1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "mutex_linux.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_share_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm.h"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.inline.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/init.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/javaCalls.hpp"
  53 #include "runtime/mutexLocker.hpp"
  54 #include "runtime/objectMonitor.hpp"
  55 #include "runtime/orderAccess.inline.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/decoder.hpp"
  69 #include "utilities/defaultStream.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/elfFile.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 // put OS-includes here
  77 # include <sys/types.h>
  78 # include <sys/mman.h>
  79 # include <sys/stat.h>
  80 # include <sys/select.h>
  81 # include <pthread.h>
  82 # include <signal.h>
  83 # include <errno.h>
  84 # include <dlfcn.h>
  85 # include <stdio.h>
  86 # include <unistd.h>
  87 # include <sys/resource.h>
  88 # include <pthread.h>
  89 # include <sys/stat.h>
  90 # include <sys/time.h>
  91 # include <sys/times.h>
  92 # include <sys/utsname.h>
  93 # include <sys/socket.h>
  94 # include <sys/wait.h>
  95 # include <pwd.h>
  96 # include <poll.h>
  97 # include <semaphore.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 ////////////////////////////////////////////////////////////////////////////////
 133 // global variables
 134 julong os::Linux::_physical_memory = 0;
 135 
 136 address   os::Linux::_initial_thread_stack_bottom = NULL;
 137 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 138 
 139 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 140 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 141 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 142 Mutex* os::Linux::_createThread_lock = NULL;
 143 pthread_t os::Linux::_main_thread;
 144 int os::Linux::_page_size = -1;
 145 const int os::Linux::_vm_default_page_size = (8 * K);
 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
 147 const char * os::Linux::_glibc_version = NULL;
 148 const char * os::Linux::_libpthread_version = NULL;
 149 pthread_condattr_t os::Linux::_condattr[1];
 150 
 151 static jlong initial_time_count=0;
 152 
 153 static int clock_tics_per_sec = 100;
 154 
 155 // For diagnostics to print a message once. see run_periodic_checks
 156 static sigset_t check_signal_done;
 157 static bool check_signals = true;
 158 
 159 // Signal number used to suspend/resume a thread
 160 
 161 // do not use any signal number less than SIGSEGV, see 4355769
 162 static int SR_signum = SIGUSR2;
 163 sigset_t SR_sigset;
 164 
 165 // Declarations
 166 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 167 
 168 // utility functions
 169 
 170 static int SR_initialize();
 171 
 172 julong os::available_memory() {
 173   return Linux::available_memory();
 174 }
 175 
 176 julong os::Linux::available_memory() {
 177   // values in struct sysinfo are "unsigned long"
 178   struct sysinfo si;
 179   sysinfo(&si);
 180 
 181   return (julong)si.freeram * si.mem_unit;
 182 }
 183 
 184 julong os::physical_memory() {
 185   return Linux::physical_memory();
 186 }
 187 
 188 // Return true if user is running as root.
 189 
 190 bool os::have_special_privileges() {
 191   static bool init = false;
 192   static bool privileges = false;
 193   if (!init) {
 194     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 195     init = true;
 196   }
 197   return privileges;
 198 }
 199 
 200 
 201 #ifndef SYS_gettid
 202 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 203   #ifdef __ia64__
 204     #define SYS_gettid 1105
 205   #else
 206     #ifdef __i386__
 207       #define SYS_gettid 224
 208     #else
 209       #ifdef __amd64__
 210         #define SYS_gettid 186
 211       #else
 212         #ifdef __sparc__
 213           #define SYS_gettid 143
 214         #else
 215           #error define gettid for the arch
 216         #endif
 217       #endif
 218     #endif
 219   #endif
 220 #endif
 221 
 222 // Cpu architecture string
 223 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 224 
 225 
 226 // pid_t gettid()
 227 //
 228 // Returns the kernel thread id of the currently running thread. Kernel
 229 // thread id is used to access /proc.
 230 pid_t os::Linux::gettid() {
 231   int rslt = syscall(SYS_gettid);
 232   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 233   return (pid_t)rslt;
 234 }
 235 
 236 // Most versions of linux have a bug where the number of processors are
 237 // determined by looking at the /proc file system.  In a chroot environment,
 238 // the system call returns 1.  This causes the VM to act as if it is
 239 // a single processor and elide locking (see is_MP() call).
 240 static bool unsafe_chroot_detected = false;
 241 static const char *unstable_chroot_error = "/proc file system not found.\n"
 242                      "Java may be unstable running multithreaded in a chroot "
 243                      "environment on Linux when /proc filesystem is not mounted.";
 244 
 245 void os::Linux::initialize_system_info() {
 246   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 247   if (processor_count() == 1) {
 248     pid_t pid = os::Linux::gettid();
 249     char fname[32];
 250     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 251     FILE *fp = fopen(fname, "r");
 252     if (fp == NULL) {
 253       unsafe_chroot_detected = true;
 254     } else {
 255       fclose(fp);
 256     }
 257   }
 258   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 259   assert(processor_count() > 0, "linux error");
 260 }
 261 
 262 void os::init_system_properties_values() {
 263   // The next steps are taken in the product version:
 264   //
 265   // Obtain the JAVA_HOME value from the location of libjvm.so.
 266   // This library should be located at:
 267   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 268   //
 269   // If "/jre/lib/" appears at the right place in the path, then we
 270   // assume libjvm.so is installed in a JDK and we use this path.
 271   //
 272   // Otherwise exit with message: "Could not create the Java virtual machine."
 273   //
 274   // The following extra steps are taken in the debugging version:
 275   //
 276   // If "/jre/lib/" does NOT appear at the right place in the path
 277   // instead of exit check for $JAVA_HOME environment variable.
 278   //
 279   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 280   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 281   // it looks like libjvm.so is installed there
 282   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 283   //
 284   // Otherwise exit.
 285   //
 286   // Important note: if the location of libjvm.so changes this
 287   // code needs to be changed accordingly.
 288 
 289   // See ld(1):
 290   //      The linker uses the following search paths to locate required
 291   //      shared libraries:
 292   //        1: ...
 293   //        ...
 294   //        7: The default directories, normally /lib and /usr/lib.
 295 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 296   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 297 #else
 298   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 299 #endif
 300 
 301 // Base path of extensions installed on the system.
 302 #define SYS_EXT_DIR     "/usr/java/packages"
 303 #define EXTENSIONS_DIR  "/lib/ext"
 304 
 305   // Buffer that fits several sprintfs.
 306   // Note that the space for the colon and the trailing null are provided
 307   // by the nulls included by the sizeof operator.
 308   const size_t bufsize =
 309     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 310          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 311   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 312 
 313   // sysclasspath, java_home, dll_dir
 314   {
 315     char *pslash;
 316     os::jvm_path(buf, bufsize);
 317 
 318     // Found the full path to libjvm.so.
 319     // Now cut the path to <java_home>/jre if we can.
 320     pslash = strrchr(buf, '/');
 321     if (pslash != NULL) {
 322       *pslash = '\0';            // Get rid of /libjvm.so.
 323     }
 324     pslash = strrchr(buf, '/');
 325     if (pslash != NULL) {
 326       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 327     }
 328     Arguments::set_dll_dir(buf);
 329 
 330     if (pslash != NULL) {
 331       pslash = strrchr(buf, '/');
 332       if (pslash != NULL) {
 333         *pslash = '\0';          // Get rid of /<arch>.
 334         pslash = strrchr(buf, '/');
 335         if (pslash != NULL) {
 336           *pslash = '\0';        // Get rid of /lib.
 337         }
 338       }
 339     }
 340     Arguments::set_java_home(buf);
 341     set_boot_path('/', ':');
 342   }
 343 
 344   // Where to look for native libraries.
 345   //
 346   // Note: Due to a legacy implementation, most of the library path
 347   // is set in the launcher. This was to accomodate linking restrictions
 348   // on legacy Linux implementations (which are no longer supported).
 349   // Eventually, all the library path setting will be done here.
 350   //
 351   // However, to prevent the proliferation of improperly built native
 352   // libraries, the new path component /usr/java/packages is added here.
 353   // Eventually, all the library path setting will be done here.
 354   {
 355     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 356     // should always exist (until the legacy problem cited above is
 357     // addressed).
 358     const char *v = ::getenv("LD_LIBRARY_PATH");
 359     const char *v_colon = ":";
 360     if (v == NULL) { v = ""; v_colon = ""; }
 361     // That's +1 for the colon and +1 for the trailing '\0'.
 362     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 363                                                      strlen(v) + 1 +
 364                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 365                                                      mtInternal);
 366     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 367     Arguments::set_library_path(ld_library_path);
 368     FREE_C_HEAP_ARRAY(char, ld_library_path);
 369   }
 370 
 371   // Extensions directories.
 372   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 373   Arguments::set_ext_dirs(buf);
 374 
 375   FREE_C_HEAP_ARRAY(char, buf);
 376 
 377 #undef DEFAULT_LIBPATH
 378 #undef SYS_EXT_DIR
 379 #undef EXTENSIONS_DIR
 380 }
 381 
 382 ////////////////////////////////////////////////////////////////////////////////
 383 // breakpoint support
 384 
 385 void os::breakpoint() {
 386   BREAKPOINT;
 387 }
 388 
 389 extern "C" void breakpoint() {
 390   // use debugger to set breakpoint here
 391 }
 392 
 393 ////////////////////////////////////////////////////////////////////////////////
 394 // signal support
 395 
 396 debug_only(static bool signal_sets_initialized = false);
 397 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 398 
 399 bool os::Linux::is_sig_ignored(int sig) {
 400   struct sigaction oact;
 401   sigaction(sig, (struct sigaction*)NULL, &oact);
 402   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 403                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 404   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 405     return true;
 406   } else {
 407     return false;
 408   }
 409 }
 410 
 411 void os::Linux::signal_sets_init() {
 412   // Should also have an assertion stating we are still single-threaded.
 413   assert(!signal_sets_initialized, "Already initialized");
 414   // Fill in signals that are necessarily unblocked for all threads in
 415   // the VM. Currently, we unblock the following signals:
 416   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 417   //                         by -Xrs (=ReduceSignalUsage));
 418   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 419   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 420   // the dispositions or masks wrt these signals.
 421   // Programs embedding the VM that want to use the above signals for their
 422   // own purposes must, at this time, use the "-Xrs" option to prevent
 423   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 424   // (See bug 4345157, and other related bugs).
 425   // In reality, though, unblocking these signals is really a nop, since
 426   // these signals are not blocked by default.
 427   sigemptyset(&unblocked_sigs);
 428   sigemptyset(&allowdebug_blocked_sigs);
 429   sigaddset(&unblocked_sigs, SIGILL);
 430   sigaddset(&unblocked_sigs, SIGSEGV);
 431   sigaddset(&unblocked_sigs, SIGBUS);
 432   sigaddset(&unblocked_sigs, SIGFPE);
 433 #if defined(PPC64)
 434   sigaddset(&unblocked_sigs, SIGTRAP);
 435 #endif
 436   sigaddset(&unblocked_sigs, SR_signum);
 437 
 438   if (!ReduceSignalUsage) {
 439     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 440       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 441       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 442     }
 443     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 444       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 445       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 446     }
 447     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 448       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 449       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 450     }
 451   }
 452   // Fill in signals that are blocked by all but the VM thread.
 453   sigemptyset(&vm_sigs);
 454   if (!ReduceSignalUsage) {
 455     sigaddset(&vm_sigs, BREAK_SIGNAL);
 456   }
 457   debug_only(signal_sets_initialized = true);
 458 
 459 }
 460 
 461 // These are signals that are unblocked while a thread is running Java.
 462 // (For some reason, they get blocked by default.)
 463 sigset_t* os::Linux::unblocked_signals() {
 464   assert(signal_sets_initialized, "Not initialized");
 465   return &unblocked_sigs;
 466 }
 467 
 468 // These are the signals that are blocked while a (non-VM) thread is
 469 // running Java. Only the VM thread handles these signals.
 470 sigset_t* os::Linux::vm_signals() {
 471   assert(signal_sets_initialized, "Not initialized");
 472   return &vm_sigs;
 473 }
 474 
 475 // These are signals that are blocked during cond_wait to allow debugger in
 476 sigset_t* os::Linux::allowdebug_blocked_signals() {
 477   assert(signal_sets_initialized, "Not initialized");
 478   return &allowdebug_blocked_sigs;
 479 }
 480 
 481 void os::Linux::hotspot_sigmask(Thread* thread) {
 482 
 483   //Save caller's signal mask before setting VM signal mask
 484   sigset_t caller_sigmask;
 485   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 486 
 487   OSThread* osthread = thread->osthread();
 488   osthread->set_caller_sigmask(caller_sigmask);
 489 
 490   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 491 
 492   if (!ReduceSignalUsage) {
 493     if (thread->is_VM_thread()) {
 494       // Only the VM thread handles BREAK_SIGNAL ...
 495       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 496     } else {
 497       // ... all other threads block BREAK_SIGNAL
 498       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 499     }
 500   }
 501 }
 502 
 503 //////////////////////////////////////////////////////////////////////////////
 504 // detecting pthread library
 505 
 506 void os::Linux::libpthread_init() {
 507   // Save glibc and pthread version strings.
 508 #if !defined(_CS_GNU_LIBC_VERSION) || \
 509     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 510   #error "glibc too old (< 2.3.2)"
 511 #endif
 512 
 513   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 514   assert(n > 0, "cannot retrieve glibc version");
 515   char *str = (char *)malloc(n, mtInternal);
 516   confstr(_CS_GNU_LIBC_VERSION, str, n);
 517   os::Linux::set_glibc_version(str);
 518 
 519   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 520   assert(n > 0, "cannot retrieve pthread version");
 521   str = (char *)malloc(n, mtInternal);
 522   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 523   os::Linux::set_libpthread_version(str);
 524 }
 525 
 526 /////////////////////////////////////////////////////////////////////////////
 527 // thread stack expansion
 528 
 529 // os::Linux::manually_expand_stack() takes care of expanding the thread
 530 // stack. Note that this is normally not needed: pthread stacks allocate
 531 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 532 // committed. Therefore it is not necessary to expand the stack manually.
 533 //
 534 // Manually expanding the stack was historically needed on LinuxThreads
 535 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 536 // it is kept to deal with very rare corner cases:
 537 //
 538 // For one, user may run the VM on an own implementation of threads
 539 // whose stacks are - like the old LinuxThreads - implemented using
 540 // mmap(MAP_GROWSDOWN).
 541 //
 542 // Also, this coding may be needed if the VM is running on the primordial
 543 // thread. Normally we avoid running on the primordial thread; however,
 544 // user may still invoke the VM on the primordial thread.
 545 //
 546 // The following historical comment describes the details about running
 547 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 548 
 549 
 550 // Force Linux kernel to expand current thread stack. If "bottom" is close
 551 // to the stack guard, caller should block all signals.
 552 //
 553 // MAP_GROWSDOWN:
 554 //   A special mmap() flag that is used to implement thread stacks. It tells
 555 //   kernel that the memory region should extend downwards when needed. This
 556 //   allows early versions of LinuxThreads to only mmap the first few pages
 557 //   when creating a new thread. Linux kernel will automatically expand thread
 558 //   stack as needed (on page faults).
 559 //
 560 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 561 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 562 //   region, it's hard to tell if the fault is due to a legitimate stack
 563 //   access or because of reading/writing non-exist memory (e.g. buffer
 564 //   overrun). As a rule, if the fault happens below current stack pointer,
 565 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 566 //   application (see Linux kernel fault.c).
 567 //
 568 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 569 //   stack overflow detection.
 570 //
 571 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 572 //   not use MAP_GROWSDOWN.
 573 //
 574 // To get around the problem and allow stack banging on Linux, we need to
 575 // manually expand thread stack after receiving the SIGSEGV.
 576 //
 577 // There are two ways to expand thread stack to address "bottom", we used
 578 // both of them in JVM before 1.5:
 579 //   1. adjust stack pointer first so that it is below "bottom", and then
 580 //      touch "bottom"
 581 //   2. mmap() the page in question
 582 //
 583 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 584 // if current sp is already near the lower end of page 101, and we need to
 585 // call mmap() to map page 100, it is possible that part of the mmap() frame
 586 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 587 // That will destroy the mmap() frame and cause VM to crash.
 588 //
 589 // The following code works by adjusting sp first, then accessing the "bottom"
 590 // page to force a page fault. Linux kernel will then automatically expand the
 591 // stack mapping.
 592 //
 593 // _expand_stack_to() assumes its frame size is less than page size, which
 594 // should always be true if the function is not inlined.
 595 
 596 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 597   #define NOINLINE
 598 #else
 599   #define NOINLINE __attribute__ ((noinline))
 600 #endif
 601 
 602 static void _expand_stack_to(address bottom) NOINLINE;
 603 
 604 static void _expand_stack_to(address bottom) {
 605   address sp;
 606   size_t size;
 607   volatile char *p;
 608 
 609   // Adjust bottom to point to the largest address within the same page, it
 610   // gives us a one-page buffer if alloca() allocates slightly more memory.
 611   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 612   bottom += os::Linux::page_size() - 1;
 613 
 614   // sp might be slightly above current stack pointer; if that's the case, we
 615   // will alloca() a little more space than necessary, which is OK. Don't use
 616   // os::current_stack_pointer(), as its result can be slightly below current
 617   // stack pointer, causing us to not alloca enough to reach "bottom".
 618   sp = (address)&sp;
 619 
 620   if (sp > bottom) {
 621     size = sp - bottom;
 622     p = (volatile char *)alloca(size);
 623     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 624     p[0] = '\0';
 625   }
 626 }
 627 
 628 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 629   assert(t!=NULL, "just checking");
 630   assert(t->osthread()->expanding_stack(), "expand should be set");
 631   assert(t->stack_base() != NULL, "stack_base was not initialized");
 632 
 633   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 634     sigset_t mask_all, old_sigset;
 635     sigfillset(&mask_all);
 636     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 637     _expand_stack_to(addr);
 638     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 639     return true;
 640   }
 641   return false;
 642 }
 643 
 644 //////////////////////////////////////////////////////////////////////////////
 645 // create new thread
 646 
 647 // Thread start routine for all newly created threads
 648 static void *java_start(Thread *thread) {
 649   // Try to randomize the cache line index of hot stack frames.
 650   // This helps when threads of the same stack traces evict each other's
 651   // cache lines. The threads can be either from the same JVM instance, or
 652   // from different JVM instances. The benefit is especially true for
 653   // processors with hyperthreading technology.
 654   static int counter = 0;
 655   int pid = os::current_process_id();
 656   alloca(((pid ^ counter++) & 7) * 128);
 657 
 658   thread->initialize_thread_current();
 659 
 660   OSThread* osthread = thread->osthread();
 661   Monitor* sync = osthread->startThread_lock();
 662 
 663   osthread->set_thread_id(os::current_thread_id());
 664 
 665   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 666     os::current_thread_id(), (uintx) pthread_self());
 667 
 668   if (UseNUMA) {
 669     int lgrp_id = os::numa_get_group_id();
 670     if (lgrp_id != -1) {
 671       thread->set_lgrp_id(lgrp_id);
 672     }
 673   }
 674   // initialize signal mask for this thread
 675   os::Linux::hotspot_sigmask(thread);
 676 
 677   // initialize floating point control register
 678   os::Linux::init_thread_fpu_state();
 679 
 680   // handshaking with parent thread
 681   {
 682     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 683 
 684     // notify parent thread
 685     osthread->set_state(INITIALIZED);
 686     sync->notify_all();
 687 
 688     // wait until os::start_thread()
 689     while (osthread->get_state() == INITIALIZED) {
 690       sync->wait(Mutex::_no_safepoint_check_flag);
 691     }
 692   }
 693 
 694   // call one more level start routine
 695   thread->run();
 696 
 697   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 698     os::current_thread_id(), (uintx) pthread_self());
 699 
 700   return 0;
 701 }
 702 
 703 bool os::create_thread(Thread* thread, ThreadType thr_type,
 704                        size_t stack_size) {
 705   assert(thread->osthread() == NULL, "caller responsible");
 706 
 707   // Allocate the OSThread object
 708   OSThread* osthread = new OSThread(NULL, NULL);
 709   if (osthread == NULL) {
 710     return false;
 711   }
 712 
 713   // set the correct thread state
 714   osthread->set_thread_type(thr_type);
 715 
 716   // Initial state is ALLOCATED but not INITIALIZED
 717   osthread->set_state(ALLOCATED);
 718 
 719   thread->set_osthread(osthread);
 720 
 721   // init thread attributes
 722   pthread_attr_t attr;
 723   pthread_attr_init(&attr);
 724   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 725 
 726   // stack size
 727   // calculate stack size if it's not specified by caller
 728   if (stack_size == 0) {
 729     stack_size = os::Linux::default_stack_size(thr_type);
 730 
 731     switch (thr_type) {
 732     case os::java_thread:
 733       // Java threads use ThreadStackSize which default value can be
 734       // changed with the flag -Xss
 735       assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 736       stack_size = JavaThread::stack_size_at_create();
 737       break;
 738     case os::compiler_thread:
 739       if (CompilerThreadStackSize > 0) {
 740         stack_size = (size_t)(CompilerThreadStackSize * K);
 741         break;
 742       } // else fall through:
 743         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 744     case os::vm_thread:
 745     case os::pgc_thread:
 746     case os::cgc_thread:
 747     case os::watcher_thread:
 748       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 749       break;
 750     }
 751   }
 752 
 753   stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 754   pthread_attr_setstacksize(&attr, stack_size);
 755 
 756   // glibc guard page
 757   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 758 
 759   ThreadState state;
 760 
 761   {
 762     pthread_t tid;
 763     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 764 
 765     char buf[64];
 766     if (ret == 0) {
 767       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 768         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 769     } else {
 770       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 771         strerror(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 772     }
 773 
 774     pthread_attr_destroy(&attr);
 775 
 776     if (ret != 0) {
 777       // Need to clean up stuff we've allocated so far
 778       thread->set_osthread(NULL);
 779       delete osthread;
 780       return false;
 781     }
 782 
 783     // Store pthread info into the OSThread
 784     osthread->set_pthread_id(tid);
 785 
 786     // Wait until child thread is either initialized or aborted
 787     {
 788       Monitor* sync_with_child = osthread->startThread_lock();
 789       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 790       while ((state = osthread->get_state()) == ALLOCATED) {
 791         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 792       }
 793     }
 794   }
 795 
 796   // Aborted due to thread limit being reached
 797   if (state == ZOMBIE) {
 798     thread->set_osthread(NULL);
 799     delete osthread;
 800     return false;
 801   }
 802 
 803   // The thread is returned suspended (in state INITIALIZED),
 804   // and is started higher up in the call chain
 805   assert(state == INITIALIZED, "race condition");
 806   return true;
 807 }
 808 
 809 /////////////////////////////////////////////////////////////////////////////
 810 // attach existing thread
 811 
 812 // bootstrap the main thread
 813 bool os::create_main_thread(JavaThread* thread) {
 814   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 815   return create_attached_thread(thread);
 816 }
 817 
 818 bool os::create_attached_thread(JavaThread* thread) {
 819 #ifdef ASSERT
 820   thread->verify_not_published();
 821 #endif
 822 
 823   // Allocate the OSThread object
 824   OSThread* osthread = new OSThread(NULL, NULL);
 825 
 826   if (osthread == NULL) {
 827     return false;
 828   }
 829 
 830   // Store pthread info into the OSThread
 831   osthread->set_thread_id(os::Linux::gettid());
 832   osthread->set_pthread_id(::pthread_self());
 833 
 834   // initialize floating point control register
 835   os::Linux::init_thread_fpu_state();
 836 
 837   // Initial thread state is RUNNABLE
 838   osthread->set_state(RUNNABLE);
 839 
 840   thread->set_osthread(osthread);
 841 
 842   if (UseNUMA) {
 843     int lgrp_id = os::numa_get_group_id();
 844     if (lgrp_id != -1) {
 845       thread->set_lgrp_id(lgrp_id);
 846     }
 847   }
 848 
 849   if (os::Linux::is_initial_thread()) {
 850     // If current thread is initial thread, its stack is mapped on demand,
 851     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 852     // the entire stack region to avoid SEGV in stack banging.
 853     // It is also useful to get around the heap-stack-gap problem on SuSE
 854     // kernel (see 4821821 for details). We first expand stack to the top
 855     // of yellow zone, then enable stack yellow zone (order is significant,
 856     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 857     // is no gap between the last two virtual memory regions.
 858 
 859     JavaThread *jt = (JavaThread *)thread;
 860     address addr = jt->stack_reserved_zone_base();
 861     assert(addr != NULL, "initialization problem?");
 862     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 863 
 864     osthread->set_expanding_stack();
 865     os::Linux::manually_expand_stack(jt, addr);
 866     osthread->clear_expanding_stack();
 867   }
 868 
 869   // initialize signal mask for this thread
 870   // and save the caller's signal mask
 871   os::Linux::hotspot_sigmask(thread);
 872 
 873   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 874     os::current_thread_id(), (uintx) pthread_self());
 875 
 876   return true;
 877 }
 878 
 879 void os::pd_start_thread(Thread* thread) {
 880   OSThread * osthread = thread->osthread();
 881   assert(osthread->get_state() != INITIALIZED, "just checking");
 882   Monitor* sync_with_child = osthread->startThread_lock();
 883   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 884   sync_with_child->notify();
 885 }
 886 
 887 // Free Linux resources related to the OSThread
 888 void os::free_thread(OSThread* osthread) {
 889   assert(osthread != NULL, "osthread not set");
 890 
 891   if (Thread::current()->osthread() == osthread) {
 892     // Restore caller's signal mask
 893     sigset_t sigmask = osthread->caller_sigmask();
 894     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 895   }
 896 
 897   delete osthread;
 898 }
 899 
 900 //////////////////////////////////////////////////////////////////////////////
 901 // initial thread
 902 
 903 // Check if current thread is the initial thread, similar to Solaris thr_main.
 904 bool os::Linux::is_initial_thread(void) {
 905   char dummy;
 906   // If called before init complete, thread stack bottom will be null.
 907   // Can be called if fatal error occurs before initialization.
 908   if (initial_thread_stack_bottom() == NULL) return false;
 909   assert(initial_thread_stack_bottom() != NULL &&
 910          initial_thread_stack_size()   != 0,
 911          "os::init did not locate initial thread's stack region");
 912   if ((address)&dummy >= initial_thread_stack_bottom() &&
 913       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 914     return true;
 915   } else {
 916     return false;
 917   }
 918 }
 919 
 920 // Find the virtual memory area that contains addr
 921 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 922   FILE *fp = fopen("/proc/self/maps", "r");
 923   if (fp) {
 924     address low, high;
 925     while (!feof(fp)) {
 926       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 927         if (low <= addr && addr < high) {
 928           if (vma_low)  *vma_low  = low;
 929           if (vma_high) *vma_high = high;
 930           fclose(fp);
 931           return true;
 932         }
 933       }
 934       for (;;) {
 935         int ch = fgetc(fp);
 936         if (ch == EOF || ch == (int)'\n') break;
 937       }
 938     }
 939     fclose(fp);
 940   }
 941   return false;
 942 }
 943 
 944 // Locate initial thread stack. This special handling of initial thread stack
 945 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 946 // bogus value for initial thread.
 947 void os::Linux::capture_initial_stack(size_t max_size) {
 948   // stack size is the easy part, get it from RLIMIT_STACK
 949   size_t stack_size;
 950   struct rlimit rlim;
 951   getrlimit(RLIMIT_STACK, &rlim);
 952   stack_size = rlim.rlim_cur;
 953 
 954   // 6308388: a bug in ld.so will relocate its own .data section to the
 955   //   lower end of primordial stack; reduce ulimit -s value a little bit
 956   //   so we won't install guard page on ld.so's data section.
 957   stack_size -= 2 * page_size();
 958 
 959   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
 960   //   7.1, in both cases we will get 2G in return value.
 961   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
 962   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
 963   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
 964   //   in case other parts in glibc still assumes 2M max stack size.
 965   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
 966   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
 967   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
 968     stack_size = 2 * K * K IA64_ONLY(*2);
 969   }
 970   // Try to figure out where the stack base (top) is. This is harder.
 971   //
 972   // When an application is started, glibc saves the initial stack pointer in
 973   // a global variable "__libc_stack_end", which is then used by system
 974   // libraries. __libc_stack_end should be pretty close to stack top. The
 975   // variable is available since the very early days. However, because it is
 976   // a private interface, it could disappear in the future.
 977   //
 978   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 979   // to __libc_stack_end, it is very close to stack top, but isn't the real
 980   // stack top. Note that /proc may not exist if VM is running as a chroot
 981   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 982   // /proc/<pid>/stat could change in the future (though unlikely).
 983   //
 984   // We try __libc_stack_end first. If that doesn't work, look for
 985   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 986   // as a hint, which should work well in most cases.
 987 
 988   uintptr_t stack_start;
 989 
 990   // try __libc_stack_end first
 991   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 992   if (p && *p) {
 993     stack_start = *p;
 994   } else {
 995     // see if we can get the start_stack field from /proc/self/stat
 996     FILE *fp;
 997     int pid;
 998     char state;
 999     int ppid;
1000     int pgrp;
1001     int session;
1002     int nr;
1003     int tpgrp;
1004     unsigned long flags;
1005     unsigned long minflt;
1006     unsigned long cminflt;
1007     unsigned long majflt;
1008     unsigned long cmajflt;
1009     unsigned long utime;
1010     unsigned long stime;
1011     long cutime;
1012     long cstime;
1013     long prio;
1014     long nice;
1015     long junk;
1016     long it_real;
1017     uintptr_t start;
1018     uintptr_t vsize;
1019     intptr_t rss;
1020     uintptr_t rsslim;
1021     uintptr_t scodes;
1022     uintptr_t ecode;
1023     int i;
1024 
1025     // Figure what the primordial thread stack base is. Code is inspired
1026     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1027     // followed by command name surrounded by parentheses, state, etc.
1028     char stat[2048];
1029     int statlen;
1030 
1031     fp = fopen("/proc/self/stat", "r");
1032     if (fp) {
1033       statlen = fread(stat, 1, 2047, fp);
1034       stat[statlen] = '\0';
1035       fclose(fp);
1036 
1037       // Skip pid and the command string. Note that we could be dealing with
1038       // weird command names, e.g. user could decide to rename java launcher
1039       // to "java 1.4.2 :)", then the stat file would look like
1040       //                1234 (java 1.4.2 :)) R ... ...
1041       // We don't really need to know the command string, just find the last
1042       // occurrence of ")" and then start parsing from there. See bug 4726580.
1043       char * s = strrchr(stat, ')');
1044 
1045       i = 0;
1046       if (s) {
1047         // Skip blank chars
1048         do { s++; } while (s && isspace(*s));
1049 
1050 #define _UFM UINTX_FORMAT
1051 #define _DFM INTX_FORMAT
1052 
1053         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1054         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1055         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1056                    &state,          // 3  %c
1057                    &ppid,           // 4  %d
1058                    &pgrp,           // 5  %d
1059                    &session,        // 6  %d
1060                    &nr,             // 7  %d
1061                    &tpgrp,          // 8  %d
1062                    &flags,          // 9  %lu
1063                    &minflt,         // 10 %lu
1064                    &cminflt,        // 11 %lu
1065                    &majflt,         // 12 %lu
1066                    &cmajflt,        // 13 %lu
1067                    &utime,          // 14 %lu
1068                    &stime,          // 15 %lu
1069                    &cutime,         // 16 %ld
1070                    &cstime,         // 17 %ld
1071                    &prio,           // 18 %ld
1072                    &nice,           // 19 %ld
1073                    &junk,           // 20 %ld
1074                    &it_real,        // 21 %ld
1075                    &start,          // 22 UINTX_FORMAT
1076                    &vsize,          // 23 UINTX_FORMAT
1077                    &rss,            // 24 INTX_FORMAT
1078                    &rsslim,         // 25 UINTX_FORMAT
1079                    &scodes,         // 26 UINTX_FORMAT
1080                    &ecode,          // 27 UINTX_FORMAT
1081                    &stack_start);   // 28 UINTX_FORMAT
1082       }
1083 
1084 #undef _UFM
1085 #undef _DFM
1086 
1087       if (i != 28 - 2) {
1088         assert(false, "Bad conversion from /proc/self/stat");
1089         // product mode - assume we are the initial thread, good luck in the
1090         // embedded case.
1091         warning("Can't detect initial thread stack location - bad conversion");
1092         stack_start = (uintptr_t) &rlim;
1093       }
1094     } else {
1095       // For some reason we can't open /proc/self/stat (for example, running on
1096       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1097       // most cases, so don't abort:
1098       warning("Can't detect initial thread stack location - no /proc/self/stat");
1099       stack_start = (uintptr_t) &rlim;
1100     }
1101   }
1102 
1103   // Now we have a pointer (stack_start) very close to the stack top, the
1104   // next thing to do is to figure out the exact location of stack top. We
1105   // can find out the virtual memory area that contains stack_start by
1106   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1107   // and its upper limit is the real stack top. (again, this would fail if
1108   // running inside chroot, because /proc may not exist.)
1109 
1110   uintptr_t stack_top;
1111   address low, high;
1112   if (find_vma((address)stack_start, &low, &high)) {
1113     // success, "high" is the true stack top. (ignore "low", because initial
1114     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1115     stack_top = (uintptr_t)high;
1116   } else {
1117     // failed, likely because /proc/self/maps does not exist
1118     warning("Can't detect initial thread stack location - find_vma failed");
1119     // best effort: stack_start is normally within a few pages below the real
1120     // stack top, use it as stack top, and reduce stack size so we won't put
1121     // guard page outside stack.
1122     stack_top = stack_start;
1123     stack_size -= 16 * page_size();
1124   }
1125 
1126   // stack_top could be partially down the page so align it
1127   stack_top = align_size_up(stack_top, page_size());
1128 
1129   if (max_size && stack_size > max_size) {
1130     _initial_thread_stack_size = max_size;
1131   } else {
1132     _initial_thread_stack_size = stack_size;
1133   }
1134 
1135   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1136   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1137 }
1138 
1139 ////////////////////////////////////////////////////////////////////////////////
1140 // time support
1141 
1142 // Time since start-up in seconds to a fine granularity.
1143 // Used by VMSelfDestructTimer and the MemProfiler.
1144 double os::elapsedTime() {
1145 
1146   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1147 }
1148 
1149 jlong os::elapsed_counter() {
1150   return javaTimeNanos() - initial_time_count;
1151 }
1152 
1153 jlong os::elapsed_frequency() {
1154   return NANOSECS_PER_SEC; // nanosecond resolution
1155 }
1156 
1157 bool os::supports_vtime() { return true; }
1158 bool os::enable_vtime()   { return false; }
1159 bool os::vtime_enabled()  { return false; }
1160 
1161 double os::elapsedVTime() {
1162   struct rusage usage;
1163   int retval = getrusage(RUSAGE_THREAD, &usage);
1164   if (retval == 0) {
1165     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1166   } else {
1167     // better than nothing, but not much
1168     return elapsedTime();
1169   }
1170 }
1171 
1172 jlong os::javaTimeMillis() {
1173   timeval time;
1174   int status = gettimeofday(&time, NULL);
1175   assert(status != -1, "linux error");
1176   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1177 }
1178 
1179 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1180   timeval time;
1181   int status = gettimeofday(&time, NULL);
1182   assert(status != -1, "linux error");
1183   seconds = jlong(time.tv_sec);
1184   nanos = jlong(time.tv_usec) * 1000;
1185 }
1186 
1187 
1188 #ifndef CLOCK_MONOTONIC
1189   #define CLOCK_MONOTONIC (1)
1190 #endif
1191 
1192 void os::Linux::clock_init() {
1193   // we do dlopen's in this particular order due to bug in linux
1194   // dynamical loader (see 6348968) leading to crash on exit
1195   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1196   if (handle == NULL) {
1197     handle = dlopen("librt.so", RTLD_LAZY);
1198   }
1199 
1200   if (handle) {
1201     int (*clock_getres_func)(clockid_t, struct timespec*) =
1202            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1203     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1204            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1205     if (clock_getres_func && clock_gettime_func) {
1206       // See if monotonic clock is supported by the kernel. Note that some
1207       // early implementations simply return kernel jiffies (updated every
1208       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1209       // for nano time (though the monotonic property is still nice to have).
1210       // It's fixed in newer kernels, however clock_getres() still returns
1211       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1212       // resolution for now. Hopefully as people move to new kernels, this
1213       // won't be a problem.
1214       struct timespec res;
1215       struct timespec tp;
1216       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1217           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1218         // yes, monotonic clock is supported
1219         _clock_gettime = clock_gettime_func;
1220         return;
1221       } else {
1222         // close librt if there is no monotonic clock
1223         dlclose(handle);
1224       }
1225     }
1226   }
1227   warning("No monotonic clock was available - timed services may " \
1228           "be adversely affected if the time-of-day clock changes");
1229 }
1230 
1231 #ifndef SYS_clock_getres
1232   #if defined(IA32) || defined(AMD64)
1233     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1234     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1235   #else
1236     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1237     #define sys_clock_getres(x,y)  -1
1238   #endif
1239 #else
1240   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1241 #endif
1242 
1243 void os::Linux::fast_thread_clock_init() {
1244   if (!UseLinuxPosixThreadCPUClocks) {
1245     return;
1246   }
1247   clockid_t clockid;
1248   struct timespec tp;
1249   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1250       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1251 
1252   // Switch to using fast clocks for thread cpu time if
1253   // the sys_clock_getres() returns 0 error code.
1254   // Note, that some kernels may support the current thread
1255   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1256   // returned by the pthread_getcpuclockid().
1257   // If the fast Posix clocks are supported then the sys_clock_getres()
1258   // must return at least tp.tv_sec == 0 which means a resolution
1259   // better than 1 sec. This is extra check for reliability.
1260 
1261   if (pthread_getcpuclockid_func &&
1262       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1263       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1264     _supports_fast_thread_cpu_time = true;
1265     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1266   }
1267 }
1268 
1269 jlong os::javaTimeNanos() {
1270   if (os::supports_monotonic_clock()) {
1271     struct timespec tp;
1272     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1273     assert(status == 0, "gettime error");
1274     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1275     return result;
1276   } else {
1277     timeval time;
1278     int status = gettimeofday(&time, NULL);
1279     assert(status != -1, "linux error");
1280     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1281     return 1000 * usecs;
1282   }
1283 }
1284 
1285 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1286   if (os::supports_monotonic_clock()) {
1287     info_ptr->max_value = ALL_64_BITS;
1288 
1289     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1290     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1291     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1292   } else {
1293     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1294     info_ptr->max_value = ALL_64_BITS;
1295 
1296     // gettimeofday is a real time clock so it skips
1297     info_ptr->may_skip_backward = true;
1298     info_ptr->may_skip_forward = true;
1299   }
1300 
1301   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1302 }
1303 
1304 // Return the real, user, and system times in seconds from an
1305 // arbitrary fixed point in the past.
1306 bool os::getTimesSecs(double* process_real_time,
1307                       double* process_user_time,
1308                       double* process_system_time) {
1309   struct tms ticks;
1310   clock_t real_ticks = times(&ticks);
1311 
1312   if (real_ticks == (clock_t) (-1)) {
1313     return false;
1314   } else {
1315     double ticks_per_second = (double) clock_tics_per_sec;
1316     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1317     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1318     *process_real_time = ((double) real_ticks) / ticks_per_second;
1319 
1320     return true;
1321   }
1322 }
1323 
1324 
1325 char * os::local_time_string(char *buf, size_t buflen) {
1326   struct tm t;
1327   time_t long_time;
1328   time(&long_time);
1329   localtime_r(&long_time, &t);
1330   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1331                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1332                t.tm_hour, t.tm_min, t.tm_sec);
1333   return buf;
1334 }
1335 
1336 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1337   return localtime_r(clock, res);
1338 }
1339 
1340 ////////////////////////////////////////////////////////////////////////////////
1341 // runtime exit support
1342 
1343 // Note: os::shutdown() might be called very early during initialization, or
1344 // called from signal handler. Before adding something to os::shutdown(), make
1345 // sure it is async-safe and can handle partially initialized VM.
1346 void os::shutdown() {
1347 
1348   // allow PerfMemory to attempt cleanup of any persistent resources
1349   perfMemory_exit();
1350 
1351   // needs to remove object in file system
1352   AttachListener::abort();
1353 
1354   // flush buffered output, finish log files
1355   ostream_abort();
1356 
1357   // Check for abort hook
1358   abort_hook_t abort_hook = Arguments::abort_hook();
1359   if (abort_hook != NULL) {
1360     abort_hook();
1361   }
1362 
1363 }
1364 
1365 // Note: os::abort() might be called very early during initialization, or
1366 // called from signal handler. Before adding something to os::abort(), make
1367 // sure it is async-safe and can handle partially initialized VM.
1368 void os::abort(bool dump_core, void* siginfo, const void* context) {
1369   os::shutdown();
1370   if (dump_core) {
1371 #ifndef PRODUCT
1372     fdStream out(defaultStream::output_fd());
1373     out.print_raw("Current thread is ");
1374     char buf[16];
1375     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1376     out.print_raw_cr(buf);
1377     out.print_raw_cr("Dumping core ...");
1378 #endif
1379     ::abort(); // dump core
1380   }
1381 
1382   ::exit(1);
1383 }
1384 
1385 // Die immediately, no exit hook, no abort hook, no cleanup.
1386 void os::die() {
1387   ::abort();
1388 }
1389 
1390 
1391 // This method is a copy of JDK's sysGetLastErrorString
1392 // from src/solaris/hpi/src/system_md.c
1393 
1394 size_t os::lasterror(char *buf, size_t len) {
1395   if (errno == 0)  return 0;
1396 
1397   const char *s = ::strerror(errno);
1398   size_t n = ::strlen(s);
1399   if (n >= len) {
1400     n = len - 1;
1401   }
1402   ::strncpy(buf, s, n);
1403   buf[n] = '\0';
1404   return n;
1405 }
1406 
1407 // thread_id is kernel thread id (similar to Solaris LWP id)
1408 intx os::current_thread_id() { return os::Linux::gettid(); }
1409 int os::current_process_id() {
1410   return ::getpid();
1411 }
1412 
1413 // DLL functions
1414 
1415 const char* os::dll_file_extension() { return ".so"; }
1416 
1417 // This must be hard coded because it's the system's temporary
1418 // directory not the java application's temp directory, ala java.io.tmpdir.
1419 const char* os::get_temp_directory() { return "/tmp"; }
1420 
1421 static bool file_exists(const char* filename) {
1422   struct stat statbuf;
1423   if (filename == NULL || strlen(filename) == 0) {
1424     return false;
1425   }
1426   return os::stat(filename, &statbuf) == 0;
1427 }
1428 
1429 bool os::dll_build_name(char* buffer, size_t buflen,
1430                         const char* pname, const char* fname) {
1431   bool retval = false;
1432   // Copied from libhpi
1433   const size_t pnamelen = pname ? strlen(pname) : 0;
1434 
1435   // Return error on buffer overflow.
1436   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1437     return retval;
1438   }
1439 
1440   if (pnamelen == 0) {
1441     snprintf(buffer, buflen, "lib%s.so", fname);
1442     retval = true;
1443   } else if (strchr(pname, *os::path_separator()) != NULL) {
1444     int n;
1445     char** pelements = split_path(pname, &n);
1446     if (pelements == NULL) {
1447       return false;
1448     }
1449     for (int i = 0; i < n; i++) {
1450       // Really shouldn't be NULL, but check can't hurt
1451       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1452         continue; // skip the empty path values
1453       }
1454       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1455       if (file_exists(buffer)) {
1456         retval = true;
1457         break;
1458       }
1459     }
1460     // release the storage
1461     for (int i = 0; i < n; i++) {
1462       if (pelements[i] != NULL) {
1463         FREE_C_HEAP_ARRAY(char, pelements[i]);
1464       }
1465     }
1466     if (pelements != NULL) {
1467       FREE_C_HEAP_ARRAY(char*, pelements);
1468     }
1469   } else {
1470     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1471     retval = true;
1472   }
1473   return retval;
1474 }
1475 
1476 // check if addr is inside libjvm.so
1477 bool os::address_is_in_vm(address addr) {
1478   static address libjvm_base_addr;
1479   Dl_info dlinfo;
1480 
1481   if (libjvm_base_addr == NULL) {
1482     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1483       libjvm_base_addr = (address)dlinfo.dli_fbase;
1484     }
1485     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1486   }
1487 
1488   if (dladdr((void *)addr, &dlinfo) != 0) {
1489     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1490   }
1491 
1492   return false;
1493 }
1494 
1495 bool os::dll_address_to_function_name(address addr, char *buf,
1496                                       int buflen, int *offset,
1497                                       bool demangle) {
1498   // buf is not optional, but offset is optional
1499   assert(buf != NULL, "sanity check");
1500 
1501   Dl_info dlinfo;
1502 
1503   if (dladdr((void*)addr, &dlinfo) != 0) {
1504     // see if we have a matching symbol
1505     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1506       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1507         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1508       }
1509       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1510       return true;
1511     }
1512     // no matching symbol so try for just file info
1513     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1514       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1515                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1516         return true;
1517       }
1518     }
1519   }
1520 
1521   buf[0] = '\0';
1522   if (offset != NULL) *offset = -1;
1523   return false;
1524 }
1525 
1526 struct _address_to_library_name {
1527   address addr;          // input : memory address
1528   size_t  buflen;        //         size of fname
1529   char*   fname;         // output: library name
1530   address base;          //         library base addr
1531 };
1532 
1533 static int address_to_library_name_callback(struct dl_phdr_info *info,
1534                                             size_t size, void *data) {
1535   int i;
1536   bool found = false;
1537   address libbase = NULL;
1538   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1539 
1540   // iterate through all loadable segments
1541   for (i = 0; i < info->dlpi_phnum; i++) {
1542     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1543     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1544       // base address of a library is the lowest address of its loaded
1545       // segments.
1546       if (libbase == NULL || libbase > segbase) {
1547         libbase = segbase;
1548       }
1549       // see if 'addr' is within current segment
1550       if (segbase <= d->addr &&
1551           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1552         found = true;
1553       }
1554     }
1555   }
1556 
1557   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1558   // so dll_address_to_library_name() can fall through to use dladdr() which
1559   // can figure out executable name from argv[0].
1560   if (found && info->dlpi_name && info->dlpi_name[0]) {
1561     d->base = libbase;
1562     if (d->fname) {
1563       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1564     }
1565     return 1;
1566   }
1567   return 0;
1568 }
1569 
1570 bool os::dll_address_to_library_name(address addr, char* buf,
1571                                      int buflen, int* offset) {
1572   // buf is not optional, but offset is optional
1573   assert(buf != NULL, "sanity check");
1574 
1575   Dl_info dlinfo;
1576   struct _address_to_library_name data;
1577 
1578   // There is a bug in old glibc dladdr() implementation that it could resolve
1579   // to wrong library name if the .so file has a base address != NULL. Here
1580   // we iterate through the program headers of all loaded libraries to find
1581   // out which library 'addr' really belongs to. This workaround can be
1582   // removed once the minimum requirement for glibc is moved to 2.3.x.
1583   data.addr = addr;
1584   data.fname = buf;
1585   data.buflen = buflen;
1586   data.base = NULL;
1587   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1588 
1589   if (rslt) {
1590     // buf already contains library name
1591     if (offset) *offset = addr - data.base;
1592     return true;
1593   }
1594   if (dladdr((void*)addr, &dlinfo) != 0) {
1595     if (dlinfo.dli_fname != NULL) {
1596       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1597     }
1598     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1599       *offset = addr - (address)dlinfo.dli_fbase;
1600     }
1601     return true;
1602   }
1603 
1604   buf[0] = '\0';
1605   if (offset) *offset = -1;
1606   return false;
1607 }
1608 
1609 // Loads .dll/.so and
1610 // in case of error it checks if .dll/.so was built for the
1611 // same architecture as Hotspot is running on
1612 
1613 
1614 // Remember the stack's state. The Linux dynamic linker will change
1615 // the stack to 'executable' at most once, so we must safepoint only once.
1616 bool os::Linux::_stack_is_executable = false;
1617 
1618 // VM operation that loads a library.  This is necessary if stack protection
1619 // of the Java stacks can be lost during loading the library.  If we
1620 // do not stop the Java threads, they can stack overflow before the stacks
1621 // are protected again.
1622 class VM_LinuxDllLoad: public VM_Operation {
1623  private:
1624   const char *_filename;
1625   char *_ebuf;
1626   int _ebuflen;
1627   void *_lib;
1628  public:
1629   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1630     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1631   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1632   void doit() {
1633     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1634     os::Linux::_stack_is_executable = true;
1635   }
1636   void* loaded_library() { return _lib; }
1637 };
1638 
1639 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1640   void * result = NULL;
1641   bool load_attempted = false;
1642 
1643   // Check whether the library to load might change execution rights
1644   // of the stack. If they are changed, the protection of the stack
1645   // guard pages will be lost. We need a safepoint to fix this.
1646   //
1647   // See Linux man page execstack(8) for more info.
1648   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1649     ElfFile ef(filename);
1650     if (!ef.specifies_noexecstack()) {
1651       if (!is_init_completed()) {
1652         os::Linux::_stack_is_executable = true;
1653         // This is OK - No Java threads have been created yet, and hence no
1654         // stack guard pages to fix.
1655         //
1656         // This should happen only when you are building JDK7 using a very
1657         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1658         //
1659         // Dynamic loader will make all stacks executable after
1660         // this function returns, and will not do that again.
1661         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1662       } else {
1663         warning("You have loaded library %s which might have disabled stack guard. "
1664                 "The VM will try to fix the stack guard now.\n"
1665                 "It's highly recommended that you fix the library with "
1666                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1667                 filename);
1668 
1669         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1670         JavaThread *jt = JavaThread::current();
1671         if (jt->thread_state() != _thread_in_native) {
1672           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1673           // that requires ExecStack. Cannot enter safe point. Let's give up.
1674           warning("Unable to fix stack guard. Giving up.");
1675         } else {
1676           if (!LoadExecStackDllInVMThread) {
1677             // This is for the case where the DLL has an static
1678             // constructor function that executes JNI code. We cannot
1679             // load such DLLs in the VMThread.
1680             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1681           }
1682 
1683           ThreadInVMfromNative tiv(jt);
1684           debug_only(VMNativeEntryWrapper vew;)
1685 
1686           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1687           VMThread::execute(&op);
1688           if (LoadExecStackDllInVMThread) {
1689             result = op.loaded_library();
1690           }
1691           load_attempted = true;
1692         }
1693       }
1694     }
1695   }
1696 
1697   if (!load_attempted) {
1698     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1699   }
1700 
1701   if (result != NULL) {
1702     // Successful loading
1703     return result;
1704   }
1705 
1706   Elf32_Ehdr elf_head;
1707   int diag_msg_max_length=ebuflen-strlen(ebuf);
1708   char* diag_msg_buf=ebuf+strlen(ebuf);
1709 
1710   if (diag_msg_max_length==0) {
1711     // No more space in ebuf for additional diagnostics message
1712     return NULL;
1713   }
1714 
1715 
1716   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1717 
1718   if (file_descriptor < 0) {
1719     // Can't open library, report dlerror() message
1720     return NULL;
1721   }
1722 
1723   bool failed_to_read_elf_head=
1724     (sizeof(elf_head)!=
1725      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1726 
1727   ::close(file_descriptor);
1728   if (failed_to_read_elf_head) {
1729     // file i/o error - report dlerror() msg
1730     return NULL;
1731   }
1732 
1733   typedef struct {
1734     Elf32_Half  code;         // Actual value as defined in elf.h
1735     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1736     char        elf_class;    // 32 or 64 bit
1737     char        endianess;    // MSB or LSB
1738     char*       name;         // String representation
1739   } arch_t;
1740 
1741 #ifndef EM_486
1742   #define EM_486          6               /* Intel 80486 */
1743 #endif
1744 #ifndef EM_AARCH64
1745   #define EM_AARCH64    183               /* ARM AARCH64 */
1746 #endif
1747 
1748   static const arch_t arch_array[]={
1749     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1750     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1751     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1752     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1753     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1754     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1755     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1756     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1757 #if defined(VM_LITTLE_ENDIAN)
1758     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1759 #else
1760     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1761 #endif
1762     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1763     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1764     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1765     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1766     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1767     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1768     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1769     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1770   };
1771 
1772 #if  (defined IA32)
1773   static  Elf32_Half running_arch_code=EM_386;
1774 #elif   (defined AMD64)
1775   static  Elf32_Half running_arch_code=EM_X86_64;
1776 #elif  (defined IA64)
1777   static  Elf32_Half running_arch_code=EM_IA_64;
1778 #elif  (defined __sparc) && (defined _LP64)
1779   static  Elf32_Half running_arch_code=EM_SPARCV9;
1780 #elif  (defined __sparc) && (!defined _LP64)
1781   static  Elf32_Half running_arch_code=EM_SPARC;
1782 #elif  (defined __powerpc64__)
1783   static  Elf32_Half running_arch_code=EM_PPC64;
1784 #elif  (defined __powerpc__)
1785   static  Elf32_Half running_arch_code=EM_PPC;
1786 #elif  (defined ARM)
1787   static  Elf32_Half running_arch_code=EM_ARM;
1788 #elif  (defined S390)
1789   static  Elf32_Half running_arch_code=EM_S390;
1790 #elif  (defined ALPHA)
1791   static  Elf32_Half running_arch_code=EM_ALPHA;
1792 #elif  (defined MIPSEL)
1793   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1794 #elif  (defined PARISC)
1795   static  Elf32_Half running_arch_code=EM_PARISC;
1796 #elif  (defined MIPS)
1797   static  Elf32_Half running_arch_code=EM_MIPS;
1798 #elif  (defined M68K)
1799   static  Elf32_Half running_arch_code=EM_68K;
1800 #elif  (defined AARCH64)
1801   static  Elf32_Half running_arch_code=EM_AARCH64;
1802 #else
1803     #error Method os::dll_load requires that one of following is defined:\
1804          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1805 #endif
1806 
1807   // Identify compatability class for VM's architecture and library's architecture
1808   // Obtain string descriptions for architectures
1809 
1810   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1811   int running_arch_index=-1;
1812 
1813   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1814     if (running_arch_code == arch_array[i].code) {
1815       running_arch_index    = i;
1816     }
1817     if (lib_arch.code == arch_array[i].code) {
1818       lib_arch.compat_class = arch_array[i].compat_class;
1819       lib_arch.name         = arch_array[i].name;
1820     }
1821   }
1822 
1823   assert(running_arch_index != -1,
1824          "Didn't find running architecture code (running_arch_code) in arch_array");
1825   if (running_arch_index == -1) {
1826     // Even though running architecture detection failed
1827     // we may still continue with reporting dlerror() message
1828     return NULL;
1829   }
1830 
1831   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1832     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1833     return NULL;
1834   }
1835 
1836 #ifndef S390
1837   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1838     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1839     return NULL;
1840   }
1841 #endif // !S390
1842 
1843   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1844     if (lib_arch.name!=NULL) {
1845       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1846                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1847                  lib_arch.name, arch_array[running_arch_index].name);
1848     } else {
1849       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1850                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1851                  lib_arch.code,
1852                  arch_array[running_arch_index].name);
1853     }
1854   }
1855 
1856   return NULL;
1857 }
1858 
1859 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1860                                 int ebuflen) {
1861   void * result = ::dlopen(filename, RTLD_LAZY);
1862   if (result == NULL) {
1863     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1864     ebuf[ebuflen-1] = '\0';
1865   }
1866   return result;
1867 }
1868 
1869 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1870                                        int ebuflen) {
1871   void * result = NULL;
1872   if (LoadExecStackDllInVMThread) {
1873     result = dlopen_helper(filename, ebuf, ebuflen);
1874   }
1875 
1876   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1877   // library that requires an executable stack, or which does not have this
1878   // stack attribute set, dlopen changes the stack attribute to executable. The
1879   // read protection of the guard pages gets lost.
1880   //
1881   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1882   // may have been queued at the same time.
1883 
1884   if (!_stack_is_executable) {
1885     JavaThread *jt = Threads::first();
1886 
1887     while (jt) {
1888       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1889           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1890         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1891           warning("Attempt to reguard stack yellow zone failed.");
1892         }
1893       }
1894       jt = jt->next();
1895     }
1896   }
1897 
1898   return result;
1899 }
1900 
1901 void* os::dll_lookup(void* handle, const char* name) {
1902   void* res = dlsym(handle, name);
1903   return res;
1904 }
1905 
1906 void* os::get_default_process_handle() {
1907   return (void*)::dlopen(NULL, RTLD_LAZY);
1908 }
1909 
1910 static bool _print_ascii_file(const char* filename, outputStream* st) {
1911   int fd = ::open(filename, O_RDONLY);
1912   if (fd == -1) {
1913     return false;
1914   }
1915 
1916   char buf[32];
1917   int bytes;
1918   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1919     st->print_raw(buf, bytes);
1920   }
1921 
1922   ::close(fd);
1923 
1924   return true;
1925 }
1926 
1927 void os::print_dll_info(outputStream *st) {
1928   st->print_cr("Dynamic libraries:");
1929 
1930   char fname[32];
1931   pid_t pid = os::Linux::gettid();
1932 
1933   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1934 
1935   if (!_print_ascii_file(fname, st)) {
1936     st->print("Can not get library information for pid = %d\n", pid);
1937   }
1938 }
1939 
1940 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1941   FILE *procmapsFile = NULL;
1942 
1943   // Open the procfs maps file for the current process
1944   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1945     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1946     char line[PATH_MAX + 100];
1947 
1948     // Read line by line from 'file'
1949     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1950       u8 base, top, offset, inode;
1951       char permissions[5];
1952       char device[6];
1953       char name[PATH_MAX + 1];
1954 
1955       // Parse fields from line
1956       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1957              &base, &top, permissions, &offset, device, &inode, name);
1958 
1959       // Filter by device id '00:00' so that we only get file system mapped files.
1960       if (strcmp(device, "00:00") != 0) {
1961 
1962         // Call callback with the fields of interest
1963         if(callback(name, (address)base, (address)top, param)) {
1964           // Oops abort, callback aborted
1965           fclose(procmapsFile);
1966           return 1;
1967         }
1968       }
1969     }
1970     fclose(procmapsFile);
1971   }
1972   return 0;
1973 }
1974 
1975 void os::print_os_info_brief(outputStream* st) {
1976   os::Linux::print_distro_info(st);
1977 
1978   os::Posix::print_uname_info(st);
1979 
1980   os::Linux::print_libversion_info(st);
1981 
1982 }
1983 
1984 void os::print_os_info(outputStream* st) {
1985   st->print("OS:");
1986 
1987   os::Linux::print_distro_info(st);
1988 
1989   os::Posix::print_uname_info(st);
1990 
1991   // Print warning if unsafe chroot environment detected
1992   if (unsafe_chroot_detected) {
1993     st->print("WARNING!! ");
1994     st->print_cr("%s", unstable_chroot_error);
1995   }
1996 
1997   os::Linux::print_libversion_info(st);
1998 
1999   os::Posix::print_rlimit_info(st);
2000 
2001   os::Posix::print_load_average(st);
2002 
2003   os::Linux::print_full_memory_info(st);
2004 }
2005 
2006 // Try to identify popular distros.
2007 // Most Linux distributions have a /etc/XXX-release file, which contains
2008 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2009 // file that also contains the OS version string. Some have more than one
2010 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2011 // /etc/redhat-release.), so the order is important.
2012 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2013 // their own specific XXX-release file as well as a redhat-release file.
2014 // Because of this the XXX-release file needs to be searched for before the
2015 // redhat-release file.
2016 // Since Red Hat has a lsb-release file that is not very descriptive the
2017 // search for redhat-release needs to be before lsb-release.
2018 // Since the lsb-release file is the new standard it needs to be searched
2019 // before the older style release files.
2020 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2021 // next to last resort.  The os-release file is a new standard that contains
2022 // distribution information and the system-release file seems to be an old
2023 // standard that has been replaced by the lsb-release and os-release files.
2024 // Searching for the debian_version file is the last resort.  It contains
2025 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2026 // "Debian " is printed before the contents of the debian_version file.
2027 
2028 const char* distro_files[] = {
2029   "/etc/oracle-release",
2030   "/etc/mandriva-release",
2031   "/etc/mandrake-release",
2032   "/etc/sun-release",
2033   "/etc/redhat-release",
2034   "/etc/lsb-release",
2035   "/etc/SuSE-release",
2036   "/etc/turbolinux-release",
2037   "/etc/gentoo-release",
2038   "/etc/ltib-release",
2039   "/etc/angstrom-version",
2040   "/etc/system-release",
2041   "/etc/os-release",
2042   NULL };
2043 
2044 void os::Linux::print_distro_info(outputStream* st) {
2045   for (int i = 0;; i++) {
2046     const char* file = distro_files[i];
2047     if (file == NULL) {
2048       break;  // done
2049     }
2050     // If file prints, we found it.
2051     if (_print_ascii_file(file, st)) {
2052       return;
2053     }
2054   }
2055 
2056   if (file_exists("/etc/debian_version")) {
2057     st->print("Debian ");
2058     _print_ascii_file("/etc/debian_version", st);
2059   } else {
2060     st->print("Linux");
2061   }
2062   st->cr();
2063 }
2064 
2065 static void parse_os_info(char* distro, size_t length, const char* file) {
2066   FILE* fp = fopen(file, "r");
2067   if (fp != NULL) {
2068     char buf[256];
2069     // get last line of the file.
2070     while (fgets(buf, sizeof(buf), fp)) { }
2071     // Edit out extra stuff in expected ubuntu format
2072     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL) {
2073       char* ptr = strstr(buf, "\"");  // the name is in quotes
2074       if (ptr != NULL) {
2075         ptr++; // go beyond first quote
2076         char* nl = strchr(ptr, '\"');
2077         if (nl != NULL) *nl = '\0';
2078         strncpy(distro, ptr, length);
2079       } else {
2080         ptr = strstr(buf, "=");
2081         ptr++; // go beyond equals then
2082         char* nl = strchr(ptr, '\n');
2083         if (nl != NULL) *nl = '\0';
2084         strncpy(distro, ptr, length);
2085       }
2086     } else {
2087       // if not in expected Ubuntu format, print out whole line minus \n
2088       char* nl = strchr(buf, '\n');
2089       if (nl != NULL) *nl = '\0';
2090       strncpy(distro, buf, length);
2091     }
2092     // close distro file
2093     fclose(fp);
2094   }
2095 }
2096 
2097 void os::get_summary_os_info(char* buf, size_t buflen) {
2098   for (int i = 0;; i++) {
2099     const char* file = distro_files[i];
2100     if (file == NULL) {
2101       break; // ran out of distro_files
2102     }
2103     if (file_exists(file)) {
2104       parse_os_info(buf, buflen, file);
2105       return;
2106     }
2107   }
2108   // special case for debian
2109   if (file_exists("/etc/debian_version")) {
2110     strncpy(buf, "Debian ", buflen);
2111     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2112   } else {
2113     strncpy(buf, "Linux", buflen);
2114   }
2115 }
2116 
2117 void os::Linux::print_libversion_info(outputStream* st) {
2118   // libc, pthread
2119   st->print("libc:");
2120   st->print("%s ", os::Linux::glibc_version());
2121   st->print("%s ", os::Linux::libpthread_version());
2122   st->cr();
2123 }
2124 
2125 void os::Linux::print_full_memory_info(outputStream* st) {
2126   st->print("\n/proc/meminfo:\n");
2127   _print_ascii_file("/proc/meminfo", st);
2128   st->cr();
2129 }
2130 
2131 void os::print_memory_info(outputStream* st) {
2132 
2133   st->print("Memory:");
2134   st->print(" %dk page", os::vm_page_size()>>10);
2135 
2136   // values in struct sysinfo are "unsigned long"
2137   struct sysinfo si;
2138   sysinfo(&si);
2139 
2140   st->print(", physical " UINT64_FORMAT "k",
2141             os::physical_memory() >> 10);
2142   st->print("(" UINT64_FORMAT "k free)",
2143             os::available_memory() >> 10);
2144   st->print(", swap " UINT64_FORMAT "k",
2145             ((jlong)si.totalswap * si.mem_unit) >> 10);
2146   st->print("(" UINT64_FORMAT "k free)",
2147             ((jlong)si.freeswap * si.mem_unit) >> 10);
2148   st->cr();
2149 }
2150 
2151 // Print the first "model name" line and the first "flags" line
2152 // that we find and nothing more. We assume "model name" comes
2153 // before "flags" so if we find a second "model name", then the
2154 // "flags" field is considered missing.
2155 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2156 #if defined(IA32) || defined(AMD64)
2157   // Other platforms have less repetitive cpuinfo files
2158   FILE *fp = fopen("/proc/cpuinfo", "r");
2159   if (fp) {
2160     while (!feof(fp)) {
2161       if (fgets(buf, buflen, fp)) {
2162         // Assume model name comes before flags
2163         bool model_name_printed = false;
2164         if (strstr(buf, "model name") != NULL) {
2165           if (!model_name_printed) {
2166             st->print_raw("\nCPU Model and flags from /proc/cpuinfo:\n");
2167             st->print_raw(buf);
2168             model_name_printed = true;
2169           } else {
2170             // model name printed but not flags?  Odd, just return
2171             fclose(fp);
2172             return true;
2173           }
2174         }
2175         // print the flags line too
2176         if (strstr(buf, "flags") != NULL) {
2177           st->print_raw(buf);
2178           fclose(fp);
2179           return true;
2180         }
2181       }
2182     }
2183     fclose(fp);
2184   }
2185 #endif // x86 platforms
2186   return false;
2187 }
2188 
2189 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2190   // Only print the model name if the platform provides this as a summary
2191   if (!print_model_name_and_flags(st, buf, buflen)) {
2192     st->print("\n/proc/cpuinfo:\n");
2193     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2194       st->print_cr("  <Not Available>");
2195     }
2196   }
2197 }
2198 
2199 #if defined(AMD64) || defined(IA32) || defined(X32)
2200 const char* search_string = "model name";
2201 #elif defined(SPARC)
2202 const char* search_string = "cpu";
2203 #elif defined(PPC64)
2204 const char* search_string = "cpu";
2205 #else
2206 const char* search_string = "Processor";
2207 #endif
2208 
2209 // Parses the cpuinfo file for string representing the model name.
2210 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2211   FILE* fp = fopen("/proc/cpuinfo", "r");
2212   if (fp != NULL) {
2213     while (!feof(fp)) {
2214       char buf[256];
2215       if (fgets(buf, sizeof(buf), fp)) {
2216         char* start = strstr(buf, search_string);
2217         if (start != NULL) {
2218           char *ptr = start + strlen(search_string);
2219           char *end = buf + strlen(buf);
2220           while (ptr != end) {
2221              // skip whitespace and colon for the rest of the name.
2222              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2223                break;
2224              }
2225              ptr++;
2226           }
2227           if (ptr != end) {
2228             // reasonable string, get rid of newline and keep the rest
2229             char* nl = strchr(buf, '\n');
2230             if (nl != NULL) *nl = '\0';
2231             strncpy(cpuinfo, ptr, length);
2232             fclose(fp);
2233             return;
2234           }
2235         }
2236       }
2237     }
2238     fclose(fp);
2239   }
2240   // cpuinfo not found or parsing failed, just print generic string.  The entire
2241   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2242 #if defined(AMD64)
2243   strncpy(cpuinfo, "x86_64", length);
2244 #elif defined(IA32)
2245   strncpy(cpuinfo, "x86_32", length);
2246 #elif defined(IA64)
2247   strncpy(cpuinfo, "IA64", length);
2248 #elif defined(SPARC)
2249   strncpy(cpuinfo, "sparcv9", length);
2250 #elif defined(AARCH64)
2251   strncpy(cpuinfo, "AArch64", length);
2252 #elif defined(ARM)
2253   strncpy(cpuinfo, "ARM", length);
2254 #elif defined(PPC)
2255   strncpy(cpuinfo, "PPC64", length);
2256 #elif defined(ZERO_LIBARCH)
2257   strncpy(cpuinfo, ZERO_LIBARCH, length);
2258 #else
2259   strncpy(cpuinfo, "unknown", length);
2260 #endif
2261 }
2262 
2263 static void print_signal_handler(outputStream* st, int sig,
2264                                  char* buf, size_t buflen);
2265 
2266 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2267   st->print_cr("Signal Handlers:");
2268   print_signal_handler(st, SIGSEGV, buf, buflen);
2269   print_signal_handler(st, SIGBUS , buf, buflen);
2270   print_signal_handler(st, SIGFPE , buf, buflen);
2271   print_signal_handler(st, SIGPIPE, buf, buflen);
2272   print_signal_handler(st, SIGXFSZ, buf, buflen);
2273   print_signal_handler(st, SIGILL , buf, buflen);
2274   print_signal_handler(st, SR_signum, buf, buflen);
2275   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2276   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2277   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2278   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2279 #if defined(PPC64)
2280   print_signal_handler(st, SIGTRAP, buf, buflen);
2281 #endif
2282 }
2283 
2284 static char saved_jvm_path[MAXPATHLEN] = {0};
2285 
2286 // Find the full path to the current module, libjvm.so
2287 void os::jvm_path(char *buf, jint buflen) {
2288   // Error checking.
2289   if (buflen < MAXPATHLEN) {
2290     assert(false, "must use a large-enough buffer");
2291     buf[0] = '\0';
2292     return;
2293   }
2294   // Lazy resolve the path to current module.
2295   if (saved_jvm_path[0] != 0) {
2296     strcpy(buf, saved_jvm_path);
2297     return;
2298   }
2299 
2300   char dli_fname[MAXPATHLEN];
2301   bool ret = dll_address_to_library_name(
2302                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2303                                          dli_fname, sizeof(dli_fname), NULL);
2304   assert(ret, "cannot locate libjvm");
2305   char *rp = NULL;
2306   if (ret && dli_fname[0] != '\0') {
2307     rp = realpath(dli_fname, buf);
2308   }
2309   if (rp == NULL) {
2310     return;
2311   }
2312 
2313   if (Arguments::sun_java_launcher_is_altjvm()) {
2314     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2315     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2316     // If "/jre/lib/" appears at the right place in the string, then
2317     // assume we are installed in a JDK and we're done. Otherwise, check
2318     // for a JAVA_HOME environment variable and fix up the path so it
2319     // looks like libjvm.so is installed there (append a fake suffix
2320     // hotspot/libjvm.so).
2321     const char *p = buf + strlen(buf) - 1;
2322     for (int count = 0; p > buf && count < 5; ++count) {
2323       for (--p; p > buf && *p != '/'; --p)
2324         /* empty */ ;
2325     }
2326 
2327     if (strncmp(p, "/jre/lib/", 9) != 0) {
2328       // Look for JAVA_HOME in the environment.
2329       char* java_home_var = ::getenv("JAVA_HOME");
2330       if (java_home_var != NULL && java_home_var[0] != 0) {
2331         char* jrelib_p;
2332         int len;
2333 
2334         // Check the current module name "libjvm.so".
2335         p = strrchr(buf, '/');
2336         if (p == NULL) {
2337           return;
2338         }
2339         assert(strstr(p, "/libjvm") == p, "invalid library name");
2340 
2341         rp = realpath(java_home_var, buf);
2342         if (rp == NULL) {
2343           return;
2344         }
2345 
2346         // determine if this is a legacy image or modules image
2347         // modules image doesn't have "jre" subdirectory
2348         len = strlen(buf);
2349         assert(len < buflen, "Ran out of buffer room");
2350         jrelib_p = buf + len;
2351         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2352         if (0 != access(buf, F_OK)) {
2353           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2354         }
2355 
2356         if (0 == access(buf, F_OK)) {
2357           // Use current module name "libjvm.so"
2358           len = strlen(buf);
2359           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2360         } else {
2361           // Go back to path of .so
2362           rp = realpath(dli_fname, buf);
2363           if (rp == NULL) {
2364             return;
2365           }
2366         }
2367       }
2368     }
2369   }
2370 
2371   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2372   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2373 }
2374 
2375 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2376   // no prefix required, not even "_"
2377 }
2378 
2379 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2380   // no suffix required
2381 }
2382 
2383 ////////////////////////////////////////////////////////////////////////////////
2384 // sun.misc.Signal support
2385 
2386 static volatile jint sigint_count = 0;
2387 
2388 static void UserHandler(int sig, void *siginfo, void *context) {
2389   // 4511530 - sem_post is serialized and handled by the manager thread. When
2390   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2391   // don't want to flood the manager thread with sem_post requests.
2392   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2393     return;
2394   }
2395 
2396   // Ctrl-C is pressed during error reporting, likely because the error
2397   // handler fails to abort. Let VM die immediately.
2398   if (sig == SIGINT && is_error_reported()) {
2399     os::die();
2400   }
2401 
2402   os::signal_notify(sig);
2403 }
2404 
2405 void* os::user_handler() {
2406   return CAST_FROM_FN_PTR(void*, UserHandler);
2407 }
2408 
2409 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2410   struct timespec ts;
2411   // Semaphore's are always associated with CLOCK_REALTIME
2412   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2413   // see unpackTime for discussion on overflow checking
2414   if (sec >= MAX_SECS) {
2415     ts.tv_sec += MAX_SECS;
2416     ts.tv_nsec = 0;
2417   } else {
2418     ts.tv_sec += sec;
2419     ts.tv_nsec += nsec;
2420     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2421       ts.tv_nsec -= NANOSECS_PER_SEC;
2422       ++ts.tv_sec; // note: this must be <= max_secs
2423     }
2424   }
2425 
2426   return ts;
2427 }
2428 
2429 extern "C" {
2430   typedef void (*sa_handler_t)(int);
2431   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2432 }
2433 
2434 void* os::signal(int signal_number, void* handler) {
2435   struct sigaction sigAct, oldSigAct;
2436 
2437   sigfillset(&(sigAct.sa_mask));
2438   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2439   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2440 
2441   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2442     // -1 means registration failed
2443     return (void *)-1;
2444   }
2445 
2446   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2447 }
2448 
2449 void os::signal_raise(int signal_number) {
2450   ::raise(signal_number);
2451 }
2452 
2453 // The following code is moved from os.cpp for making this
2454 // code platform specific, which it is by its very nature.
2455 
2456 // Will be modified when max signal is changed to be dynamic
2457 int os::sigexitnum_pd() {
2458   return NSIG;
2459 }
2460 
2461 // a counter for each possible signal value
2462 static volatile jint pending_signals[NSIG+1] = { 0 };
2463 
2464 // Linux(POSIX) specific hand shaking semaphore.
2465 static sem_t sig_sem;
2466 static PosixSemaphore sr_semaphore;
2467 
2468 void os::signal_init_pd() {
2469   // Initialize signal structures
2470   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2471 
2472   // Initialize signal semaphore
2473   ::sem_init(&sig_sem, 0, 0);
2474 }
2475 
2476 void os::signal_notify(int sig) {
2477   Atomic::inc(&pending_signals[sig]);
2478   ::sem_post(&sig_sem);
2479 }
2480 
2481 static int check_pending_signals(bool wait) {
2482   Atomic::store(0, &sigint_count);
2483   for (;;) {
2484     for (int i = 0; i < NSIG + 1; i++) {
2485       jint n = pending_signals[i];
2486       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2487         return i;
2488       }
2489     }
2490     if (!wait) {
2491       return -1;
2492     }
2493     JavaThread *thread = JavaThread::current();
2494     ThreadBlockInVM tbivm(thread);
2495 
2496     bool threadIsSuspended;
2497     do {
2498       thread->set_suspend_equivalent();
2499       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2500       ::sem_wait(&sig_sem);
2501 
2502       // were we externally suspended while we were waiting?
2503       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2504       if (threadIsSuspended) {
2505         // The semaphore has been incremented, but while we were waiting
2506         // another thread suspended us. We don't want to continue running
2507         // while suspended because that would surprise the thread that
2508         // suspended us.
2509         ::sem_post(&sig_sem);
2510 
2511         thread->java_suspend_self();
2512       }
2513     } while (threadIsSuspended);
2514   }
2515 }
2516 
2517 int os::signal_lookup() {
2518   return check_pending_signals(false);
2519 }
2520 
2521 int os::signal_wait() {
2522   return check_pending_signals(true);
2523 }
2524 
2525 ////////////////////////////////////////////////////////////////////////////////
2526 // Virtual Memory
2527 
2528 int os::vm_page_size() {
2529   // Seems redundant as all get out
2530   assert(os::Linux::page_size() != -1, "must call os::init");
2531   return os::Linux::page_size();
2532 }
2533 
2534 // Solaris allocates memory by pages.
2535 int os::vm_allocation_granularity() {
2536   assert(os::Linux::page_size() != -1, "must call os::init");
2537   return os::Linux::page_size();
2538 }
2539 
2540 // Rationale behind this function:
2541 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2542 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2543 //  samples for JITted code. Here we create private executable mapping over the code cache
2544 //  and then we can use standard (well, almost, as mapping can change) way to provide
2545 //  info for the reporting script by storing timestamp and location of symbol
2546 void linux_wrap_code(char* base, size_t size) {
2547   static volatile jint cnt = 0;
2548 
2549   if (!UseOprofile) {
2550     return;
2551   }
2552 
2553   char buf[PATH_MAX+1];
2554   int num = Atomic::add(1, &cnt);
2555 
2556   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2557            os::get_temp_directory(), os::current_process_id(), num);
2558   unlink(buf);
2559 
2560   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2561 
2562   if (fd != -1) {
2563     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2564     if (rv != (off_t)-1) {
2565       if (::write(fd, "", 1) == 1) {
2566         mmap(base, size,
2567              PROT_READ|PROT_WRITE|PROT_EXEC,
2568              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2569       }
2570     }
2571     ::close(fd);
2572     unlink(buf);
2573   }
2574 }
2575 
2576 static bool recoverable_mmap_error(int err) {
2577   // See if the error is one we can let the caller handle. This
2578   // list of errno values comes from JBS-6843484. I can't find a
2579   // Linux man page that documents this specific set of errno
2580   // values so while this list currently matches Solaris, it may
2581   // change as we gain experience with this failure mode.
2582   switch (err) {
2583   case EBADF:
2584   case EINVAL:
2585   case ENOTSUP:
2586     // let the caller deal with these errors
2587     return true;
2588 
2589   default:
2590     // Any remaining errors on this OS can cause our reserved mapping
2591     // to be lost. That can cause confusion where different data
2592     // structures think they have the same memory mapped. The worst
2593     // scenario is if both the VM and a library think they have the
2594     // same memory mapped.
2595     return false;
2596   }
2597 }
2598 
2599 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2600                                     int err) {
2601   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2602           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2603           strerror(err), err);
2604 }
2605 
2606 static void warn_fail_commit_memory(char* addr, size_t size,
2607                                     size_t alignment_hint, bool exec,
2608                                     int err) {
2609   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2610           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2611           alignment_hint, exec, strerror(err), err);
2612 }
2613 
2614 // NOTE: Linux kernel does not really reserve the pages for us.
2615 //       All it does is to check if there are enough free pages
2616 //       left at the time of mmap(). This could be a potential
2617 //       problem.
2618 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2619   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2620   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2621                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2622   if (res != (uintptr_t) MAP_FAILED) {
2623     if (UseNUMAInterleaving) {
2624       numa_make_global(addr, size);
2625     }
2626     return 0;
2627   }
2628 
2629   int err = errno;  // save errno from mmap() call above
2630 
2631   if (!recoverable_mmap_error(err)) {
2632     warn_fail_commit_memory(addr, size, exec, err);
2633     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2634   }
2635 
2636   return err;
2637 }
2638 
2639 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2640   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2641 }
2642 
2643 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2644                                   const char* mesg) {
2645   assert(mesg != NULL, "mesg must be specified");
2646   int err = os::Linux::commit_memory_impl(addr, size, exec);
2647   if (err != 0) {
2648     // the caller wants all commit errors to exit with the specified mesg:
2649     warn_fail_commit_memory(addr, size, exec, err);
2650     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2651   }
2652 }
2653 
2654 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2655 #ifndef MAP_HUGETLB
2656   #define MAP_HUGETLB 0x40000
2657 #endif
2658 
2659 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2660 #ifndef MADV_HUGEPAGE
2661   #define MADV_HUGEPAGE 14
2662 #endif
2663 
2664 int os::Linux::commit_memory_impl(char* addr, size_t size,
2665                                   size_t alignment_hint, bool exec) {
2666   int err = os::Linux::commit_memory_impl(addr, size, exec);
2667   if (err == 0) {
2668     realign_memory(addr, size, alignment_hint);
2669   }
2670   return err;
2671 }
2672 
2673 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2674                           bool exec) {
2675   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2676 }
2677 
2678 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2679                                   size_t alignment_hint, bool exec,
2680                                   const char* mesg) {
2681   assert(mesg != NULL, "mesg must be specified");
2682   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2683   if (err != 0) {
2684     // the caller wants all commit errors to exit with the specified mesg:
2685     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2686     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2687   }
2688 }
2689 
2690 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2691   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2692     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2693     // be supported or the memory may already be backed by huge pages.
2694     ::madvise(addr, bytes, MADV_HUGEPAGE);
2695   }
2696 }
2697 
2698 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2699   // This method works by doing an mmap over an existing mmaping and effectively discarding
2700   // the existing pages. However it won't work for SHM-based large pages that cannot be
2701   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2702   // small pages on top of the SHM segment. This method always works for small pages, so we
2703   // allow that in any case.
2704   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2705     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2706   }
2707 }
2708 
2709 void os::numa_make_global(char *addr, size_t bytes) {
2710   Linux::numa_interleave_memory(addr, bytes);
2711 }
2712 
2713 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2714 // bind policy to MPOL_PREFERRED for the current thread.
2715 #define USE_MPOL_PREFERRED 0
2716 
2717 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2718   // To make NUMA and large pages more robust when both enabled, we need to ease
2719   // the requirements on where the memory should be allocated. MPOL_BIND is the
2720   // default policy and it will force memory to be allocated on the specified
2721   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2722   // the specified node, but will not force it. Using this policy will prevent
2723   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2724   // free large pages.
2725   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2726   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2727 }
2728 
2729 bool os::numa_topology_changed() { return false; }
2730 
2731 size_t os::numa_get_groups_num() {
2732   int max_node = Linux::numa_max_node();
2733   return max_node > 0 ? max_node + 1 : 1;
2734 }
2735 
2736 int os::numa_get_group_id() {
2737   int cpu_id = Linux::sched_getcpu();
2738   if (cpu_id != -1) {
2739     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2740     if (lgrp_id != -1) {
2741       return lgrp_id;
2742     }
2743   }
2744   return 0;
2745 }
2746 
2747 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2748   for (size_t i = 0; i < size; i++) {
2749     ids[i] = i;
2750   }
2751   return size;
2752 }
2753 
2754 bool os::get_page_info(char *start, page_info* info) {
2755   return false;
2756 }
2757 
2758 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2759                      page_info* page_found) {
2760   return end;
2761 }
2762 
2763 
2764 int os::Linux::sched_getcpu_syscall(void) {
2765   unsigned int cpu = 0;
2766   int retval = -1;
2767 
2768 #if defined(IA32)
2769   #ifndef SYS_getcpu
2770     #define SYS_getcpu 318
2771   #endif
2772   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2773 #elif defined(AMD64)
2774 // Unfortunately we have to bring all these macros here from vsyscall.h
2775 // to be able to compile on old linuxes.
2776   #define __NR_vgetcpu 2
2777   #define VSYSCALL_START (-10UL << 20)
2778   #define VSYSCALL_SIZE 1024
2779   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2780   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2781   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2782   retval = vgetcpu(&cpu, NULL, NULL);
2783 #endif
2784 
2785   return (retval == -1) ? retval : cpu;
2786 }
2787 
2788 // Something to do with the numa-aware allocator needs these symbols
2789 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2790 extern "C" JNIEXPORT void numa_error(char *where) { }
2791 
2792 
2793 // If we are running with libnuma version > 2, then we should
2794 // be trying to use symbols with versions 1.1
2795 // If we are running with earlier version, which did not have symbol versions,
2796 // we should use the base version.
2797 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2798   void *f = dlvsym(handle, name, "libnuma_1.1");
2799   if (f == NULL) {
2800     f = dlsym(handle, name);
2801   }
2802   return f;
2803 }
2804 
2805 bool os::Linux::libnuma_init() {
2806   // sched_getcpu() should be in libc.
2807   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2808                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2809 
2810   // If it's not, try a direct syscall.
2811   if (sched_getcpu() == -1) {
2812     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2813                                     (void*)&sched_getcpu_syscall));
2814   }
2815 
2816   if (sched_getcpu() != -1) { // Does it work?
2817     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2818     if (handle != NULL) {
2819       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2820                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2821       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2822                                        libnuma_dlsym(handle, "numa_max_node")));
2823       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2824                                         libnuma_dlsym(handle, "numa_available")));
2825       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2826                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2827       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2828                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2829       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2830                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2831 
2832 
2833       if (numa_available() != -1) {
2834         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2835         // Create a cpu -> node mapping
2836         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2837         rebuild_cpu_to_node_map();
2838         return true;
2839       }
2840     }
2841   }
2842   return false;
2843 }
2844 
2845 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2846 // The table is later used in get_node_by_cpu().
2847 void os::Linux::rebuild_cpu_to_node_map() {
2848   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2849                               // in libnuma (possible values are starting from 16,
2850                               // and continuing up with every other power of 2, but less
2851                               // than the maximum number of CPUs supported by kernel), and
2852                               // is a subject to change (in libnuma version 2 the requirements
2853                               // are more reasonable) we'll just hardcode the number they use
2854                               // in the library.
2855   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2856 
2857   size_t cpu_num = os::active_processor_count();
2858   size_t cpu_map_size = NCPUS / BitsPerCLong;
2859   size_t cpu_map_valid_size =
2860     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2861 
2862   cpu_to_node()->clear();
2863   cpu_to_node()->at_grow(cpu_num - 1);
2864   size_t node_num = numa_get_groups_num();
2865 
2866   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2867   for (size_t i = 0; i < node_num; i++) {
2868     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2869       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2870         if (cpu_map[j] != 0) {
2871           for (size_t k = 0; k < BitsPerCLong; k++) {
2872             if (cpu_map[j] & (1UL << k)) {
2873               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2874             }
2875           }
2876         }
2877       }
2878     }
2879   }
2880   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2881 }
2882 
2883 int os::Linux::get_node_by_cpu(int cpu_id) {
2884   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2885     return cpu_to_node()->at(cpu_id);
2886   }
2887   return -1;
2888 }
2889 
2890 GrowableArray<int>* os::Linux::_cpu_to_node;
2891 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2892 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2893 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2894 os::Linux::numa_available_func_t os::Linux::_numa_available;
2895 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2896 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2897 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2898 unsigned long* os::Linux::_numa_all_nodes;
2899 
2900 bool os::pd_uncommit_memory(char* addr, size_t size) {
2901   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2902                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2903   return res  != (uintptr_t) MAP_FAILED;
2904 }
2905 
2906 static address get_stack_commited_bottom(address bottom, size_t size) {
2907   address nbot = bottom;
2908   address ntop = bottom + size;
2909 
2910   size_t page_sz = os::vm_page_size();
2911   unsigned pages = size / page_sz;
2912 
2913   unsigned char vec[1];
2914   unsigned imin = 1, imax = pages + 1, imid;
2915   int mincore_return_value = 0;
2916 
2917   assert(imin <= imax, "Unexpected page size");
2918 
2919   while (imin < imax) {
2920     imid = (imax + imin) / 2;
2921     nbot = ntop - (imid * page_sz);
2922 
2923     // Use a trick with mincore to check whether the page is mapped or not.
2924     // mincore sets vec to 1 if page resides in memory and to 0 if page
2925     // is swapped output but if page we are asking for is unmapped
2926     // it returns -1,ENOMEM
2927     mincore_return_value = mincore(nbot, page_sz, vec);
2928 
2929     if (mincore_return_value == -1) {
2930       // Page is not mapped go up
2931       // to find first mapped page
2932       if (errno != EAGAIN) {
2933         assert(errno == ENOMEM, "Unexpected mincore errno");
2934         imax = imid;
2935       }
2936     } else {
2937       // Page is mapped go down
2938       // to find first not mapped page
2939       imin = imid + 1;
2940     }
2941   }
2942 
2943   nbot = nbot + page_sz;
2944 
2945   // Adjust stack bottom one page up if last checked page is not mapped
2946   if (mincore_return_value == -1) {
2947     nbot = nbot + page_sz;
2948   }
2949 
2950   return nbot;
2951 }
2952 
2953 
2954 // Linux uses a growable mapping for the stack, and if the mapping for
2955 // the stack guard pages is not removed when we detach a thread the
2956 // stack cannot grow beyond the pages where the stack guard was
2957 // mapped.  If at some point later in the process the stack expands to
2958 // that point, the Linux kernel cannot expand the stack any further
2959 // because the guard pages are in the way, and a segfault occurs.
2960 //
2961 // However, it's essential not to split the stack region by unmapping
2962 // a region (leaving a hole) that's already part of the stack mapping,
2963 // so if the stack mapping has already grown beyond the guard pages at
2964 // the time we create them, we have to truncate the stack mapping.
2965 // So, we need to know the extent of the stack mapping when
2966 // create_stack_guard_pages() is called.
2967 
2968 // We only need this for stacks that are growable: at the time of
2969 // writing thread stacks don't use growable mappings (i.e. those
2970 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2971 // only applies to the main thread.
2972 
2973 // If the (growable) stack mapping already extends beyond the point
2974 // where we're going to put our guard pages, truncate the mapping at
2975 // that point by munmap()ping it.  This ensures that when we later
2976 // munmap() the guard pages we don't leave a hole in the stack
2977 // mapping. This only affects the main/initial thread
2978 
2979 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2980   if (os::Linux::is_initial_thread()) {
2981     // As we manually grow stack up to bottom inside create_attached_thread(),
2982     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
2983     // we don't need to do anything special.
2984     // Check it first, before calling heavy function.
2985     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
2986     unsigned char vec[1];
2987 
2988     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
2989       // Fallback to slow path on all errors, including EAGAIN
2990       stack_extent = (uintptr_t) get_stack_commited_bottom(
2991                                                            os::Linux::initial_thread_stack_bottom(),
2992                                                            (size_t)addr - stack_extent);
2993     }
2994 
2995     if (stack_extent < (uintptr_t)addr) {
2996       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
2997     }
2998   }
2999 
3000   return os::commit_memory(addr, size, !ExecMem);
3001 }
3002 
3003 // If this is a growable mapping, remove the guard pages entirely by
3004 // munmap()ping them.  If not, just call uncommit_memory(). This only
3005 // affects the main/initial thread, but guard against future OS changes
3006 // It's safe to always unmap guard pages for initial thread because we
3007 // always place it right after end of the mapped region
3008 
3009 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3010   uintptr_t stack_extent, stack_base;
3011 
3012   if (os::Linux::is_initial_thread()) {
3013     return ::munmap(addr, size) == 0;
3014   }
3015 
3016   return os::uncommit_memory(addr, size);
3017 }
3018 
3019 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3020 // at 'requested_addr'. If there are existing memory mappings at the same
3021 // location, however, they will be overwritten. If 'fixed' is false,
3022 // 'requested_addr' is only treated as a hint, the return value may or
3023 // may not start from the requested address. Unlike Linux mmap(), this
3024 // function returns NULL to indicate failure.
3025 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3026   char * addr;
3027   int flags;
3028 
3029   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3030   if (fixed) {
3031     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3032     flags |= MAP_FIXED;
3033   }
3034 
3035   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3036   // touch an uncommitted page. Otherwise, the read/write might
3037   // succeed if we have enough swap space to back the physical page.
3038   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3039                        flags, -1, 0);
3040 
3041   return addr == MAP_FAILED ? NULL : addr;
3042 }
3043 
3044 static int anon_munmap(char * addr, size_t size) {
3045   return ::munmap(addr, size) == 0;
3046 }
3047 
3048 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3049                             size_t alignment_hint) {
3050   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3051 }
3052 
3053 bool os::pd_release_memory(char* addr, size_t size) {
3054   return anon_munmap(addr, size);
3055 }
3056 
3057 static bool linux_mprotect(char* addr, size_t size, int prot) {
3058   // Linux wants the mprotect address argument to be page aligned.
3059   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3060 
3061   // According to SUSv3, mprotect() should only be used with mappings
3062   // established by mmap(), and mmap() always maps whole pages. Unaligned
3063   // 'addr' likely indicates problem in the VM (e.g. trying to change
3064   // protection of malloc'ed or statically allocated memory). Check the
3065   // caller if you hit this assert.
3066   assert(addr == bottom, "sanity check");
3067 
3068   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3069   return ::mprotect(bottom, size, prot) == 0;
3070 }
3071 
3072 // Set protections specified
3073 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3074                         bool is_committed) {
3075   unsigned int p = 0;
3076   switch (prot) {
3077   case MEM_PROT_NONE: p = PROT_NONE; break;
3078   case MEM_PROT_READ: p = PROT_READ; break;
3079   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3080   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3081   default:
3082     ShouldNotReachHere();
3083   }
3084   // is_committed is unused.
3085   return linux_mprotect(addr, bytes, p);
3086 }
3087 
3088 bool os::guard_memory(char* addr, size_t size) {
3089   return linux_mprotect(addr, size, PROT_NONE);
3090 }
3091 
3092 bool os::unguard_memory(char* addr, size_t size) {
3093   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3094 }
3095 
3096 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3097                                                     size_t page_size) {
3098   bool result = false;
3099   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3100                  MAP_ANONYMOUS|MAP_PRIVATE,
3101                  -1, 0);
3102   if (p != MAP_FAILED) {
3103     void *aligned_p = align_ptr_up(p, page_size);
3104 
3105     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3106 
3107     munmap(p, page_size * 2);
3108   }
3109 
3110   if (warn && !result) {
3111     warning("TransparentHugePages is not supported by the operating system.");
3112   }
3113 
3114   return result;
3115 }
3116 
3117 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3118   bool result = false;
3119   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3120                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3121                  -1, 0);
3122 
3123   if (p != MAP_FAILED) {
3124     // We don't know if this really is a huge page or not.
3125     FILE *fp = fopen("/proc/self/maps", "r");
3126     if (fp) {
3127       while (!feof(fp)) {
3128         char chars[257];
3129         long x = 0;
3130         if (fgets(chars, sizeof(chars), fp)) {
3131           if (sscanf(chars, "%lx-%*x", &x) == 1
3132               && x == (long)p) {
3133             if (strstr (chars, "hugepage")) {
3134               result = true;
3135               break;
3136             }
3137           }
3138         }
3139       }
3140       fclose(fp);
3141     }
3142     munmap(p, page_size);
3143   }
3144 
3145   if (warn && !result) {
3146     warning("HugeTLBFS is not supported by the operating system.");
3147   }
3148 
3149   return result;
3150 }
3151 
3152 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3153 //
3154 // From the coredump_filter documentation:
3155 //
3156 // - (bit 0) anonymous private memory
3157 // - (bit 1) anonymous shared memory
3158 // - (bit 2) file-backed private memory
3159 // - (bit 3) file-backed shared memory
3160 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3161 //           effective only if the bit 2 is cleared)
3162 // - (bit 5) hugetlb private memory
3163 // - (bit 6) hugetlb shared memory
3164 //
3165 static void set_coredump_filter(void) {
3166   FILE *f;
3167   long cdm;
3168 
3169   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3170     return;
3171   }
3172 
3173   if (fscanf(f, "%lx", &cdm) != 1) {
3174     fclose(f);
3175     return;
3176   }
3177 
3178   rewind(f);
3179 
3180   if ((cdm & LARGEPAGES_BIT) == 0) {
3181     cdm |= LARGEPAGES_BIT;
3182     fprintf(f, "%#lx", cdm);
3183   }
3184 
3185   fclose(f);
3186 }
3187 
3188 // Large page support
3189 
3190 static size_t _large_page_size = 0;
3191 
3192 size_t os::Linux::find_large_page_size() {
3193   size_t large_page_size = 0;
3194 
3195   // large_page_size on Linux is used to round up heap size. x86 uses either
3196   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3197   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3198   // page as large as 256M.
3199   //
3200   // Here we try to figure out page size by parsing /proc/meminfo and looking
3201   // for a line with the following format:
3202   //    Hugepagesize:     2048 kB
3203   //
3204   // If we can't determine the value (e.g. /proc is not mounted, or the text
3205   // format has been changed), we'll use the largest page size supported by
3206   // the processor.
3207 
3208 #ifndef ZERO
3209   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3210                      ARM32_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3211 #endif // ZERO
3212 
3213   FILE *fp = fopen("/proc/meminfo", "r");
3214   if (fp) {
3215     while (!feof(fp)) {
3216       int x = 0;
3217       char buf[16];
3218       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3219         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3220           large_page_size = x * K;
3221           break;
3222         }
3223       } else {
3224         // skip to next line
3225         for (;;) {
3226           int ch = fgetc(fp);
3227           if (ch == EOF || ch == (int)'\n') break;
3228         }
3229       }
3230     }
3231     fclose(fp);
3232   }
3233 
3234   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3235     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3236             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3237             proper_unit_for_byte_size(large_page_size));
3238   }
3239 
3240   return large_page_size;
3241 }
3242 
3243 size_t os::Linux::setup_large_page_size() {
3244   _large_page_size = Linux::find_large_page_size();
3245   const size_t default_page_size = (size_t)Linux::page_size();
3246   if (_large_page_size > default_page_size) {
3247     _page_sizes[0] = _large_page_size;
3248     _page_sizes[1] = default_page_size;
3249     _page_sizes[2] = 0;
3250   }
3251 
3252   return _large_page_size;
3253 }
3254 
3255 bool os::Linux::setup_large_page_type(size_t page_size) {
3256   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3257       FLAG_IS_DEFAULT(UseSHM) &&
3258       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3259 
3260     // The type of large pages has not been specified by the user.
3261 
3262     // Try UseHugeTLBFS and then UseSHM.
3263     UseHugeTLBFS = UseSHM = true;
3264 
3265     // Don't try UseTransparentHugePages since there are known
3266     // performance issues with it turned on. This might change in the future.
3267     UseTransparentHugePages = false;
3268   }
3269 
3270   if (UseTransparentHugePages) {
3271     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3272     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3273       UseHugeTLBFS = false;
3274       UseSHM = false;
3275       return true;
3276     }
3277     UseTransparentHugePages = false;
3278   }
3279 
3280   if (UseHugeTLBFS) {
3281     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3282     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3283       UseSHM = false;
3284       return true;
3285     }
3286     UseHugeTLBFS = false;
3287   }
3288 
3289   return UseSHM;
3290 }
3291 
3292 void os::large_page_init() {
3293   if (!UseLargePages &&
3294       !UseTransparentHugePages &&
3295       !UseHugeTLBFS &&
3296       !UseSHM) {
3297     // Not using large pages.
3298     return;
3299   }
3300 
3301   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3302     // The user explicitly turned off large pages.
3303     // Ignore the rest of the large pages flags.
3304     UseTransparentHugePages = false;
3305     UseHugeTLBFS = false;
3306     UseSHM = false;
3307     return;
3308   }
3309 
3310   size_t large_page_size = Linux::setup_large_page_size();
3311   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3312 
3313   set_coredump_filter();
3314 }
3315 
3316 #ifndef SHM_HUGETLB
3317   #define SHM_HUGETLB 04000
3318 #endif
3319 
3320 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3321                                             char* req_addr, bool exec) {
3322   // "exec" is passed in but not used.  Creating the shared image for
3323   // the code cache doesn't have an SHM_X executable permission to check.
3324   assert(UseLargePages && UseSHM, "only for SHM large pages");
3325   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3326 
3327   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3328     return NULL; // Fallback to small pages.
3329   }
3330 
3331   key_t key = IPC_PRIVATE;
3332   char *addr;
3333 
3334   bool warn_on_failure = UseLargePages &&
3335                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3336                          !FLAG_IS_DEFAULT(UseSHM) ||
3337                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3338   char msg[128];
3339 
3340   // Create a large shared memory region to attach to based on size.
3341   // Currently, size is the total size of the heap
3342   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3343   if (shmid == -1) {
3344     // Possible reasons for shmget failure:
3345     // 1. shmmax is too small for Java heap.
3346     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3347     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3348     // 2. not enough large page memory.
3349     //    > check available large pages: cat /proc/meminfo
3350     //    > increase amount of large pages:
3351     //          echo new_value > /proc/sys/vm/nr_hugepages
3352     //      Note 1: different Linux may use different name for this property,
3353     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3354     //      Note 2: it's possible there's enough physical memory available but
3355     //            they are so fragmented after a long run that they can't
3356     //            coalesce into large pages. Try to reserve large pages when
3357     //            the system is still "fresh".
3358     if (warn_on_failure) {
3359       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3360       warning("%s", msg);
3361     }
3362     return NULL;
3363   }
3364 
3365   // attach to the region
3366   addr = (char*)shmat(shmid, req_addr, 0);
3367   int err = errno;
3368 
3369   // Remove shmid. If shmat() is successful, the actual shared memory segment
3370   // will be deleted when it's detached by shmdt() or when the process
3371   // terminates. If shmat() is not successful this will remove the shared
3372   // segment immediately.
3373   shmctl(shmid, IPC_RMID, NULL);
3374 
3375   if ((intptr_t)addr == -1) {
3376     if (warn_on_failure) {
3377       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3378       warning("%s", msg);
3379     }
3380     return NULL;
3381   }
3382 
3383   return addr;
3384 }
3385 
3386 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3387                                         int error) {
3388   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3389 
3390   bool warn_on_failure = UseLargePages &&
3391       (!FLAG_IS_DEFAULT(UseLargePages) ||
3392        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3393        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3394 
3395   if (warn_on_failure) {
3396     char msg[128];
3397     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3398                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3399     warning("%s", msg);
3400   }
3401 }
3402 
3403 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3404                                                         char* req_addr,
3405                                                         bool exec) {
3406   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3407   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3408   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3409 
3410   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3411   char* addr = (char*)::mmap(req_addr, bytes, prot,
3412                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3413                              -1, 0);
3414 
3415   if (addr == MAP_FAILED) {
3416     warn_on_large_pages_failure(req_addr, bytes, errno);
3417     return NULL;
3418   }
3419 
3420   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3421 
3422   return addr;
3423 }
3424 
3425 // Helper for os::Linux::reserve_memory_special_huge_tlbfs_mixed().
3426 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3427 //   (req_addr != NULL) or with a given alignment.
3428 //  - bytes shall be a multiple of alignment.
3429 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3430 //  - alignment sets the alignment at which memory shall be allocated.
3431 //     It must be a multiple of allocation granularity.
3432 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3433 //  req_addr or NULL.
3434 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3435 
3436   size_t extra_size = bytes;
3437   if (req_addr == NULL && alignment > 0) {
3438     extra_size += alignment;
3439   }
3440 
3441   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3442     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3443     -1, 0);
3444   if (start == MAP_FAILED) {
3445     start = NULL;
3446   } else {
3447     if (req_addr != NULL) {
3448       if (start != req_addr) {
3449         ::munmap(start, extra_size);
3450         start = NULL;
3451       }
3452     } else {
3453       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3454       char* const end_aligned = start_aligned + bytes;
3455       char* const end = start + extra_size;
3456       if (start_aligned > start) {
3457         ::munmap(start, start_aligned - start);
3458       }
3459       if (end_aligned < end) {
3460         ::munmap(end_aligned, end - end_aligned);
3461       }
3462       start = start_aligned;
3463     }
3464   }
3465   return start;
3466 
3467 }
3468 
3469 // Reserve memory using mmap(MAP_HUGETLB).
3470 //  - bytes shall be a multiple of alignment.
3471 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3472 //  - alignment sets the alignment at which memory shall be allocated.
3473 //     It must be a multiple of allocation granularity.
3474 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3475 //  req_addr or NULL.
3476 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3477                                                          size_t alignment,
3478                                                          char* req_addr,
3479                                                          bool exec) {
3480   size_t large_page_size = os::large_page_size();
3481   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3482 
3483   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3484   assert(is_size_aligned(bytes, alignment), "Must be");
3485 
3486   // First reserve - but not commit - the address range in small pages.
3487   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3488 
3489   if (start == NULL) {
3490     return NULL;
3491   }
3492 
3493   assert(is_ptr_aligned(start, alignment), "Must be");
3494 
3495   char* end = start + bytes;
3496 
3497   // Find the regions of the allocated chunk that can be promoted to large pages.
3498   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3499   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3500 
3501   size_t lp_bytes = lp_end - lp_start;
3502 
3503   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3504 
3505   if (lp_bytes == 0) {
3506     // The mapped region doesn't even span the start and the end of a large page.
3507     // Fall back to allocate a non-special area.
3508     ::munmap(start, end - start);
3509     return NULL;
3510   }
3511 
3512   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3513 
3514   void* result;
3515 
3516   // Commit small-paged leading area.
3517   if (start != lp_start) {
3518     result = ::mmap(start, lp_start - start, prot,
3519                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3520                     -1, 0);
3521     if (result == MAP_FAILED) {
3522       ::munmap(lp_start, end - lp_start);
3523       return NULL;
3524     }
3525   }
3526 
3527   // Commit large-paged area.
3528   result = ::mmap(lp_start, lp_bytes, prot,
3529                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3530                   -1, 0);
3531   if (result == MAP_FAILED) {
3532     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3533     // If the mmap above fails, the large pages region will be unmapped and we
3534     // have regions before and after with small pages. Release these regions.
3535     //
3536     // |  mapped  |  unmapped  |  mapped  |
3537     // ^          ^            ^          ^
3538     // start      lp_start     lp_end     end
3539     //
3540     ::munmap(start, lp_start - start);
3541     ::munmap(lp_end, end - lp_end);
3542     return NULL;
3543   }
3544 
3545   // Commit small-paged trailing area.
3546   if (lp_end != end) {
3547     result = ::mmap(lp_end, end - lp_end, prot,
3548                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3549                     -1, 0);
3550     if (result == MAP_FAILED) {
3551       ::munmap(start, lp_end - start);
3552       return NULL;
3553     }
3554   }
3555 
3556   return start;
3557 }
3558 
3559 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3560                                                    size_t alignment,
3561                                                    char* req_addr,
3562                                                    bool exec) {
3563   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3564   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3565   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3566   assert(is_power_of_2(os::large_page_size()), "Must be");
3567   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3568 
3569   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3570     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3571   } else {
3572     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3573   }
3574 }
3575 
3576 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3577                                  char* req_addr, bool exec) {
3578   assert(UseLargePages, "only for large pages");
3579 
3580   char* addr;
3581   if (UseSHM) {
3582     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3583   } else {
3584     assert(UseHugeTLBFS, "must be");
3585     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3586   }
3587 
3588   if (addr != NULL) {
3589     if (UseNUMAInterleaving) {
3590       numa_make_global(addr, bytes);
3591     }
3592 
3593     // The memory is committed
3594     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3595   }
3596 
3597   return addr;
3598 }
3599 
3600 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3601   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3602   return shmdt(base) == 0;
3603 }
3604 
3605 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3606   return pd_release_memory(base, bytes);
3607 }
3608 
3609 bool os::release_memory_special(char* base, size_t bytes) {
3610   bool res;
3611   if (MemTracker::tracking_level() > NMT_minimal) {
3612     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3613     res = os::Linux::release_memory_special_impl(base, bytes);
3614     if (res) {
3615       tkr.record((address)base, bytes);
3616     }
3617 
3618   } else {
3619     res = os::Linux::release_memory_special_impl(base, bytes);
3620   }
3621   return res;
3622 }
3623 
3624 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3625   assert(UseLargePages, "only for large pages");
3626   bool res;
3627 
3628   if (UseSHM) {
3629     res = os::Linux::release_memory_special_shm(base, bytes);
3630   } else {
3631     assert(UseHugeTLBFS, "must be");
3632     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3633   }
3634   return res;
3635 }
3636 
3637 size_t os::large_page_size() {
3638   return _large_page_size;
3639 }
3640 
3641 // With SysV SHM the entire memory region must be allocated as shared
3642 // memory.
3643 // HugeTLBFS allows application to commit large page memory on demand.
3644 // However, when committing memory with HugeTLBFS fails, the region
3645 // that was supposed to be committed will lose the old reservation
3646 // and allow other threads to steal that memory region. Because of this
3647 // behavior we can't commit HugeTLBFS memory.
3648 bool os::can_commit_large_page_memory() {
3649   return UseTransparentHugePages;
3650 }
3651 
3652 bool os::can_execute_large_page_memory() {
3653   return UseTransparentHugePages || UseHugeTLBFS;
3654 }
3655 
3656 // Reserve memory at an arbitrary address, only if that area is
3657 // available (and not reserved for something else).
3658 
3659 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3660   const int max_tries = 10;
3661   char* base[max_tries];
3662   size_t size[max_tries];
3663   const size_t gap = 0x000000;
3664 
3665   // Assert only that the size is a multiple of the page size, since
3666   // that's all that mmap requires, and since that's all we really know
3667   // about at this low abstraction level.  If we need higher alignment,
3668   // we can either pass an alignment to this method or verify alignment
3669   // in one of the methods further up the call chain.  See bug 5044738.
3670   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3671 
3672   // Repeatedly allocate blocks until the block is allocated at the
3673   // right spot.
3674 
3675   // Linux mmap allows caller to pass an address as hint; give it a try first,
3676   // if kernel honors the hint then we can return immediately.
3677   char * addr = anon_mmap(requested_addr, bytes, false);
3678   if (addr == requested_addr) {
3679     return requested_addr;
3680   }
3681 
3682   if (addr != NULL) {
3683     // mmap() is successful but it fails to reserve at the requested address
3684     anon_munmap(addr, bytes);
3685   }
3686 
3687   int i;
3688   for (i = 0; i < max_tries; ++i) {
3689     base[i] = reserve_memory(bytes);
3690 
3691     if (base[i] != NULL) {
3692       // Is this the block we wanted?
3693       if (base[i] == requested_addr) {
3694         size[i] = bytes;
3695         break;
3696       }
3697 
3698       // Does this overlap the block we wanted? Give back the overlapped
3699       // parts and try again.
3700 
3701       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3702       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3703         unmap_memory(base[i], top_overlap);
3704         base[i] += top_overlap;
3705         size[i] = bytes - top_overlap;
3706       } else {
3707         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3708         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3709           unmap_memory(requested_addr, bottom_overlap);
3710           size[i] = bytes - bottom_overlap;
3711         } else {
3712           size[i] = bytes;
3713         }
3714       }
3715     }
3716   }
3717 
3718   // Give back the unused reserved pieces.
3719 
3720   for (int j = 0; j < i; ++j) {
3721     if (base[j] != NULL) {
3722       unmap_memory(base[j], size[j]);
3723     }
3724   }
3725 
3726   if (i < max_tries) {
3727     return requested_addr;
3728   } else {
3729     return NULL;
3730   }
3731 }
3732 
3733 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3734   return ::read(fd, buf, nBytes);
3735 }
3736 
3737 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3738   return ::pread(fd, buf, nBytes, offset);
3739 }
3740 
3741 // Short sleep, direct OS call.
3742 //
3743 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3744 // sched_yield(2) will actually give up the CPU:
3745 //
3746 //   * Alone on this pariticular CPU, keeps running.
3747 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3748 //     (pre 2.6.39).
3749 //
3750 // So calling this with 0 is an alternative.
3751 //
3752 void os::naked_short_sleep(jlong ms) {
3753   struct timespec req;
3754 
3755   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3756   req.tv_sec = 0;
3757   if (ms > 0) {
3758     req.tv_nsec = (ms % 1000) * 1000000;
3759   } else {
3760     req.tv_nsec = 1;
3761   }
3762 
3763   nanosleep(&req, NULL);
3764 
3765   return;
3766 }
3767 
3768 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3769 void os::infinite_sleep() {
3770   while (true) {    // sleep forever ...
3771     ::sleep(100);   // ... 100 seconds at a time
3772   }
3773 }
3774 
3775 // Used to convert frequent JVM_Yield() to nops
3776 bool os::dont_yield() {
3777   return DontYieldALot;
3778 }
3779 
3780 void os::naked_yield() {
3781   sched_yield();
3782 }
3783 
3784 ////////////////////////////////////////////////////////////////////////////////
3785 // thread priority support
3786 
3787 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3788 // only supports dynamic priority, static priority must be zero. For real-time
3789 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3790 // However, for large multi-threaded applications, SCHED_RR is not only slower
3791 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3792 // of 5 runs - Sep 2005).
3793 //
3794 // The following code actually changes the niceness of kernel-thread/LWP. It
3795 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3796 // not the entire user process, and user level threads are 1:1 mapped to kernel
3797 // threads. It has always been the case, but could change in the future. For
3798 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3799 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3800 
3801 int os::java_to_os_priority[CriticalPriority + 1] = {
3802   19,              // 0 Entry should never be used
3803 
3804    4,              // 1 MinPriority
3805    3,              // 2
3806    2,              // 3
3807 
3808    1,              // 4
3809    0,              // 5 NormPriority
3810   -1,              // 6
3811 
3812   -2,              // 7
3813   -3,              // 8
3814   -4,              // 9 NearMaxPriority
3815 
3816   -5,              // 10 MaxPriority
3817 
3818   -5               // 11 CriticalPriority
3819 };
3820 
3821 static int prio_init() {
3822   if (ThreadPriorityPolicy == 1) {
3823     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3824     // if effective uid is not root. Perhaps, a more elegant way of doing
3825     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3826     if (geteuid() != 0) {
3827       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3828         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3829       }
3830       ThreadPriorityPolicy = 0;
3831     }
3832   }
3833   if (UseCriticalJavaThreadPriority) {
3834     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3835   }
3836   return 0;
3837 }
3838 
3839 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3840   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3841 
3842   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3843   return (ret == 0) ? OS_OK : OS_ERR;
3844 }
3845 
3846 OSReturn os::get_native_priority(const Thread* const thread,
3847                                  int *priority_ptr) {
3848   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3849     *priority_ptr = java_to_os_priority[NormPriority];
3850     return OS_OK;
3851   }
3852 
3853   errno = 0;
3854   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3855   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3856 }
3857 
3858 // Hint to the underlying OS that a task switch would not be good.
3859 // Void return because it's a hint and can fail.
3860 void os::hint_no_preempt() {}
3861 
3862 ////////////////////////////////////////////////////////////////////////////////
3863 // suspend/resume support
3864 
3865 //  the low-level signal-based suspend/resume support is a remnant from the
3866 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3867 //  within hotspot. Now there is a single use-case for this:
3868 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3869 //      that runs in the watcher thread.
3870 //  The remaining code is greatly simplified from the more general suspension
3871 //  code that used to be used.
3872 //
3873 //  The protocol is quite simple:
3874 //  - suspend:
3875 //      - sends a signal to the target thread
3876 //      - polls the suspend state of the osthread using a yield loop
3877 //      - target thread signal handler (SR_handler) sets suspend state
3878 //        and blocks in sigsuspend until continued
3879 //  - resume:
3880 //      - sets target osthread state to continue
3881 //      - sends signal to end the sigsuspend loop in the SR_handler
3882 //
3883 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3884 
3885 static void resume_clear_context(OSThread *osthread) {
3886   osthread->set_ucontext(NULL);
3887   osthread->set_siginfo(NULL);
3888 }
3889 
3890 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3891                                  ucontext_t* context) {
3892   osthread->set_ucontext(context);
3893   osthread->set_siginfo(siginfo);
3894 }
3895 
3896 // Handler function invoked when a thread's execution is suspended or
3897 // resumed. We have to be careful that only async-safe functions are
3898 // called here (Note: most pthread functions are not async safe and
3899 // should be avoided.)
3900 //
3901 // Note: sigwait() is a more natural fit than sigsuspend() from an
3902 // interface point of view, but sigwait() prevents the signal hander
3903 // from being run. libpthread would get very confused by not having
3904 // its signal handlers run and prevents sigwait()'s use with the
3905 // mutex granting granting signal.
3906 //
3907 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3908 //
3909 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3910   // Save and restore errno to avoid confusing native code with EINTR
3911   // after sigsuspend.
3912   int old_errno = errno;
3913 
3914   Thread* thread = Thread::current();
3915   OSThread* osthread = thread->osthread();
3916   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3917 
3918   os::SuspendResume::State current = osthread->sr.state();
3919   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3920     suspend_save_context(osthread, siginfo, context);
3921 
3922     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3923     os::SuspendResume::State state = osthread->sr.suspended();
3924     if (state == os::SuspendResume::SR_SUSPENDED) {
3925       sigset_t suspend_set;  // signals for sigsuspend()
3926 
3927       // get current set of blocked signals and unblock resume signal
3928       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3929       sigdelset(&suspend_set, SR_signum);
3930 
3931       sr_semaphore.signal();
3932       // wait here until we are resumed
3933       while (1) {
3934         sigsuspend(&suspend_set);
3935 
3936         os::SuspendResume::State result = osthread->sr.running();
3937         if (result == os::SuspendResume::SR_RUNNING) {
3938           sr_semaphore.signal();
3939           break;
3940         }
3941       }
3942 
3943     } else if (state == os::SuspendResume::SR_RUNNING) {
3944       // request was cancelled, continue
3945     } else {
3946       ShouldNotReachHere();
3947     }
3948 
3949     resume_clear_context(osthread);
3950   } else if (current == os::SuspendResume::SR_RUNNING) {
3951     // request was cancelled, continue
3952   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3953     // ignore
3954   } else {
3955     // ignore
3956   }
3957 
3958   errno = old_errno;
3959 }
3960 
3961 static int SR_initialize() {
3962   struct sigaction act;
3963   char *s;
3964 
3965   // Get signal number to use for suspend/resume
3966   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3967     int sig = ::strtol(s, 0, 10);
3968     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
3969         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
3970       SR_signum = sig;
3971     } else {
3972       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
3973               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
3974     }
3975   }
3976 
3977   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3978          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3979 
3980   sigemptyset(&SR_sigset);
3981   sigaddset(&SR_sigset, SR_signum);
3982 
3983   // Set up signal handler for suspend/resume
3984   act.sa_flags = SA_RESTART|SA_SIGINFO;
3985   act.sa_handler = (void (*)(int)) SR_handler;
3986 
3987   // SR_signum is blocked by default.
3988   // 4528190 - We also need to block pthread restart signal (32 on all
3989   // supported Linux platforms). Note that LinuxThreads need to block
3990   // this signal for all threads to work properly. So we don't have
3991   // to use hard-coded signal number when setting up the mask.
3992   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3993 
3994   if (sigaction(SR_signum, &act, 0) == -1) {
3995     return -1;
3996   }
3997 
3998   // Save signal flag
3999   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4000   return 0;
4001 }
4002 
4003 static int sr_notify(OSThread* osthread) {
4004   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4005   assert_status(status == 0, status, "pthread_kill");
4006   return status;
4007 }
4008 
4009 // "Randomly" selected value for how long we want to spin
4010 // before bailing out on suspending a thread, also how often
4011 // we send a signal to a thread we want to resume
4012 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4013 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4014 
4015 // returns true on success and false on error - really an error is fatal
4016 // but this seems the normal response to library errors
4017 static bool do_suspend(OSThread* osthread) {
4018   assert(osthread->sr.is_running(), "thread should be running");
4019   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4020 
4021   // mark as suspended and send signal
4022   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4023     // failed to switch, state wasn't running?
4024     ShouldNotReachHere();
4025     return false;
4026   }
4027 
4028   if (sr_notify(osthread) != 0) {
4029     ShouldNotReachHere();
4030   }
4031 
4032   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4033   while (true) {
4034     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4035       break;
4036     } else {
4037       // timeout
4038       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4039       if (cancelled == os::SuspendResume::SR_RUNNING) {
4040         return false;
4041       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4042         // make sure that we consume the signal on the semaphore as well
4043         sr_semaphore.wait();
4044         break;
4045       } else {
4046         ShouldNotReachHere();
4047         return false;
4048       }
4049     }
4050   }
4051 
4052   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4053   return true;
4054 }
4055 
4056 static void do_resume(OSThread* osthread) {
4057   assert(osthread->sr.is_suspended(), "thread should be suspended");
4058   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4059 
4060   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4061     // failed to switch to WAKEUP_REQUEST
4062     ShouldNotReachHere();
4063     return;
4064   }
4065 
4066   while (true) {
4067     if (sr_notify(osthread) == 0) {
4068       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4069         if (osthread->sr.is_running()) {
4070           return;
4071         }
4072       }
4073     } else {
4074       ShouldNotReachHere();
4075     }
4076   }
4077 
4078   guarantee(osthread->sr.is_running(), "Must be running!");
4079 }
4080 
4081 ///////////////////////////////////////////////////////////////////////////////////
4082 // signal handling (except suspend/resume)
4083 
4084 // This routine may be used by user applications as a "hook" to catch signals.
4085 // The user-defined signal handler must pass unrecognized signals to this
4086 // routine, and if it returns true (non-zero), then the signal handler must
4087 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4088 // routine will never retun false (zero), but instead will execute a VM panic
4089 // routine kill the process.
4090 //
4091 // If this routine returns false, it is OK to call it again.  This allows
4092 // the user-defined signal handler to perform checks either before or after
4093 // the VM performs its own checks.  Naturally, the user code would be making
4094 // a serious error if it tried to handle an exception (such as a null check
4095 // or breakpoint) that the VM was generating for its own correct operation.
4096 //
4097 // This routine may recognize any of the following kinds of signals:
4098 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4099 // It should be consulted by handlers for any of those signals.
4100 //
4101 // The caller of this routine must pass in the three arguments supplied
4102 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4103 // field of the structure passed to sigaction().  This routine assumes that
4104 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4105 //
4106 // Note that the VM will print warnings if it detects conflicting signal
4107 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4108 //
4109 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4110                                                  siginfo_t* siginfo,
4111                                                  void* ucontext,
4112                                                  int abort_if_unrecognized);
4113 
4114 void signalHandler(int sig, siginfo_t* info, void* uc) {
4115   assert(info != NULL && uc != NULL, "it must be old kernel");
4116   int orig_errno = errno;  // Preserve errno value over signal handler.
4117   JVM_handle_linux_signal(sig, info, uc, true);
4118   errno = orig_errno;
4119 }
4120 
4121 
4122 // This boolean allows users to forward their own non-matching signals
4123 // to JVM_handle_linux_signal, harmlessly.
4124 bool os::Linux::signal_handlers_are_installed = false;
4125 
4126 // For signal-chaining
4127 struct sigaction sigact[NSIG];
4128 uint64_t sigs = 0;
4129 #if (64 < NSIG-1)
4130 #error "Not all signals can be encoded in sigs. Adapt its type!"
4131 #endif
4132 bool os::Linux::libjsig_is_loaded = false;
4133 typedef struct sigaction *(*get_signal_t)(int);
4134 get_signal_t os::Linux::get_signal_action = NULL;
4135 
4136 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4137   struct sigaction *actp = NULL;
4138 
4139   if (libjsig_is_loaded) {
4140     // Retrieve the old signal handler from libjsig
4141     actp = (*get_signal_action)(sig);
4142   }
4143   if (actp == NULL) {
4144     // Retrieve the preinstalled signal handler from jvm
4145     actp = get_preinstalled_handler(sig);
4146   }
4147 
4148   return actp;
4149 }
4150 
4151 static bool call_chained_handler(struct sigaction *actp, int sig,
4152                                  siginfo_t *siginfo, void *context) {
4153   // Call the old signal handler
4154   if (actp->sa_handler == SIG_DFL) {
4155     // It's more reasonable to let jvm treat it as an unexpected exception
4156     // instead of taking the default action.
4157     return false;
4158   } else if (actp->sa_handler != SIG_IGN) {
4159     if ((actp->sa_flags & SA_NODEFER) == 0) {
4160       // automaticlly block the signal
4161       sigaddset(&(actp->sa_mask), sig);
4162     }
4163 
4164     sa_handler_t hand = NULL;
4165     sa_sigaction_t sa = NULL;
4166     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4167     // retrieve the chained handler
4168     if (siginfo_flag_set) {
4169       sa = actp->sa_sigaction;
4170     } else {
4171       hand = actp->sa_handler;
4172     }
4173 
4174     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4175       actp->sa_handler = SIG_DFL;
4176     }
4177 
4178     // try to honor the signal mask
4179     sigset_t oset;
4180     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4181 
4182     // call into the chained handler
4183     if (siginfo_flag_set) {
4184       (*sa)(sig, siginfo, context);
4185     } else {
4186       (*hand)(sig);
4187     }
4188 
4189     // restore the signal mask
4190     pthread_sigmask(SIG_SETMASK, &oset, 0);
4191   }
4192   // Tell jvm's signal handler the signal is taken care of.
4193   return true;
4194 }
4195 
4196 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4197   bool chained = false;
4198   // signal-chaining
4199   if (UseSignalChaining) {
4200     struct sigaction *actp = get_chained_signal_action(sig);
4201     if (actp != NULL) {
4202       chained = call_chained_handler(actp, sig, siginfo, context);
4203     }
4204   }
4205   return chained;
4206 }
4207 
4208 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4209   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4210     return &sigact[sig];
4211   }
4212   return NULL;
4213 }
4214 
4215 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4216   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4217   sigact[sig] = oldAct;
4218   sigs |= (uint64_t)1 << (sig-1);
4219 }
4220 
4221 // for diagnostic
4222 int sigflags[NSIG];
4223 
4224 int os::Linux::get_our_sigflags(int sig) {
4225   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4226   return sigflags[sig];
4227 }
4228 
4229 void os::Linux::set_our_sigflags(int sig, int flags) {
4230   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4231   if (sig > 0 && sig < NSIG) {
4232     sigflags[sig] = flags;
4233   }
4234 }
4235 
4236 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4237   // Check for overwrite.
4238   struct sigaction oldAct;
4239   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4240 
4241   void* oldhand = oldAct.sa_sigaction
4242                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4243                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4244   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4245       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4246       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4247     if (AllowUserSignalHandlers || !set_installed) {
4248       // Do not overwrite; user takes responsibility to forward to us.
4249       return;
4250     } else if (UseSignalChaining) {
4251       // save the old handler in jvm
4252       save_preinstalled_handler(sig, oldAct);
4253       // libjsig also interposes the sigaction() call below and saves the
4254       // old sigaction on it own.
4255     } else {
4256       fatal("Encountered unexpected pre-existing sigaction handler "
4257             "%#lx for signal %d.", (long)oldhand, sig);
4258     }
4259   }
4260 
4261   struct sigaction sigAct;
4262   sigfillset(&(sigAct.sa_mask));
4263   sigAct.sa_handler = SIG_DFL;
4264   if (!set_installed) {
4265     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4266   } else {
4267     sigAct.sa_sigaction = signalHandler;
4268     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4269   }
4270   // Save flags, which are set by ours
4271   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4272   sigflags[sig] = sigAct.sa_flags;
4273 
4274   int ret = sigaction(sig, &sigAct, &oldAct);
4275   assert(ret == 0, "check");
4276 
4277   void* oldhand2  = oldAct.sa_sigaction
4278                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4279                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4280   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4281 }
4282 
4283 // install signal handlers for signals that HotSpot needs to
4284 // handle in order to support Java-level exception handling.
4285 
4286 void os::Linux::install_signal_handlers() {
4287   if (!signal_handlers_are_installed) {
4288     signal_handlers_are_installed = true;
4289 
4290     // signal-chaining
4291     typedef void (*signal_setting_t)();
4292     signal_setting_t begin_signal_setting = NULL;
4293     signal_setting_t end_signal_setting = NULL;
4294     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4295                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4296     if (begin_signal_setting != NULL) {
4297       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4298                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4299       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4300                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4301       libjsig_is_loaded = true;
4302       assert(UseSignalChaining, "should enable signal-chaining");
4303     }
4304     if (libjsig_is_loaded) {
4305       // Tell libjsig jvm is setting signal handlers
4306       (*begin_signal_setting)();
4307     }
4308 
4309     set_signal_handler(SIGSEGV, true);
4310     set_signal_handler(SIGPIPE, true);
4311     set_signal_handler(SIGBUS, true);
4312     set_signal_handler(SIGILL, true);
4313     set_signal_handler(SIGFPE, true);
4314 #if defined(PPC64)
4315     set_signal_handler(SIGTRAP, true);
4316 #endif
4317     set_signal_handler(SIGXFSZ, true);
4318 
4319     if (libjsig_is_loaded) {
4320       // Tell libjsig jvm finishes setting signal handlers
4321       (*end_signal_setting)();
4322     }
4323 
4324     // We don't activate signal checker if libjsig is in place, we trust ourselves
4325     // and if UserSignalHandler is installed all bets are off.
4326     // Log that signal checking is off only if -verbose:jni is specified.
4327     if (CheckJNICalls) {
4328       if (libjsig_is_loaded) {
4329         if (PrintJNIResolving) {
4330           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4331         }
4332         check_signals = false;
4333       }
4334       if (AllowUserSignalHandlers) {
4335         if (PrintJNIResolving) {
4336           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4337         }
4338         check_signals = false;
4339       }
4340     }
4341   }
4342 }
4343 
4344 // This is the fastest way to get thread cpu time on Linux.
4345 // Returns cpu time (user+sys) for any thread, not only for current.
4346 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4347 // It might work on 2.6.10+ with a special kernel/glibc patch.
4348 // For reference, please, see IEEE Std 1003.1-2004:
4349 //   http://www.unix.org/single_unix_specification
4350 
4351 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4352   struct timespec tp;
4353   int rc = os::Linux::clock_gettime(clockid, &tp);
4354   assert(rc == 0, "clock_gettime is expected to return 0 code");
4355 
4356   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4357 }
4358 
4359 /////
4360 // glibc on Linux platform uses non-documented flag
4361 // to indicate, that some special sort of signal
4362 // trampoline is used.
4363 // We will never set this flag, and we should
4364 // ignore this flag in our diagnostic
4365 #ifdef SIGNIFICANT_SIGNAL_MASK
4366   #undef SIGNIFICANT_SIGNAL_MASK
4367 #endif
4368 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4369 
4370 static const char* get_signal_handler_name(address handler,
4371                                            char* buf, int buflen) {
4372   int offset = 0;
4373   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4374   if (found) {
4375     // skip directory names
4376     const char *p1, *p2;
4377     p1 = buf;
4378     size_t len = strlen(os::file_separator());
4379     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4380     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4381   } else {
4382     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4383   }
4384   return buf;
4385 }
4386 
4387 static void print_signal_handler(outputStream* st, int sig,
4388                                  char* buf, size_t buflen) {
4389   struct sigaction sa;
4390 
4391   sigaction(sig, NULL, &sa);
4392 
4393   // See comment for SIGNIFICANT_SIGNAL_MASK define
4394   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4395 
4396   st->print("%s: ", os::exception_name(sig, buf, buflen));
4397 
4398   address handler = (sa.sa_flags & SA_SIGINFO)
4399     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4400     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4401 
4402   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4403     st->print("SIG_DFL");
4404   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4405     st->print("SIG_IGN");
4406   } else {
4407     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4408   }
4409 
4410   st->print(", sa_mask[0]=");
4411   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4412 
4413   address rh = VMError::get_resetted_sighandler(sig);
4414   // May be, handler was resetted by VMError?
4415   if (rh != NULL) {
4416     handler = rh;
4417     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4418   }
4419 
4420   st->print(", sa_flags=");
4421   os::Posix::print_sa_flags(st, sa.sa_flags);
4422 
4423   // Check: is it our handler?
4424   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4425       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4426     // It is our signal handler
4427     // check for flags, reset system-used one!
4428     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4429       st->print(
4430                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4431                 os::Linux::get_our_sigflags(sig));
4432     }
4433   }
4434   st->cr();
4435 }
4436 
4437 
4438 #define DO_SIGNAL_CHECK(sig)                      \
4439   do {                                            \
4440     if (!sigismember(&check_signal_done, sig)) {  \
4441       os::Linux::check_signal_handler(sig);       \
4442     }                                             \
4443   } while (0)
4444 
4445 // This method is a periodic task to check for misbehaving JNI applications
4446 // under CheckJNI, we can add any periodic checks here
4447 
4448 void os::run_periodic_checks() {
4449   if (check_signals == false) return;
4450 
4451   // SEGV and BUS if overridden could potentially prevent
4452   // generation of hs*.log in the event of a crash, debugging
4453   // such a case can be very challenging, so we absolutely
4454   // check the following for a good measure:
4455   DO_SIGNAL_CHECK(SIGSEGV);
4456   DO_SIGNAL_CHECK(SIGILL);
4457   DO_SIGNAL_CHECK(SIGFPE);
4458   DO_SIGNAL_CHECK(SIGBUS);
4459   DO_SIGNAL_CHECK(SIGPIPE);
4460   DO_SIGNAL_CHECK(SIGXFSZ);
4461 #if defined(PPC64)
4462   DO_SIGNAL_CHECK(SIGTRAP);
4463 #endif
4464 
4465   // ReduceSignalUsage allows the user to override these handlers
4466   // see comments at the very top and jvm_solaris.h
4467   if (!ReduceSignalUsage) {
4468     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4469     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4470     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4471     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4472   }
4473 
4474   DO_SIGNAL_CHECK(SR_signum);
4475 }
4476 
4477 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4478 
4479 static os_sigaction_t os_sigaction = NULL;
4480 
4481 void os::Linux::check_signal_handler(int sig) {
4482   char buf[O_BUFLEN];
4483   address jvmHandler = NULL;
4484 
4485 
4486   struct sigaction act;
4487   if (os_sigaction == NULL) {
4488     // only trust the default sigaction, in case it has been interposed
4489     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4490     if (os_sigaction == NULL) return;
4491   }
4492 
4493   os_sigaction(sig, (struct sigaction*)NULL, &act);
4494 
4495 
4496   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4497 
4498   address thisHandler = (act.sa_flags & SA_SIGINFO)
4499     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4500     : CAST_FROM_FN_PTR(address, act.sa_handler);
4501 
4502 
4503   switch (sig) {
4504   case SIGSEGV:
4505   case SIGBUS:
4506   case SIGFPE:
4507   case SIGPIPE:
4508   case SIGILL:
4509   case SIGXFSZ:
4510     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4511     break;
4512 
4513   case SHUTDOWN1_SIGNAL:
4514   case SHUTDOWN2_SIGNAL:
4515   case SHUTDOWN3_SIGNAL:
4516   case BREAK_SIGNAL:
4517     jvmHandler = (address)user_handler();
4518     break;
4519 
4520   default:
4521     if (sig == SR_signum) {
4522       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4523     } else {
4524       return;
4525     }
4526     break;
4527   }
4528 
4529   if (thisHandler != jvmHandler) {
4530     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4531     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4532     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4533     // No need to check this sig any longer
4534     sigaddset(&check_signal_done, sig);
4535     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4536     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4537       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4538                     exception_name(sig, buf, O_BUFLEN));
4539     }
4540   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4541     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4542     tty->print("expected:");
4543     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4544     tty->cr();
4545     tty->print("  found:");
4546     os::Posix::print_sa_flags(tty, act.sa_flags);
4547     tty->cr();
4548     // No need to check this sig any longer
4549     sigaddset(&check_signal_done, sig);
4550   }
4551 
4552   // Dump all the signal
4553   if (sigismember(&check_signal_done, sig)) {
4554     print_signal_handlers(tty, buf, O_BUFLEN);
4555   }
4556 }
4557 
4558 extern void report_error(char* file_name, int line_no, char* title,
4559                          char* format, ...);
4560 
4561 // this is called _before_ the most of global arguments have been parsed
4562 void os::init(void) {
4563   char dummy;   // used to get a guess on initial stack address
4564 //  first_hrtime = gethrtime();
4565 
4566   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4567 
4568   init_random(1234567);
4569 
4570   ThreadCritical::initialize();
4571 
4572   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4573   if (Linux::page_size() == -1) {
4574     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4575           strerror(errno));
4576   }
4577   init_page_sizes((size_t) Linux::page_size());
4578 
4579   Linux::initialize_system_info();
4580 
4581   // main_thread points to the aboriginal thread
4582   Linux::_main_thread = pthread_self();
4583 
4584   Linux::clock_init();
4585   initial_time_count = javaTimeNanos();
4586 
4587   // pthread_condattr initialization for monotonic clock
4588   int status;
4589   pthread_condattr_t* _condattr = os::Linux::condAttr();
4590   if ((status = pthread_condattr_init(_condattr)) != 0) {
4591     fatal("pthread_condattr_init: %s", strerror(status));
4592   }
4593   // Only set the clock if CLOCK_MONOTONIC is available
4594   if (os::supports_monotonic_clock()) {
4595     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4596       if (status == EINVAL) {
4597         warning("Unable to use monotonic clock with relative timed-waits" \
4598                 " - changes to the time-of-day clock may have adverse affects");
4599       } else {
4600         fatal("pthread_condattr_setclock: %s", strerror(status));
4601       }
4602     }
4603   }
4604   // else it defaults to CLOCK_REALTIME
4605 
4606   // retrieve entry point for pthread_setname_np
4607   Linux::_pthread_setname_np =
4608     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4609 
4610 }
4611 
4612 // To install functions for atexit system call
4613 extern "C" {
4614   static void perfMemory_exit_helper() {
4615     perfMemory_exit();
4616   }
4617 }
4618 
4619 // this is called _after_ the global arguments have been parsed
4620 jint os::init_2(void) {
4621   Linux::fast_thread_clock_init();
4622 
4623   // Allocate a single page and mark it as readable for safepoint polling
4624   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4625   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4626 
4627   os::set_polling_page(polling_page);
4628 
4629 #ifndef PRODUCT
4630   if (Verbose && PrintMiscellaneous) {
4631     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4632                (intptr_t)polling_page);
4633   }
4634 #endif
4635 
4636   if (!UseMembar) {
4637     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4638     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4639     os::set_memory_serialize_page(mem_serialize_page);
4640 
4641 #ifndef PRODUCT
4642     if (Verbose && PrintMiscellaneous) {
4643       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4644                  (intptr_t)mem_serialize_page);
4645     }
4646 #endif
4647   }
4648 
4649   // initialize suspend/resume support - must do this before signal_sets_init()
4650   if (SR_initialize() != 0) {
4651     perror("SR_initialize failed");
4652     return JNI_ERR;
4653   }
4654 
4655   Linux::signal_sets_init();
4656   Linux::install_signal_handlers();
4657 
4658   // Check minimum allowable stack size for thread creation and to initialize
4659   // the java system classes, including StackOverflowError - depends on page
4660   // size.  Add a page for compiler2 recursion in main thread.
4661   // Add in 2*BytesPerWord times page size to account for VM stack during
4662   // class initialization depending on 32 or 64 bit VM.
4663   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4664                                       JavaThread::stack_guard_zone_size() +
4665                                       JavaThread::stack_shadow_zone_size() +
4666                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4667 
4668   size_t threadStackSizeInBytes = ThreadStackSize * K;
4669   if (threadStackSizeInBytes != 0 &&
4670       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4671     tty->print_cr("\nThe stack size specified is too small, "
4672                   "Specify at least " SIZE_FORMAT "k",
4673                   os::Linux::min_stack_allowed/ K);
4674     return JNI_ERR;
4675   }
4676 
4677   // Make the stack size a multiple of the page size so that
4678   // the yellow/red zones can be guarded.
4679   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4680                                                 vm_page_size()));
4681 
4682   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4683 
4684 #if defined(IA32)
4685   workaround_expand_exec_shield_cs_limit();
4686 #endif
4687 
4688   Linux::libpthread_init();
4689   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4690     tty->print_cr("[HotSpot is running with %s, %s]\n",
4691                   Linux::glibc_version(), Linux::libpthread_version());
4692   }
4693 
4694   if (UseNUMA) {
4695     if (!Linux::libnuma_init()) {
4696       UseNUMA = false;
4697     } else {
4698       if ((Linux::numa_max_node() < 1)) {
4699         // There's only one node(they start from 0), disable NUMA.
4700         UseNUMA = false;
4701       }
4702     }
4703     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4704     // we can make the adaptive lgrp chunk resizing work. If the user specified
4705     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4706     // disable adaptive resizing.
4707     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4708       if (FLAG_IS_DEFAULT(UseNUMA)) {
4709         UseNUMA = false;
4710       } else {
4711         if (FLAG_IS_DEFAULT(UseLargePages) &&
4712             FLAG_IS_DEFAULT(UseSHM) &&
4713             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4714           UseLargePages = false;
4715         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4716           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4717           UseAdaptiveSizePolicy = false;
4718           UseAdaptiveNUMAChunkSizing = false;
4719         }
4720       }
4721     }
4722     if (!UseNUMA && ForceNUMA) {
4723       UseNUMA = true;
4724     }
4725   }
4726 
4727   if (MaxFDLimit) {
4728     // set the number of file descriptors to max. print out error
4729     // if getrlimit/setrlimit fails but continue regardless.
4730     struct rlimit nbr_files;
4731     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4732     if (status != 0) {
4733       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4734         perror("os::init_2 getrlimit failed");
4735       }
4736     } else {
4737       nbr_files.rlim_cur = nbr_files.rlim_max;
4738       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4739       if (status != 0) {
4740         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4741           perror("os::init_2 setrlimit failed");
4742         }
4743       }
4744     }
4745   }
4746 
4747   // Initialize lock used to serialize thread creation (see os::create_thread)
4748   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4749 
4750   // at-exit methods are called in the reverse order of their registration.
4751   // atexit functions are called on return from main or as a result of a
4752   // call to exit(3C). There can be only 32 of these functions registered
4753   // and atexit() does not set errno.
4754 
4755   if (PerfAllowAtExitRegistration) {
4756     // only register atexit functions if PerfAllowAtExitRegistration is set.
4757     // atexit functions can be delayed until process exit time, which
4758     // can be problematic for embedded VM situations. Embedded VMs should
4759     // call DestroyJavaVM() to assure that VM resources are released.
4760 
4761     // note: perfMemory_exit_helper atexit function may be removed in
4762     // the future if the appropriate cleanup code can be added to the
4763     // VM_Exit VMOperation's doit method.
4764     if (atexit(perfMemory_exit_helper) != 0) {
4765       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4766     }
4767   }
4768 
4769   // initialize thread priority policy
4770   prio_init();
4771 
4772   return JNI_OK;
4773 }
4774 
4775 // Mark the polling page as unreadable
4776 void os::make_polling_page_unreadable(void) {
4777   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4778     fatal("Could not disable polling page");
4779   }
4780 }
4781 
4782 // Mark the polling page as readable
4783 void os::make_polling_page_readable(void) {
4784   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4785     fatal("Could not enable polling page");
4786   }
4787 }
4788 
4789 // older glibc versions don't have this macro (which expands to
4790 // an optimized bit-counting function) so we have to roll our own
4791 #ifndef CPU_COUNT
4792 
4793 static int _cpu_count(const cpu_set_t* cpus) {
4794   int count = 0;
4795   // only look up to the number of configured processors
4796   for (int i = 0; i < os::processor_count(); i++) {
4797     if (CPU_ISSET(i, cpus)) {
4798       count++;
4799     }
4800   }
4801   return count;
4802 }
4803 
4804 #define CPU_COUNT(cpus) _cpu_count(cpus)
4805 
4806 #endif // CPU_COUNT
4807 
4808 // Get the current number of available processors for this process.
4809 // This value can change at any time during a process's lifetime.
4810 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
4811 // If it appears there may be more than 1024 processors then we do a
4812 // dynamic check - see 6515172 for details.
4813 // If anything goes wrong we fallback to returning the number of online
4814 // processors - which can be greater than the number available to the process.
4815 int os::active_processor_count() {
4816   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4817   cpu_set_t* cpus_p = &cpus;
4818   int cpus_size = sizeof(cpu_set_t);
4819 
4820   int configured_cpus = processor_count();  // upper bound on available cpus
4821   int cpu_count = 0;
4822 
4823 // old build platforms may not support dynamic cpu sets
4824 #ifdef CPU_ALLOC
4825 
4826   // To enable easy testing of the dynamic path on different platforms we
4827   // introduce a diagnostic flag: UseCpuAllocPath
4828   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
4829     // kernel may use a mask bigger than cpu_set_t
4830     log_trace(os)("active_processor_count: using dynamic path %s"
4831                   "- configured processors: %d",
4832                   UseCpuAllocPath ? "(forced) " : "",
4833                   configured_cpus);
4834     cpus_p = CPU_ALLOC(configured_cpus);
4835     if (cpus_p != NULL) {
4836       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
4837       // zero it just to be safe
4838       CPU_ZERO_S(cpus_size, cpus_p);
4839     }
4840     else {
4841        // failed to allocate so fallback to online cpus
4842        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4843        log_trace(os)("active_processor_count: "
4844                      "CPU_ALLOC failed (%s) - using "
4845                      "online processor count: %d",
4846                      strerror(errno), online_cpus);
4847        return online_cpus;
4848     }
4849   }
4850   else {
4851     log_trace(os)("active_processor_count: using static path - configured processors: %d",
4852                   configured_cpus);
4853   }
4854 #else // CPU_ALLOC
4855 // these stubs won't be executed
4856 #define CPU_COUNT_S(size, cpus) -1
4857 #define CPU_FREE(cpus)
4858 
4859   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
4860                 configured_cpus);
4861 #endif // CPU_ALLOC
4862 
4863   // pid 0 means the current thread - which we have to assume represents the process
4864   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
4865     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4866       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
4867     }
4868     else {
4869       cpu_count = CPU_COUNT(cpus_p);
4870     }
4871     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
4872   }
4873   else {
4874     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
4875     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
4876             "which may exceed available processors", strerror(errno), cpu_count);
4877   }
4878 
4879   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
4880     CPU_FREE(cpus_p);
4881   }
4882 
4883   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
4884   return cpu_count;
4885 }
4886 
4887 void os::set_native_thread_name(const char *name) {
4888   if (Linux::_pthread_setname_np) {
4889     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4890     snprintf(buf, sizeof(buf), "%s", name);
4891     buf[sizeof(buf) - 1] = '\0';
4892     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4893     // ERANGE should not happen; all other errors should just be ignored.
4894     assert(rc != ERANGE, "pthread_setname_np failed");
4895   }
4896 }
4897 
4898 bool os::distribute_processes(uint length, uint* distribution) {
4899   // Not yet implemented.
4900   return false;
4901 }
4902 
4903 bool os::bind_to_processor(uint processor_id) {
4904   // Not yet implemented.
4905   return false;
4906 }
4907 
4908 ///
4909 
4910 void os::SuspendedThreadTask::internal_do_task() {
4911   if (do_suspend(_thread->osthread())) {
4912     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4913     do_task(context);
4914     do_resume(_thread->osthread());
4915   }
4916 }
4917 
4918 class PcFetcher : public os::SuspendedThreadTask {
4919  public:
4920   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4921   ExtendedPC result();
4922  protected:
4923   void do_task(const os::SuspendedThreadTaskContext& context);
4924  private:
4925   ExtendedPC _epc;
4926 };
4927 
4928 ExtendedPC PcFetcher::result() {
4929   guarantee(is_done(), "task is not done yet.");
4930   return _epc;
4931 }
4932 
4933 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4934   Thread* thread = context.thread();
4935   OSThread* osthread = thread->osthread();
4936   if (osthread->ucontext() != NULL) {
4937     _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
4938   } else {
4939     // NULL context is unexpected, double-check this is the VMThread
4940     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4941   }
4942 }
4943 
4944 // Suspends the target using the signal mechanism and then grabs the PC before
4945 // resuming the target. Used by the flat-profiler only
4946 ExtendedPC os::get_thread_pc(Thread* thread) {
4947   // Make sure that it is called by the watcher for the VMThread
4948   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4949   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4950 
4951   PcFetcher fetcher(thread);
4952   fetcher.run();
4953   return fetcher.result();
4954 }
4955 
4956 ////////////////////////////////////////////////////////////////////////////////
4957 // debug support
4958 
4959 bool os::find(address addr, outputStream* st) {
4960   Dl_info dlinfo;
4961   memset(&dlinfo, 0, sizeof(dlinfo));
4962   if (dladdr(addr, &dlinfo) != 0) {
4963     st->print(PTR_FORMAT ": ", p2i(addr));
4964     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4965       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
4966                 p2i(addr) - p2i(dlinfo.dli_saddr));
4967     } else if (dlinfo.dli_fbase != NULL) {
4968       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
4969     } else {
4970       st->print("<absolute address>");
4971     }
4972     if (dlinfo.dli_fname != NULL) {
4973       st->print(" in %s", dlinfo.dli_fname);
4974     }
4975     if (dlinfo.dli_fbase != NULL) {
4976       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
4977     }
4978     st->cr();
4979 
4980     if (Verbose) {
4981       // decode some bytes around the PC
4982       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4983       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4984       address       lowest = (address) dlinfo.dli_sname;
4985       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4986       if (begin < lowest)  begin = lowest;
4987       Dl_info dlinfo2;
4988       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4989           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
4990         end = (address) dlinfo2.dli_saddr;
4991       }
4992       Disassembler::decode(begin, end, st);
4993     }
4994     return true;
4995   }
4996   return false;
4997 }
4998 
4999 ////////////////////////////////////////////////////////////////////////////////
5000 // misc
5001 
5002 // This does not do anything on Linux. This is basically a hook for being
5003 // able to use structured exception handling (thread-local exception filters)
5004 // on, e.g., Win32.
5005 void
5006 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5007                          JavaCallArguments* args, Thread* thread) {
5008   f(value, method, args, thread);
5009 }
5010 
5011 void os::print_statistics() {
5012 }
5013 
5014 bool os::message_box(const char* title, const char* message) {
5015   int i;
5016   fdStream err(defaultStream::error_fd());
5017   for (i = 0; i < 78; i++) err.print_raw("=");
5018   err.cr();
5019   err.print_raw_cr(title);
5020   for (i = 0; i < 78; i++) err.print_raw("-");
5021   err.cr();
5022   err.print_raw_cr(message);
5023   for (i = 0; i < 78; i++) err.print_raw("=");
5024   err.cr();
5025 
5026   char buf[16];
5027   // Prevent process from exiting upon "read error" without consuming all CPU
5028   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5029 
5030   return buf[0] == 'y' || buf[0] == 'Y';
5031 }
5032 
5033 int os::stat(const char *path, struct stat *sbuf) {
5034   char pathbuf[MAX_PATH];
5035   if (strlen(path) > MAX_PATH - 1) {
5036     errno = ENAMETOOLONG;
5037     return -1;
5038   }
5039   os::native_path(strcpy(pathbuf, path));
5040   return ::stat(pathbuf, sbuf);
5041 }
5042 
5043 bool os::check_heap(bool force) {
5044   return true;
5045 }
5046 
5047 // Is a (classpath) directory empty?
5048 bool os::dir_is_empty(const char* path) {
5049   DIR *dir = NULL;
5050   struct dirent *ptr;
5051 
5052   dir = opendir(path);
5053   if (dir == NULL) return true;
5054 
5055   // Scan the directory
5056   bool result = true;
5057   char buf[sizeof(struct dirent) + MAX_PATH];
5058   while (result && (ptr = ::readdir(dir)) != NULL) {
5059     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5060       result = false;
5061     }
5062   }
5063   closedir(dir);
5064   return result;
5065 }
5066 
5067 // This code originates from JDK's sysOpen and open64_w
5068 // from src/solaris/hpi/src/system_md.c
5069 
5070 int os::open(const char *path, int oflag, int mode) {
5071   if (strlen(path) > MAX_PATH - 1) {
5072     errno = ENAMETOOLONG;
5073     return -1;
5074   }
5075 
5076   // All file descriptors that are opened in the Java process and not
5077   // specifically destined for a subprocess should have the close-on-exec
5078   // flag set.  If we don't set it, then careless 3rd party native code
5079   // might fork and exec without closing all appropriate file descriptors
5080   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5081   // turn might:
5082   //
5083   // - cause end-of-file to fail to be detected on some file
5084   //   descriptors, resulting in mysterious hangs, or
5085   //
5086   // - might cause an fopen in the subprocess to fail on a system
5087   //   suffering from bug 1085341.
5088   //
5089   // (Yes, the default setting of the close-on-exec flag is a Unix
5090   // design flaw)
5091   //
5092   // See:
5093   // 1085341: 32-bit stdio routines should support file descriptors >255
5094   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5095   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5096   //
5097   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5098   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5099   // because it saves a system call and removes a small window where the flag
5100   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5101   // and we fall back to using FD_CLOEXEC (see below).
5102 #ifdef O_CLOEXEC
5103   oflag |= O_CLOEXEC;
5104 #endif
5105 
5106   int fd = ::open64(path, oflag, mode);
5107   if (fd == -1) return -1;
5108 
5109   //If the open succeeded, the file might still be a directory
5110   {
5111     struct stat64 buf64;
5112     int ret = ::fstat64(fd, &buf64);
5113     int st_mode = buf64.st_mode;
5114 
5115     if (ret != -1) {
5116       if ((st_mode & S_IFMT) == S_IFDIR) {
5117         errno = EISDIR;
5118         ::close(fd);
5119         return -1;
5120       }
5121     } else {
5122       ::close(fd);
5123       return -1;
5124     }
5125   }
5126 
5127 #ifdef FD_CLOEXEC
5128   // Validate that the use of the O_CLOEXEC flag on open above worked.
5129   // With recent kernels, we will perform this check exactly once.
5130   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5131   if (!O_CLOEXEC_is_known_to_work) {
5132     int flags = ::fcntl(fd, F_GETFD);
5133     if (flags != -1) {
5134       if ((flags & FD_CLOEXEC) != 0)
5135         O_CLOEXEC_is_known_to_work = 1;
5136       else
5137         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5138     }
5139   }
5140 #endif
5141 
5142   return fd;
5143 }
5144 
5145 
5146 // create binary file, rewriting existing file if required
5147 int os::create_binary_file(const char* path, bool rewrite_existing) {
5148   int oflags = O_WRONLY | O_CREAT;
5149   if (!rewrite_existing) {
5150     oflags |= O_EXCL;
5151   }
5152   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5153 }
5154 
5155 // return current position of file pointer
5156 jlong os::current_file_offset(int fd) {
5157   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5158 }
5159 
5160 // move file pointer to the specified offset
5161 jlong os::seek_to_file_offset(int fd, jlong offset) {
5162   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5163 }
5164 
5165 // This code originates from JDK's sysAvailable
5166 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5167 
5168 int os::available(int fd, jlong *bytes) {
5169   jlong cur, end;
5170   int mode;
5171   struct stat64 buf64;
5172 
5173   if (::fstat64(fd, &buf64) >= 0) {
5174     mode = buf64.st_mode;
5175     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5176       int n;
5177       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5178         *bytes = n;
5179         return 1;
5180       }
5181     }
5182   }
5183   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5184     return 0;
5185   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5186     return 0;
5187   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5188     return 0;
5189   }
5190   *bytes = end - cur;
5191   return 1;
5192 }
5193 
5194 // Map a block of memory.
5195 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5196                         char *addr, size_t bytes, bool read_only,
5197                         bool allow_exec) {
5198   int prot;
5199   int flags = MAP_PRIVATE;
5200 
5201   if (read_only) {
5202     prot = PROT_READ;
5203   } else {
5204     prot = PROT_READ | PROT_WRITE;
5205   }
5206 
5207   if (allow_exec) {
5208     prot |= PROT_EXEC;
5209   }
5210 
5211   if (addr != NULL) {
5212     flags |= MAP_FIXED;
5213   }
5214 
5215   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5216                                      fd, file_offset);
5217   if (mapped_address == MAP_FAILED) {
5218     return NULL;
5219   }
5220   return mapped_address;
5221 }
5222 
5223 
5224 // Remap a block of memory.
5225 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5226                           char *addr, size_t bytes, bool read_only,
5227                           bool allow_exec) {
5228   // same as map_memory() on this OS
5229   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5230                         allow_exec);
5231 }
5232 
5233 
5234 // Unmap a block of memory.
5235 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5236   return munmap(addr, bytes) == 0;
5237 }
5238 
5239 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5240 
5241 static clockid_t thread_cpu_clockid(Thread* thread) {
5242   pthread_t tid = thread->osthread()->pthread_id();
5243   clockid_t clockid;
5244 
5245   // Get thread clockid
5246   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5247   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5248   return clockid;
5249 }
5250 
5251 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5252 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5253 // of a thread.
5254 //
5255 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5256 // the fast estimate available on the platform.
5257 
5258 jlong os::current_thread_cpu_time() {
5259   if (os::Linux::supports_fast_thread_cpu_time()) {
5260     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5261   } else {
5262     // return user + sys since the cost is the same
5263     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5264   }
5265 }
5266 
5267 jlong os::thread_cpu_time(Thread* thread) {
5268   // consistent with what current_thread_cpu_time() returns
5269   if (os::Linux::supports_fast_thread_cpu_time()) {
5270     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5271   } else {
5272     return slow_thread_cpu_time(thread, true /* user + sys */);
5273   }
5274 }
5275 
5276 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5277   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5278     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5279   } else {
5280     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5281   }
5282 }
5283 
5284 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5285   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5286     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5287   } else {
5288     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5289   }
5290 }
5291 
5292 //  -1 on error.
5293 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5294   pid_t  tid = thread->osthread()->thread_id();
5295   char *s;
5296   char stat[2048];
5297   int statlen;
5298   char proc_name[64];
5299   int count;
5300   long sys_time, user_time;
5301   char cdummy;
5302   int idummy;
5303   long ldummy;
5304   FILE *fp;
5305 
5306   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5307   fp = fopen(proc_name, "r");
5308   if (fp == NULL) return -1;
5309   statlen = fread(stat, 1, 2047, fp);
5310   stat[statlen] = '\0';
5311   fclose(fp);
5312 
5313   // Skip pid and the command string. Note that we could be dealing with
5314   // weird command names, e.g. user could decide to rename java launcher
5315   // to "java 1.4.2 :)", then the stat file would look like
5316   //                1234 (java 1.4.2 :)) R ... ...
5317   // We don't really need to know the command string, just find the last
5318   // occurrence of ")" and then start parsing from there. See bug 4726580.
5319   s = strrchr(stat, ')');
5320   if (s == NULL) return -1;
5321 
5322   // Skip blank chars
5323   do { s++; } while (s && isspace(*s));
5324 
5325   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5326                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5327                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5328                  &user_time, &sys_time);
5329   if (count != 13) return -1;
5330   if (user_sys_cpu_time) {
5331     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5332   } else {
5333     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5334   }
5335 }
5336 
5337 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5338   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5339   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5340   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5341   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5342 }
5343 
5344 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5345   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5346   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5347   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5348   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5349 }
5350 
5351 bool os::is_thread_cpu_time_supported() {
5352   return true;
5353 }
5354 
5355 // System loadavg support.  Returns -1 if load average cannot be obtained.
5356 // Linux doesn't yet have a (official) notion of processor sets,
5357 // so just return the system wide load average.
5358 int os::loadavg(double loadavg[], int nelem) {
5359   return ::getloadavg(loadavg, nelem);
5360 }
5361 
5362 void os::pause() {
5363   char filename[MAX_PATH];
5364   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5365     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5366   } else {
5367     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5368   }
5369 
5370   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5371   if (fd != -1) {
5372     struct stat buf;
5373     ::close(fd);
5374     while (::stat(filename, &buf) == 0) {
5375       (void)::poll(NULL, 0, 100);
5376     }
5377   } else {
5378     jio_fprintf(stderr,
5379                 "Could not open pause file '%s', continuing immediately.\n", filename);
5380   }
5381 }
5382 
5383 
5384 // Refer to the comments in os_solaris.cpp park-unpark. The next two
5385 // comment paragraphs are worth repeating here:
5386 //
5387 // Assumption:
5388 //    Only one parker can exist on an event, which is why we allocate
5389 //    them per-thread. Multiple unparkers can coexist.
5390 //
5391 // _Event serves as a restricted-range semaphore.
5392 //   -1 : thread is blocked, i.e. there is a waiter
5393 //    0 : neutral: thread is running or ready,
5394 //        could have been signaled after a wait started
5395 //    1 : signaled - thread is running or ready
5396 //
5397 
5398 // utility to compute the abstime argument to timedwait:
5399 // millis is the relative timeout time
5400 // abstime will be the absolute timeout time
5401 // TODO: replace compute_abstime() with unpackTime()
5402 
5403 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5404   if (millis < 0)  millis = 0;
5405 
5406   jlong seconds = millis / 1000;
5407   millis %= 1000;
5408   if (seconds > 50000000) { // see man cond_timedwait(3T)
5409     seconds = 50000000;
5410   }
5411 
5412   if (os::supports_monotonic_clock()) {
5413     struct timespec now;
5414     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5415     assert_status(status == 0, status, "clock_gettime");
5416     abstime->tv_sec = now.tv_sec  + seconds;
5417     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5418     if (nanos >= NANOSECS_PER_SEC) {
5419       abstime->tv_sec += 1;
5420       nanos -= NANOSECS_PER_SEC;
5421     }
5422     abstime->tv_nsec = nanos;
5423   } else {
5424     struct timeval now;
5425     int status = gettimeofday(&now, NULL);
5426     assert(status == 0, "gettimeofday");
5427     abstime->tv_sec = now.tv_sec  + seconds;
5428     long usec = now.tv_usec + millis * 1000;
5429     if (usec >= 1000000) {
5430       abstime->tv_sec += 1;
5431       usec -= 1000000;
5432     }
5433     abstime->tv_nsec = usec * 1000;
5434   }
5435   return abstime;
5436 }
5437 
5438 void os::PlatformEvent::park() {       // AKA "down()"
5439   // Transitions for _Event:
5440   //   -1 => -1 : illegal
5441   //    1 =>  0 : pass - return immediately
5442   //    0 => -1 : block; then set _Event to 0 before returning
5443 
5444   // Invariant: Only the thread associated with the Event/PlatformEvent
5445   // may call park().
5446   // TODO: assert that _Assoc != NULL or _Assoc == Self
5447   assert(_nParked == 0, "invariant");
5448 
5449   int v;
5450   for (;;) {
5451     v = _Event;
5452     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5453   }
5454   guarantee(v >= 0, "invariant");
5455   if (v == 0) {
5456     // Do this the hard way by blocking ...
5457     int status = pthread_mutex_lock(_mutex);
5458     assert_status(status == 0, status, "mutex_lock");
5459     guarantee(_nParked == 0, "invariant");
5460     ++_nParked;
5461     while (_Event < 0) {
5462       status = pthread_cond_wait(_cond, _mutex);
5463       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5464       // Treat this the same as if the wait was interrupted
5465       if (status == ETIME) { status = EINTR; }
5466       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5467     }
5468     --_nParked;
5469 
5470     _Event = 0;
5471     status = pthread_mutex_unlock(_mutex);
5472     assert_status(status == 0, status, "mutex_unlock");
5473     // Paranoia to ensure our locked and lock-free paths interact
5474     // correctly with each other.
5475     OrderAccess::fence();
5476   }
5477   guarantee(_Event >= 0, "invariant");
5478 }
5479 
5480 int os::PlatformEvent::park(jlong millis) {
5481   // Transitions for _Event:
5482   //   -1 => -1 : illegal
5483   //    1 =>  0 : pass - return immediately
5484   //    0 => -1 : block; then set _Event to 0 before returning
5485 
5486   guarantee(_nParked == 0, "invariant");
5487 
5488   int v;
5489   for (;;) {
5490     v = _Event;
5491     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5492   }
5493   guarantee(v >= 0, "invariant");
5494   if (v != 0) return OS_OK;
5495 
5496   // We do this the hard way, by blocking the thread.
5497   // Consider enforcing a minimum timeout value.
5498   struct timespec abst;
5499   compute_abstime(&abst, millis);
5500 
5501   int ret = OS_TIMEOUT;
5502   int status = pthread_mutex_lock(_mutex);
5503   assert_status(status == 0, status, "mutex_lock");
5504   guarantee(_nParked == 0, "invariant");
5505   ++_nParked;
5506 
5507   // Object.wait(timo) will return because of
5508   // (a) notification
5509   // (b) timeout
5510   // (c) thread.interrupt
5511   //
5512   // Thread.interrupt and object.notify{All} both call Event::set.
5513   // That is, we treat thread.interrupt as a special case of notification.
5514   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5515   // We assume all ETIME returns are valid.
5516   //
5517   // TODO: properly differentiate simultaneous notify+interrupt.
5518   // In that case, we should propagate the notify to another waiter.
5519 
5520   while (_Event < 0) {
5521     status = pthread_cond_timedwait(_cond, _mutex, &abst);
5522     assert_status(status == 0 || status == EINTR ||
5523                   status == ETIME || status == ETIMEDOUT,
5524                   status, "cond_timedwait");
5525     if (!FilterSpuriousWakeups) break;                 // previous semantics
5526     if (status == ETIME || status == ETIMEDOUT) break;
5527     // We consume and ignore EINTR and spurious wakeups.
5528   }
5529   --_nParked;
5530   if (_Event >= 0) {
5531     ret = OS_OK;
5532   }
5533   _Event = 0;
5534   status = pthread_mutex_unlock(_mutex);
5535   assert_status(status == 0, status, "mutex_unlock");
5536   assert(_nParked == 0, "invariant");
5537   // Paranoia to ensure our locked and lock-free paths interact
5538   // correctly with each other.
5539   OrderAccess::fence();
5540   return ret;
5541 }
5542 
5543 void os::PlatformEvent::unpark() {
5544   // Transitions for _Event:
5545   //    0 => 1 : just return
5546   //    1 => 1 : just return
5547   //   -1 => either 0 or 1; must signal target thread
5548   //         That is, we can safely transition _Event from -1 to either
5549   //         0 or 1.
5550   // See also: "Semaphores in Plan 9" by Mullender & Cox
5551   //
5552   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5553   // that it will take two back-to-back park() calls for the owning
5554   // thread to block. This has the benefit of forcing a spurious return
5555   // from the first park() call after an unpark() call which will help
5556   // shake out uses of park() and unpark() without condition variables.
5557 
5558   if (Atomic::xchg(1, &_Event) >= 0) return;
5559 
5560   // Wait for the thread associated with the event to vacate
5561   int status = pthread_mutex_lock(_mutex);
5562   assert_status(status == 0, status, "mutex_lock");
5563   int AnyWaiters = _nParked;
5564   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5565   status = pthread_mutex_unlock(_mutex);
5566   assert_status(status == 0, status, "mutex_unlock");
5567   if (AnyWaiters != 0) {
5568     // Note that we signal() *after* dropping the lock for "immortal" Events.
5569     // This is safe and avoids a common class of  futile wakeups.  In rare
5570     // circumstances this can cause a thread to return prematurely from
5571     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5572     // will simply re-test the condition and re-park itself.
5573     // This provides particular benefit if the underlying platform does not
5574     // provide wait morphing.
5575     status = pthread_cond_signal(_cond);
5576     assert_status(status == 0, status, "cond_signal");
5577   }
5578 }
5579 
5580 
5581 // JSR166
5582 // -------------------------------------------------------
5583 
5584 // The solaris and linux implementations of park/unpark are fairly
5585 // conservative for now, but can be improved. They currently use a
5586 // mutex/condvar pair, plus a a count.
5587 // Park decrements count if > 0, else does a condvar wait.  Unpark
5588 // sets count to 1 and signals condvar.  Only one thread ever waits
5589 // on the condvar. Contention seen when trying to park implies that someone
5590 // is unparking you, so don't wait. And spurious returns are fine, so there
5591 // is no need to track notifications.
5592 
5593 // This code is common to linux and solaris and will be moved to a
5594 // common place in dolphin.
5595 //
5596 // The passed in time value is either a relative time in nanoseconds
5597 // or an absolute time in milliseconds. Either way it has to be unpacked
5598 // into suitable seconds and nanoseconds components and stored in the
5599 // given timespec structure.
5600 // Given time is a 64-bit value and the time_t used in the timespec is only
5601 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5602 // overflow if times way in the future are given. Further on Solaris versions
5603 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5604 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5605 // As it will be 28 years before "now + 100000000" will overflow we can
5606 // ignore overflow and just impose a hard-limit on seconds using the value
5607 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5608 // years from "now".
5609 
5610 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5611   assert(time > 0, "convertTime");
5612   time_t max_secs = 0;
5613 
5614   if (!os::supports_monotonic_clock() || isAbsolute) {
5615     struct timeval now;
5616     int status = gettimeofday(&now, NULL);
5617     assert(status == 0, "gettimeofday");
5618 
5619     max_secs = now.tv_sec + MAX_SECS;
5620 
5621     if (isAbsolute) {
5622       jlong secs = time / 1000;
5623       if (secs > max_secs) {
5624         absTime->tv_sec = max_secs;
5625       } else {
5626         absTime->tv_sec = secs;
5627       }
5628       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5629     } else {
5630       jlong secs = time / NANOSECS_PER_SEC;
5631       if (secs >= MAX_SECS) {
5632         absTime->tv_sec = max_secs;
5633         absTime->tv_nsec = 0;
5634       } else {
5635         absTime->tv_sec = now.tv_sec + secs;
5636         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5637         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5638           absTime->tv_nsec -= NANOSECS_PER_SEC;
5639           ++absTime->tv_sec; // note: this must be <= max_secs
5640         }
5641       }
5642     }
5643   } else {
5644     // must be relative using monotonic clock
5645     struct timespec now;
5646     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5647     assert_status(status == 0, status, "clock_gettime");
5648     max_secs = now.tv_sec + MAX_SECS;
5649     jlong secs = time / NANOSECS_PER_SEC;
5650     if (secs >= MAX_SECS) {
5651       absTime->tv_sec = max_secs;
5652       absTime->tv_nsec = 0;
5653     } else {
5654       absTime->tv_sec = now.tv_sec + secs;
5655       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5656       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5657         absTime->tv_nsec -= NANOSECS_PER_SEC;
5658         ++absTime->tv_sec; // note: this must be <= max_secs
5659       }
5660     }
5661   }
5662   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5663   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5664   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5665   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5666 }
5667 
5668 void Parker::park(bool isAbsolute, jlong time) {
5669   // Ideally we'd do something useful while spinning, such
5670   // as calling unpackTime().
5671 
5672   // Optional fast-path check:
5673   // Return immediately if a permit is available.
5674   // We depend on Atomic::xchg() having full barrier semantics
5675   // since we are doing a lock-free update to _counter.
5676   if (Atomic::xchg(0, &_counter) > 0) return;
5677 
5678   Thread* thread = Thread::current();
5679   assert(thread->is_Java_thread(), "Must be JavaThread");
5680   JavaThread *jt = (JavaThread *)thread;
5681 
5682   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5683   // Check interrupt before trying to wait
5684   if (Thread::is_interrupted(thread, false)) {
5685     return;
5686   }
5687 
5688   // Next, demultiplex/decode time arguments
5689   timespec absTime;
5690   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5691     return;
5692   }
5693   if (time > 0) {
5694     unpackTime(&absTime, isAbsolute, time);
5695   }
5696 
5697 
5698   // Enter safepoint region
5699   // Beware of deadlocks such as 6317397.
5700   // The per-thread Parker:: mutex is a classic leaf-lock.
5701   // In particular a thread must never block on the Threads_lock while
5702   // holding the Parker:: mutex.  If safepoints are pending both the
5703   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5704   ThreadBlockInVM tbivm(jt);
5705 
5706   // Don't wait if cannot get lock since interference arises from
5707   // unblocking.  Also. check interrupt before trying wait
5708   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5709     return;
5710   }
5711 
5712   int status;
5713   if (_counter > 0)  { // no wait needed
5714     _counter = 0;
5715     status = pthread_mutex_unlock(_mutex);
5716     assert_status(status == 0, status, "invariant");
5717     // Paranoia to ensure our locked and lock-free paths interact
5718     // correctly with each other and Java-level accesses.
5719     OrderAccess::fence();
5720     return;
5721   }
5722 
5723 #ifdef ASSERT
5724   // Don't catch signals while blocked; let the running threads have the signals.
5725   // (This allows a debugger to break into the running thread.)
5726   sigset_t oldsigs;
5727   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5728   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5729 #endif
5730 
5731   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5732   jt->set_suspend_equivalent();
5733   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5734 
5735   assert(_cur_index == -1, "invariant");
5736   if (time == 0) {
5737     _cur_index = REL_INDEX; // arbitrary choice when not timed
5738     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5739   } else {
5740     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5741     status = pthread_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5742   }
5743   _cur_index = -1;
5744   assert_status(status == 0 || status == EINTR ||
5745                 status == ETIME || status == ETIMEDOUT,
5746                 status, "cond_timedwait");
5747 
5748 #ifdef ASSERT
5749   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5750 #endif
5751 
5752   _counter = 0;
5753   status = pthread_mutex_unlock(_mutex);
5754   assert_status(status == 0, status, "invariant");
5755   // Paranoia to ensure our locked and lock-free paths interact
5756   // correctly with each other and Java-level accesses.
5757   OrderAccess::fence();
5758 
5759   // If externally suspended while waiting, re-suspend
5760   if (jt->handle_special_suspend_equivalent_condition()) {
5761     jt->java_suspend_self();
5762   }
5763 }
5764 
5765 void Parker::unpark() {
5766   int status = pthread_mutex_lock(_mutex);
5767   assert_status(status == 0, status, "invariant");
5768   const int s = _counter;
5769   _counter = 1;
5770   // must capture correct index before unlocking
5771   int index = _cur_index;
5772   status = pthread_mutex_unlock(_mutex);
5773   assert_status(status == 0, status, "invariant");
5774   if (s < 1 && index != -1) {
5775     // thread is definitely parked
5776     status = pthread_cond_signal(&_cond[index]);
5777     assert_status(status == 0, status, "invariant");
5778   }
5779 }
5780 
5781 
5782 extern char** environ;
5783 
5784 // Run the specified command in a separate process. Return its exit value,
5785 // or -1 on failure (e.g. can't fork a new process).
5786 // Unlike system(), this function can be called from signal handler. It
5787 // doesn't block SIGINT et al.
5788 int os::fork_and_exec(char* cmd) {
5789   const char * argv[4] = {"sh", "-c", cmd, NULL};
5790 
5791   pid_t pid = fork();
5792 
5793   if (pid < 0) {
5794     // fork failed
5795     return -1;
5796 
5797   } else if (pid == 0) {
5798     // child process
5799 
5800     execve("/bin/sh", (char* const*)argv, environ);
5801 
5802     // execve failed
5803     _exit(-1);
5804 
5805   } else  {
5806     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5807     // care about the actual exit code, for now.
5808 
5809     int status;
5810 
5811     // Wait for the child process to exit.  This returns immediately if
5812     // the child has already exited. */
5813     while (waitpid(pid, &status, 0) < 0) {
5814       switch (errno) {
5815       case ECHILD: return 0;
5816       case EINTR: break;
5817       default: return -1;
5818       }
5819     }
5820 
5821     if (WIFEXITED(status)) {
5822       // The child exited normally; get its exit code.
5823       return WEXITSTATUS(status);
5824     } else if (WIFSIGNALED(status)) {
5825       // The child exited because of a signal
5826       // The best value to return is 0x80 + signal number,
5827       // because that is what all Unix shells do, and because
5828       // it allows callers to distinguish between process exit and
5829       // process death by signal.
5830       return 0x80 + WTERMSIG(status);
5831     } else {
5832       // Unknown exit code; pass it through
5833       return status;
5834     }
5835   }
5836 }
5837 
5838 // is_headless_jre()
5839 //
5840 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5841 // in order to report if we are running in a headless jre
5842 //
5843 // Since JDK8 xawt/libmawt.so was moved into the same directory
5844 // as libawt.so, and renamed libawt_xawt.so
5845 //
5846 bool os::is_headless_jre() {
5847   struct stat statbuf;
5848   char buf[MAXPATHLEN];
5849   char libmawtpath[MAXPATHLEN];
5850   const char *xawtstr  = "/xawt/libmawt.so";
5851   const char *new_xawtstr = "/libawt_xawt.so";
5852   char *p;
5853 
5854   // Get path to libjvm.so
5855   os::jvm_path(buf, sizeof(buf));
5856 
5857   // Get rid of libjvm.so
5858   p = strrchr(buf, '/');
5859   if (p == NULL) {
5860     return false;
5861   } else {
5862     *p = '\0';
5863   }
5864 
5865   // Get rid of client or server
5866   p = strrchr(buf, '/');
5867   if (p == NULL) {
5868     return false;
5869   } else {
5870     *p = '\0';
5871   }
5872 
5873   // check xawt/libmawt.so
5874   strcpy(libmawtpath, buf);
5875   strcat(libmawtpath, xawtstr);
5876   if (::stat(libmawtpath, &statbuf) == 0) return false;
5877 
5878   // check libawt_xawt.so
5879   strcpy(libmawtpath, buf);
5880   strcat(libmawtpath, new_xawtstr);
5881   if (::stat(libmawtpath, &statbuf) == 0) return false;
5882 
5883   return true;
5884 }
5885 
5886 // Get the default path to the core file
5887 // Returns the length of the string
5888 int os::get_core_path(char* buffer, size_t bufferSize) {
5889   /*
5890    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5891    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5892    */
5893   const int core_pattern_len = 129;
5894   char core_pattern[core_pattern_len] = {0};
5895 
5896   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5897   if (core_pattern_file == -1) {
5898     return -1;
5899   }
5900 
5901   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5902   ::close(core_pattern_file);
5903   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5904     return -1;
5905   }
5906   if (core_pattern[ret-1] == '\n') {
5907     core_pattern[ret-1] = '\0';
5908   } else {
5909     core_pattern[ret] = '\0';
5910   }
5911 
5912   char *pid_pos = strstr(core_pattern, "%p");
5913   int written;
5914 
5915   if (core_pattern[0] == '/') {
5916     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5917   } else {
5918     char cwd[PATH_MAX];
5919 
5920     const char* p = get_current_directory(cwd, PATH_MAX);
5921     if (p == NULL) {
5922       return -1;
5923     }
5924 
5925     if (core_pattern[0] == '|') {
5926       written = jio_snprintf(buffer, bufferSize,
5927                         "\"%s\" (or dumping to %s/core.%d)",
5928                                      &core_pattern[1], p, current_process_id());
5929     } else {
5930       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5931     }
5932   }
5933 
5934   if (written < 0) {
5935     return -1;
5936   }
5937 
5938   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5939     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5940 
5941     if (core_uses_pid_file != -1) {
5942       char core_uses_pid = 0;
5943       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5944       ::close(core_uses_pid_file);
5945 
5946       if (core_uses_pid == '1') {
5947         jio_snprintf(buffer + written, bufferSize - written,
5948                                           ".%d", current_process_id());
5949       }
5950     }
5951   }
5952 
5953   return strlen(buffer);
5954 }
5955 
5956 bool os::start_debugging(char *buf, int buflen) {
5957   int len = (int)strlen(buf);
5958   char *p = &buf[len];
5959 
5960   jio_snprintf(p, buflen-len,
5961              "\n\n"
5962              "Do you want to debug the problem?\n\n"
5963              "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5964              "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5965              "Otherwise, press RETURN to abort...",
5966              os::current_process_id(), os::current_process_id(),
5967              os::current_thread_id(), os::current_thread_id());
5968 
5969   bool yes = os::message_box("Unexpected Error", buf);
5970 
5971   if (yes) {
5972     // yes, user asked VM to launch debugger
5973     jio_snprintf(buf, sizeof(buf), "gdb /proc/%d/exe %d",
5974                      os::current_process_id(), os::current_process_id());
5975 
5976     os::fork_and_exec(buf);
5977     yes = false;
5978   }
5979   return yes;
5980 }
5981 
5982 
5983 
5984 /////////////// Unit tests ///////////////
5985 
5986 #ifndef PRODUCT
5987 
5988 #define test_log(...)              \
5989   do {                             \
5990     if (VerboseInternalVMTests) {  \
5991       tty->print_cr(__VA_ARGS__);  \
5992       tty->flush();                \
5993     }                              \
5994   } while (false)
5995 
5996 class TestReserveMemorySpecial : AllStatic {
5997  public:
5998   static void small_page_write(void* addr, size_t size) {
5999     size_t page_size = os::vm_page_size();
6000 
6001     char* end = (char*)addr + size;
6002     for (char* p = (char*)addr; p < end; p += page_size) {
6003       *p = 1;
6004     }
6005   }
6006 
6007   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6008     if (!UseHugeTLBFS) {
6009       return;
6010     }
6011 
6012     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6013 
6014     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6015 
6016     if (addr != NULL) {
6017       small_page_write(addr, size);
6018 
6019       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6020     }
6021   }
6022 
6023   static void test_reserve_memory_special_huge_tlbfs_only() {
6024     if (!UseHugeTLBFS) {
6025       return;
6026     }
6027 
6028     size_t lp = os::large_page_size();
6029 
6030     for (size_t size = lp; size <= lp * 10; size += lp) {
6031       test_reserve_memory_special_huge_tlbfs_only(size);
6032     }
6033   }
6034 
6035   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6036     size_t lp = os::large_page_size();
6037     size_t ag = os::vm_allocation_granularity();
6038 
6039     // sizes to test
6040     const size_t sizes[] = {
6041       lp, lp + ag, lp + lp / 2, lp * 2,
6042       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6043       lp * 10, lp * 10 + lp / 2
6044     };
6045     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6046 
6047     // For each size/alignment combination, we test three scenarios:
6048     // 1) with req_addr == NULL
6049     // 2) with a non-null req_addr at which we expect to successfully allocate
6050     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6051     //    expect the allocation to either fail or to ignore req_addr
6052 
6053     // Pre-allocate two areas; they shall be as large as the largest allocation
6054     //  and aligned to the largest alignment we will be testing.
6055     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6056     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6057       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6058       -1, 0);
6059     assert(mapping1 != MAP_FAILED, "should work");
6060 
6061     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6062       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6063       -1, 0);
6064     assert(mapping2 != MAP_FAILED, "should work");
6065 
6066     // Unmap the first mapping, but leave the second mapping intact: the first
6067     // mapping will serve as a value for a "good" req_addr (case 2). The second
6068     // mapping, still intact, as "bad" req_addr (case 3).
6069     ::munmap(mapping1, mapping_size);
6070 
6071     // Case 1
6072     test_log("%s, req_addr NULL:", __FUNCTION__);
6073     test_log("size            align           result");
6074 
6075     for (int i = 0; i < num_sizes; i++) {
6076       const size_t size = sizes[i];
6077       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6078         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6079         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6080                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6081         if (p != NULL) {
6082           assert(is_ptr_aligned(p, alignment), "must be");
6083           small_page_write(p, size);
6084           os::Linux::release_memory_special_huge_tlbfs(p, size);
6085         }
6086       }
6087     }
6088 
6089     // Case 2
6090     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6091     test_log("size            align           req_addr         result");
6092 
6093     for (int i = 0; i < num_sizes; i++) {
6094       const size_t size = sizes[i];
6095       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6096         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6097         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6098         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6099                  size, alignment, p2i(req_addr), p2i(p),
6100                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6101         if (p != NULL) {
6102           assert(p == req_addr, "must be");
6103           small_page_write(p, size);
6104           os::Linux::release_memory_special_huge_tlbfs(p, size);
6105         }
6106       }
6107     }
6108 
6109     // Case 3
6110     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6111     test_log("size            align           req_addr         result");
6112 
6113     for (int i = 0; i < num_sizes; i++) {
6114       const size_t size = sizes[i];
6115       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6116         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6117         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6118         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6119                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6120         // as the area around req_addr contains already existing mappings, the API should always
6121         // return NULL (as per contract, it cannot return another address)
6122         assert(p == NULL, "must be");
6123       }
6124     }
6125 
6126     ::munmap(mapping2, mapping_size);
6127 
6128   }
6129 
6130   static void test_reserve_memory_special_huge_tlbfs() {
6131     if (!UseHugeTLBFS) {
6132       return;
6133     }
6134 
6135     test_reserve_memory_special_huge_tlbfs_only();
6136     test_reserve_memory_special_huge_tlbfs_mixed();
6137   }
6138 
6139   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6140     if (!UseSHM) {
6141       return;
6142     }
6143 
6144     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6145 
6146     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6147 
6148     if (addr != NULL) {
6149       assert(is_ptr_aligned(addr, alignment), "Check");
6150       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6151 
6152       small_page_write(addr, size);
6153 
6154       os::Linux::release_memory_special_shm(addr, size);
6155     }
6156   }
6157 
6158   static void test_reserve_memory_special_shm() {
6159     size_t lp = os::large_page_size();
6160     size_t ag = os::vm_allocation_granularity();
6161 
6162     for (size_t size = ag; size < lp * 3; size += ag) {
6163       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6164         test_reserve_memory_special_shm(size, alignment);
6165       }
6166     }
6167   }
6168 
6169   static void test() {
6170     test_reserve_memory_special_huge_tlbfs();
6171     test_reserve_memory_special_shm();
6172   }
6173 };
6174 
6175 void TestReserveMemorySpecial_test() {
6176   TestReserveMemorySpecial::test();
6177 }
6178 
6179 #endif