start routine, thread id hasn't been set\n");
 772   }
 773 
 774   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 775 
 776   // initialize signal mask for this thread
 777   os::Solaris::hotspot_sigmask(thread);
 778 
 779   thread->run();
 780 
 781   // One less thread is executing
 782   // When the VMThread gets here, the main thread may have already exited
 783   // which frees the CodeHeap containing the Atomic::dec code
 784   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 785     Atomic::dec(&os::Solaris::_os_thread_count);
 786   }
 787 
 788   log_debug(os)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 789 
 790   if (UseDetachedThreads) {
 791     thr_exit(NULL);
 792     ShouldNotReachHere();
 793   }
 794   return NULL;
 795 }
 796 
 797 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
 798   // Allocate the OSThread object
 799   OSThread* osthread = new OSThread(NULL, NULL);
 800   if (osthread == NULL) return NULL;
 801 
 802   // Store info on the Solaris thread into the OSThread
 803   osthread->set_thread_id(thread_id);
 804   osthread->set_lwp_id(_lwp_self());
 805   thread->_schedctl = (void *) schedctl_init();
 806 
 807   if (UseNUMA) {
 808     int lgrp_id = os::numa_get_group_id();
 809     if (lgrp_id != -1) {
 810       thread->set_lgrp_id(lgrp_id);
 811     }
 812   }
 813 
 814   if (ThreadPriorityVerbose) {
 815     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
 816                   osthread->thread_id(), osthread->lwp_id());
 817   }
 818 
 819   // Initial thread state is INITIALIZED, not SUSPENDED
 820   osthread->set_state(INITIALIZED);
 821 
 822   return osthread;
 823 }
 824 
 825 void os::Solaris::hotspot_sigmask(Thread* thread) {
 826   //Save caller's signal mask
 827   sigset_t sigmask;
 828   pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
 829   OSThread *osthread = thread->osthread();
 830   osthread->set_caller_sigmask(sigmask);
 831 
 832   pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
 833   if (!ReduceSignalUsage) {
 834     if (thread->is_VM_thread()) {
 835       // Only the VM thread handles BREAK_SIGNAL ...
 836       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 837     } else {
 838       // ... all other threads block BREAK_SIGNAL
 839       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
 840       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 841     }
 842   }
 843 }
 844 
 845 bool os::create_attached_thread(JavaThread* thread) {
 846 #ifdef ASSERT
 847   thread->verify_not_published();
 848 #endif
 849   OSThread* osthread = create_os_thread(thread, thr_self());
 850   if (osthread == NULL) {
 851     return false;
 852   }
 853 
 854   // Initial thread state is RUNNABLE
 855   osthread->set_state(RUNNABLE);
 856   thread->set_osthread(osthread);
 857 
 858   // initialize signal mask for this thread
 859   // and save the caller's signal mask
 860   os::Solaris::hotspot_sigmask(thread);
 861 
 862   log_debug(os)("Thread attached (tid: " UINTX_FORMAT ").",
 863     os::current_thread_id());
 864 
 865   return true;
 866 }
 867 
 868 bool os::create_main_thread(JavaThread* thread) {
 869 #ifdef ASSERT
 870   thread->verify_not_published();
 871 #endif
 872   if (_starting_thread == NULL) {
 873     _starting_thread = create_os_thread(thread, main_thread);
 874     if (_starting_thread == NULL) {
 875       return false;
 876     }
 877   }
 878 
 879   // The primodial thread is runnable from the start
 880   _starting_thread->set_state(RUNNABLE);
 881 
 882   thread->set_osthread(_starting_thread);
 883 
 884   // initialize signal mask for this thread
 885   // and save the caller's signal mask
 886   os::Solaris::hotspot_sigmask(thread);
 887 
 888   return true;
 889 }
 890 
 891 
 892 bool os::create_thread(Thread* thread, ThreadType thr_type,
 893                        size_t stack_size) {
 894   // Allocate the OSThread object
 895   OSThread* osthread = new OSThread(NULL, NULL);
 896   if (osthread == NULL) {
 897     return false;
 898   }
 899 
 900   if (ThreadPriorityVerbose) {
 901     char *thrtyp;
 902     switch (thr_type) {
 903     case vm_thread:
 904       thrtyp = (char *)"vm";
 905       break;
 906     case cgc_thread:
 907       thrtyp = (char *)"cgc";
 908       break;
 909     case pgc_thread:
 910       thrtyp = (char *)"pgc";
 911       break;
 912     case java_thread:
 913       thrtyp = (char *)"java";
 914       break;
 915     case compiler_thread:
 916       thrtyp = (char *)"compiler";
 917       break;
 918     case watcher_thread:
 919       thrtyp = (char *)"watcher";
 920       break;
 921     default:
 922       thrtyp = (char *)"unknown";
 923       break;
 924     }
 925     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
 926   }
 927 
 928   // Calculate stack size if it's not specified by caller.
 929   if (stack_size == 0) {
 930     // The default stack size 1M (2M for LP64).
 931     stack_size = (BytesPerWord >> 2) * K * K;
 932 
 933     switch (thr_type) {
 934     case os::java_thread:
 935       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 936       if (JavaThread::stack_size_at_create() > 0) stack_size = JavaThread::stack_size_at_create();
 937       break;
 938     case os::compiler_thread:
 939       if (CompilerThreadStackSize > 0) {
 940         stack_size = (size_t)(CompilerThreadStackSize * K);
 941         break;
 942       } // else fall through:
 943         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 944     case os::vm_thread:
 945     case os::pgc_thread:
 946     case os::cgc_thread:
 947     case os::watcher_thread:
 948       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 949       break;
 950     }
 951   }
 952   stack_size = MAX2(stack_size, os::Solaris::min_stack_allowed);
 953 
 954   // Initial state is ALLOCATED but not INITIALIZED
 955   osthread->set_state(ALLOCATED);
 956 
 957   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
 958     // We got lots of threads. Check if we still have some address space left.
 959     // Need to be at least 5Mb of unreserved address space. We do check by
 960     // trying to reserve some.
 961     const size_t VirtualMemoryBangSize = 20*K*K;
 962     char* mem = os::reserve_memory(VirtualMemoryBangSize);
 963     if (mem == NULL) {
 964       delete osthread;
 965       return false;
 966     } else {
 967       // Release the memory again
 968       os::release_memory(mem, VirtualMemoryBangSize);
 969     }
 970   }
 971 
 972   // Setup osthread because the child thread may need it.
 973   thread->set_osthread(osthread);
 974 
 975   // Create the Solaris thread
 976   thread_t tid = 0;
 977   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
 978   int      status;
 979 
 980   // Mark that we don't have an lwp or thread id yet.
 981   // In case we attempt to set the priority before the thread starts.
 982   osthread->set_lwp_id(-1);
 983   osthread->set_thread_id(-1);
 984 
 985   status = thr_create(NULL, stack_size, java_start, thread, flags, &tid);
 986   if (status != 0) {
 987     log_warning(os)("Failed to start thread - thr_create failed (%s)",
 988       strerror(status));
 989     thread->set_osthread(NULL);
 990     // Need to clean up stuff we've allocated so far
 991     delete osthread;
 992     return false;
 993   } else {
 994     log_debug(os)("Thread started (tid: " UINTX_FORMAT ").", (uintx) tid);
 995   }
 996 
 997   Atomic::inc(&os::Solaris::_os_thread_count);
 998 
 999   // Store info on the Solaris thread into the OSThread
1000   osthread->set_thread_id(tid);
1001 
1002   // Remember that we created this thread so we can set priority on it
1003   osthread->set_vm_created();
1004 
1005   // Initial thread state is INITIALIZED, not SUSPENDED
1006   osthread->set_state(INITIALIZED);
1007 
1008   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1009   return true;
1010 }
1011 
1012 // defined for >= Solaris 10. This allows builds on earlier versions
1013 // of Solaris to take advantage of the newly reserved Solaris JVM signals.
1014 // With SIGJVM1, SIGJVM2, ASYNC_SIGNAL is SIGJVM2. Previously INTERRUPT_SIGNAL
1015 // was SIGJVM1.
1016 //
1017 #if !defined(SIGJVM1)
1018   #define SIGJVM1 39
1019   #define SIGJVM2 40
1020 #endif
1021 
1022 debug_only(static bool signal_sets_initialized = false);
1023 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1024 
1025 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1026 
1027 bool os::Solaris::is_sig_ignored(int sig) {
1028   struct sigaction oact;
1029   sigaction(sig, (struct sigaction*)NULL, &oact);
1030   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1031                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1032   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1033     return true;
1034   } else {
1035     return false;
1036   }
1037 }
1038 
1039 // Note: SIGRTMIN is a macro that calls sysconf() so it will
1040 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1041 static bool isJVM1available() {
1042   return SIGJVM1 < SIGRTMIN;
1043 }
1044 
1045 void os::Solaris::signal_sets_init() {
1046   // Should also have an assertion stating we are still single-threaded.
1047   assert(!signal_sets_initialized, "Already initialized");
1048   // Fill in signals that are necessarily unblocked for all threads in
1049   // the VM. Currently, we unblock the following signals:
1050   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1051   //                         by -Xrs (=ReduceSignalUsage));
1052   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1053   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1054   // the dispositions or masks wrt these signals.
1055   // Programs embedding the VM that want to use the above signals for their
1056   // own purposes must, at this time, use the "-Xrs" option to prevent
1057   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1058   // (See bug 4345157, and other related bugs).
1059   // In reality, though, unblocking these signals is really a nop, since
1060   // these signals are not blocked by default.
1061   sigemptyset(&unblocked_sigs);
1062   sigemptyset(&allowdebug_blocked_sigs);
1063   sigaddset(&unblocked_sigs, SIGILL);
1064   sigaddset(&unblocked_sigs, SIGSEGV);
1065   sigaddset(&unblocked_sigs, SIGBUS);
1066   sigaddset(&unblocked_sigs, SIGFPE);
1067 
1068   // Always true on Solaris 10+
1069   guarantee(isJVM1available(), "SIGJVM1/2 missing!");
1070   os::Solaris::set_SIGasync(SIGJVM2);
1071 
1072   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1073 
1074   if (!ReduceSignalUsage) {
1075     if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1076       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1077       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1078     }
1079     if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1080       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1081       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1082     }
1083     if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1084       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1085       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1086     }
1087   }
1088   // Fill in signals that are blocked by all but the VM thread.
1089   sigemptyset(&vm_sigs);
1090   if (!ReduceSignalUsage) {
1091     sigaddset(&vm_sigs, BREAK_SIGNAL);
1092   }
1093   debug_only(signal_sets_initialized = true);
1094 
1095   // For diagnostics only used in run_periodic_checks
1096   sigemptyset(&check_signal_done);
1097 }
1098 
1099 // These are signals that are unblocked while a thread is running Java.
1100 // (For some reason, they get blocked by default.)
1101 sigset_t* os::Solaris::unblocked_signals() {
1102   assert(signal_sets_initialized, "Not initialized");
1103   return &unblocked_sigs;
1104 }
1105 
1106 // These are the signals that are blocked while a (non-VM) thread is
1107 // running Java. Only the VM thread handles these signals.
1108 sigset_t* os::Solaris::vm_signals() {
1109   assert(signal_sets_initialized, "Not initialized");
1110   return &vm_sigs;
1111 }
1112 
1113 // These are signals that are blocked during cond_wait to allow debugger in
1114 sigset_t* os::Solaris::allowdebug_blocked_signals() {
1115   assert(signal_sets_initialized, "Not initialized");
1116   return &allowdebug_blocked_sigs;
1117 }
1118 
1119 
1120 void _handle_uncaught_cxx_exception() {
1121   VMError::report_and_die("An uncaught C++ exception");
1122 }
1123 
1124 
1125 // First crack at OS-specific initialization, from inside the new thread.
1126 void os::initialize_thread(Thread* thr) {
1127   int r = thr_main();
1128   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1129   if (r) {
1130     JavaThread* jt = (JavaThread *)thr;
1131     assert(jt != NULL, "Sanity check");
1132     size_t stack_size;
1133     address base = jt->stack_base();
1134     if (Arguments::created_by_java_launcher()) {
1135       // Use 2MB to allow for Solaris 7 64 bit mode.
1136       stack_size = JavaThread::stack_size_at_create() == 0
1137         ? 2048*K : JavaThread::stack_size_at_create();
1138 
1139       // There are rare cases when we may have already used more than
1140       // the basic stack size allotment before this method is invoked.
1141       // Attempt to allow for a normally sized java_stack.
1142       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1143       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1144     } else {
1145       // 6269555: If we were not created by a Java launcher, i.e. if we are
1146       // running embedded in a native application, treat the primordial thread
1147       // as much like a native attached thread as possible.  This means using
1148       // the current stack size from thr_stksegment(), unless it is too large
1149       // to reliably setup guard pages.  A reasonable max size is 8MB.
1150       size_t current_size = current_stack_size();
1151       // This should never happen, but just in case....
1152       if (current_size == 0) current_size = 2 * K * K;
1153       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1154     }
1155     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1156     stack_size = (size_t)(base - bottom);
1157 
1158     assert(stack_size > 0, "Stack size calculation problem");
1159 
1160     if (stack_size > jt->stack_size()) {
1161 #ifndef PRODUCT
1162       struct rlimit limits;
1163       getrlimit(RLIMIT_STACK, &limits);
1164       size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1165       assert(size >= jt->stack_size(), "Stack size problem in main thread");
1166 #endif
1167       tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1168                     "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1169                     "See limit(1) to increase the stack size limit.",
1170                     stack_size / K, jt->stack_size() / K);
1171       vm_exit(1);
1172     }
1173     assert(jt->stack_size() >= stack_size,
1174            "Attempt to map more stack than was allocated");
1175     jt->set_stack_size(stack_size);
1176   }
1177 
1178   // With the T2 libthread (T1 is no longer supported) threads are always bound
1179   // and we use stackbanging in all cases.
1180 
1181   os::Solaris::init_thread_fpu_state();
1182   std::set_terminate(_handle_uncaught_cxx_exception);
1183 }
1184 
1185 
1186 
1187 // Free Solaris resources related to the OSThread
1188 void os::free_thread(OSThread* osthread) {
1189   assert(osthread != NULL, "os::free_thread but osthread not set");
1190 
1191 
1192   // We are told to free resources of the argument thread,
1193   // but we can only really operate on the current thread.
1194   // The main thread must take the VMThread down synchronously
1195   // before the main thread exits and frees up CodeHeap
1196   guarantee((Thread::current()->osthread() == osthread
1197              || (osthread == VMThread::vm_thread()->osthread())), "os::free_thread but not current thread");
1198   if (Thread::current()->osthread() == osthread) {
1199     // Restore caller's signal mask
1200     sigset_t sigmask = osthread->caller_sigmask();
1201     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1202   }
1203   delete osthread;
1204 }
1205 
1206 void os::pd_start_thread(Thread* thread) {
1207   int status = thr_continue(thread->osthread()->thread_id());
1208   assert_status(status == 0, status, "thr_continue failed");
1209 }
1210 
1211 
1212 intx os::current_thread_id() {
1213   return (intx)thr_self();
1214 }
1215 
1216 static pid_t _initial_pid = 0;
1217 
1218 int os::current_process_id() {
1219   return (int)(_initial_pid ? _initial_pid : getpid());
1220 }
1221 
1222 // gethrtime() should be monotonic according to the documentation,
1223 // but some virtualized platforms are known to break this guarantee.
1224 // getTimeNanos() must be guaranteed not to move backwards, so we
1225 // are forced to add a check here.
1226 inline hrtime_t getTimeNanos() {
1227   const hrtime_t now = gethrtime();
1228   const hrtime_t prev = max_hrtime;
1229   if (now <= prev) {
1230     return prev;   // same or retrograde time;
1231   }
1232   const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1233   assert(obsv >= prev, "invariant");   // Monotonicity
1234   // If the CAS succeeded then we're done and return "now".
1235   // If the CAS failed and the observed value "obsv" is >= now then
1236   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1237   // some other thread raced this thread and installed a new value, in which case
1238   // we could either (a) retry the entire operation, (b) retry trying to install now
1239   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1240   // we might discard a higher "now" value in deference to a slightly lower but freshly
1241   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1242   // to (a) or (b) -- and greatly reduces coherence traffic.
1243   // We might also condition (c) on the magnitude of the delta between obsv and now.
1244   // Avoiding excessive CAS operations to hot RW locations is critical.
1245   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1246   return (prev == obsv) ? now : obsv;
1247 }
1248 
1249 // Time since start-up in seconds to a fine granularity.
1250 // Used by VMSelfDestructTimer and the MemProfiler.
1251 double os::elapsedTime() {
1252   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1253 }
1254 
1255 jlong os::elapsed_counter() {
1256   return (jlong)(getTimeNanos() - first_hrtime);
1257 }
1258 
1259 jlong os::elapsed_frequency() {
1260   return hrtime_hz;
1261 }
1262 
1263 // Return the real, user, and system times in seconds from an
1264 // arbitrary fixed point in the past.
1265 bool os::getTimesSecs(double* process_real_time,
1266                       double* process_user_time,
1267                       double* process_system_time) {
1268   struct tms ticks;
1269   clock_t real_ticks = times(&ticks);
1270 
1271   if (real_ticks == (clock_t) (-1)) {
1272     return false;
1273   } else {
1274     double ticks_per_second = (double) clock_tics_per_sec;
1275     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1276     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1277     // For consistency return the real time from getTimeNanos()
1278     // converted to seconds.
1279     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1280 
1281     return true;
1282   }
1283 }
1284 
1285 bool os::supports_vtime() { return true; }
1286 
1287 bool os::enable_vtime() {
1288   int fd = ::open("/proc/self/ctl", O_WRONLY);
1289   if (fd == -1) {
1290     return false;
1291   }
1292 
1293   long cmd[] = { PCSET, PR_MSACCT };
1294   int res = ::write(fd, cmd, sizeof(long) * 2);
1295   ::close(fd);
1296   if (res != sizeof(long) * 2) {
1297     return false;
1298   }
1299   return true;
1300 }
1301 
1302 bool os::vtime_enabled() {
1303   int fd = ::open("/proc/self/status", O_RDONLY);
1304   if (fd == -1) {
1305     return false;
1306   }
1307 
1308   pstatus_t status;
1309   int res = os::read(fd, (void*) &status, sizeof(pstatus_t));
1310   ::close(fd);
1311   if (res != sizeof(pstatus_t)) {
1312     return false;
1313   }
1314   return status.pr_flags & PR_MSACCT;
1315 }
1316 
1317 double os::elapsedVTime() {
1318   return (double)gethrvtime() / (double)hrtime_hz;
1319 }
1320 
1321 // Used internally for comparisons only
1322 // getTimeMillis guaranteed to not move backwards on Solaris
1323 jlong getTimeMillis() {
1324   jlong nanotime = getTimeNanos();
1325   return (jlong)(nanotime / NANOSECS_PER_MILLISEC);
1326 }
1327 
1328 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1329 jlong os::javaTimeMillis() {
1330   timeval t;
1331   if (gettimeofday(&t, NULL) == -1) {
1332     fatal("os::javaTimeMillis: gettimeofday (%s)", strerror(errno));
1333   }
1334   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1335 }
1336 
1337 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1338   timeval t;
1339   if (gettimeofday(&t, NULL) == -1) {
1340     fatal("os::javaTimeSystemUTC: gettimeofday (%s)", strerror(errno));
1341   }
1342   seconds = jlong(t.tv_sec);
1343   nanos = jlong(t.tv_usec) * 1000;
1344 }
1345 
1346 
1347 jlong os::javaTimeNanos() {
1348   return (jlong)getTimeNanos();
1349 }
1350 
1351 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1352   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1353   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1354   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1355   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1356 }
1357 
1358 char * os::local_time_string(char *buf, size_t buflen) {
1359   struct tm t;
1360   time_t long_time;
1361   time(&long_time);
1362   localtime_r(&long_time, &t);
1363   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1364                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1365                t.tm_hour, t.tm_min, t.tm_sec);
1366   return buf;
1367 }
1368 
1369 // Note: os::shutdown() might be called very early during initialization, or
1370 // called from signal handler. Before adding something to os::shutdown(), make
1371 // sure it is async-safe and can handle partially initialized VM.
1372 void os::shutdown() {
1373 
1374   // allow PerfMemory to attempt cleanup of any persistent resources
1375   perfMemory_exit();
1376 
1377   // needs to remove object in file system
1378   AttachListener::abort();
1379 
1380   // flush buffered output, finish log files
1381   ostream_abort();
1382 
1383   // Check for abort hook
1384   abort_hook_t abort_hook = Arguments::abort_hook();
1385   if (abort_hook != NULL) {
1386     abort_hook();
1387   }
1388 }
1389 
1390 // Note: os::abort() might be called very early during initialization, or
1391 // called from signal handler. Before adding something to os::abort(), make
1392 // sure it is async-safe and can handle partially initialized VM.
1393 void os::abort(bool dump_core, void* siginfo, const void* context) {
1394   os::shutdown();
1395   if (dump_core) {
1396 #ifndef PRODUCT
1397     fdStream out(defaultStream::output_fd());
1398     out.print_raw("Current thread is ");
1399     char buf[16];
1400     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1401     out.print_raw_cr(buf);
1402     out.print_raw_cr("Dumping core ...");
1403 #endif
1404     ::abort(); // dump core (for debugging)
1405   }
1406 
1407   ::exit(1);
1408 }
1409 
1410 // Die immediately, no exit hook, no abort hook, no cleanup.
1411 void os::die() {
1412   ::abort(); // dump core (for debugging)
1413 }
1414 
1415 // DLL functions
1416 
1417 const char* os::dll_file_extension() { return ".so"; }
1418 
1419 // This must be hard coded because it's the system's temporary
1420 // directory not the java application's temp directory, ala java.io.tmpdir.
1421 const char* os::get_temp_directory() { return "/tmp"; }
1422 
1423 static bool file_exists(const char* filename) {
1424   struct stat statbuf;
1425   if (filename == NULL || strlen(filename) == 0) {
1426     return false;
1427   }
1428   return os::stat(filename, &statbuf) == 0;
1429 }
1430 
1431 bool os::dll_build_name(char* buffer, size_t buflen,
1432                         const char* pname, const char* fname) {
1433   bool retval = false;
1434   const size_t pnamelen = pname ? strlen(pname) : 0;
1435 
1436   // Return error on buffer overflow.
1437   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1438     return retval;
1439   }
1440 
1441   if (pnamelen == 0) {
1442     snprintf(buffer, buflen, "lib%s.so", fname);
1443     retval = true;
1444   } else if (strchr(pname, *os::path_separator()) != NULL) {
1445     int n;
1446     char** pelements = split_path(pname, &n);
1447     if (pelements == NULL) {
1448       return false;
1449     }
1450     for (int i = 0; i < n; i++) {
1451       // really shouldn't be NULL but what the heck, check can't hurt
1452       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1453         continue; // skip the empty path values
1454       }
1455       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1456       if (file_exists(buffer)) {
1457         retval = true;
1458         break;
1459       }
1460     }
1461     // release the storage
1462     for (int i = 0; i < n; i++) {
1463       if (pelements[i] != NULL) {
1464         FREE_C_HEAP_ARRAY(char, pelements[i]);
1465       }
1466     }
1467     if (pelements != NULL) {
1468       FREE_C_HEAP_ARRAY(char*, pelements);
1469     }
1470   } else {
1471     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1472     retval = true;
1473   }
1474   return retval;
1475 }
1476 
1477 // check if addr is inside libjvm.so
1478 bool os::address_is_in_vm(address addr) {
1479   static address libjvm_base_addr;
1480   Dl_info dlinfo;
1481 
1482   if (libjvm_base_addr == NULL) {
1483     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1484       libjvm_base_addr = (address)dlinfo.dli_fbase;
1485     }
1486     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1487   }
1488 
1489   if (dladdr((void *)addr, &dlinfo) != 0) {
1490     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1491   }
1492 
1493   return false;
1494 }
1495 
1496 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1497 static dladdr1_func_type dladdr1_func = NULL;
1498 
1499 bool os::dll_address_to_function_name(address addr, char *buf,
1500                                       int buflen, int * offset,
1501                                       bool demangle) {
1502   // buf is not optional, but offset is optional
1503   assert(buf != NULL, "sanity check");
1504 
1505   Dl_info dlinfo;
1506 
1507   // dladdr1_func was initialized in os::init()
1508   if (dladdr1_func != NULL) {
1509     // yes, we have dladdr1
1510 
1511     // Support for dladdr1 is checked at runtime; it may be
1512     // available even if the vm is built on a machine that does
1513     // not have dladdr1 support.  Make sure there is a value for
1514     // RTLD_DL_SYMENT.
1515 #ifndef RTLD_DL_SYMENT
1516   #define RTLD_DL_SYMENT 1
1517 #endif
1518 #ifdef _LP64
1519     Elf64_Sym * info;
1520 #else
1521     Elf32_Sym * info;
1522 #endif
1523     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1524                      RTLD_DL_SYMENT) != 0) {
1525       // see if we have a matching symbol that covers our address
1526       if (dlinfo.dli_saddr != NULL &&
1527           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1528         if (dlinfo.dli_sname != NULL) {
1529           if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1530             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1531           }
1532           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1533           return true;
1534         }
1535       }
1536       // no matching symbol so try for just file info
1537       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1538         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1539                             buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1540           return true;
1541         }
1542       }
1543     }
1544     buf[0] = '\0';
1545     if (offset != NULL) *offset  = -1;
1546     return false;
1547   }
1548 
1549   // no, only dladdr is available
1550   if (dladdr((void *)addr, &dlinfo) != 0) {
1551     // see if we have a matching symbol
1552     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1553       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1554         jio_snprintf(buf, buflen, dlinfo.dli_sname);
1555       }
1556       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1557       return true;
1558     }
1559     // no matching symbol so try for just file info
1560     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1561       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1562                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1563         return true;
1564       }
1565     }
1566   }
1567   buf[0] = '\0';
1568   if (offset != NULL) *offset  = -1;
1569   return false;
1570 }
1571 
1572 bool os::dll_address_to_library_name(address addr, char* buf,
1573                                      int buflen, int* offset) {
1574   // buf is not optional, but offset is optional
1575   assert(buf != NULL, "sanity check");
1576 
1577   Dl_info dlinfo;
1578 
1579   if (dladdr((void*)addr, &dlinfo) != 0) {
1580     if (dlinfo.dli_fname != NULL) {
1581       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1582     }
1583     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1584       *offset = addr - (address)dlinfo.dli_fbase;
1585     }
1586     return true;
1587   }
1588 
1589   buf[0] = '\0';
1590   if (offset) *offset = -1;
1591   return false;
1592 }
1593 
1594 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1595   Dl_info dli;
1596   // Sanity check?
1597   if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1598       dli.dli_fname == NULL) {
1599     return 1;
1600   }
1601 
1602   void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1603   if (handle == NULL) {
1604     return 1;
1605   }
1606 
1607   Link_map *map;
1608   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1609   if (map == NULL) {
1610     dlclose(handle);
1611     return 1;
1612   }
1613 
1614   while (map->l_prev != NULL) {
1615     map = map->l_prev;
1616   }
1617 
1618   while (map != NULL) {
1619     // Iterate through all map entries and call callback with fields of interest
1620     if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1621       dlclose(handle);
1622       return 1;
1623     }
1624     map = map->l_next;
1625   }
1626 
1627   dlclose(handle);
1628   return 0;
1629 }
1630 
1631 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1632   outputStream * out = (outputStream *) param;
1633   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1634   return 0;
1635 }
1636 
1637 void os::print_dll_info(outputStream * st) {
1638   st->print_cr("Dynamic libraries:"); st->flush();
1639   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1640     st->print_cr("Error: Cannot print dynamic libraries.");
1641   }
1642 }
1643 
1644 // Loads .dll/.so and
1645 // in case of error it checks if .dll/.so was built for the
1646 // same architecture as Hotspot is running on
1647 
1648 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1649   void * result= ::dlopen(filename, RTLD_LAZY);
1650   if (result != NULL) {
1651     // Successful loading
1652     return result;
1653   }
1654 
1655   Elf32_Ehdr elf_head;
1656 
1657   // Read system error message into ebuf
1658   // It may or may not be overwritten below
1659   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1660   ebuf[ebuflen-1]='\0';
1661   int diag_msg_max_length=ebuflen-strlen(ebuf);
1662   char* diag_msg_buf=ebuf+strlen(ebuf);
1663 
1664   if (diag_msg_max_length==0) {
1665     // No more space in ebuf for additional diagnostics message
1666     return NULL;
1667   }
1668 
1669 
1670   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1671 
1672   if (file_descriptor < 0) {
1673     // Can't open library, report dlerror() message
1674     return NULL;
1675   }
1676 
1677   bool failed_to_read_elf_head=
1678     (sizeof(elf_head)!=
1679      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1680 
1681   ::close(file_descriptor);
1682   if (failed_to_read_elf_head) {
1683     // file i/o error - report dlerror() msg
1684     return NULL;
1685   }
1686 
1687   typedef struct {
1688     Elf32_Half  code;         // Actual value as defined in elf.h
1689     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1690     char        elf_class;    // 32 or 64 bit
1691     char        endianess;    // MSB or LSB
1692     char*       name;         // String representation
1693   } arch_t;
1694 
1695   static const arch_t arch_array[]={
1696     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1697     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1698     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1699     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1700     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1701     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1702     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1703     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1704     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1705     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1706   };
1707 
1708 #if  (defined IA32)
1709   static  Elf32_Half running_arch_code=EM_386;
1710 #elif   (defined AMD64)
1711   static  Elf32_Half running_arch_code=EM_X86_64;
1712 #elif  (defined IA64)
1713   static  Elf32_Half running_arch_code=EM_IA_64;
1714 #elif  (defined __sparc) && (defined _LP64)
1715   static  Elf32_Half running_arch_code=EM_SPARCV9;
1716 #elif  (defined __sparc) && (!defined _LP64)
1717   static  Elf32_Half running_arch_code=EM_SPARC;
1718 #elif  (defined __powerpc64__)
1719   static  Elf32_Half running_arch_code=EM_PPC64;
1720 #elif  (defined __powerpc__)
1721   static  Elf32_Half running_arch_code=EM_PPC;
1722 #elif (defined ARM)
1723   static  Elf32_Half running_arch_code=EM_ARM;
1724 #else
1725   #error Method os::dll_load requires that one of following is defined:\
1726        IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1727 #endif
1728 
1729   // Identify compatability class for VM's architecture and library's architecture
1730   // Obtain string descriptions for architectures
1731 
1732   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1733   int running_arch_index=-1;
1734 
1735   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1736     if (running_arch_code == arch_array[i].code) {
1737       running_arch_index    = i;
1738     }
1739     if (lib_arch.code == arch_array[i].code) {
1740       lib_arch.compat_class = arch_array[i].compat_class;
1741       lib_arch.name         = arch_array[i].name;
1742     }
1743   }
1744 
1745   assert(running_arch_index != -1,
1746          "Didn't find running architecture code (running_arch_code) in arch_array");
1747   if (running_arch_index == -1) {
1748     // Even though running architecture detection failed
1749     // we may still continue with reporting dlerror() message
1750     return NULL;
1751   }
1752 
1753   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1754     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1755     return NULL;
1756   }
1757 
1758   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1759     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1760     return NULL;
1761   }
1762 
1763   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1764     if (lib_arch.name!=NULL) {
1765       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1766                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1767                  lib_arch.name, arch_array[running_arch_index].name);
1768     } else {
1769       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1770                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1771                  lib_arch.code,
1772                  arch_array[running_arch_index].name);
1773     }
1774   }
1775 
1776   return NULL;
1777 }
1778 
1779 void* os::dll_lookup(void* handle, const char* name) {
1780   return dlsym(handle, name);
1781 }
1782 
1783 void* os::get_default_process_handle() {
1784   return (void*)::dlopen(NULL, RTLD_LAZY);
1785 }
1786 
1787 int os::stat(const char *path, struct stat *sbuf) {
1788   char pathbuf[MAX_PATH];
1789   if (strlen(path) > MAX_PATH - 1) {
1790     errno = ENAMETOOLONG;
1791     return -1;
1792   }
1793   os::native_path(strcpy(pathbuf, path));
1794   return ::stat(pathbuf, sbuf);
1795 }
1796 
1797 static bool _print_ascii_file(const char* filename, outputStream* st) {
1798   int fd = ::open(filename, O_RDONLY);
1799   if (fd == -1) {
1800     return false;
1801   }
1802 
1803   char buf[32];
1804   int bytes;
1805   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1806     st->print_raw(buf, bytes);
1807   }
1808 
1809   ::close(fd);
1810 
1811   return true;
1812 }
1813 
1814 void os::print_os_info_brief(outputStream* st) {
1815   os::Solaris::print_distro_info(st);
1816 
1817   os::Posix::print_uname_info(st);
1818 
1819   os::Solaris::print_libversion_info(st);
1820 }
1821 
1822 void os::print_os_info(outputStream* st) {
1823   st->print("OS:");
1824 
1825   os::Solaris::print_distro_info(st);
1826 
1827   os::Posix::print_uname_info(st);
1828 
1829   os::Solaris::print_libversion_info(st);
1830 
1831   os::Posix::print_rlimit_info(st);
1832 
1833   os::Posix::print_load_average(st);
1834 }
1835 
1836 void os::Solaris::print_distro_info(outputStream* st) {
1837   if (!_print_ascii_file("/etc/release", st)) {
1838     st->print("Solaris");
1839   }
1840   st->cr();
1841 }
1842 
1843 void os::get_summary_os_info(char* buf, size_t buflen) {
1844   strncpy(buf, "Solaris", buflen);  // default to plain solaris
1845   FILE* fp = fopen("/etc/release", "r");
1846   if (fp != NULL) {
1847     char tmp[256];
1848     // Only get the first line and chop out everything but the os name.
1849     if (fgets(tmp, sizeof(tmp), fp)) {
1850       char* ptr = tmp;
1851       // skip past whitespace characters
1852       while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1853       if (*ptr != '\0') {
1854         char* nl = strchr(ptr, '\n');
1855         if (nl != NULL) *nl = '\0';
1856         strncpy(buf, ptr, buflen);
1857       }
1858     }
1859     fclose(fp);
1860   }
1861 }
1862 
1863 void os::Solaris::print_libversion_info(outputStream* st) {
1864   st->print("  (T2 libthread)");
1865   st->cr();
1866 }
1867 
1868 static bool check_addr0(outputStream* st) {
1869   jboolean status = false;
1870   int fd = ::open("/proc/self/map",O_RDONLY);
1871   if (fd >= 0) {
1872     prmap_t p;
1873     while (::read(fd, &p, sizeof(p)) > 0) {
1874       if (p.pr_vaddr == 0x0) {
1875         st->print("Warning: Address: 0x%x, Size: %dK, ",p.pr_vaddr, p.pr_size/1024, p.pr_mapname);
1876         st->print("Mapped file: %s, ", p.pr_mapname[0] == '\0' ? "None" : p.pr_mapname);
1877         st->print("Access:");
1878         st->print("%s",(p.pr_mflags & MA_READ)  ? "r" : "-");
1879         st->print("%s",(p.pr_mflags & MA_WRITE) ? "w" : "-");
1880         st->print("%s",(p.pr_mflags & MA_EXEC)  ? "x" : "-");
1881         st->cr();
1882         status = true;
1883       }
1884     }
1885     ::close(fd);
1886   }
1887   return status;
1888 }
1889 
1890 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1891   // Get MHz with system call. We don't seem to already have this.
1892   processor_info_t stats;
1893   processorid_t id = getcpuid();
1894   int clock = 0;
1895   if (processor_info(id, &stats) != -1) {
1896     clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1897   }
1898 #ifdef AMD64
1899   snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1900 #else
1901   // must be sparc
1902   snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1903 #endif
1904 }
1905 
1906 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1907   // Nothing to do for now.
1908 }
1909 
1910 void os::print_memory_info(outputStream* st) {
1911   st->print("Memory:");
1912   st->print(" %dk page", os::vm_page_size()>>10);
1913   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1914   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1915   st->cr();
1916   (void) check_addr0(st);
1917 }
1918 
1919 // Moved from whole group, because we need them here for diagnostic
1920 // prints.
1921 #define OLDMAXSIGNUM 32
1922 static int Maxsignum = 0;
1923 static int *ourSigFlags = NULL;
1924 
1925 int os::Solaris::get_our_sigflags(int sig) {
1926   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1927   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1928   return ourSigFlags[sig];
1929 }
1930 
1931 void os::Solaris::set_our_sigflags(int sig, int flags) {
1932   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1933   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1934   ourSigFlags[sig] = flags;
1935 }
1936 
1937 
1938 static const char* get_signal_handler_name(address handler,
1939                                            char* buf, int buflen) {
1940   int offset;
1941   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1942   if (found) {
1943     // skip directory names
1944     const char *p1, *p2;
1945     p1 = buf;
1946     size_t len = strlen(os::file_separator());
1947     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1948     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1949   } else {
1950     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1951   }
1952   return buf;
1953 }
1954 
1955 static void print_signal_handler(outputStream* st, int sig,
1956                                  char* buf, size_t buflen) {
1957   struct sigaction sa;
1958 
1959   sigaction(sig, NULL, &sa);
1960 
1961   st->print("%s: ", os::exception_name(sig, buf, buflen));
1962 
1963   address handler = (sa.sa_flags & SA_SIGINFO)
1964                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1965                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
1966 
1967   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1968     st->print("SIG_DFL");
1969   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1970     st->print("SIG_IGN");
1971   } else {
1972     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1973   }
1974 
1975   st->print(", sa_mask[0]=");
1976   os::Posix::print_signal_set_short(st, &sa.sa_mask);
1977 
1978   address rh = VMError::get_resetted_sighandler(sig);
1979   // May be, handler was resetted by VMError?
1980   if (rh != NULL) {
1981     handler = rh;
1982     sa.sa_flags = VMError::get_resetted_sigflags(sig);
1983   }
1984 
1985   st->print(", sa_flags=");
1986   os::Posix::print_sa_flags(st, sa.sa_flags);
1987 
1988   // Check: is it our handler?
1989   if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1990     // It is our signal handler
1991     // check for flags
1992     if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1993       st->print(
1994                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1995                 os::Solaris::get_our_sigflags(sig));
1996     }
1997   }
1998   st->cr();
1999 }
2000 
2001 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2002   st->print_cr("Signal Handlers:");
2003   print_signal_handler(st, SIGSEGV, buf, buflen);
2004   print_signal_handler(st, SIGBUS , buf, buflen);
2005   print_signal_handler(st, SIGFPE , buf, buflen);
2006   print_signal_handler(st, SIGPIPE, buf, buflen);
2007   print_signal_handler(st, SIGXFSZ, buf, buflen);
2008   print_signal_handler(st, SIGILL , buf, buflen);
2009   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2010   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2011   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2012   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2013   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2014   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2015 }
2016 
2017 static char saved_jvm_path[MAXPATHLEN] = { 0 };
2018 
2019 // Find the full path to the current module, libjvm.so
2020 void os::jvm_path(char *buf, jint buflen) {
2021   // Error checking.
2022   if (buflen < MAXPATHLEN) {
2023     assert(false, "must use a large-enough buffer");
2024     buf[0] = '\0';
2025     return;
2026   }
2027   // Lazy resolve the path to current module.
2028   if (saved_jvm_path[0] != 0) {
2029     strcpy(buf, saved_jvm_path);
2030     return;
2031   }
2032 
2033   Dl_info dlinfo;
2034   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2035   assert(ret != 0, "cannot locate libjvm");
2036   if (ret != 0 && dlinfo.dli_fname != NULL) {
2037     realpath((char *)dlinfo.dli_fname, buf);
2038   } else {
2039     buf[0] = '\0';
2040     return;
2041   }
2042 
2043   if (Arguments::sun_java_launcher_is_altjvm()) {
2044     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2045     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2046     // If "/jre/lib/" appears at the right place in the string, then
2047     // assume we are installed in a JDK and we're done.  Otherwise, check
2048     // for a JAVA_HOME environment variable and fix up the path so it
2049     // looks like libjvm.so is installed there (append a fake suffix
2050     // hotspot/libjvm.so).
2051     const char *p = buf + strlen(buf) - 1;
2052     for (int count = 0; p > buf && count < 5; ++count) {
2053       for (--p; p > buf && *p != '/'; --p)
2054         /* empty */ ;
2055     }
2056 
2057     if (strncmp(p, "/jre/lib/", 9) != 0) {
2058       // Look for JAVA_HOME in the environment.
2059       char* java_home_var = ::getenv("JAVA_HOME");
2060       if (java_home_var != NULL && java_home_var[0] != 0) {
2061         char cpu_arch[12];
2062         char* jrelib_p;
2063         int   len;
2064         sysinfo(SI_ARCHITECTURE, cpu_arch, sizeof(cpu_arch));
2065 #ifdef _LP64
2066         // If we are on sparc running a 64-bit vm, look in jre/lib/sparcv9.
2067         if (strcmp(cpu_arch, "sparc") == 0) {
2068           strcat(cpu_arch, "v9");
2069         } else if (strcmp(cpu_arch, "i386") == 0) {
2070           strcpy(cpu_arch, "amd64");
2071         }
2072 #endif
2073         // Check the current module name "libjvm.so".
2074         p = strrchr(buf, '/');
2075         assert(strstr(p, "/libjvm") == p, "invalid library name");
2076 
2077         realpath(java_home_var, buf);
2078         // determine if this is a legacy image or modules image
2079         // modules image doesn't have "jre" subdirectory
2080         len = strlen(buf);
2081         assert(len < buflen, "Ran out of buffer space");
2082         jrelib_p = buf + len;
2083         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2084         if (0 != access(buf, F_OK)) {
2085           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2086         }
2087 
2088         if (0 == access(buf, F_OK)) {
2089           // Use current module name "libjvm.so"
2090           len = strlen(buf);
2091           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2092         } else {
2093           // Go back to path of .so
2094           realpath((char *)dlinfo.dli_fname, buf);
2095         }
2096       }
2097     }
2098   }
2099 
2100   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2101   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2102 }
2103 
2104 
2105 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2106   // no prefix required, not even "_"
2107 }
2108 
2109 
2110 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2111   // no suffix required
2112 }
2113 
2114 // This method is a copy of JDK's sysGetLastErrorString
2115 // from src/solaris/hpi/src/system_md.c
2116 
2117 size_t os::lasterror(char *buf, size_t len) {
2118   if (errno == 0)  return 0;
2119 
2120   const char *s = ::strerror(errno);
2121   size_t n = ::strlen(s);
2122   if (n >= len) {
2123     n = len - 1;
2124   }
2125   ::strncpy(buf, s, n);
2126   buf[n] = '\0';
2127   return n;
2128 }
2129 
2130 
2131 // sun.misc.Signal
2132 
2133 extern "C" {
2134   static void UserHandler(int sig, void *siginfo, void *context) {
2135     // Ctrl-C is pressed during error reporting, likely because the error
2136     // handler fails to abort. Let VM die immediately.
2137     if (sig == SIGINT && is_error_reported()) {
2138       os::die();
2139     }
2140 
2141     os::signal_notify(sig);
2142     // We do not need to reinstate the signal handler each time...
2143   }
2144 }
2145 
2146 void* os::user_handler() {
2147   return CAST_FROM_FN_PTR(void*, UserHandler);
2148 }
2149 
2150 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2151   struct timespec ts;
2152   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2153 
2154   return ts;
2155 }
2156 
2157 extern "C" {
2158   typedef void (*sa_handler_t)(int);
2159   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2160 }
2161 
2162 void* os::signal(int signal_number, void* handler) {
2163   struct sigaction sigAct, oldSigAct;
2164   sigfillset(&(sigAct.sa_mask));
2165   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2166   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2167 
2168   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2169     // -1 means registration failed
2170     return (void *)-1;
2171   }
2172 
2173   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2174 }
2175 
2176 void os::signal_raise(int signal_number) {
2177   raise(signal_number);
2178 }
2179 
2180 // The following code is moved from os.cpp for making this
2181 // code platform specific, which it is by its very nature.
2182 
2183 // a counter for each possible signal value
2184 static int Sigexit = 0;
2185 static int Maxlibjsigsigs;
2186 static jint *pending_signals = NULL;
2187 static int *preinstalled_sigs = NULL;
2188 static struct sigaction *chainedsigactions = NULL;
2189 static sema_t sig_sem;
2190 typedef int (*version_getting_t)();
2191 version_getting_t os::Solaris::get_libjsig_version = NULL;
2192 static int libjsigversion = NULL;
2193 
2194 int os::sigexitnum_pd() {
2195   assert(Sigexit > 0, "signal memory not yet initialized");
2196   return Sigexit;
2197 }
2198 
2199 void os::Solaris::init_signal_mem() {
2200   // Initialize signal structures
2201   Maxsignum = SIGRTMAX;
2202   Sigexit = Maxsignum+1;
2203   assert(Maxsignum >0, "Unable to obtain max signal number");
2204 
2205   Maxlibjsigsigs = Maxsignum;
2206 
2207   // pending_signals has one int per signal
2208   // The additional signal is for SIGEXIT - exit signal to signal_thread
2209   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2210   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2211 
2212   if (UseSignalChaining) {
2213     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2214                                                    * (Maxsignum + 1), mtInternal);
2215     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2216     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2217     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2218   }
2219   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2220   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2221 }
2222 
2223 void os::signal_init_pd() {
2224   int ret;
2225 
2226   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2227   assert(ret == 0, "sema_init() failed");
2228 }
2229 
2230 void os::signal_notify(int signal_number) {
2231   int ret;
2232 
2233   Atomic::inc(&pending_signals[signal_number]);
2234   ret = ::sema_post(&sig_sem);
2235   assert(ret == 0, "sema_post() failed");
2236 }
2237 
2238 static int check_pending_signals(bool wait_for_signal) {
2239   int ret;
2240   while (true) {
2241     for (int i = 0; i < Sigexit + 1; i++) {
2242       jint n = pending_signals[i];
2243       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2244         return i;
2245       }
2246     }
2247     if (!wait_for_signal) {
2248       return -1;
2249     }
2250     JavaThread *thread = JavaThread::current();
2251     ThreadBlockInVM tbivm(thread);
2252 
2253     bool threadIsSuspended;
2254     do {
2255       thread->set_suspend_equivalent();
2256       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2257       while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2258         ;
2259       assert(ret == 0, "sema_wait() failed");
2260 
2261       // were we externally suspended while we were waiting?
2262       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2263       if (threadIsSuspended) {
2264         // The semaphore has been incremented, but while we were waiting
2265         // another thread suspended us. We don't want to continue running
2266         // while suspended because that would surprise the thread that
2267         // suspended us.
2268         ret = ::sema_post(&sig_sem);
2269         assert(ret == 0, "sema_post() failed");
2270 
2271         thread->java_suspend_self();
2272       }
2273     } while (threadIsSuspended);
2274   }
2275 }
2276 
2277 int os::signal_lookup() {
2278   return check_pending_signals(false);
2279 }
2280 
2281 int os::signal_wait() {
2282   return check_pending_signals(true);
2283 }
2284 
2285 ////////////////////////////////////////////////////////////////////////////////
2286 // Virtual Memory
2287 
2288 static int page_size = -1;
2289 
2290 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2291 // clear this var if support is not available.
2292 static bool has_map_align = true;
2293 
2294 int os::vm_page_size() {
2295   assert(page_size != -1, "must call os::init");
2296   return page_size;
2297 }
2298 
2299 // Solaris allocates memory by pages.
2300 int os::vm_allocation_granularity() {
2301   assert(page_size != -1, "must call os::init");
2302   return page_size;
2303 }
2304 
2305 static bool recoverable_mmap_error(int err) {
2306   // See if the error is one we can let the caller handle. This
2307   // list of errno values comes from the Solaris mmap(2) man page.
2308   switch (err) {
2309   case EBADF:
2310   case EINVAL:
2311   case ENOTSUP:
2312     // let the caller deal with these errors
2313     return true;
2314 
2315   default:
2316     // Any remaining errors on this OS can cause our reserved mapping
2317     // to be lost. That can cause confusion where different data
2318     // structures think they have the same memory mapped. The worst
2319     // scenario is if both the VM and a library think they have the
2320     // same memory mapped.
2321     return false;
2322   }
2323 }
2324 
2325 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2326                                     int err) {
2327   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2328           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2329           strerror(err), err);
2330 }
2331 
2332 static void warn_fail_commit_memory(char* addr, size_t bytes,
2333                                     size_t alignment_hint, bool exec,
2334                                     int err) {
2335   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2336           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2337           alignment_hint, exec, strerror(err), err);
2338 }
2339 
2340 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2341   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2342   size_t size = bytes;
2343   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2344   if (res != NULL) {
2345     if (UseNUMAInterleaving) {
2346       numa_make_global(addr, bytes);
2347     }
2348     return 0;
2349   }
2350 
2351   int err = errno;  // save errno from mmap() call in mmap_chunk()
2352 
2353   if (!recoverable_mmap_error(err)) {
2354     warn_fail_commit_memory(addr, bytes, exec, err);
2355     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2356   }
2357 
2358   return err;
2359 }
2360 
2361 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2362   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2363 }
2364 
2365 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2366                                   const char* mesg) {
2367   assert(mesg != NULL, "mesg must be specified");
2368   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2369   if (err != 0) {
2370     // the caller wants all commit errors to exit with the specified mesg:
2371     warn_fail_commit_memory(addr, bytes, exec, err);
2372     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2373   }
2374 }
2375 
2376 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2377   assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2378          SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2379          alignment, (size_t) vm_page_size());
2380 
2381   for (int i = 0; _page_sizes[i] != 0; i++) {
2382     if (is_size_aligned(alignment, _page_sizes[i])) {
2383       return _page_sizes[i];
2384     }
2385   }
2386 
2387   return (size_t) vm_page_size();
2388 }
2389 
2390 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2391                                     size_t alignment_hint, bool exec) {
2392   int err = Solaris::commit_memory_impl(addr, bytes, exec);
2393   if (err == 0 && UseLargePages && alignment_hint > 0) {
2394     assert(is_size_aligned(bytes, alignment_hint),
2395            SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2396 
2397     // The syscall memcntl requires an exact page size (see man memcntl for details).
2398     size_t page_size = page_size_for_alignment(alignment_hint);
2399     if (page_size > (size_t) vm_page_size()) {
2400       (void)Solaris::setup_large_pages(addr, bytes, page_size);
2401     }
2402   }
2403   return err;
2404 }
2405 
2406 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2407                           bool exec) {
2408   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2409 }
2410 
2411 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2412                                   size_t alignment_hint, bool exec,
2413                                   const char* mesg) {
2414   assert(mesg != NULL, "mesg must be specified");
2415   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2416   if (err != 0) {
2417     // the caller wants all commit errors to exit with the specified mesg:
2418     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2419     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2420   }
2421 }
2422 
2423 // Uncommit the pages in a specified region.
2424 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2425   if (madvise(addr, bytes, MADV_FREE) < 0) {
2426     debug_only(warning("MADV_FREE failed."));
2427     return;
2428   }
2429 }
2430 
2431 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2432   return os::commit_memory(addr, size, !ExecMem);
2433 }
2434 
2435 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2436   return os::uncommit_memory(addr, size);
2437 }
2438 
2439 // Change the page size in a given range.
2440 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2441   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2442   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2443   if (UseLargePages) {
2444     size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2445     if (page_size > (size_t) vm_page_size()) {
2446       Solaris::setup_large_pages(addr, bytes, page_size);
2447     }
2448   }
2449 }
2450 
2451 // Tell the OS to make the range local to the first-touching LWP
2452 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2453   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2454   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2455     debug_only(warning("MADV_ACCESS_LWP failed."));
2456   }
2457 }
2458 
2459 // Tell the OS that this range would be accessed from different LWPs.
2460 void os::numa_make_global(char *addr, size_t bytes) {
2461   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2462   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2463     debug_only(warning("MADV_ACCESS_MANY failed."));
2464   }
2465 }
2466 
2467 // Get the number of the locality groups.
2468 size_t os::numa_get_groups_num() {
2469   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2470   return n != -1 ? n : 1;
2471 }
2472 
2473 // Get a list of leaf locality groups. A leaf lgroup is group that
2474 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2475 // board. An LWP is assigned to one of these groups upon creation.
2476 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2477   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2478     ids[0] = 0;
2479     return 1;
2480   }
2481   int result_size = 0, top = 1, bottom = 0, cur = 0;
2482   for (int k = 0; k < size; k++) {
2483     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2484                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2485     if (r == -1) {
2486       ids[0] = 0;
2487       return 1;
2488     }
2489     if (!r) {
2490       // That's a leaf node.
2491       assert(bottom <= cur, "Sanity check");
2492       // Check if the node has memory
2493       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2494                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2495         ids[bottom++] = ids[cur];
2496       }
2497     }
2498     top += r;
2499     cur++;
2500   }
2501   if (bottom == 0) {
2502     // Handle a situation, when the OS reports no memory available.
2503     // Assume UMA architecture.
2504     ids[0] = 0;
2505     return 1;
2506   }
2507   return bottom;
2508 }
2509 
2510 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2511 bool os::numa_topology_changed() {
2512   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2513   if (is_stale != -1 && is_stale) {
2514     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2515     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2516     assert(c != 0, "Failure to initialize LGRP API");
2517     Solaris::set_lgrp_cookie(c);
2518     return true;
2519   }
2520   return false;
2521 }
2522 
2523 // Get the group id of the current LWP.
2524 int os::numa_get_group_id() {
2525   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2526   if (lgrp_id == -1) {
2527     return 0;
2528   }
2529   const int size = os::numa_get_groups_num();
2530   int *ids = (int*)alloca(size * sizeof(int));
2531 
2532   // Get the ids of all lgroups with memory; r is the count.
2533   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2534                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2535   if (r <= 0) {
2536     return 0;
2537   }
2538   return ids[os::random() % r];
2539 }
2540 
2541 // Request information about the page.
2542 bool os::get_page_info(char *start, page_info* info) {
2543   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2544   uint64_t addr = (uintptr_t)start;
2545   uint64_t outdata[2];
2546   uint_t validity = 0;
2547 
2548   if (os::Solaris::meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2549     return false;
2550   }
2551 
2552   info->size = 0;
2553   info->lgrp_id = -1;
2554 
2555   if ((validity & 1) != 0) {
2556     if ((validity & 2) != 0) {
2557       info->lgrp_id = outdata[0];
2558     }
2559     if ((validity & 4) != 0) {
2560       info->size = outdata[1];
2561     }
2562     return true;
2563   }
2564   return false;
2565 }
2566 
2567 // Scan the pages from start to end until a page different than
2568 // the one described in the info parameter is encountered.
2569 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2570                      page_info* page_found) {
2571   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2572   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2573   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2574   uint_t validity[MAX_MEMINFO_CNT];
2575 
2576   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2577   uint64_t p = (uint64_t)start;
2578   while (p < (uint64_t)end) {
2579     addrs[0] = p;
2580     size_t addrs_count = 1;
2581     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2582       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2583       addrs_count++;
2584     }
2585 
2586     if (os::Solaris::meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2587       return NULL;
2588     }
2589 
2590     size_t i = 0;
2591     for (; i < addrs_count; i++) {
2592       if ((validity[i] & 1) != 0) {
2593         if ((validity[i] & 4) != 0) {
2594           if (outdata[types * i + 1] != page_expected->size) {
2595             break;
2596           }
2597         } else if (page_expected->size != 0) {
2598           break;
2599         }
2600 
2601         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2602           if (outdata[types * i] != page_expected->lgrp_id) {
2603             break;
2604           }
2605         }
2606       } else {
2607         return NULL;
2608       }
2609     }
2610 
2611     if (i < addrs_count) {
2612       if ((validity[i] & 2) != 0) {
2613         page_found->lgrp_id = outdata[types * i];
2614       } else {
2615         page_found->lgrp_id = -1;
2616       }
2617       if ((validity[i] & 4) != 0) {
2618         page_found->size = outdata[types * i + 1];
2619       } else {
2620         page_found->size = 0;
2621       }
2622       return (char*)addrs[i];
2623     }
2624 
2625     p = addrs[addrs_count - 1] + page_size;
2626   }
2627   return end;
2628 }
2629 
2630 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2631   size_t size = bytes;
2632   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2633   // uncommitted page. Otherwise, the read/write might succeed if we
2634   // have enough swap space to back the physical page.
2635   return
2636     NULL != Solaris::mmap_chunk(addr, size,
2637                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2638                                 PROT_NONE);
2639 }
2640 
2641 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2642   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2643 
2644   if (b == MAP_FAILED) {
2645     return NULL;
2646   }
2647   return b;
2648 }
2649 
2650 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2651                              size_t alignment_hint, bool fixed) {
2652   char* addr = requested_addr;
2653   int flags = MAP_PRIVATE | MAP_NORESERVE;
2654 
2655   assert(!(fixed && (alignment_hint > 0)),
2656          "alignment hint meaningless with fixed mmap");
2657 
2658   if (fixed) {
2659     flags |= MAP_FIXED;
2660   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2661     flags |= MAP_ALIGN;
2662     addr = (char*) alignment_hint;
2663   }
2664 
2665   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2666   // uncommitted page. Otherwise, the read/write might succeed if we
2667   // have enough swap space to back the physical page.
2668   return mmap_chunk(addr, bytes, flags, PROT_NONE);
2669 }
2670 
2671 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2672                             size_t alignment_hint) {
2673   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2674                                   (requested_addr != NULL));
2675 
2676   guarantee(requested_addr == NULL || requested_addr == addr,
2677             "OS failed to return requested mmap address.");
2678   return addr;
2679 }
2680 
2681 // Reserve memory at an arbitrary address, only if that area is
2682 // available (and not reserved for something else).
2683 
2684 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2685   const int max_tries = 10;
2686   char* base[max_tries];
2687   size_t size[max_tries];
2688 
2689   // Solaris adds a gap between mmap'ed regions.  The size of the gap
2690   // is dependent on the requested size and the MMU.  Our initial gap
2691   // value here is just a guess and will be corrected later.
2692   bool had_top_overlap = false;
2693   bool have_adjusted_gap = false;
2694   size_t gap = 0x400000;
2695 
2696   // Assert only that the size is a multiple of the page size, since
2697   // that's all that mmap requires, and since that's all we really know
2698   // about at this low abstraction level.  If we need higher alignment,
2699   // we can either pass an alignment to this method or verify alignment
2700   // in one of the methods further up the call chain.  See bug 5044738.
2701   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2702 
2703   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2704   // Give it a try, if the kernel honors the hint we can return immediately.
2705   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2706 
2707   volatile int err = errno;
2708   if (addr == requested_addr) {
2709     return addr;
2710   } else if (addr != NULL) {
2711     pd_unmap_memory(addr, bytes);
2712   }
2713 
2714   if (PrintMiscellaneous && Verbose) {
2715     char buf[256];
2716     buf[0] = '\0';
2717     if (addr == NULL) {
2718       jio_snprintf(buf, sizeof(buf), ": %s", strerror(err));
2719     }
2720     warning("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2721             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2722             "%s", bytes, requested_addr, addr, buf);
2723   }
2724 
2725   // Address hint method didn't work.  Fall back to the old method.
2726   // In theory, once SNV becomes our oldest supported platform, this
2727   // code will no longer be needed.
2728   //
2729   // Repeatedly allocate blocks until the block is allocated at the
2730   // right spot. Give up after max_tries.
2731   int i;
2732   for (i = 0; i < max_tries; ++i) {
2733     base[i] = reserve_memory(bytes);
2734 
2735     if (base[i] != NULL) {
2736       // Is this the block we wanted?
2737       if (base[i] == requested_addr) {
2738         size[i] = bytes;
2739         break;
2740       }
2741 
2742       // check that the gap value is right
2743       if (had_top_overlap && !have_adjusted_gap) {
2744         size_t actual_gap = base[i-1] - base[i] - bytes;
2745         if (gap != actual_gap) {
2746           // adjust the gap value and retry the last 2 allocations
2747           assert(i > 0, "gap adjustment code problem");
2748           have_adjusted_gap = true;  // adjust the gap only once, just in case
2749           gap = actual_gap;
2750           if (PrintMiscellaneous && Verbose) {
2751             warning("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2752           }
2753           unmap_memory(base[i], bytes);
2754           unmap_memory(base[i-1], size[i-1]);
2755           i-=2;
2756           continue;
2757         }
2758       }
2759 
2760       // Does this overlap the block we wanted? Give back the overlapped
2761       // parts and try again.
2762       //
2763       // There is still a bug in this code: if top_overlap == bytes,
2764       // the overlap is offset from requested region by the value of gap.
2765       // In this case giving back the overlapped part will not work,
2766       // because we'll give back the entire block at base[i] and
2767       // therefore the subsequent allocation will not generate a new gap.
2768       // This could be fixed with a new algorithm that used larger
2769       // or variable size chunks to find the requested region -
2770       // but such a change would introduce additional complications.
2771       // It's rare enough that the planets align for this bug,
2772       // so we'll just wait for a fix for 6204603/5003415 which
2773       // will provide a mmap flag to allow us to avoid this business.
2774 
2775       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2776       if (top_overlap >= 0 && top_overlap < bytes) {
2777         had_top_overlap = true;
2778         unmap_memory(base[i], top_overlap);
2779         base[i] += top_overlap;
2780         size[i] = bytes - top_overlap;
2781       } else {
2782         size_t bottom_overlap = base[i] + bytes - requested_addr;
2783         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2784           if (PrintMiscellaneous && Verbose && bottom_overlap == 0) {
2785             warning("attempt_reserve_memory_at: possible alignment bug");
2786           }
2787           unmap_memory(requested_addr, bottom_overlap);
2788           size[i] = bytes - bottom_overlap;
2789         } else {
2790           size[i] = bytes;
2791         }
2792       }
2793     }
2794   }
2795 
2796   // Give back the unused reserved pieces.
2797 
2798   for (int j = 0; j < i; ++j) {
2799     if (base[j] != NULL) {
2800       unmap_memory(base[j], size[j]);
2801     }
2802   }
2803 
2804   return (i < max_tries) ? requested_addr : NULL;
2805 }
2806 
2807 bool os::pd_release_memory(char* addr, size_t bytes) {
2808   size_t size = bytes;
2809   return munmap(addr, size) == 0;
2810 }
2811 
2812 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2813   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2814          "addr must be page aligned");
2815   int retVal = mprotect(addr, bytes, prot);
2816   return retVal == 0;
2817 }
2818 
2819 // Protect memory (Used to pass readonly pages through
2820 // JNI GetArray<type>Elements with empty arrays.)
2821 // Also, used for serialization page and for compressed oops null pointer
2822 // checking.
2823 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2824                         bool is_committed) {
2825   unsigned int p = 0;
2826   switch (prot) {
2827   case MEM_PROT_NONE: p = PROT_NONE; break;
2828   case MEM_PROT_READ: p = PROT_READ; break;
2829   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2830   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2831   default:
2832     ShouldNotReachHere();
2833   }
2834   // is_committed is unused.
2835   return solaris_mprotect(addr, bytes, p);
2836 }
2837 
2838 // guard_memory and unguard_memory only happens within stack guard pages.
2839 // Since ISM pertains only to the heap, guard and unguard memory should not
2840 /// happen with an ISM region.
2841 bool os::guard_memory(char* addr, size_t bytes) {
2842   return solaris_mprotect(addr, bytes, PROT_NONE);
2843 }
2844 
2845 bool os::unguard_memory(char* addr, size_t bytes) {
2846   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2847 }
2848 
2849 // Large page support
2850 static size_t _large_page_size = 0;
2851 
2852 // Insertion sort for small arrays (descending order).
2853 static void insertion_sort_descending(size_t* array, int len) {
2854   for (int i = 0; i < len; i++) {
2855     size_t val = array[i];
2856     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2857       size_t tmp = array[key];
2858       array[key] = array[key - 1];
2859       array[key - 1] = tmp;
2860     }
2861   }
2862 }
2863 
2864 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2865   const unsigned int usable_count = VM_Version::page_size_count();
2866   if (usable_count == 1) {
2867     return false;
2868   }
2869 
2870   // Find the right getpagesizes interface.  When solaris 11 is the minimum
2871   // build platform, getpagesizes() (without the '2') can be called directly.
2872   typedef int (*gps_t)(size_t[], int);
2873   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2874   if (gps_func == NULL) {
2875     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2876     if (gps_func == NULL) {
2877       if (warn) {
2878         warning("MPSS is not supported by the operating system.");
2879       }
2880       return false;
2881     }
2882   }
2883 
2884   // Fill the array of page sizes.
2885   int n = (*gps_func)(_page_sizes, page_sizes_max);
2886   assert(n > 0, "Solaris bug?");
2887 
2888   if (n == page_sizes_max) {
2889     // Add a sentinel value (necessary only if the array was completely filled
2890     // since it is static (zeroed at initialization)).
2891     _page_sizes[--n] = 0;
2892     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2893   }
2894   assert(_page_sizes[n] == 0, "missing sentinel");
2895   trace_page_sizes("available page sizes", _page_sizes, n);
2896 
2897   if (n == 1) return false;     // Only one page size available.
2898 
2899   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2900   // select up to usable_count elements.  First sort the array, find the first
2901   // acceptable value, then copy the usable sizes to the top of the array and
2902   // trim the rest.  Make sure to include the default page size :-).
2903   //
2904   // A better policy could get rid of the 4M limit by taking the sizes of the
2905   // important VM memory regions (java heap and possibly the code cache) into
2906   // account.
2907   insertion_sort_descending(_page_sizes, n);
2908   const size_t size_limit =
2909     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2910   int beg;
2911   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2912   const int end = MIN2((int)usable_count, n) - 1;
2913   for (int cur = 0; cur < end; ++cur, ++beg) {
2914     _page_sizes[cur] = _page_sizes[beg];
2915   }
2916   _page_sizes[end] = vm_page_size();
2917   _page_sizes[end + 1] = 0;
2918 
2919   if (_page_sizes[end] > _page_sizes[end - 1]) {
2920     // Default page size is not the smallest; sort again.
2921     insertion_sort_descending(_page_sizes, end + 1);
2922   }
2923   *page_size = _page_sizes[0];
2924 
2925   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2926   return true;
2927 }
2928 
2929 void os::large_page_init() {
2930   if (UseLargePages) {
2931     // print a warning if any large page related flag is specified on command line
2932     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2933                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2934 
2935     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2936   }
2937 }
2938 
2939 bool os::Solaris::is_valid_page_size(size_t bytes) {
2940   for (int i = 0; _page_sizes[i] != 0; i++) {
2941     if (_page_sizes[i] == bytes) {
2942       return true;
2943     }
2944   }
2945   return false;
2946 }
2947 
2948 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2949   assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2950   assert(is_ptr_aligned((void*) start, align),
2951          PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2952   assert(is_size_aligned(bytes, align),
2953          SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2954 
2955   // Signal to OS that we want large pages for addresses
2956   // from addr, addr + bytes
2957   struct memcntl_mha mpss_struct;
2958   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2959   mpss_struct.mha_pagesize = align;
2960   mpss_struct.mha_flags = 0;
2961   // Upon successful completion, memcntl() returns 0
2962   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2963     debug_only(warning("Attempt to use MPSS failed."));
2964     return false;
2965   }
2966   return true;
2967 }
2968 
2969 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2970   fatal("os::reserve_memory_special should not be called on Solaris.");
2971   return NULL;
2972 }
2973 
2974 bool os::release_memory_special(char* base, size_t bytes) {
2975   fatal("os::release_memory_special should not be called on Solaris.");
2976   return false;
2977 }
2978 
2979 size_t os::large_page_size() {
2980   return _large_page_size;
2981 }
2982 
2983 // MPSS allows application to commit large page memory on demand; with ISM
2984 // the entire memory region must be allocated as shared memory.
2985 bool os::can_commit_large_page_memory() {
2986   return true;
2987 }
2988 
2989 bool os::can_execute_large_page_memory() {
2990   return true;
2991 }
2992 
2993 // Read calls from inside the vm need to perform state transitions
2994 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2995   size_t res;
2996   JavaThread* thread = (JavaThread*)Thread::current();
2997   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2998   ThreadBlockInVM tbiv(thread);
2999   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3000   return res;
3001 }
3002 
3003 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3004   size_t res;
3005   JavaThread* thread = (JavaThread*)Thread::current();
3006   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
3007   ThreadBlockInVM tbiv(thread);
3008   RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
3009   return res;
3010 }
3011 
3012 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3013   size_t res;
3014   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3015          "Assumed _thread_in_native");
3016   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3017   return res;
3018 }
3019 
3020 void os::naked_short_sleep(jlong ms) {
3021   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3022 
3023   // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3024   // Solaris requires -lrt for this.
3025   usleep((ms * 1000));
3026 
3027   return;
3028 }
3029 
3030 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3031 void os::infinite_sleep() {
3032   while (true) {    // sleep forever ...
3033     ::sleep(100);   // ... 100 seconds at a time
3034   }
3035 }
3036 
3037 // Used to convert frequent JVM_Yield() to nops
3038 bool os::dont_yield() {
3039   if (DontYieldALot) {
3040     static hrtime_t last_time = 0;
3041     hrtime_t diff = getTimeNanos() - last_time;
3042 
3043     if (diff < DontYieldALotInterval * 1000000) {
3044       return true;
3045     }
3046 
3047     last_time += diff;
3048 
3049     return false;
3050   } else {
3051     return false;
3052   }
3053 }
3054 
3055 // Note that yield semantics are defined by the scheduling class to which
3056 // the thread currently belongs.  Typically, yield will _not yield to
3057 // other equal or higher priority threads that reside on the dispatch queues
3058 // of other CPUs.
3059 
3060 void os::naked_yield() {
3061   thr_yield();
3062 }
3063 
3064 // Interface for setting lwp priorities.  If we are using T2 libthread,
3065 // which forces the use of BoundThreads or we manually set UseBoundThreads,
3066 // all of our threads will be assigned to real lwp's.  Using the thr_setprio
3067 // function is meaningless in this mode so we must adjust the real lwp's priority
3068 // The routines below implement the getting and setting of lwp priorities.
3069 //
3070 // Note: T2 is now the only supported libthread. UseBoundThreads flag is
3071 //       being deprecated and all threads are now BoundThreads
3072 //
3073 // Note: There are three priority scales used on Solaris.  Java priotities
3074 //       which range from 1 to 10, libthread "thr_setprio" scale which range
3075 //       from 0 to 127, and the current scheduling class of the process we
3076 //       are running in.  This is typically from -60 to +60.
3077 //       The setting of the lwp priorities in done after a call to thr_setprio
3078 //       so Java priorities are mapped to libthread priorities and we map from
3079 //       the latter to lwp priorities.  We don't keep priorities stored in
3080 //       Java priorities since some of our worker threads want to set priorities
3081 //       higher than all Java threads.
3082 //
3083 // For related information:
3084 // (1)  man -s 2 priocntl
3085 // (2)  man -s 4 priocntl
3086 // (3)  man dispadmin
3087 // =    librt.so
3088 // =    libthread/common/rtsched.c - thrp_setlwpprio().
3089 // =    ps -cL <pid> ... to validate priority.
3090 // =    sched_get_priority_min and _max
3091 //              pthread_create
3092 //              sched_setparam
3093 //              pthread_setschedparam
3094 //
3095 // Assumptions:
3096 // +    We assume that all threads in the process belong to the same
3097 //              scheduling class.   IE. an homogenous process.
3098 // +    Must be root or in IA group to change change "interactive" attribute.
3099 //              Priocntl() will fail silently.  The only indication of failure is when
3100 //              we read-back the value and notice that it hasn't changed.
3101 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
3102 // +    For RT, change timeslice as well.  Invariant:
3103 //              constant "priority integral"
3104 //              Konst == TimeSlice * (60-Priority)
3105 //              Given a priority, compute appropriate timeslice.
3106 // +    Higher numerical values have higher priority.
3107 
3108 // sched class attributes
3109 typedef struct {
3110   int   schedPolicy;              // classID
3111   int   maxPrio;
3112   int   minPrio;
3113 } SchedInfo;
3114 
3115 
3116 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3117 
3118 #ifdef ASSERT
3119 static int  ReadBackValidate = 1;
3120 #endif
3121 static int  myClass     = 0;
3122 static int  myMin       = 0;
3123 static int  myMax       = 0;
3124 static int  myCur       = 0;
3125 static bool priocntl_enable = false;
3126 
3127 static const int criticalPrio = FXCriticalPriority;
3128 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3129 
3130 
3131 // lwp_priocntl_init
3132 //
3133 // Try to determine the priority scale for our process.
3134 //
3135 // Return errno or 0 if OK.
3136 //
3137 static int lwp_priocntl_init() {
3138   int rslt;
3139   pcinfo_t ClassInfo;
3140   pcparms_t ParmInfo;
3141   int i;
3142 
3143   if (!UseThreadPriorities) return 0;
3144 
3145   // If ThreadPriorityPolicy is 1, switch tables
3146   if (ThreadPriorityPolicy == 1) {
3147     for (i = 0; i < CriticalPriority+1; i++)
3148       os::java_to_os_priority[i] = prio_policy1[i];
3149   }
3150   if (UseCriticalJavaThreadPriority) {
3151     // MaxPriority always maps to the FX scheduling class and criticalPrio.
3152     // See set_native_priority() and set_lwp_class_and_priority().
3153     // Save original MaxPriority mapping in case attempt to
3154     // use critical priority fails.
3155     java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3156     // Set negative to distinguish from other priorities
3157     os::java_to_os_priority[MaxPriority] = -criticalPrio;
3158   }
3159 
3160   // Get IDs for a set of well-known scheduling classes.
3161   // TODO-FIXME: GETCLINFO returns the current # of classes in the
3162   // the system.  We should have a loop that iterates over the
3163   // classID values, which are known to be "small" integers.
3164 
3165   strcpy(ClassInfo.pc_clname, "TS");
3166   ClassInfo.pc_cid = -1;
3167   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3168   if (rslt < 0) return errno;
3169   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3170   tsLimits.schedPolicy = ClassInfo.pc_cid;
3171   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3172   tsLimits.minPrio = -tsLimits.maxPrio;
3173 
3174   strcpy(ClassInfo.pc_clname, "IA");
3175   ClassInfo.pc_cid = -1;
3176   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3177   if (rslt < 0) return errno;
3178   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3179   iaLimits.schedPolicy = ClassInfo.pc_cid;
3180   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3181   iaLimits.minPrio = -iaLimits.maxPrio;
3182 
3183   strcpy(ClassInfo.pc_clname, "RT");
3184   ClassInfo.pc_cid = -1;
3185   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3186   if (rslt < 0) return errno;
3187   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3188   rtLimits.schedPolicy = ClassInfo.pc_cid;
3189   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3190   rtLimits.minPrio = 0;
3191 
3192   strcpy(ClassInfo.pc_clname, "FX");
3193   ClassInfo.pc_cid = -1;
3194   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3195   if (rslt < 0) return errno;
3196   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3197   fxLimits.schedPolicy = ClassInfo.pc_cid;
3198   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3199   fxLimits.minPrio = 0;
3200 
3201   // Query our "current" scheduling class.
3202   // This will normally be IA, TS or, rarely, FX or RT.
3203   memset(&ParmInfo, 0, sizeof(ParmInfo));
3204   ParmInfo.pc_cid = PC_CLNULL;
3205   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3206   if (rslt < 0) return errno;
3207   myClass = ParmInfo.pc_cid;
3208 
3209   // We now know our scheduling classId, get specific information
3210   // about the class.
3211   ClassInfo.pc_cid = myClass;
3212   ClassInfo.pc_clname[0] = 0;
3213   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3214   if (rslt < 0) return errno;
3215 
3216   if (ThreadPriorityVerbose) {
3217     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3218   }
3219 
3220   memset(&ParmInfo, 0, sizeof(pcparms_t));
3221   ParmInfo.pc_cid = PC_CLNULL;
3222   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3223   if (rslt < 0) return errno;
3224 
3225   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3226     myMin = rtLimits.minPrio;
3227     myMax = rtLimits.maxPrio;
3228   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3229     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3230     myMin = iaLimits.minPrio;
3231     myMax = iaLimits.maxPrio;
3232     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3233   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3234     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3235     myMin = tsLimits.minPrio;
3236     myMax = tsLimits.maxPrio;
3237     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3238   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3239     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3240     myMin = fxLimits.minPrio;
3241     myMax = fxLimits.maxPrio;
3242     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3243   } else {
3244     // No clue - punt
3245     if (ThreadPriorityVerbose) {
3246       tty->print_cr("Unknown scheduling class: %s ... \n",
3247                     ClassInfo.pc_clname);
3248     }
3249     return EINVAL;      // no clue, punt
3250   }
3251 
3252   if (ThreadPriorityVerbose) {
3253     tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3254   }
3255 
3256   priocntl_enable = true;  // Enable changing priorities
3257   return 0;
3258 }
3259 
3260 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3261 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3262 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3263 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3264 
3265 
3266 // scale_to_lwp_priority
3267 //
3268 // Convert from the libthread "thr_setprio" scale to our current
3269 // lwp scheduling class scale.
3270 //
3271 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3272   int v;
3273 
3274   if (x == 127) return rMax;            // avoid round-down
3275   v = (((x*(rMax-rMin)))/128)+rMin;
3276   return v;
3277 }
3278 
3279 
3280 // set_lwp_class_and_priority
3281 int set_lwp_class_and_priority(int ThreadID, int lwpid,
3282                                int newPrio, int new_class, bool scale) {
3283   int rslt;
3284   int Actual, Expected, prv;
3285   pcparms_t ParmInfo;                   // for GET-SET
3286 #ifdef ASSERT
3287   pcparms_t ReadBack;                   // for readback
3288 #endif
3289 
3290   // Set priority via PC_GETPARMS, update, PC_SETPARMS
3291   // Query current values.
3292   // TODO: accelerate this by eliminating the PC_GETPARMS call.
3293   // Cache "pcparms_t" in global ParmCache.
3294   // TODO: elide set-to-same-value
3295 
3296   // If something went wrong on init, don't change priorities.
3297   if (!priocntl_enable) {
3298     if (ThreadPriorityVerbose) {
3299       tty->print_cr("Trying to set priority but init failed, ignoring");
3300     }
3301     return EINVAL;
3302   }
3303 
3304   // If lwp hasn't started yet, just return
3305   // the _start routine will call us again.
3306   if (lwpid <= 0) {
3307     if (ThreadPriorityVerbose) {
3308       tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3309                     INTPTR_FORMAT " to %d, lwpid not set",
3310                     ThreadID, newPrio);
3311     }
3312     return 0;
3313   }
3314 
3315   if (ThreadPriorityVerbose) {
3316     tty->print_cr ("set_lwp_class_and_priority("
3317                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3318                    ThreadID, lwpid, newPrio);
3319   }
3320 
3321   memset(&ParmInfo, 0, sizeof(pcparms_t));
3322   ParmInfo.pc_cid = PC_CLNULL;
3323   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3324   if (rslt < 0) return errno;
3325 
3326   int cur_class = ParmInfo.pc_cid;
3327   ParmInfo.pc_cid = (id_t)new_class;
3328 
3329   if (new_class == rtLimits.schedPolicy) {
3330     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3331     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3332                                                        rtLimits.maxPrio, newPrio)
3333                                : newPrio;
3334     rtInfo->rt_tqsecs  = RT_NOCHANGE;
3335     rtInfo->rt_tqnsecs = RT_NOCHANGE;
3336     if (ThreadPriorityVerbose) {
3337       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3338     }
3339   } else if (new_class == iaLimits.schedPolicy) {
3340     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3341     int maxClamped     = MIN2(iaLimits.maxPrio,
3342                               cur_class == new_class
3343                               ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3344     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3345                                                        maxClamped, newPrio)
3346                                : newPrio;
3347     iaInfo->ia_uprilim = cur_class == new_class
3348                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3349     iaInfo->ia_mode    = IA_NOCHANGE;
3350     if (ThreadPriorityVerbose) {
3351       tty->print_cr("IA: [%d...%d] %d->%d\n",
3352                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3353     }
3354   } else if (new_class == tsLimits.schedPolicy) {
3355     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3356     int maxClamped     = MIN2(tsLimits.maxPrio,
3357                               cur_class == new_class
3358                               ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3359     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3360                                                        maxClamped, newPrio)
3361                                : newPrio;
3362     tsInfo->ts_uprilim = cur_class == new_class
3363                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3364     if (ThreadPriorityVerbose) {
3365       tty->print_cr("TS: [%d...%d] %d->%d\n",
3366                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3367     }
3368   } else if (new_class == fxLimits.schedPolicy) {
3369     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3370     int maxClamped     = MIN2(fxLimits.maxPrio,
3371                               cur_class == new_class
3372                               ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3373     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3374                                                        maxClamped, newPrio)
3375                                : newPrio;
3376     fxInfo->fx_uprilim = cur_class == new_class
3377                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3378     fxInfo->fx_tqsecs  = FX_NOCHANGE;
3379     fxInfo->fx_tqnsecs = FX_NOCHANGE;
3380     if (ThreadPriorityVerbose) {
3381       tty->print_cr("FX: [%d...%d] %d->%d\n",
3382                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3383     }
3384   } else {
3385     if (ThreadPriorityVerbose) {
3386       tty->print_cr("Unknown new scheduling class %d\n", new_class);
3387     }
3388     return EINVAL;    // no clue, punt
3389   }
3390 
3391   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3392   if (ThreadPriorityVerbose && rslt) {
3393     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3394   }
3395   if (rslt < 0) return errno;
3396 
3397 #ifdef ASSERT
3398   // Sanity check: read back what we just attempted to set.
3399   // In theory it could have changed in the interim ...
3400   //
3401   // The priocntl system call is tricky.
3402   // Sometimes it'll validate the priority value argument and
3403   // return EINVAL if unhappy.  At other times it fails silently.
3404   // Readbacks are prudent.
3405 
3406   if (!ReadBackValidate) return 0;
3407 
3408   memset(&ReadBack, 0, sizeof(pcparms_t));
3409   ReadBack.pc_cid = PC_CLNULL;
3410   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3411   assert(rslt >= 0, "priocntl failed");
3412   Actual = Expected = 0xBAD;
3413   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3414   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3415     Actual   = RTPRI(ReadBack)->rt_pri;
3416     Expected = RTPRI(ParmInfo)->rt_pri;
3417   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3418     Actual   = IAPRI(ReadBack)->ia_upri;
3419     Expected = IAPRI(ParmInfo)->ia_upri;
3420   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3421     Actual   = TSPRI(ReadBack)->ts_upri;
3422     Expected = TSPRI(ParmInfo)->ts_upri;
3423   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3424     Actual   = FXPRI(ReadBack)->fx_upri;
3425     Expected = FXPRI(ParmInfo)->fx_upri;
3426   } else {
3427     if (ThreadPriorityVerbose) {
3428       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3429                     ParmInfo.pc_cid);
3430     }
3431   }
3432 
3433   if (Actual != Expected) {
3434     if (ThreadPriorityVerbose) {
3435       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3436                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3437     }
3438   }
3439 #endif
3440 
3441   return 0;
3442 }
3443 
3444 // Solaris only gives access to 128 real priorities at a time,
3445 // so we expand Java's ten to fill this range.  This would be better
3446 // if we dynamically adjusted relative priorities.
3447 //
3448 // The ThreadPriorityPolicy option allows us to select 2 different
3449 // priority scales.
3450 //
3451 // ThreadPriorityPolicy=0
3452 // Since the Solaris' default priority is MaximumPriority, we do not
3453 // set a priority lower than Max unless a priority lower than
3454 // NormPriority is requested.
3455 //
3456 // ThreadPriorityPolicy=1
3457 // This mode causes the priority table to get filled with
3458 // linear values.  NormPriority get's mapped to 50% of the
3459 // Maximum priority an so on.  This will cause VM threads
3460 // to get unfair treatment against other Solaris processes
3461 // which do not explicitly alter their thread priorities.
3462 
3463 int os::java_to_os_priority[CriticalPriority + 1] = {
3464   -99999,         // 0 Entry should never be used
3465 
3466   0,              // 1 MinPriority
3467   32,             // 2
3468   64,             // 3
3469 
3470   96,             // 4
3471   127,            // 5 NormPriority
3472   127,            // 6
3473 
3474   127,            // 7
3475   127,            // 8
3476   127,            // 9 NearMaxPriority
3477 
3478   127,            // 10 MaxPriority
3479 
3480   -criticalPrio   // 11 CriticalPriority
3481 };
3482 
3483 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3484   OSThread* osthread = thread->osthread();
3485 
3486   // Save requested priority in case the thread hasn't been started
3487   osthread->set_native_priority(newpri);
3488 
3489   // Check for critical priority request
3490   bool fxcritical = false;
3491   if (newpri == -criticalPrio) {
3492     fxcritical = true;
3493     newpri = criticalPrio;
3494   }
3495 
3496   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3497   if (!UseThreadPriorities) return OS_OK;
3498 
3499   int status = 0;
3500 
3501   if (!fxcritical) {
3502     // Use thr_setprio only if we have a priority that thr_setprio understands
3503     status = thr_setprio(thread->osthread()->thread_id(), newpri);
3504   }
3505 
3506   int lwp_status =
3507           set_lwp_class_and_priority(osthread->thread_id(),
3508                                      osthread->lwp_id(),
3509                                      newpri,
3510                                      fxcritical ? fxLimits.schedPolicy : myClass,
3511                                      !fxcritical);
3512   if (lwp_status != 0 && fxcritical) {
3513     // Try again, this time without changing the scheduling class
3514     newpri = java_MaxPriority_to_os_priority;
3515     lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3516                                             osthread->lwp_id(),
3517                                             newpri, myClass, false);
3518   }
3519   status |= lwp_status;
3520   return (status == 0) ? OS_OK : OS_ERR;
3521 }
3522 
3523 
3524 OSReturn os::get_native_priority(const Thread* const thread,
3525                                  int *priority_ptr) {
3526   int p;
3527   if (!UseThreadPriorities) {
3528     *priority_ptr = NormalPriority;
3529     return OS_OK;
3530   }
3531   int status = thr_getprio(thread->osthread()->thread_id(), &p);
3532   if (status != 0) {
3533     return OS_ERR;
3534   }
3535   *priority_ptr = p;
3536   return OS_OK;
3537 }
3538 
3539 
3540 // Hint to the underlying OS that a task switch would not be good.
3541 // Void return because it's a hint and can fail.
3542 void os::hint_no_preempt() {
3543   schedctl_start(schedctl_init());
3544 }
3545 
3546 static void resume_clear_context(OSThread *osthread) {
3547   osthread->set_ucontext(NULL);
3548 }
3549 
3550 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3551   osthread->set_ucontext(context);
3552 }
3553 
3554 static PosixSemaphore sr_semaphore;
3555 
3556 void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3557   // Save and restore errno to avoid confusing native code with EINTR
3558   // after sigsuspend.
3559   int old_errno = errno;
3560 
3561   OSThread* osthread = thread->osthread();
3562   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3563 
3564   os::SuspendResume::State current = osthread->sr.state();
3565   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3566     suspend_save_context(osthread, uc);
3567 
3568     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3569     os::SuspendResume::State state = osthread->sr.suspended();
3570     if (state == os::SuspendResume::SR_SUSPENDED) {
3571       sigset_t suspend_set;  // signals for sigsuspend()
3572 
3573       // get current set of blocked signals and unblock resume signal
3574       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3575       sigdelset(&suspend_set, os::Solaris::SIGasync());
3576 
3577       sr_semaphore.signal();
3578       // wait here until we are resumed
3579       while (1) {
3580         sigsuspend(&suspend_set);
3581 
3582         os::SuspendResume::State result = osthread->sr.running();
3583         if (result == os::SuspendResume::SR_RUNNING) {
3584           sr_semaphore.signal();
3585           break;
3586         }
3587       }
3588 
3589     } else if (state == os::SuspendResume::SR_RUNNING) {
3590       // request was cancelled, continue
3591     } else {
3592       ShouldNotReachHere();
3593     }
3594 
3595     resume_clear_context(osthread);
3596   } else if (current == os::SuspendResume::SR_RUNNING) {
3597     // request was cancelled, continue
3598   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3599     // ignore
3600   } else {
3601     // ignore
3602   }
3603 
3604   errno = old_errno;
3605 }
3606 
3607 void os::print_statistics() {
3608 }
3609 
3610 bool os::message_box(const char* title, const char* message) {
3611   int i;
3612   fdStream err(defaultStream::error_fd());
3613   for (i = 0; i < 78; i++) err.print_raw("=");
3614   err.cr();
3615   err.print_raw_cr(title);
3616   for (i = 0; i < 78; i++) err.print_raw("-");
3617   err.cr();
3618   err.print_raw_cr(message);
3619   for (i = 0; i < 78; i++) err.print_raw("=");
3620   err.cr();
3621 
3622   char buf[16];
3623   // Prevent process from exiting upon "read error" without consuming all CPU
3624   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3625 
3626   return buf[0] == 'y' || buf[0] == 'Y';
3627 }
3628 
3629 static int sr_notify(OSThread* osthread) {
3630   int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3631   assert_status(status == 0, status, "thr_kill");
3632   return status;
3633 }
3634 
3635 // "Randomly" selected value for how long we want to spin
3636 // before bailing out on suspending a thread, also how often
3637 // we send a signal to a thread we want to resume
3638 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3639 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3640 
3641 static bool do_suspend(OSThread* osthread) {
3642   assert(osthread->sr.is_running(), "thread should be running");
3643   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3644 
3645   // mark as suspended and send signal
3646   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3647     // failed to switch, state wasn't running?
3648     ShouldNotReachHere();
3649     return false;
3650   }
3651 
3652   if (sr_notify(osthread) != 0) {
3653     ShouldNotReachHere();
3654   }
3655 
3656   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3657   while (true) {
3658     if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3659       break;
3660     } else {
3661       // timeout
3662       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3663       if (cancelled == os::SuspendResume::SR_RUNNING) {
3664         return false;
3665       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3666         // make sure that we consume the signal on the semaphore as well
3667         sr_semaphore.wait();
3668         break;
3669       } else {
3670         ShouldNotReachHere();
3671         return false;
3672       }
3673     }
3674   }
3675 
3676   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3677   return true;
3678 }
3679 
3680 static void do_resume(OSThread* osthread) {
3681   assert(osthread->sr.is_suspended(), "thread should be suspended");
3682   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3683 
3684   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3685     // failed to switch to WAKEUP_REQUEST
3686     ShouldNotReachHere();
3687     return;
3688   }
3689 
3690   while (true) {
3691     if (sr_notify(osthread) == 0) {
3692       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3693         if (osthread->sr.is_running()) {
3694           return;
3695         }
3696       }
3697     } else {
3698       ShouldNotReachHere();
3699     }
3700   }
3701 
3702   guarantee(osthread->sr.is_running(), "Must be running!");
3703 }
3704 
3705 void os::SuspendedThreadTask::internal_do_task() {
3706   if (do_suspend(_thread->osthread())) {
3707     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3708     do_task(context);
3709     do_resume(_thread->osthread());
3710   }
3711 }
3712 
3713 class PcFetcher : public os::SuspendedThreadTask {
3714  public:
3715   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3716   ExtendedPC result();
3717  protected:
3718   void do_task(const os::SuspendedThreadTaskContext& context);
3719  private:
3720   ExtendedPC _epc;
3721 };
3722 
3723 ExtendedPC PcFetcher::result() {
3724   guarantee(is_done(), "task is not done yet.");
3725   return _epc;
3726 }
3727 
3728 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3729   Thread* thread = context.thread();
3730   OSThread* osthread = thread->osthread();
3731   if (osthread->ucontext() != NULL) {
3732     _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3733   } else {
3734     // NULL context is unexpected, double-check this is the VMThread
3735     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3736   }
3737 }
3738 
3739 // A lightweight implementation that does not suspend the target thread and
3740 // thus returns only a hint. Used for profiling only!
3741 ExtendedPC os::get_thread_pc(Thread* thread) {
3742   // Make sure that it is called by the watcher and the Threads lock is owned.
3743   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3744   // For now, is only used to profile the VM Thread
3745   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3746   PcFetcher fetcher(thread);
3747   fetcher.run();
3748   return fetcher.result();
3749 }
3750 
3751 
3752 // This does not do anything on Solaris. This is basically a hook for being
3753 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3754 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3755                               const methodHandle& method, JavaCallArguments* args,
3756                               Thread* thread) {
3757   f(value, method, args, thread);
3758 }
3759 
3760 // This routine may be used by user applications as a "hook" to catch signals.
3761 // The user-defined signal handler must pass unrecognized signals to this
3762 // routine, and if it returns true (non-zero), then the signal handler must
3763 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3764 // routine will never retun false (zero), but instead will execute a VM panic
3765 // routine kill the process.
3766 //
3767 // If this routine returns false, it is OK to call it again.  This allows
3768 // the user-defined signal handler to perform checks either before or after
3769 // the VM performs its own checks.  Naturally, the user code would be making
3770 // a serious error if it tried to handle an exception (such as a null check
3771 // or breakpoint) that the VM was generating for its own correct operation.
3772 //
3773 // This routine may recognize any of the following kinds of signals:
3774 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3775 // os::Solaris::SIGasync
3776 // It should be consulted by handlers for any of those signals.
3777 //
3778 // The caller of this routine must pass in the three arguments supplied
3779 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3780 // field of the structure passed to sigaction().  This routine assumes that
3781 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3782 //
3783 // Note that the VM will print warnings if it detects conflicting signal
3784 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3785 //
3786 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3787                                                    siginfo_t* siginfo,
3788                                                    void* ucontext,
3789                                                    int abort_if_unrecognized);
3790 
3791 
3792 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3793   int orig_errno = errno;  // Preserve errno value over signal handler.
3794   JVM_handle_solaris_signal(sig, info, ucVoid, true);
3795   errno = orig_errno;
3796 }
3797 
3798 // This boolean allows users to forward their own non-matching signals
3799 // to JVM_handle_solaris_signal, harmlessly.
3800 bool os::Solaris::signal_handlers_are_installed = false;
3801 
3802 // For signal-chaining
3803 bool os::Solaris::libjsig_is_loaded = false;
3804 typedef struct sigaction *(*get_signal_t)(int);
3805 get_signal_t os::Solaris::get_signal_action = NULL;
3806 
3807 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3808   struct sigaction *actp = NULL;
3809 
3810   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3811     // Retrieve the old signal handler from libjsig
3812     actp = (*get_signal_action)(sig);
3813   }
3814   if (actp == NULL) {
3815     // Retrieve the preinstalled signal handler from jvm
3816     actp = get_preinstalled_handler(sig);
3817   }
3818 
3819   return actp;
3820 }
3821 
3822 static bool call_chained_handler(struct sigaction *actp, int sig,
3823                                  siginfo_t *siginfo, void *context) {
3824   // Call the old signal handler
3825   if (actp->sa_handler == SIG_DFL) {
3826     // It's more reasonable to let jvm treat it as an unexpected exception
3827     // instead of taking the default action.
3828     return false;
3829   } else if (actp->sa_handler != SIG_IGN) {
3830     if ((actp->sa_flags & SA_NODEFER) == 0) {
3831       // automaticlly block the signal
3832       sigaddset(&(actp->sa_mask), sig);
3833     }
3834 
3835     sa_handler_t hand;
3836     sa_sigaction_t sa;
3837     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3838     // retrieve the chained handler
3839     if (siginfo_flag_set) {
3840       sa = actp->sa_sigaction;
3841     } else {
3842       hand = actp->sa_handler;
3843     }
3844 
3845     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3846       actp->sa_handler = SIG_DFL;
3847     }
3848 
3849     // try to honor the signal mask
3850     sigset_t oset;
3851     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3852 
3853     // call into the chained handler
3854     if (siginfo_flag_set) {
3855       (*sa)(sig, siginfo, context);
3856     } else {
3857       (*hand)(sig);
3858     }
3859 
3860     // restore the signal mask
3861     pthread_sigmask(SIG_SETMASK, &oset, 0);
3862   }
3863   // Tell jvm's signal handler the signal is taken care of.
3864   return true;
3865 }
3866 
3867 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3868   bool chained = false;
3869   // signal-chaining
3870   if (UseSignalChaining) {
3871     struct sigaction *actp = get_chained_signal_action(sig);
3872     if (actp != NULL) {
3873       chained = call_chained_handler(actp, sig, siginfo, context);
3874     }
3875   }
3876   return chained;
3877 }
3878 
3879 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3880   assert((chainedsigactions != (struct sigaction *)NULL) &&
3881          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3882   if (preinstalled_sigs[sig] != 0) {
3883     return &chainedsigactions[sig];
3884   }
3885   return NULL;
3886 }
3887 
3888 void os::Solaris::save_preinstalled_handler(int sig,
3889                                             struct sigaction& oldAct) {
3890   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3891   assert((chainedsigactions != (struct sigaction *)NULL) &&
3892          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3893   chainedsigactions[sig] = oldAct;
3894   preinstalled_sigs[sig] = 1;
3895 }
3896 
3897 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3898                                      bool oktochain) {
3899   // Check for overwrite.
3900   struct sigaction oldAct;
3901   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3902   void* oldhand =
3903       oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3904                           : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3905   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3906       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3907       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3908     if (AllowUserSignalHandlers || !set_installed) {
3909       // Do not overwrite; user takes responsibility to forward to us.
3910       return;
3911     } else if (UseSignalChaining) {
3912       if (oktochain) {
3913         // save the old handler in jvm
3914         save_preinstalled_handler(sig, oldAct);
3915       } else {
3916         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3917       }
3918       // libjsig also interposes the sigaction() call below and saves the
3919       // old sigaction on it own.
3920     } else {
3921       fatal("Encountered unexpected pre-existing sigaction handler "
3922             "%#lx for signal %d.", (long)oldhand, sig);
3923     }
3924   }
3925 
3926   struct sigaction sigAct;
3927   sigfillset(&(sigAct.sa_mask));
3928   sigAct.sa_handler = SIG_DFL;
3929 
3930   sigAct.sa_sigaction = signalHandler;
3931   // Handle SIGSEGV on alternate signal stack if
3932   // not using stack banging
3933   if (!UseStackBanging && sig == SIGSEGV) {
3934     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3935   } else {
3936     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3937   }
3938   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3939 
3940   sigaction(sig, &sigAct, &oldAct);
3941 
3942   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3943                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3944   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3945 }
3946 
3947 
3948 #define DO_SIGNAL_CHECK(sig)                      \
3949   do {                                            \
3950     if (!sigismember(&check_signal_done, sig)) {  \
3951       os::Solaris::check_signal_handler(sig);     \
3952     }                                             \
3953   } while (0)
3954 
3955 // This method is a periodic task to check for misbehaving JNI applications
3956 // under CheckJNI, we can add any periodic checks here
3957 
3958 void os::run_periodic_checks() {
3959   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3960   // thereby preventing a NULL checks.
3961   if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3962 
3963   if (check_signals == false) return;
3964 
3965   // SEGV and BUS if overridden could potentially prevent
3966   // generation of hs*.log in the event of a crash, debugging
3967   // such a case can be very challenging, so we absolutely
3968   // check for the following for a good measure:
3969   DO_SIGNAL_CHECK(SIGSEGV);
3970   DO_SIGNAL_CHECK(SIGILL);
3971   DO_SIGNAL_CHECK(SIGFPE);
3972   DO_SIGNAL_CHECK(SIGBUS);
3973   DO_SIGNAL_CHECK(SIGPIPE);
3974   DO_SIGNAL_CHECK(SIGXFSZ);
3975 
3976   // ReduceSignalUsage allows the user to override these handlers
3977   // see comments at the very top and jvm_solaris.h
3978   if (!ReduceSignalUsage) {
3979     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3980     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3981     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3982     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3983   }
3984 
3985   // See comments above for using JVM1/JVM2
3986   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
3987 
3988 }
3989 
3990 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3991 
3992 static os_sigaction_t os_sigaction = NULL;
3993 
3994 void os::Solaris::check_signal_handler(int sig) {
3995   char buf[O_BUFLEN];
3996   address jvmHandler = NULL;
3997 
3998   struct sigaction act;
3999   if (os_sigaction == NULL) {
4000     // only trust the default sigaction, in case it has been interposed
4001     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4002     if (os_sigaction == NULL) return;
4003   }
4004 
4005   os_sigaction(sig, (struct sigaction*)NULL, &act);
4006 
4007   address thisHandler = (act.sa_flags & SA_SIGINFO)
4008     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4009     : CAST_FROM_FN_PTR(address, act.sa_handler);
4010 
4011 
4012   switch (sig) {
4013   case SIGSEGV:
4014   case SIGBUS:
4015   case SIGFPE:
4016   case SIGPIPE:
4017   case SIGXFSZ:
4018   case SIGILL:
4019     jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4020     break;
4021 
4022   case SHUTDOWN1_SIGNAL:
4023   case SHUTDOWN2_SIGNAL:
4024   case SHUTDOWN3_SIGNAL:
4025   case BREAK_SIGNAL:
4026     jvmHandler = (address)user_handler();
4027     break;
4028 
4029   default:
4030     int asynsig = os::Solaris::SIGasync();
4031 
4032     if (sig == asynsig) {
4033       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4034     } else {
4035       return;
4036     }
4037     break;
4038   }
4039 
4040 
4041   if (thisHandler != jvmHandler) {
4042     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4043     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4044     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4045     // No need to check this sig any longer
4046     sigaddset(&check_signal_done, sig);
4047     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4048     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4049       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4050                     exception_name(sig, buf, O_BUFLEN));
4051     }
4052   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4053     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4054     tty->print("expected:");
4055     os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
4056     tty->cr();
4057     tty->print("  found:");
4058     os::Posix::print_sa_flags(tty, act.sa_flags);
4059     tty->cr();
4060     // No need to check this sig any longer
4061     sigaddset(&check_signal_done, sig);
4062   }
4063 
4064   // Print all the signal handler state
4065   if (sigismember(&check_signal_done, sig)) {
4066     print_signal_handlers(tty, buf, O_BUFLEN);
4067   }
4068 
4069 }
4070 
4071 void os::Solaris::install_signal_handlers() {
4072   bool libjsigdone = false;
4073   signal_handlers_are_installed = true;
4074 
4075   // signal-chaining
4076   typedef void (*signal_setting_t)();
4077   signal_setting_t begin_signal_setting = NULL;
4078   signal_setting_t end_signal_setting = NULL;
4079   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4080                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4081   if (begin_signal_setting != NULL) {
4082     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4083                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4084     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4085                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4086     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4087                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4088     libjsig_is_loaded = true;
4089     if (os::Solaris::get_libjsig_version != NULL) {
4090       libjsigversion =  (*os::Solaris::get_libjsig_version)();
4091     }
4092     assert(UseSignalChaining, "should enable signal-chaining");
4093   }
4094   if (libjsig_is_loaded) {
4095     // Tell libjsig jvm is setting signal handlers
4096     (*begin_signal_setting)();
4097   }
4098 
4099   set_signal_handler(SIGSEGV, true, true);
4100   set_signal_handler(SIGPIPE, true, true);
4101   set_signal_handler(SIGXFSZ, true, true);
4102   set_signal_handler(SIGBUS, true, true);
4103   set_signal_handler(SIGILL, true, true);
4104   set_signal_handler(SIGFPE, true, true);
4105 
4106 
4107   if (os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4108     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4109     // can not register overridable signals which might be > 32
4110     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4111       // Tell libjsig jvm has finished setting signal handlers
4112       (*end_signal_setting)();
4113       libjsigdone = true;
4114     }
4115   }
4116 
4117   set_signal_handler(os::Solaris::SIGasync(), true, true);
4118 
4119   if (libjsig_is_loaded && !libjsigdone) {
4120     // Tell libjsig jvm finishes setting signal handlers
4121     (*end_signal_setting)();
4122   }
4123 
4124   // We don't activate signal checker if libjsig is in place, we trust ourselves
4125   // and if UserSignalHandler is installed all bets are off.
4126   // Log that signal checking is off only if -verbose:jni is specified.
4127   if (CheckJNICalls) {
4128     if (libjsig_is_loaded) {
4129       if (PrintJNIResolving) {
4130         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4131       }
4132       check_signals = false;
4133     }
4134     if (AllowUserSignalHandlers) {
4135       if (PrintJNIResolving) {
4136         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4137       }
4138       check_signals = false;
4139     }
4140   }
4141 }
4142 
4143 
4144 void report_error(const char* file_name, int line_no, const char* title,
4145                   const char* format, ...);
4146 
4147 // (Static) wrapper for getisax(2) call.
4148 os::Solaris::getisax_func_t os::Solaris::_getisax = 0;
4149 
4150 // (Static) wrappers for the liblgrp API
4151 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4152 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4153 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4154 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4155 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4156 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4157 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4158 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4159 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4160 
4161 // (Static) wrapper for meminfo() call.
4162 os::Solaris::meminfo_func_t os::Solaris::_meminfo = 0;
4163 
4164 static address resolve_symbol_lazy(const char* name) {
4165   address addr = (address) dlsym(RTLD_DEFAULT, name);
4166   if (addr == NULL) {
4167     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4168     addr = (address) dlsym(RTLD_NEXT, name);
4169   }
4170   return addr;
4171 }
4172 
4173 static address resolve_symbol(const char* name) {
4174   address addr = resolve_symbol_lazy(name);
4175   if (addr == NULL) {
4176     fatal(dlerror());
4177   }
4178   return addr;
4179 }
4180 
4181 void os::Solaris::libthread_init() {
4182   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4183 
4184   lwp_priocntl_init();
4185 
4186   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4187   if (func == NULL) {
4188     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4189     // Guarantee that this VM is running on an new enough OS (5.6 or
4190     // later) that it will have a new enough libthread.so.
4191     guarantee(func != NULL, "libthread.so is too old.");
4192   }
4193 
4194   int size;
4195   void (*handler_info_func)(address *, int *);
4196   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4197   handler_info_func(&handler_start, &size);
4198   handler_end = handler_start + size;
4199 }
4200 
4201 
4202 int_fnP_mutex_tP os::Solaris::_mutex_lock;
4203 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4204 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4205 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4206 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4207 int os::Solaris::_mutex_scope = USYNC_THREAD;
4208 
4209 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4210 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4211 int_fnP_cond_tP os::Solaris::_cond_signal;
4212 int_fnP_cond_tP os::Solaris::_cond_broadcast;
4213 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4214 int_fnP_cond_tP os::Solaris::_cond_destroy;
4215 int os::Solaris::_cond_scope = USYNC_THREAD;
4216 
4217 void os::Solaris::synchronization_init() {
4218   if (UseLWPSynchronization) {
4219     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4220     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4221     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4222     os::Solaris::set_mutex_init(lwp_mutex_init);
4223     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4224     os::Solaris::set_mutex_scope(USYNC_THREAD);
4225 
4226     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4227     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4228     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4229     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4230     os::Solaris::set_cond_init(lwp_cond_init);
4231     os::Solaris::set_cond_destroy(lwp_cond_destroy);
4232     os::Solaris::set_cond_scope(USYNC_THREAD);
4233   } else {
4234     os::Solaris::set_mutex_scope(USYNC_THREAD);
4235     os::Solaris::set_cond_scope(USYNC_THREAD);
4236 
4237     if (UsePthreads) {
4238       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4239       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4240       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4241       os::Solaris::set_mutex_init(pthread_mutex_default_init);
4242       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4243 
4244       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4245       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4246       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4247       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4248       os::Solaris::set_cond_init(pthread_cond_default_init);
4249       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4250     } else {
4251       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4252       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4253       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4254       os::Solaris::set_mutex_init(::mutex_init);
4255       os::Solaris::set_mutex_destroy(::mutex_destroy);
4256 
4257       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4258       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4259       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4260       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4261       os::Solaris::set_cond_init(::cond_init);
4262       os::Solaris::set_cond_destroy(::cond_destroy);
4263     }
4264   }
4265 }
4266 
4267 bool os::Solaris::liblgrp_init() {
4268   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4269   if (handle != NULL) {
4270     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4271     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4272     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4273     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4274     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4275     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4276     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4277     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4278                                                       dlsym(handle, "lgrp_cookie_stale")));
4279 
4280     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4281     set_lgrp_cookie(c);
4282     return true;
4283   }
4284   return false;
4285 }
4286 
4287 void os::Solaris::misc_sym_init() {
4288   address func;
4289 
4290   // getisax
4291   func = resolve_symbol_lazy("getisax");
4292   if (func != NULL) {
4293     os::Solaris::_getisax = CAST_TO_FN_PTR(getisax_func_t, func);
4294   }
4295 
4296   // meminfo
4297   func = resolve_symbol_lazy("meminfo");
4298   if (func != NULL) {
4299     os::Solaris::set_meminfo(CAST_TO_FN_PTR(meminfo_func_t, func));
4300   }
4301 }
4302 
4303 uint_t os::Solaris::getisax(uint32_t* array, uint_t n) {
4304   assert(_getisax != NULL, "_getisax not set");
4305   return _getisax(array, n);
4306 }
4307 
4308 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4309 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4310 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4311 
4312 void init_pset_getloadavg_ptr(void) {
4313   pset_getloadavg_ptr =
4314     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4315   if (PrintMiscellaneous && Verbose && pset_getloadavg_ptr == NULL) {
4316     warning("pset_getloadavg function not found");
4317   }
4318 }
4319 
4320 int os::Solaris::_dev_zero_fd = -1;
4321 
4322 // this is called _before_ the global arguments have been parsed
4323 void os::init(void) {
4324   _initial_pid = getpid();
4325 
4326   max_hrtime = first_hrtime = gethrtime();
4327 
4328   init_random(1234567);
4329 
4330   page_size = sysconf(_SC_PAGESIZE);
4331   if (page_size == -1) {
4332     fatal("os_solaris.cpp: os::init: sysconf failed (%s)", strerror(errno));
4333   }
4334   init_page_sizes((size_t) page_size);
4335 
4336   Solaris::initialize_system_info();
4337 
4338   // Initialize misc. symbols as soon as possible, so we can use them
4339   // if we need them.
4340   Solaris::misc_sym_init();
4341 
4342   int fd = ::open("/dev/zero", O_RDWR);
4343   if (fd < 0) {
4344     fatal("os::init: cannot open /dev/zero (%s)", strerror(errno));
4345   } else {
4346     Solaris::set_dev_zero_fd(fd);
4347 
4348     // Close on exec, child won't inherit.
4349     fcntl(fd, F_SETFD, FD_CLOEXEC);
4350   }
4351 
4352   clock_tics_per_sec = CLK_TCK;
4353 
4354   // check if dladdr1() exists; dladdr1 can provide more information than
4355   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4356   // and is available on linker patches for 5.7 and 5.8.
4357   // libdl.so must have been loaded, this call is just an entry lookup
4358   void * hdl = dlopen("libdl.so", RTLD_NOW);
4359   if (hdl) {
4360     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4361   }
4362 
4363   // (Solaris only) this switches to calls that actually do locking.
4364   ThreadCritical::initialize();
4365 
4366   main_thread = thr_self();
4367 
4368   // Constant minimum stack size allowed. It must be at least
4369   // the minimum of what the OS supports (thr_min_stack()), and
4370   // enough to allow the thread to get to user bytecode execution.
4371   Solaris::min_stack_allowed = MAX2(thr_min_stack(), Solaris::min_stack_allowed);
4372 }
4373 
4374 // To install functions for atexit system call
4375 extern "C" {
4376   static void perfMemory_exit_helper() {
4377     perfMemory_exit();
4378   }
4379 }
4380 
4381 // this is called _after_ the global arguments have been parsed
4382 jint os::init_2(void) {
4383   // try to enable extended file IO ASAP, see 6431278
4384   os::Solaris::try_enable_extended_io();
4385 
4386   // Allocate a single page and mark it as readable for safepoint polling.  Also
4387   // use this first mmap call to check support for MAP_ALIGN.
4388   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4389                                                       page_size,
4390                                                       MAP_PRIVATE | MAP_ALIGN,
4391                                                       PROT_READ);
4392   if (polling_page == NULL) {
4393     has_map_align = false;
4394     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4395                                                 PROT_READ);
4396   }
4397 
4398   os::set_polling_page(polling_page);
4399 
4400 #ifndef PRODUCT
4401   if (Verbose && PrintMiscellaneous) {
4402     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4403                (intptr_t)polling_page);
4404   }
4405 #endif
4406 
4407   if (!UseMembar) {
4408     address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4409     guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4410     os::set_memory_serialize_page(mem_serialize_page);
4411 
4412 #ifndef PRODUCT
4413     if (Verbose && PrintMiscellaneous) {
4414       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4415                  (intptr_t)mem_serialize_page);
4416     }
4417 #endif
4418   }
4419 
4420   // Check minimum allowable stack size for thread creation and to initialize
4421   // the java system classes, including StackOverflowError - depends on page
4422   // size.  Add a page for compiler2 recursion in main thread.
4423   // Add in 2*BytesPerWord times page size to account for VM stack during
4424   // class initialization depending on 32 or 64 bit VM.
4425   os::Solaris::min_stack_allowed = MAX2(os::Solaris::min_stack_allowed,
4426                                         JavaThread::stack_guard_zone_size() +
4427                                         JavaThread::stack_shadow_zone_size() +
4428                                         (2*BytesPerWord COMPILER2_PRESENT(+1)) * page_size);
4429 
4430   size_t threadStackSizeInBytes = ThreadStackSize * K;
4431   if (threadStackSizeInBytes != 0 &&
4432       threadStackSizeInBytes < os::Solaris::min_stack_allowed) {
4433     tty->print_cr("\nThe stack size specified is too small, Specify at least %dk",
4434                   os::Solaris::min_stack_allowed/K);
4435     return JNI_ERR;
4436   }
4437 
4438   // For 64kbps there will be a 64kb page size, which makes
4439   // the usable default stack size quite a bit less.  Increase the
4440   // stack for 64kb (or any > than 8kb) pages, this increases
4441   // virtual memory fragmentation (since we're not creating the
4442   // stack on a power of 2 boundary.  The real fix for this
4443   // should be to fix the guard page mechanism.
4444 
4445   if (vm_page_size() > 8*K) {
4446     threadStackSizeInBytes = (threadStackSizeInBytes != 0)
4447        ? threadStackSizeInBytes +
4448          JavaThread::stack_red_zone_size() +
4449          JavaThread::stack_yellow_zone_size()
4450        : 0;
4451     ThreadStackSize = threadStackSizeInBytes/K;
4452   }
4453 
4454   // Make the stack size a multiple of the page size so that
4455   // the yellow/red zones can be guarded.
4456   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4457                                                 vm_page_size()));
4458 
4459   Solaris::libthread_init();
4460 
4461   if (UseNUMA) {
4462     if (!Solaris::liblgrp_init()) {
4463       UseNUMA = false;
4464     } else {
4465       size_t lgrp_limit = os::numa_get_groups_num();
4466       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4467       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4468       FREE_C_HEAP_ARRAY(int, lgrp_ids);
4469       if (lgrp_num < 2) {
4470         // There's only one locality group, disable NUMA.
4471         UseNUMA = false;
4472       }
4473     }
4474     if (!UseNUMA && ForceNUMA) {
4475       UseNUMA = true;
4476     }
4477   }
4478 
4479   Solaris::signal_sets_init();
4480   Solaris::init_signal_mem();
4481   Solaris::install_signal_handlers();
4482 
4483   if (libjsigversion < JSIG_VERSION_1_4_1) {
4484     Maxlibjsigsigs = OLDMAXSIGNUM;
4485   }
4486 
4487   // initialize synchronization primitives to use either thread or
4488   // lwp synchronization (controlled by UseLWPSynchronization)
4489   Solaris::synchronization_init();
4490 
4491   if (MaxFDLimit) {
4492     // set the number of file descriptors to max. print out error
4493     // if getrlimit/setrlimit fails but continue regardless.
4494     struct rlimit nbr_files;
4495     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4496     if (status != 0) {
4497       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4498         perror("os::init_2 getrlimit failed");
4499       }
4500     } else {
4501       nbr_files.rlim_cur = nbr_files.rlim_max;
4502       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4503       if (status != 0) {
4504         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4505           perror("os::init_2 setrlimit failed");
4506         }
4507       }
4508     }
4509   }
4510 
4511   // Calculate theoretical max. size of Threads to guard gainst
4512   // artifical out-of-memory situations, where all available address-
4513   // space has been reserved by thread stacks. Default stack size is 1Mb.
4514   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4515     JavaThread::stack_size_at_create() : (1*K*K);
4516   assert(pre_thread_stack_size != 0, "Must have a stack");
4517   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4518   // we should start doing Virtual Memory banging. Currently when the threads will
4519   // have used all but 200Mb of space.
4520   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4521   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4522 
4523   // at-exit methods are called in the reverse order of their registration.
4524   // In Solaris 7 and earlier, atexit functions are called on return from
4525   // main or as a result of a call to exit(3C). There can be only 32 of
4526   // these functions registered and atexit() does not set errno. In Solaris
4527   // 8 and later, there is no limit to the number of functions registered
4528   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4529   // functions are called upon dlclose(3DL) in addition to return from main
4530   // and exit(3C).
4531 
4532   if (PerfAllowAtExitRegistration) {
4533     // only register atexit functions if PerfAllowAtExitRegistration is set.
4534     // atexit functions can be delayed until process exit time, which
4535     // can be problematic for embedded VM situations. Embedded VMs should
4536     // call DestroyJavaVM() to assure that VM resources are released.
4537 
4538     // note: perfMemory_exit_helper atexit function may be removed in
4539     // the future if the appropriate cleanup code can be added to the
4540     // VM_Exit VMOperation's doit method.
4541     if (atexit(perfMemory_exit_helper) != 0) {
4542       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4543     }
4544   }
4545 
4546   // Init pset_loadavg function pointer
4547   init_pset_getloadavg_ptr();
4548 
4549   return JNI_OK;
4550 }
4551 
4552 // Mark the polling page as unreadable
4553 void os::make_polling_page_unreadable(void) {
4554   if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4555     fatal("Could not disable polling page");
4556   }
4557 }
4558 
4559 // Mark the polling page as readable
4560 void os::make_polling_page_readable(void) {
4561   if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4562     fatal("Could not enable polling page");
4563   }
4564 }
4565 
4566 // OS interface.
4567 
4568 bool os::check_heap(bool force) { return true; }
4569 
4570 // Is a (classpath) directory empty?
4571 bool os::dir_is_empty(const char* path) {
4572   DIR *dir = NULL;
4573   struct dirent *ptr;
4574 
4575   dir = opendir(path);
4576   if (dir == NULL) return true;
4577 
4578   // Scan the directory
4579   bool result = true;
4580   char buf[sizeof(struct dirent) + MAX_PATH];
4581   struct dirent *dbuf = (struct dirent *) buf;
4582   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4583     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4584       result = false;
4585     }
4586   }
4587   closedir(dir);
4588   return result;
4589 }
4590 
4591 // This code originates from JDK's sysOpen and open64_w
4592 // from src/solaris/hpi/src/system_md.c
4593 
4594 int os::open(const char *path, int oflag, int mode) {
4595   if (strlen(path) > MAX_PATH - 1) {
4596     errno = ENAMETOOLONG;
4597     return -1;
4598   }
4599   int fd;
4600 
4601   fd = ::open64(path, oflag, mode);
4602   if (fd == -1) return -1;
4603 
4604   // If the open succeeded, the file might still be a directory
4605   {
4606     struct stat64 buf64;
4607     int ret = ::fstat64(fd, &buf64);
4608     int st_mode = buf64.st_mode;
4609 
4610     if (ret != -1) {
4611       if ((st_mode & S_IFMT) == S_IFDIR) {
4612         errno = EISDIR;
4613         ::close(fd);
4614         return -1;
4615       }
4616     } else {
4617       ::close(fd);
4618       return -1;
4619     }
4620   }
4621 
4622   // 32-bit Solaris systems suffer from:
4623   //
4624   // - an historical default soft limit of 256 per-process file
4625   //   descriptors that is too low for many Java programs.
4626   //
4627   // - a design flaw where file descriptors created using stdio
4628   //   fopen must be less than 256, _even_ when the first limit above
4629   //   has been raised.  This can cause calls to fopen (but not calls to
4630   //   open, for example) to fail mysteriously, perhaps in 3rd party
4631   //   native code (although the JDK itself uses fopen).  One can hardly
4632   //   criticize them for using this most standard of all functions.
4633   //
4634   // We attempt to make everything work anyways by:
4635   //
4636   // - raising the soft limit on per-process file descriptors beyond
4637   //   256
4638   //
4639   // - As of Solaris 10u4, we can request that Solaris raise the 256
4640   //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4641   //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4642   //
4643   // - If we are stuck on an old (pre 10u4) Solaris system, we can
4644   //   workaround the bug by remapping non-stdio file descriptors below
4645   //   256 to ones beyond 256, which is done below.
4646   //
4647   // See:
4648   // 1085341: 32-bit stdio routines should support file descriptors >255
4649   // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4650   // 6431278: Netbeans crash on 32 bit Solaris: need to call
4651   //          enable_extended_FILE_stdio() in VM initialisation
4652   // Giri Mandalika's blog
4653   // http://technopark02.blogspot.com/2005_05_01_archive.html
4654   //
4655 #ifndef  _LP64
4656   if ((!enabled_extended_FILE_stdio) && fd < 256) {
4657     int newfd = ::fcntl(fd, F_DUPFD, 256);
4658     if (newfd != -1) {
4659       ::close(fd);
4660       fd = newfd;
4661     }
4662   }
4663 #endif // 32-bit Solaris
4664 
4665   // All file descriptors that are opened in the JVM and not
4666   // specifically destined for a subprocess should have the
4667   // close-on-exec flag set.  If we don't set it, then careless 3rd
4668   // party native code might fork and exec without closing all
4669   // appropriate file descriptors (e.g. as we do in closeDescriptors in
4670   // UNIXProcess.c), and this in turn might:
4671   //
4672   // - cause end-of-file to fail to be detected on some file
4673   //   descriptors, resulting in mysterious hangs, or
4674   //
4675   // - might cause an fopen in the subprocess to fail on a system
4676   //   suffering from bug 1085341.
4677   //
4678   // (Yes, the default setting of the close-on-exec flag is a Unix
4679   // design flaw)
4680   //
4681   // See:
4682   // 1085341: 32-bit stdio routines should support file descriptors >255
4683   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4684   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4685   //
4686 #ifdef FD_CLOEXEC
4687   {
4688     int flags = ::fcntl(fd, F_GETFD);
4689     if (flags != -1) {
4690       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4691     }
4692   }
4693 #endif
4694 
4695   return fd;
4696 }
4697 
4698 // create binary file, rewriting existing file if required
4699 int os::create_binary_file(const char* path, bool rewrite_existing) {
4700   int oflags = O_WRONLY | O_CREAT;
4701   if (!rewrite_existing) {
4702     oflags |= O_EXCL;
4703   }
4704   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4705 }
4706 
4707 // return current position of file pointer
4708 jlong os::current_file_offset(int fd) {
4709   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4710 }
4711 
4712 // move file pointer to the specified offset
4713 jlong os::seek_to_file_offset(int fd, jlong offset) {
4714   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4715 }
4716 
4717 jlong os::lseek(int fd, jlong offset, int whence) {
4718   return (jlong) ::lseek64(fd, offset, whence);
4719 }
4720 
4721 char * os::native_path(char *path) {
4722   return path;
4723 }
4724 
4725 int os::ftruncate(int fd, jlong length) {
4726   return ::ftruncate64(fd, length);
4727 }
4728 
4729 int os::fsync(int fd)  {
4730   RESTARTABLE_RETURN_INT(::fsync(fd));
4731 }
4732 
4733 int os::available(int fd, jlong *bytes) {
4734   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4735          "Assumed _thread_in_native");
4736   jlong cur, end;
4737   int mode;
4738   struct stat64 buf64;
4739 
4740   if (::fstat64(fd, &buf64) >= 0) {
4741     mode = buf64.st_mode;
4742     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4743       int n,ioctl_return;
4744 
4745       RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4746       if (ioctl_return>= 0) {
4747         *bytes = n;
4748         return 1;
4749       }
4750     }
4751   }
4752   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4753     return 0;
4754   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4755     return 0;
4756   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4757     return 0;
4758   }
4759   *bytes = end - cur;
4760   return 1;
4761 }
4762 
4763 // Map a block of memory.
4764 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4765                         char *addr, size_t bytes, bool read_only,
4766                         bool allow_exec) {
4767   int prot;
4768   int flags;
4769 
4770   if (read_only) {
4771     prot = PROT_READ;
4772     flags = MAP_SHARED;
4773   } else {
4774     prot = PROT_READ | PROT_WRITE;
4775     flags = MAP_PRIVATE;
4776   }
4777 
4778   if (allow_exec) {
4779     prot |= PROT_EXEC;
4780   }
4781 
4782   if (addr != NULL) {
4783     flags |= MAP_FIXED;
4784   }
4785 
4786   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4787                                      fd, file_offset);
4788   if (mapped_address == MAP_FAILED) {
4789     return NULL;
4790   }
4791   return mapped_address;
4792 }
4793 
4794 
4795 // Remap a block of memory.
4796 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4797                           char *addr, size_t bytes, bool read_only,
4798                           bool allow_exec) {
4799   // same as map_memory() on this OS
4800   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4801                         allow_exec);
4802 }
4803 
4804 
4805 // Unmap a block of memory.
4806 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4807   return munmap(addr, bytes) == 0;
4808 }
4809 
4810 void os::pause() {
4811   char filename[MAX_PATH];
4812   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4813     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4814   } else {
4815     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4816   }
4817 
4818   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4819   if (fd != -1) {
4820     struct stat buf;
4821     ::close(fd);
4822     while (::stat(filename, &buf) == 0) {
4823       (void)::poll(NULL, 0, 100);
4824     }
4825   } else {
4826     jio_fprintf(stderr,
4827                 "Could not open pause file '%s', continuing immediately.\n", filename);
4828   }
4829 }
4830 
4831 #ifndef PRODUCT
4832 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4833 // Turn this on if you need to trace synch operations.
4834 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4835 // and call record_synch_enable and record_synch_disable
4836 // around the computation of interest.
4837 
4838 void record_synch(char* name, bool returning);  // defined below
4839 
4840 class RecordSynch {
4841   char* _name;
4842  public:
4843   RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4844   ~RecordSynch()                       { record_synch(_name, true); }
4845 };
4846 
4847 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4848 extern "C" ret name params {                                    \
4849   typedef ret name##_t params;                                  \
4850   static name##_t* implem = NULL;                               \
4851   static int callcount = 0;                                     \
4852   if (implem == NULL) {                                         \
4853     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4854     if (implem == NULL)  fatal(dlerror());                      \
4855   }                                                             \
4856   ++callcount;                                                  \
4857   RecordSynch _rs(#name);                                       \
4858   inner;                                                        \
4859   return implem args;                                           \
4860 }
4861 // in dbx, examine callcounts this way:
4862 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4863 
4864 #define CHECK_POINTER_OK(p) \
4865   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4866 #define CHECK_MU \
4867   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4868 #define CHECK_CV \
4869   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4870 #define CHECK_P(p) \
4871   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4872 
4873 #define CHECK_MUTEX(mutex_op) \
4874   CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4875 
4876 CHECK_MUTEX(   mutex_lock)
4877 CHECK_MUTEX(  _mutex_lock)
4878 CHECK_MUTEX( mutex_unlock)
4879 CHECK_MUTEX(_mutex_unlock)
4880 CHECK_MUTEX( mutex_trylock)
4881 CHECK_MUTEX(_mutex_trylock)
4882 
4883 #define CHECK_COND(cond_op) \
4884   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4885 
4886 CHECK_COND( cond_wait);
4887 CHECK_COND(_cond_wait);
4888 CHECK_COND(_cond_wait_cancel);
4889 
4890 #define CHECK_COND2(cond_op) \
4891   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4892 
4893 CHECK_COND2( cond_timedwait);
4894 CHECK_COND2(_cond_timedwait);
4895 CHECK_COND2(_cond_timedwait_cancel);
4896 
4897 // do the _lwp_* versions too
4898 #define mutex_t lwp_mutex_t
4899 #define cond_t  lwp_cond_t
4900 CHECK_MUTEX(  _lwp_mutex_lock)
4901 CHECK_MUTEX(  _lwp_mutex_unlock)
4902 CHECK_MUTEX(  _lwp_mutex_trylock)
4903 CHECK_MUTEX( __lwp_mutex_lock)
4904 CHECK_MUTEX( __lwp_mutex_unlock)
4905 CHECK_MUTEX( __lwp_mutex_trylock)
4906 CHECK_MUTEX(___lwp_mutex_lock)
4907 CHECK_MUTEX(___lwp_mutex_unlock)
4908 
4909 CHECK_COND(  _lwp_cond_wait);
4910 CHECK_COND( __lwp_cond_wait);
4911 CHECK_COND(___lwp_cond_wait);
4912 
4913 CHECK_COND2(  _lwp_cond_timedwait);
4914 CHECK_COND2( __lwp_cond_timedwait);
4915 #undef mutex_t
4916 #undef cond_t
4917 
4918 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4919 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4920 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4921 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4922 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4923 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4924 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4925 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4926 
4927 
4928 // recording machinery:
4929 
4930 enum { RECORD_SYNCH_LIMIT = 200 };
4931 char* record_synch_name[RECORD_SYNCH_LIMIT];
4932 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4933 bool record_synch_returning[RECORD_SYNCH_LIMIT];
4934 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4935 int record_synch_count = 0;
4936 bool record_synch_enabled = false;
4937 
4938 // in dbx, examine recorded data this way:
4939 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4940 
4941 void record_synch(char* name, bool returning) {
4942   if (record_synch_enabled) {
4943     if (record_synch_count < RECORD_SYNCH_LIMIT) {
4944       record_synch_name[record_synch_count] = name;
4945       record_synch_returning[record_synch_count] = returning;
4946       record_synch_thread[record_synch_count] = thr_self();
4947       record_synch_arg0ptr[record_synch_count] = &name;
4948       record_synch_count++;
4949     }
4950     // put more checking code here:
4951     // ...
4952   }
4953 }
4954 
4955 void record_synch_enable() {
4956   // start collecting trace data, if not already doing so
4957   if (!record_synch_enabled)  record_synch_count = 0;
4958   record_synch_enabled = true;
4959 }
4960 
4961 void record_synch_disable() {
4962   // stop collecting trace data
4963   record_synch_enabled = false;
4964 }
4965 
4966 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4967 #endif // PRODUCT
4968 
4969 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4970 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4971                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4972 
4973 
4974 // JVMTI & JVM monitoring and management support
4975 // The thread_cpu_time() and current_thread_cpu_time() are only
4976 // supported if is_thread_cpu_time_supported() returns true.
4977 // They are not supported on Solaris T1.
4978 
4979 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4980 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4981 // of a thread.
4982 //
4983 // current_thread_cpu_time() and thread_cpu_time(Thread *)
4984 // returns the fast estimate available on the platform.
4985 
4986 // hrtime_t gethrvtime() return value includes
4987 // user time but does not include system time
4988 jlong os::current_thread_cpu_time() {
4989   return (jlong) gethrvtime();
4990 }
4991 
4992 jlong os::thread_cpu_time(Thread *thread) {
4993   // return user level CPU time only to be consistent with
4994   // what current_thread_cpu_time returns.
4995   // thread_cpu_time_info() must be changed if this changes
4996   return os::thread_cpu_time(thread, false /* user time only */);
4997 }
4998 
4999 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5000   if (user_sys_cpu_time) {
5001     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
5002   } else {
5003     return os::current_thread_cpu_time();
5004   }
5005 }
5006 
5007 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5008   char proc_name[64];
5009   int count;
5010   prusage_t prusage;
5011   jlong lwp_time;
5012   int fd;
5013 
5014   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
5015           getpid(),
5016           thread->osthread()->lwp_id());
5017   fd = ::open(proc_name, O_RDONLY);
5018   if (fd == -1) return -1;
5019 
5020   do {
5021     count = ::pread(fd,
5022                     (void *)&prusage.pr_utime,
5023                     thr_time_size,
5024                     thr_time_off);
5025   } while (count < 0 && errno == EINTR);
5026   ::close(fd);
5027   if (count < 0) return -1;
5028 
5029   if (user_sys_cpu_time) {
5030     // user + system CPU time
5031     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
5032                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
5033                  (jlong)prusage.pr_stime.tv_nsec +
5034                  (jlong)prusage.pr_utime.tv_nsec;
5035   } else {
5036     // user level CPU time only
5037     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
5038                 (jlong)prusage.pr_utime.tv_nsec;
5039   }
5040 
5041   return (lwp_time);
5042 }
5043 
5044 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5045   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5046   info_ptr->may_skip_backward = false;    // elapsed time not wall time
5047   info_ptr->may_skip_forward = false;     // elapsed time not wall time
5048   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5049 }
5050 
5051 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5052   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
5053   info_ptr->may_skip_backward = false;    // elapsed time not wall time
5054   info_ptr->may_skip_forward = false;     // elapsed time not wall time
5055   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
5056 }
5057 
5058 bool os::is_thread_cpu_time_supported() {
5059   return true;
5060 }
5061 
5062 // System loadavg support.  Returns -1 if load average cannot be obtained.
5063 // Return the load average for our processor set if the primitive exists
5064 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
5065 int os::loadavg(double loadavg[], int nelem) {
5066   if (pset_getloadavg_ptr != NULL) {
5067     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
5068   } else {
5069     return ::getloadavg(loadavg, nelem);
5070   }
5071 }
5072 
5073 //---------------------------------------------------------------------------------
5074 
5075 bool os::find(address addr, outputStream* st) {
5076   Dl_info dlinfo;
5077   memset(&dlinfo, 0, sizeof(dlinfo));
5078   if (dladdr(addr, &dlinfo) != 0) {
5079     st->print(PTR_FORMAT ": ", addr);
5080     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5081       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
5082     } else if (dlinfo.dli_fbase != NULL) {
5083       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
5084     } else {
5085       st->print("<absolute address>");
5086     }
5087     if (dlinfo.dli_fname != NULL) {
5088       st->print(" in %s", dlinfo.dli_fname);
5089     }
5090     if (dlinfo.dli_fbase != NULL) {
5091       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5092     }
5093     st->cr();
5094 
5095     if (Verbose) {
5096       // decode some bytes around the PC
5097       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5098       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5099       address       lowest = (address) dlinfo.dli_sname;
5100       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5101       if (begin < lowest)  begin = lowest;
5102       Dl_info dlinfo2;
5103       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5104           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5105         end = (address) dlinfo2.dli_saddr;
5106       }
5107       Disassembler::decode(begin, end, st);
5108     }
5109     return true;
5110   }
5111   return false;
5112 }
5113 
5114 // Following function has been added to support HotSparc's libjvm.so running
5115 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5116 // src/solaris/hpi/native_threads in the EVM codebase.
5117 //
5118 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5119 // libraries and should thus be removed. We will leave it behind for a while
5120 // until we no longer want to able to run on top of 1.3.0 Solaris production
5121 // JDK. See 4341971.
5122 
5123 #define STACK_SLACK 0x800
5124 
5125 extern "C" {
5126   intptr_t sysThreadAvailableStackWithSlack() {
5127     stack_t st;
5128     intptr_t retval, stack_top;
5129     retval = thr_stksegment(&st);
5130     assert(retval == 0, "incorrect return value from thr_stksegment");
5131     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5132     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5133     stack_top=(intptr_t)st.ss_sp-st.ss_size;
5134     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5135   }
5136 }
5137 
5138 // ObjectMonitor park-unpark infrastructure ...
5139 //
5140 // We implement Solaris and Linux PlatformEvents with the
5141 // obvious condvar-mutex-flag triple.
5142 // Another alternative that works quite well is pipes:
5143 // Each PlatformEvent consists of a pipe-pair.
5144 // The thread associated with the PlatformEvent
5145 // calls park(), which reads from the input end of the pipe.
5146 // Unpark() writes into the other end of the pipe.
5147 // The write-side of the pipe must be set NDELAY.
5148 // Unfortunately pipes consume a large # of handles.
5149 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
5150 // Using pipes for the 1st few threads might be workable, however.
5151 //
5152 // park() is permitted to return spuriously.
5153 // Callers of park() should wrap the call to park() in
5154 // an appropriate loop.  A litmus test for the correct
5155 // usage of park is the following: if park() were modified
5156 // to immediately return 0 your code should still work,
5157 // albeit degenerating to a spin loop.
5158 //
5159 // In a sense, park()-unpark() just provides more polite spinning
5160 // and polling with the key difference over naive spinning being
5161 // that a parked thread needs to be explicitly unparked() in order
5162 // to wake up and to poll the underlying condition.
5163 //
5164 // Assumption:
5165 //    Only one parker can exist on an event, which is why we allocate
5166 //    them per-thread. Multiple unparkers can coexist.
5167 //
5168 // _Event transitions in park()
5169 //   -1 => -1 : illegal
5170 //    1 =>  0 : pass - return immediately
5171 //    0 => -1 : block; then set _Event to 0 before returning
5172 //
5173 // _Event transitions in unpark()
5174 //    0 => 1 : just return
5175 //    1 => 1 : just return
5176 //   -1 => either 0 or 1; must signal target thread
5177 //         That is, we can safely transition _Event from -1 to either
5178 //         0 or 1.
5179 //
5180 // _Event serves as a restricted-range semaphore.
5181 //   -1 : thread is blocked, i.e. there is a waiter
5182 //    0 : neutral: thread is running or ready,
5183 //        could have been signaled after a wait started
5184 //    1 : signaled - thread is running or ready
5185 //
5186 // Another possible encoding of _Event would be with
5187 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5188 //
5189 // TODO-FIXME: add DTRACE probes for:
5190 // 1.   Tx parks
5191 // 2.   Ty unparks Tx
5192 // 3.   Tx resumes from park
5193 
5194 
5195 // value determined through experimentation
5196 #define ROUNDINGFIX 11
5197 
5198 // utility to compute the abstime argument to timedwait.
5199 // TODO-FIXME: switch from compute_abstime() to unpackTime().
5200 
5201 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5202   // millis is the relative timeout time
5203   // abstime will be the absolute timeout time
5204   if (millis < 0)  millis = 0;
5205   struct timeval now;
5206   int status = gettimeofday(&now, NULL);
5207   assert(status == 0, "gettimeofday");
5208   jlong seconds = millis / 1000;
5209   jlong max_wait_period;
5210 
5211   if (UseLWPSynchronization) {
5212     // forward port of fix for 4275818 (not sleeping long enough)
5213     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5214     // _lwp_cond_timedwait() used a round_down algorithm rather
5215     // than a round_up. For millis less than our roundfactor
5216     // it rounded down to 0 which doesn't meet the spec.
5217     // For millis > roundfactor we may return a bit sooner, but
5218     // since we can not accurately identify the patch level and
5219     // this has already been fixed in Solaris 9 and 8 we will
5220     // leave it alone rather than always rounding down.
5221 
5222     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5223     // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5224     // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5225     max_wait_period = 21000000;
5226   } else {
5227     max_wait_period = 50000000;
5228   }
5229   millis %= 1000;
5230   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5231     seconds = max_wait_period;
5232   }
5233   abstime->tv_sec = now.tv_sec  + seconds;
5234   long       usec = now.tv_usec + millis * 1000;
5235   if (usec >= 1000000) {
5236     abstime->tv_sec += 1;
5237     usec -= 1000000;
5238   }
5239   abstime->tv_nsec = usec * 1000;
5240   return abstime;
5241 }
5242 
5243 void os::PlatformEvent::park() {           // AKA: down()
5244   // Transitions for _Event:
5245   //   -1 => -1 : illegal
5246   //    1 =>  0 : pass - return immediately
5247   //    0 => -1 : block; then set _Event to 0 before returning
5248 
5249   // Invariant: Only the thread associated with the Event/PlatformEvent
5250   // may call park().
5251   assert(_nParked == 0, "invariant");
5252 
5253   int v;
5254   for (;;) {
5255     v = _Event;
5256     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5257   }
5258   guarantee(v >= 0, "invariant");
5259   if (v == 0) {
5260     // Do this the hard way by blocking ...
5261     // See http://monaco.sfbay/detail.jsf?cr=5094058.
5262     // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5263     // Only for SPARC >= V8PlusA
5264 #if defined(__sparc) && defined(COMPILER2)
5265     if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5266 #endif
5267     int status = os::Solaris::mutex_lock(_mutex);
5268     assert_status(status == 0, status, "mutex_lock");
5269     guarantee(_nParked == 0, "invariant");
5270     ++_nParked;
5271     while (_Event < 0) {
5272       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5273       // Treat this the same as if the wait was interrupted
5274       // With usr/lib/lwp going to kernel, always handle ETIME
5275       status = os::Solaris::cond_wait(_cond, _mutex);
5276       if (status == ETIME) status = EINTR;
5277       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5278     }
5279     --_nParked;
5280     _Event = 0;
5281     status = os::Solaris::mutex_unlock(_mutex);
5282     assert_status(status == 0, status, "mutex_unlock");
5283     // Paranoia to ensure our locked and lock-free paths interact
5284     // correctly with each other.
5285     OrderAccess::fence();
5286   }
5287 }
5288 
5289 int os::PlatformEvent::park(jlong millis) {
5290   // Transitions for _Event:
5291   //   -1 => -1 : illegal
5292   //    1 =>  0 : pass - return immediately
5293   //    0 => -1 : block; then set _Event to 0 before returning
5294 
5295   guarantee(_nParked == 0, "invariant");
5296   int v;
5297   for (;;) {
5298     v = _Event;
5299     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5300   }
5301   guarantee(v >= 0, "invariant");
5302   if (v != 0) return OS_OK;
5303 
5304   int ret = OS_TIMEOUT;
5305   timestruc_t abst;
5306   compute_abstime(&abst, millis);
5307 
5308   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5309   // For Solaris SPARC set fprs.FEF=0 prior to parking.
5310   // Only for SPARC >= V8PlusA
5311 #if defined(__sparc) && defined(COMPILER2)
5312   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5313 #endif
5314   int status = os::Solaris::mutex_lock(_mutex);
5315   assert_status(status == 0, status, "mutex_lock");
5316   guarantee(_nParked == 0, "invariant");
5317   ++_nParked;
5318   while (_Event < 0) {
5319     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5320     assert_status(status == 0 || status == EINTR ||
5321                   status == ETIME || status == ETIMEDOUT,
5322                   status, "cond_timedwait");
5323     if (!FilterSpuriousWakeups) break;                // previous semantics
5324     if (status == ETIME || status == ETIMEDOUT) break;
5325     // We consume and ignore EINTR and spurious wakeups.
5326   }
5327   --_nParked;
5328   if (_Event >= 0) ret = OS_OK;
5329   _Event = 0;
5330   status = os::Solaris::mutex_unlock(_mutex);
5331   assert_status(status == 0, status, "mutex_unlock");
5332   // Paranoia to ensure our locked and lock-free paths interact
5333   // correctly with each other.
5334   OrderAccess::fence();
5335   return ret;
5336 }
5337 
5338 void os::PlatformEvent::unpark() {
5339   // Transitions for _Event:
5340   //    0 => 1 : just return
5341   //    1 => 1 : just return
5342   //   -1 => either 0 or 1; must signal target thread
5343   //         That is, we can safely transition _Event from -1 to either
5344   //         0 or 1.
5345   // See also: "Semaphores in Plan 9" by Mullender & Cox
5346   //
5347   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5348   // that it will take two back-to-back park() calls for the owning
5349   // thread to block. This has the benefit of forcing a spurious return
5350   // from the first park() call after an unpark() call which will help
5351   // shake out uses of park() and unpark() without condition variables.
5352 
5353   if (Atomic::xchg(1, &_Event) >= 0) return;
5354 
5355   // If the thread associated with the event was parked, wake it.
5356   // Wait for the thread assoc with the PlatformEvent to vacate.
5357   int status = os::Solaris::mutex_lock(_mutex);
5358   assert_status(status == 0, status, "mutex_lock");
5359   int AnyWaiters = _nParked;
5360   status = os::Solaris::mutex_unlock(_mutex);
5361   assert_status(status == 0, status, "mutex_unlock");
5362   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5363   if (AnyWaiters != 0) {
5364     // Note that we signal() *after* dropping the lock for "immortal" Events.
5365     // This is safe and avoids a common class of  futile wakeups.  In rare
5366     // circumstances this can cause a thread to return prematurely from
5367     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5368     // will simply re-test the condition and re-park itself.
5369     // This provides particular benefit if the underlying platform does not
5370     // provide wait morphing.
5371     status = os::Solaris::cond_signal(_cond);
5372     assert_status(status == 0, status, "cond_signal");
5373   }
5374 }
5375 
5376 // JSR166
5377 // -------------------------------------------------------
5378 
5379 // The solaris and linux implementations of park/unpark are fairly
5380 // conservative for now, but can be improved. They currently use a
5381 // mutex/condvar pair, plus _counter.
5382 // Park decrements _counter if > 0, else does a condvar wait.  Unpark
5383 // sets count to 1 and signals condvar.  Only one thread ever waits
5384 // on the condvar. Contention seen when trying to park implies that someone
5385 // is unparking you, so don't wait. And spurious returns are fine, so there
5386 // is no need to track notifications.
5387 
5388 #define MAX_SECS 100000000
5389 
5390 // This code is common to linux and solaris and will be moved to a
5391 // common place in dolphin.
5392 //
5393 // The passed in time value is either a relative time in nanoseconds
5394 // or an absolute time in milliseconds. Either way it has to be unpacked
5395 // into suitable seconds and nanoseconds components and stored in the
5396 // given timespec structure.
5397 // Given time is a 64-bit value and the time_t used in the timespec is only
5398 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5399 // overflow if times way in the future are given. Further on Solaris versions
5400 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5401 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5402 // As it will be 28 years before "now + 100000000" will overflow we can
5403 // ignore overflow and just impose a hard-limit on seconds using the value
5404 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5405 // years from "now".
5406 //
5407 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5408   assert(time > 0, "convertTime");
5409 
5410   struct timeval now;
5411   int status = gettimeofday(&now, NULL);
5412   assert(status == 0, "gettimeofday");
5413 
5414   time_t max_secs = now.tv_sec + MAX_SECS;
5415 
5416   if (isAbsolute) {
5417     jlong secs = time / 1000;
5418     if (secs > max_secs) {
5419       absTime->tv_sec = max_secs;
5420     } else {
5421       absTime->tv_sec = secs;
5422     }
5423     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5424   } else {
5425     jlong secs = time / NANOSECS_PER_SEC;
5426     if (secs >= MAX_SECS) {
5427       absTime->tv_sec = max_secs;
5428       absTime->tv_nsec = 0;
5429     } else {
5430       absTime->tv_sec = now.tv_sec + secs;
5431       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5432       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5433         absTime->tv_nsec -= NANOSECS_PER_SEC;
5434         ++absTime->tv_sec; // note: this must be <= max_secs
5435       }
5436     }
5437   }
5438   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5439   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5440   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5441   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5442 }
5443 
5444 void Parker::park(bool isAbsolute, jlong time) {
5445   // Ideally we'd do something useful while spinning, such
5446   // as calling unpackTime().
5447 
5448   // Optional fast-path check:
5449   // Return immediately if a permit is available.
5450   // We depend on Atomic::xchg() having full barrier semantics
5451   // since we are doing a lock-free update to _counter.
5452   if (Atomic::xchg(0, &_counter) > 0) return;
5453 
5454   // Optional fast-exit: Check interrupt before trying to wait
5455   Thread* thread = Thread::current();
5456   assert(thread->is_Java_thread(), "Must be JavaThread");
5457   JavaThread *jt = (JavaThread *)thread;
5458   if (Thread::is_interrupted(thread, false)) {
5459     return;
5460   }
5461 
5462   // First, demultiplex/decode time arguments
5463   timespec absTime;
5464   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5465     return;
5466   }
5467   if (time > 0) {
5468     // Warning: this code might be exposed to the old Solaris time
5469     // round-down bugs.  Grep "roundingFix" for details.
5470     unpackTime(&absTime, isAbsolute, time);
5471   }
5472 
5473   // Enter safepoint region
5474   // Beware of deadlocks such as 6317397.
5475   // The per-thread Parker:: _mutex is a classic leaf-lock.
5476   // In particular a thread must never block on the Threads_lock while
5477   // holding the Parker:: mutex.  If safepoints are pending both the
5478   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5479   ThreadBlockInVM tbivm(jt);
5480 
5481   // Don't wait if cannot get lock since interference arises from
5482   // unblocking.  Also. check interrupt before trying wait
5483   if (Thread::is_interrupted(thread, false) ||
5484       os::Solaris::mutex_trylock(_mutex) != 0) {
5485     return;
5486   }
5487 
5488   int status;
5489 
5490   if (_counter > 0)  { // no wait needed
5491     _counter = 0;
5492     status = os::Solaris::mutex_unlock(_mutex);
5493     assert(status == 0, "invariant");
5494     // Paranoia to ensure our locked and lock-free paths interact
5495     // correctly with each other and Java-level accesses.
5496     OrderAccess::fence();
5497     return;
5498   }
5499 
5500 #ifdef ASSERT
5501   // Don't catch signals while blocked; let the running threads have the signals.
5502   // (This allows a debugger to break into the running thread.)
5503   sigset_t oldsigs;
5504   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5505   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5506 #endif
5507 
5508   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5509   jt->set_suspend_equivalent();
5510   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5511 
5512   // Do this the hard way by blocking ...
5513   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5514   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5515   // Only for SPARC >= V8PlusA
5516 #if defined(__sparc) && defined(COMPILER2)
5517   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5518 #endif
5519 
5520   if (time == 0) {
5521     status = os::Solaris::cond_wait(_cond, _mutex);
5522   } else {
5523     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5524   }
5525   // Note that an untimed cond_wait() can sometimes return ETIME on older
5526   // versions of the Solaris.
5527   assert_status(status == 0 || status == EINTR ||
5528                 status == ETIME || status == ETIMEDOUT,
5529                 status, "cond_timedwait");
5530 
5531 #ifdef ASSERT
5532   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5533 #endif
5534   _counter = 0;
5535   status = os::Solaris::mutex_unlock(_mutex);
5536   assert_status(status == 0, status, "mutex_unlock");
5537   // Paranoia to ensure our locked and lock-free paths interact
5538   // correctly with each other and Java-level accesses.
5539   OrderAccess::fence();
5540 
5541   // If externally suspended while waiting, re-suspend
5542   if (jt->handle_special_suspend_equivalent_condition()) {
5543     jt->java_suspend_self();
5544   }
5545 }
5546 
5547 void Parker::unpark() {
5548   int status = os::Solaris::mutex_lock(_mutex);
5549   assert(status == 0, "invariant");
5550   const int s = _counter;
5551   _counter = 1;
5552   status = os::Solaris::mutex_unlock(_mutex);
5553   assert(status == 0, "invariant");
5554 
5555   if (s < 1) {
5556     status = os::Solaris::cond_signal(_cond);
5557     assert(status == 0, "invariant");
5558   }
5559 }
5560 
5561 extern char** environ;
5562 
5563 // Run the specified command in a separate process. Return its exit value,
5564 // or -1 on failure (e.g. can't fork a new process).
5565 // Unlike system(), this function can be called from signal handler. It
5566 // doesn't block SIGINT et al.
5567 int os::fork_and_exec(char* cmd) {
5568   char * argv[4];
5569   argv[0] = (char *)"sh";
5570   argv[1] = (char *)"-c";
5571   argv[2] = cmd;
5572   argv[3] = NULL;
5573 
5574   // fork is async-safe, fork1 is not so can't use in signal handler
5575   pid_t pid;
5576   Thread* t = Thread::current_or_null_safe();
5577   if (t != NULL && t->is_inside_signal_handler()) {
5578     pid = fork();
5579   } else {
5580     pid = fork1();
5581   }
5582 
5583   if (pid < 0) {
5584     // fork failed
5585     warning("fork failed: %s", strerror(errno));
5586     return -1;
5587 
5588   } else if (pid == 0) {
5589     // child process
5590 
5591     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5592     execve("/usr/bin/sh", argv, environ);
5593 
5594     // execve failed
5595     _exit(-1);
5596 
5597   } else  {
5598     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5599     // care about the actual exit code, for now.
5600 
5601     int status;
5602 
5603     // Wait for the child process to exit.  This returns immediately if
5604     // the child has already exited. */
5605     while (waitpid(pid, &status, 0) < 0) {
5606       switch (errno) {
5607       case ECHILD: return 0;
5608       case EINTR: break;
5609       default: return -1;
5610       }
5611     }
5612 
5613     if (WIFEXITED(status)) {
5614       // The child exited normally; get its exit code.
5615       return WEXITSTATUS(status);
5616     } else if (WIFSIGNALED(status)) {
5617       // The child exited because of a signal
5618       // The best value to return is 0x80 + signal number,
5619       // because that is what all Unix shells do, and because
5620       // it allows callers to distinguish between process exit and
5621       // process death by signal.
5622       return 0x80 + WTERMSIG(status);
5623     } else {
5624       // Unknown exit code; pass it through
5625       return status;
5626     }
5627   }
5628 }
5629 
5630 // is_headless_jre()
5631 //
5632 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5633 // in order to report if we are running in a headless jre
5634 //
5635 // Since JDK8 xawt/libmawt.so was moved into the same directory
5636 // as libawt.so, and renamed libawt_xawt.so
5637 //
5638 bool os::is_headless_jre() {
5639   struct stat statbuf;
5640   char buf[MAXPATHLEN];
5641   char libmawtpath[MAXPATHLEN];
5642   const char *xawtstr  = "/xawt/libmawt.so";
5643   const char *new_xawtstr = "/libawt_xawt.so";
5644   char *p;
5645 
5646   // Get path to libjvm.so
5647   os::jvm_path(buf, sizeof(buf));
5648 
5649   // Get rid of libjvm.so
5650   p = strrchr(buf, '/');
5651   if (p == NULL) {
5652     return false;
5653   } else {
5654     *p = '\0';
5655   }
5656 
5657   // Get rid of client or server
5658   p = strrchr(buf, '/');
5659   if (p == NULL) {
5660     return false;
5661   } else {
5662     *p = '\0';
5663   }
5664 
5665   // check xawt/libmawt.so
5666   strcpy(libmawtpath, buf);
5667   strcat(libmawtpath, xawtstr);
5668   if (::stat(libmawtpath, &statbuf) == 0) return false;
5669 
5670   // check libawt_xawt.so
5671   strcpy(libmawtpath, buf);
5672   strcat(libmawtpath, new_xawtstr);
5673   if (::stat(libmawtpath, &statbuf) == 0) return false;
5674 
5675   return true;
5676 }
5677 
5678 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5679   size_t res;
5680   RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5681   return res;
5682 }
5683 
5684 int os::close(int fd) {
5685   return ::close(fd);
5686 }
5687 
5688 int os::socket_close(int fd) {
5689   return ::close(fd);
5690 }
5691 
5692 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5693   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5694          "Assumed _thread_in_native");
5695   RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5696 }
5697 
5698 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5699   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5700          "Assumed _thread_in_native");
5701   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5702 }
5703 
5704 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5705   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5706 }
5707 
5708 // As both poll and select can be interrupted by signals, we have to be
5709 // prepared to restart the system call after updating the timeout, unless
5710 // a poll() is done with timeout == -1, in which case we repeat with this
5711 // "wait forever" value.
5712 
5713 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5714   int _result;
5715   _result = ::connect(fd, him, len);
5716 
5717   // On Solaris, when a connect() call is interrupted, the connection
5718   // can be established asynchronously (see 6343810). Subsequent calls
5719   // to connect() must check the errno value which has the semantic
5720   // described below (copied from the connect() man page). Handling
5721   // of asynchronously established connections is required for both
5722   // blocking and non-blocking sockets.
5723   //     EINTR            The  connection  attempt  was   interrupted
5724   //                      before  any data arrived by the delivery of
5725   //                      a signal. The connection, however, will  be
5726   //                      established asynchronously.
5727   //
5728   //     EINPROGRESS      The socket is non-blocking, and the connec-
5729   //                      tion  cannot  be completed immediately.
5730   //
5731   //     EALREADY         The socket is non-blocking,  and a previous
5732   //                      connection  attempt  has  not yet been com-
5733   //                      pleted.
5734   //
5735   //     EISCONN          The socket is already connected.
5736   if (_result == OS_ERR && errno == EINTR) {
5737     // restarting a connect() changes its errno semantics
5738     RESTARTABLE(::connect(fd, him, len), _result);
5739     // undo these changes
5740     if (_result == OS_ERR) {
5741       if (errno == EALREADY) {
5742         errno = EINPROGRESS; // fall through
5743       } else if (errno == EISCONN) {
5744         errno = 0;
5745         return OS_OK;
5746       }
5747     }
5748   }
5749   return _result;
5750 }
5751 
5752 // Get the default path to the core file
5753 // Returns the length of the string
5754 int os::get_core_path(char* buffer, size_t bufferSize) {
5755   const char* p = get_current_directory(buffer, bufferSize);
5756 
5757   if (p == NULL) {
5758     assert(p != NULL, "failed to get current directory");
5759     return 0;
5760   }
5761 
5762   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5763                                               p, current_process_id());
5764 
5765   return strlen(buffer);
5766 }
5767 
5768 #ifndef PRODUCT
5769 void TestReserveMemorySpecial_test() {
5770   // No tests available for this platform
5771 }
5772 #endif
5773 
5774 bool os::start_debugging(char *buf, int buflen) {
5775   int len = (int)strlen(buf);
5776   char *p = &buf[len];
5777 
5778   jio_snprintf(p, buflen-len,
5779                "\n\n"
5780                "Do you want to debug the problem?\n\n"
5781                "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5782                "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5783                "Otherwise, press RETURN to abort...",
5784                os::current_process_id(), os::current_thread_id());
5785 
5786   bool yes = os::message_box("Unexpected Error", buf);
5787 
5788   if (yes) {
5789     // yes, user asked VM to launch debugger
5790     jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5791 
5792     os::fork_and_exec(buf);
5793     yes = false;
5794   }
5795   return yes;
5796 }