1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "memory/metaspaceShared.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.inline.hpp"
  48 #include "oops/instanceKlass.hpp"
  49 #include "oops/objArrayOop.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/symbol.hpp"
  52 #include "oops/verifyOopClosure.hpp"
  53 #include "prims/jvm_misc.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/privilegedStack.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/commandLineFlagConstraintList.hpp"
  61 #include "runtime/commandLineFlagWriteableList.hpp"
  62 #include "runtime/commandLineFlagRangeList.hpp"
  63 #include "runtime/deoptimization.hpp"
  64 #include "runtime/fprofiler.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/globals.hpp"
  67 #include "runtime/init.hpp"
  68 #include "runtime/interfaceSupport.hpp"
  69 #include "runtime/java.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/jniPeriodicChecker.hpp"
  72 #include "runtime/timerTrace.hpp"
  73 #include "runtime/memprofiler.hpp"
  74 #include "runtime/mutexLocker.hpp"
  75 #include "runtime/objectMonitor.hpp"
  76 #include "runtime/orderAccess.inline.hpp"
  77 #include "runtime/osThread.hpp"
  78 #include "runtime/safepoint.hpp"
  79 #include "runtime/sharedRuntime.hpp"
  80 #include "runtime/statSampler.hpp"
  81 #include "runtime/stubRoutines.hpp"
  82 #include "runtime/sweeper.hpp"
  83 #include "runtime/task.hpp"
  84 #include "runtime/thread.inline.hpp"
  85 #include "runtime/threadCritical.hpp"
  86 #include "runtime/vframe.hpp"
  87 #include "runtime/vframeArray.hpp"
  88 #include "runtime/vframe_hp.hpp"
  89 #include "runtime/vmThread.hpp"
  90 #include "runtime/vm_operations.hpp"
  91 #include "runtime/vm_version.hpp"
  92 #include "services/attachListener.hpp"
  93 #include "services/management.hpp"
  94 #include "services/memTracker.hpp"
  95 #include "services/threadService.hpp"
  96 #include "trace/traceMacros.hpp"
  97 #include "trace/tracing.hpp"
  98 #include "utilities/defaultStream.hpp"
  99 #include "utilities/dtrace.hpp"
 100 #include "utilities/events.hpp"
 101 #include "utilities/macros.hpp"
 102 #include "utilities/preserveException.hpp"
 103 #if INCLUDE_ALL_GCS
 104 #include "gc/cms/concurrentMarkSweepThread.hpp"
 105 #include "gc/g1/concurrentMarkThread.inline.hpp"
 106 #include "gc/parallel/pcTasks.hpp"
 107 #endif // INCLUDE_ALL_GCS
 108 #if INCLUDE_JVMCI
 109 #include "jvmci/jvmciCompiler.hpp"
 110 #include "jvmci/jvmciRuntime.hpp"
 111 #endif
 112 #ifdef COMPILER1
 113 #include "c1/c1_Compiler.hpp"
 114 #endif
 115 #ifdef COMPILER2
 116 #include "opto/c2compiler.hpp"
 117 #include "opto/idealGraphPrinter.hpp"
 118 #endif
 119 #if INCLUDE_RTM_OPT
 120 #include "runtime/rtmLocking.hpp"
 121 #endif
 122 
 123 // Initialization after module runtime initialization
 124 void universe_post_module_init();  // must happen after call_initPhase2
 125 
 126 #ifdef DTRACE_ENABLED
 127 
 128 // Only bother with this argument setup if dtrace is available
 129 
 130   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 131   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 132 
 133   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 134     {                                                                      \
 135       ResourceMark rm(this);                                               \
 136       int len = 0;                                                         \
 137       const char* name = (javathread)->get_thread_name();                  \
 138       len = strlen(name);                                                  \
 139       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 140         (char *) name, len,                                                \
 141         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 142         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 143         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 144     }
 145 
 146 #else //  ndef DTRACE_ENABLED
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)
 149 
 150 #endif // ndef DTRACE_ENABLED
 151 
 152 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 153 // Current thread is maintained as a thread-local variable
 154 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 155 #endif
 156 // Class hierarchy
 157 // - Thread
 158 //   - VMThread
 159 //   - WatcherThread
 160 //   - ConcurrentMarkSweepThread
 161 //   - JavaThread
 162 //     - CompilerThread
 163 
 164 // ======= Thread ========
 165 // Support for forcing alignment of thread objects for biased locking
 166 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 167   if (UseBiasedLocking) {
 168     const int alignment = markOopDesc::biased_lock_alignment;
 169     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 170     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 171                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 172                                                          AllocFailStrategy::RETURN_NULL);
 173     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 174     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 175            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 176            "JavaThread alignment code overflowed allocated storage");
 177     if (aligned_addr != real_malloc_addr) {
 178       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 179                               p2i(real_malloc_addr),
 180                               p2i(aligned_addr));
 181     }
 182     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 183     return aligned_addr;
 184   } else {
 185     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 186                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 187   }
 188 }
 189 
 190 void Thread::operator delete(void* p) {
 191   if (UseBiasedLocking) {
 192     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 193     FreeHeap(real_malloc_addr);
 194   } else {
 195     FreeHeap(p);
 196   }
 197 }
 198 
 199 
 200 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 201 // JavaThread
 202 
 203 
 204 Thread::Thread() {
 205   // stack and get_thread
 206   set_stack_base(NULL);
 207   set_stack_size(0);
 208   set_self_raw_id(0);
 209   set_lgrp_id(-1);
 210   DEBUG_ONLY(clear_suspendible_thread();)
 211 
 212   // allocated data structures
 213   set_osthread(NULL);
 214   set_resource_area(new (mtThread)ResourceArea());
 215   DEBUG_ONLY(_current_resource_mark = NULL;)
 216   set_handle_area(new (mtThread) HandleArea(NULL));
 217   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 218   set_active_handles(NULL);
 219   set_free_handle_block(NULL);
 220   set_last_handle_mark(NULL);
 221 
 222   // This initial value ==> never claimed.
 223   _oops_do_parity = 0;
 224 
 225   // the handle mark links itself to last_handle_mark
 226   new HandleMark(this);
 227 
 228   // plain initialization
 229   debug_only(_owned_locks = NULL;)
 230   debug_only(_allow_allocation_count = 0;)
 231   NOT_PRODUCT(_allow_safepoint_count = 0;)
 232   NOT_PRODUCT(_skip_gcalot = false;)
 233   _jvmti_env_iteration_count = 0;
 234   set_allocated_bytes(0);
 235   _vm_operation_started_count = 0;
 236   _vm_operation_completed_count = 0;
 237   _current_pending_monitor = NULL;
 238   _current_pending_monitor_is_from_java = true;
 239   _current_waiting_monitor = NULL;
 240   _num_nested_signal = 0;
 241   omFreeList = NULL;
 242   omFreeCount = 0;
 243   omFreeProvision = 32;
 244   omInUseList = NULL;
 245   omInUseCount = 0;
 246 
 247 #ifdef ASSERT
 248   _visited_for_critical_count = false;
 249 #endif
 250 
 251   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 252                          Monitor::_safepoint_check_sometimes);
 253   _suspend_flags = 0;
 254 
 255   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 256   _hashStateX = os::random();
 257   _hashStateY = 842502087;
 258   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 259   _hashStateW = 273326509;
 260 
 261   _OnTrap   = 0;
 262   _schedctl = NULL;
 263   _Stalled  = 0;
 264   _TypeTag  = 0x2BAD;
 265 
 266   // Many of the following fields are effectively final - immutable
 267   // Note that nascent threads can't use the Native Monitor-Mutex
 268   // construct until the _MutexEvent is initialized ...
 269   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 270   // we might instead use a stack of ParkEvents that we could provision on-demand.
 271   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 272   // and ::Release()
 273   _ParkEvent   = ParkEvent::Allocate(this);
 274   _SleepEvent  = ParkEvent::Allocate(this);
 275   _MutexEvent  = ParkEvent::Allocate(this);
 276   _MuxEvent    = ParkEvent::Allocate(this);
 277 
 278 #ifdef CHECK_UNHANDLED_OOPS
 279   if (CheckUnhandledOops) {
 280     _unhandled_oops = new UnhandledOops(this);
 281   }
 282 #endif // CHECK_UNHANDLED_OOPS
 283 #ifdef ASSERT
 284   if (UseBiasedLocking) {
 285     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 286     assert(this == _real_malloc_address ||
 287            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 288            "bug in forced alignment of thread objects");
 289   }
 290 #endif // ASSERT
 291 }
 292 
 293 void Thread::initialize_thread_current() {
 294 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 295   assert(_thr_current == NULL, "Thread::current already initialized");
 296   _thr_current = this;
 297 #endif
 298   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 299   ThreadLocalStorage::set_thread(this);
 300   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 301 }
 302 
 303 void Thread::clear_thread_current() {
 304   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 305 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 306   _thr_current = NULL;
 307 #endif
 308   ThreadLocalStorage::set_thread(NULL);
 309 }
 310 
 311 void Thread::record_stack_base_and_size() {
 312   set_stack_base(os::current_stack_base());
 313   set_stack_size(os::current_stack_size());
 314   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 315   // in initialize_thread(). Without the adjustment, stack size is
 316   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 317   // So far, only Solaris has real implementation of initialize_thread().
 318   //
 319   // set up any platform-specific state.
 320   os::initialize_thread(this);
 321 
 322   // Set stack limits after thread is initialized.
 323   if (is_Java_thread()) {
 324     ((JavaThread*) this)->set_stack_overflow_limit();
 325     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 326   }
 327 #if INCLUDE_NMT
 328   // record thread's native stack, stack grows downward
 329   MemTracker::record_thread_stack(stack_end(), stack_size());
 330 #endif // INCLUDE_NMT
 331   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 332     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 333     os::current_thread_id(), p2i(stack_base() - stack_size()),
 334     p2i(stack_base()), stack_size()/1024);
 335 }
 336 
 337 
 338 Thread::~Thread() {
 339   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 340   ObjectSynchronizer::omFlush(this);
 341 
 342   EVENT_THREAD_DESTRUCT(this);
 343 
 344   // stack_base can be NULL if the thread is never started or exited before
 345   // record_stack_base_and_size called. Although, we would like to ensure
 346   // that all started threads do call record_stack_base_and_size(), there is
 347   // not proper way to enforce that.
 348 #if INCLUDE_NMT
 349   if (_stack_base != NULL) {
 350     MemTracker::release_thread_stack(stack_end(), stack_size());
 351 #ifdef ASSERT
 352     set_stack_base(NULL);
 353 #endif
 354   }
 355 #endif // INCLUDE_NMT
 356 
 357   // deallocate data structures
 358   delete resource_area();
 359   // since the handle marks are using the handle area, we have to deallocated the root
 360   // handle mark before deallocating the thread's handle area,
 361   assert(last_handle_mark() != NULL, "check we have an element");
 362   delete last_handle_mark();
 363   assert(last_handle_mark() == NULL, "check we have reached the end");
 364 
 365   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 366   // We NULL out the fields for good hygiene.
 367   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 368   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 369   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 370   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 371 
 372   delete handle_area();
 373   delete metadata_handles();
 374 
 375   // SR_handler uses this as a termination indicator -
 376   // needs to happen before os::free_thread()
 377   delete _SR_lock;
 378   _SR_lock = NULL;
 379 
 380   // osthread() can be NULL, if creation of thread failed.
 381   if (osthread() != NULL) os::free_thread(osthread());
 382 
 383   // clear Thread::current if thread is deleting itself.
 384   // Needed to ensure JNI correctly detects non-attached threads.
 385   if (this == Thread::current()) {
 386     clear_thread_current();
 387   }
 388 
 389   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 390 }
 391 
 392 // NOTE: dummy function for assertion purpose.
 393 void Thread::run() {
 394   ShouldNotReachHere();
 395 }
 396 
 397 #ifdef ASSERT
 398 // Private method to check for dangling thread pointer
 399 void check_for_dangling_thread_pointer(Thread *thread) {
 400   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 401          "possibility of dangling Thread pointer");
 402 }
 403 #endif
 404 
 405 ThreadPriority Thread::get_priority(const Thread* const thread) {
 406   ThreadPriority priority;
 407   // Can return an error!
 408   (void)os::get_priority(thread, priority);
 409   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 410   return priority;
 411 }
 412 
 413 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 414   debug_only(check_for_dangling_thread_pointer(thread);)
 415   // Can return an error!
 416   (void)os::set_priority(thread, priority);
 417 }
 418 
 419 
 420 void Thread::start(Thread* thread) {
 421   // Start is different from resume in that its safety is guaranteed by context or
 422   // being called from a Java method synchronized on the Thread object.
 423   if (!DisableStartThread) {
 424     if (thread->is_Java_thread()) {
 425       // Initialize the thread state to RUNNABLE before starting this thread.
 426       // Can not set it after the thread started because we do not know the
 427       // exact thread state at that time. It could be in MONITOR_WAIT or
 428       // in SLEEPING or some other state.
 429       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 430                                           java_lang_Thread::RUNNABLE);
 431     }
 432     os::start_thread(thread);
 433   }
 434 }
 435 
 436 // Enqueue a VM_Operation to do the job for us - sometime later
 437 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 438   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 439   VMThread::execute(vm_stop);
 440 }
 441 
 442 
 443 // Check if an external suspend request has completed (or has been
 444 // cancelled). Returns true if the thread is externally suspended and
 445 // false otherwise.
 446 //
 447 // The bits parameter returns information about the code path through
 448 // the routine. Useful for debugging:
 449 //
 450 // set in is_ext_suspend_completed():
 451 // 0x00000001 - routine was entered
 452 // 0x00000010 - routine return false at end
 453 // 0x00000100 - thread exited (return false)
 454 // 0x00000200 - suspend request cancelled (return false)
 455 // 0x00000400 - thread suspended (return true)
 456 // 0x00001000 - thread is in a suspend equivalent state (return true)
 457 // 0x00002000 - thread is native and walkable (return true)
 458 // 0x00004000 - thread is native_trans and walkable (needed retry)
 459 //
 460 // set in wait_for_ext_suspend_completion():
 461 // 0x00010000 - routine was entered
 462 // 0x00020000 - suspend request cancelled before loop (return false)
 463 // 0x00040000 - thread suspended before loop (return true)
 464 // 0x00080000 - suspend request cancelled in loop (return false)
 465 // 0x00100000 - thread suspended in loop (return true)
 466 // 0x00200000 - suspend not completed during retry loop (return false)
 467 
 468 // Helper class for tracing suspend wait debug bits.
 469 //
 470 // 0x00000100 indicates that the target thread exited before it could
 471 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 472 // 0x00080000 each indicate a cancelled suspend request so they don't
 473 // count as wait failures either.
 474 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 475 
 476 class TraceSuspendDebugBits : public StackObj {
 477  private:
 478   JavaThread * jt;
 479   bool         is_wait;
 480   bool         called_by_wait;  // meaningful when !is_wait
 481   uint32_t *   bits;
 482 
 483  public:
 484   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 485                         uint32_t *_bits) {
 486     jt             = _jt;
 487     is_wait        = _is_wait;
 488     called_by_wait = _called_by_wait;
 489     bits           = _bits;
 490   }
 491 
 492   ~TraceSuspendDebugBits() {
 493     if (!is_wait) {
 494 #if 1
 495       // By default, don't trace bits for is_ext_suspend_completed() calls.
 496       // That trace is very chatty.
 497       return;
 498 #else
 499       if (!called_by_wait) {
 500         // If tracing for is_ext_suspend_completed() is enabled, then only
 501         // trace calls to it from wait_for_ext_suspend_completion()
 502         return;
 503       }
 504 #endif
 505     }
 506 
 507     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 508       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 509         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 510         ResourceMark rm;
 511 
 512         tty->print_cr(
 513                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 514                       jt->get_thread_name(), *bits);
 515 
 516         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 517       }
 518     }
 519   }
 520 };
 521 #undef DEBUG_FALSE_BITS
 522 
 523 
 524 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 525                                           uint32_t *bits) {
 526   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 527 
 528   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 529   bool do_trans_retry;           // flag to force the retry
 530 
 531   *bits |= 0x00000001;
 532 
 533   do {
 534     do_trans_retry = false;
 535 
 536     if (is_exiting()) {
 537       // Thread is in the process of exiting. This is always checked
 538       // first to reduce the risk of dereferencing a freed JavaThread.
 539       *bits |= 0x00000100;
 540       return false;
 541     }
 542 
 543     if (!is_external_suspend()) {
 544       // Suspend request is cancelled. This is always checked before
 545       // is_ext_suspended() to reduce the risk of a rogue resume
 546       // confusing the thread that made the suspend request.
 547       *bits |= 0x00000200;
 548       return false;
 549     }
 550 
 551     if (is_ext_suspended()) {
 552       // thread is suspended
 553       *bits |= 0x00000400;
 554       return true;
 555     }
 556 
 557     // Now that we no longer do hard suspends of threads running
 558     // native code, the target thread can be changing thread state
 559     // while we are in this routine:
 560     //
 561     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 562     //
 563     // We save a copy of the thread state as observed at this moment
 564     // and make our decision about suspend completeness based on the
 565     // copy. This closes the race where the thread state is seen as
 566     // _thread_in_native_trans in the if-thread_blocked check, but is
 567     // seen as _thread_blocked in if-thread_in_native_trans check.
 568     JavaThreadState save_state = thread_state();
 569 
 570     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 571       // If the thread's state is _thread_blocked and this blocking
 572       // condition is known to be equivalent to a suspend, then we can
 573       // consider the thread to be externally suspended. This means that
 574       // the code that sets _thread_blocked has been modified to do
 575       // self-suspension if the blocking condition releases. We also
 576       // used to check for CONDVAR_WAIT here, but that is now covered by
 577       // the _thread_blocked with self-suspension check.
 578       //
 579       // Return true since we wouldn't be here unless there was still an
 580       // external suspend request.
 581       *bits |= 0x00001000;
 582       return true;
 583     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 584       // Threads running native code will self-suspend on native==>VM/Java
 585       // transitions. If its stack is walkable (should always be the case
 586       // unless this function is called before the actual java_suspend()
 587       // call), then the wait is done.
 588       *bits |= 0x00002000;
 589       return true;
 590     } else if (!called_by_wait && !did_trans_retry &&
 591                save_state == _thread_in_native_trans &&
 592                frame_anchor()->walkable()) {
 593       // The thread is transitioning from thread_in_native to another
 594       // thread state. check_safepoint_and_suspend_for_native_trans()
 595       // will force the thread to self-suspend. If it hasn't gotten
 596       // there yet we may have caught the thread in-between the native
 597       // code check above and the self-suspend. Lucky us. If we were
 598       // called by wait_for_ext_suspend_completion(), then it
 599       // will be doing the retries so we don't have to.
 600       //
 601       // Since we use the saved thread state in the if-statement above,
 602       // there is a chance that the thread has already transitioned to
 603       // _thread_blocked by the time we get here. In that case, we will
 604       // make a single unnecessary pass through the logic below. This
 605       // doesn't hurt anything since we still do the trans retry.
 606 
 607       *bits |= 0x00004000;
 608 
 609       // Once the thread leaves thread_in_native_trans for another
 610       // thread state, we break out of this retry loop. We shouldn't
 611       // need this flag to prevent us from getting back here, but
 612       // sometimes paranoia is good.
 613       did_trans_retry = true;
 614 
 615       // We wait for the thread to transition to a more usable state.
 616       for (int i = 1; i <= SuspendRetryCount; i++) {
 617         // We used to do an "os::yield_all(i)" call here with the intention
 618         // that yielding would increase on each retry. However, the parameter
 619         // is ignored on Linux which means the yield didn't scale up. Waiting
 620         // on the SR_lock below provides a much more predictable scale up for
 621         // the delay. It also provides a simple/direct point to check for any
 622         // safepoint requests from the VMThread
 623 
 624         // temporarily drops SR_lock while doing wait with safepoint check
 625         // (if we're a JavaThread - the WatcherThread can also call this)
 626         // and increase delay with each retry
 627         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 628 
 629         // check the actual thread state instead of what we saved above
 630         if (thread_state() != _thread_in_native_trans) {
 631           // the thread has transitioned to another thread state so
 632           // try all the checks (except this one) one more time.
 633           do_trans_retry = true;
 634           break;
 635         }
 636       } // end retry loop
 637 
 638 
 639     }
 640   } while (do_trans_retry);
 641 
 642   *bits |= 0x00000010;
 643   return false;
 644 }
 645 
 646 // Wait for an external suspend request to complete (or be cancelled).
 647 // Returns true if the thread is externally suspended and false otherwise.
 648 //
 649 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 650                                                  uint32_t *bits) {
 651   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 652                              false /* !called_by_wait */, bits);
 653 
 654   // local flag copies to minimize SR_lock hold time
 655   bool is_suspended;
 656   bool pending;
 657   uint32_t reset_bits;
 658 
 659   // set a marker so is_ext_suspend_completed() knows we are the caller
 660   *bits |= 0x00010000;
 661 
 662   // We use reset_bits to reinitialize the bits value at the top of
 663   // each retry loop. This allows the caller to make use of any
 664   // unused bits for their own marking purposes.
 665   reset_bits = *bits;
 666 
 667   {
 668     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 669     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 670                                             delay, bits);
 671     pending = is_external_suspend();
 672   }
 673   // must release SR_lock to allow suspension to complete
 674 
 675   if (!pending) {
 676     // A cancelled suspend request is the only false return from
 677     // is_ext_suspend_completed() that keeps us from entering the
 678     // retry loop.
 679     *bits |= 0x00020000;
 680     return false;
 681   }
 682 
 683   if (is_suspended) {
 684     *bits |= 0x00040000;
 685     return true;
 686   }
 687 
 688   for (int i = 1; i <= retries; i++) {
 689     *bits = reset_bits;  // reinit to only track last retry
 690 
 691     // We used to do an "os::yield_all(i)" call here with the intention
 692     // that yielding would increase on each retry. However, the parameter
 693     // is ignored on Linux which means the yield didn't scale up. Waiting
 694     // on the SR_lock below provides a much more predictable scale up for
 695     // the delay. It also provides a simple/direct point to check for any
 696     // safepoint requests from the VMThread
 697 
 698     {
 699       MutexLocker ml(SR_lock());
 700       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 701       // can also call this)  and increase delay with each retry
 702       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 703 
 704       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 705                                               delay, bits);
 706 
 707       // It is possible for the external suspend request to be cancelled
 708       // (by a resume) before the actual suspend operation is completed.
 709       // Refresh our local copy to see if we still need to wait.
 710       pending = is_external_suspend();
 711     }
 712 
 713     if (!pending) {
 714       // A cancelled suspend request is the only false return from
 715       // is_ext_suspend_completed() that keeps us from staying in the
 716       // retry loop.
 717       *bits |= 0x00080000;
 718       return false;
 719     }
 720 
 721     if (is_suspended) {
 722       *bits |= 0x00100000;
 723       return true;
 724     }
 725   } // end retry loop
 726 
 727   // thread did not suspend after all our retries
 728   *bits |= 0x00200000;
 729   return false;
 730 }
 731 
 732 #ifndef PRODUCT
 733 void JavaThread::record_jump(address target, address instr, const char* file,
 734                              int line) {
 735 
 736   // This should not need to be atomic as the only way for simultaneous
 737   // updates is via interrupts. Even then this should be rare or non-existent
 738   // and we don't care that much anyway.
 739 
 740   int index = _jmp_ring_index;
 741   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 742   _jmp_ring[index]._target = (intptr_t) target;
 743   _jmp_ring[index]._instruction = (intptr_t) instr;
 744   _jmp_ring[index]._file = file;
 745   _jmp_ring[index]._line = line;
 746 }
 747 #endif // PRODUCT
 748 
 749 // Called by flat profiler
 750 // Callers have already called wait_for_ext_suspend_completion
 751 // The assertion for that is currently too complex to put here:
 752 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 753   bool gotframe = false;
 754   // self suspension saves needed state.
 755   if (has_last_Java_frame() && _anchor.walkable()) {
 756     *_fr = pd_last_frame();
 757     gotframe = true;
 758   }
 759   return gotframe;
 760 }
 761 
 762 void Thread::interrupt(Thread* thread) {
 763   debug_only(check_for_dangling_thread_pointer(thread);)
 764   os::interrupt(thread);
 765 }
 766 
 767 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 768   debug_only(check_for_dangling_thread_pointer(thread);)
 769   // Note:  If clear_interrupted==false, this simply fetches and
 770   // returns the value of the field osthread()->interrupted().
 771   return os::is_interrupted(thread, clear_interrupted);
 772 }
 773 
 774 
 775 // GC Support
 776 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 777   jint thread_parity = _oops_do_parity;
 778   if (thread_parity != strong_roots_parity) {
 779     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 780     if (res == thread_parity) {
 781       return true;
 782     } else {
 783       guarantee(res == strong_roots_parity, "Or else what?");
 784       return false;
 785     }
 786   }
 787   return false;
 788 }
 789 
 790 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 791   active_handles()->oops_do(f);
 792   // Do oop for ThreadShadow
 793   f->do_oop((oop*)&_pending_exception);
 794   handle_area()->oops_do(f);
 795 }
 796 
 797 void Thread::metadata_handles_do(void f(Metadata*)) {
 798   // Only walk the Handles in Thread.
 799   if (metadata_handles() != NULL) {
 800     for (int i = 0; i< metadata_handles()->length(); i++) {
 801       f(metadata_handles()->at(i));
 802     }
 803   }
 804 }
 805 
 806 void Thread::print_on(outputStream* st) const {
 807   // get_priority assumes osthread initialized
 808   if (osthread() != NULL) {
 809     int os_prio;
 810     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 811       st->print("os_prio=%d ", os_prio);
 812     }
 813     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 814     ext().print_on(st);
 815     osthread()->print_on(st);
 816   }
 817   debug_only(if (WizardMode) print_owned_locks_on(st);)
 818 }
 819 
 820 // Thread::print_on_error() is called by fatal error handler. Don't use
 821 // any lock or allocate memory.
 822 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 823   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 824 
 825   if (is_VM_thread())                 { st->print("VMThread"); }
 826   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 827   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 828   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 829   else                                { st->print("Thread"); }
 830 
 831   if (is_Named_thread()) {
 832     st->print(" \"%s\"", name());
 833   }
 834 
 835   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 836             p2i(stack_end()), p2i(stack_base()));
 837 
 838   if (osthread()) {
 839     st->print(" [id=%d]", osthread()->thread_id());
 840   }
 841 }
 842 
 843 #ifdef ASSERT
 844 void Thread::print_owned_locks_on(outputStream* st) const {
 845   Monitor *cur = _owned_locks;
 846   if (cur == NULL) {
 847     st->print(" (no locks) ");
 848   } else {
 849     st->print_cr(" Locks owned:");
 850     while (cur) {
 851       cur->print_on(st);
 852       cur = cur->next();
 853     }
 854   }
 855 }
 856 
 857 static int ref_use_count  = 0;
 858 
 859 bool Thread::owns_locks_but_compiled_lock() const {
 860   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 861     if (cur != Compile_lock) return true;
 862   }
 863   return false;
 864 }
 865 
 866 
 867 #endif
 868 
 869 #ifndef PRODUCT
 870 
 871 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 872 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 873 // no threads which allow_vm_block's are held
 874 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 875   // Check if current thread is allowed to block at a safepoint
 876   if (!(_allow_safepoint_count == 0)) {
 877     fatal("Possible safepoint reached by thread that does not allow it");
 878   }
 879   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 880     fatal("LEAF method calling lock?");
 881   }
 882 
 883 #ifdef ASSERT
 884   if (potential_vm_operation && is_Java_thread()
 885       && !Universe::is_bootstrapping()) {
 886     // Make sure we do not hold any locks that the VM thread also uses.
 887     // This could potentially lead to deadlocks
 888     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 889       // Threads_lock is special, since the safepoint synchronization will not start before this is
 890       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 891       // since it is used to transfer control between JavaThreads and the VMThread
 892       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 893       if ((cur->allow_vm_block() &&
 894            cur != Threads_lock &&
 895            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 896            cur != VMOperationRequest_lock &&
 897            cur != VMOperationQueue_lock) ||
 898            cur->rank() == Mutex::special) {
 899         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 900       }
 901     }
 902   }
 903 
 904   if (GCALotAtAllSafepoints) {
 905     // We could enter a safepoint here and thus have a gc
 906     InterfaceSupport::check_gc_alot();
 907   }
 908 #endif
 909 }
 910 #endif
 911 
 912 bool Thread::is_in_stack(address adr) const {
 913   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 914   address end = os::current_stack_pointer();
 915   // Allow non Java threads to call this without stack_base
 916   if (_stack_base == NULL) return true;
 917   if (stack_base() >= adr && adr >= end) return true;
 918 
 919   return false;
 920 }
 921 
 922 bool Thread::is_in_usable_stack(address adr) const {
 923   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 924   size_t usable_stack_size = _stack_size - stack_guard_size;
 925 
 926   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 927 }
 928 
 929 
 930 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 931 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 932 // used for compilation in the future. If that change is made, the need for these methods
 933 // should be revisited, and they should be removed if possible.
 934 
 935 bool Thread::is_lock_owned(address adr) const {
 936   return on_local_stack(adr);
 937 }
 938 
 939 bool Thread::set_as_starting_thread() {
 940   // NOTE: this must be called inside the main thread.
 941   return os::create_main_thread((JavaThread*)this);
 942 }
 943 
 944 static void initialize_class(Symbol* class_name, TRAPS) {
 945   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 946   InstanceKlass::cast(klass)->initialize(CHECK);
 947 }
 948 
 949 
 950 // Creates the initial ThreadGroup
 951 static Handle create_initial_thread_group(TRAPS) {
 952   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 953   instanceKlassHandle klass (THREAD, k);
 954 
 955   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 956   {
 957     JavaValue result(T_VOID);
 958     JavaCalls::call_special(&result,
 959                             system_instance,
 960                             klass,
 961                             vmSymbols::object_initializer_name(),
 962                             vmSymbols::void_method_signature(),
 963                             CHECK_NH);
 964   }
 965   Universe::set_system_thread_group(system_instance());
 966 
 967   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 968   {
 969     JavaValue result(T_VOID);
 970     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 971     JavaCalls::call_special(&result,
 972                             main_instance,
 973                             klass,
 974                             vmSymbols::object_initializer_name(),
 975                             vmSymbols::threadgroup_string_void_signature(),
 976                             system_instance,
 977                             string,
 978                             CHECK_NH);
 979   }
 980   return main_instance;
 981 }
 982 
 983 // Creates the initial Thread
 984 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 985                                  TRAPS) {
 986   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 987   instanceKlassHandle klass (THREAD, k);
 988   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 989 
 990   java_lang_Thread::set_thread(thread_oop(), thread);
 991   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 992   thread->set_threadObj(thread_oop());
 993 
 994   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 995 
 996   JavaValue result(T_VOID);
 997   JavaCalls::call_special(&result, thread_oop,
 998                           klass,
 999                           vmSymbols::object_initializer_name(),
1000                           vmSymbols::threadgroup_string_void_signature(),
1001                           thread_group,
1002                           string,
1003                           CHECK_NULL);
1004   return thread_oop();
1005 }
1006 
1007 char java_runtime_name[128] = "";
1008 char java_runtime_version[128] = "";
1009 
1010 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1011 static const char* get_java_runtime_name(TRAPS) {
1012   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1013                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1014   fieldDescriptor fd;
1015   bool found = k != NULL &&
1016                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1017                                                         vmSymbols::string_signature(), &fd);
1018   if (found) {
1019     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1020     if (name_oop == NULL) {
1021       return NULL;
1022     }
1023     const char* name = java_lang_String::as_utf8_string(name_oop,
1024                                                         java_runtime_name,
1025                                                         sizeof(java_runtime_name));
1026     return name;
1027   } else {
1028     return NULL;
1029   }
1030 }
1031 
1032 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1033 static const char* get_java_runtime_version(TRAPS) {
1034   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1035                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1036   fieldDescriptor fd;
1037   bool found = k != NULL &&
1038                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1039                                                         vmSymbols::string_signature(), &fd);
1040   if (found) {
1041     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1042     if (name_oop == NULL) {
1043       return NULL;
1044     }
1045     const char* name = java_lang_String::as_utf8_string(name_oop,
1046                                                         java_runtime_version,
1047                                                         sizeof(java_runtime_version));
1048     return name;
1049   } else {
1050     return NULL;
1051   }
1052 }
1053 
1054 // General purpose hook into Java code, run once when the VM is initialized.
1055 // The Java library method itself may be changed independently from the VM.
1056 static void call_postVMInitHook(TRAPS) {
1057   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1058   instanceKlassHandle klass (THREAD, k);
1059   if (klass.not_null()) {
1060     JavaValue result(T_VOID);
1061     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1062                            vmSymbols::void_method_signature(),
1063                            CHECK);
1064   }
1065 }
1066 
1067 static void reset_vm_info_property(TRAPS) {
1068   // the vm info string
1069   ResourceMark rm(THREAD);
1070   const char *vm_info = VM_Version::vm_info_string();
1071 
1072   // java.lang.System class
1073   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1074   instanceKlassHandle klass (THREAD, k);
1075 
1076   // setProperty arguments
1077   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1078   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1079 
1080   // return value
1081   JavaValue r(T_OBJECT);
1082 
1083   // public static String setProperty(String key, String value);
1084   JavaCalls::call_static(&r,
1085                          klass,
1086                          vmSymbols::setProperty_name(),
1087                          vmSymbols::string_string_string_signature(),
1088                          key_str,
1089                          value_str,
1090                          CHECK);
1091 }
1092 
1093 
1094 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1095                                     bool daemon, TRAPS) {
1096   assert(thread_group.not_null(), "thread group should be specified");
1097   assert(threadObj() == NULL, "should only create Java thread object once");
1098 
1099   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1100   instanceKlassHandle klass (THREAD, k);
1101   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1102 
1103   java_lang_Thread::set_thread(thread_oop(), this);
1104   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1105   set_threadObj(thread_oop());
1106 
1107   JavaValue result(T_VOID);
1108   if (thread_name != NULL) {
1109     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1110     // Thread gets assigned specified name and null target
1111     JavaCalls::call_special(&result,
1112                             thread_oop,
1113                             klass,
1114                             vmSymbols::object_initializer_name(),
1115                             vmSymbols::threadgroup_string_void_signature(),
1116                             thread_group, // Argument 1
1117                             name,         // Argument 2
1118                             THREAD);
1119   } else {
1120     // Thread gets assigned name "Thread-nnn" and null target
1121     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1122     JavaCalls::call_special(&result,
1123                             thread_oop,
1124                             klass,
1125                             vmSymbols::object_initializer_name(),
1126                             vmSymbols::threadgroup_runnable_void_signature(),
1127                             thread_group, // Argument 1
1128                             Handle(),     // Argument 2
1129                             THREAD);
1130   }
1131 
1132 
1133   if (daemon) {
1134     java_lang_Thread::set_daemon(thread_oop());
1135   }
1136 
1137   if (HAS_PENDING_EXCEPTION) {
1138     return;
1139   }
1140 
1141   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1142   Handle threadObj(THREAD, this->threadObj());
1143 
1144   JavaCalls::call_special(&result,
1145                           thread_group,
1146                           group,
1147                           vmSymbols::add_method_name(),
1148                           vmSymbols::thread_void_signature(),
1149                           threadObj,          // Arg 1
1150                           THREAD);
1151 }
1152 
1153 // NamedThread --  non-JavaThread subclasses with multiple
1154 // uniquely named instances should derive from this.
1155 NamedThread::NamedThread() : Thread() {
1156   _name = NULL;
1157   _processed_thread = NULL;
1158   _gc_id = GCId::undefined();
1159 }
1160 
1161 NamedThread::~NamedThread() {
1162   if (_name != NULL) {
1163     FREE_C_HEAP_ARRAY(char, _name);
1164     _name = NULL;
1165   }
1166 }
1167 
1168 void NamedThread::set_name(const char* format, ...) {
1169   guarantee(_name == NULL, "Only get to set name once.");
1170   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1171   guarantee(_name != NULL, "alloc failure");
1172   va_list ap;
1173   va_start(ap, format);
1174   jio_vsnprintf(_name, max_name_len, format, ap);
1175   va_end(ap);
1176 }
1177 
1178 void NamedThread::initialize_named_thread() {
1179   set_native_thread_name(name());
1180 }
1181 
1182 void NamedThread::print_on(outputStream* st) const {
1183   st->print("\"%s\" ", name());
1184   Thread::print_on(st);
1185   st->cr();
1186 }
1187 
1188 
1189 // ======= WatcherThread ========
1190 
1191 // The watcher thread exists to simulate timer interrupts.  It should
1192 // be replaced by an abstraction over whatever native support for
1193 // timer interrupts exists on the platform.
1194 
1195 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1196 bool WatcherThread::_startable = false;
1197 volatile bool  WatcherThread::_should_terminate = false;
1198 
1199 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1200   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1201   if (os::create_thread(this, os::watcher_thread)) {
1202     _watcher_thread = this;
1203 
1204     // Set the watcher thread to the highest OS priority which should not be
1205     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1206     // is created. The only normal thread using this priority is the reference
1207     // handler thread, which runs for very short intervals only.
1208     // If the VMThread's priority is not lower than the WatcherThread profiling
1209     // will be inaccurate.
1210     os::set_priority(this, MaxPriority);
1211     if (!DisableStartThread) {
1212       os::start_thread(this);
1213     }
1214   }
1215 }
1216 
1217 int WatcherThread::sleep() const {
1218   // The WatcherThread does not participate in the safepoint protocol
1219   // for the PeriodicTask_lock because it is not a JavaThread.
1220   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1221 
1222   if (_should_terminate) {
1223     // check for termination before we do any housekeeping or wait
1224     return 0;  // we did not sleep.
1225   }
1226 
1227   // remaining will be zero if there are no tasks,
1228   // causing the WatcherThread to sleep until a task is
1229   // enrolled
1230   int remaining = PeriodicTask::time_to_wait();
1231   int time_slept = 0;
1232 
1233   // we expect this to timeout - we only ever get unparked when
1234   // we should terminate or when a new task has been enrolled
1235   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1236 
1237   jlong time_before_loop = os::javaTimeNanos();
1238 
1239   while (true) {
1240     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1241                                             remaining);
1242     jlong now = os::javaTimeNanos();
1243 
1244     if (remaining == 0) {
1245       // if we didn't have any tasks we could have waited for a long time
1246       // consider the time_slept zero and reset time_before_loop
1247       time_slept = 0;
1248       time_before_loop = now;
1249     } else {
1250       // need to recalculate since we might have new tasks in _tasks
1251       time_slept = (int) ((now - time_before_loop) / 1000000);
1252     }
1253 
1254     // Change to task list or spurious wakeup of some kind
1255     if (timedout || _should_terminate) {
1256       break;
1257     }
1258 
1259     remaining = PeriodicTask::time_to_wait();
1260     if (remaining == 0) {
1261       // Last task was just disenrolled so loop around and wait until
1262       // another task gets enrolled
1263       continue;
1264     }
1265 
1266     remaining -= time_slept;
1267     if (remaining <= 0) {
1268       break;
1269     }
1270   }
1271 
1272   return time_slept;
1273 }
1274 
1275 void WatcherThread::run() {
1276   assert(this == watcher_thread(), "just checking");
1277 
1278   this->record_stack_base_and_size();
1279   this->set_native_thread_name(this->name());
1280   this->set_active_handles(JNIHandleBlock::allocate_block());
1281   while (true) {
1282     assert(watcher_thread() == Thread::current(), "thread consistency check");
1283     assert(watcher_thread() == this, "thread consistency check");
1284 
1285     // Calculate how long it'll be until the next PeriodicTask work
1286     // should be done, and sleep that amount of time.
1287     int time_waited = sleep();
1288 
1289     if (is_error_reported()) {
1290       // A fatal error has happened, the error handler(VMError::report_and_die)
1291       // should abort JVM after creating an error log file. However in some
1292       // rare cases, the error handler itself might deadlock. Here periodically
1293       // check for error reporting timeouts, and if it happens, just proceed to
1294       // abort the VM.
1295 
1296       // This code is in WatcherThread because WatcherThread wakes up
1297       // periodically so the fatal error handler doesn't need to do anything;
1298       // also because the WatcherThread is less likely to crash than other
1299       // threads.
1300 
1301       for (;;) {
1302         // Note: we use naked sleep in this loop because we want to avoid using
1303         // any kind of VM infrastructure which may be broken at this point.
1304         if (VMError::check_timeout()) {
1305           // We hit error reporting timeout. Error reporting was interrupted and
1306           // will be wrapping things up now (closing files etc). Give it some more
1307           // time, then quit the VM.
1308           os::naked_short_sleep(200);
1309           // Print a message to stderr.
1310           fdStream err(defaultStream::output_fd());
1311           err.print_raw_cr("# [ timer expired, abort... ]");
1312           // skip atexit/vm_exit/vm_abort hooks
1313           os::die();
1314         }
1315 
1316         // Wait a second, then recheck for timeout.
1317         os::naked_short_sleep(999);
1318       }
1319     }
1320 
1321     if (_should_terminate) {
1322       // check for termination before posting the next tick
1323       break;
1324     }
1325 
1326     PeriodicTask::real_time_tick(time_waited);
1327   }
1328 
1329   // Signal that it is terminated
1330   {
1331     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1332     _watcher_thread = NULL;
1333     Terminator_lock->notify();
1334   }
1335 }
1336 
1337 void WatcherThread::start() {
1338   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1339 
1340   if (watcher_thread() == NULL && _startable) {
1341     _should_terminate = false;
1342     // Create the single instance of WatcherThread
1343     new WatcherThread();
1344   }
1345 }
1346 
1347 void WatcherThread::make_startable() {
1348   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1349   _startable = true;
1350 }
1351 
1352 void WatcherThread::stop() {
1353   {
1354     // Follow normal safepoint aware lock enter protocol since the
1355     // WatcherThread is stopped by another JavaThread.
1356     MutexLocker ml(PeriodicTask_lock);
1357     _should_terminate = true;
1358 
1359     WatcherThread* watcher = watcher_thread();
1360     if (watcher != NULL) {
1361       // unpark the WatcherThread so it can see that it should terminate
1362       watcher->unpark();
1363     }
1364   }
1365 
1366   MutexLocker mu(Terminator_lock);
1367 
1368   while (watcher_thread() != NULL) {
1369     // This wait should make safepoint checks, wait without a timeout,
1370     // and wait as a suspend-equivalent condition.
1371     //
1372     // Note: If the FlatProfiler is running, then this thread is waiting
1373     // for the WatcherThread to terminate and the WatcherThread, via the
1374     // FlatProfiler task, is waiting for the external suspend request on
1375     // this thread to complete. wait_for_ext_suspend_completion() will
1376     // eventually timeout, but that takes time. Making this wait a
1377     // suspend-equivalent condition solves that timeout problem.
1378     //
1379     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1380                           Mutex::_as_suspend_equivalent_flag);
1381   }
1382 }
1383 
1384 void WatcherThread::unpark() {
1385   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1386   PeriodicTask_lock->notify();
1387 }
1388 
1389 void WatcherThread::print_on(outputStream* st) const {
1390   st->print("\"%s\" ", name());
1391   Thread::print_on(st);
1392   st->cr();
1393 }
1394 
1395 // ======= JavaThread ========
1396 
1397 #if INCLUDE_JVMCI
1398 
1399 jlong* JavaThread::_jvmci_old_thread_counters;
1400 
1401 bool jvmci_counters_include(JavaThread* thread) {
1402   oop threadObj = thread->threadObj();
1403   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1404 }
1405 
1406 void JavaThread::collect_counters(typeArrayOop array) {
1407   if (JVMCICounterSize > 0) {
1408     MutexLocker tl(Threads_lock);
1409     for (int i = 0; i < array->length(); i++) {
1410       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1411     }
1412     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1413       if (jvmci_counters_include(tp)) {
1414         for (int i = 0; i < array->length(); i++) {
1415           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1416         }
1417       }
1418     }
1419   }
1420 }
1421 
1422 #endif // INCLUDE_JVMCI
1423 
1424 // A JavaThread is a normal Java thread
1425 
1426 void JavaThread::initialize() {
1427   // Initialize fields
1428 
1429   set_saved_exception_pc(NULL);
1430   set_threadObj(NULL);
1431   _anchor.clear();
1432   set_entry_point(NULL);
1433   set_jni_functions(jni_functions());
1434   set_callee_target(NULL);
1435   set_vm_result(NULL);
1436   set_vm_result_2(NULL);
1437   set_vframe_array_head(NULL);
1438   set_vframe_array_last(NULL);
1439   set_deferred_locals(NULL);
1440   set_deopt_mark(NULL);
1441   set_deopt_compiled_method(NULL);
1442   clear_must_deopt_id();
1443   set_monitor_chunks(NULL);
1444   set_next(NULL);
1445   set_thread_state(_thread_new);
1446   _terminated = _not_terminated;
1447   _privileged_stack_top = NULL;
1448   _array_for_gc = NULL;
1449   _suspend_equivalent = false;
1450   _in_deopt_handler = 0;
1451   _doing_unsafe_access = false;
1452   _stack_guard_state = stack_guard_unused;
1453 #if INCLUDE_JVMCI
1454   _pending_monitorenter = false;
1455   _pending_deoptimization = -1;
1456   _pending_failed_speculation = NULL;
1457   _pending_transfer_to_interpreter = false;
1458   _adjusting_comp_level = false;
1459   _jvmci._alternate_call_target = NULL;
1460   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1461   if (JVMCICounterSize > 0) {
1462     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1463     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1464   } else {
1465     _jvmci_counters = NULL;
1466   }
1467 #endif // INCLUDE_JVMCI
1468   _reserved_stack_activation = NULL;  // stack base not known yet
1469   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1470   _exception_pc  = 0;
1471   _exception_handler_pc = 0;
1472   _is_method_handle_return = 0;
1473   _jvmti_thread_state= NULL;
1474   _should_post_on_exceptions_flag = JNI_FALSE;
1475   _jvmti_get_loaded_classes_closure = NULL;
1476   _interp_only_mode    = 0;
1477   _special_runtime_exit_condition = _no_async_condition;
1478   _pending_async_exception = NULL;
1479   _thread_stat = NULL;
1480   _thread_stat = new ThreadStatistics();
1481   _blocked_on_compilation = false;
1482   _jni_active_critical = 0;
1483   _pending_jni_exception_check_fn = NULL;
1484   _do_not_unlock_if_synchronized = false;
1485   _cached_monitor_info = NULL;
1486   _parker = Parker::Allocate(this);
1487 
1488 #ifndef PRODUCT
1489   _jmp_ring_index = 0;
1490   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1491     record_jump(NULL, NULL, NULL, 0);
1492   }
1493 #endif // PRODUCT
1494 
1495   set_thread_profiler(NULL);
1496   if (FlatProfiler::is_active()) {
1497     // This is where we would decide to either give each thread it's own profiler
1498     // or use one global one from FlatProfiler,
1499     // or up to some count of the number of profiled threads, etc.
1500     ThreadProfiler* pp = new ThreadProfiler();
1501     pp->engage();
1502     set_thread_profiler(pp);
1503   }
1504 
1505   // Setup safepoint state info for this thread
1506   ThreadSafepointState::create(this);
1507 
1508   debug_only(_java_call_counter = 0);
1509 
1510   // JVMTI PopFrame support
1511   _popframe_condition = popframe_inactive;
1512   _popframe_preserved_args = NULL;
1513   _popframe_preserved_args_size = 0;
1514   _frames_to_pop_failed_realloc = 0;
1515 
1516   pd_initialize();
1517 }
1518 
1519 #if INCLUDE_ALL_GCS
1520 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1521 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1522 #endif // INCLUDE_ALL_GCS
1523 
1524 JavaThread::JavaThread(bool is_attaching_via_jni) :
1525                        Thread()
1526 #if INCLUDE_ALL_GCS
1527                        , _satb_mark_queue(&_satb_mark_queue_set),
1528                        _dirty_card_queue(&_dirty_card_queue_set)
1529 #endif // INCLUDE_ALL_GCS
1530 {
1531   initialize();
1532   if (is_attaching_via_jni) {
1533     _jni_attach_state = _attaching_via_jni;
1534   } else {
1535     _jni_attach_state = _not_attaching_via_jni;
1536   }
1537   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1538 }
1539 
1540 bool JavaThread::reguard_stack(address cur_sp) {
1541   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1542       && _stack_guard_state != stack_guard_reserved_disabled) {
1543     return true; // Stack already guarded or guard pages not needed.
1544   }
1545 
1546   if (register_stack_overflow()) {
1547     // For those architectures which have separate register and
1548     // memory stacks, we must check the register stack to see if
1549     // it has overflowed.
1550     return false;
1551   }
1552 
1553   // Java code never executes within the yellow zone: the latter is only
1554   // there to provoke an exception during stack banging.  If java code
1555   // is executing there, either StackShadowPages should be larger, or
1556   // some exception code in c1, c2 or the interpreter isn't unwinding
1557   // when it should.
1558   guarantee(cur_sp > stack_reserved_zone_base(),
1559             "not enough space to reguard - increase StackShadowPages");
1560   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1561     enable_stack_yellow_reserved_zone();
1562     if (reserved_stack_activation() != stack_base()) {
1563       set_reserved_stack_activation(stack_base());
1564     }
1565   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1566     set_reserved_stack_activation(stack_base());
1567     enable_stack_reserved_zone();
1568   }
1569   return true;
1570 }
1571 
1572 bool JavaThread::reguard_stack(void) {
1573   return reguard_stack(os::current_stack_pointer());
1574 }
1575 
1576 
1577 void JavaThread::block_if_vm_exited() {
1578   if (_terminated == _vm_exited) {
1579     // _vm_exited is set at safepoint, and Threads_lock is never released
1580     // we will block here forever
1581     Threads_lock->lock_without_safepoint_check();
1582     ShouldNotReachHere();
1583   }
1584 }
1585 
1586 
1587 // Remove this ifdef when C1 is ported to the compiler interface.
1588 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1589 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1590 
1591 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1592                        Thread()
1593 #if INCLUDE_ALL_GCS
1594                        , _satb_mark_queue(&_satb_mark_queue_set),
1595                        _dirty_card_queue(&_dirty_card_queue_set)
1596 #endif // INCLUDE_ALL_GCS
1597 {
1598   initialize();
1599   _jni_attach_state = _not_attaching_via_jni;
1600   set_entry_point(entry_point);
1601   // Create the native thread itself.
1602   // %note runtime_23
1603   os::ThreadType thr_type = os::java_thread;
1604   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1605                                                      os::java_thread;
1606   os::create_thread(this, thr_type, stack_sz);
1607   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1608   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1609   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1610   // the exception consists of creating the exception object & initializing it, initialization
1611   // will leave the VM via a JavaCall and then all locks must be unlocked).
1612   //
1613   // The thread is still suspended when we reach here. Thread must be explicit started
1614   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1615   // by calling Threads:add. The reason why this is not done here, is because the thread
1616   // object must be fully initialized (take a look at JVM_Start)
1617 }
1618 
1619 JavaThread::~JavaThread() {
1620 
1621   // JSR166 -- return the parker to the free list
1622   Parker::Release(_parker);
1623   _parker = NULL;
1624 
1625   // Free any remaining  previous UnrollBlock
1626   vframeArray* old_array = vframe_array_last();
1627 
1628   if (old_array != NULL) {
1629     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1630     old_array->set_unroll_block(NULL);
1631     delete old_info;
1632     delete old_array;
1633   }
1634 
1635   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1636   if (deferred != NULL) {
1637     // This can only happen if thread is destroyed before deoptimization occurs.
1638     assert(deferred->length() != 0, "empty array!");
1639     do {
1640       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1641       deferred->remove_at(0);
1642       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1643       delete dlv;
1644     } while (deferred->length() != 0);
1645     delete deferred;
1646   }
1647 
1648   // All Java related clean up happens in exit
1649   ThreadSafepointState::destroy(this);
1650   if (_thread_profiler != NULL) delete _thread_profiler;
1651   if (_thread_stat != NULL) delete _thread_stat;
1652 
1653 #if INCLUDE_JVMCI
1654   if (JVMCICounterSize > 0) {
1655     if (jvmci_counters_include(this)) {
1656       for (int i = 0; i < JVMCICounterSize; i++) {
1657         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1658       }
1659     }
1660     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1661   }
1662 #endif // INCLUDE_JVMCI
1663 }
1664 
1665 
1666 // The first routine called by a new Java thread
1667 void JavaThread::run() {
1668   // initialize thread-local alloc buffer related fields
1669   this->initialize_tlab();
1670 
1671   // used to test validity of stack trace backs
1672   this->record_base_of_stack_pointer();
1673 
1674   // Record real stack base and size.
1675   this->record_stack_base_and_size();
1676 
1677   this->create_stack_guard_pages();
1678 
1679   this->cache_global_variables();
1680 
1681   // Thread is now sufficient initialized to be handled by the safepoint code as being
1682   // in the VM. Change thread state from _thread_new to _thread_in_vm
1683   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1684 
1685   assert(JavaThread::current() == this, "sanity check");
1686   assert(!Thread::current()->owns_locks(), "sanity check");
1687 
1688   DTRACE_THREAD_PROBE(start, this);
1689 
1690   // This operation might block. We call that after all safepoint checks for a new thread has
1691   // been completed.
1692   this->set_active_handles(JNIHandleBlock::allocate_block());
1693 
1694   if (JvmtiExport::should_post_thread_life()) {
1695     JvmtiExport::post_thread_start(this);
1696   }
1697 
1698   EventThreadStart event;
1699   if (event.should_commit()) {
1700     event.set_thread(THREAD_TRACE_ID(this));
1701     event.commit();
1702   }
1703 
1704   // We call another function to do the rest so we are sure that the stack addresses used
1705   // from there will be lower than the stack base just computed
1706   thread_main_inner();
1707 
1708   // Note, thread is no longer valid at this point!
1709 }
1710 
1711 
1712 void JavaThread::thread_main_inner() {
1713   assert(JavaThread::current() == this, "sanity check");
1714   assert(this->threadObj() != NULL, "just checking");
1715 
1716   // Execute thread entry point unless this thread has a pending exception
1717   // or has been stopped before starting.
1718   // Note: Due to JVM_StopThread we can have pending exceptions already!
1719   if (!this->has_pending_exception() &&
1720       !java_lang_Thread::is_stillborn(this->threadObj())) {
1721     {
1722       ResourceMark rm(this);
1723       this->set_native_thread_name(this->get_thread_name());
1724     }
1725     HandleMark hm(this);
1726     this->entry_point()(this, this);
1727   }
1728 
1729   DTRACE_THREAD_PROBE(stop, this);
1730 
1731   this->exit(false);
1732   delete this;
1733 }
1734 
1735 
1736 static void ensure_join(JavaThread* thread) {
1737   // We do not need to grap the Threads_lock, since we are operating on ourself.
1738   Handle threadObj(thread, thread->threadObj());
1739   assert(threadObj.not_null(), "java thread object must exist");
1740   ObjectLocker lock(threadObj, thread);
1741   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1742   thread->clear_pending_exception();
1743   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1744   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1745   // Clear the native thread instance - this makes isAlive return false and allows the join()
1746   // to complete once we've done the notify_all below
1747   java_lang_Thread::set_thread(threadObj(), NULL);
1748   lock.notify_all(thread);
1749   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1750   thread->clear_pending_exception();
1751 }
1752 
1753 
1754 // For any new cleanup additions, please check to see if they need to be applied to
1755 // cleanup_failed_attach_current_thread as well.
1756 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1757   assert(this == JavaThread::current(), "thread consistency check");
1758 
1759   HandleMark hm(this);
1760   Handle uncaught_exception(this, this->pending_exception());
1761   this->clear_pending_exception();
1762   Handle threadObj(this, this->threadObj());
1763   assert(threadObj.not_null(), "Java thread object should be created");
1764 
1765   if (get_thread_profiler() != NULL) {
1766     get_thread_profiler()->disengage();
1767     ResourceMark rm;
1768     get_thread_profiler()->print(get_thread_name());
1769   }
1770 
1771 
1772   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1773   {
1774     EXCEPTION_MARK;
1775 
1776     CLEAR_PENDING_EXCEPTION;
1777   }
1778   if (!destroy_vm) {
1779     if (uncaught_exception.not_null()) {
1780       EXCEPTION_MARK;
1781       // Call method Thread.dispatchUncaughtException().
1782       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1783       JavaValue result(T_VOID);
1784       JavaCalls::call_virtual(&result,
1785                               threadObj, thread_klass,
1786                               vmSymbols::dispatchUncaughtException_name(),
1787                               vmSymbols::throwable_void_signature(),
1788                               uncaught_exception,
1789                               THREAD);
1790       if (HAS_PENDING_EXCEPTION) {
1791         ResourceMark rm(this);
1792         jio_fprintf(defaultStream::error_stream(),
1793                     "\nException: %s thrown from the UncaughtExceptionHandler"
1794                     " in thread \"%s\"\n",
1795                     pending_exception()->klass()->external_name(),
1796                     get_thread_name());
1797         CLEAR_PENDING_EXCEPTION;
1798       }
1799     }
1800 
1801     // Called before the java thread exit since we want to read info
1802     // from java_lang_Thread object
1803     EventThreadEnd event;
1804     if (event.should_commit()) {
1805       event.set_thread(THREAD_TRACE_ID(this));
1806       event.commit();
1807     }
1808 
1809     // Call after last event on thread
1810     EVENT_THREAD_EXIT(this);
1811 
1812     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1813     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1814     // is deprecated anyhow.
1815     if (!is_Compiler_thread()) {
1816       int count = 3;
1817       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1818         EXCEPTION_MARK;
1819         JavaValue result(T_VOID);
1820         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1821         JavaCalls::call_virtual(&result,
1822                                 threadObj, thread_klass,
1823                                 vmSymbols::exit_method_name(),
1824                                 vmSymbols::void_method_signature(),
1825                                 THREAD);
1826         CLEAR_PENDING_EXCEPTION;
1827       }
1828     }
1829     // notify JVMTI
1830     if (JvmtiExport::should_post_thread_life()) {
1831       JvmtiExport::post_thread_end(this);
1832     }
1833 
1834     // We have notified the agents that we are exiting, before we go on,
1835     // we must check for a pending external suspend request and honor it
1836     // in order to not surprise the thread that made the suspend request.
1837     while (true) {
1838       {
1839         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1840         if (!is_external_suspend()) {
1841           set_terminated(_thread_exiting);
1842           ThreadService::current_thread_exiting(this);
1843           break;
1844         }
1845         // Implied else:
1846         // Things get a little tricky here. We have a pending external
1847         // suspend request, but we are holding the SR_lock so we
1848         // can't just self-suspend. So we temporarily drop the lock
1849         // and then self-suspend.
1850       }
1851 
1852       ThreadBlockInVM tbivm(this);
1853       java_suspend_self();
1854 
1855       // We're done with this suspend request, but we have to loop around
1856       // and check again. Eventually we will get SR_lock without a pending
1857       // external suspend request and will be able to mark ourselves as
1858       // exiting.
1859     }
1860     // no more external suspends are allowed at this point
1861   } else {
1862     // before_exit() has already posted JVMTI THREAD_END events
1863   }
1864 
1865   // Notify waiters on thread object. This has to be done after exit() is called
1866   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1867   // group should have the destroyed bit set before waiters are notified).
1868   ensure_join(this);
1869   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1870 
1871   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1872   // held by this thread must be released. The spec does not distinguish
1873   // between JNI-acquired and regular Java monitors. We can only see
1874   // regular Java monitors here if monitor enter-exit matching is broken.
1875   //
1876   // Optionally release any monitors for regular JavaThread exits. This
1877   // is provided as a work around for any bugs in monitor enter-exit
1878   // matching. This can be expensive so it is not enabled by default.
1879   //
1880   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1881   // ObjectSynchronizer::release_monitors_owned_by_thread().
1882   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1883     // Sanity check even though JNI DetachCurrentThread() would have
1884     // returned JNI_ERR if there was a Java frame. JavaThread exit
1885     // should be done executing Java code by the time we get here.
1886     assert(!this->has_last_Java_frame(),
1887            "should not have a Java frame when detaching or exiting");
1888     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1889     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1890   }
1891 
1892   // These things needs to be done while we are still a Java Thread. Make sure that thread
1893   // is in a consistent state, in case GC happens
1894   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1895 
1896   if (active_handles() != NULL) {
1897     JNIHandleBlock* block = active_handles();
1898     set_active_handles(NULL);
1899     JNIHandleBlock::release_block(block);
1900   }
1901 
1902   if (free_handle_block() != NULL) {
1903     JNIHandleBlock* block = free_handle_block();
1904     set_free_handle_block(NULL);
1905     JNIHandleBlock::release_block(block);
1906   }
1907 
1908   // These have to be removed while this is still a valid thread.
1909   remove_stack_guard_pages();
1910 
1911   if (UseTLAB) {
1912     tlab().make_parsable(true);  // retire TLAB
1913   }
1914 
1915   if (JvmtiEnv::environments_might_exist()) {
1916     JvmtiExport::cleanup_thread(this);
1917   }
1918 
1919   // We must flush any deferred card marks before removing a thread from
1920   // the list of active threads.
1921   Universe::heap()->flush_deferred_store_barrier(this);
1922   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1923 
1924 #if INCLUDE_ALL_GCS
1925   // We must flush the G1-related buffers before removing a thread
1926   // from the list of active threads. We must do this after any deferred
1927   // card marks have been flushed (above) so that any entries that are
1928   // added to the thread's dirty card queue as a result are not lost.
1929   if (UseG1GC) {
1930     flush_barrier_queues();
1931   }
1932 #endif // INCLUDE_ALL_GCS
1933 
1934   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1935     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1936     os::current_thread_id());
1937 
1938   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1939   Threads::remove(this);
1940 }
1941 
1942 #if INCLUDE_ALL_GCS
1943 // Flush G1-related queues.
1944 void JavaThread::flush_barrier_queues() {
1945   satb_mark_queue().flush();
1946   dirty_card_queue().flush();
1947 }
1948 
1949 void JavaThread::initialize_queues() {
1950   assert(!SafepointSynchronize::is_at_safepoint(),
1951          "we should not be at a safepoint");
1952 
1953   SATBMarkQueue& satb_queue = satb_mark_queue();
1954   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1955   // The SATB queue should have been constructed with its active
1956   // field set to false.
1957   assert(!satb_queue.is_active(), "SATB queue should not be active");
1958   assert(satb_queue.is_empty(), "SATB queue should be empty");
1959   // If we are creating the thread during a marking cycle, we should
1960   // set the active field of the SATB queue to true.
1961   if (satb_queue_set.is_active()) {
1962     satb_queue.set_active(true);
1963   }
1964 
1965   DirtyCardQueue& dirty_queue = dirty_card_queue();
1966   // The dirty card queue should have been constructed with its
1967   // active field set to true.
1968   assert(dirty_queue.is_active(), "dirty card queue should be active");
1969 }
1970 #endif // INCLUDE_ALL_GCS
1971 
1972 void JavaThread::cleanup_failed_attach_current_thread() {
1973   if (get_thread_profiler() != NULL) {
1974     get_thread_profiler()->disengage();
1975     ResourceMark rm;
1976     get_thread_profiler()->print(get_thread_name());
1977   }
1978 
1979   if (active_handles() != NULL) {
1980     JNIHandleBlock* block = active_handles();
1981     set_active_handles(NULL);
1982     JNIHandleBlock::release_block(block);
1983   }
1984 
1985   if (free_handle_block() != NULL) {
1986     JNIHandleBlock* block = free_handle_block();
1987     set_free_handle_block(NULL);
1988     JNIHandleBlock::release_block(block);
1989   }
1990 
1991   // These have to be removed while this is still a valid thread.
1992   remove_stack_guard_pages();
1993 
1994   if (UseTLAB) {
1995     tlab().make_parsable(true);  // retire TLAB, if any
1996   }
1997 
1998 #if INCLUDE_ALL_GCS
1999   if (UseG1GC) {
2000     flush_barrier_queues();
2001   }
2002 #endif // INCLUDE_ALL_GCS
2003 
2004   Threads::remove(this);
2005   delete this;
2006 }
2007 
2008 
2009 
2010 
2011 JavaThread* JavaThread::active() {
2012   Thread* thread = Thread::current();
2013   if (thread->is_Java_thread()) {
2014     return (JavaThread*) thread;
2015   } else {
2016     assert(thread->is_VM_thread(), "this must be a vm thread");
2017     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2018     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2019     assert(ret->is_Java_thread(), "must be a Java thread");
2020     return ret;
2021   }
2022 }
2023 
2024 bool JavaThread::is_lock_owned(address adr) const {
2025   if (Thread::is_lock_owned(adr)) return true;
2026 
2027   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2028     if (chunk->contains(adr)) return true;
2029   }
2030 
2031   return false;
2032 }
2033 
2034 
2035 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2036   chunk->set_next(monitor_chunks());
2037   set_monitor_chunks(chunk);
2038 }
2039 
2040 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2041   guarantee(monitor_chunks() != NULL, "must be non empty");
2042   if (monitor_chunks() == chunk) {
2043     set_monitor_chunks(chunk->next());
2044   } else {
2045     MonitorChunk* prev = monitor_chunks();
2046     while (prev->next() != chunk) prev = prev->next();
2047     prev->set_next(chunk->next());
2048   }
2049 }
2050 
2051 // JVM support.
2052 
2053 // Note: this function shouldn't block if it's called in
2054 // _thread_in_native_trans state (such as from
2055 // check_special_condition_for_native_trans()).
2056 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2057 
2058   if (has_last_Java_frame() && has_async_condition()) {
2059     // If we are at a polling page safepoint (not a poll return)
2060     // then we must defer async exception because live registers
2061     // will be clobbered by the exception path. Poll return is
2062     // ok because the call we a returning from already collides
2063     // with exception handling registers and so there is no issue.
2064     // (The exception handling path kills call result registers but
2065     //  this is ok since the exception kills the result anyway).
2066 
2067     if (is_at_poll_safepoint()) {
2068       // if the code we are returning to has deoptimized we must defer
2069       // the exception otherwise live registers get clobbered on the
2070       // exception path before deoptimization is able to retrieve them.
2071       //
2072       RegisterMap map(this, false);
2073       frame caller_fr = last_frame().sender(&map);
2074       assert(caller_fr.is_compiled_frame(), "what?");
2075       if (caller_fr.is_deoptimized_frame()) {
2076         log_info(exceptions)("deferred async exception at compiled safepoint");
2077         return;
2078       }
2079     }
2080   }
2081 
2082   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2083   if (condition == _no_async_condition) {
2084     // Conditions have changed since has_special_runtime_exit_condition()
2085     // was called:
2086     // - if we were here only because of an external suspend request,
2087     //   then that was taken care of above (or cancelled) so we are done
2088     // - if we were here because of another async request, then it has
2089     //   been cleared between the has_special_runtime_exit_condition()
2090     //   and now so again we are done
2091     return;
2092   }
2093 
2094   // Check for pending async. exception
2095   if (_pending_async_exception != NULL) {
2096     // Only overwrite an already pending exception, if it is not a threadDeath.
2097     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2098 
2099       // We cannot call Exceptions::_throw(...) here because we cannot block
2100       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2101 
2102       if (log_is_enabled(Info, exceptions)) {
2103         ResourceMark rm;
2104         outputStream* logstream = Log(exceptions)::info_stream();
2105         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2106           if (has_last_Java_frame()) {
2107             frame f = last_frame();
2108            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2109           }
2110         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2111       }
2112       _pending_async_exception = NULL;
2113       clear_has_async_exception();
2114     }
2115   }
2116 
2117   if (check_unsafe_error &&
2118       condition == _async_unsafe_access_error && !has_pending_exception()) {
2119     condition = _no_async_condition;  // done
2120     switch (thread_state()) {
2121     case _thread_in_vm: {
2122       JavaThread* THREAD = this;
2123       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2124     }
2125     case _thread_in_native: {
2126       ThreadInVMfromNative tiv(this);
2127       JavaThread* THREAD = this;
2128       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2129     }
2130     case _thread_in_Java: {
2131       ThreadInVMfromJava tiv(this);
2132       JavaThread* THREAD = this;
2133       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2134     }
2135     default:
2136       ShouldNotReachHere();
2137     }
2138   }
2139 
2140   assert(condition == _no_async_condition || has_pending_exception() ||
2141          (!check_unsafe_error && condition == _async_unsafe_access_error),
2142          "must have handled the async condition, if no exception");
2143 }
2144 
2145 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2146   //
2147   // Check for pending external suspend. Internal suspend requests do
2148   // not use handle_special_runtime_exit_condition().
2149   // If JNIEnv proxies are allowed, don't self-suspend if the target
2150   // thread is not the current thread. In older versions of jdbx, jdbx
2151   // threads could call into the VM with another thread's JNIEnv so we
2152   // can be here operating on behalf of a suspended thread (4432884).
2153   bool do_self_suspend = is_external_suspend_with_lock();
2154   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2155     //
2156     // Because thread is external suspended the safepoint code will count
2157     // thread as at a safepoint. This can be odd because we can be here
2158     // as _thread_in_Java which would normally transition to _thread_blocked
2159     // at a safepoint. We would like to mark the thread as _thread_blocked
2160     // before calling java_suspend_self like all other callers of it but
2161     // we must then observe proper safepoint protocol. (We can't leave
2162     // _thread_blocked with a safepoint in progress). However we can be
2163     // here as _thread_in_native_trans so we can't use a normal transition
2164     // constructor/destructor pair because they assert on that type of
2165     // transition. We could do something like:
2166     //
2167     // JavaThreadState state = thread_state();
2168     // set_thread_state(_thread_in_vm);
2169     // {
2170     //   ThreadBlockInVM tbivm(this);
2171     //   java_suspend_self()
2172     // }
2173     // set_thread_state(_thread_in_vm_trans);
2174     // if (safepoint) block;
2175     // set_thread_state(state);
2176     //
2177     // but that is pretty messy. Instead we just go with the way the
2178     // code has worked before and note that this is the only path to
2179     // java_suspend_self that doesn't put the thread in _thread_blocked
2180     // mode.
2181 
2182     frame_anchor()->make_walkable(this);
2183     java_suspend_self();
2184 
2185     // We might be here for reasons in addition to the self-suspend request
2186     // so check for other async requests.
2187   }
2188 
2189   if (check_asyncs) {
2190     check_and_handle_async_exceptions();
2191   }
2192 }
2193 
2194 void JavaThread::send_thread_stop(oop java_throwable)  {
2195   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2196   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2197   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2198 
2199   // Do not throw asynchronous exceptions against the compiler thread
2200   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2201   if (!can_call_java()) return;
2202 
2203   {
2204     // Actually throw the Throwable against the target Thread - however
2205     // only if there is no thread death exception installed already.
2206     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2207       // If the topmost frame is a runtime stub, then we are calling into
2208       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2209       // must deoptimize the caller before continuing, as the compiled  exception handler table
2210       // may not be valid
2211       if (has_last_Java_frame()) {
2212         frame f = last_frame();
2213         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2214           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2215           RegisterMap reg_map(this, UseBiasedLocking);
2216           frame compiled_frame = f.sender(&reg_map);
2217           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2218             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2219           }
2220         }
2221       }
2222 
2223       // Set async. pending exception in thread.
2224       set_pending_async_exception(java_throwable);
2225 
2226       if (log_is_enabled(Info, exceptions)) {
2227          ResourceMark rm;
2228         log_info(exceptions)("Pending Async. exception installed of type: %s",
2229                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2230       }
2231       // for AbortVMOnException flag
2232       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2233     }
2234   }
2235 
2236 
2237   // Interrupt thread so it will wake up from a potential wait()
2238   Thread::interrupt(this);
2239 }
2240 
2241 // External suspension mechanism.
2242 //
2243 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2244 // to any VM_locks and it is at a transition
2245 // Self-suspension will happen on the transition out of the vm.
2246 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2247 //
2248 // Guarantees on return:
2249 //   + Target thread will not execute any new bytecode (that's why we need to
2250 //     force a safepoint)
2251 //   + Target thread will not enter any new monitors
2252 //
2253 void JavaThread::java_suspend() {
2254   { MutexLocker mu(Threads_lock);
2255     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2256       return;
2257     }
2258   }
2259 
2260   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2261     if (!is_external_suspend()) {
2262       // a racing resume has cancelled us; bail out now
2263       return;
2264     }
2265 
2266     // suspend is done
2267     uint32_t debug_bits = 0;
2268     // Warning: is_ext_suspend_completed() may temporarily drop the
2269     // SR_lock to allow the thread to reach a stable thread state if
2270     // it is currently in a transient thread state.
2271     if (is_ext_suspend_completed(false /* !called_by_wait */,
2272                                  SuspendRetryDelay, &debug_bits)) {
2273       return;
2274     }
2275   }
2276 
2277   VM_ForceSafepoint vm_suspend;
2278   VMThread::execute(&vm_suspend);
2279 }
2280 
2281 // Part II of external suspension.
2282 // A JavaThread self suspends when it detects a pending external suspend
2283 // request. This is usually on transitions. It is also done in places
2284 // where continuing to the next transition would surprise the caller,
2285 // e.g., monitor entry.
2286 //
2287 // Returns the number of times that the thread self-suspended.
2288 //
2289 // Note: DO NOT call java_suspend_self() when you just want to block current
2290 //       thread. java_suspend_self() is the second stage of cooperative
2291 //       suspension for external suspend requests and should only be used
2292 //       to complete an external suspend request.
2293 //
2294 int JavaThread::java_suspend_self() {
2295   int ret = 0;
2296 
2297   // we are in the process of exiting so don't suspend
2298   if (is_exiting()) {
2299     clear_external_suspend();
2300     return ret;
2301   }
2302 
2303   assert(_anchor.walkable() ||
2304          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2305          "must have walkable stack");
2306 
2307   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2308 
2309   assert(!this->is_ext_suspended(),
2310          "a thread trying to self-suspend should not already be suspended");
2311 
2312   if (this->is_suspend_equivalent()) {
2313     // If we are self-suspending as a result of the lifting of a
2314     // suspend equivalent condition, then the suspend_equivalent
2315     // flag is not cleared until we set the ext_suspended flag so
2316     // that wait_for_ext_suspend_completion() returns consistent
2317     // results.
2318     this->clear_suspend_equivalent();
2319   }
2320 
2321   // A racing resume may have cancelled us before we grabbed SR_lock
2322   // above. Or another external suspend request could be waiting for us
2323   // by the time we return from SR_lock()->wait(). The thread
2324   // that requested the suspension may already be trying to walk our
2325   // stack and if we return now, we can change the stack out from under
2326   // it. This would be a "bad thing (TM)" and cause the stack walker
2327   // to crash. We stay self-suspended until there are no more pending
2328   // external suspend requests.
2329   while (is_external_suspend()) {
2330     ret++;
2331     this->set_ext_suspended();
2332 
2333     // _ext_suspended flag is cleared by java_resume()
2334     while (is_ext_suspended()) {
2335       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2336     }
2337   }
2338 
2339   return ret;
2340 }
2341 
2342 #ifdef ASSERT
2343 // verify the JavaThread has not yet been published in the Threads::list, and
2344 // hence doesn't need protection from concurrent access at this stage
2345 void JavaThread::verify_not_published() {
2346   if (!Threads_lock->owned_by_self()) {
2347     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2348     assert(!Threads::includes(this),
2349            "java thread shouldn't have been published yet!");
2350   } else {
2351     assert(!Threads::includes(this),
2352            "java thread shouldn't have been published yet!");
2353   }
2354 }
2355 #endif
2356 
2357 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2358 // progress or when _suspend_flags is non-zero.
2359 // Current thread needs to self-suspend if there is a suspend request and/or
2360 // block if a safepoint is in progress.
2361 // Async exception ISN'T checked.
2362 // Note only the ThreadInVMfromNative transition can call this function
2363 // directly and when thread state is _thread_in_native_trans
2364 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2365   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2366 
2367   JavaThread *curJT = JavaThread::current();
2368   bool do_self_suspend = thread->is_external_suspend();
2369 
2370   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2371 
2372   // If JNIEnv proxies are allowed, don't self-suspend if the target
2373   // thread is not the current thread. In older versions of jdbx, jdbx
2374   // threads could call into the VM with another thread's JNIEnv so we
2375   // can be here operating on behalf of a suspended thread (4432884).
2376   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2377     JavaThreadState state = thread->thread_state();
2378 
2379     // We mark this thread_blocked state as a suspend-equivalent so
2380     // that a caller to is_ext_suspend_completed() won't be confused.
2381     // The suspend-equivalent state is cleared by java_suspend_self().
2382     thread->set_suspend_equivalent();
2383 
2384     // If the safepoint code sees the _thread_in_native_trans state, it will
2385     // wait until the thread changes to other thread state. There is no
2386     // guarantee on how soon we can obtain the SR_lock and complete the
2387     // self-suspend request. It would be a bad idea to let safepoint wait for
2388     // too long. Temporarily change the state to _thread_blocked to
2389     // let the VM thread know that this thread is ready for GC. The problem
2390     // of changing thread state is that safepoint could happen just after
2391     // java_suspend_self() returns after being resumed, and VM thread will
2392     // see the _thread_blocked state. We must check for safepoint
2393     // after restoring the state and make sure we won't leave while a safepoint
2394     // is in progress.
2395     thread->set_thread_state(_thread_blocked);
2396     thread->java_suspend_self();
2397     thread->set_thread_state(state);
2398     // Make sure new state is seen by VM thread
2399     if (os::is_MP()) {
2400       if (UseMembar) {
2401         // Force a fence between the write above and read below
2402         OrderAccess::fence();
2403       } else {
2404         // Must use this rather than serialization page in particular on Windows
2405         InterfaceSupport::serialize_memory(thread);
2406       }
2407     }
2408   }
2409 
2410   if (SafepointSynchronize::do_call_back()) {
2411     // If we are safepointing, then block the caller which may not be
2412     // the same as the target thread (see above).
2413     SafepointSynchronize::block(curJT);
2414   }
2415 
2416   if (thread->is_deopt_suspend()) {
2417     thread->clear_deopt_suspend();
2418     RegisterMap map(thread, false);
2419     frame f = thread->last_frame();
2420     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2421       f = f.sender(&map);
2422     }
2423     if (f.id() == thread->must_deopt_id()) {
2424       thread->clear_must_deopt_id();
2425       f.deoptimize(thread);
2426     } else {
2427       fatal("missed deoptimization!");
2428     }
2429   }
2430 }
2431 
2432 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2433 // progress or when _suspend_flags is non-zero.
2434 // Current thread needs to self-suspend if there is a suspend request and/or
2435 // block if a safepoint is in progress.
2436 // Also check for pending async exception (not including unsafe access error).
2437 // Note only the native==>VM/Java barriers can call this function and when
2438 // thread state is _thread_in_native_trans.
2439 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2440   check_safepoint_and_suspend_for_native_trans(thread);
2441 
2442   if (thread->has_async_exception()) {
2443     // We are in _thread_in_native_trans state, don't handle unsafe
2444     // access error since that may block.
2445     thread->check_and_handle_async_exceptions(false);
2446   }
2447 }
2448 
2449 // This is a variant of the normal
2450 // check_special_condition_for_native_trans with slightly different
2451 // semantics for use by critical native wrappers.  It does all the
2452 // normal checks but also performs the transition back into
2453 // thread_in_Java state.  This is required so that critical natives
2454 // can potentially block and perform a GC if they are the last thread
2455 // exiting the GCLocker.
2456 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2457   check_special_condition_for_native_trans(thread);
2458 
2459   // Finish the transition
2460   thread->set_thread_state(_thread_in_Java);
2461 
2462   if (thread->do_critical_native_unlock()) {
2463     ThreadInVMfromJavaNoAsyncException tiv(thread);
2464     GCLocker::unlock_critical(thread);
2465     thread->clear_critical_native_unlock();
2466   }
2467 }
2468 
2469 // We need to guarantee the Threads_lock here, since resumes are not
2470 // allowed during safepoint synchronization
2471 // Can only resume from an external suspension
2472 void JavaThread::java_resume() {
2473   assert_locked_or_safepoint(Threads_lock);
2474 
2475   // Sanity check: thread is gone, has started exiting or the thread
2476   // was not externally suspended.
2477   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2478     return;
2479   }
2480 
2481   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2482 
2483   clear_external_suspend();
2484 
2485   if (is_ext_suspended()) {
2486     clear_ext_suspended();
2487     SR_lock()->notify_all();
2488   }
2489 }
2490 
2491 size_t JavaThread::_stack_red_zone_size = 0;
2492 size_t JavaThread::_stack_yellow_zone_size = 0;
2493 size_t JavaThread::_stack_reserved_zone_size = 0;
2494 size_t JavaThread::_stack_shadow_zone_size = 0;
2495 
2496 void JavaThread::create_stack_guard_pages() {
2497   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2498   address low_addr = stack_end();
2499   size_t len = stack_guard_zone_size();
2500 
2501   int must_commit = os::must_commit_stack_guard_pages();
2502   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2503 
2504   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2505     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2506     return;
2507   }
2508 
2509   if (os::guard_memory((char *) low_addr, len)) {
2510     _stack_guard_state = stack_guard_enabled;
2511   } else {
2512     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2513       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2514     if (os::uncommit_memory((char *) low_addr, len)) {
2515       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2516     }
2517     return;
2518   }
2519 
2520   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2521     PTR_FORMAT "-" PTR_FORMAT ".",
2522     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2523 }
2524 
2525 void JavaThread::remove_stack_guard_pages() {
2526   assert(Thread::current() == this, "from different thread");
2527   if (_stack_guard_state == stack_guard_unused) return;
2528   address low_addr = stack_end();
2529   size_t len = stack_guard_zone_size();
2530 
2531   if (os::must_commit_stack_guard_pages()) {
2532     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2533       _stack_guard_state = stack_guard_unused;
2534     } else {
2535       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2536         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2537       return;
2538     }
2539   } else {
2540     if (_stack_guard_state == stack_guard_unused) return;
2541     if (os::unguard_memory((char *) low_addr, len)) {
2542       _stack_guard_state = stack_guard_unused;
2543     } else {
2544       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2545         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2546       return;
2547     }
2548   }
2549 
2550   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2551     PTR_FORMAT "-" PTR_FORMAT ".",
2552     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2553 }
2554 
2555 void JavaThread::enable_stack_reserved_zone() {
2556   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2557   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2558 
2559   // The base notation is from the stack's point of view, growing downward.
2560   // We need to adjust it to work correctly with guard_memory()
2561   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2562 
2563   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2564   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2565 
2566   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2567     _stack_guard_state = stack_guard_enabled;
2568   } else {
2569     warning("Attempt to guard stack reserved zone failed.");
2570   }
2571   enable_register_stack_guard();
2572 }
2573 
2574 void JavaThread::disable_stack_reserved_zone() {
2575   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2576   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2577 
2578   // Simply return if called for a thread that does not use guard pages.
2579   if (_stack_guard_state == stack_guard_unused) return;
2580 
2581   // The base notation is from the stack's point of view, growing downward.
2582   // We need to adjust it to work correctly with guard_memory()
2583   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2584 
2585   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2586     _stack_guard_state = stack_guard_reserved_disabled;
2587   } else {
2588     warning("Attempt to unguard stack reserved zone failed.");
2589   }
2590   disable_register_stack_guard();
2591 }
2592 
2593 void JavaThread::enable_stack_yellow_reserved_zone() {
2594   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2595   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2596 
2597   // The base notation is from the stacks point of view, growing downward.
2598   // We need to adjust it to work correctly with guard_memory()
2599   address base = stack_red_zone_base();
2600 
2601   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2602   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2603 
2604   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2605     _stack_guard_state = stack_guard_enabled;
2606   } else {
2607     warning("Attempt to guard stack yellow zone failed.");
2608   }
2609   enable_register_stack_guard();
2610 }
2611 
2612 void JavaThread::disable_stack_yellow_reserved_zone() {
2613   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2614   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2615 
2616   // Simply return if called for a thread that does not use guard pages.
2617   if (_stack_guard_state == stack_guard_unused) return;
2618 
2619   // The base notation is from the stacks point of view, growing downward.
2620   // We need to adjust it to work correctly with guard_memory()
2621   address base = stack_red_zone_base();
2622 
2623   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2624     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2625   } else {
2626     warning("Attempt to unguard stack yellow zone failed.");
2627   }
2628   disable_register_stack_guard();
2629 }
2630 
2631 void JavaThread::enable_stack_red_zone() {
2632   // The base notation is from the stacks point of view, growing downward.
2633   // We need to adjust it to work correctly with guard_memory()
2634   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2635   address base = stack_red_zone_base() - stack_red_zone_size();
2636 
2637   guarantee(base < stack_base(), "Error calculating stack red zone");
2638   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2639 
2640   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2641     warning("Attempt to guard stack red zone failed.");
2642   }
2643 }
2644 
2645 void JavaThread::disable_stack_red_zone() {
2646   // The base notation is from the stacks point of view, growing downward.
2647   // We need to adjust it to work correctly with guard_memory()
2648   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2649   address base = stack_red_zone_base() - stack_red_zone_size();
2650   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2651     warning("Attempt to unguard stack red zone failed.");
2652   }
2653 }
2654 
2655 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2656   // ignore is there is no stack
2657   if (!has_last_Java_frame()) return;
2658   // traverse the stack frames. Starts from top frame.
2659   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2660     frame* fr = fst.current();
2661     f(fr, fst.register_map());
2662   }
2663 }
2664 
2665 
2666 #ifndef PRODUCT
2667 // Deoptimization
2668 // Function for testing deoptimization
2669 void JavaThread::deoptimize() {
2670   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2671   StackFrameStream fst(this, UseBiasedLocking);
2672   bool deopt = false;           // Dump stack only if a deopt actually happens.
2673   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2674   // Iterate over all frames in the thread and deoptimize
2675   for (; !fst.is_done(); fst.next()) {
2676     if (fst.current()->can_be_deoptimized()) {
2677 
2678       if (only_at) {
2679         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2680         // consists of comma or carriage return separated numbers so
2681         // search for the current bci in that string.
2682         address pc = fst.current()->pc();
2683         nmethod* nm =  (nmethod*) fst.current()->cb();
2684         ScopeDesc* sd = nm->scope_desc_at(pc);
2685         char buffer[8];
2686         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2687         size_t len = strlen(buffer);
2688         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2689         while (found != NULL) {
2690           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2691               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2692             // Check that the bci found is bracketed by terminators.
2693             break;
2694           }
2695           found = strstr(found + 1, buffer);
2696         }
2697         if (!found) {
2698           continue;
2699         }
2700       }
2701 
2702       if (DebugDeoptimization && !deopt) {
2703         deopt = true; // One-time only print before deopt
2704         tty->print_cr("[BEFORE Deoptimization]");
2705         trace_frames();
2706         trace_stack();
2707       }
2708       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2709     }
2710   }
2711 
2712   if (DebugDeoptimization && deopt) {
2713     tty->print_cr("[AFTER Deoptimization]");
2714     trace_frames();
2715   }
2716 }
2717 
2718 
2719 // Make zombies
2720 void JavaThread::make_zombies() {
2721   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2722     if (fst.current()->can_be_deoptimized()) {
2723       // it is a Java nmethod
2724       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2725       nm->make_not_entrant();
2726     }
2727   }
2728 }
2729 #endif // PRODUCT
2730 
2731 
2732 void JavaThread::deoptimized_wrt_marked_nmethods() {
2733   if (!has_last_Java_frame()) return;
2734   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2735   StackFrameStream fst(this, UseBiasedLocking);
2736   for (; !fst.is_done(); fst.next()) {
2737     if (fst.current()->should_be_deoptimized()) {
2738       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2739     }
2740   }
2741 }
2742 
2743 
2744 // If the caller is a NamedThread, then remember, in the current scope,
2745 // the given JavaThread in its _processed_thread field.
2746 class RememberProcessedThread: public StackObj {
2747   NamedThread* _cur_thr;
2748  public:
2749   RememberProcessedThread(JavaThread* jthr) {
2750     Thread* thread = Thread::current();
2751     if (thread->is_Named_thread()) {
2752       _cur_thr = (NamedThread *)thread;
2753       _cur_thr->set_processed_thread(jthr);
2754     } else {
2755       _cur_thr = NULL;
2756     }
2757   }
2758 
2759   ~RememberProcessedThread() {
2760     if (_cur_thr) {
2761       _cur_thr->set_processed_thread(NULL);
2762     }
2763   }
2764 };
2765 
2766 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2767   // Verify that the deferred card marks have been flushed.
2768   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2769 
2770   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2771   // since there may be more than one thread using each ThreadProfiler.
2772 
2773   // Traverse the GCHandles
2774   Thread::oops_do(f, cf);
2775 
2776   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2777 
2778   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2779          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2780 
2781   if (has_last_Java_frame()) {
2782     // Record JavaThread to GC thread
2783     RememberProcessedThread rpt(this);
2784 
2785     // Traverse the privileged stack
2786     if (_privileged_stack_top != NULL) {
2787       _privileged_stack_top->oops_do(f);
2788     }
2789 
2790     // traverse the registered growable array
2791     if (_array_for_gc != NULL) {
2792       for (int index = 0; index < _array_for_gc->length(); index++) {
2793         f->do_oop(_array_for_gc->adr_at(index));
2794       }
2795     }
2796 
2797     // Traverse the monitor chunks
2798     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2799       chunk->oops_do(f);
2800     }
2801 
2802     // Traverse the execution stack
2803     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2804       fst.current()->oops_do(f, cf, fst.register_map());
2805     }
2806   }
2807 
2808   // callee_target is never live across a gc point so NULL it here should
2809   // it still contain a methdOop.
2810 
2811   set_callee_target(NULL);
2812 
2813   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2814   // If we have deferred set_locals there might be oops waiting to be
2815   // written
2816   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2817   if (list != NULL) {
2818     for (int i = 0; i < list->length(); i++) {
2819       list->at(i)->oops_do(f);
2820     }
2821   }
2822 
2823   // Traverse instance variables at the end since the GC may be moving things
2824   // around using this function
2825   f->do_oop((oop*) &_threadObj);
2826   f->do_oop((oop*) &_vm_result);
2827   f->do_oop((oop*) &_exception_oop);
2828   f->do_oop((oop*) &_pending_async_exception);
2829 
2830   if (jvmti_thread_state() != NULL) {
2831     jvmti_thread_state()->oops_do(f);
2832   }
2833 }
2834 
2835 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2836   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2837          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2838 
2839   if (has_last_Java_frame()) {
2840     // Traverse the execution stack
2841     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2842       fst.current()->nmethods_do(cf);
2843     }
2844   }
2845 }
2846 
2847 void JavaThread::metadata_do(void f(Metadata*)) {
2848   if (has_last_Java_frame()) {
2849     // Traverse the execution stack to call f() on the methods in the stack
2850     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2851       fst.current()->metadata_do(f);
2852     }
2853   } else if (is_Compiler_thread()) {
2854     // need to walk ciMetadata in current compile tasks to keep alive.
2855     CompilerThread* ct = (CompilerThread*)this;
2856     if (ct->env() != NULL) {
2857       ct->env()->metadata_do(f);
2858     }
2859     if (ct->task() != NULL) {
2860       ct->task()->metadata_do(f);
2861     }
2862   }
2863 }
2864 
2865 // Printing
2866 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2867   switch (_thread_state) {
2868   case _thread_uninitialized:     return "_thread_uninitialized";
2869   case _thread_new:               return "_thread_new";
2870   case _thread_new_trans:         return "_thread_new_trans";
2871   case _thread_in_native:         return "_thread_in_native";
2872   case _thread_in_native_trans:   return "_thread_in_native_trans";
2873   case _thread_in_vm:             return "_thread_in_vm";
2874   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2875   case _thread_in_Java:           return "_thread_in_Java";
2876   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2877   case _thread_blocked:           return "_thread_blocked";
2878   case _thread_blocked_trans:     return "_thread_blocked_trans";
2879   default:                        return "unknown thread state";
2880   }
2881 }
2882 
2883 #ifndef PRODUCT
2884 void JavaThread::print_thread_state_on(outputStream *st) const {
2885   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2886 };
2887 void JavaThread::print_thread_state() const {
2888   print_thread_state_on(tty);
2889 }
2890 #endif // PRODUCT
2891 
2892 // Called by Threads::print() for VM_PrintThreads operation
2893 void JavaThread::print_on(outputStream *st) const {
2894   st->print_raw("\"");
2895   st->print_raw(get_thread_name());
2896   st->print_raw("\" ");
2897   oop thread_oop = threadObj();
2898   if (thread_oop != NULL) {
2899     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2900     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2901     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2902   }
2903   Thread::print_on(st);
2904   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2905   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2906   if (thread_oop != NULL) {
2907     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2908   }
2909 #ifndef PRODUCT
2910   print_thread_state_on(st);
2911   _safepoint_state->print_on(st);
2912 #endif // PRODUCT
2913   if (is_Compiler_thread()) {
2914     CompilerThread* ct = (CompilerThread*)this;
2915     if (ct->task() != NULL) {
2916       st->print("   Compiling: ");
2917       ct->task()->print(st, NULL, true, false);
2918     } else {
2919       st->print("   No compile task");
2920     }
2921     st->cr();
2922   }
2923 }
2924 
2925 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2926   st->print("%s", get_thread_name_string(buf, buflen));
2927 }
2928 
2929 // Called by fatal error handler. The difference between this and
2930 // JavaThread::print() is that we can't grab lock or allocate memory.
2931 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2932   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2933   oop thread_obj = threadObj();
2934   if (thread_obj != NULL) {
2935     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2936   }
2937   st->print(" [");
2938   st->print("%s", _get_thread_state_name(_thread_state));
2939   if (osthread()) {
2940     st->print(", id=%d", osthread()->thread_id());
2941   }
2942   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2943             p2i(stack_end()), p2i(stack_base()));
2944   st->print("]");
2945   return;
2946 }
2947 
2948 // Verification
2949 
2950 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2951 
2952 void JavaThread::verify() {
2953   // Verify oops in the thread.
2954   oops_do(&VerifyOopClosure::verify_oop, NULL);
2955 
2956   // Verify the stack frames.
2957   frames_do(frame_verify);
2958 }
2959 
2960 // CR 6300358 (sub-CR 2137150)
2961 // Most callers of this method assume that it can't return NULL but a
2962 // thread may not have a name whilst it is in the process of attaching to
2963 // the VM - see CR 6412693, and there are places where a JavaThread can be
2964 // seen prior to having it's threadObj set (eg JNI attaching threads and
2965 // if vm exit occurs during initialization). These cases can all be accounted
2966 // for such that this method never returns NULL.
2967 const char* JavaThread::get_thread_name() const {
2968 #ifdef ASSERT
2969   // early safepoints can hit while current thread does not yet have TLS
2970   if (!SafepointSynchronize::is_at_safepoint()) {
2971     Thread *cur = Thread::current();
2972     if (!(cur->is_Java_thread() && cur == this)) {
2973       // Current JavaThreads are allowed to get their own name without
2974       // the Threads_lock.
2975       assert_locked_or_safepoint(Threads_lock);
2976     }
2977   }
2978 #endif // ASSERT
2979   return get_thread_name_string();
2980 }
2981 
2982 // Returns a non-NULL representation of this thread's name, or a suitable
2983 // descriptive string if there is no set name
2984 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2985   const char* name_str;
2986   oop thread_obj = threadObj();
2987   if (thread_obj != NULL) {
2988     oop name = java_lang_Thread::name(thread_obj);
2989     if (name != NULL) {
2990       if (buf == NULL) {
2991         name_str = java_lang_String::as_utf8_string(name);
2992       } else {
2993         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2994       }
2995     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2996       name_str = "<no-name - thread is attaching>";
2997     } else {
2998       name_str = Thread::name();
2999     }
3000   } else {
3001     name_str = Thread::name();
3002   }
3003   assert(name_str != NULL, "unexpected NULL thread name");
3004   return name_str;
3005 }
3006 
3007 
3008 const char* JavaThread::get_threadgroup_name() const {
3009   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3010   oop thread_obj = threadObj();
3011   if (thread_obj != NULL) {
3012     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3013     if (thread_group != NULL) {
3014       // ThreadGroup.name can be null
3015       return java_lang_ThreadGroup::name(thread_group);
3016     }
3017   }
3018   return NULL;
3019 }
3020 
3021 const char* JavaThread::get_parent_name() const {
3022   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3023   oop thread_obj = threadObj();
3024   if (thread_obj != NULL) {
3025     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3026     if (thread_group != NULL) {
3027       oop parent = java_lang_ThreadGroup::parent(thread_group);
3028       if (parent != NULL) {
3029         // ThreadGroup.name can be null
3030         return java_lang_ThreadGroup::name(parent);
3031       }
3032     }
3033   }
3034   return NULL;
3035 }
3036 
3037 ThreadPriority JavaThread::java_priority() const {
3038   oop thr_oop = threadObj();
3039   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3040   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3041   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3042   return priority;
3043 }
3044 
3045 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3046 
3047   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3048   // Link Java Thread object <-> C++ Thread
3049 
3050   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3051   // and put it into a new Handle.  The Handle "thread_oop" can then
3052   // be used to pass the C++ thread object to other methods.
3053 
3054   // Set the Java level thread object (jthread) field of the
3055   // new thread (a JavaThread *) to C++ thread object using the
3056   // "thread_oop" handle.
3057 
3058   // Set the thread field (a JavaThread *) of the
3059   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3060 
3061   Handle thread_oop(Thread::current(),
3062                     JNIHandles::resolve_non_null(jni_thread));
3063   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3064          "must be initialized");
3065   set_threadObj(thread_oop());
3066   java_lang_Thread::set_thread(thread_oop(), this);
3067 
3068   if (prio == NoPriority) {
3069     prio = java_lang_Thread::priority(thread_oop());
3070     assert(prio != NoPriority, "A valid priority should be present");
3071   }
3072 
3073   // Push the Java priority down to the native thread; needs Threads_lock
3074   Thread::set_priority(this, prio);
3075 
3076   prepare_ext();
3077 
3078   // Add the new thread to the Threads list and set it in motion.
3079   // We must have threads lock in order to call Threads::add.
3080   // It is crucial that we do not block before the thread is
3081   // added to the Threads list for if a GC happens, then the java_thread oop
3082   // will not be visited by GC.
3083   Threads::add(this);
3084 }
3085 
3086 oop JavaThread::current_park_blocker() {
3087   // Support for JSR-166 locks
3088   oop thread_oop = threadObj();
3089   if (thread_oop != NULL &&
3090       JDK_Version::current().supports_thread_park_blocker()) {
3091     return java_lang_Thread::park_blocker(thread_oop);
3092   }
3093   return NULL;
3094 }
3095 
3096 
3097 void JavaThread::print_stack_on(outputStream* st) {
3098   if (!has_last_Java_frame()) return;
3099   ResourceMark rm;
3100   HandleMark   hm;
3101 
3102   RegisterMap reg_map(this);
3103   vframe* start_vf = last_java_vframe(&reg_map);
3104   int count = 0;
3105   for (vframe* f = start_vf; f; f = f->sender()) {
3106     if (f->is_java_frame()) {
3107       javaVFrame* jvf = javaVFrame::cast(f);
3108       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3109 
3110       // Print out lock information
3111       if (JavaMonitorsInStackTrace) {
3112         jvf->print_lock_info_on(st, count);
3113       }
3114     } else {
3115       // Ignore non-Java frames
3116     }
3117 
3118     // Bail-out case for too deep stacks
3119     count++;
3120     if (MaxJavaStackTraceDepth == count) return;
3121   }
3122 }
3123 
3124 
3125 // JVMTI PopFrame support
3126 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3127   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3128   if (in_bytes(size_in_bytes) != 0) {
3129     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3130     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3131     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3132   }
3133 }
3134 
3135 void* JavaThread::popframe_preserved_args() {
3136   return _popframe_preserved_args;
3137 }
3138 
3139 ByteSize JavaThread::popframe_preserved_args_size() {
3140   return in_ByteSize(_popframe_preserved_args_size);
3141 }
3142 
3143 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3144   int sz = in_bytes(popframe_preserved_args_size());
3145   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3146   return in_WordSize(sz / wordSize);
3147 }
3148 
3149 void JavaThread::popframe_free_preserved_args() {
3150   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3151   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3152   _popframe_preserved_args = NULL;
3153   _popframe_preserved_args_size = 0;
3154 }
3155 
3156 #ifndef PRODUCT
3157 
3158 void JavaThread::trace_frames() {
3159   tty->print_cr("[Describe stack]");
3160   int frame_no = 1;
3161   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3162     tty->print("  %d. ", frame_no++);
3163     fst.current()->print_value_on(tty, this);
3164     tty->cr();
3165   }
3166 }
3167 
3168 class PrintAndVerifyOopClosure: public OopClosure {
3169  protected:
3170   template <class T> inline void do_oop_work(T* p) {
3171     oop obj = oopDesc::load_decode_heap_oop(p);
3172     if (obj == NULL) return;
3173     tty->print(INTPTR_FORMAT ": ", p2i(p));
3174     if (obj->is_oop_or_null()) {
3175       if (obj->is_objArray()) {
3176         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3177       } else {
3178         obj->print();
3179       }
3180     } else {
3181       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3182     }
3183     tty->cr();
3184   }
3185  public:
3186   virtual void do_oop(oop* p) { do_oop_work(p); }
3187   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3188 };
3189 
3190 
3191 static void oops_print(frame* f, const RegisterMap *map) {
3192   PrintAndVerifyOopClosure print;
3193   f->print_value();
3194   f->oops_do(&print, NULL, (RegisterMap*)map);
3195 }
3196 
3197 // Print our all the locations that contain oops and whether they are
3198 // valid or not.  This useful when trying to find the oldest frame
3199 // where an oop has gone bad since the frame walk is from youngest to
3200 // oldest.
3201 void JavaThread::trace_oops() {
3202   tty->print_cr("[Trace oops]");
3203   frames_do(oops_print);
3204 }
3205 
3206 
3207 #ifdef ASSERT
3208 // Print or validate the layout of stack frames
3209 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3210   ResourceMark rm;
3211   PRESERVE_EXCEPTION_MARK;
3212   FrameValues values;
3213   int frame_no = 0;
3214   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3215     fst.current()->describe(values, ++frame_no);
3216     if (depth == frame_no) break;
3217   }
3218   if (validate_only) {
3219     values.validate();
3220   } else {
3221     tty->print_cr("[Describe stack layout]");
3222     values.print(this);
3223   }
3224 }
3225 #endif
3226 
3227 void JavaThread::trace_stack_from(vframe* start_vf) {
3228   ResourceMark rm;
3229   int vframe_no = 1;
3230   for (vframe* f = start_vf; f; f = f->sender()) {
3231     if (f->is_java_frame()) {
3232       javaVFrame::cast(f)->print_activation(vframe_no++);
3233     } else {
3234       f->print();
3235     }
3236     if (vframe_no > StackPrintLimit) {
3237       tty->print_cr("...<more frames>...");
3238       return;
3239     }
3240   }
3241 }
3242 
3243 
3244 void JavaThread::trace_stack() {
3245   if (!has_last_Java_frame()) return;
3246   ResourceMark rm;
3247   HandleMark   hm;
3248   RegisterMap reg_map(this);
3249   trace_stack_from(last_java_vframe(&reg_map));
3250 }
3251 
3252 
3253 #endif // PRODUCT
3254 
3255 
3256 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3257   assert(reg_map != NULL, "a map must be given");
3258   frame f = last_frame();
3259   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3260     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3261   }
3262   return NULL;
3263 }
3264 
3265 
3266 Klass* JavaThread::security_get_caller_class(int depth) {
3267   vframeStream vfst(this);
3268   vfst.security_get_caller_frame(depth);
3269   if (!vfst.at_end()) {
3270     return vfst.method()->method_holder();
3271   }
3272   return NULL;
3273 }
3274 
3275 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3276   assert(thread->is_Compiler_thread(), "must be compiler thread");
3277   CompileBroker::compiler_thread_loop();
3278 }
3279 
3280 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3281   NMethodSweeper::sweeper_loop();
3282 }
3283 
3284 // Create a CompilerThread
3285 CompilerThread::CompilerThread(CompileQueue* queue,
3286                                CompilerCounters* counters)
3287                                : JavaThread(&compiler_thread_entry) {
3288   _env   = NULL;
3289   _log   = NULL;
3290   _task  = NULL;
3291   _queue = queue;
3292   _counters = counters;
3293   _buffer_blob = NULL;
3294   _compiler = NULL;
3295 
3296 #ifndef PRODUCT
3297   _ideal_graph_printer = NULL;
3298 #endif
3299 }
3300 
3301 bool CompilerThread::can_call_java() const {
3302   return _compiler != NULL && _compiler->is_jvmci();
3303 }
3304 
3305 // Create sweeper thread
3306 CodeCacheSweeperThread::CodeCacheSweeperThread()
3307 : JavaThread(&sweeper_thread_entry) {
3308   _scanned_compiled_method = NULL;
3309 }
3310 
3311 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3312   JavaThread::oops_do(f, cf);
3313   if (_scanned_compiled_method != NULL && cf != NULL) {
3314     // Safepoints can occur when the sweeper is scanning an nmethod so
3315     // process it here to make sure it isn't unloaded in the middle of
3316     // a scan.
3317     cf->do_code_blob(_scanned_compiled_method);
3318   }
3319 }
3320 
3321 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3322   JavaThread::nmethods_do(cf);
3323   if (_scanned_compiled_method != NULL && cf != NULL) {
3324     // Safepoints can occur when the sweeper is scanning an nmethod so
3325     // process it here to make sure it isn't unloaded in the middle of
3326     // a scan.
3327     cf->do_code_blob(_scanned_compiled_method);
3328   }
3329 }
3330 
3331 
3332 // ======= Threads ========
3333 
3334 // The Threads class links together all active threads, and provides
3335 // operations over all threads.  It is protected by its own Mutex
3336 // lock, which is also used in other contexts to protect thread
3337 // operations from having the thread being operated on from exiting
3338 // and going away unexpectedly (e.g., safepoint synchronization)
3339 
3340 JavaThread* Threads::_thread_list = NULL;
3341 int         Threads::_number_of_threads = 0;
3342 int         Threads::_number_of_non_daemon_threads = 0;
3343 int         Threads::_return_code = 0;
3344 int         Threads::_thread_claim_parity = 0;
3345 size_t      JavaThread::_stack_size_at_create = 0;
3346 #ifdef ASSERT
3347 bool        Threads::_vm_complete = false;
3348 #endif
3349 
3350 // All JavaThreads
3351 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3352 
3353 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3354 void Threads::threads_do(ThreadClosure* tc) {
3355   assert_locked_or_safepoint(Threads_lock);
3356   // ALL_JAVA_THREADS iterates through all JavaThreads
3357   ALL_JAVA_THREADS(p) {
3358     tc->do_thread(p);
3359   }
3360   // Someday we could have a table or list of all non-JavaThreads.
3361   // For now, just manually iterate through them.
3362   tc->do_thread(VMThread::vm_thread());
3363   Universe::heap()->gc_threads_do(tc);
3364   WatcherThread *wt = WatcherThread::watcher_thread();
3365   // Strictly speaking, the following NULL check isn't sufficient to make sure
3366   // the data for WatcherThread is still valid upon being examined. However,
3367   // considering that WatchThread terminates when the VM is on the way to
3368   // exit at safepoint, the chance of the above is extremely small. The right
3369   // way to prevent termination of WatcherThread would be to acquire
3370   // Terminator_lock, but we can't do that without violating the lock rank
3371   // checking in some cases.
3372   if (wt != NULL) {
3373     tc->do_thread(wt);
3374   }
3375 
3376   // If CompilerThreads ever become non-JavaThreads, add them here
3377 }
3378 
3379 // The system initialization in the library has three phases.
3380 //
3381 // Phase 1: java.lang.System class initialization
3382 //     java.lang.System is a primordial class loaded and initialized
3383 //     by the VM early during startup.  java.lang.System.<clinit>
3384 //     only does registerNatives and keeps the rest of the class
3385 //     initialization work later until thread initialization completes.
3386 //
3387 //     System.initPhase1 initializes the system properties, the static
3388 //     fields in, out, and err. Set up java signal handlers, OS-specific
3389 //     system settings, and thread group of the main thread.
3390 static void call_initPhase1(TRAPS) {
3391   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3392   instanceKlassHandle klass (THREAD, k);
3393 
3394   JavaValue result(T_VOID);
3395   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3396                                          vmSymbols::void_method_signature(), CHECK);
3397 }
3398 
3399 // Phase 2. Module system initialization
3400 //     This will initialize the module system.  Only java.base classes
3401 //     can be loaded until phase 2 completes.
3402 //
3403 //     Call System.initPhase2 after the compiler initialization and jsr292
3404 //     classes get initialized because module initialization runs a lot of java
3405 //     code, that for performance reasons, should be compiled.  Also, this will
3406 //     enable the startup code to use lambda and other language features in this
3407 //     phase and onward.
3408 //
3409 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3410 static void call_initPhase2(TRAPS) {
3411   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, modules, startuptime));
3412 
3413   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3414   instanceKlassHandle klass (THREAD, k);
3415 
3416   JavaValue result(T_VOID);
3417   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3418                                          vmSymbols::void_method_signature(), CHECK);
3419   universe_post_module_init();
3420 }
3421 
3422 // Phase 3. final setup - set security manager, system class loader and TCCL
3423 //
3424 //     This will instantiate and set the security manager, set the system class
3425 //     loader as well as the thread context class loader.  The security manager
3426 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3427 //     other modules or the application's classpath.
3428 static void call_initPhase3(TRAPS) {
3429   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3430   instanceKlassHandle klass (THREAD, k);
3431 
3432   JavaValue result(T_VOID);
3433   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3434                                          vmSymbols::void_method_signature(), CHECK);
3435 }
3436 
3437 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3438   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3439 
3440   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3441     create_vm_init_libraries();
3442   }
3443 
3444   initialize_class(vmSymbols::java_lang_String(), CHECK);
3445 
3446   // Inject CompactStrings value after the static initializers for String ran.
3447   java_lang_String::set_compact_strings(CompactStrings);
3448 
3449   // Initialize java_lang.System (needed before creating the thread)
3450   initialize_class(vmSymbols::java_lang_System(), CHECK);
3451   // The VM creates & returns objects of this class. Make sure it's initialized.
3452   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3453   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3454   Handle thread_group = create_initial_thread_group(CHECK);
3455   Universe::set_main_thread_group(thread_group());
3456   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3457   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3458   main_thread->set_threadObj(thread_object);
3459   // Set thread status to running since main thread has
3460   // been started and running.
3461   java_lang_Thread::set_thread_status(thread_object,
3462                                       java_lang_Thread::RUNNABLE);
3463 
3464   // The VM creates objects of this class.
3465   initialize_class(vmSymbols::java_lang_reflect_Module(), CHECK);
3466 
3467   // The VM preresolves methods to these classes. Make sure that they get initialized
3468   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3469   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3470 
3471   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3472   call_initPhase1(CHECK);
3473 
3474   // get the Java runtime name after java.lang.System is initialized
3475   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3476   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3477 
3478   // an instance of OutOfMemory exception has been allocated earlier
3479   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3480   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3481   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3482   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3483   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3484   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3485   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3486   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3487 }
3488 
3489 void Threads::initialize_jsr292_core_classes(TRAPS) {
3490   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3491 
3492   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3493   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3494   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3495 }
3496 
3497 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3498   extern void JDK_Version_init();
3499 
3500   // Preinitialize version info.
3501   VM_Version::early_initialize();
3502 
3503   // Check version
3504   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3505 
3506   // Initialize library-based TLS
3507   ThreadLocalStorage::init();
3508 
3509   // Initialize the output stream module
3510   ostream_init();
3511 
3512   // Process java launcher properties.
3513   Arguments::process_sun_java_launcher_properties(args);
3514 
3515   // Initialize the os module
3516   os::init();
3517 
3518   // Record VM creation timing statistics
3519   TraceVmCreationTime create_vm_timer;
3520   create_vm_timer.start();
3521 
3522   // Initialize system properties.
3523   Arguments::init_system_properties();
3524 
3525   // So that JDK version can be used as a discriminator when parsing arguments
3526   JDK_Version_init();
3527 
3528   // Update/Initialize System properties after JDK version number is known
3529   Arguments::init_version_specific_system_properties();
3530 
3531   // Make sure to initialize log configuration *before* parsing arguments
3532   LogConfiguration::initialize(create_vm_timer.begin_time());
3533 
3534   // Parse arguments
3535   jint parse_result = Arguments::parse(args);
3536   if (parse_result != JNI_OK) return parse_result;
3537 
3538   os::init_before_ergo();
3539 
3540   jint ergo_result = Arguments::apply_ergo();
3541   if (ergo_result != JNI_OK) return ergo_result;
3542 
3543   // Final check of all ranges after ergonomics which may change values.
3544   if (!CommandLineFlagRangeList::check_ranges()) {
3545     return JNI_EINVAL;
3546   }
3547 
3548   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3549   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3550   if (!constraint_result) {
3551     return JNI_EINVAL;
3552   }
3553 
3554   CommandLineFlagWriteableList::mark_startup();
3555 
3556   if (PauseAtStartup) {
3557     os::pause();
3558   }
3559 
3560   HOTSPOT_VM_INIT_BEGIN();
3561 
3562   // Timing (must come after argument parsing)
3563   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3564 
3565   // Initialize the os module after parsing the args
3566   jint os_init_2_result = os::init_2();
3567   if (os_init_2_result != JNI_OK) return os_init_2_result;
3568 
3569   jint adjust_after_os_result = Arguments::adjust_after_os();
3570   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3571 
3572   // Initialize output stream logging
3573   ostream_init_log();
3574 
3575   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3576   // Must be before create_vm_init_agents()
3577   if (Arguments::init_libraries_at_startup()) {
3578     convert_vm_init_libraries_to_agents();
3579   }
3580 
3581   // Launch -agentlib/-agentpath and converted -Xrun agents
3582   if (Arguments::init_agents_at_startup()) {
3583     create_vm_init_agents();
3584   }
3585 
3586   // Initialize Threads state
3587   _thread_list = NULL;
3588   _number_of_threads = 0;
3589   _number_of_non_daemon_threads = 0;
3590 
3591   // Initialize global data structures and create system classes in heap
3592   vm_init_globals();
3593 
3594 #if INCLUDE_JVMCI
3595   if (JVMCICounterSize > 0) {
3596     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3597     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3598   } else {
3599     JavaThread::_jvmci_old_thread_counters = NULL;
3600   }
3601 #endif // INCLUDE_JVMCI
3602 
3603   // Attach the main thread to this os thread
3604   JavaThread* main_thread = new JavaThread();
3605   main_thread->set_thread_state(_thread_in_vm);
3606   main_thread->initialize_thread_current();
3607   // must do this before set_active_handles
3608   main_thread->record_stack_base_and_size();
3609   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3610 
3611   if (!main_thread->set_as_starting_thread()) {
3612     vm_shutdown_during_initialization(
3613                                       "Failed necessary internal allocation. Out of swap space");
3614     delete main_thread;
3615     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3616     return JNI_ENOMEM;
3617   }
3618 
3619   // Enable guard page *after* os::create_main_thread(), otherwise it would
3620   // crash Linux VM, see notes in os_linux.cpp.
3621   main_thread->create_stack_guard_pages();
3622 
3623   // Initialize Java-Level synchronization subsystem
3624   ObjectMonitor::Initialize();
3625 
3626   // Initialize global modules
3627   jint status = init_globals();
3628   if (status != JNI_OK) {
3629     delete main_thread;
3630     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3631     return status;
3632   }
3633 
3634   if (TRACE_INITIALIZE() != JNI_OK) {
3635     vm_exit_during_initialization("Failed to initialize tracing backend");
3636   }
3637 
3638   // Should be done after the heap is fully created
3639   main_thread->cache_global_variables();
3640 
3641   HandleMark hm;
3642 
3643   { MutexLocker mu(Threads_lock);
3644     Threads::add(main_thread);
3645   }
3646 
3647   // Any JVMTI raw monitors entered in onload will transition into
3648   // real raw monitor. VM is setup enough here for raw monitor enter.
3649   JvmtiExport::transition_pending_onload_raw_monitors();
3650 
3651   // Create the VMThread
3652   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3653 
3654   VMThread::create();
3655     Thread* vmthread = VMThread::vm_thread();
3656 
3657     if (!os::create_thread(vmthread, os::vm_thread)) {
3658       vm_exit_during_initialization("Cannot create VM thread. "
3659                                     "Out of system resources.");
3660     }
3661 
3662     // Wait for the VM thread to become ready, and VMThread::run to initialize
3663     // Monitors can have spurious returns, must always check another state flag
3664     {
3665       MutexLocker ml(Notify_lock);
3666       os::start_thread(vmthread);
3667       while (vmthread->active_handles() == NULL) {
3668         Notify_lock->wait();
3669       }
3670     }
3671   }
3672 
3673   assert(Universe::is_fully_initialized(), "not initialized");
3674   if (VerifyDuringStartup) {
3675     // Make sure we're starting with a clean slate.
3676     VM_Verify verify_op;
3677     VMThread::execute(&verify_op);
3678   }
3679 
3680   Thread* THREAD = Thread::current();
3681 
3682   // At this point, the Universe is initialized, but we have not executed
3683   // any byte code.  Now is a good time (the only time) to dump out the
3684   // internal state of the JVM for sharing.
3685   if (DumpSharedSpaces) {
3686     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3687     ShouldNotReachHere();
3688   }
3689 
3690   // Always call even when there are not JVMTI environments yet, since environments
3691   // may be attached late and JVMTI must track phases of VM execution
3692   JvmtiExport::enter_early_start_phase();
3693 
3694   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3695   JvmtiExport::post_early_vm_start();
3696 
3697   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3698 
3699   // We need this for ClassDataSharing - the initial vm.info property is set
3700   // with the default value of CDS "sharing" which may be reset through
3701   // command line options.
3702   reset_vm_info_property(CHECK_JNI_ERR);
3703 
3704   quicken_jni_functions();
3705 
3706   // No more stub generation allowed after that point.
3707   StubCodeDesc::freeze();
3708 
3709   // Set flag that basic initialization has completed. Used by exceptions and various
3710   // debug stuff, that does not work until all basic classes have been initialized.
3711   set_init_completed();
3712 
3713   LogConfiguration::post_initialize();
3714   Metaspace::post_initialize();
3715 
3716   HOTSPOT_VM_INIT_END();
3717 
3718   // record VM initialization completion time
3719 #if INCLUDE_MANAGEMENT
3720   Management::record_vm_init_completed();
3721 #endif // INCLUDE_MANAGEMENT
3722 
3723   // Signal Dispatcher needs to be started before VMInit event is posted
3724   os::signal_init();
3725 
3726   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3727   if (!DisableAttachMechanism) {
3728     AttachListener::vm_start();
3729     if (StartAttachListener || AttachListener::init_at_startup()) {
3730       AttachListener::init();
3731     }
3732   }
3733 
3734   // Launch -Xrun agents
3735   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3736   // back-end can launch with -Xdebug -Xrunjdwp.
3737   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3738     create_vm_init_libraries();
3739   }
3740 
3741   if (CleanChunkPoolAsync) {
3742     Chunk::start_chunk_pool_cleaner_task();
3743   }
3744 
3745   // initialize compiler(s)
3746 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3747   CompileBroker::compilation_init(CHECK_JNI_ERR);
3748 #endif
3749 
3750   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3751   // It is done after compilers are initialized, because otherwise compilations of
3752   // signature polymorphic MH intrinsics can be missed
3753   // (see SystemDictionary::find_method_handle_intrinsic).
3754   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3755 
3756   // This will initialize the module system.  Only java.base classes can be
3757   // loaded until phase 2 completes
3758   call_initPhase2(CHECK_JNI_ERR);
3759 
3760   // Always call even when there are not JVMTI environments yet, since environments
3761   // may be attached late and JVMTI must track phases of VM execution
3762   JvmtiExport::enter_start_phase();
3763 
3764   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3765   JvmtiExport::post_vm_start();
3766 
3767   // Final system initialization including security manager and system class loader
3768   call_initPhase3(CHECK_JNI_ERR);
3769 
3770   // cache the system class loader
3771   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3772 
3773 #if INCLUDE_JVMCI
3774   if (EnableJVMCI) {
3775     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3776     // The JVMCI Java initialization code will read this flag and
3777     // do the printing if it's set.
3778     bool init = JVMCIPrintProperties;
3779 
3780     if (!init) {
3781       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3782       // compilations via JVMCI will not actually block until JVMCI is initialized.
3783       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3784     }
3785 
3786     if (init) {
3787       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3788     }
3789   }
3790 #endif
3791 
3792   // Always call even when there are not JVMTI environments yet, since environments
3793   // may be attached late and JVMTI must track phases of VM execution
3794   JvmtiExport::enter_live_phase();
3795 
3796   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3797   JvmtiExport::post_vm_initialized();
3798 
3799   if (TRACE_START() != JNI_OK) {
3800     vm_exit_during_initialization("Failed to start tracing backend.");
3801   }
3802 
3803 #if INCLUDE_MANAGEMENT
3804   Management::initialize(THREAD);
3805 
3806   if (HAS_PENDING_EXCEPTION) {
3807     // management agent fails to start possibly due to
3808     // configuration problem and is responsible for printing
3809     // stack trace if appropriate. Simply exit VM.
3810     vm_exit(1);
3811   }
3812 #endif // INCLUDE_MANAGEMENT
3813 
3814   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3815   if (MemProfiling)                   MemProfiler::engage();
3816   StatSampler::engage();
3817   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3818 
3819   BiasedLocking::init();
3820 
3821 #if INCLUDE_RTM_OPT
3822   RTMLockingCounters::init();
3823 #endif
3824 
3825   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3826     call_postVMInitHook(THREAD);
3827     // The Java side of PostVMInitHook.run must deal with all
3828     // exceptions and provide means of diagnosis.
3829     if (HAS_PENDING_EXCEPTION) {
3830       CLEAR_PENDING_EXCEPTION;
3831     }
3832   }
3833 
3834   {
3835     MutexLocker ml(PeriodicTask_lock);
3836     // Make sure the WatcherThread can be started by WatcherThread::start()
3837     // or by dynamic enrollment.
3838     WatcherThread::make_startable();
3839     // Start up the WatcherThread if there are any periodic tasks
3840     // NOTE:  All PeriodicTasks should be registered by now. If they
3841     //   aren't, late joiners might appear to start slowly (we might
3842     //   take a while to process their first tick).
3843     if (PeriodicTask::num_tasks() > 0) {
3844       WatcherThread::start();
3845     }
3846   }
3847 
3848   create_vm_timer.end();
3849 #ifdef ASSERT
3850   _vm_complete = true;
3851 #endif
3852   return JNI_OK;
3853 }
3854 
3855 // type for the Agent_OnLoad and JVM_OnLoad entry points
3856 extern "C" {
3857   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3858 }
3859 // Find a command line agent library and return its entry point for
3860 //         -agentlib:  -agentpath:   -Xrun
3861 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3862 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3863                                     const char *on_load_symbols[],
3864                                     size_t num_symbol_entries) {
3865   OnLoadEntry_t on_load_entry = NULL;
3866   void *library = NULL;
3867 
3868   if (!agent->valid()) {
3869     char buffer[JVM_MAXPATHLEN];
3870     char ebuf[1024] = "";
3871     const char *name = agent->name();
3872     const char *msg = "Could not find agent library ";
3873 
3874     // First check to see if agent is statically linked into executable
3875     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3876       library = agent->os_lib();
3877     } else if (agent->is_absolute_path()) {
3878       library = os::dll_load(name, ebuf, sizeof ebuf);
3879       if (library == NULL) {
3880         const char *sub_msg = " in absolute path, with error: ";
3881         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3882         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3883         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3884         // If we can't find the agent, exit.
3885         vm_exit_during_initialization(buf, NULL);
3886         FREE_C_HEAP_ARRAY(char, buf);
3887       }
3888     } else {
3889       // Try to load the agent from the standard dll directory
3890       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3891                              name)) {
3892         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3893       }
3894       if (library == NULL) { // Try the local directory
3895         char ns[1] = {0};
3896         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3897           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3898         }
3899         if (library == NULL) {
3900           const char *sub_msg = " on the library path, with error: ";
3901           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3902           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3903           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3904           // If we can't find the agent, exit.
3905           vm_exit_during_initialization(buf, NULL);
3906           FREE_C_HEAP_ARRAY(char, buf);
3907         }
3908       }
3909     }
3910     agent->set_os_lib(library);
3911     agent->set_valid();
3912   }
3913 
3914   // Find the OnLoad function.
3915   on_load_entry =
3916     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3917                                                           false,
3918                                                           on_load_symbols,
3919                                                           num_symbol_entries));
3920   return on_load_entry;
3921 }
3922 
3923 // Find the JVM_OnLoad entry point
3924 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3925   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3926   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3927 }
3928 
3929 // Find the Agent_OnLoad entry point
3930 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3931   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3932   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3933 }
3934 
3935 // For backwards compatibility with -Xrun
3936 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3937 // treated like -agentpath:
3938 // Must be called before agent libraries are created
3939 void Threads::convert_vm_init_libraries_to_agents() {
3940   AgentLibrary* agent;
3941   AgentLibrary* next;
3942 
3943   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3944     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3945     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3946 
3947     // If there is an JVM_OnLoad function it will get called later,
3948     // otherwise see if there is an Agent_OnLoad
3949     if (on_load_entry == NULL) {
3950       on_load_entry = lookup_agent_on_load(agent);
3951       if (on_load_entry != NULL) {
3952         // switch it to the agent list -- so that Agent_OnLoad will be called,
3953         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3954         Arguments::convert_library_to_agent(agent);
3955       } else {
3956         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3957       }
3958     }
3959   }
3960 }
3961 
3962 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3963 // Invokes Agent_OnLoad
3964 // Called very early -- before JavaThreads exist
3965 void Threads::create_vm_init_agents() {
3966   extern struct JavaVM_ main_vm;
3967   AgentLibrary* agent;
3968 
3969   JvmtiExport::enter_onload_phase();
3970 
3971   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3972     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3973 
3974     if (on_load_entry != NULL) {
3975       // Invoke the Agent_OnLoad function
3976       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3977       if (err != JNI_OK) {
3978         vm_exit_during_initialization("agent library failed to init", agent->name());
3979       }
3980     } else {
3981       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3982     }
3983   }
3984   JvmtiExport::enter_primordial_phase();
3985 }
3986 
3987 extern "C" {
3988   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3989 }
3990 
3991 void Threads::shutdown_vm_agents() {
3992   // Send any Agent_OnUnload notifications
3993   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3994   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3995   extern struct JavaVM_ main_vm;
3996   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3997 
3998     // Find the Agent_OnUnload function.
3999     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4000                                                    os::find_agent_function(agent,
4001                                                    false,
4002                                                    on_unload_symbols,
4003                                                    num_symbol_entries));
4004 
4005     // Invoke the Agent_OnUnload function
4006     if (unload_entry != NULL) {
4007       JavaThread* thread = JavaThread::current();
4008       ThreadToNativeFromVM ttn(thread);
4009       HandleMark hm(thread);
4010       (*unload_entry)(&main_vm);
4011     }
4012   }
4013 }
4014 
4015 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4016 // Invokes JVM_OnLoad
4017 void Threads::create_vm_init_libraries() {
4018   extern struct JavaVM_ main_vm;
4019   AgentLibrary* agent;
4020 
4021   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4022     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4023 
4024     if (on_load_entry != NULL) {
4025       // Invoke the JVM_OnLoad function
4026       JavaThread* thread = JavaThread::current();
4027       ThreadToNativeFromVM ttn(thread);
4028       HandleMark hm(thread);
4029       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4030       if (err != JNI_OK) {
4031         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4032       }
4033     } else {
4034       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4035     }
4036   }
4037 }
4038 
4039 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4040   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4041 
4042   JavaThread* java_thread = NULL;
4043   // Sequential search for now.  Need to do better optimization later.
4044   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4045     oop tobj = thread->threadObj();
4046     if (!thread->is_exiting() &&
4047         tobj != NULL &&
4048         java_tid == java_lang_Thread::thread_id(tobj)) {
4049       java_thread = thread;
4050       break;
4051     }
4052   }
4053   return java_thread;
4054 }
4055 
4056 
4057 // Last thread running calls java.lang.Shutdown.shutdown()
4058 void JavaThread::invoke_shutdown_hooks() {
4059   HandleMark hm(this);
4060 
4061   // We could get here with a pending exception, if so clear it now.
4062   if (this->has_pending_exception()) {
4063     this->clear_pending_exception();
4064   }
4065 
4066   EXCEPTION_MARK;
4067   Klass* k =
4068     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4069                                       THREAD);
4070   if (k != NULL) {
4071     // SystemDictionary::resolve_or_null will return null if there was
4072     // an exception.  If we cannot load the Shutdown class, just don't
4073     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4074     // and finalizers (if runFinalizersOnExit is set) won't be run.
4075     // Note that if a shutdown hook was registered or runFinalizersOnExit
4076     // was called, the Shutdown class would have already been loaded
4077     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4078     instanceKlassHandle shutdown_klass (THREAD, k);
4079     JavaValue result(T_VOID);
4080     JavaCalls::call_static(&result,
4081                            shutdown_klass,
4082                            vmSymbols::shutdown_method_name(),
4083                            vmSymbols::void_method_signature(),
4084                            THREAD);
4085   }
4086   CLEAR_PENDING_EXCEPTION;
4087 }
4088 
4089 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4090 // the program falls off the end of main(). Another VM exit path is through
4091 // vm_exit() when the program calls System.exit() to return a value or when
4092 // there is a serious error in VM. The two shutdown paths are not exactly
4093 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4094 // and VM_Exit op at VM level.
4095 //
4096 // Shutdown sequence:
4097 //   + Shutdown native memory tracking if it is on
4098 //   + Wait until we are the last non-daemon thread to execute
4099 //     <-- every thing is still working at this moment -->
4100 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4101 //        shutdown hooks, run finalizers if finalization-on-exit
4102 //   + Call before_exit(), prepare for VM exit
4103 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4104 //        currently the only user of this mechanism is File.deleteOnExit())
4105 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4106 //        post thread end and vm death events to JVMTI,
4107 //        stop signal thread
4108 //   + Call JavaThread::exit(), it will:
4109 //      > release JNI handle blocks, remove stack guard pages
4110 //      > remove this thread from Threads list
4111 //     <-- no more Java code from this thread after this point -->
4112 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4113 //     the compiler threads at safepoint
4114 //     <-- do not use anything that could get blocked by Safepoint -->
4115 //   + Disable tracing at JNI/JVM barriers
4116 //   + Set _vm_exited flag for threads that are still running native code
4117 //   + Delete this thread
4118 //   + Call exit_globals()
4119 //      > deletes tty
4120 //      > deletes PerfMemory resources
4121 //   + Return to caller
4122 
4123 bool Threads::destroy_vm() {
4124   JavaThread* thread = JavaThread::current();
4125 
4126 #ifdef ASSERT
4127   _vm_complete = false;
4128 #endif
4129   // Wait until we are the last non-daemon thread to execute
4130   { MutexLocker nu(Threads_lock);
4131     while (Threads::number_of_non_daemon_threads() > 1)
4132       // This wait should make safepoint checks, wait without a timeout,
4133       // and wait as a suspend-equivalent condition.
4134       //
4135       // Note: If the FlatProfiler is running and this thread is waiting
4136       // for another non-daemon thread to finish, then the FlatProfiler
4137       // is waiting for the external suspend request on this thread to
4138       // complete. wait_for_ext_suspend_completion() will eventually
4139       // timeout, but that takes time. Making this wait a suspend-
4140       // equivalent condition solves that timeout problem.
4141       //
4142       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4143                          Mutex::_as_suspend_equivalent_flag);
4144   }
4145 
4146   // Hang forever on exit if we are reporting an error.
4147   if (ShowMessageBoxOnError && is_error_reported()) {
4148     os::infinite_sleep();
4149   }
4150   os::wait_for_keypress_at_exit();
4151 
4152   // run Java level shutdown hooks
4153   thread->invoke_shutdown_hooks();
4154 
4155   before_exit(thread);
4156 
4157   thread->exit(true);
4158 
4159   // Stop VM thread.
4160   {
4161     // 4945125 The vm thread comes to a safepoint during exit.
4162     // GC vm_operations can get caught at the safepoint, and the
4163     // heap is unparseable if they are caught. Grab the Heap_lock
4164     // to prevent this. The GC vm_operations will not be able to
4165     // queue until after the vm thread is dead. After this point,
4166     // we'll never emerge out of the safepoint before the VM exits.
4167 
4168     MutexLocker ml(Heap_lock);
4169 
4170     VMThread::wait_for_vm_thread_exit();
4171     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4172     VMThread::destroy();
4173   }
4174 
4175   // clean up ideal graph printers
4176 #if defined(COMPILER2) && !defined(PRODUCT)
4177   IdealGraphPrinter::clean_up();
4178 #endif
4179 
4180   // Now, all Java threads are gone except daemon threads. Daemon threads
4181   // running Java code or in VM are stopped by the Safepoint. However,
4182   // daemon threads executing native code are still running.  But they
4183   // will be stopped at native=>Java/VM barriers. Note that we can't
4184   // simply kill or suspend them, as it is inherently deadlock-prone.
4185 
4186   VM_Exit::set_vm_exited();
4187 
4188   notify_vm_shutdown();
4189 
4190   delete thread;
4191 
4192 #if INCLUDE_JVMCI
4193   if (JVMCICounterSize > 0) {
4194     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4195   }
4196 #endif
4197 
4198   // exit_globals() will delete tty
4199   exit_globals();
4200 
4201   LogConfiguration::finalize();
4202 
4203   return true;
4204 }
4205 
4206 
4207 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4208   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4209   return is_supported_jni_version(version);
4210 }
4211 
4212 
4213 jboolean Threads::is_supported_jni_version(jint version) {
4214   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4215   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4216   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4217   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4218   if (version == JNI_VERSION_9) return JNI_TRUE;
4219   return JNI_FALSE;
4220 }
4221 
4222 
4223 void Threads::add(JavaThread* p, bool force_daemon) {
4224   // The threads lock must be owned at this point
4225   assert_locked_or_safepoint(Threads_lock);
4226 
4227   // See the comment for this method in thread.hpp for its purpose and
4228   // why it is called here.
4229   p->initialize_queues();
4230   p->set_next(_thread_list);
4231   _thread_list = p;
4232   _number_of_threads++;
4233   oop threadObj = p->threadObj();
4234   bool daemon = true;
4235   // Bootstrapping problem: threadObj can be null for initial
4236   // JavaThread (or for threads attached via JNI)
4237   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4238     _number_of_non_daemon_threads++;
4239     daemon = false;
4240   }
4241 
4242   ThreadService::add_thread(p, daemon);
4243 
4244   // Possible GC point.
4245   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4246 }
4247 
4248 void Threads::remove(JavaThread* p) {
4249   // Extra scope needed for Thread_lock, so we can check
4250   // that we do not remove thread without safepoint code notice
4251   { MutexLocker ml(Threads_lock);
4252 
4253     assert(includes(p), "p must be present");
4254 
4255     JavaThread* current = _thread_list;
4256     JavaThread* prev    = NULL;
4257 
4258     while (current != p) {
4259       prev    = current;
4260       current = current->next();
4261     }
4262 
4263     if (prev) {
4264       prev->set_next(current->next());
4265     } else {
4266       _thread_list = p->next();
4267     }
4268     _number_of_threads--;
4269     oop threadObj = p->threadObj();
4270     bool daemon = true;
4271     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4272       _number_of_non_daemon_threads--;
4273       daemon = false;
4274 
4275       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4276       // on destroy_vm will wake up.
4277       if (number_of_non_daemon_threads() == 1) {
4278         Threads_lock->notify_all();
4279       }
4280     }
4281     ThreadService::remove_thread(p, daemon);
4282 
4283     // Make sure that safepoint code disregard this thread. This is needed since
4284     // the thread might mess around with locks after this point. This can cause it
4285     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4286     // of this thread since it is removed from the queue.
4287     p->set_terminated_value();
4288   } // unlock Threads_lock
4289 
4290   // Since Events::log uses a lock, we grab it outside the Threads_lock
4291   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4292 }
4293 
4294 // Threads_lock must be held when this is called (or must be called during a safepoint)
4295 bool Threads::includes(JavaThread* p) {
4296   assert(Threads_lock->is_locked(), "sanity check");
4297   ALL_JAVA_THREADS(q) {
4298     if (q == p) {
4299       return true;
4300     }
4301   }
4302   return false;
4303 }
4304 
4305 // Operations on the Threads list for GC.  These are not explicitly locked,
4306 // but the garbage collector must provide a safe context for them to run.
4307 // In particular, these things should never be called when the Threads_lock
4308 // is held by some other thread. (Note: the Safepoint abstraction also
4309 // uses the Threads_lock to guarantee this property. It also makes sure that
4310 // all threads gets blocked when exiting or starting).
4311 
4312 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4313   ALL_JAVA_THREADS(p) {
4314     p->oops_do(f, cf);
4315   }
4316   VMThread::vm_thread()->oops_do(f, cf);
4317 }
4318 
4319 void Threads::change_thread_claim_parity() {
4320   // Set the new claim parity.
4321   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4322          "Not in range.");
4323   _thread_claim_parity++;
4324   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4325   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4326          "Not in range.");
4327 }
4328 
4329 #ifdef ASSERT
4330 void Threads::assert_all_threads_claimed() {
4331   ALL_JAVA_THREADS(p) {
4332     const int thread_parity = p->oops_do_parity();
4333     assert((thread_parity == _thread_claim_parity),
4334            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4335   }
4336 }
4337 #endif // ASSERT
4338 
4339 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4340   int cp = Threads::thread_claim_parity();
4341   ALL_JAVA_THREADS(p) {
4342     if (p->claim_oops_do(is_par, cp)) {
4343       p->oops_do(f, cf);
4344     }
4345   }
4346   VMThread* vmt = VMThread::vm_thread();
4347   if (vmt->claim_oops_do(is_par, cp)) {
4348     vmt->oops_do(f, cf);
4349   }
4350 }
4351 
4352 #if INCLUDE_ALL_GCS
4353 // Used by ParallelScavenge
4354 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4355   ALL_JAVA_THREADS(p) {
4356     q->enqueue(new ThreadRootsTask(p));
4357   }
4358   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4359 }
4360 
4361 // Used by Parallel Old
4362 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4363   ALL_JAVA_THREADS(p) {
4364     q->enqueue(new ThreadRootsMarkingTask(p));
4365   }
4366   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4367 }
4368 #endif // INCLUDE_ALL_GCS
4369 
4370 void Threads::nmethods_do(CodeBlobClosure* cf) {
4371   ALL_JAVA_THREADS(p) {
4372     // This is used by the code cache sweeper to mark nmethods that are active
4373     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4374     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4375     if(!p->is_Code_cache_sweeper_thread()) {
4376       p->nmethods_do(cf);
4377     }
4378   }
4379 }
4380 
4381 void Threads::metadata_do(void f(Metadata*)) {
4382   ALL_JAVA_THREADS(p) {
4383     p->metadata_do(f);
4384   }
4385 }
4386 
4387 class ThreadHandlesClosure : public ThreadClosure {
4388   void (*_f)(Metadata*);
4389  public:
4390   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4391   virtual void do_thread(Thread* thread) {
4392     thread->metadata_handles_do(_f);
4393   }
4394 };
4395 
4396 void Threads::metadata_handles_do(void f(Metadata*)) {
4397   // Only walk the Handles in Thread.
4398   ThreadHandlesClosure handles_closure(f);
4399   threads_do(&handles_closure);
4400 }
4401 
4402 void Threads::deoptimized_wrt_marked_nmethods() {
4403   ALL_JAVA_THREADS(p) {
4404     p->deoptimized_wrt_marked_nmethods();
4405   }
4406 }
4407 
4408 
4409 // Get count Java threads that are waiting to enter the specified monitor.
4410 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4411                                                          address monitor,
4412                                                          bool doLock) {
4413   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4414          "must grab Threads_lock or be at safepoint");
4415   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4416 
4417   int i = 0;
4418   {
4419     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4420     ALL_JAVA_THREADS(p) {
4421       if (!p->can_call_java()) continue;
4422 
4423       address pending = (address)p->current_pending_monitor();
4424       if (pending == monitor) {             // found a match
4425         if (i < count) result->append(p);   // save the first count matches
4426         i++;
4427       }
4428     }
4429   }
4430   return result;
4431 }
4432 
4433 
4434 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4435                                                       bool doLock) {
4436   assert(doLock ||
4437          Threads_lock->owned_by_self() ||
4438          SafepointSynchronize::is_at_safepoint(),
4439          "must grab Threads_lock or be at safepoint");
4440 
4441   // NULL owner means not locked so we can skip the search
4442   if (owner == NULL) return NULL;
4443 
4444   {
4445     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4446     ALL_JAVA_THREADS(p) {
4447       // first, see if owner is the address of a Java thread
4448       if (owner == (address)p) return p;
4449     }
4450   }
4451   // Cannot assert on lack of success here since this function may be
4452   // used by code that is trying to report useful problem information
4453   // like deadlock detection.
4454   if (UseHeavyMonitors) return NULL;
4455 
4456   // If we didn't find a matching Java thread and we didn't force use of
4457   // heavyweight monitors, then the owner is the stack address of the
4458   // Lock Word in the owning Java thread's stack.
4459   //
4460   JavaThread* the_owner = NULL;
4461   {
4462     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4463     ALL_JAVA_THREADS(q) {
4464       if (q->is_lock_owned(owner)) {
4465         the_owner = q;
4466         break;
4467       }
4468     }
4469   }
4470   // cannot assert on lack of success here; see above comment
4471   return the_owner;
4472 }
4473 
4474 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4475 void Threads::print_on(outputStream* st, bool print_stacks,
4476                        bool internal_format, bool print_concurrent_locks) {
4477   char buf[32];
4478   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4479 
4480   st->print_cr("Full thread dump %s (%s %s):",
4481                Abstract_VM_Version::vm_name(),
4482                Abstract_VM_Version::vm_release(),
4483                Abstract_VM_Version::vm_info_string());
4484   st->cr();
4485 
4486 #if INCLUDE_SERVICES
4487   // Dump concurrent locks
4488   ConcurrentLocksDump concurrent_locks;
4489   if (print_concurrent_locks) {
4490     concurrent_locks.dump_at_safepoint();
4491   }
4492 #endif // INCLUDE_SERVICES
4493 
4494   ALL_JAVA_THREADS(p) {
4495     ResourceMark rm;
4496     p->print_on(st);
4497     if (print_stacks) {
4498       if (internal_format) {
4499         p->trace_stack();
4500       } else {
4501         p->print_stack_on(st);
4502       }
4503     }
4504     st->cr();
4505 #if INCLUDE_SERVICES
4506     if (print_concurrent_locks) {
4507       concurrent_locks.print_locks_on(p, st);
4508     }
4509 #endif // INCLUDE_SERVICES
4510   }
4511 
4512   VMThread::vm_thread()->print_on(st);
4513   st->cr();
4514   Universe::heap()->print_gc_threads_on(st);
4515   WatcherThread* wt = WatcherThread::watcher_thread();
4516   if (wt != NULL) {
4517     wt->print_on(st);
4518     st->cr();
4519   }
4520   st->flush();
4521 }
4522 
4523 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4524                              int buflen, bool* found_current) {
4525   if (this_thread != NULL) {
4526     bool is_current = (current == this_thread);
4527     *found_current = *found_current || is_current;
4528     st->print("%s", is_current ? "=>" : "  ");
4529 
4530     st->print(PTR_FORMAT, p2i(this_thread));
4531     st->print(" ");
4532     this_thread->print_on_error(st, buf, buflen);
4533     st->cr();
4534   }
4535 }
4536 
4537 class PrintOnErrorClosure : public ThreadClosure {
4538   outputStream* _st;
4539   Thread* _current;
4540   char* _buf;
4541   int _buflen;
4542   bool* _found_current;
4543  public:
4544   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4545                       int buflen, bool* found_current) :
4546    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4547 
4548   virtual void do_thread(Thread* thread) {
4549     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4550   }
4551 };
4552 
4553 // Threads::print_on_error() is called by fatal error handler. It's possible
4554 // that VM is not at safepoint and/or current thread is inside signal handler.
4555 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4556 // memory (even in resource area), it might deadlock the error handler.
4557 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4558                              int buflen) {
4559   bool found_current = false;
4560   st->print_cr("Java Threads: ( => current thread )");
4561   ALL_JAVA_THREADS(thread) {
4562     print_on_error(thread, st, current, buf, buflen, &found_current);
4563   }
4564   st->cr();
4565 
4566   st->print_cr("Other Threads:");
4567   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4568   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4569 
4570   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4571   Universe::heap()->gc_threads_do(&print_closure);
4572 
4573   if (!found_current) {
4574     st->cr();
4575     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4576     current->print_on_error(st, buf, buflen);
4577     st->cr();
4578   }
4579   st->cr();
4580   st->print_cr("Threads with active compile tasks:");
4581   print_threads_compiling(st, buf, buflen);
4582 }
4583 
4584 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4585   ALL_JAVA_THREADS(thread) {
4586     if (thread->is_Compiler_thread()) {
4587       CompilerThread* ct = (CompilerThread*) thread;
4588       if (ct->task() != NULL) {
4589         thread->print_name_on_error(st, buf, buflen);
4590         ct->task()->print(st, NULL, true, true);
4591       }
4592     }
4593   }
4594 }
4595 
4596 
4597 // Internal SpinLock and Mutex
4598 // Based on ParkEvent
4599 
4600 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4601 //
4602 // We employ SpinLocks _only for low-contention, fixed-length
4603 // short-duration critical sections where we're concerned
4604 // about native mutex_t or HotSpot Mutex:: latency.
4605 // The mux construct provides a spin-then-block mutual exclusion
4606 // mechanism.
4607 //
4608 // Testing has shown that contention on the ListLock guarding gFreeList
4609 // is common.  If we implement ListLock as a simple SpinLock it's common
4610 // for the JVM to devolve to yielding with little progress.  This is true
4611 // despite the fact that the critical sections protected by ListLock are
4612 // extremely short.
4613 //
4614 // TODO-FIXME: ListLock should be of type SpinLock.
4615 // We should make this a 1st-class type, integrated into the lock
4616 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4617 // should have sufficient padding to avoid false-sharing and excessive
4618 // cache-coherency traffic.
4619 
4620 
4621 typedef volatile int SpinLockT;
4622 
4623 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4624   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4625     return;   // normal fast-path return
4626   }
4627 
4628   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4629   TEVENT(SpinAcquire - ctx);
4630   int ctr = 0;
4631   int Yields = 0;
4632   for (;;) {
4633     while (*adr != 0) {
4634       ++ctr;
4635       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4636         if (Yields > 5) {
4637           os::naked_short_sleep(1);
4638         } else {
4639           os::naked_yield();
4640           ++Yields;
4641         }
4642       } else {
4643         SpinPause();
4644       }
4645     }
4646     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4647   }
4648 }
4649 
4650 void Thread::SpinRelease(volatile int * adr) {
4651   assert(*adr != 0, "invariant");
4652   OrderAccess::fence();      // guarantee at least release consistency.
4653   // Roach-motel semantics.
4654   // It's safe if subsequent LDs and STs float "up" into the critical section,
4655   // but prior LDs and STs within the critical section can't be allowed
4656   // to reorder or float past the ST that releases the lock.
4657   // Loads and stores in the critical section - which appear in program
4658   // order before the store that releases the lock - must also appear
4659   // before the store that releases the lock in memory visibility order.
4660   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4661   // the ST of 0 into the lock-word which releases the lock, so fence
4662   // more than covers this on all platforms.
4663   *adr = 0;
4664 }
4665 
4666 // muxAcquire and muxRelease:
4667 //
4668 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4669 //    The LSB of the word is set IFF the lock is held.
4670 //    The remainder of the word points to the head of a singly-linked list
4671 //    of threads blocked on the lock.
4672 //
4673 // *  The current implementation of muxAcquire-muxRelease uses its own
4674 //    dedicated Thread._MuxEvent instance.  If we're interested in
4675 //    minimizing the peak number of extant ParkEvent instances then
4676 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4677 //    as certain invariants were satisfied.  Specifically, care would need
4678 //    to be taken with regards to consuming unpark() "permits".
4679 //    A safe rule of thumb is that a thread would never call muxAcquire()
4680 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4681 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4682 //    consume an unpark() permit intended for monitorenter, for instance.
4683 //    One way around this would be to widen the restricted-range semaphore
4684 //    implemented in park().  Another alternative would be to provide
4685 //    multiple instances of the PlatformEvent() for each thread.  One
4686 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4687 //
4688 // *  Usage:
4689 //    -- Only as leaf locks
4690 //    -- for short-term locking only as muxAcquire does not perform
4691 //       thread state transitions.
4692 //
4693 // Alternatives:
4694 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4695 //    but with parking or spin-then-park instead of pure spinning.
4696 // *  Use Taura-Oyama-Yonenzawa locks.
4697 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4698 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4699 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4700 //    acquiring threads use timers (ParkTimed) to detect and recover from
4701 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4702 //    boundaries by using placement-new.
4703 // *  Augment MCS with advisory back-link fields maintained with CAS().
4704 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4705 //    The validity of the backlinks must be ratified before we trust the value.
4706 //    If the backlinks are invalid the exiting thread must back-track through the
4707 //    the forward links, which are always trustworthy.
4708 // *  Add a successor indication.  The LockWord is currently encoded as
4709 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4710 //    to provide the usual futile-wakeup optimization.
4711 //    See RTStt for details.
4712 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4713 //
4714 
4715 
4716 typedef volatile intptr_t MutexT;      // Mux Lock-word
4717 enum MuxBits { LOCKBIT = 1 };
4718 
4719 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4720   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4721   if (w == 0) return;
4722   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4723     return;
4724   }
4725 
4726   TEVENT(muxAcquire - Contention);
4727   ParkEvent * const Self = Thread::current()->_MuxEvent;
4728   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4729   for (;;) {
4730     int its = (os::is_MP() ? 100 : 0) + 1;
4731 
4732     // Optional spin phase: spin-then-park strategy
4733     while (--its >= 0) {
4734       w = *Lock;
4735       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4736         return;
4737       }
4738     }
4739 
4740     Self->reset();
4741     Self->OnList = intptr_t(Lock);
4742     // The following fence() isn't _strictly necessary as the subsequent
4743     // CAS() both serializes execution and ratifies the fetched *Lock value.
4744     OrderAccess::fence();
4745     for (;;) {
4746       w = *Lock;
4747       if ((w & LOCKBIT) == 0) {
4748         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4749           Self->OnList = 0;   // hygiene - allows stronger asserts
4750           return;
4751         }
4752         continue;      // Interference -- *Lock changed -- Just retry
4753       }
4754       assert(w & LOCKBIT, "invariant");
4755       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4756       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4757     }
4758 
4759     while (Self->OnList != 0) {
4760       Self->park();
4761     }
4762   }
4763 }
4764 
4765 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4766   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4767   if (w == 0) return;
4768   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4769     return;
4770   }
4771 
4772   TEVENT(muxAcquire - Contention);
4773   ParkEvent * ReleaseAfter = NULL;
4774   if (ev == NULL) {
4775     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4776   }
4777   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4778   for (;;) {
4779     guarantee(ev->OnList == 0, "invariant");
4780     int its = (os::is_MP() ? 100 : 0) + 1;
4781 
4782     // Optional spin phase: spin-then-park strategy
4783     while (--its >= 0) {
4784       w = *Lock;
4785       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4786         if (ReleaseAfter != NULL) {
4787           ParkEvent::Release(ReleaseAfter);
4788         }
4789         return;
4790       }
4791     }
4792 
4793     ev->reset();
4794     ev->OnList = intptr_t(Lock);
4795     // The following fence() isn't _strictly necessary as the subsequent
4796     // CAS() both serializes execution and ratifies the fetched *Lock value.
4797     OrderAccess::fence();
4798     for (;;) {
4799       w = *Lock;
4800       if ((w & LOCKBIT) == 0) {
4801         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4802           ev->OnList = 0;
4803           // We call ::Release while holding the outer lock, thus
4804           // artificially lengthening the critical section.
4805           // Consider deferring the ::Release() until the subsequent unlock(),
4806           // after we've dropped the outer lock.
4807           if (ReleaseAfter != NULL) {
4808             ParkEvent::Release(ReleaseAfter);
4809           }
4810           return;
4811         }
4812         continue;      // Interference -- *Lock changed -- Just retry
4813       }
4814       assert(w & LOCKBIT, "invariant");
4815       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4816       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4817     }
4818 
4819     while (ev->OnList != 0) {
4820       ev->park();
4821     }
4822   }
4823 }
4824 
4825 // Release() must extract a successor from the list and then wake that thread.
4826 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4827 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4828 // Release() would :
4829 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4830 // (B) Extract a successor from the private list "in-hand"
4831 // (C) attempt to CAS() the residual back into *Lock over null.
4832 //     If there were any newly arrived threads and the CAS() would fail.
4833 //     In that case Release() would detach the RATs, re-merge the list in-hand
4834 //     with the RATs and repeat as needed.  Alternately, Release() might
4835 //     detach and extract a successor, but then pass the residual list to the wakee.
4836 //     The wakee would be responsible for reattaching and remerging before it
4837 //     competed for the lock.
4838 //
4839 // Both "pop" and DMR are immune from ABA corruption -- there can be
4840 // multiple concurrent pushers, but only one popper or detacher.
4841 // This implementation pops from the head of the list.  This is unfair,
4842 // but tends to provide excellent throughput as hot threads remain hot.
4843 // (We wake recently run threads first).
4844 //
4845 // All paths through muxRelease() will execute a CAS.
4846 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4847 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4848 // executed within the critical section are complete and globally visible before the
4849 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4850 void Thread::muxRelease(volatile intptr_t * Lock)  {
4851   for (;;) {
4852     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4853     assert(w & LOCKBIT, "invariant");
4854     if (w == LOCKBIT) return;
4855     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4856     assert(List != NULL, "invariant");
4857     assert(List->OnList == intptr_t(Lock), "invariant");
4858     ParkEvent * const nxt = List->ListNext;
4859     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4860 
4861     // The following CAS() releases the lock and pops the head element.
4862     // The CAS() also ratifies the previously fetched lock-word value.
4863     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4864       continue;
4865     }
4866     List->OnList = 0;
4867     OrderAccess::fence();
4868     List->unpark();
4869     return;
4870   }
4871 }
4872 
4873 
4874 void Threads::verify() {
4875   ALL_JAVA_THREADS(p) {
4876     p->verify();
4877   }
4878   VMThread* thread = VMThread::vm_thread();
4879   if (thread != NULL) thread->verify();
4880 }