1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "os_windows.inline.hpp"
  31 #include "runtime/handles.inline.hpp"
  32 #include "runtime/os.hpp"
  33 #include "runtime/perfMemory.hpp"
  34 #include "services/memTracker.hpp"
  35 #include "utilities/exceptions.hpp"
  36 
  37 #include <windows.h>
  38 #include <sys/types.h>
  39 #include <sys/stat.h>
  40 #include <errno.h>
  41 #include <lmcons.h>
  42 
  43 typedef BOOL (WINAPI *SetSecurityDescriptorControlFnPtr)(
  44    IN PSECURITY_DESCRIPTOR pSecurityDescriptor,
  45    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
  46    IN SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet);
  47 
  48 // Standard Memory Implementation Details
  49 
  50 // create the PerfData memory region in standard memory.
  51 //
  52 static char* create_standard_memory(size_t size) {
  53 
  54   // allocate an aligned chuck of memory
  55   char* mapAddress = os::reserve_memory(size);
  56 
  57   if (mapAddress == NULL) {
  58     return NULL;
  59   }
  60 
  61   // commit memory
  62   if (!os::commit_memory(mapAddress, size, !ExecMem)) {
  63     if (PrintMiscellaneous && Verbose) {
  64       warning("Could not commit PerfData memory\n");
  65     }
  66     os::release_memory(mapAddress, size);
  67     return NULL;
  68   }
  69 
  70   return mapAddress;
  71 }
  72 
  73 // delete the PerfData memory region
  74 //
  75 static void delete_standard_memory(char* addr, size_t size) {
  76 
  77   // there are no persistent external resources to cleanup for standard
  78   // memory. since DestroyJavaVM does not support unloading of the JVM,
  79   // cleanup of the memory resource is not performed. The memory will be
  80   // reclaimed by the OS upon termination of the process.
  81   //
  82   return;
  83 
  84 }
  85 
  86 // save the specified memory region to the given file
  87 //
  88 static void save_memory_to_file(char* addr, size_t size) {
  89 
  90   const char* destfile = PerfMemory::get_perfdata_file_path();
  91   assert(destfile[0] != '\0', "invalid Perfdata file path");
  92 
  93   int fd = ::_open(destfile, _O_BINARY|_O_CREAT|_O_WRONLY|_O_TRUNC,
  94                    _S_IREAD|_S_IWRITE);
  95 
  96   if (fd == OS_ERR) {
  97     if (PrintMiscellaneous && Verbose) {
  98       warning("Could not create Perfdata save file: %s: %s\n",
  99               destfile, strerror(errno));
 100     }
 101   } else {
 102     for (size_t remaining = size; remaining > 0;) {
 103 
 104       int nbytes = ::_write(fd, addr, (unsigned int)remaining);
 105       if (nbytes == OS_ERR) {
 106         if (PrintMiscellaneous && Verbose) {
 107           warning("Could not write Perfdata save file: %s: %s\n",
 108                   destfile, strerror(errno));
 109         }
 110         break;
 111       }
 112 
 113       remaining -= (size_t)nbytes;
 114       addr += nbytes;
 115     }
 116 
 117     int result = ::_close(fd);
 118     if (PrintMiscellaneous && Verbose) {
 119       if (result == OS_ERR) {
 120         warning("Could not close %s: %s\n", destfile, strerror(errno));
 121       }
 122     }
 123   }
 124 
 125   FREE_C_HEAP_ARRAY(char, destfile);
 126 }
 127 
 128 // Shared Memory Implementation Details
 129 
 130 // Note: the win32 shared memory implementation uses two objects to represent
 131 // the shared memory: a windows kernel based file mapping object and a backing
 132 // store file. On windows, the name space for shared memory is a kernel
 133 // based name space that is disjoint from other win32 name spaces. Since Java
 134 // is unaware of this name space, a parallel file system based name space is
 135 // maintained, which provides a common file system based shared memory name
 136 // space across the supported platforms and one that Java apps can deal with
 137 // through simple file apis.
 138 //
 139 // For performance and resource cleanup reasons, it is recommended that the
 140 // user specific directory and the backing store file be stored in either a
 141 // RAM based file system or a local disk based file system. Network based
 142 // file systems are not recommended for performance reasons. In addition,
 143 // use of SMB network based file systems may result in unsuccesful cleanup
 144 // of the disk based resource on exit of the VM. The Windows TMP and TEMP
 145 // environement variables, as used by the GetTempPath() Win32 API (see
 146 // os::get_temp_directory() in os_win32.cpp), control the location of the
 147 // user specific directory and the shared memory backing store file.
 148 
 149 static HANDLE sharedmem_fileMapHandle = NULL;
 150 static HANDLE sharedmem_fileHandle = INVALID_HANDLE_VALUE;
 151 static char*  sharedmem_fileName = NULL;
 152 
 153 // return the user specific temporary directory name.
 154 //
 155 // the caller is expected to free the allocated memory.
 156 //
 157 static char* get_user_tmp_dir(const char* user) {
 158 
 159   const char* tmpdir = os::get_temp_directory();
 160   const char* perfdir = PERFDATA_NAME;
 161   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
 162   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 163 
 164   // construct the path name to user specific tmp directory
 165   _snprintf(dirname, nbytes, "%s\\%s_%s", tmpdir, perfdir, user);
 166 
 167   return dirname;
 168 }
 169 
 170 // convert the given file name into a process id. if the file
 171 // does not meet the file naming constraints, return 0.
 172 //
 173 static int filename_to_pid(const char* filename) {
 174 
 175   // a filename that doesn't begin with a digit is not a
 176   // candidate for conversion.
 177   //
 178   if (!isdigit(*filename)) {
 179     return 0;
 180   }
 181 
 182   // check if file name can be converted to an integer without
 183   // any leftover characters.
 184   //
 185   char* remainder = NULL;
 186   errno = 0;
 187   int pid = (int)strtol(filename, &remainder, 10);
 188 
 189   if (errno != 0) {
 190     return 0;
 191   }
 192 
 193   // check for left over characters. If any, then the filename is
 194   // not a candidate for conversion.
 195   //
 196   if (remainder != NULL && *remainder != '\0') {
 197     return 0;
 198   }
 199 
 200   // successful conversion, return the pid
 201   return pid;
 202 }
 203 
 204 // check if the given path is considered a secure directory for
 205 // the backing store files. Returns true if the directory exists
 206 // and is considered a secure location. Returns false if the path
 207 // is a symbolic link or if an error occurred.
 208 //
 209 static bool is_directory_secure(const char* path) {
 210 
 211   DWORD fa;
 212 
 213   fa = GetFileAttributes(path);
 214   if (fa == 0xFFFFFFFF) {
 215     DWORD lasterror = GetLastError();
 216     if (lasterror == ERROR_FILE_NOT_FOUND) {
 217       return false;
 218     }
 219     else {
 220       // unexpected error, declare the path insecure
 221       if (PrintMiscellaneous && Verbose) {
 222         warning("could not get attributes for file %s: ",
 223                 " lasterror = %d\n", path, lasterror);
 224       }
 225       return false;
 226     }
 227   }
 228 
 229   if (fa & FILE_ATTRIBUTE_REPARSE_POINT) {
 230     // we don't accept any redirection for the user specific directory
 231     // so declare the path insecure. This may be too conservative,
 232     // as some types of reparse points might be acceptable, but it
 233     // is probably more secure to avoid these conditions.
 234     //
 235     if (PrintMiscellaneous && Verbose) {
 236       warning("%s is a reparse point\n", path);
 237     }
 238     return false;
 239   }
 240 
 241   if (fa & FILE_ATTRIBUTE_DIRECTORY) {
 242     // this is the expected case. Since windows supports symbolic
 243     // links to directories only, not to files, there is no need
 244     // to check for open write permissions on the directory. If the
 245     // directory has open write permissions, any files deposited that
 246     // are not expected will be removed by the cleanup code.
 247     //
 248     return true;
 249   }
 250   else {
 251     // this is either a regular file or some other type of file,
 252     // any of which are unexpected and therefore insecure.
 253     //
 254     if (PrintMiscellaneous && Verbose) {
 255       warning("%s is not a directory, file attributes = "
 256               INTPTR_FORMAT "\n", path, fa);
 257     }
 258     return false;
 259   }
 260 }
 261 
 262 // return the user name for the owner of this process
 263 //
 264 // the caller is expected to free the allocated memory.
 265 //
 266 static char* get_user_name() {
 267 
 268   /* get the user name. This code is adapted from code found in
 269    * the jdk in src/windows/native/java/lang/java_props_md.c
 270    * java_props_md.c  1.29 02/02/06. According to the original
 271    * source, the call to GetUserName is avoided because of a resulting
 272    * increase in footprint of 100K.
 273    */
 274   char* user = getenv("USERNAME");
 275   char buf[UNLEN+1];
 276   DWORD buflen = sizeof(buf);
 277   if (user == NULL || strlen(user) == 0) {
 278     if (GetUserName(buf, &buflen)) {
 279       user = buf;
 280     }
 281     else {
 282       return NULL;
 283     }
 284   }
 285 
 286   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
 287   strcpy(user_name, user);
 288 
 289   return user_name;
 290 }
 291 
 292 // return the name of the user that owns the process identified by vmid.
 293 //
 294 // This method uses a slow directory search algorithm to find the backing
 295 // store file for the specified vmid and returns the user name, as determined
 296 // by the user name suffix of the hsperfdata_<username> directory name.
 297 //
 298 // the caller is expected to free the allocated memory.
 299 //
 300 static char* get_user_name_slow(int vmid) {
 301 
 302   // directory search
 303   char* latest_user = NULL;
 304   time_t latest_ctime = 0;
 305 
 306   const char* tmpdirname = os::get_temp_directory();
 307 
 308   DIR* tmpdirp = os::opendir(tmpdirname);
 309 
 310   if (tmpdirp == NULL) {
 311     return NULL;
 312   }
 313 
 314   // for each entry in the directory that matches the pattern hsperfdata_*,
 315   // open the directory and check if the file for the given vmid exists.
 316   // The file with the expected name and the latest creation date is used
 317   // to determine the user name for the process id.
 318   //
 319   struct dirent* dentry;
 320   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
 321   errno = 0;
 322   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
 323 
 324     // check if the directory entry is a hsperfdata file
 325     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
 326       continue;
 327     }
 328 
 329     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
 330         strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
 331     strcpy(usrdir_name, tmpdirname);
 332     strcat(usrdir_name, "\\");
 333     strcat(usrdir_name, dentry->d_name);
 334 
 335     DIR* subdirp = os::opendir(usrdir_name);
 336 
 337     if (subdirp == NULL) {
 338       FREE_C_HEAP_ARRAY(char, usrdir_name);
 339       continue;
 340     }
 341 
 342     // Since we don't create the backing store files in directories
 343     // pointed to by symbolic links, we also don't follow them when
 344     // looking for the files. We check for a symbolic link after the
 345     // call to opendir in order to eliminate a small window where the
 346     // symlink can be exploited.
 347     //
 348     if (!is_directory_secure(usrdir_name)) {
 349       FREE_C_HEAP_ARRAY(char, usrdir_name);
 350       os::closedir(subdirp);
 351       continue;
 352     }
 353 
 354     struct dirent* udentry;
 355     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
 356     errno = 0;
 357     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
 358 
 359       if (filename_to_pid(udentry->d_name) == vmid) {
 360         struct stat statbuf;
 361 
 362         char* filename = NEW_C_HEAP_ARRAY(char,
 363            strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
 364 
 365         strcpy(filename, usrdir_name);
 366         strcat(filename, "\\");
 367         strcat(filename, udentry->d_name);
 368 
 369         if (::stat(filename, &statbuf) == OS_ERR) {
 370            FREE_C_HEAP_ARRAY(char, filename);
 371            continue;
 372         }
 373 
 374         // skip over files that are not regular files.
 375         if ((statbuf.st_mode & S_IFMT) != S_IFREG) {
 376           FREE_C_HEAP_ARRAY(char, filename);
 377           continue;
 378         }
 379 
 380         // If we found a matching file with a newer creation time, then
 381         // save the user name. The newer creation time indicates that
 382         // we found a newer incarnation of the process associated with
 383         // vmid. Due to the way that Windows recycles pids and the fact
 384         // that we can't delete the file from the file system namespace
 385         // until last close, it is possible for there to be more than
 386         // one hsperfdata file with a name matching vmid (diff users).
 387         //
 388         // We no longer ignore hsperfdata files where (st_size == 0).
 389         // In this function, all we're trying to do is determine the
 390         // name of the user that owns the process associated with vmid
 391         // so the size doesn't matter. Very rarely, we have observed
 392         // hsperfdata files where (st_size == 0) and the st_size field
 393         // later becomes the expected value.
 394         //
 395         if (statbuf.st_ctime > latest_ctime) {
 396           char* user = strchr(dentry->d_name, '_') + 1;
 397 
 398           if (latest_user != NULL) FREE_C_HEAP_ARRAY(char, latest_user);
 399           latest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
 400 
 401           strcpy(latest_user, user);
 402           latest_ctime = statbuf.st_ctime;
 403         }
 404 
 405         FREE_C_HEAP_ARRAY(char, filename);
 406       }
 407     }
 408     os::closedir(subdirp);
 409     FREE_C_HEAP_ARRAY(char, udbuf);
 410     FREE_C_HEAP_ARRAY(char, usrdir_name);
 411   }
 412   os::closedir(tmpdirp);
 413   FREE_C_HEAP_ARRAY(char, tdbuf);
 414 
 415   return(latest_user);
 416 }
 417 
 418 // return the name of the user that owns the process identified by vmid.
 419 //
 420 // note: this method should only be used via the Perf native methods.
 421 // There are various costs to this method and limiting its use to the
 422 // Perf native methods limits the impact to monitoring applications only.
 423 //
 424 static char* get_user_name(int vmid) {
 425 
 426   // A fast implementation is not provided at this time. It's possible
 427   // to provide a fast process id to user name mapping function using
 428   // the win32 apis, but the default ACL for the process object only
 429   // allows processes with the same owner SID to acquire the process
 430   // handle (via OpenProcess(PROCESS_QUERY_INFORMATION)). It's possible
 431   // to have the JVM change the ACL for the process object to allow arbitrary
 432   // users to access the process handle and the process security token.
 433   // The security ramifications need to be studied before providing this
 434   // mechanism.
 435   //
 436   return get_user_name_slow(vmid);
 437 }
 438 
 439 // return the name of the shared memory file mapping object for the
 440 // named shared memory region for the given user name and vmid.
 441 //
 442 // The file mapping object's name is not the file name. It is a name
 443 // in a separate name space.
 444 //
 445 // the caller is expected to free the allocated memory.
 446 //
 447 static char *get_sharedmem_objectname(const char* user, int vmid) {
 448 
 449   // construct file mapping object's name, add 3 for two '_' and a
 450   // null terminator.
 451   int nbytes = (int)strlen(PERFDATA_NAME) + (int)strlen(user) + 3;
 452 
 453   // the id is converted to an unsigned value here because win32 allows
 454   // negative process ids. However, OpenFileMapping API complains
 455   // about a name containing a '-' characters.
 456   //
 457   nbytes += UINT_CHARS;
 458   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 459   _snprintf(name, nbytes, "%s_%s_%u", PERFDATA_NAME, user, vmid);
 460 
 461   return name;
 462 }
 463 
 464 // return the file name of the backing store file for the named
 465 // shared memory region for the given user name and vmid.
 466 //
 467 // the caller is expected to free the allocated memory.
 468 //
 469 static char* get_sharedmem_filename(const char* dirname, int vmid) {
 470 
 471   // add 2 for the file separator and a null terminator.
 472   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
 473 
 474   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 475   _snprintf(name, nbytes, "%s\\%d", dirname, vmid);
 476 
 477   return name;
 478 }
 479 
 480 // remove file
 481 //
 482 // this method removes the file with the given file name.
 483 //
 484 // Note: if the indicated file is on an SMB network file system, this
 485 // method may be unsuccessful in removing the file.
 486 //
 487 static void remove_file(const char* dirname, const char* filename) {
 488 
 489   size_t nbytes = strlen(dirname) + strlen(filename) + 2;
 490   char* path = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 491 
 492   strcpy(path, dirname);
 493   strcat(path, "\\");
 494   strcat(path, filename);
 495 
 496   if (::unlink(path) == OS_ERR) {
 497     if (PrintMiscellaneous && Verbose) {
 498       if (errno != ENOENT) {
 499         warning("Could not unlink shared memory backing"
 500                 " store file %s : %s\n", path, strerror(errno));
 501       }
 502     }
 503   }
 504 
 505   FREE_C_HEAP_ARRAY(char, path);
 506 }
 507 
 508 // returns true if the process represented by pid is alive, otherwise
 509 // returns false. the validity of the result is only accurate if the
 510 // target process is owned by the same principal that owns this process.
 511 // this method should not be used if to test the status of an otherwise
 512 // arbitrary process unless it is know that this process has the appropriate
 513 // privileges to guarantee a result valid.
 514 //
 515 static bool is_alive(int pid) {
 516 
 517   HANDLE ph = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);
 518   if (ph == NULL) {
 519     // the process does not exist.
 520     if (PrintMiscellaneous && Verbose) {
 521       DWORD lastError = GetLastError();
 522       if (lastError != ERROR_INVALID_PARAMETER) {
 523         warning("OpenProcess failed: %d\n", GetLastError());
 524       }
 525     }
 526     return false;
 527   }
 528 
 529   DWORD exit_status;
 530   if (!GetExitCodeProcess(ph, &exit_status)) {
 531     if (PrintMiscellaneous && Verbose) {
 532       warning("GetExitCodeProcess failed: %d\n", GetLastError());
 533     }
 534     CloseHandle(ph);
 535     return false;
 536   }
 537 
 538   CloseHandle(ph);
 539   return (exit_status == STILL_ACTIVE) ? true : false;
 540 }
 541 
 542 // check if the file system is considered secure for the backing store files
 543 //
 544 static bool is_filesystem_secure(const char* path) {
 545 
 546   char root_path[MAX_PATH];
 547   char fs_type[MAX_PATH];
 548 
 549   if (PerfBypassFileSystemCheck) {
 550     if (PrintMiscellaneous && Verbose) {
 551       warning("bypassing file system criteria checks for %s\n", path);
 552     }
 553     return true;
 554   }
 555 
 556   char* first_colon = strchr((char *)path, ':');
 557   if (first_colon == NULL) {
 558     if (PrintMiscellaneous && Verbose) {
 559       warning("expected device specifier in path: %s\n", path);
 560     }
 561     return false;
 562   }
 563 
 564   size_t len = (size_t)(first_colon - path);
 565   assert(len + 2 <= MAX_PATH, "unexpected device specifier length");
 566   strncpy(root_path, path, len + 1);
 567   root_path[len + 1] = '\\';
 568   root_path[len + 2] = '\0';
 569 
 570   // check that we have something like "C:\" or "AA:\"
 571   assert(strlen(root_path) >= 3, "device specifier too short");
 572   assert(strchr(root_path, ':') != NULL, "bad device specifier format");
 573   assert(strchr(root_path, '\\') != NULL, "bad device specifier format");
 574 
 575   DWORD maxpath;
 576   DWORD flags;
 577 
 578   if (!GetVolumeInformation(root_path, NULL, 0, NULL, &maxpath,
 579                             &flags, fs_type, MAX_PATH)) {
 580     // we can't get information about the volume, so assume unsafe.
 581     if (PrintMiscellaneous && Verbose) {
 582       warning("could not get device information for %s: "
 583               " path = %s: lasterror = %d\n",
 584               root_path, path, GetLastError());
 585     }
 586     return false;
 587   }
 588 
 589   if ((flags & FS_PERSISTENT_ACLS) == 0) {
 590     // file system doesn't support ACLs, declare file system unsafe
 591     if (PrintMiscellaneous && Verbose) {
 592       warning("file system type %s on device %s does not support"
 593               " ACLs\n", fs_type, root_path);
 594     }
 595     return false;
 596   }
 597 
 598   if ((flags & FS_VOL_IS_COMPRESSED) != 0) {
 599     // file system is compressed, declare file system unsafe
 600     if (PrintMiscellaneous && Verbose) {
 601       warning("file system type %s on device %s is compressed\n",
 602               fs_type, root_path);
 603     }
 604     return false;
 605   }
 606 
 607   return true;
 608 }
 609 
 610 // cleanup stale shared memory resources
 611 //
 612 // This method attempts to remove all stale shared memory files in
 613 // the named user temporary directory. It scans the named directory
 614 // for files matching the pattern ^$[0-9]*$. For each file found, the
 615 // process id is extracted from the file name and a test is run to
 616 // determine if the process is alive. If the process is not alive,
 617 // any stale file resources are removed.
 618 //
 619 static void cleanup_sharedmem_resources(const char* dirname) {
 620 
 621   // open the user temp directory
 622   DIR* dirp = os::opendir(dirname);
 623 
 624   if (dirp == NULL) {
 625     // directory doesn't exist, so there is nothing to cleanup
 626     return;
 627   }
 628 
 629   if (!is_directory_secure(dirname)) {
 630     // the directory is not secure, don't attempt any cleanup
 631     return;
 632   }
 633 
 634   // for each entry in the directory that matches the expected file
 635   // name pattern, determine if the file resources are stale and if
 636   // so, remove the file resources. Note, instrumented HotSpot processes
 637   // for this user may start and/or terminate during this search and
 638   // remove or create new files in this directory. The behavior of this
 639   // loop under these conditions is dependent upon the implementation of
 640   // opendir/readdir.
 641   //
 642   struct dirent* entry;
 643   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
 644   errno = 0;
 645   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
 646 
 647     int pid = filename_to_pid(entry->d_name);
 648 
 649     if (pid == 0) {
 650 
 651       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
 652 
 653         // attempt to remove all unexpected files, except "." and ".."
 654         remove_file(dirname, entry->d_name);
 655       }
 656 
 657       errno = 0;
 658       continue;
 659     }
 660 
 661     // we now have a file name that converts to a valid integer
 662     // that could represent a process id . if this process id
 663     // matches the current process id or the process is not running,
 664     // then remove the stale file resources.
 665     //
 666     // process liveness is detected by checking the exit status
 667     // of the process. if the process id is valid and the exit status
 668     // indicates that it is still running, the file file resources
 669     // are not removed. If the process id is invalid, or if we don't
 670     // have permissions to check the process status, or if the process
 671     // id is valid and the process has terminated, the the file resources
 672     // are assumed to be stale and are removed.
 673     //
 674     if (pid == os::current_process_id() || !is_alive(pid)) {
 675 
 676       // we can only remove the file resources. Any mapped views
 677       // of the file can only be unmapped by the processes that
 678       // opened those views and the file mapping object will not
 679       // get removed until all views are unmapped.
 680       //
 681       remove_file(dirname, entry->d_name);
 682     }
 683     errno = 0;
 684   }
 685   os::closedir(dirp);
 686   FREE_C_HEAP_ARRAY(char, dbuf);
 687 }
 688 
 689 // create a file mapping object with the requested name, and size
 690 // from the file represented by the given Handle object
 691 //
 692 static HANDLE create_file_mapping(const char* name, HANDLE fh, LPSECURITY_ATTRIBUTES fsa, size_t size) {
 693 
 694   DWORD lowSize = (DWORD)size;
 695   DWORD highSize = 0;
 696   HANDLE fmh = NULL;
 697 
 698   // Create a file mapping object with the given name. This function
 699   // will grow the file to the specified size.
 700   //
 701   fmh = CreateFileMapping(
 702                fh,                 /* HANDLE file handle for backing store */
 703                fsa,                /* LPSECURITY_ATTRIBUTES Not inheritable */
 704                PAGE_READWRITE,     /* DWORD protections */
 705                highSize,           /* DWORD High word of max size */
 706                lowSize,            /* DWORD Low word of max size */
 707                name);              /* LPCTSTR name for object */
 708 
 709   if (fmh == NULL) {
 710     if (PrintMiscellaneous && Verbose) {
 711       warning("CreateFileMapping failed, lasterror = %d\n", GetLastError());
 712     }
 713     return NULL;
 714   }
 715 
 716   if (GetLastError() == ERROR_ALREADY_EXISTS) {
 717 
 718     // a stale file mapping object was encountered. This object may be
 719     // owned by this or some other user and cannot be removed until
 720     // the other processes either exit or close their mapping objects
 721     // and/or mapped views of this mapping object.
 722     //
 723     if (PrintMiscellaneous && Verbose) {
 724       warning("file mapping already exists, lasterror = %d\n", GetLastError());
 725     }
 726 
 727     CloseHandle(fmh);
 728     return NULL;
 729   }
 730 
 731   return fmh;
 732 }
 733 
 734 
 735 // method to free the given security descriptor and the contained
 736 // access control list.
 737 //
 738 static void free_security_desc(PSECURITY_DESCRIPTOR pSD) {
 739 
 740   BOOL success, exists, isdefault;
 741   PACL pACL;
 742 
 743   if (pSD != NULL) {
 744 
 745     // get the access control list from the security descriptor
 746     success = GetSecurityDescriptorDacl(pSD, &exists, &pACL, &isdefault);
 747 
 748     // if an ACL existed and it was not a default acl, then it must
 749     // be an ACL we enlisted. free the resources.
 750     //
 751     if (success && exists && pACL != NULL && !isdefault) {
 752       FREE_C_HEAP_ARRAY(char, pACL);
 753     }
 754 
 755     // free the security descriptor
 756     FREE_C_HEAP_ARRAY(char, pSD);
 757   }
 758 }
 759 
 760 // method to free up a security attributes structure and any
 761 // contained security descriptors and ACL
 762 //
 763 static void free_security_attr(LPSECURITY_ATTRIBUTES lpSA) {
 764 
 765   if (lpSA != NULL) {
 766     // free the contained security descriptor and the ACL
 767     free_security_desc(lpSA->lpSecurityDescriptor);
 768     lpSA->lpSecurityDescriptor = NULL;
 769 
 770     // free the security attributes structure
 771     FREE_C_HEAP_ARRAY(char, lpSA);
 772   }
 773 }
 774 
 775 // get the user SID for the process indicated by the process handle
 776 //
 777 static PSID get_user_sid(HANDLE hProcess) {
 778 
 779   HANDLE hAccessToken;
 780   PTOKEN_USER token_buf = NULL;
 781   DWORD rsize = 0;
 782 
 783   if (hProcess == NULL) {
 784     return NULL;
 785   }
 786 
 787   // get the process token
 788   if (!OpenProcessToken(hProcess, TOKEN_READ, &hAccessToken)) {
 789     if (PrintMiscellaneous && Verbose) {
 790       warning("OpenProcessToken failure: lasterror = %d \n", GetLastError());
 791     }
 792     return NULL;
 793   }
 794 
 795   // determine the size of the token structured needed to retrieve
 796   // the user token information from the access token.
 797   //
 798   if (!GetTokenInformation(hAccessToken, TokenUser, NULL, rsize, &rsize)) {
 799     DWORD lasterror = GetLastError();
 800     if (lasterror != ERROR_INSUFFICIENT_BUFFER) {
 801       if (PrintMiscellaneous && Verbose) {
 802         warning("GetTokenInformation failure: lasterror = %d,"
 803                 " rsize = %d\n", lasterror, rsize);
 804       }
 805       CloseHandle(hAccessToken);
 806       return NULL;
 807     }
 808   }
 809 
 810   token_buf = (PTOKEN_USER) NEW_C_HEAP_ARRAY(char, rsize, mtInternal);
 811 
 812   // get the user token information
 813   if (!GetTokenInformation(hAccessToken, TokenUser, token_buf, rsize, &rsize)) {
 814     if (PrintMiscellaneous && Verbose) {
 815       warning("GetTokenInformation failure: lasterror = %d,"
 816               " rsize = %d\n", GetLastError(), rsize);
 817     }
 818     FREE_C_HEAP_ARRAY(char, token_buf);
 819     CloseHandle(hAccessToken);
 820     return NULL;
 821   }
 822 
 823   DWORD nbytes = GetLengthSid(token_buf->User.Sid);
 824   PSID pSID = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 825 
 826   if (!CopySid(nbytes, pSID, token_buf->User.Sid)) {
 827     if (PrintMiscellaneous && Verbose) {
 828       warning("GetTokenInformation failure: lasterror = %d,"
 829               " rsize = %d\n", GetLastError(), rsize);
 830     }
 831     FREE_C_HEAP_ARRAY(char, token_buf);
 832     FREE_C_HEAP_ARRAY(char, pSID);
 833     CloseHandle(hAccessToken);
 834     return NULL;
 835   }
 836 
 837   // close the access token.
 838   CloseHandle(hAccessToken);
 839   FREE_C_HEAP_ARRAY(char, token_buf);
 840 
 841   return pSID;
 842 }
 843 
 844 // structure used to consolidate access control entry information
 845 //
 846 typedef struct ace_data {
 847   PSID pSid;      // SID of the ACE
 848   DWORD mask;     // mask for the ACE
 849 } ace_data_t;
 850 
 851 
 852 // method to add an allow access control entry with the access rights
 853 // indicated in mask for the principal indicated in SID to the given
 854 // security descriptor. Much of the DACL handling was adapted from
 855 // the example provided here:
 856 //      http://support.microsoft.com/kb/102102/EN-US/
 857 //
 858 
 859 static bool add_allow_aces(PSECURITY_DESCRIPTOR pSD,
 860                            ace_data_t aces[], int ace_count) {
 861   PACL newACL = NULL;
 862   PACL oldACL = NULL;
 863 
 864   if (pSD == NULL) {
 865     return false;
 866   }
 867 
 868   BOOL exists, isdefault;
 869 
 870   // retrieve any existing access control list.
 871   if (!GetSecurityDescriptorDacl(pSD, &exists, &oldACL, &isdefault)) {
 872     if (PrintMiscellaneous && Verbose) {
 873       warning("GetSecurityDescriptor failure: lasterror = %d \n",
 874               GetLastError());
 875     }
 876     return false;
 877   }
 878 
 879   // get the size of the DACL
 880   ACL_SIZE_INFORMATION aclinfo;
 881 
 882   // GetSecurityDescriptorDacl may return true value for exists (lpbDaclPresent)
 883   // while oldACL is NULL for some case.
 884   if (oldACL == NULL) {
 885     exists = FALSE;
 886   }
 887 
 888   if (exists) {
 889     if (!GetAclInformation(oldACL, &aclinfo,
 890                            sizeof(ACL_SIZE_INFORMATION),
 891                            AclSizeInformation)) {
 892       if (PrintMiscellaneous && Verbose) {
 893         warning("GetAclInformation failure: lasterror = %d \n", GetLastError());
 894         return false;
 895       }
 896     }
 897   } else {
 898     aclinfo.AceCount = 0; // assume NULL DACL
 899     aclinfo.AclBytesFree = 0;
 900     aclinfo.AclBytesInUse = sizeof(ACL);
 901   }
 902 
 903   // compute the size needed for the new ACL
 904   // initial size of ACL is sum of the following:
 905   //   * size of ACL structure.
 906   //   * size of each ACE structure that ACL is to contain minus the sid
 907   //     sidStart member (DWORD) of the ACE.
 908   //   * length of the SID that each ACE is to contain.
 909   DWORD newACLsize = aclinfo.AclBytesInUse +
 910                         (sizeof(ACCESS_ALLOWED_ACE) - sizeof(DWORD)) * ace_count;
 911   for (int i = 0; i < ace_count; i++) {
 912      assert(aces[i].pSid != 0, "pSid should not be 0");
 913      newACLsize += GetLengthSid(aces[i].pSid);
 914   }
 915 
 916   // create the new ACL
 917   newACL = (PACL) NEW_C_HEAP_ARRAY(char, newACLsize, mtInternal);
 918 
 919   if (!InitializeAcl(newACL, newACLsize, ACL_REVISION)) {
 920     if (PrintMiscellaneous && Verbose) {
 921       warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
 922     }
 923     FREE_C_HEAP_ARRAY(char, newACL);
 924     return false;
 925   }
 926 
 927   unsigned int ace_index = 0;
 928   // copy any existing ACEs from the old ACL (if any) to the new ACL.
 929   if (aclinfo.AceCount != 0) {
 930     while (ace_index < aclinfo.AceCount) {
 931       LPVOID ace;
 932       if (!GetAce(oldACL, ace_index, &ace)) {
 933         if (PrintMiscellaneous && Verbose) {
 934           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
 935         }
 936         FREE_C_HEAP_ARRAY(char, newACL);
 937         return false;
 938       }
 939       if (((ACCESS_ALLOWED_ACE *)ace)->Header.AceFlags && INHERITED_ACE) {
 940         // this is an inherited, allowed ACE; break from loop so we can
 941         // add the new access allowed, non-inherited ACE in the correct
 942         // position, immediately following all non-inherited ACEs.
 943         break;
 944       }
 945 
 946       // determine if the SID of this ACE matches any of the SIDs
 947       // for which we plan to set ACEs.
 948       int matches = 0;
 949       for (int i = 0; i < ace_count; i++) {
 950         if (EqualSid(aces[i].pSid, &(((ACCESS_ALLOWED_ACE *)ace)->SidStart))) {
 951           matches++;
 952           break;
 953         }
 954       }
 955 
 956       // if there are no SID matches, then add this existing ACE to the new ACL
 957       if (matches == 0) {
 958         if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
 959                     ((PACE_HEADER)ace)->AceSize)) {
 960           if (PrintMiscellaneous && Verbose) {
 961             warning("AddAce failure: lasterror = %d \n", GetLastError());
 962           }
 963           FREE_C_HEAP_ARRAY(char, newACL);
 964           return false;
 965         }
 966       }
 967       ace_index++;
 968     }
 969   }
 970 
 971   // add the passed-in access control entries to the new ACL
 972   for (int i = 0; i < ace_count; i++) {
 973     if (!AddAccessAllowedAce(newACL, ACL_REVISION,
 974                              aces[i].mask, aces[i].pSid)) {
 975       if (PrintMiscellaneous && Verbose) {
 976         warning("AddAccessAllowedAce failure: lasterror = %d \n",
 977                 GetLastError());
 978       }
 979       FREE_C_HEAP_ARRAY(char, newACL);
 980       return false;
 981     }
 982   }
 983 
 984   // now copy the rest of the inherited ACEs from the old ACL
 985   if (aclinfo.AceCount != 0) {
 986     // picking up at ace_index, where we left off in the
 987     // previous ace_index loop
 988     while (ace_index < aclinfo.AceCount) {
 989       LPVOID ace;
 990       if (!GetAce(oldACL, ace_index, &ace)) {
 991         if (PrintMiscellaneous && Verbose) {
 992           warning("InitializeAcl failure: lasterror = %d \n", GetLastError());
 993         }
 994         FREE_C_HEAP_ARRAY(char, newACL);
 995         return false;
 996       }
 997       if (!AddAce(newACL, ACL_REVISION, MAXDWORD, ace,
 998                   ((PACE_HEADER)ace)->AceSize)) {
 999         if (PrintMiscellaneous && Verbose) {
1000           warning("AddAce failure: lasterror = %d \n", GetLastError());
1001         }
1002         FREE_C_HEAP_ARRAY(char, newACL);
1003         return false;
1004       }
1005       ace_index++;
1006     }
1007   }
1008 
1009   // add the new ACL to the security descriptor.
1010   if (!SetSecurityDescriptorDacl(pSD, TRUE, newACL, FALSE)) {
1011     if (PrintMiscellaneous && Verbose) {
1012       warning("SetSecurityDescriptorDacl failure:"
1013               " lasterror = %d \n", GetLastError());
1014     }
1015     FREE_C_HEAP_ARRAY(char, newACL);
1016     return false;
1017   }
1018 
1019   // if running on windows 2000 or later, set the automatic inheritance
1020   // control flags.
1021   SetSecurityDescriptorControlFnPtr _SetSecurityDescriptorControl;
1022   _SetSecurityDescriptorControl = (SetSecurityDescriptorControlFnPtr)
1023        GetProcAddress(GetModuleHandle(TEXT("advapi32.dll")),
1024                       "SetSecurityDescriptorControl");
1025 
1026   if (_SetSecurityDescriptorControl != NULL) {
1027     // We do not want to further propagate inherited DACLs, so making them
1028     // protected prevents that.
1029     if (!_SetSecurityDescriptorControl(pSD, SE_DACL_PROTECTED,
1030                                             SE_DACL_PROTECTED)) {
1031       if (PrintMiscellaneous && Verbose) {
1032         warning("SetSecurityDescriptorControl failure:"
1033                 " lasterror = %d \n", GetLastError());
1034       }
1035       FREE_C_HEAP_ARRAY(char, newACL);
1036       return false;
1037     }
1038   }
1039    // Note, the security descriptor maintains a reference to the newACL, not
1040    // a copy of it. Therefore, the newACL is not freed here. It is freed when
1041    // the security descriptor containing its reference is freed.
1042    //
1043    return true;
1044 }
1045 
1046 // method to create a security attributes structure, which contains a
1047 // security descriptor and an access control list comprised of 0 or more
1048 // access control entries. The method take an array of ace_data structures
1049 // that indicate the ACE to be added to the security descriptor.
1050 //
1051 // the caller must free the resources associated with the security
1052 // attributes structure created by this method by calling the
1053 // free_security_attr() method.
1054 //
1055 static LPSECURITY_ATTRIBUTES make_security_attr(ace_data_t aces[], int count) {
1056 
1057   // allocate space for a security descriptor
1058   PSECURITY_DESCRIPTOR pSD = (PSECURITY_DESCRIPTOR)
1059      NEW_C_HEAP_ARRAY(char, SECURITY_DESCRIPTOR_MIN_LENGTH, mtInternal);
1060 
1061   // initialize the security descriptor
1062   if (!InitializeSecurityDescriptor(pSD, SECURITY_DESCRIPTOR_REVISION)) {
1063     if (PrintMiscellaneous && Verbose) {
1064       warning("InitializeSecurityDescriptor failure: "
1065               "lasterror = %d \n", GetLastError());
1066     }
1067     free_security_desc(pSD);
1068     return NULL;
1069   }
1070 
1071   // add the access control entries
1072   if (!add_allow_aces(pSD, aces, count)) {
1073     free_security_desc(pSD);
1074     return NULL;
1075   }
1076 
1077   // allocate and initialize the security attributes structure and
1078   // return it to the caller.
1079   //
1080   LPSECURITY_ATTRIBUTES lpSA = (LPSECURITY_ATTRIBUTES)
1081     NEW_C_HEAP_ARRAY(char, sizeof(SECURITY_ATTRIBUTES), mtInternal);
1082   lpSA->nLength = sizeof(SECURITY_ATTRIBUTES);
1083   lpSA->lpSecurityDescriptor = pSD;
1084   lpSA->bInheritHandle = FALSE;
1085 
1086   return(lpSA);
1087 }
1088 
1089 // method to create a security attributes structure with a restrictive
1090 // access control list that creates a set access rights for the user/owner
1091 // of the securable object and a separate set access rights for everyone else.
1092 // also provides for full access rights for the administrator group.
1093 //
1094 // the caller must free the resources associated with the security
1095 // attributes structure created by this method by calling the
1096 // free_security_attr() method.
1097 //
1098 
1099 static LPSECURITY_ATTRIBUTES make_user_everybody_admin_security_attr(
1100                                 DWORD umask, DWORD emask, DWORD amask) {
1101 
1102   ace_data_t aces[3];
1103 
1104   // initialize the user ace data
1105   aces[0].pSid = get_user_sid(GetCurrentProcess());
1106   aces[0].mask = umask;
1107 
1108   if (aces[0].pSid == 0)
1109     return NULL;
1110 
1111   // get the well known SID for BUILTIN\Administrators
1112   PSID administratorsSid = NULL;
1113   SID_IDENTIFIER_AUTHORITY SIDAuthAdministrators = SECURITY_NT_AUTHORITY;
1114 
1115   if (!AllocateAndInitializeSid( &SIDAuthAdministrators, 2,
1116            SECURITY_BUILTIN_DOMAIN_RID,
1117            DOMAIN_ALIAS_RID_ADMINS,
1118            0, 0, 0, 0, 0, 0, &administratorsSid)) {
1119 
1120     if (PrintMiscellaneous && Verbose) {
1121       warning("AllocateAndInitializeSid failure: "
1122               "lasterror = %d \n", GetLastError());
1123     }
1124     return NULL;
1125   }
1126 
1127   // initialize the ace data for administrator group
1128   aces[1].pSid = administratorsSid;
1129   aces[1].mask = amask;
1130 
1131   // get the well known SID for the universal Everybody
1132   PSID everybodySid = NULL;
1133   SID_IDENTIFIER_AUTHORITY SIDAuthEverybody = SECURITY_WORLD_SID_AUTHORITY;
1134 
1135   if (!AllocateAndInitializeSid( &SIDAuthEverybody, 1, SECURITY_WORLD_RID,
1136            0, 0, 0, 0, 0, 0, 0, &everybodySid)) {
1137 
1138     if (PrintMiscellaneous && Verbose) {
1139       warning("AllocateAndInitializeSid failure: "
1140               "lasterror = %d \n", GetLastError());
1141     }
1142     return NULL;
1143   }
1144 
1145   // initialize the ace data for everybody else.
1146   aces[2].pSid = everybodySid;
1147   aces[2].mask = emask;
1148 
1149   // create a security attributes structure with access control
1150   // entries as initialized above.
1151   LPSECURITY_ATTRIBUTES lpSA = make_security_attr(aces, 3);
1152   FREE_C_HEAP_ARRAY(char, aces[0].pSid);
1153   FreeSid(everybodySid);
1154   FreeSid(administratorsSid);
1155   return(lpSA);
1156 }
1157 
1158 
1159 // method to create the security attributes structure for restricting
1160 // access to the user temporary directory.
1161 //
1162 // the caller must free the resources associated with the security
1163 // attributes structure created by this method by calling the
1164 // free_security_attr() method.
1165 //
1166 static LPSECURITY_ATTRIBUTES make_tmpdir_security_attr() {
1167 
1168   // create full access rights for the user/owner of the directory
1169   // and read-only access rights for everybody else. This is
1170   // effectively equivalent to UNIX 755 permissions on a directory.
1171   //
1172   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_ALL_ACCESS;
1173   DWORD emask = GENERIC_READ | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1174   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1175 
1176   return make_user_everybody_admin_security_attr(umask, emask, amask);
1177 }
1178 
1179 // method to create the security attributes structure for restricting
1180 // access to the shared memory backing store file.
1181 //
1182 // the caller must free the resources associated with the security
1183 // attributes structure created by this method by calling the
1184 // free_security_attr() method.
1185 //
1186 static LPSECURITY_ATTRIBUTES make_file_security_attr() {
1187 
1188   // create extensive access rights for the user/owner of the file
1189   // and attribute read-only access rights for everybody else. This
1190   // is effectively equivalent to UNIX 600 permissions on a file.
1191   //
1192   DWORD umask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1193   DWORD emask = STANDARD_RIGHTS_READ | FILE_READ_ATTRIBUTES |
1194                  FILE_READ_EA | FILE_LIST_DIRECTORY | FILE_TRAVERSE;
1195   DWORD amask = STANDARD_RIGHTS_ALL | FILE_ALL_ACCESS;
1196 
1197   return make_user_everybody_admin_security_attr(umask, emask, amask);
1198 }
1199 
1200 // method to create the security attributes structure for restricting
1201 // access to the name shared memory file mapping object.
1202 //
1203 // the caller must free the resources associated with the security
1204 // attributes structure created by this method by calling the
1205 // free_security_attr() method.
1206 //
1207 static LPSECURITY_ATTRIBUTES make_smo_security_attr() {
1208 
1209   // create extensive access rights for the user/owner of the shared
1210   // memory object and attribute read-only access rights for everybody
1211   // else. This is effectively equivalent to UNIX 600 permissions on
1212   // on the shared memory object.
1213   //
1214   DWORD umask = STANDARD_RIGHTS_REQUIRED | FILE_MAP_ALL_ACCESS;
1215   DWORD emask = STANDARD_RIGHTS_READ; // attributes only
1216   DWORD amask = STANDARD_RIGHTS_ALL | FILE_MAP_ALL_ACCESS;
1217 
1218   return make_user_everybody_admin_security_attr(umask, emask, amask);
1219 }
1220 
1221 // make the user specific temporary directory
1222 //
1223 static bool make_user_tmp_dir(const char* dirname) {
1224 
1225 
1226   LPSECURITY_ATTRIBUTES pDirSA = make_tmpdir_security_attr();
1227   if (pDirSA == NULL) {
1228     return false;
1229   }
1230 
1231 
1232   // create the directory with the given security attributes
1233   if (!CreateDirectory(dirname, pDirSA)) {
1234     DWORD lasterror = GetLastError();
1235     if (lasterror == ERROR_ALREADY_EXISTS) {
1236       // The directory already exists and was probably created by another
1237       // JVM instance. However, this could also be the result of a
1238       // deliberate symlink. Verify that the existing directory is safe.
1239       //
1240       if (!is_directory_secure(dirname)) {
1241         // directory is not secure
1242         if (PrintMiscellaneous && Verbose) {
1243           warning("%s directory is insecure\n", dirname);
1244         }
1245         return false;
1246       }
1247       // The administrator should be able to delete this directory.
1248       // But the directory created by previous version of JVM may not
1249       // have permission for administrators to delete this directory.
1250       // So add full permission to the administrator. Also setting new
1251       // DACLs might fix the corrupted the DACLs.
1252       SECURITY_INFORMATION secInfo = DACL_SECURITY_INFORMATION;
1253       if (!SetFileSecurity(dirname, secInfo, pDirSA->lpSecurityDescriptor)) {
1254         if (PrintMiscellaneous && Verbose) {
1255           lasterror = GetLastError();
1256           warning("SetFileSecurity failed for %s directory.  lasterror %d \n",
1257                                                         dirname, lasterror);
1258         }
1259       }
1260     }
1261     else {
1262       if (PrintMiscellaneous && Verbose) {
1263         warning("CreateDirectory failed: %d\n", GetLastError());
1264       }
1265       return false;
1266     }
1267   }
1268 
1269   // free the security attributes structure
1270   free_security_attr(pDirSA);
1271 
1272   return true;
1273 }
1274 
1275 // create the shared memory resources
1276 //
1277 // This function creates the shared memory resources. This includes
1278 // the backing store file and the file mapping shared memory object.
1279 //
1280 static HANDLE create_sharedmem_resources(const char* dirname, const char* filename, const char* objectname, size_t size) {
1281 
1282   HANDLE fh = INVALID_HANDLE_VALUE;
1283   HANDLE fmh = NULL;
1284 
1285 
1286   // create the security attributes for the backing store file
1287   LPSECURITY_ATTRIBUTES lpFileSA = make_file_security_attr();
1288   if (lpFileSA == NULL) {
1289     return NULL;
1290   }
1291 
1292   // create the security attributes for the shared memory object
1293   LPSECURITY_ATTRIBUTES lpSmoSA = make_smo_security_attr();
1294   if (lpSmoSA == NULL) {
1295     free_security_attr(lpFileSA);
1296     return NULL;
1297   }
1298 
1299   // create the user temporary directory
1300   if (!make_user_tmp_dir(dirname)) {
1301     // could not make/find the directory or the found directory
1302     // was not secure
1303     return NULL;
1304   }
1305 
1306   // Create the file - the FILE_FLAG_DELETE_ON_CLOSE flag allows the
1307   // file to be deleted by the last process that closes its handle to
1308   // the file. This is important as the apis do not allow a terminating
1309   // JVM being monitored by another process to remove the file name.
1310   //
1311   fh = CreateFile(
1312              filename,                          /* LPCTSTR file name */
1313 
1314              GENERIC_READ|GENERIC_WRITE,        /* DWORD desired access */
1315              FILE_SHARE_DELETE|FILE_SHARE_READ, /* DWORD share mode, future READONLY
1316                                                  * open operations allowed
1317                                                  */
1318              lpFileSA,                          /* LPSECURITY security attributes */
1319              CREATE_ALWAYS,                     /* DWORD creation disposition
1320                                                  * create file, if it already
1321                                                  * exists, overwrite it.
1322                                                  */
1323              FILE_FLAG_DELETE_ON_CLOSE,         /* DWORD flags and attributes */
1324 
1325              NULL);                             /* HANDLE template file access */
1326 
1327   free_security_attr(lpFileSA);
1328 
1329   if (fh == INVALID_HANDLE_VALUE) {
1330     DWORD lasterror = GetLastError();
1331     if (PrintMiscellaneous && Verbose) {
1332       warning("could not create file %s: %d\n", filename, lasterror);
1333     }
1334     return NULL;
1335   }
1336 
1337   // try to create the file mapping
1338   fmh = create_file_mapping(objectname, fh, lpSmoSA, size);
1339 
1340   free_security_attr(lpSmoSA);
1341 
1342   if (fmh == NULL) {
1343     // closing the file handle here will decrement the reference count
1344     // on the file. When all processes accessing the file close their
1345     // handle to it, the reference count will decrement to 0 and the
1346     // OS will delete the file. These semantics are requested by the
1347     // FILE_FLAG_DELETE_ON_CLOSE flag in CreateFile call above.
1348     CloseHandle(fh);
1349     fh = NULL;
1350     return NULL;
1351   } else {
1352     // We created the file mapping, but rarely the size of the
1353     // backing store file is reported as zero (0) which can cause
1354     // failures when trying to use the hsperfdata file.
1355     struct stat statbuf;
1356     int ret_code = ::stat(filename, &statbuf);
1357     if (ret_code == OS_ERR) {
1358       if (PrintMiscellaneous && Verbose) {
1359         warning("Could not get status information from file %s: %s\n",
1360             filename, strerror(errno));
1361       }
1362       CloseHandle(fmh);
1363       CloseHandle(fh);
1364       fh = NULL;
1365       fmh = NULL;
1366       return NULL;
1367     }
1368 
1369     // We could always call FlushFileBuffers() but the Microsoft
1370     // docs indicate that it is considered expensive so we only
1371     // call it when we observe the size as zero (0).
1372     if (statbuf.st_size == 0 && FlushFileBuffers(fh) != TRUE) {
1373       DWORD lasterror = GetLastError();
1374       if (PrintMiscellaneous && Verbose) {
1375         warning("could not flush file %s: %d\n", filename, lasterror);
1376       }
1377       CloseHandle(fmh);
1378       CloseHandle(fh);
1379       fh = NULL;
1380       fmh = NULL;
1381       return NULL;
1382     }
1383   }
1384 
1385   // the file has been successfully created and the file mapping
1386   // object has been created.
1387   sharedmem_fileHandle = fh;
1388   sharedmem_fileName = os::strdup(filename);
1389 
1390   return fmh;
1391 }
1392 
1393 // open the shared memory object for the given vmid.
1394 //
1395 static HANDLE open_sharedmem_object(const char* objectname, DWORD ofm_access, TRAPS) {
1396 
1397   HANDLE fmh;
1398 
1399   // open the file mapping with the requested mode
1400   fmh = OpenFileMapping(
1401                ofm_access,       /* DWORD access mode */
1402                FALSE,            /* BOOL inherit flag - Do not allow inherit */
1403                objectname);      /* name for object */
1404 
1405   if (fmh == NULL) {
1406     if (PrintMiscellaneous && Verbose) {
1407       warning("OpenFileMapping failed for shared memory object %s:"
1408               " lasterror = %d\n", objectname, GetLastError());
1409     }
1410     THROW_MSG_(vmSymbols::java_lang_Exception(),
1411                "Could not open PerfMemory", INVALID_HANDLE_VALUE);
1412   }
1413 
1414   return fmh;;
1415 }
1416 
1417 // create a named shared memory region
1418 //
1419 // On Win32, a named shared memory object has a name space that
1420 // is independent of the file system name space. Shared memory object,
1421 // or more precisely, file mapping objects, provide no mechanism to
1422 // inquire the size of the memory region. There is also no api to
1423 // enumerate the memory regions for various processes.
1424 //
1425 // This implementation utilizes the shared memory name space in parallel
1426 // with the file system name space. This allows us to determine the
1427 // size of the shared memory region from the size of the file and it
1428 // allows us to provide a common, file system based name space for
1429 // shared memory across platforms.
1430 //
1431 static char* mapping_create_shared(size_t size) {
1432 
1433   void *mapAddress;
1434   int vmid = os::current_process_id();
1435 
1436   // get the name of the user associated with this process
1437   char* user = get_user_name();
1438 
1439   if (user == NULL) {
1440     return NULL;
1441   }
1442 
1443   // construct the name of the user specific temporary directory
1444   char* dirname = get_user_tmp_dir(user);
1445 
1446   // check that the file system is secure - i.e. it supports ACLs.
1447   if (!is_filesystem_secure(dirname)) {
1448     return NULL;
1449   }
1450 
1451   // create the names of the backing store files and for the
1452   // share memory object.
1453   //
1454   char* filename = get_sharedmem_filename(dirname, vmid);
1455   char* objectname = get_sharedmem_objectname(user, vmid);
1456 
1457   // cleanup any stale shared memory resources
1458   cleanup_sharedmem_resources(dirname);
1459 
1460   assert(((size != 0) && (size % os::vm_page_size() == 0)),
1461          "unexpected PerfMemry region size");
1462 
1463   FREE_C_HEAP_ARRAY(char, user);
1464 
1465   // create the shared memory resources
1466   sharedmem_fileMapHandle =
1467                create_sharedmem_resources(dirname, filename, objectname, size);
1468 
1469   FREE_C_HEAP_ARRAY(char, filename);
1470   FREE_C_HEAP_ARRAY(char, objectname);
1471   FREE_C_HEAP_ARRAY(char, dirname);
1472 
1473   if (sharedmem_fileMapHandle == NULL) {
1474     return NULL;
1475   }
1476 
1477   // map the file into the address space
1478   mapAddress = MapViewOfFile(
1479                    sharedmem_fileMapHandle, /* HANDLE = file mapping object */
1480                    FILE_MAP_ALL_ACCESS,     /* DWORD access flags */
1481                    0,                       /* DWORD High word of offset */
1482                    0,                       /* DWORD Low word of offset */
1483                    (DWORD)size);            /* DWORD Number of bytes to map */
1484 
1485   if (mapAddress == NULL) {
1486     if (PrintMiscellaneous && Verbose) {
1487       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1488     }
1489     CloseHandle(sharedmem_fileMapHandle);
1490     sharedmem_fileMapHandle = NULL;
1491     return NULL;
1492   }
1493 
1494   // clear the shared memory region
1495   (void)memset(mapAddress, '\0', size);
1496 
1497   // it does not go through os api, the operation has to record from here
1498   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
1499     size, CURRENT_PC, mtInternal);
1500 
1501   return (char*) mapAddress;
1502 }
1503 
1504 // this method deletes the file mapping object.
1505 //
1506 static void delete_file_mapping(char* addr, size_t size) {
1507 
1508   // cleanup the persistent shared memory resources. since DestroyJavaVM does
1509   // not support unloading of the JVM, unmapping of the memory resource is not
1510   // performed. The memory will be reclaimed by the OS upon termination of all
1511   // processes mapping the resource. The file mapping handle and the file
1512   // handle are closed here to expedite the remove of the file by the OS. The
1513   // file is not removed directly because it was created with
1514   // FILE_FLAG_DELETE_ON_CLOSE semantics and any attempt to remove it would
1515   // be unsuccessful.
1516 
1517   // close the fileMapHandle. the file mapping will still be retained
1518   // by the OS as long as any other JVM processes has an open file mapping
1519   // handle or a mapped view of the file.
1520   //
1521   if (sharedmem_fileMapHandle != NULL) {
1522     CloseHandle(sharedmem_fileMapHandle);
1523     sharedmem_fileMapHandle = NULL;
1524   }
1525 
1526   // close the file handle. This will decrement the reference count on the
1527   // backing store file. When the reference count decrements to 0, the OS
1528   // will delete the file. These semantics apply because the file was
1529   // created with the FILE_FLAG_DELETE_ON_CLOSE flag.
1530   //
1531   if (sharedmem_fileHandle != INVALID_HANDLE_VALUE) {
1532     CloseHandle(sharedmem_fileHandle);
1533     sharedmem_fileHandle = INVALID_HANDLE_VALUE;
1534   }
1535 }
1536 
1537 // this method determines the size of the shared memory file
1538 //
1539 static size_t sharedmem_filesize(const char* filename, TRAPS) {
1540 
1541   struct stat statbuf;
1542 
1543   // get the file size
1544   //
1545   // on win95/98/me, _stat returns a file size of 0 bytes, but on
1546   // winnt/2k the appropriate file size is returned. support for
1547   // the sharable aspects of performance counters was abandonded
1548   // on the non-nt win32 platforms due to this and other api
1549   // inconsistencies
1550   //
1551   if (::stat(filename, &statbuf) == OS_ERR) {
1552     if (PrintMiscellaneous && Verbose) {
1553       warning("stat %s failed: %s\n", filename, strerror(errno));
1554     }
1555     THROW_MSG_0(vmSymbols::java_io_IOException(),
1556                 "Could not determine PerfMemory size");
1557   }
1558 
1559   if ((statbuf.st_size == 0) || (statbuf.st_size % os::vm_page_size() != 0)) {
1560     if (PrintMiscellaneous && Verbose) {
1561       warning("unexpected file size: size = " SIZE_FORMAT "\n",
1562               statbuf.st_size);
1563     }
1564     THROW_MSG_0(vmSymbols::java_lang_Exception(),
1565                 "Invalid PerfMemory size");
1566   }
1567 
1568   return statbuf.st_size;
1569 }
1570 
1571 // this method opens a file mapping object and maps the object
1572 // into the address space of the process
1573 //
1574 static void open_file_mapping(const char* user, int vmid,
1575                               PerfMemory::PerfMemoryMode mode,
1576                               char** addrp, size_t* sizep, TRAPS) {
1577 
1578   ResourceMark rm;
1579 
1580   void *mapAddress = 0;
1581   size_t size = 0;
1582   HANDLE fmh;
1583   DWORD ofm_access;
1584   DWORD mv_access;
1585   const char* luser = NULL;
1586 
1587   if (mode == PerfMemory::PERF_MODE_RO) {
1588     ofm_access = FILE_MAP_READ;
1589     mv_access = FILE_MAP_READ;
1590   }
1591   else if (mode == PerfMemory::PERF_MODE_RW) {
1592 #ifdef LATER
1593     ofm_access = FILE_MAP_READ | FILE_MAP_WRITE;
1594     mv_access = FILE_MAP_READ | FILE_MAP_WRITE;
1595 #else
1596     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1597               "Unsupported access mode");
1598 #endif
1599   }
1600   else {
1601     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1602               "Illegal access mode");
1603   }
1604 
1605   // if a user name wasn't specified, then find the user name for
1606   // the owner of the target vm.
1607   if (user == NULL || strlen(user) == 0) {
1608     luser = get_user_name(vmid);
1609   }
1610   else {
1611     luser = user;
1612   }
1613 
1614   if (luser == NULL) {
1615     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1616               "Could not map vmid to user name");
1617   }
1618 
1619   // get the names for the resources for the target vm
1620   char* dirname = get_user_tmp_dir(luser);
1621 
1622   // since we don't follow symbolic links when creating the backing
1623   // store file, we also don't following them when attaching
1624   //
1625   if (!is_directory_secure(dirname)) {
1626     FREE_C_HEAP_ARRAY(char, dirname);
1627     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1628               "Process not found");
1629   }
1630 
1631   char* filename = get_sharedmem_filename(dirname, vmid);
1632   char* objectname = get_sharedmem_objectname(luser, vmid);
1633 
1634   // copy heap memory to resource memory. the objectname and
1635   // filename are passed to methods that may throw exceptions.
1636   // using resource arrays for these names prevents the leaks
1637   // that would otherwise occur.
1638   //
1639   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1640   char* robjectname = NEW_RESOURCE_ARRAY(char, strlen(objectname) + 1);
1641   strcpy(rfilename, filename);
1642   strcpy(robjectname, objectname);
1643 
1644   // free the c heap resources that are no longer needed
1645   if (luser != user) FREE_C_HEAP_ARRAY(char, luser);
1646   FREE_C_HEAP_ARRAY(char, dirname);
1647   FREE_C_HEAP_ARRAY(char, filename);
1648   FREE_C_HEAP_ARRAY(char, objectname);
1649 
1650   if (*sizep == 0) {
1651     size = sharedmem_filesize(rfilename, CHECK);
1652   } else {
1653     size = *sizep;
1654   }
1655 
1656   assert(size > 0, "unexpected size <= 0");
1657 
1658   // Open the file mapping object with the given name
1659   fmh = open_sharedmem_object(robjectname, ofm_access, CHECK);
1660 
1661   assert(fmh != INVALID_HANDLE_VALUE, "unexpected handle value");
1662 
1663   // map the entire file into the address space
1664   mapAddress = MapViewOfFile(
1665                  fmh,             /* HANDLE Handle of file mapping object */
1666                  mv_access,       /* DWORD access flags */
1667                  0,               /* DWORD High word of offset */
1668                  0,               /* DWORD Low word of offset */
1669                  size);           /* DWORD Number of bytes to map */
1670 
1671   if (mapAddress == NULL) {
1672     if (PrintMiscellaneous && Verbose) {
1673       warning("MapViewOfFile failed, lasterror = %d\n", GetLastError());
1674     }
1675     CloseHandle(fmh);
1676     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1677               "Could not map PerfMemory");
1678   }
1679 
1680   // it does not go through os api, the operation has to record from here
1681   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size,
1682     CURRENT_PC, mtInternal);
1683 
1684 
1685   *addrp = (char*)mapAddress;
1686   *sizep = size;
1687 
1688   // File mapping object can be closed at this time without
1689   // invalidating the mapped view of the file
1690   CloseHandle(fmh);
1691 
1692   if (PerfTraceMemOps) {
1693     tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1694                INTPTR_FORMAT "\n", size, vmid, mapAddress);
1695   }
1696 }
1697 
1698 // this method unmaps the the mapped view of the the
1699 // file mapping object.
1700 //
1701 static void remove_file_mapping(char* addr) {
1702 
1703   // the file mapping object was closed in open_file_mapping()
1704   // after the file map view was created. We only need to
1705   // unmap the file view here.
1706   UnmapViewOfFile(addr);
1707 }
1708 
1709 // create the PerfData memory region in shared memory.
1710 static char* create_shared_memory(size_t size) {
1711 
1712   return mapping_create_shared(size);
1713 }
1714 
1715 // release a named, shared memory region
1716 //
1717 void delete_shared_memory(char* addr, size_t size) {
1718 
1719   delete_file_mapping(addr, size);
1720 }
1721 
1722 
1723 
1724 
1725 // create the PerfData memory region
1726 //
1727 // This method creates the memory region used to store performance
1728 // data for the JVM. The memory may be created in standard or
1729 // shared memory.
1730 //
1731 void PerfMemory::create_memory_region(size_t size) {
1732 
1733   if (PerfDisableSharedMem) {
1734     // do not share the memory for the performance data.
1735     PerfDisableSharedMem = true;
1736     _start = create_standard_memory(size);
1737   }
1738   else {
1739     _start = create_shared_memory(size);
1740     if (_start == NULL) {
1741 
1742       // creation of the shared memory region failed, attempt
1743       // to create a contiguous, non-shared memory region instead.
1744       //
1745       if (PrintMiscellaneous && Verbose) {
1746         warning("Reverting to non-shared PerfMemory region.\n");
1747       }
1748       PerfDisableSharedMem = true;
1749       _start = create_standard_memory(size);
1750     }
1751   }
1752 
1753   if (_start != NULL) _capacity = size;
1754 
1755 }
1756 
1757 // delete the PerfData memory region
1758 //
1759 // This method deletes the memory region used to store performance
1760 // data for the JVM. The memory region indicated by the <address, size>
1761 // tuple will be inaccessible after a call to this method.
1762 //
1763 void PerfMemory::delete_memory_region() {
1764 
1765   assert((start() != NULL && capacity() > 0), "verify proper state");
1766 
1767   // If user specifies PerfDataSaveFile, it will save the performance data
1768   // to the specified file name no matter whether PerfDataSaveToFile is specified
1769   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1770   // -XX:+PerfDataSaveToFile.
1771   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1772     save_memory_to_file(start(), capacity());
1773   }
1774 
1775   if (PerfDisableSharedMem) {
1776     delete_standard_memory(start(), capacity());
1777   }
1778   else {
1779     delete_shared_memory(start(), capacity());
1780   }
1781 }
1782 
1783 // attach to the PerfData memory region for another JVM
1784 //
1785 // This method returns an <address, size> tuple that points to
1786 // a memory buffer that is kept reasonably synchronized with
1787 // the PerfData memory region for the indicated JVM. This
1788 // buffer may be kept in synchronization via shared memory
1789 // or some other mechanism that keeps the buffer updated.
1790 //
1791 // If the JVM chooses not to support the attachability feature,
1792 // this method should throw an UnsupportedOperation exception.
1793 //
1794 // This implementation utilizes named shared memory to map
1795 // the indicated process's PerfData memory region into this JVMs
1796 // address space.
1797 //
1798 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode,
1799                         char** addrp, size_t* sizep, TRAPS) {
1800 
1801   if (vmid == 0 || vmid == os::current_process_id()) {
1802      *addrp = start();
1803      *sizep = capacity();
1804      return;
1805   }
1806 
1807   open_file_mapping(user, vmid, mode, addrp, sizep, CHECK);
1808 }
1809 
1810 // detach from the PerfData memory region of another JVM
1811 //
1812 // This method detaches the PerfData memory region of another
1813 // JVM, specified as an <address, size> tuple of a buffer
1814 // in this process's address space. This method may perform
1815 // arbitrary actions to accomplish the detachment. The memory
1816 // region specified by <address, size> will be inaccessible after
1817 // a call to this method.
1818 //
1819 // If the JVM chooses not to support the attachability feature,
1820 // this method should throw an UnsupportedOperation exception.
1821 //
1822 // This implementation utilizes named shared memory to detach
1823 // the indicated process's PerfData memory region from this
1824 // process's address space.
1825 //
1826 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1827 
1828   assert(addr != 0, "address sanity check");
1829   assert(bytes > 0, "capacity sanity check");
1830 
1831   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1832     // prevent accidental detachment of this process's PerfMemory region
1833     return;
1834   }
1835 
1836   if (MemTracker::tracking_level() > NMT_minimal) {
1837     // it does not go through os api, the operation has to record from here
1838     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1839     remove_file_mapping(addr);
1840     tkr.record((address)addr, bytes);
1841   } else {
1842     remove_file_mapping(addr);
1843   }
1844 }