1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "gc/shared/vmGCOperations.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "logging/log.hpp"
  37 #include "logging/logStream.inline.hpp"
  38 #include "memory/allocation.inline.hpp"
  39 #ifdef ASSERT
  40 #include "memory/guardedMemory.hpp"
  41 #endif
  42 #include "memory/resourceArea.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "prims/jvm.h"
  45 #include "prims/jvm_misc.hpp"
  46 #include "prims/privilegedStack.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.hpp"
  49 #include "runtime/frame.inline.hpp"
  50 #include "runtime/interfaceSupport.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/javaCalls.hpp"
  53 #include "runtime/mutexLocker.hpp"
  54 #include "runtime/os.inline.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/thread.inline.hpp"
  57 #include "runtime/vm_version.hpp"
  58 #include "services/attachListener.hpp"
  59 #include "services/mallocTracker.hpp"
  60 #include "services/memTracker.hpp"
  61 #include "services/nmtCommon.hpp"
  62 #include "services/threadService.hpp"
  63 #include "utilities/defaultStream.hpp"
  64 #include "utilities/events.hpp"
  65 
  66 # include <signal.h>
  67 # include <errno.h>
  68 
  69 OSThread*         os::_starting_thread    = NULL;
  70 address           os::_polling_page       = NULL;
  71 volatile int32_t* os::_mem_serialize_page = NULL;
  72 uintptr_t         os::_serialize_page_mask = 0;
  73 long              os::_rand_seed          = 1;
  74 int               os::_processor_count    = 0;
  75 int               os::_initial_active_processor_count = 0;
  76 size_t            os::_page_sizes[os::page_sizes_max];
  77 
  78 #ifndef PRODUCT
  79 julong os::num_mallocs = 0;         // # of calls to malloc/realloc
  80 julong os::alloc_bytes = 0;         // # of bytes allocated
  81 julong os::num_frees = 0;           // # of calls to free
  82 julong os::free_bytes = 0;          // # of bytes freed
  83 #endif
  84 
  85 static juint cur_malloc_words = 0;  // current size for MallocMaxTestWords
  86 
  87 void os_init_globals() {
  88   // Called from init_globals().
  89   // See Threads::create_vm() in thread.cpp, and init.cpp.
  90   os::init_globals();
  91 }
  92 
  93 // Fill in buffer with current local time as an ISO-8601 string.
  94 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
  95 // Returns buffer, or NULL if it failed.
  96 // This would mostly be a call to
  97 //     strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
  98 // except that on Windows the %z behaves badly, so we do it ourselves.
  99 // Also, people wanted milliseconds on there,
 100 // and strftime doesn't do milliseconds.
 101 char* os::iso8601_time(char* buffer, size_t buffer_length, bool utc) {
 102   // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
 103   //                                      1         2
 104   //                             12345678901234567890123456789
 105   // format string: "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d"
 106   static const size_t needed_buffer = 29;
 107 
 108   // Sanity check the arguments
 109   if (buffer == NULL) {
 110     assert(false, "NULL buffer");
 111     return NULL;
 112   }
 113   if (buffer_length < needed_buffer) {
 114     assert(false, "buffer_length too small");
 115     return NULL;
 116   }
 117   // Get the current time
 118   jlong milliseconds_since_19700101 = javaTimeMillis();
 119   const int milliseconds_per_microsecond = 1000;
 120   const time_t seconds_since_19700101 =
 121     milliseconds_since_19700101 / milliseconds_per_microsecond;
 122   const int milliseconds_after_second =
 123     milliseconds_since_19700101 % milliseconds_per_microsecond;
 124   // Convert the time value to a tm and timezone variable
 125   struct tm time_struct;
 126   if (utc) {
 127     if (gmtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 128       assert(false, "Failed gmtime_pd");
 129       return NULL;
 130     }
 131   } else {
 132     if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
 133       assert(false, "Failed localtime_pd");
 134       return NULL;
 135     }
 136   }
 137 #if defined(_ALLBSD_SOURCE)
 138   const time_t zone = (time_t) time_struct.tm_gmtoff;
 139 #else
 140   const time_t zone = timezone;
 141 #endif
 142 
 143   // If daylight savings time is in effect,
 144   // we are 1 hour East of our time zone
 145   const time_t seconds_per_minute = 60;
 146   const time_t minutes_per_hour = 60;
 147   const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
 148   time_t UTC_to_local = zone;
 149   if (time_struct.tm_isdst > 0) {
 150     UTC_to_local = UTC_to_local - seconds_per_hour;
 151   }
 152 
 153   // No offset when dealing with UTC
 154   if (utc) {
 155     UTC_to_local = 0;
 156   }
 157 
 158   // Compute the time zone offset.
 159   //    localtime_pd() sets timezone to the difference (in seconds)
 160   //    between UTC and and local time.
 161   //    ISO 8601 says we need the difference between local time and UTC,
 162   //    we change the sign of the localtime_pd() result.
 163   const time_t local_to_UTC = -(UTC_to_local);
 164   // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
 165   char sign_local_to_UTC = '+';
 166   time_t abs_local_to_UTC = local_to_UTC;
 167   if (local_to_UTC < 0) {
 168     sign_local_to_UTC = '-';
 169     abs_local_to_UTC = -(abs_local_to_UTC);
 170   }
 171   // Convert time zone offset seconds to hours and minutes.
 172   const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
 173   const time_t zone_min =
 174     ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
 175 
 176   // Print an ISO 8601 date and time stamp into the buffer
 177   const int year = 1900 + time_struct.tm_year;
 178   const int month = 1 + time_struct.tm_mon;
 179   const int printed = jio_snprintf(buffer, buffer_length,
 180                                    "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d",
 181                                    year,
 182                                    month,
 183                                    time_struct.tm_mday,
 184                                    time_struct.tm_hour,
 185                                    time_struct.tm_min,
 186                                    time_struct.tm_sec,
 187                                    milliseconds_after_second,
 188                                    sign_local_to_UTC,
 189                                    zone_hours,
 190                                    zone_min);
 191   if (printed == 0) {
 192     assert(false, "Failed jio_printf");
 193     return NULL;
 194   }
 195   return buffer;
 196 }
 197 
 198 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
 199 #ifdef ASSERT
 200   if (!(!thread->is_Java_thread() ||
 201          Thread::current() == thread  ||
 202          Threads_lock->owned_by_self()
 203          || thread->is_Compiler_thread()
 204         )) {
 205     assert(false, "possibility of dangling Thread pointer");
 206   }
 207 #endif
 208 
 209   if (p >= MinPriority && p <= MaxPriority) {
 210     int priority = java_to_os_priority[p];
 211     return set_native_priority(thread, priority);
 212   } else {
 213     assert(false, "Should not happen");
 214     return OS_ERR;
 215   }
 216 }
 217 
 218 // The mapping from OS priority back to Java priority may be inexact because
 219 // Java priorities can map M:1 with native priorities. If you want the definite
 220 // Java priority then use JavaThread::java_priority()
 221 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
 222   int p;
 223   int os_prio;
 224   OSReturn ret = get_native_priority(thread, &os_prio);
 225   if (ret != OS_OK) return ret;
 226 
 227   if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
 228     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
 229   } else {
 230     // niceness values are in reverse order
 231     for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
 232   }
 233   priority = (ThreadPriority)p;
 234   return OS_OK;
 235 }
 236 
 237 
 238 // --------------------- sun.misc.Signal (optional) ---------------------
 239 
 240 
 241 // SIGBREAK is sent by the keyboard to query the VM state
 242 #ifndef SIGBREAK
 243 #define SIGBREAK SIGQUIT
 244 #endif
 245 
 246 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
 247 
 248 
 249 static void signal_thread_entry(JavaThread* thread, TRAPS) {
 250   os::set_priority(thread, NearMaxPriority);
 251   while (true) {
 252     int sig;
 253     {
 254       // FIXME : Currently we have not decided what should be the status
 255       //         for this java thread blocked here. Once we decide about
 256       //         that we should fix this.
 257       sig = os::signal_wait();
 258     }
 259     if (sig == os::sigexitnum_pd()) {
 260        // Terminate the signal thread
 261        return;
 262     }
 263 
 264     switch (sig) {
 265       case SIGBREAK: {
 266         // Check if the signal is a trigger to start the Attach Listener - in that
 267         // case don't print stack traces.
 268         if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
 269           continue;
 270         }
 271         // Print stack traces
 272         // Any SIGBREAK operations added here should make sure to flush
 273         // the output stream (e.g. tty->flush()) after output.  See 4803766.
 274         // Each module also prints an extra carriage return after its output.
 275         VM_PrintThreads op;
 276         VMThread::execute(&op);
 277         VM_PrintJNI jni_op;
 278         VMThread::execute(&jni_op);
 279         VM_FindDeadlocks op1(tty);
 280         VMThread::execute(&op1);
 281         Universe::print_heap_at_SIGBREAK();
 282         if (PrintClassHistogram) {
 283           VM_GC_HeapInspection op1(tty, true /* force full GC before heap inspection */);
 284           VMThread::execute(&op1);
 285         }
 286         if (JvmtiExport::should_post_data_dump()) {
 287           JvmtiExport::post_data_dump();
 288         }
 289         break;
 290       }
 291       default: {
 292         // Dispatch the signal to java
 293         HandleMark hm(THREAD);
 294         Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_misc_Signal(), THREAD);
 295         KlassHandle klass (THREAD, k);
 296         if (klass.not_null()) {
 297           JavaValue result(T_VOID);
 298           JavaCallArguments args;
 299           args.push_int(sig);
 300           JavaCalls::call_static(
 301             &result,
 302             klass,
 303             vmSymbols::dispatch_name(),
 304             vmSymbols::int_void_signature(),
 305             &args,
 306             THREAD
 307           );
 308         }
 309         if (HAS_PENDING_EXCEPTION) {
 310           // tty is initialized early so we don't expect it to be null, but
 311           // if it is we can't risk doing an initialization that might
 312           // trigger additional out-of-memory conditions
 313           if (tty != NULL) {
 314             char klass_name[256];
 315             char tmp_sig_name[16];
 316             const char* sig_name = "UNKNOWN";
 317             InstanceKlass::cast(PENDING_EXCEPTION->klass())->
 318               name()->as_klass_external_name(klass_name, 256);
 319             if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
 320               sig_name = tmp_sig_name;
 321             warning("Exception %s occurred dispatching signal %s to handler"
 322                     "- the VM may need to be forcibly terminated",
 323                     klass_name, sig_name );
 324           }
 325           CLEAR_PENDING_EXCEPTION;
 326         }
 327       }
 328     }
 329   }
 330 }
 331 
 332 void os::init_before_ergo() {
 333   initialize_initial_active_processor_count();
 334   // We need to initialize large page support here because ergonomics takes some
 335   // decisions depending on large page support and the calculated large page size.
 336   large_page_init();
 337 
 338   // We need to adapt the configured number of stack protection pages given
 339   // in 4K pages to the actual os page size. We must do this before setting
 340   // up minimal stack sizes etc. in os::init_2().
 341   JavaThread::set_stack_red_zone_size     (align_size_up(StackRedPages      * 4 * K, vm_page_size()));
 342   JavaThread::set_stack_yellow_zone_size  (align_size_up(StackYellowPages   * 4 * K, vm_page_size()));
 343   JavaThread::set_stack_reserved_zone_size(align_size_up(StackReservedPages * 4 * K, vm_page_size()));
 344   JavaThread::set_stack_shadow_zone_size  (align_size_up(StackShadowPages   * 4 * K, vm_page_size()));
 345 
 346   // VM version initialization identifies some characteristics of the
 347   // platform that are used during ergonomic decisions.
 348   VM_Version::init_before_ergo();
 349 }
 350 
 351 void os::signal_init(TRAPS) {
 352   if (!ReduceSignalUsage) {
 353     // Setup JavaThread for processing signals
 354     Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
 355     instanceKlassHandle klass (THREAD, k);
 356     instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
 357 
 358     const char thread_name[] = "Signal Dispatcher";
 359     Handle string = java_lang_String::create_from_str(thread_name, CHECK);
 360 
 361     // Initialize thread_oop to put it into the system threadGroup
 362     Handle thread_group (THREAD, Universe::system_thread_group());
 363     JavaValue result(T_VOID);
 364     JavaCalls::call_special(&result, thread_oop,
 365                            klass,
 366                            vmSymbols::object_initializer_name(),
 367                            vmSymbols::threadgroup_string_void_signature(),
 368                            thread_group,
 369                            string,
 370                            CHECK);
 371 
 372     KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
 373     JavaCalls::call_special(&result,
 374                             thread_group,
 375                             group,
 376                             vmSymbols::add_method_name(),
 377                             vmSymbols::thread_void_signature(),
 378                             thread_oop,         // ARG 1
 379                             CHECK);
 380 
 381     os::signal_init_pd();
 382 
 383     { MutexLocker mu(Threads_lock);
 384       JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
 385 
 386       // At this point it may be possible that no osthread was created for the
 387       // JavaThread due to lack of memory. We would have to throw an exception
 388       // in that case. However, since this must work and we do not allow
 389       // exceptions anyway, check and abort if this fails.
 390       if (signal_thread == NULL || signal_thread->osthread() == NULL) {
 391         vm_exit_during_initialization("java.lang.OutOfMemoryError",
 392                                       os::native_thread_creation_failed_msg());
 393       }
 394 
 395       java_lang_Thread::set_thread(thread_oop(), signal_thread);
 396       java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
 397       java_lang_Thread::set_daemon(thread_oop());
 398 
 399       signal_thread->set_threadObj(thread_oop());
 400       Threads::add(signal_thread);
 401       Thread::start(signal_thread);
 402     }
 403     // Handle ^BREAK
 404     os::signal(SIGBREAK, os::user_handler());
 405   }
 406 }
 407 
 408 
 409 void os::terminate_signal_thread() {
 410   if (!ReduceSignalUsage)
 411     signal_notify(sigexitnum_pd());
 412 }
 413 
 414 
 415 // --------------------- loading libraries ---------------------
 416 
 417 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
 418 extern struct JavaVM_ main_vm;
 419 
 420 static void* _native_java_library = NULL;
 421 
 422 void* os::native_java_library() {
 423   if (_native_java_library == NULL) {
 424     char buffer[JVM_MAXPATHLEN];
 425     char ebuf[1024];
 426 
 427     // Try to load verify dll first. In 1.3 java dll depends on it and is not
 428     // always able to find it when the loading executable is outside the JDK.
 429     // In order to keep working with 1.2 we ignore any loading errors.
 430     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 431                        "verify")) {
 432       dll_load(buffer, ebuf, sizeof(ebuf));
 433     }
 434 
 435     // Load java dll
 436     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 437                        "java")) {
 438       _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
 439     }
 440     if (_native_java_library == NULL) {
 441       vm_exit_during_initialization("Unable to load native library", ebuf);
 442     }
 443 
 444 #if defined(__OpenBSD__)
 445     // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
 446     // ignore errors
 447     if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
 448                        "net")) {
 449       dll_load(buffer, ebuf, sizeof(ebuf));
 450     }
 451 #endif
 452   }
 453   return _native_java_library;
 454 }
 455 
 456 /*
 457  * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
 458  * If check_lib == true then we are looking for an
 459  * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
 460  * this library is statically linked into the image.
 461  * If check_lib == false then we will look for the appropriate symbol in the
 462  * executable if agent_lib->is_static_lib() == true or in the shared library
 463  * referenced by 'handle'.
 464  */
 465 void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
 466                               const char *syms[], size_t syms_len) {
 467   assert(agent_lib != NULL, "sanity check");
 468   const char *lib_name;
 469   void *handle = agent_lib->os_lib();
 470   void *entryName = NULL;
 471   char *agent_function_name;
 472   size_t i;
 473 
 474   // If checking then use the agent name otherwise test is_static_lib() to
 475   // see how to process this lookup
 476   lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
 477   for (i = 0; i < syms_len; i++) {
 478     agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
 479     if (agent_function_name == NULL) {
 480       break;
 481     }
 482     entryName = dll_lookup(handle, agent_function_name);
 483     FREE_C_HEAP_ARRAY(char, agent_function_name);
 484     if (entryName != NULL) {
 485       break;
 486     }
 487   }
 488   return entryName;
 489 }
 490 
 491 // See if the passed in agent is statically linked into the VM image.
 492 bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
 493                             size_t syms_len) {
 494   void *ret;
 495   void *proc_handle;
 496   void *save_handle;
 497 
 498   assert(agent_lib != NULL, "sanity check");
 499   if (agent_lib->name() == NULL) {
 500     return false;
 501   }
 502   proc_handle = get_default_process_handle();
 503   // Check for Agent_OnLoad/Attach_lib_name function
 504   save_handle = agent_lib->os_lib();
 505   // We want to look in this process' symbol table.
 506   agent_lib->set_os_lib(proc_handle);
 507   ret = find_agent_function(agent_lib, true, syms, syms_len);
 508   if (ret != NULL) {
 509     // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
 510     agent_lib->set_valid();
 511     agent_lib->set_static_lib(true);
 512     return true;
 513   }
 514   agent_lib->set_os_lib(save_handle);
 515   return false;
 516 }
 517 
 518 // --------------------- heap allocation utilities ---------------------
 519 
 520 char *os::strdup(const char *str, MEMFLAGS flags) {
 521   size_t size = strlen(str);
 522   char *dup_str = (char *)malloc(size + 1, flags);
 523   if (dup_str == NULL) return NULL;
 524   strcpy(dup_str, str);
 525   return dup_str;
 526 }
 527 
 528 char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
 529   char* p = os::strdup(str, flags);
 530   if (p == NULL) {
 531     vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
 532   }
 533   return p;
 534 }
 535 
 536 
 537 #define paranoid                 0  /* only set to 1 if you suspect checking code has bug */
 538 
 539 #ifdef ASSERT
 540 
 541 static void verify_memory(void* ptr) {
 542   GuardedMemory guarded(ptr);
 543   if (!guarded.verify_guards()) {
 544     tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
 545     tty->print_cr("## memory stomp:");
 546     guarded.print_on(tty);
 547     fatal("memory stomping error");
 548   }
 549 }
 550 
 551 #endif
 552 
 553 //
 554 // This function supports testing of the malloc out of memory
 555 // condition without really running the system out of memory.
 556 //
 557 static bool has_reached_max_malloc_test_peak(size_t alloc_size) {
 558   if (MallocMaxTestWords > 0) {
 559     jint words = (jint)(alloc_size / BytesPerWord);
 560 
 561     if ((cur_malloc_words + words) > MallocMaxTestWords) {
 562       return true;
 563     }
 564     Atomic::add(words, (volatile jint *)&cur_malloc_words);
 565   }
 566   return false;
 567 }
 568 
 569 void* os::malloc(size_t size, MEMFLAGS flags) {
 570   return os::malloc(size, flags, CALLER_PC);
 571 }
 572 
 573 void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
 574   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 575   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 576 
 577 #ifdef ASSERT
 578   // checking for the WatcherThread and crash_protection first
 579   // since os::malloc can be called when the libjvm.{dll,so} is
 580   // first loaded and we don't have a thread yet.
 581   // try to find the thread after we see that the watcher thread
 582   // exists and has crash protection.
 583   WatcherThread *wt = WatcherThread::watcher_thread();
 584   if (wt != NULL && wt->has_crash_protection()) {
 585     Thread* thread = Thread::current_or_null();
 586     if (thread == wt) {
 587       assert(!wt->has_crash_protection(),
 588           "Can't malloc with crash protection from WatcherThread");
 589     }
 590   }
 591 #endif
 592 
 593   if (size == 0) {
 594     // return a valid pointer if size is zero
 595     // if NULL is returned the calling functions assume out of memory.
 596     size = 1;
 597   }
 598 
 599   // NMT support
 600   NMT_TrackingLevel level = MemTracker::tracking_level();
 601   size_t            nmt_header_size = MemTracker::malloc_header_size(level);
 602 
 603 #ifndef ASSERT
 604   const size_t alloc_size = size + nmt_header_size;
 605 #else
 606   const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
 607   if (size + nmt_header_size > alloc_size) { // Check for rollover.
 608     return NULL;
 609   }
 610 #endif
 611 
 612   // For the test flag -XX:MallocMaxTestWords
 613   if (has_reached_max_malloc_test_peak(size)) {
 614     return NULL;
 615   }
 616 
 617   u_char* ptr;
 618   ptr = (u_char*)::malloc(alloc_size);
 619 
 620 #ifdef ASSERT
 621   if (ptr == NULL) {
 622     return NULL;
 623   }
 624   // Wrap memory with guard
 625   GuardedMemory guarded(ptr, size + nmt_header_size);
 626   ptr = guarded.get_user_ptr();
 627 #endif
 628   if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 629     tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
 630     breakpoint();
 631   }
 632   debug_only(if (paranoid) verify_memory(ptr));
 633   if (PrintMalloc && tty != NULL) {
 634     tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
 635   }
 636 
 637   // we do not track guard memory
 638   return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
 639 }
 640 
 641 void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
 642   return os::realloc(memblock, size, flags, CALLER_PC);
 643 }
 644 
 645 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
 646 
 647   // For the test flag -XX:MallocMaxTestWords
 648   if (has_reached_max_malloc_test_peak(size)) {
 649     return NULL;
 650   }
 651 
 652   if (size == 0) {
 653     // return a valid pointer if size is zero
 654     // if NULL is returned the calling functions assume out of memory.
 655     size = 1;
 656   }
 657 
 658 #ifndef ASSERT
 659   NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
 660   NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
 661    // NMT support
 662   void* membase = MemTracker::record_free(memblock);
 663   NMT_TrackingLevel level = MemTracker::tracking_level();
 664   size_t  nmt_header_size = MemTracker::malloc_header_size(level);
 665   void* ptr = ::realloc(membase, size + nmt_header_size);
 666   return MemTracker::record_malloc(ptr, size, memflags, stack, level);
 667 #else
 668   if (memblock == NULL) {
 669     return os::malloc(size, memflags, stack);
 670   }
 671   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 672     tty->print_cr("os::realloc caught " PTR_FORMAT, p2i(memblock));
 673     breakpoint();
 674   }
 675   // NMT support
 676   void* membase = MemTracker::malloc_base(memblock);
 677   verify_memory(membase);
 678   // always move the block
 679   void* ptr = os::malloc(size, memflags, stack);
 680   if (PrintMalloc && tty != NULL) {
 681     tty->print_cr("os::realloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, p2i(memblock), p2i(ptr));
 682   }
 683   // Copy to new memory if malloc didn't fail
 684   if ( ptr != NULL ) {
 685     GuardedMemory guarded(MemTracker::malloc_base(memblock));
 686     // Guard's user data contains NMT header
 687     size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
 688     memcpy(ptr, memblock, MIN2(size, memblock_size));
 689     if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
 690     if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
 691       tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, p2i(ptr));
 692       breakpoint();
 693     }
 694     os::free(memblock);
 695   }
 696   return ptr;
 697 #endif
 698 }
 699 
 700 
 701 void  os::free(void *memblock) {
 702   NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
 703 #ifdef ASSERT
 704   if (memblock == NULL) return;
 705   if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
 706     if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, p2i(memblock));
 707     breakpoint();
 708   }
 709   void* membase = MemTracker::record_free(memblock);
 710   verify_memory(membase);
 711 
 712   GuardedMemory guarded(membase);
 713   size_t size = guarded.get_user_size();
 714   inc_stat_counter(&free_bytes, size);
 715   membase = guarded.release_for_freeing();
 716   if (PrintMalloc && tty != NULL) {
 717       fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
 718   }
 719   ::free(membase);
 720 #else
 721   void* membase = MemTracker::record_free(memblock);
 722   ::free(membase);
 723 #endif
 724 }
 725 
 726 void os::init_random(long initval) {
 727   _rand_seed = initval;
 728 }
 729 
 730 
 731 long os::random() {
 732   /* standard, well-known linear congruential random generator with
 733    * next_rand = (16807*seed) mod (2**31-1)
 734    * see
 735    * (1) "Random Number Generators: Good Ones Are Hard to Find",
 736    *      S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
 737    * (2) "Two Fast Implementations of the 'Minimal Standard' Random
 738    *     Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
 739   */
 740   const long a = 16807;
 741   const unsigned long m = 2147483647;
 742   const long q = m / a;        assert(q == 127773, "weird math");
 743   const long r = m % a;        assert(r == 2836, "weird math");
 744 
 745   // compute az=2^31p+q
 746   unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
 747   unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
 748   lo += (hi & 0x7FFF) << 16;
 749 
 750   // if q overflowed, ignore the overflow and increment q
 751   if (lo > m) {
 752     lo &= m;
 753     ++lo;
 754   }
 755   lo += hi >> 15;
 756 
 757   // if (p+q) overflowed, ignore the overflow and increment (p+q)
 758   if (lo > m) {
 759     lo &= m;
 760     ++lo;
 761   }
 762   return (_rand_seed = lo);
 763 }
 764 
 765 // The INITIALIZED state is distinguished from the SUSPENDED state because the
 766 // conditions in which a thread is first started are different from those in which
 767 // a suspension is resumed.  These differences make it hard for us to apply the
 768 // tougher checks when starting threads that we want to do when resuming them.
 769 // However, when start_thread is called as a result of Thread.start, on a Java
 770 // thread, the operation is synchronized on the Java Thread object.  So there
 771 // cannot be a race to start the thread and hence for the thread to exit while
 772 // we are working on it.  Non-Java threads that start Java threads either have
 773 // to do so in a context in which races are impossible, or should do appropriate
 774 // locking.
 775 
 776 void os::start_thread(Thread* thread) {
 777   // guard suspend/resume
 778   MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
 779   OSThread* osthread = thread->osthread();
 780   osthread->set_state(RUNNABLE);
 781   pd_start_thread(thread);
 782 }
 783 
 784 void os::abort(bool dump_core) {
 785   abort(dump_core && CreateCoredumpOnCrash, NULL, NULL);
 786 }
 787 
 788 //---------------------------------------------------------------------------
 789 // Helper functions for fatal error handler
 790 
 791 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
 792   assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
 793 
 794   int cols = 0;
 795   int cols_per_line = 0;
 796   switch (unitsize) {
 797     case 1: cols_per_line = 16; break;
 798     case 2: cols_per_line = 8;  break;
 799     case 4: cols_per_line = 4;  break;
 800     case 8: cols_per_line = 2;  break;
 801     default: return;
 802   }
 803 
 804   address p = start;
 805   st->print(PTR_FORMAT ":   ", p2i(start));
 806   while (p < end) {
 807     switch (unitsize) {
 808       case 1: st->print("%02x", *(u1*)p); break;
 809       case 2: st->print("%04x", *(u2*)p); break;
 810       case 4: st->print("%08x", *(u4*)p); break;
 811       case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
 812     }
 813     p += unitsize;
 814     cols++;
 815     if (cols >= cols_per_line && p < end) {
 816        cols = 0;
 817        st->cr();
 818        st->print(PTR_FORMAT ":   ", p2i(p));
 819     } else {
 820        st->print(" ");
 821     }
 822   }
 823   st->cr();
 824 }
 825 
 826 void os::print_environment_variables(outputStream* st, const char** env_list) {
 827   if (env_list) {
 828     st->print_cr("Environment Variables:");
 829 
 830     for (int i = 0; env_list[i] != NULL; i++) {
 831       char *envvar = ::getenv(env_list[i]);
 832       if (envvar != NULL) {
 833         st->print("%s", env_list[i]);
 834         st->print("=");
 835         st->print_cr("%s", envvar);
 836       }
 837     }
 838   }
 839 }
 840 
 841 void os::print_cpu_info(outputStream* st, char* buf, size_t buflen) {
 842   // cpu
 843   st->print("CPU:");
 844   st->print("total %d", os::processor_count());
 845   // It's not safe to query number of active processors after crash
 846   // st->print("(active %d)", os::active_processor_count()); but we can
 847   // print the initial number of active processors.
 848   // We access the raw value here because the assert in the accessor will
 849   // fail if the crash occurs before initialization of this value.
 850   st->print(" (initial active %d)", _initial_active_processor_count);
 851   st->print(" %s", VM_Version::features_string());
 852   st->cr();
 853   pd_print_cpu_info(st, buf, buflen);
 854 }
 855 
 856 // Print a one line string summarizing the cpu, number of cores, memory, and operating system version
 857 void os::print_summary_info(outputStream* st, char* buf, size_t buflen) {
 858   st->print("Host: ");
 859 #ifndef PRODUCT
 860   if (get_host_name(buf, buflen)) {
 861     st->print("%s, ", buf);
 862   }
 863 #endif // PRODUCT
 864   get_summary_cpu_info(buf, buflen);
 865   st->print("%s, ", buf);
 866   size_t mem = physical_memory()/G;
 867   if (mem == 0) {  // for low memory systems
 868     mem = physical_memory()/M;
 869     st->print("%d cores, " SIZE_FORMAT "M, ", processor_count(), mem);
 870   } else {
 871     st->print("%d cores, " SIZE_FORMAT "G, ", processor_count(), mem);
 872   }
 873   get_summary_os_info(buf, buflen);
 874   st->print_raw(buf);
 875   st->cr();
 876 }
 877 
 878 void os::print_date_and_time(outputStream *st, char* buf, size_t buflen) {
 879   const int secs_per_day  = 86400;
 880   const int secs_per_hour = 3600;
 881   const int secs_per_min  = 60;
 882 
 883   time_t tloc;
 884   (void)time(&tloc);
 885   char* timestring = ctime(&tloc);  // ctime adds newline.
 886   // edit out the newline
 887   char* nl = strchr(timestring, '\n');
 888   if (nl != NULL) {
 889     *nl = '\0';
 890   }
 891 
 892   struct tm tz;
 893   if (localtime_pd(&tloc, &tz) != NULL) {
 894     ::strftime(buf, buflen, "%Z", &tz);
 895     st->print("Time: %s %s", timestring, buf);
 896   } else {
 897     st->print("Time: %s", timestring);
 898   }
 899 
 900   double t = os::elapsedTime();
 901   // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
 902   //       Linux. Must be a bug in glibc ? Workaround is to round "t" to int
 903   //       before printf. We lost some precision, but who cares?
 904   int eltime = (int)t;  // elapsed time in seconds
 905 
 906   // print elapsed time in a human-readable format:
 907   int eldays = eltime / secs_per_day;
 908   int day_secs = eldays * secs_per_day;
 909   int elhours = (eltime - day_secs) / secs_per_hour;
 910   int hour_secs = elhours * secs_per_hour;
 911   int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
 912   int minute_secs = elmins * secs_per_min;
 913   int elsecs = (eltime - day_secs - hour_secs - minute_secs);
 914   st->print_cr(" elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
 915 }
 916 
 917 // moved from debug.cpp (used to be find()) but still called from there
 918 // The verbose parameter is only set by the debug code in one case
 919 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
 920   address addr = (address)x;
 921   CodeBlob* b = CodeCache::find_blob_unsafe(addr);
 922   if (b != NULL) {
 923     if (b->is_buffer_blob()) {
 924       // the interpreter is generated into a buffer blob
 925       InterpreterCodelet* i = Interpreter::codelet_containing(addr);
 926       if (i != NULL) {
 927         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", p2i(addr), (int)(addr - i->code_begin()));
 928         i->print_on(st);
 929         return;
 930       }
 931       if (Interpreter::contains(addr)) {
 932         st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
 933                      " (not bytecode specific)", p2i(addr));
 934         return;
 935       }
 936       //
 937       if (AdapterHandlerLibrary::contains(b)) {
 938         st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", p2i(addr), (int)(addr - b->code_begin()));
 939         AdapterHandlerLibrary::print_handler_on(st, b);
 940       }
 941       // the stubroutines are generated into a buffer blob
 942       StubCodeDesc* d = StubCodeDesc::desc_for(addr);
 943       if (d != NULL) {
 944         st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", p2i(addr), (int)(addr - d->begin()));
 945         d->print_on(st);
 946         st->cr();
 947         return;
 948       }
 949       if (StubRoutines::contains(addr)) {
 950         st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) stub routine", p2i(addr));
 951         return;
 952       }
 953       // the InlineCacheBuffer is using stubs generated into a buffer blob
 954       if (InlineCacheBuffer::contains(addr)) {
 955         st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", p2i(addr));
 956         return;
 957       }
 958       VtableStub* v = VtableStubs::stub_containing(addr);
 959       if (v != NULL) {
 960         st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", p2i(addr), (int)(addr - v->entry_point()));
 961         v->print_on(st);
 962         st->cr();
 963         return;
 964       }
 965     }
 966     nmethod* nm = b->as_nmethod_or_null();
 967     if (nm != NULL) {
 968       ResourceMark rm;
 969       st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
 970                 p2i(addr), (int)(addr - nm->entry_point()), p2i(nm));
 971       if (verbose) {
 972         st->print(" for ");
 973         nm->method()->print_value_on(st);
 974       }
 975       st->cr();
 976       nm->print_nmethod(verbose);
 977       return;
 978     }
 979     st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", p2i(addr), (int)(addr - b->code_begin()));
 980     b->print_on(st);
 981     return;
 982   }
 983 
 984   if (Universe::heap()->is_in(addr)) {
 985     HeapWord* p = Universe::heap()->block_start(addr);
 986     bool print = false;
 987     // If we couldn't find it it just may mean that heap wasn't parsable
 988     // See if we were just given an oop directly
 989     if (p != NULL && Universe::heap()->block_is_obj(p)) {
 990       print = true;
 991     } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
 992       p = (HeapWord*) addr;
 993       print = true;
 994     }
 995     if (print) {
 996       if (p == (HeapWord*) addr) {
 997         st->print_cr(INTPTR_FORMAT " is an oop", p2i(addr));
 998       } else {
 999         st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, p2i(addr), p2i(p));
1000       }
1001       oop(p)->print_on(st);
1002       return;
1003     }
1004   } else {
1005     if (Universe::heap()->is_in_reserved(addr)) {
1006       st->print_cr(INTPTR_FORMAT " is an unallocated location "
1007                    "in the heap", p2i(addr));
1008       return;
1009     }
1010   }
1011   if (JNIHandles::is_global_handle((jobject) addr)) {
1012     st->print_cr(INTPTR_FORMAT " is a global jni handle", p2i(addr));
1013     return;
1014   }
1015   if (JNIHandles::is_weak_global_handle((jobject) addr)) {
1016     st->print_cr(INTPTR_FORMAT " is a weak global jni handle", p2i(addr));
1017     return;
1018   }
1019 #ifndef PRODUCT
1020   // we don't keep the block list in product mode
1021   if (JNIHandleBlock::any_contains((jobject) addr)) {
1022     st->print_cr(INTPTR_FORMAT " is a local jni handle", p2i(addr));
1023     return;
1024   }
1025 #endif
1026 
1027   for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
1028     // Check for privilege stack
1029     if (thread->privileged_stack_top() != NULL &&
1030         thread->privileged_stack_top()->contains(addr)) {
1031       st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
1032                    "for thread: " INTPTR_FORMAT, p2i(addr), p2i(thread));
1033       if (verbose) thread->print_on(st);
1034       return;
1035     }
1036     // If the addr is a java thread print information about that.
1037     if (addr == (address)thread) {
1038       if (verbose) {
1039         thread->print_on(st);
1040       } else {
1041         st->print_cr(INTPTR_FORMAT " is a thread", p2i(addr));
1042       }
1043       return;
1044     }
1045     // If the addr is in the stack region for this thread then report that
1046     // and print thread info
1047     if (thread->on_local_stack(addr)) {
1048       st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1049                    INTPTR_FORMAT, p2i(addr), p2i(thread));
1050       if (verbose) thread->print_on(st);
1051       return;
1052     }
1053 
1054   }
1055 
1056   // Check if in metaspace and print types that have vptrs (only method now)
1057   if (Metaspace::contains(addr)) {
1058     if (Method::has_method_vptr((const void*)addr)) {
1059       ((Method*)addr)->print_value_on(st);
1060       st->cr();
1061     } else {
1062       // Use addr->print() from the debugger instead (not here)
1063       st->print_cr(INTPTR_FORMAT " is pointing into metadata", p2i(addr));
1064     }
1065     return;
1066   }
1067 
1068   // Try an OS specific find
1069   if (os::find(addr, st)) {
1070     return;
1071   }
1072 
1073   st->print_cr(INTPTR_FORMAT " is an unknown value", p2i(addr));
1074 }
1075 
1076 // Looks like all platforms except IA64 can use the same function to check
1077 // if C stack is walkable beyond current frame. The check for fp() is not
1078 // necessary on Sparc, but it's harmless.
1079 bool os::is_first_C_frame(frame* fr) {
1080 #if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1081   // On IA64 we have to check if the callers bsp is still valid
1082   // (i.e. within the register stack bounds).
1083   // Notice: this only works for threads created by the VM and only if
1084   // we walk the current stack!!! If we want to be able to walk
1085   // arbitrary other threads, we'll have to somehow store the thread
1086   // object in the frame.
1087   Thread *thread = Thread::current();
1088   if ((address)fr->fp() <=
1089       thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1090     // This check is a little hacky, because on Linux the first C
1091     // frame's ('start_thread') register stack frame starts at
1092     // "register_stack_base + 0x48" while on HPUX, the first C frame's
1093     // ('__pthread_bound_body') register stack frame seems to really
1094     // start at "register_stack_base".
1095     return true;
1096   } else {
1097     return false;
1098   }
1099 #elif defined(IA64) && defined(_WIN32)
1100   return true;
1101 #else
1102   // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1103   // Check usp first, because if that's bad the other accessors may fault
1104   // on some architectures.  Ditto ufp second, etc.
1105   uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1106   // sp on amd can be 32 bit aligned.
1107   uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1108 
1109   uintptr_t usp    = (uintptr_t)fr->sp();
1110   if ((usp & sp_align_mask) != 0) return true;
1111 
1112   uintptr_t ufp    = (uintptr_t)fr->fp();
1113   if ((ufp & fp_align_mask) != 0) return true;
1114 
1115   uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1116   if ((old_sp & sp_align_mask) != 0) return true;
1117   if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1118 
1119   uintptr_t old_fp = (uintptr_t)fr->link();
1120   if ((old_fp & fp_align_mask) != 0) return true;
1121   if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1122 
1123   // stack grows downwards; if old_fp is below current fp or if the stack
1124   // frame is too large, either the stack is corrupted or fp is not saved
1125   // on stack (i.e. on x86, ebp may be used as general register). The stack
1126   // is not walkable beyond current frame.
1127   if (old_fp < ufp) return true;
1128   if (old_fp - ufp > 64 * K) return true;
1129 
1130   return false;
1131 #endif
1132 }
1133 
1134 #ifdef ASSERT
1135 extern "C" void test_random() {
1136   const double m = 2147483647;
1137   double mean = 0.0, variance = 0.0, t;
1138   long reps = 10000;
1139   unsigned long seed = 1;
1140 
1141   tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1142   os::init_random(seed);
1143   long num;
1144   for (int k = 0; k < reps; k++) {
1145     num = os::random();
1146     double u = (double)num / m;
1147     assert(u >= 0.0 && u <= 1.0, "bad random number!");
1148 
1149     // calculate mean and variance of the random sequence
1150     mean += u;
1151     variance += (u*u);
1152   }
1153   mean /= reps;
1154   variance /= (reps - 1);
1155 
1156   assert(num == 1043618065, "bad seed");
1157   tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1158   tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1159   const double eps = 0.0001;
1160   t = fabsd(mean - 0.5018);
1161   assert(t < eps, "bad mean");
1162   t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1163   assert(t < eps, "bad variance");
1164 }
1165 #endif
1166 
1167 
1168 // Set up the boot classpath.
1169 
1170 char* os::format_boot_path(const char* format_string,
1171                            const char* home,
1172                            int home_len,
1173                            char fileSep,
1174                            char pathSep) {
1175     assert((fileSep == '/' && pathSep == ':') ||
1176            (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1177 
1178     // Scan the format string to determine the length of the actual
1179     // boot classpath, and handle platform dependencies as well.
1180     int formatted_path_len = 0;
1181     const char* p;
1182     for (p = format_string; *p != 0; ++p) {
1183         if (*p == '%') formatted_path_len += home_len - 1;
1184         ++formatted_path_len;
1185     }
1186 
1187     char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1188     if (formatted_path == NULL) {
1189         return NULL;
1190     }
1191 
1192     // Create boot classpath from format, substituting separator chars and
1193     // java home directory.
1194     char* q = formatted_path;
1195     for (p = format_string; *p != 0; ++p) {
1196         switch (*p) {
1197         case '%':
1198             strcpy(q, home);
1199             q += home_len;
1200             break;
1201         case '/':
1202             *q++ = fileSep;
1203             break;
1204         case ':':
1205             *q++ = pathSep;
1206             break;
1207         default:
1208             *q++ = *p;
1209         }
1210     }
1211     *q = '\0';
1212 
1213     assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1214     return formatted_path;
1215 }
1216 
1217 bool os::set_boot_path(char fileSep, char pathSep) {
1218   const char* home = Arguments::get_java_home();
1219   int home_len = (int)strlen(home);
1220 
1221   struct stat st;
1222 
1223   // modular image if "modules" jimage exists
1224   char* jimage = format_boot_path("%/lib/" MODULES_IMAGE_NAME, home, home_len, fileSep, pathSep);
1225   if (jimage == NULL) return false;
1226   bool has_jimage = (os::stat(jimage, &st) == 0);
1227   if (has_jimage) {
1228     Arguments::set_sysclasspath(jimage, true);
1229     FREE_C_HEAP_ARRAY(char, jimage);
1230     return true;
1231   }
1232   FREE_C_HEAP_ARRAY(char, jimage);
1233 
1234   // check if developer build with exploded modules
1235   char* base_classes = format_boot_path("%/modules/" JAVA_BASE_NAME, home, home_len, fileSep, pathSep);
1236   if (base_classes == NULL) return false;
1237   if (os::stat(base_classes, &st) == 0) {
1238     Arguments::set_sysclasspath(base_classes, false);
1239     FREE_C_HEAP_ARRAY(char, base_classes);
1240     return true;
1241   }
1242   FREE_C_HEAP_ARRAY(char, base_classes);
1243 
1244   return false;
1245 }
1246 
1247 /*
1248  * Splits a path, based on its separator, the number of
1249  * elements is returned back in n.
1250  * It is the callers responsibility to:
1251  *   a> check the value of n, and n may be 0.
1252  *   b> ignore any empty path elements
1253  *   c> free up the data.
1254  */
1255 char** os::split_path(const char* path, int* n) {
1256   *n = 0;
1257   if (path == NULL || strlen(path) == 0) {
1258     return NULL;
1259   }
1260   const char psepchar = *os::path_separator();
1261   char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1262   if (inpath == NULL) {
1263     return NULL;
1264   }
1265   strcpy(inpath, path);
1266   int count = 1;
1267   char* p = strchr(inpath, psepchar);
1268   // Get a count of elements to allocate memory
1269   while (p != NULL) {
1270     count++;
1271     p++;
1272     p = strchr(p, psepchar);
1273   }
1274   char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1275   if (opath == NULL) {
1276     return NULL;
1277   }
1278 
1279   // do the actual splitting
1280   p = inpath;
1281   for (int i = 0 ; i < count ; i++) {
1282     size_t len = strcspn(p, os::path_separator());
1283     if (len > JVM_MAXPATHLEN) {
1284       return NULL;
1285     }
1286     // allocate the string and add terminator storage
1287     char* s  = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1288     if (s == NULL) {
1289       return NULL;
1290     }
1291     strncpy(s, p, len);
1292     s[len] = '\0';
1293     opath[i] = s;
1294     p += len + 1;
1295   }
1296   FREE_C_HEAP_ARRAY(char, inpath);
1297   *n = count;
1298   return opath;
1299 }
1300 
1301 void os::set_memory_serialize_page(address page) {
1302   int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1303   _mem_serialize_page = (volatile int32_t *)page;
1304   // We initialize the serialization page shift count here
1305   // We assume a cache line size of 64 bytes
1306   assert(SerializePageShiftCount == count, "JavaThread size changed; "
1307          "SerializePageShiftCount constant should be %d", count);
1308   set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1309 }
1310 
1311 static volatile intptr_t SerializePageLock = 0;
1312 
1313 // This method is called from signal handler when SIGSEGV occurs while the current
1314 // thread tries to store to the "read-only" memory serialize page during state
1315 // transition.
1316 void os::block_on_serialize_page_trap() {
1317   log_debug(safepoint)("Block until the serialize page permission restored");
1318 
1319   // When VMThread is holding the SerializePageLock during modifying the
1320   // access permission of the memory serialize page, the following call
1321   // will block until the permission of that page is restored to rw.
1322   // Generally, it is unsafe to manipulate locks in signal handlers, but in
1323   // this case, it's OK as the signal is synchronous and we know precisely when
1324   // it can occur.
1325   Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1326   Thread::muxRelease(&SerializePageLock);
1327 }
1328 
1329 // Serialize all thread state variables
1330 void os::serialize_thread_states() {
1331   // On some platforms such as Solaris & Linux, the time duration of the page
1332   // permission restoration is observed to be much longer than expected  due to
1333   // scheduler starvation problem etc. To avoid the long synchronization
1334   // time and expensive page trap spinning, 'SerializePageLock' is used to block
1335   // the mutator thread if such case is encountered. See bug 6546278 for details.
1336   Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1337   os::protect_memory((char *)os::get_memory_serialize_page(),
1338                      os::vm_page_size(), MEM_PROT_READ);
1339   os::protect_memory((char *)os::get_memory_serialize_page(),
1340                      os::vm_page_size(), MEM_PROT_RW);
1341   Thread::muxRelease(&SerializePageLock);
1342 }
1343 
1344 // Returns true if the current stack pointer is above the stack shadow
1345 // pages, false otherwise.
1346 bool os::stack_shadow_pages_available(Thread *thread, const methodHandle& method, address sp) {
1347   if (!thread->is_Java_thread()) return false;
1348   // Check if we have StackShadowPages above the yellow zone.  This parameter
1349   // is dependent on the depth of the maximum VM call stack possible from
1350   // the handler for stack overflow.  'instanceof' in the stack overflow
1351   // handler or a println uses at least 8k stack of VM and native code
1352   // respectively.
1353   const int framesize_in_bytes =
1354     Interpreter::size_top_interpreter_activation(method()) * wordSize;
1355 
1356   address limit = ((JavaThread*)thread)->stack_end() +
1357                   (JavaThread::stack_guard_zone_size() + JavaThread::stack_shadow_zone_size());
1358 
1359   return sp > (limit + framesize_in_bytes);
1360 }
1361 
1362 size_t os::page_size_for_region(size_t region_size, size_t min_pages, bool must_be_aligned) {
1363   assert(min_pages > 0, "sanity");
1364   if (UseLargePages) {
1365     const size_t max_page_size = region_size / min_pages;
1366 
1367     for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1368       const size_t page_size = _page_sizes[i];
1369       if (page_size <= max_page_size) {
1370         if (!must_be_aligned || is_size_aligned(region_size, page_size)) {
1371           return page_size;
1372         }
1373       }
1374     }
1375   }
1376 
1377   return vm_page_size();
1378 }
1379 
1380 size_t os::page_size_for_region_aligned(size_t region_size, size_t min_pages) {
1381   return page_size_for_region(region_size, min_pages, true);
1382 }
1383 
1384 size_t os::page_size_for_region_unaligned(size_t region_size, size_t min_pages) {
1385   return page_size_for_region(region_size, min_pages, false);
1386 }
1387 
1388 static const char* errno_to_string (int e, bool short_text) {
1389   #define ALL_SHARED_ENUMS(X) \
1390     X(E2BIG, "Argument list too long") \
1391     X(EACCES, "Permission denied") \
1392     X(EADDRINUSE, "Address in use") \
1393     X(EADDRNOTAVAIL, "Address not available") \
1394     X(EAFNOSUPPORT, "Address family not supported") \
1395     X(EAGAIN, "Resource unavailable, try again") \
1396     X(EALREADY, "Connection already in progress") \
1397     X(EBADF, "Bad file descriptor") \
1398     X(EBADMSG, "Bad message") \
1399     X(EBUSY, "Device or resource busy") \
1400     X(ECANCELED, "Operation canceled") \
1401     X(ECHILD, "No child processes") \
1402     X(ECONNABORTED, "Connection aborted") \
1403     X(ECONNREFUSED, "Connection refused") \
1404     X(ECONNRESET, "Connection reset") \
1405     X(EDEADLK, "Resource deadlock would occur") \
1406     X(EDESTADDRREQ, "Destination address required") \
1407     X(EDOM, "Mathematics argument out of domain of function") \
1408     X(EEXIST, "File exists") \
1409     X(EFAULT, "Bad address") \
1410     X(EFBIG, "File too large") \
1411     X(EHOSTUNREACH, "Host is unreachable") \
1412     X(EIDRM, "Identifier removed") \
1413     X(EILSEQ, "Illegal byte sequence") \
1414     X(EINPROGRESS, "Operation in progress") \
1415     X(EINTR, "Interrupted function") \
1416     X(EINVAL, "Invalid argument") \
1417     X(EIO, "I/O error") \
1418     X(EISCONN, "Socket is connected") \
1419     X(EISDIR, "Is a directory") \
1420     X(ELOOP, "Too many levels of symbolic links") \
1421     X(EMFILE, "Too many open files") \
1422     X(EMLINK, "Too many links") \
1423     X(EMSGSIZE, "Message too large") \
1424     X(ENAMETOOLONG, "Filename too long") \
1425     X(ENETDOWN, "Network is down") \
1426     X(ENETRESET, "Connection aborted by network") \
1427     X(ENETUNREACH, "Network unreachable") \
1428     X(ENFILE, "Too many files open in system") \
1429     X(ENOBUFS, "No buffer space available") \
1430     X(ENODATA, "No message is available on the STREAM head read queue") \
1431     X(ENODEV, "No such device") \
1432     X(ENOENT, "No such file or directory") \
1433     X(ENOEXEC, "Executable file format error") \
1434     X(ENOLCK, "No locks available") \
1435     X(ENOLINK, "Reserved") \
1436     X(ENOMEM, "Not enough space") \
1437     X(ENOMSG, "No message of the desired type") \
1438     X(ENOPROTOOPT, "Protocol not available") \
1439     X(ENOSPC, "No space left on device") \
1440     X(ENOSR, "No STREAM resources") \
1441     X(ENOSTR, "Not a STREAM") \
1442     X(ENOSYS, "Function not supported") \
1443     X(ENOTCONN, "The socket is not connected") \
1444     X(ENOTDIR, "Not a directory") \
1445     X(ENOTEMPTY, "Directory not empty") \
1446     X(ENOTSOCK, "Not a socket") \
1447     X(ENOTSUP, "Not supported") \
1448     X(ENOTTY, "Inappropriate I/O control operation") \
1449     X(ENXIO, "No such device or address") \
1450     X(EOPNOTSUPP, "Operation not supported on socket") \
1451     X(EOVERFLOW, "Value too large to be stored in data type") \
1452     X(EPERM, "Operation not permitted") \
1453     X(EPIPE, "Broken pipe") \
1454     X(EPROTO, "Protocol error") \
1455     X(EPROTONOSUPPORT, "Protocol not supported") \
1456     X(EPROTOTYPE, "Protocol wrong type for socket") \
1457     X(ERANGE, "Result too large") \
1458     X(EROFS, "Read-only file system") \
1459     X(ESPIPE, "Invalid seek") \
1460     X(ESRCH, "No such process") \
1461     X(ETIME, "Stream ioctl() timeout") \
1462     X(ETIMEDOUT, "Connection timed out") \
1463     X(ETXTBSY, "Text file busy") \
1464     X(EWOULDBLOCK, "Operation would block") \
1465     X(EXDEV, "Cross-device link")
1466 
1467   #define DEFINE_ENTRY(e, text) { e, #e, text },
1468 
1469   static const struct {
1470     int v;
1471     const char* short_text;
1472     const char* long_text;
1473   } table [] = {
1474 
1475     ALL_SHARED_ENUMS(DEFINE_ENTRY)
1476 
1477     // The following enums are not defined on all platforms.
1478     #ifdef ESTALE
1479     DEFINE_ENTRY(ESTALE, "Reserved")
1480     #endif
1481     #ifdef EDQUOT
1482     DEFINE_ENTRY(EDQUOT, "Reserved")
1483     #endif
1484     #ifdef EMULTIHOP
1485     DEFINE_ENTRY(EMULTIHOP, "Reserved")
1486     #endif
1487 
1488     // End marker.
1489     { -1, "Unknown errno", "Unknown error" }
1490 
1491   };
1492 
1493   #undef DEFINE_ENTRY
1494   #undef ALL_FLAGS
1495 
1496   int i = 0;
1497   while (table[i].v != -1 && table[i].v != e) {
1498     i ++;
1499   }
1500 
1501   return short_text ? table[i].short_text : table[i].long_text;
1502 
1503 }
1504 
1505 const char* os::strerror(int e) {
1506   return errno_to_string(e, false);
1507 }
1508 
1509 const char* os::errno_name(int e) {
1510   return errno_to_string(e, true);
1511 }
1512 
1513 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count) {
1514   LogTarget(Info, pagesize) log;
1515   if (log.is_enabled()) {
1516     LogStreamCHeap out(log);
1517 
1518     out.print("%s: ", str);
1519     for (int i = 0; i < count; ++i) {
1520       out.print(" " SIZE_FORMAT, page_sizes[i]);
1521     }
1522     out.cr();
1523   }
1524 }
1525 
1526 #define trace_page_size_params(size) byte_size_in_exact_unit(size), exact_unit_for_byte_size(size)
1527 
1528 void os::trace_page_sizes(const char* str,
1529                           const size_t region_min_size,
1530                           const size_t region_max_size,
1531                           const size_t page_size,
1532                           const char* base,
1533                           const size_t size) {
1534 
1535   log_info(pagesize)("%s: "
1536                      " min=" SIZE_FORMAT "%s"
1537                      " max=" SIZE_FORMAT "%s"
1538                      " base=" PTR_FORMAT
1539                      " page_size=" SIZE_FORMAT "%s"
1540                      " size=" SIZE_FORMAT "%s",
1541                      str,
1542                      trace_page_size_params(region_min_size),
1543                      trace_page_size_params(region_max_size),
1544                      p2i(base),
1545                      trace_page_size_params(page_size),
1546                      trace_page_size_params(size));
1547 }
1548 
1549 void os::trace_page_sizes_for_requested_size(const char* str,
1550                                              const size_t requested_size,
1551                                              const size_t page_size,
1552                                              const size_t alignment,
1553                                              const char* base,
1554                                              const size_t size) {
1555 
1556   log_info(pagesize)("%s:"
1557                      " req_size=" SIZE_FORMAT "%s"
1558                      " base=" PTR_FORMAT
1559                      " page_size=" SIZE_FORMAT "%s"
1560                      " alignment=" SIZE_FORMAT "%s"
1561                      " size=" SIZE_FORMAT "%s",
1562                      str,
1563                      trace_page_size_params(requested_size),
1564                      p2i(base),
1565                      trace_page_size_params(page_size),
1566                      trace_page_size_params(alignment),
1567                      trace_page_size_params(size));
1568 }
1569 
1570 
1571 // This is the working definition of a server class machine:
1572 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
1573 // because the graphics memory (?) sometimes masks physical memory.
1574 // If you want to change the definition of a server class machine
1575 // on some OS or platform, e.g., >=4GB on Windows platforms,
1576 // then you'll have to parameterize this method based on that state,
1577 // as was done for logical processors here, or replicate and
1578 // specialize this method for each platform.  (Or fix os to have
1579 // some inheritance structure and use subclassing.  Sigh.)
1580 // If you want some platform to always or never behave as a server
1581 // class machine, change the setting of AlwaysActAsServerClassMachine
1582 // and NeverActAsServerClassMachine in globals*.hpp.
1583 bool os::is_server_class_machine() {
1584   // First check for the early returns
1585   if (NeverActAsServerClassMachine) {
1586     return false;
1587   }
1588   if (AlwaysActAsServerClassMachine) {
1589     return true;
1590   }
1591   // Then actually look at the machine
1592   bool         result            = false;
1593   const unsigned int    server_processors = 2;
1594   const julong server_memory     = 2UL * G;
1595   // We seem not to get our full complement of memory.
1596   //     We allow some part (1/8?) of the memory to be "missing",
1597   //     based on the sizes of DIMMs, and maybe graphics cards.
1598   const julong missing_memory   = 256UL * M;
1599 
1600   /* Is this a server class machine? */
1601   if ((os::active_processor_count() >= (int)server_processors) &&
1602       (os::physical_memory() >= (server_memory - missing_memory))) {
1603     const unsigned int logical_processors =
1604       VM_Version::logical_processors_per_package();
1605     if (logical_processors > 1) {
1606       const unsigned int physical_packages =
1607         os::active_processor_count() / logical_processors;
1608       if (physical_packages >= server_processors) {
1609         result = true;
1610       }
1611     } else {
1612       result = true;
1613     }
1614   }
1615   return result;
1616 }
1617 
1618 void os::initialize_initial_active_processor_count() {
1619   assert(_initial_active_processor_count == 0, "Initial active processor count already set.");
1620   _initial_active_processor_count = active_processor_count();
1621   log_debug(os)("Initial active processor count set to %d" , _initial_active_processor_count);
1622 }
1623 
1624 void os::SuspendedThreadTask::run() {
1625   assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1626   internal_do_task();
1627   _done = true;
1628 }
1629 
1630 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1631   return os::pd_create_stack_guard_pages(addr, bytes);
1632 }
1633 
1634 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1635   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1636   if (result != NULL) {
1637     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1638   }
1639 
1640   return result;
1641 }
1642 
1643 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1644    MEMFLAGS flags) {
1645   char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1646   if (result != NULL) {
1647     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1648     MemTracker::record_virtual_memory_type((address)result, flags);
1649   }
1650 
1651   return result;
1652 }
1653 
1654 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1655   char* result = pd_attempt_reserve_memory_at(bytes, addr);
1656   if (result != NULL) {
1657     MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1658   }
1659   return result;
1660 }
1661 
1662 void os::split_reserved_memory(char *base, size_t size,
1663                                  size_t split, bool realloc) {
1664   pd_split_reserved_memory(base, size, split, realloc);
1665 }
1666 
1667 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1668   bool res = pd_commit_memory(addr, bytes, executable);
1669   if (res) {
1670     MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1671   }
1672   return res;
1673 }
1674 
1675 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1676                               bool executable) {
1677   bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1678   if (res) {
1679     MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1680   }
1681   return res;
1682 }
1683 
1684 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1685                                const char* mesg) {
1686   pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1687   MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1688 }
1689 
1690 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1691                                bool executable, const char* mesg) {
1692   os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1693   MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1694 }
1695 
1696 bool os::uncommit_memory(char* addr, size_t bytes) {
1697   bool res;
1698   if (MemTracker::tracking_level() > NMT_minimal) {
1699     Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1700     res = pd_uncommit_memory(addr, bytes);
1701     if (res) {
1702       tkr.record((address)addr, bytes);
1703     }
1704   } else {
1705     res = pd_uncommit_memory(addr, bytes);
1706   }
1707   return res;
1708 }
1709 
1710 bool os::release_memory(char* addr, size_t bytes) {
1711   bool res;
1712   if (MemTracker::tracking_level() > NMT_minimal) {
1713     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1714     res = pd_release_memory(addr, bytes);
1715     if (res) {
1716       tkr.record((address)addr, bytes);
1717     }
1718   } else {
1719     res = pd_release_memory(addr, bytes);
1720   }
1721   return res;
1722 }
1723 
1724 void os::pretouch_memory(void* start, void* end, size_t page_size) {
1725   for (volatile char *p = (char*)start; p < (char*)end; p += page_size) {
1726     *p = 0;
1727   }
1728 }
1729 
1730 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1731                            char *addr, size_t bytes, bool read_only,
1732                            bool allow_exec) {
1733   char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1734   if (result != NULL) {
1735     MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1736   }
1737   return result;
1738 }
1739 
1740 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1741                              char *addr, size_t bytes, bool read_only,
1742                              bool allow_exec) {
1743   return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1744                     read_only, allow_exec);
1745 }
1746 
1747 bool os::unmap_memory(char *addr, size_t bytes) {
1748   bool result;
1749   if (MemTracker::tracking_level() > NMT_minimal) {
1750     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1751     result = pd_unmap_memory(addr, bytes);
1752     if (result) {
1753       tkr.record((address)addr, bytes);
1754     }
1755   } else {
1756     result = pd_unmap_memory(addr, bytes);
1757   }
1758   return result;
1759 }
1760 
1761 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1762   pd_free_memory(addr, bytes, alignment_hint);
1763 }
1764 
1765 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1766   pd_realign_memory(addr, bytes, alignment_hint);
1767 }
1768 
1769 #ifndef _WINDOWS
1770 /* try to switch state from state "from" to state "to"
1771  * returns the state set after the method is complete
1772  */
1773 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1774                                                          os::SuspendResume::State to)
1775 {
1776   os::SuspendResume::State result =
1777     (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1778   if (result == from) {
1779     // success
1780     return to;
1781   }
1782   return result;
1783 }
1784 #endif