1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_solaris.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_solaris.hpp"
  40 #include "os_solaris.inline.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/java.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/mutexLocker.hpp"
  52 #include "runtime/objectMonitor.hpp"
  53 #include "runtime/orderAccess.inline.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "runtime/vm_version.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/macros.hpp"
  72 #include "utilities/vmError.hpp"
  73 
  74 // put OS-includes here
  75 # include <dlfcn.h>
  76 # include <errno.h>
  77 # include <exception>
  78 # include <link.h>
  79 # include <poll.h>
  80 # include <pthread.h>
  81 # include <schedctl.h>
  82 # include <setjmp.h>
  83 # include <signal.h>
  84 # include <stdio.h>
  85 # include <alloca.h>
  86 # include <sys/filio.h>
  87 # include <sys/ipc.h>
  88 # include <sys/lwp.h>
  89 # include <sys/machelf.h>     // for elf Sym structure used by dladdr1
  90 # include <sys/mman.h>
  91 # include <sys/processor.h>
  92 # include <sys/procset.h>
  93 # include <sys/pset.h>
  94 # include <sys/resource.h>
  95 # include <sys/shm.h>
  96 # include <sys/socket.h>
  97 # include <sys/stat.h>
  98 # include <sys/systeminfo.h>
  99 # include <sys/time.h>
 100 # include <sys/times.h>
 101 # include <sys/types.h>
 102 # include <sys/wait.h>
 103 # include <sys/utsname.h>
 104 # include <thread.h>
 105 # include <unistd.h>
 106 # include <sys/priocntl.h>
 107 # include <sys/rtpriocntl.h>
 108 # include <sys/tspriocntl.h>
 109 # include <sys/iapriocntl.h>
 110 # include <sys/fxpriocntl.h>
 111 # include <sys/loadavg.h>
 112 # include <string.h>
 113 # include <stdio.h>
 114 
 115 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
 116 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
 117 
 118 #define MAX_PATH (2 * K)
 119 
 120 // for timer info max values which include all bits
 121 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 122 
 123 
 124 // Here are some liblgrp types from sys/lgrp_user.h to be able to
 125 // compile on older systems without this header file.
 126 
 127 #ifndef MADV_ACCESS_LWP
 128   #define  MADV_ACCESS_LWP   7       /* next LWP to access heavily */
 129 #endif
 130 #ifndef MADV_ACCESS_MANY
 131   #define  MADV_ACCESS_MANY  8       /* many processes to access heavily */
 132 #endif
 133 
 134 #ifndef LGRP_RSRC_CPU
 135   #define LGRP_RSRC_CPU      0       /* CPU resources */
 136 #endif
 137 #ifndef LGRP_RSRC_MEM
 138   #define LGRP_RSRC_MEM      1       /* memory resources */
 139 #endif
 140 
 141 // Values for ThreadPriorityPolicy == 1
 142 int prio_policy1[CriticalPriority+1] = {
 143   -99999,  0, 16,  32,  48,  64,
 144           80, 96, 112, 124, 127, 127 };
 145 
 146 // System parameters used internally
 147 static clock_t clock_tics_per_sec = 100;
 148 
 149 // Track if we have called enable_extended_FILE_stdio (on Solaris 10u4+)
 150 static bool enabled_extended_FILE_stdio = false;
 151 
 152 // For diagnostics to print a message once. see run_periodic_checks
 153 static bool check_addr0_done = false;
 154 static sigset_t check_signal_done;
 155 static bool check_signals = true;
 156 
 157 address os::Solaris::handler_start;  // start pc of thr_sighndlrinfo
 158 address os::Solaris::handler_end;    // end pc of thr_sighndlrinfo
 159 
 160 address os::Solaris::_main_stack_base = NULL;  // 4352906 workaround
 161 
 162 os::Solaris::pthread_setname_np_func_t os::Solaris::_pthread_setname_np = NULL;
 163 
 164 // "default" initializers for missing libc APIs
 165 extern "C" {
 166   static int lwp_mutex_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 167   static int lwp_mutex_destroy(mutex_t *mx)                 { return 0; }
 168 
 169   static int lwp_cond_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 170   static int lwp_cond_destroy(cond_t *cv)                   { return 0; }
 171 }
 172 
 173 // "default" initializers for pthread-based synchronization
 174 extern "C" {
 175   static int pthread_mutex_default_init(mutex_t *mx, int scope, void *arg) { memset(mx, 0, sizeof(mutex_t)); return 0; }
 176   static int pthread_cond_default_init(cond_t *cv, int scope, void *arg){ memset(cv, 0, sizeof(cond_t)); return 0; }
 177 }
 178 
 179 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 180 
 181 static inline size_t adjust_stack_size(address base, size_t size) {
 182   if ((ssize_t)size < 0) {
 183     // 4759953: Compensate for ridiculous stack size.
 184     size = max_intx;
 185   }
 186   if (size > (size_t)base) {
 187     // 4812466: Make sure size doesn't allow the stack to wrap the address space.
 188     size = (size_t)base;
 189   }
 190   return size;
 191 }
 192 
 193 static inline stack_t get_stack_info() {
 194   stack_t st;
 195   int retval = thr_stksegment(&st);
 196   st.ss_size = adjust_stack_size((address)st.ss_sp, st.ss_size);
 197   assert(retval == 0, "incorrect return value from thr_stksegment");
 198   assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
 199   assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
 200   return st;
 201 }
 202 
 203 address os::current_stack_base() {
 204   int r = thr_main();
 205   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 206   bool is_primordial_thread = r;
 207 
 208   // Workaround 4352906, avoid calls to thr_stksegment by
 209   // thr_main after the first one (it looks like we trash
 210   // some data, causing the value for ss_sp to be incorrect).
 211   if (!is_primordial_thread || os::Solaris::_main_stack_base == NULL) {
 212     stack_t st = get_stack_info();
 213     if (is_primordial_thread) {
 214       // cache initial value of stack base
 215       os::Solaris::_main_stack_base = (address)st.ss_sp;
 216     }
 217     return (address)st.ss_sp;
 218   } else {
 219     guarantee(os::Solaris::_main_stack_base != NULL, "Attempt to use null cached stack base");
 220     return os::Solaris::_main_stack_base;
 221   }
 222 }
 223 
 224 size_t os::current_stack_size() {
 225   size_t size;
 226 
 227   int r = thr_main();
 228   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
 229   if (!r) {
 230     size = get_stack_info().ss_size;
 231   } else {
 232     struct rlimit limits;
 233     getrlimit(RLIMIT_STACK, &limits);
 234     size = adjust_stack_size(os::Solaris::_main_stack_base, (size_t)limits.rlim_cur);
 235   }
 236   // base may not be page aligned
 237   address base = current_stack_base();
 238   address bottom = (address)align_size_up((intptr_t)(base - size), os::vm_page_size());;
 239   return (size_t)(base - bottom);
 240 }
 241 
 242 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
 243   return localtime_r(clock, res);
 244 }
 245 
 246 void os::Solaris::try_enable_extended_io() {
 247   typedef int (*enable_extended_FILE_stdio_t)(int, int);
 248 
 249   if (!UseExtendedFileIO) {
 250     return;
 251   }
 252 
 253   enable_extended_FILE_stdio_t enabler =
 254     (enable_extended_FILE_stdio_t) dlsym(RTLD_DEFAULT,
 255                                          "enable_extended_FILE_stdio");
 256   if (enabler) {
 257     enabler(-1, -1);
 258   }
 259 }
 260 
 261 static int _processors_online = 0;
 262 
 263 jint os::Solaris::_os_thread_limit = 0;
 264 volatile jint os::Solaris::_os_thread_count = 0;
 265 
 266 julong os::available_memory() {
 267   return Solaris::available_memory();
 268 }
 269 
 270 julong os::Solaris::available_memory() {
 271   return (julong)sysconf(_SC_AVPHYS_PAGES) * os::vm_page_size();
 272 }
 273 
 274 julong os::Solaris::_physical_memory = 0;
 275 
 276 julong os::physical_memory() {
 277   return Solaris::physical_memory();
 278 }
 279 
 280 static hrtime_t first_hrtime = 0;
 281 static const hrtime_t hrtime_hz = 1000*1000*1000;
 282 static volatile hrtime_t max_hrtime = 0;
 283 
 284 
 285 void os::Solaris::initialize_system_info() {
 286   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 287   _processors_online = sysconf(_SC_NPROCESSORS_ONLN);
 288   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) *
 289                                      (julong)sysconf(_SC_PAGESIZE);
 290 }
 291 
 292 int os::active_processor_count() {
 293   int online_cpus = sysconf(_SC_NPROCESSORS_ONLN);
 294   pid_t pid = getpid();
 295   psetid_t pset = PS_NONE;
 296   // Are we running in a processor set or is there any processor set around?
 297   if (pset_bind(PS_QUERY, P_PID, pid, &pset) == 0) {
 298     uint_t pset_cpus;
 299     // Query the number of cpus available to us.
 300     if (pset_info(pset, NULL, &pset_cpus, NULL) == 0) {
 301       assert(pset_cpus > 0 && pset_cpus <= online_cpus, "sanity check");
 302       _processors_online = pset_cpus;
 303       return pset_cpus;
 304     }
 305   }
 306   // Otherwise return number of online cpus
 307   return online_cpus;
 308 }
 309 
 310 static bool find_processors_in_pset(psetid_t        pset,
 311                                     processorid_t** id_array,
 312                                     uint_t*         id_length) {
 313   bool result = false;
 314   // Find the number of processors in the processor set.
 315   if (pset_info(pset, NULL, id_length, NULL) == 0) {
 316     // Make up an array to hold their ids.
 317     *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 318     // Fill in the array with their processor ids.
 319     if (pset_info(pset, NULL, id_length, *id_array) == 0) {
 320       result = true;
 321     }
 322   }
 323   return result;
 324 }
 325 
 326 // Callers of find_processors_online() must tolerate imprecise results --
 327 // the system configuration can change asynchronously because of DR
 328 // or explicit psradm operations.
 329 //
 330 // We also need to take care that the loop (below) terminates as the
 331 // number of processors online can change between the _SC_NPROCESSORS_ONLN
 332 // request and the loop that builds the list of processor ids.   Unfortunately
 333 // there's no reliable way to determine the maximum valid processor id,
 334 // so we use a manifest constant, MAX_PROCESSOR_ID, instead.  See p_online
 335 // man pages, which claim the processor id set is "sparse, but
 336 // not too sparse".  MAX_PROCESSOR_ID is used to ensure that we eventually
 337 // exit the loop.
 338 //
 339 // In the future we'll be able to use sysconf(_SC_CPUID_MAX), but that's
 340 // not available on S8.0.
 341 
 342 static bool find_processors_online(processorid_t** id_array,
 343                                    uint*           id_length) {
 344   const processorid_t MAX_PROCESSOR_ID = 100000;
 345   // Find the number of processors online.
 346   *id_length = sysconf(_SC_NPROCESSORS_ONLN);
 347   // Make up an array to hold their ids.
 348   *id_array = NEW_C_HEAP_ARRAY(processorid_t, *id_length, mtInternal);
 349   // Processors need not be numbered consecutively.
 350   long found = 0;
 351   processorid_t next = 0;
 352   while (found < *id_length && next < MAX_PROCESSOR_ID) {
 353     processor_info_t info;
 354     if (processor_info(next, &info) == 0) {
 355       // NB, PI_NOINTR processors are effectively online ...
 356       if (info.pi_state == P_ONLINE || info.pi_state == P_NOINTR) {
 357         (*id_array)[found] = next;
 358         found += 1;
 359       }
 360     }
 361     next += 1;
 362   }
 363   if (found < *id_length) {
 364     // The loop above didn't identify the expected number of processors.
 365     // We could always retry the operation, calling sysconf(_SC_NPROCESSORS_ONLN)
 366     // and re-running the loop, above, but there's no guarantee of progress
 367     // if the system configuration is in flux.  Instead, we just return what
 368     // we've got.  Note that in the worst case find_processors_online() could
 369     // return an empty set.  (As a fall-back in the case of the empty set we
 370     // could just return the ID of the current processor).
 371     *id_length = found;
 372   }
 373 
 374   return true;
 375 }
 376 
 377 static bool assign_distribution(processorid_t* id_array,
 378                                 uint           id_length,
 379                                 uint*          distribution,
 380                                 uint           distribution_length) {
 381   // We assume we can assign processorid_t's to uint's.
 382   assert(sizeof(processorid_t) == sizeof(uint),
 383          "can't convert processorid_t to uint");
 384   // Quick check to see if we won't succeed.
 385   if (id_length < distribution_length) {
 386     return false;
 387   }
 388   // Assign processor ids to the distribution.
 389   // Try to shuffle processors to distribute work across boards,
 390   // assuming 4 processors per board.
 391   const uint processors_per_board = ProcessDistributionStride;
 392   // Find the maximum processor id.
 393   processorid_t max_id = 0;
 394   for (uint m = 0; m < id_length; m += 1) {
 395     max_id = MAX2(max_id, id_array[m]);
 396   }
 397   // The next id, to limit loops.
 398   const processorid_t limit_id = max_id + 1;
 399   // Make up markers for available processors.
 400   bool* available_id = NEW_C_HEAP_ARRAY(bool, limit_id, mtInternal);
 401   for (uint c = 0; c < limit_id; c += 1) {
 402     available_id[c] = false;
 403   }
 404   for (uint a = 0; a < id_length; a += 1) {
 405     available_id[id_array[a]] = true;
 406   }
 407   // Step by "boards", then by "slot", copying to "assigned".
 408   // NEEDS_CLEANUP: The assignment of processors should be stateful,
 409   //                remembering which processors have been assigned by
 410   //                previous calls, etc., so as to distribute several
 411   //                independent calls of this method.  What we'd like is
 412   //                It would be nice to have an API that let us ask
 413   //                how many processes are bound to a processor,
 414   //                but we don't have that, either.
 415   //                In the short term, "board" is static so that
 416   //                subsequent distributions don't all start at board 0.
 417   static uint board = 0;
 418   uint assigned = 0;
 419   // Until we've found enough processors ....
 420   while (assigned < distribution_length) {
 421     // ... find the next available processor in the board.
 422     for (uint slot = 0; slot < processors_per_board; slot += 1) {
 423       uint try_id = board * processors_per_board + slot;
 424       if ((try_id < limit_id) && (available_id[try_id] == true)) {
 425         distribution[assigned] = try_id;
 426         available_id[try_id] = false;
 427         assigned += 1;
 428         break;
 429       }
 430     }
 431     board += 1;
 432     if (board * processors_per_board + 0 >= limit_id) {
 433       board = 0;
 434     }
 435   }
 436   if (available_id != NULL) {
 437     FREE_C_HEAP_ARRAY(bool, available_id);
 438   }
 439   return true;
 440 }
 441 
 442 void os::set_native_thread_name(const char *name) {
 443   if (Solaris::_pthread_setname_np != NULL) {
 444     // Only the first 31 bytes of 'name' are processed by pthread_setname_np
 445     // but we explicitly copy into a size-limited buffer to avoid any
 446     // possible overflow.
 447     char buf[32];
 448     snprintf(buf, sizeof(buf), "%s", name);
 449     buf[sizeof(buf) - 1] = '\0';
 450     Solaris::_pthread_setname_np(pthread_self(), buf);
 451   }
 452 }
 453 
 454 bool os::distribute_processes(uint length, uint* distribution) {
 455   bool result = false;
 456   // Find the processor id's of all the available CPUs.
 457   processorid_t* id_array  = NULL;
 458   uint           id_length = 0;
 459   // There are some races between querying information and using it,
 460   // since processor sets can change dynamically.
 461   psetid_t pset = PS_NONE;
 462   // Are we running in a processor set?
 463   if ((pset_bind(PS_QUERY, P_PID, P_MYID, &pset) == 0) && pset != PS_NONE) {
 464     result = find_processors_in_pset(pset, &id_array, &id_length);
 465   } else {
 466     result = find_processors_online(&id_array, &id_length);
 467   }
 468   if (result == true) {
 469     if (id_length >= length) {
 470       result = assign_distribution(id_array, id_length, distribution, length);
 471     } else {
 472       result = false;
 473     }
 474   }
 475   if (id_array != NULL) {
 476     FREE_C_HEAP_ARRAY(processorid_t, id_array);
 477   }
 478   return result;
 479 }
 480 
 481 bool os::bind_to_processor(uint processor_id) {
 482   // We assume that a processorid_t can be stored in a uint.
 483   assert(sizeof(uint) == sizeof(processorid_t),
 484          "can't convert uint to processorid_t");
 485   int bind_result =
 486     processor_bind(P_LWPID,                       // bind LWP.
 487                    P_MYID,                        // bind current LWP.
 488                    (processorid_t) processor_id,  // id.
 489                    NULL);                         // don't return old binding.
 490   return (bind_result == 0);
 491 }
 492 
 493 // Return true if user is running as root.
 494 
 495 bool os::have_special_privileges() {
 496   static bool init = false;
 497   static bool privileges = false;
 498   if (!init) {
 499     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 500     init = true;
 501   }
 502   return privileges;
 503 }
 504 
 505 
 506 void os::init_system_properties_values() {
 507   // The next steps are taken in the product version:
 508   //
 509   // Obtain the JAVA_HOME value from the location of libjvm.so.
 510   // This library should be located at:
 511   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 512   //
 513   // If "/jre/lib/" appears at the right place in the path, then we
 514   // assume libjvm.so is installed in a JDK and we use this path.
 515   //
 516   // Otherwise exit with message: "Could not create the Java virtual machine."
 517   //
 518   // The following extra steps are taken in the debugging version:
 519   //
 520   // If "/jre/lib/" does NOT appear at the right place in the path
 521   // instead of exit check for $JAVA_HOME environment variable.
 522   //
 523   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 524   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 525   // it looks like libjvm.so is installed there
 526   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 527   //
 528   // Otherwise exit.
 529   //
 530   // Important note: if the location of libjvm.so changes this
 531   // code needs to be changed accordingly.
 532 
 533 // Base path of extensions installed on the system.
 534 #define SYS_EXT_DIR     "/usr/jdk/packages"
 535 #define EXTENSIONS_DIR  "/lib/ext"
 536 
 537   // Buffer that fits several sprintfs.
 538   // Note that the space for the colon and the trailing null are provided
 539   // by the nulls included by the sizeof operator.
 540   const size_t bufsize =
 541     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 542          sizeof(SYS_EXT_DIR) + sizeof("/lib/"), // invariant ld_library_path
 543          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 544   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 545 
 546   // sysclasspath, java_home, dll_dir
 547   {
 548     char *pslash;
 549     os::jvm_path(buf, bufsize);
 550 
 551     // Found the full path to libjvm.so.
 552     // Now cut the path to <java_home>/jre if we can.
 553     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 554     pslash = strrchr(buf, '/');
 555     if (pslash != NULL) {
 556       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 557     }
 558     Arguments::set_dll_dir(buf);
 559 
 560     if (pslash != NULL) {
 561       pslash = strrchr(buf, '/');
 562       if (pslash != NULL) {
 563         *pslash = '\0';        // Get rid of /lib.
 564       }
 565     }
 566     Arguments::set_java_home(buf);
 567     set_boot_path('/', ':');
 568   }
 569 
 570   // Where to look for native libraries.
 571   {
 572     // Use dlinfo() to determine the correct java.library.path.
 573     //
 574     // If we're launched by the Java launcher, and the user
 575     // does not set java.library.path explicitly on the commandline,
 576     // the Java launcher sets LD_LIBRARY_PATH for us and unsets
 577     // LD_LIBRARY_PATH_32 and LD_LIBRARY_PATH_64.  In this case
 578     // dlinfo returns LD_LIBRARY_PATH + crle settings (including
 579     // /usr/lib), which is exactly what we want.
 580     //
 581     // If the user does set java.library.path, it completely
 582     // overwrites this setting, and always has.
 583     //
 584     // If we're not launched by the Java launcher, we may
 585     // get here with any/all of the LD_LIBRARY_PATH[_32|64]
 586     // settings.  Again, dlinfo does exactly what we want.
 587 
 588     Dl_serinfo     info_sz, *info = &info_sz;
 589     Dl_serpath     *path;
 590     char           *library_path;
 591     char           *common_path = buf;
 592 
 593     // Determine search path count and required buffer size.
 594     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFOSIZE, (void *)info) == -1) {
 595       FREE_C_HEAP_ARRAY(char, buf);
 596       vm_exit_during_initialization("dlinfo SERINFOSIZE request", dlerror());
 597     }
 598 
 599     // Allocate new buffer and initialize.
 600     info = (Dl_serinfo*)NEW_C_HEAP_ARRAY(char, info_sz.dls_size, mtInternal);
 601     info->dls_size = info_sz.dls_size;
 602     info->dls_cnt = info_sz.dls_cnt;
 603 
 604     // Obtain search path information.
 605     if (dlinfo(RTLD_SELF, RTLD_DI_SERINFO, (void *)info) == -1) {
 606       FREE_C_HEAP_ARRAY(char, buf);
 607       FREE_C_HEAP_ARRAY(char, info);
 608       vm_exit_during_initialization("dlinfo SERINFO request", dlerror());
 609     }
 610 
 611     path = &info->dls_serpath[0];
 612 
 613     // Note: Due to a legacy implementation, most of the library path
 614     // is set in the launcher. This was to accomodate linking restrictions
 615     // on legacy Solaris implementations (which are no longer supported).
 616     // Eventually, all the library path setting will be done here.
 617     //
 618     // However, to prevent the proliferation of improperly built native
 619     // libraries, the new path component /usr/jdk/packages is added here.
 620 
 621     // Construct the invariant part of ld_library_path.
 622     sprintf(common_path, SYS_EXT_DIR "/lib");
 623 
 624     // Struct size is more than sufficient for the path components obtained
 625     // through the dlinfo() call, so only add additional space for the path
 626     // components explicitly added here.
 627     size_t library_path_size = info->dls_size + strlen(common_path);
 628     library_path = (char *)NEW_C_HEAP_ARRAY(char, library_path_size, mtInternal);
 629     library_path[0] = '\0';
 630 
 631     // Construct the desired Java library path from the linker's library
 632     // search path.
 633     //
 634     // For compatibility, it is optimal that we insert the additional path
 635     // components specific to the Java VM after those components specified
 636     // in LD_LIBRARY_PATH (if any) but before those added by the ld.so
 637     // infrastructure.
 638     if (info->dls_cnt == 0) { // Not sure this can happen, but allow for it.
 639       strcpy(library_path, common_path);
 640     } else {
 641       int inserted = 0;
 642       int i;
 643       for (i = 0; i < info->dls_cnt; i++, path++) {
 644         uint_t flags = path->dls_flags & LA_SER_MASK;
 645         if (((flags & LA_SER_LIBPATH) == 0) && !inserted) {
 646           strcat(library_path, common_path);
 647           strcat(library_path, os::path_separator());
 648           inserted = 1;
 649         }
 650         strcat(library_path, path->dls_name);
 651         strcat(library_path, os::path_separator());
 652       }
 653       // Eliminate trailing path separator.
 654       library_path[strlen(library_path)-1] = '\0';
 655     }
 656 
 657     // happens before argument parsing - can't use a trace flag
 658     // tty->print_raw("init_system_properties_values: native lib path: ");
 659     // tty->print_raw_cr(library_path);
 660 
 661     // Callee copies into its own buffer.
 662     Arguments::set_library_path(library_path);
 663 
 664     FREE_C_HEAP_ARRAY(char, library_path);
 665     FREE_C_HEAP_ARRAY(char, info);
 666   }
 667 
 668   // Extensions directories.
 669   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 670   Arguments::set_ext_dirs(buf);
 671 
 672   FREE_C_HEAP_ARRAY(char, buf);
 673 
 674 #undef SYS_EXT_DIR
 675 #undef EXTENSIONS_DIR
 676 }
 677 
 678 void os::breakpoint() {
 679   BREAKPOINT;
 680 }
 681 
 682 bool os::obsolete_option(const JavaVMOption *option) {
 683   if (!strncmp(option->optionString, "-Xt", 3)) {
 684     return true;
 685   } else if (!strncmp(option->optionString, "-Xtm", 4)) {
 686     return true;
 687   } else if (!strncmp(option->optionString, "-Xverifyheap", 12)) {
 688     return true;
 689   } else if (!strncmp(option->optionString, "-Xmaxjitcodesize", 16)) {
 690     return true;
 691   }
 692   return false;
 693 }
 694 
 695 bool os::Solaris::valid_stack_address(Thread* thread, address sp) {
 696   address  stackStart  = (address)thread->stack_base();
 697   address  stackEnd    = (address)(stackStart - (address)thread->stack_size());
 698   if (sp < stackStart && sp >= stackEnd) return true;
 699   return false;
 700 }
 701 
 702 extern "C" void breakpoint() {
 703   // use debugger to set breakpoint here
 704 }
 705 
 706 static thread_t main_thread;
 707 
 708 // Thread start routine for all newly created threads
 709 extern "C" void* thread_native_entry(void* thread_addr) {
 710   // Try to randomize the cache line index of hot stack frames.
 711   // This helps when threads of the same stack traces evict each other's
 712   // cache lines. The threads can be either from the same JVM instance, or
 713   // from different JVM instances. The benefit is especially true for
 714   // processors with hyperthreading technology.
 715   static int counter = 0;
 716   int pid = os::current_process_id();
 717   alloca(((pid ^ counter++) & 7) * 128);
 718 
 719   int prio;
 720   Thread* thread = (Thread*)thread_addr;
 721 
 722   thread->initialize_thread_current();
 723 
 724   OSThread* osthr = thread->osthread();
 725 
 726   osthr->set_lwp_id(_lwp_self());  // Store lwp in case we are bound
 727   thread->_schedctl = (void *) schedctl_init();
 728 
 729   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").",
 730     os::current_thread_id());
 731 
 732   if (UseNUMA) {
 733     int lgrp_id = os::numa_get_group_id();
 734     if (lgrp_id != -1) {
 735       thread->set_lgrp_id(lgrp_id);
 736     }
 737   }
 738 
 739   // Our priority was set when we were created, and stored in the
 740   // osthread, but couldn't be passed through to our LWP until now.
 741   // So read back the priority and set it again.
 742 
 743   if (osthr->thread_id() != -1) {
 744     if (UseThreadPriorities) {
 745       int prio = osthr->native_priority();
 746       if (ThreadPriorityVerbose) {
 747         tty->print_cr("Starting Thread " INTPTR_FORMAT ", LWP is "
 748                       INTPTR_FORMAT ", setting priority: %d\n",
 749                       osthr->thread_id(), osthr->lwp_id(), prio);
 750       }
 751       os::set_native_priority(thread, prio);
 752     }
 753   } else if (ThreadPriorityVerbose) {
 754     warning("Can't set priority in _start routine, thread id hasn't been set\n");
 755   }
 756 
 757   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 758 
 759   // initialize signal mask for this thread
 760   os::Solaris::hotspot_sigmask(thread);
 761 
 762   thread->run();
 763 
 764   // One less thread is executing
 765   // When the VMThread gets here, the main thread may have already exited
 766   // which frees the CodeHeap containing the Atomic::dec code
 767   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 768     Atomic::dec(&os::Solaris::_os_thread_count);
 769   }
 770 
 771   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 772 
 773   // If a thread has not deleted itself ("delete this") as part of its
 774   // termination sequence, we have to ensure thread-local-storage is
 775   // cleared before we actually terminate. No threads should ever be
 776   // deleted asynchronously with respect to their termination.
 777   if (Thread::current_or_null_safe() != NULL) {
 778     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 779     thread->clear_thread_current();
 780   }
 781 
 782   if (UseDetachedThreads) {
 783     thr_exit(NULL);
 784     ShouldNotReachHere();
 785   }
 786   return NULL;
 787 }
 788 
 789 static OSThread* create_os_thread(Thread* thread, thread_t thread_id) {
 790   // Allocate the OSThread object
 791   OSThread* osthread = new OSThread(NULL, NULL);
 792   if (osthread == NULL) return NULL;
 793 
 794   // Store info on the Solaris thread into the OSThread
 795   osthread->set_thread_id(thread_id);
 796   osthread->set_lwp_id(_lwp_self());
 797   thread->_schedctl = (void *) schedctl_init();
 798 
 799   if (UseNUMA) {
 800     int lgrp_id = os::numa_get_group_id();
 801     if (lgrp_id != -1) {
 802       thread->set_lgrp_id(lgrp_id);
 803     }
 804   }
 805 
 806   if (ThreadPriorityVerbose) {
 807     tty->print_cr("In create_os_thread, Thread " INTPTR_FORMAT ", LWP is " INTPTR_FORMAT "\n",
 808                   osthread->thread_id(), osthread->lwp_id());
 809   }
 810 
 811   // Initial thread state is INITIALIZED, not SUSPENDED
 812   osthread->set_state(INITIALIZED);
 813 
 814   return osthread;
 815 }
 816 
 817 void os::Solaris::hotspot_sigmask(Thread* thread) {
 818   //Save caller's signal mask
 819   sigset_t sigmask;
 820   pthread_sigmask(SIG_SETMASK, NULL, &sigmask);
 821   OSThread *osthread = thread->osthread();
 822   osthread->set_caller_sigmask(sigmask);
 823 
 824   pthread_sigmask(SIG_UNBLOCK, os::Solaris::unblocked_signals(), NULL);
 825   if (!ReduceSignalUsage) {
 826     if (thread->is_VM_thread()) {
 827       // Only the VM thread handles BREAK_SIGNAL ...
 828       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 829     } else {
 830       // ... all other threads block BREAK_SIGNAL
 831       assert(!sigismember(vm_signals(), SIGINT), "SIGINT should not be blocked");
 832       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 833     }
 834   }
 835 }
 836 
 837 bool os::create_attached_thread(JavaThread* thread) {
 838 #ifdef ASSERT
 839   thread->verify_not_published();
 840 #endif
 841   OSThread* osthread = create_os_thread(thread, thr_self());
 842   if (osthread == NULL) {
 843     return false;
 844   }
 845 
 846   // Initial thread state is RUNNABLE
 847   osthread->set_state(RUNNABLE);
 848   thread->set_osthread(osthread);
 849 
 850   // initialize signal mask for this thread
 851   // and save the caller's signal mask
 852   os::Solaris::hotspot_sigmask(thread);
 853 
 854   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 855     os::current_thread_id());
 856 
 857   return true;
 858 }
 859 
 860 bool os::create_main_thread(JavaThread* thread) {
 861 #ifdef ASSERT
 862   thread->verify_not_published();
 863 #endif
 864   if (_starting_thread == NULL) {
 865     _starting_thread = create_os_thread(thread, main_thread);
 866     if (_starting_thread == NULL) {
 867       return false;
 868     }
 869   }
 870 
 871   // The primodial thread is runnable from the start
 872   _starting_thread->set_state(RUNNABLE);
 873 
 874   thread->set_osthread(_starting_thread);
 875 
 876   // initialize signal mask for this thread
 877   // and save the caller's signal mask
 878   os::Solaris::hotspot_sigmask(thread);
 879 
 880   return true;
 881 }
 882 
 883 // Helper function to trace thread attributes, similar to os::Posix::describe_pthread_attr()
 884 static char* describe_thr_create_attributes(char* buf, size_t buflen,
 885                                             size_t stacksize, long flags) {
 886   stringStream ss(buf, buflen);
 887   ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 888   ss.print("flags: ");
 889   #define PRINT_FLAG(f) if (flags & f) ss.print( #f " ");
 890   #define ALL(X) \
 891     X(THR_SUSPENDED) \
 892     X(THR_DETACHED) \
 893     X(THR_BOUND) \
 894     X(THR_NEW_LWP) \
 895     X(THR_DAEMON)
 896   ALL(PRINT_FLAG)
 897   #undef ALL
 898   #undef PRINT_FLAG
 899   return buf;
 900 }
 901 
 902 // return default stack size for thr_type
 903 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 904   // default stack size when not specified by caller is 1M (2M for LP64)
 905   size_t s = (BytesPerWord >> 2) * K * K;
 906   return s;
 907 }
 908 
 909 bool os::create_thread(Thread* thread, ThreadType thr_type,
 910                        size_t req_stack_size) {
 911   // Allocate the OSThread object
 912   OSThread* osthread = new OSThread(NULL, NULL);
 913   if (osthread == NULL) {
 914     return false;
 915   }
 916 
 917   if (ThreadPriorityVerbose) {
 918     char *thrtyp;
 919     switch (thr_type) {
 920     case vm_thread:
 921       thrtyp = (char *)"vm";
 922       break;
 923     case cgc_thread:
 924       thrtyp = (char *)"cgc";
 925       break;
 926     case pgc_thread:
 927       thrtyp = (char *)"pgc";
 928       break;
 929     case java_thread:
 930       thrtyp = (char *)"java";
 931       break;
 932     case compiler_thread:
 933       thrtyp = (char *)"compiler";
 934       break;
 935     case watcher_thread:
 936       thrtyp = (char *)"watcher";
 937       break;
 938     default:
 939       thrtyp = (char *)"unknown";
 940       break;
 941     }
 942     tty->print_cr("In create_thread, creating a %s thread\n", thrtyp);
 943   }
 944 
 945   // calculate stack size if it's not specified by caller
 946   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 947 
 948   // Initial state is ALLOCATED but not INITIALIZED
 949   osthread->set_state(ALLOCATED);
 950 
 951   if (os::Solaris::_os_thread_count > os::Solaris::_os_thread_limit) {
 952     // We got lots of threads. Check if we still have some address space left.
 953     // Need to be at least 5Mb of unreserved address space. We do check by
 954     // trying to reserve some.
 955     const size_t VirtualMemoryBangSize = 20*K*K;
 956     char* mem = os::reserve_memory(VirtualMemoryBangSize);
 957     if (mem == NULL) {
 958       delete osthread;
 959       return false;
 960     } else {
 961       // Release the memory again
 962       os::release_memory(mem, VirtualMemoryBangSize);
 963     }
 964   }
 965 
 966   // Setup osthread because the child thread may need it.
 967   thread->set_osthread(osthread);
 968 
 969   // Create the Solaris thread
 970   thread_t tid = 0;
 971   long     flags = (UseDetachedThreads ? THR_DETACHED : 0) | THR_SUSPENDED;
 972   int      status;
 973 
 974   // Mark that we don't have an lwp or thread id yet.
 975   // In case we attempt to set the priority before the thread starts.
 976   osthread->set_lwp_id(-1);
 977   osthread->set_thread_id(-1);
 978 
 979   status = thr_create(NULL, stack_size, thread_native_entry, thread, flags, &tid);
 980 
 981   char buf[64];
 982   if (status == 0) {
 983     log_info(os, thread)("Thread started (tid: " UINTX_FORMAT ", attributes: %s). ",
 984       (uintx) tid, describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 985   } else {
 986     log_warning(os, thread)("Failed to start thread - thr_create failed (%s) for attributes: %s.",
 987       os::errno_name(status), describe_thr_create_attributes(buf, sizeof(buf), stack_size, flags));
 988   }
 989 
 990   if (status != 0) {
 991     thread->set_osthread(NULL);
 992     // Need to clean up stuff we've allocated so far
 993     delete osthread;
 994     return false;
 995   }
 996 
 997   Atomic::inc(&os::Solaris::_os_thread_count);
 998 
 999   // Store info on the Solaris thread into the OSThread
1000   osthread->set_thread_id(tid);
1001 
1002   // Remember that we created this thread so we can set priority on it
1003   osthread->set_vm_created();
1004 
1005   // Most thread types will set an explicit priority before starting the thread,
1006   // but for those that don't we need a valid value to read back in thread_native_entry.
1007   osthread->set_native_priority(NormPriority);
1008 
1009   // Initial thread state is INITIALIZED, not SUSPENDED
1010   osthread->set_state(INITIALIZED);
1011 
1012   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
1013   return true;
1014 }
1015 
1016 // defined for >= Solaris 10. This allows builds on earlier versions
1017 // of Solaris to take advantage of the newly reserved Solaris JVM signals.
1018 // With SIGJVM1, SIGJVM2, ASYNC_SIGNAL is SIGJVM2. Previously INTERRUPT_SIGNAL
1019 // was SIGJVM1.
1020 //
1021 #if !defined(SIGJVM1)
1022   #define SIGJVM1 39
1023   #define SIGJVM2 40
1024 #endif
1025 
1026 debug_only(static bool signal_sets_initialized = false);
1027 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
1028 
1029 int os::Solaris::_SIGasync = ASYNC_SIGNAL;
1030 
1031 bool os::Solaris::is_sig_ignored(int sig) {
1032   struct sigaction oact;
1033   sigaction(sig, (struct sigaction*)NULL, &oact);
1034   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
1035                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
1036   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
1037     return true;
1038   } else {
1039     return false;
1040   }
1041 }
1042 
1043 // Note: SIGRTMIN is a macro that calls sysconf() so it will
1044 // dynamically detect SIGRTMIN value for the system at runtime, not buildtime
1045 static bool isJVM1available() {
1046   return SIGJVM1 < SIGRTMIN;
1047 }
1048 
1049 void os::Solaris::signal_sets_init() {
1050   // Should also have an assertion stating we are still single-threaded.
1051   assert(!signal_sets_initialized, "Already initialized");
1052   // Fill in signals that are necessarily unblocked for all threads in
1053   // the VM. Currently, we unblock the following signals:
1054   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
1055   //                         by -Xrs (=ReduceSignalUsage));
1056   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
1057   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
1058   // the dispositions or masks wrt these signals.
1059   // Programs embedding the VM that want to use the above signals for their
1060   // own purposes must, at this time, use the "-Xrs" option to prevent
1061   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
1062   // (See bug 4345157, and other related bugs).
1063   // In reality, though, unblocking these signals is really a nop, since
1064   // these signals are not blocked by default.
1065   sigemptyset(&unblocked_sigs);
1066   sigemptyset(&allowdebug_blocked_sigs);
1067   sigaddset(&unblocked_sigs, SIGILL);
1068   sigaddset(&unblocked_sigs, SIGSEGV);
1069   sigaddset(&unblocked_sigs, SIGBUS);
1070   sigaddset(&unblocked_sigs, SIGFPE);
1071 
1072   // Always true on Solaris 10+
1073   guarantee(isJVM1available(), "SIGJVM1/2 missing!");
1074   os::Solaris::set_SIGasync(SIGJVM2);
1075 
1076   sigaddset(&unblocked_sigs, os::Solaris::SIGasync());
1077 
1078   if (!ReduceSignalUsage) {
1079     if (!os::Solaris::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
1080       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
1081       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
1082     }
1083     if (!os::Solaris::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
1084       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
1085       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
1086     }
1087     if (!os::Solaris::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
1088       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
1089       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
1090     }
1091   }
1092   // Fill in signals that are blocked by all but the VM thread.
1093   sigemptyset(&vm_sigs);
1094   if (!ReduceSignalUsage) {
1095     sigaddset(&vm_sigs, BREAK_SIGNAL);
1096   }
1097   debug_only(signal_sets_initialized = true);
1098 
1099   // For diagnostics only used in run_periodic_checks
1100   sigemptyset(&check_signal_done);
1101 }
1102 
1103 // These are signals that are unblocked while a thread is running Java.
1104 // (For some reason, they get blocked by default.)
1105 sigset_t* os::Solaris::unblocked_signals() {
1106   assert(signal_sets_initialized, "Not initialized");
1107   return &unblocked_sigs;
1108 }
1109 
1110 // These are the signals that are blocked while a (non-VM) thread is
1111 // running Java. Only the VM thread handles these signals.
1112 sigset_t* os::Solaris::vm_signals() {
1113   assert(signal_sets_initialized, "Not initialized");
1114   return &vm_sigs;
1115 }
1116 
1117 // These are signals that are blocked during cond_wait to allow debugger in
1118 sigset_t* os::Solaris::allowdebug_blocked_signals() {
1119   assert(signal_sets_initialized, "Not initialized");
1120   return &allowdebug_blocked_sigs;
1121 }
1122 
1123 
1124 void _handle_uncaught_cxx_exception() {
1125   VMError::report_and_die("An uncaught C++ exception");
1126 }
1127 
1128 
1129 // First crack at OS-specific initialization, from inside the new thread.
1130 void os::initialize_thread(Thread* thr) {
1131   int r = thr_main();
1132   guarantee(r == 0 || r == 1, "CR6501650 or CR6493689");
1133   if (r) {
1134     JavaThread* jt = (JavaThread *)thr;
1135     assert(jt != NULL, "Sanity check");
1136     size_t stack_size;
1137     address base = jt->stack_base();
1138     if (Arguments::created_by_java_launcher()) {
1139       // Use 2MB to allow for Solaris 7 64 bit mode.
1140       stack_size = JavaThread::stack_size_at_create() == 0
1141         ? 2048*K : JavaThread::stack_size_at_create();
1142 
1143       // There are rare cases when we may have already used more than
1144       // the basic stack size allotment before this method is invoked.
1145       // Attempt to allow for a normally sized java_stack.
1146       size_t current_stack_offset = (size_t)(base - (address)&stack_size);
1147       stack_size += ReservedSpace::page_align_size_down(current_stack_offset);
1148     } else {
1149       // 6269555: If we were not created by a Java launcher, i.e. if we are
1150       // running embedded in a native application, treat the primordial thread
1151       // as much like a native attached thread as possible.  This means using
1152       // the current stack size from thr_stksegment(), unless it is too large
1153       // to reliably setup guard pages.  A reasonable max size is 8MB.
1154       size_t current_size = current_stack_size();
1155       // This should never happen, but just in case....
1156       if (current_size == 0) current_size = 2 * K * K;
1157       stack_size = current_size > (8 * K * K) ? (8 * K * K) : current_size;
1158     }
1159     address bottom = (address)align_size_up((intptr_t)(base - stack_size), os::vm_page_size());;
1160     stack_size = (size_t)(base - bottom);
1161 
1162     assert(stack_size > 0, "Stack size calculation problem");
1163 
1164     if (stack_size > jt->stack_size()) {
1165 #ifndef PRODUCT
1166       struct rlimit limits;
1167       getrlimit(RLIMIT_STACK, &limits);
1168       size_t size = adjust_stack_size(base, (size_t)limits.rlim_cur);
1169       assert(size >= jt->stack_size(), "Stack size problem in main thread");
1170 #endif
1171       tty->print_cr("Stack size of %d Kb exceeds current limit of %d Kb.\n"
1172                     "(Stack sizes are rounded up to a multiple of the system page size.)\n"
1173                     "See limit(1) to increase the stack size limit.",
1174                     stack_size / K, jt->stack_size() / K);
1175       vm_exit(1);
1176     }
1177     assert(jt->stack_size() >= stack_size,
1178            "Attempt to map more stack than was allocated");
1179     jt->set_stack_size(stack_size);
1180   }
1181 
1182   // With the T2 libthread (T1 is no longer supported) threads are always bound
1183   // and we use stackbanging in all cases.
1184 
1185   os::Solaris::init_thread_fpu_state();
1186   std::set_terminate(_handle_uncaught_cxx_exception);
1187 }
1188 
1189 
1190 
1191 // Free Solaris resources related to the OSThread
1192 void os::free_thread(OSThread* osthread) {
1193   assert(osthread != NULL, "os::free_thread but osthread not set");
1194 
1195   // We are told to free resources of the argument thread,
1196   // but we can only really operate on the current thread.
1197   assert(Thread::current()->osthread() == osthread,
1198          "os::free_thread but not current thread");
1199 
1200   // Restore caller's signal mask
1201   sigset_t sigmask = osthread->caller_sigmask();
1202   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1203 
1204   delete osthread;
1205 }
1206 
1207 void os::pd_start_thread(Thread* thread) {
1208   int status = thr_continue(thread->osthread()->thread_id());
1209   assert_status(status == 0, status, "thr_continue failed");
1210 }
1211 
1212 
1213 intx os::current_thread_id() {
1214   return (intx)thr_self();
1215 }
1216 
1217 static pid_t _initial_pid = 0;
1218 
1219 int os::current_process_id() {
1220   return (int)(_initial_pid ? _initial_pid : getpid());
1221 }
1222 
1223 // gethrtime() should be monotonic according to the documentation,
1224 // but some virtualized platforms are known to break this guarantee.
1225 // getTimeNanos() must be guaranteed not to move backwards, so we
1226 // are forced to add a check here.
1227 inline hrtime_t getTimeNanos() {
1228   const hrtime_t now = gethrtime();
1229   const hrtime_t prev = max_hrtime;
1230   if (now <= prev) {
1231     return prev;   // same or retrograde time;
1232   }
1233   const hrtime_t obsv = Atomic::cmpxchg(now, (volatile jlong*)&max_hrtime, prev);
1234   assert(obsv >= prev, "invariant");   // Monotonicity
1235   // If the CAS succeeded then we're done and return "now".
1236   // If the CAS failed and the observed value "obsv" is >= now then
1237   // we should return "obsv".  If the CAS failed and now > obsv > prv then
1238   // some other thread raced this thread and installed a new value, in which case
1239   // we could either (a) retry the entire operation, (b) retry trying to install now
1240   // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1241   // we might discard a higher "now" value in deference to a slightly lower but freshly
1242   // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1243   // to (a) or (b) -- and greatly reduces coherence traffic.
1244   // We might also condition (c) on the magnitude of the delta between obsv and now.
1245   // Avoiding excessive CAS operations to hot RW locations is critical.
1246   // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1247   return (prev == obsv) ? now : obsv;
1248 }
1249 
1250 // Time since start-up in seconds to a fine granularity.
1251 // Used by VMSelfDestructTimer and the MemProfiler.
1252 double os::elapsedTime() {
1253   return (double)(getTimeNanos() - first_hrtime) / (double)hrtime_hz;
1254 }
1255 
1256 jlong os::elapsed_counter() {
1257   return (jlong)(getTimeNanos() - first_hrtime);
1258 }
1259 
1260 jlong os::elapsed_frequency() {
1261   return hrtime_hz;
1262 }
1263 
1264 // Return the real, user, and system times in seconds from an
1265 // arbitrary fixed point in the past.
1266 bool os::getTimesSecs(double* process_real_time,
1267                       double* process_user_time,
1268                       double* process_system_time) {
1269   struct tms ticks;
1270   clock_t real_ticks = times(&ticks);
1271 
1272   if (real_ticks == (clock_t) (-1)) {
1273     return false;
1274   } else {
1275     double ticks_per_second = (double) clock_tics_per_sec;
1276     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1277     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1278     // For consistency return the real time from getTimeNanos()
1279     // converted to seconds.
1280     *process_real_time = ((double) getTimeNanos()) / ((double) NANOUNITS);
1281 
1282     return true;
1283   }
1284 }
1285 
1286 bool os::supports_vtime() { return true; }
1287 bool os::enable_vtime() { return false; }
1288 bool os::vtime_enabled() { return false; }
1289 
1290 double os::elapsedVTime() {
1291   return (double)gethrvtime() / (double)hrtime_hz;
1292 }
1293 
1294 // Must return millis since Jan 1 1970 for JVM_CurrentTimeMillis
1295 jlong os::javaTimeMillis() {
1296   timeval t;
1297   if (gettimeofday(&t, NULL) == -1) {
1298     fatal("os::javaTimeMillis: gettimeofday (%s)", os::strerror(errno));
1299   }
1300   return jlong(t.tv_sec) * 1000  +  jlong(t.tv_usec) / 1000;
1301 }
1302 
1303 // Must return seconds+nanos since Jan 1 1970. This must use the same
1304 // time source as javaTimeMillis and can't use get_nsec_fromepoch as
1305 // we need better than 1ms accuracy
1306 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1307   timeval t;
1308   if (gettimeofday(&t, NULL) == -1) {
1309     fatal("os::javaTimeSystemUTC: gettimeofday (%s)", os::strerror(errno));
1310   }
1311   seconds = jlong(t.tv_sec);
1312   nanos = jlong(t.tv_usec) * 1000;
1313 }
1314 
1315 
1316 jlong os::javaTimeNanos() {
1317   return (jlong)getTimeNanos();
1318 }
1319 
1320 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1321   info_ptr->max_value = ALL_64_BITS;      // gethrtime() uses all 64 bits
1322   info_ptr->may_skip_backward = false;    // not subject to resetting or drifting
1323   info_ptr->may_skip_forward = false;     // not subject to resetting or drifting
1324   info_ptr->kind = JVMTI_TIMER_ELAPSED;   // elapsed not CPU time
1325 }
1326 
1327 char * os::local_time_string(char *buf, size_t buflen) {
1328   struct tm t;
1329   time_t long_time;
1330   time(&long_time);
1331   localtime_r(&long_time, &t);
1332   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1333                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1334                t.tm_hour, t.tm_min, t.tm_sec);
1335   return buf;
1336 }
1337 
1338 // Note: os::shutdown() might be called very early during initialization, or
1339 // called from signal handler. Before adding something to os::shutdown(), make
1340 // sure it is async-safe and can handle partially initialized VM.
1341 void os::shutdown() {
1342 
1343   // allow PerfMemory to attempt cleanup of any persistent resources
1344   perfMemory_exit();
1345 
1346   // needs to remove object in file system
1347   AttachListener::abort();
1348 
1349   // flush buffered output, finish log files
1350   ostream_abort();
1351 
1352   // Check for abort hook
1353   abort_hook_t abort_hook = Arguments::abort_hook();
1354   if (abort_hook != NULL) {
1355     abort_hook();
1356   }
1357 }
1358 
1359 // Note: os::abort() might be called very early during initialization, or
1360 // called from signal handler. Before adding something to os::abort(), make
1361 // sure it is async-safe and can handle partially initialized VM.
1362 void os::abort(bool dump_core, void* siginfo, const void* context) {
1363   os::shutdown();
1364   if (dump_core) {
1365 #ifndef PRODUCT
1366     fdStream out(defaultStream::output_fd());
1367     out.print_raw("Current thread is ");
1368     char buf[16];
1369     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1370     out.print_raw_cr(buf);
1371     out.print_raw_cr("Dumping core ...");
1372 #endif
1373     ::abort(); // dump core (for debugging)
1374   }
1375 
1376   ::exit(1);
1377 }
1378 
1379 // Die immediately, no exit hook, no abort hook, no cleanup.
1380 void os::die() {
1381   ::abort(); // dump core (for debugging)
1382 }
1383 
1384 // DLL functions
1385 
1386 const char* os::dll_file_extension() { return ".so"; }
1387 
1388 // This must be hard coded because it's the system's temporary
1389 // directory not the java application's temp directory, ala java.io.tmpdir.
1390 const char* os::get_temp_directory() { return "/tmp"; }
1391 
1392 static bool file_exists(const char* filename) {
1393   struct stat statbuf;
1394   if (filename == NULL || strlen(filename) == 0) {
1395     return false;
1396   }
1397   return os::stat(filename, &statbuf) == 0;
1398 }
1399 
1400 bool os::dll_build_name(char* buffer, size_t buflen,
1401                         const char* pname, const char* fname) {
1402   bool retval = false;
1403   const size_t pnamelen = pname ? strlen(pname) : 0;
1404 
1405   // Return error on buffer overflow.
1406   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1407     return retval;
1408   }
1409 
1410   if (pnamelen == 0) {
1411     snprintf(buffer, buflen, "lib%s.so", fname);
1412     retval = true;
1413   } else if (strchr(pname, *os::path_separator()) != NULL) {
1414     int n;
1415     char** pelements = split_path(pname, &n);
1416     if (pelements == NULL) {
1417       return false;
1418     }
1419     for (int i = 0; i < n; i++) {
1420       // really shouldn't be NULL but what the heck, check can't hurt
1421       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1422         continue; // skip the empty path values
1423       }
1424       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1425       if (file_exists(buffer)) {
1426         retval = true;
1427         break;
1428       }
1429     }
1430     // release the storage
1431     for (int i = 0; i < n; i++) {
1432       if (pelements[i] != NULL) {
1433         FREE_C_HEAP_ARRAY(char, pelements[i]);
1434       }
1435     }
1436     if (pelements != NULL) {
1437       FREE_C_HEAP_ARRAY(char*, pelements);
1438     }
1439   } else {
1440     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1441     retval = true;
1442   }
1443   return retval;
1444 }
1445 
1446 // check if addr is inside libjvm.so
1447 bool os::address_is_in_vm(address addr) {
1448   static address libjvm_base_addr;
1449   Dl_info dlinfo;
1450 
1451   if (libjvm_base_addr == NULL) {
1452     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1453       libjvm_base_addr = (address)dlinfo.dli_fbase;
1454     }
1455     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1456   }
1457 
1458   if (dladdr((void *)addr, &dlinfo) != 0) {
1459     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1460   }
1461 
1462   return false;
1463 }
1464 
1465 typedef int (*dladdr1_func_type)(void *, Dl_info *, void **, int);
1466 static dladdr1_func_type dladdr1_func = NULL;
1467 
1468 bool os::dll_address_to_function_name(address addr, char *buf,
1469                                       int buflen, int * offset,
1470                                       bool demangle) {
1471   // buf is not optional, but offset is optional
1472   assert(buf != NULL, "sanity check");
1473 
1474   Dl_info dlinfo;
1475 
1476   // dladdr1_func was initialized in os::init()
1477   if (dladdr1_func != NULL) {
1478     // yes, we have dladdr1
1479 
1480     // Support for dladdr1 is checked at runtime; it may be
1481     // available even if the vm is built on a machine that does
1482     // not have dladdr1 support.  Make sure there is a value for
1483     // RTLD_DL_SYMENT.
1484 #ifndef RTLD_DL_SYMENT
1485   #define RTLD_DL_SYMENT 1
1486 #endif
1487 #ifdef _LP64
1488     Elf64_Sym * info;
1489 #else
1490     Elf32_Sym * info;
1491 #endif
1492     if (dladdr1_func((void *)addr, &dlinfo, (void **)&info,
1493                      RTLD_DL_SYMENT) != 0) {
1494       // see if we have a matching symbol that covers our address
1495       if (dlinfo.dli_saddr != NULL &&
1496           (char *)dlinfo.dli_saddr + info->st_size > (char *)addr) {
1497         if (dlinfo.dli_sname != NULL) {
1498           if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1499             jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1500           }
1501           if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1502           return true;
1503         }
1504       }
1505       // no matching symbol so try for just file info
1506       if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1507         if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1508                             buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1509           return true;
1510         }
1511       }
1512     }
1513     buf[0] = '\0';
1514     if (offset != NULL) *offset  = -1;
1515     return false;
1516   }
1517 
1518   // no, only dladdr is available
1519   if (dladdr((void *)addr, &dlinfo) != 0) {
1520     // see if we have a matching symbol
1521     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1522       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1523         jio_snprintf(buf, buflen, dlinfo.dli_sname);
1524       }
1525       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1526       return true;
1527     }
1528     // no matching symbol so try for just file info
1529     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1530       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1531                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1532         return true;
1533       }
1534     }
1535   }
1536   buf[0] = '\0';
1537   if (offset != NULL) *offset  = -1;
1538   return false;
1539 }
1540 
1541 bool os::dll_address_to_library_name(address addr, char* buf,
1542                                      int buflen, int* offset) {
1543   // buf is not optional, but offset is optional
1544   assert(buf != NULL, "sanity check");
1545 
1546   Dl_info dlinfo;
1547 
1548   if (dladdr((void*)addr, &dlinfo) != 0) {
1549     if (dlinfo.dli_fname != NULL) {
1550       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1551     }
1552     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1553       *offset = addr - (address)dlinfo.dli_fbase;
1554     }
1555     return true;
1556   }
1557 
1558   buf[0] = '\0';
1559   if (offset) *offset = -1;
1560   return false;
1561 }
1562 
1563 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1564   Dl_info dli;
1565   // Sanity check?
1566   if (dladdr(CAST_FROM_FN_PTR(void *, os::get_loaded_modules_info), &dli) == 0 ||
1567       dli.dli_fname == NULL) {
1568     return 1;
1569   }
1570 
1571   void * handle = dlopen(dli.dli_fname, RTLD_LAZY);
1572   if (handle == NULL) {
1573     return 1;
1574   }
1575 
1576   Link_map *map;
1577   dlinfo(handle, RTLD_DI_LINKMAP, &map);
1578   if (map == NULL) {
1579     dlclose(handle);
1580     return 1;
1581   }
1582 
1583   while (map->l_prev != NULL) {
1584     map = map->l_prev;
1585   }
1586 
1587   while (map != NULL) {
1588     // Iterate through all map entries and call callback with fields of interest
1589     if(callback(map->l_name, (address)map->l_addr, (address)0, param)) {
1590       dlclose(handle);
1591       return 1;
1592     }
1593     map = map->l_next;
1594   }
1595 
1596   dlclose(handle);
1597   return 0;
1598 }
1599 
1600 int _print_dll_info_cb(const char * name, address base_address, address top_address, void * param) {
1601   outputStream * out = (outputStream *) param;
1602   out->print_cr(PTR_FORMAT " \t%s", base_address, name);
1603   return 0;
1604 }
1605 
1606 void os::print_dll_info(outputStream * st) {
1607   st->print_cr("Dynamic libraries:"); st->flush();
1608   if (get_loaded_modules_info(_print_dll_info_cb, (void *)st)) {
1609     st->print_cr("Error: Cannot print dynamic libraries.");
1610   }
1611 }
1612 
1613 // Loads .dll/.so and
1614 // in case of error it checks if .dll/.so was built for the
1615 // same architecture as Hotspot is running on
1616 
1617 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1618   void * result= ::dlopen(filename, RTLD_LAZY);
1619   if (result != NULL) {
1620     // Successful loading
1621     return result;
1622   }
1623 
1624   Elf32_Ehdr elf_head;
1625 
1626   // Read system error message into ebuf
1627   // It may or may not be overwritten below
1628   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1629   ebuf[ebuflen-1]='\0';
1630   int diag_msg_max_length=ebuflen-strlen(ebuf);
1631   char* diag_msg_buf=ebuf+strlen(ebuf);
1632 
1633   if (diag_msg_max_length==0) {
1634     // No more space in ebuf for additional diagnostics message
1635     return NULL;
1636   }
1637 
1638 
1639   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1640 
1641   if (file_descriptor < 0) {
1642     // Can't open library, report dlerror() message
1643     return NULL;
1644   }
1645 
1646   bool failed_to_read_elf_head=
1647     (sizeof(elf_head)!=
1648      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1649 
1650   ::close(file_descriptor);
1651   if (failed_to_read_elf_head) {
1652     // file i/o error - report dlerror() msg
1653     return NULL;
1654   }
1655 
1656   typedef struct {
1657     Elf32_Half  code;         // Actual value as defined in elf.h
1658     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1659     char        elf_class;    // 32 or 64 bit
1660     char        endianess;    // MSB or LSB
1661     char*       name;         // String representation
1662   } arch_t;
1663 
1664   static const arch_t arch_array[]={
1665     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1666     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1667     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1668     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1669     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1670     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1671     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1672     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1673     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1674     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM 32"}
1675   };
1676 
1677 #if  (defined IA32)
1678   static  Elf32_Half running_arch_code=EM_386;
1679 #elif   (defined AMD64)
1680   static  Elf32_Half running_arch_code=EM_X86_64;
1681 #elif  (defined IA64)
1682   static  Elf32_Half running_arch_code=EM_IA_64;
1683 #elif  (defined __sparc) && (defined _LP64)
1684   static  Elf32_Half running_arch_code=EM_SPARCV9;
1685 #elif  (defined __sparc) && (!defined _LP64)
1686   static  Elf32_Half running_arch_code=EM_SPARC;
1687 #elif  (defined __powerpc64__)
1688   static  Elf32_Half running_arch_code=EM_PPC64;
1689 #elif  (defined __powerpc__)
1690   static  Elf32_Half running_arch_code=EM_PPC;
1691 #elif (defined ARM)
1692   static  Elf32_Half running_arch_code=EM_ARM;
1693 #else
1694   #error Method os::dll_load requires that one of following is defined:\
1695        IA32, AMD64, IA64, __sparc, __powerpc__, ARM, ARM
1696 #endif
1697 
1698   // Identify compatability class for VM's architecture and library's architecture
1699   // Obtain string descriptions for architectures
1700 
1701   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1702   int running_arch_index=-1;
1703 
1704   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1705     if (running_arch_code == arch_array[i].code) {
1706       running_arch_index    = i;
1707     }
1708     if (lib_arch.code == arch_array[i].code) {
1709       lib_arch.compat_class = arch_array[i].compat_class;
1710       lib_arch.name         = arch_array[i].name;
1711     }
1712   }
1713 
1714   assert(running_arch_index != -1,
1715          "Didn't find running architecture code (running_arch_code) in arch_array");
1716   if (running_arch_index == -1) {
1717     // Even though running architecture detection failed
1718     // we may still continue with reporting dlerror() message
1719     return NULL;
1720   }
1721 
1722   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1723     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1724     return NULL;
1725   }
1726 
1727   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1728     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1729     return NULL;
1730   }
1731 
1732   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1733     if (lib_arch.name!=NULL) {
1734       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1735                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1736                  lib_arch.name, arch_array[running_arch_index].name);
1737     } else {
1738       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1739                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1740                  lib_arch.code,
1741                  arch_array[running_arch_index].name);
1742     }
1743   }
1744 
1745   return NULL;
1746 }
1747 
1748 void* os::dll_lookup(void* handle, const char* name) {
1749   return dlsym(handle, name);
1750 }
1751 
1752 void* os::get_default_process_handle() {
1753   return (void*)::dlopen(NULL, RTLD_LAZY);
1754 }
1755 
1756 int os::stat(const char *path, struct stat *sbuf) {
1757   char pathbuf[MAX_PATH];
1758   if (strlen(path) > MAX_PATH - 1) {
1759     errno = ENAMETOOLONG;
1760     return -1;
1761   }
1762   os::native_path(strcpy(pathbuf, path));
1763   return ::stat(pathbuf, sbuf);
1764 }
1765 
1766 static inline time_t get_mtime(const char* filename) {
1767   struct stat st;
1768   int ret = os::stat(filename, &st);
1769   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1770   return st.st_mtime;
1771 }
1772 
1773 int os::compare_file_modified_times(const char* file1, const char* file2) {
1774   time_t t1 = get_mtime(file1);
1775   time_t t2 = get_mtime(file2);
1776   return t1 - t2;
1777 }
1778 
1779 static bool _print_ascii_file(const char* filename, outputStream* st) {
1780   int fd = ::open(filename, O_RDONLY);
1781   if (fd == -1) {
1782     return false;
1783   }
1784 
1785   char buf[32];
1786   int bytes;
1787   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1788     st->print_raw(buf, bytes);
1789   }
1790 
1791   ::close(fd);
1792 
1793   return true;
1794 }
1795 
1796 void os::print_os_info_brief(outputStream* st) {
1797   os::Solaris::print_distro_info(st);
1798 
1799   os::Posix::print_uname_info(st);
1800 
1801   os::Solaris::print_libversion_info(st);
1802 }
1803 
1804 void os::print_os_info(outputStream* st) {
1805   st->print("OS:");
1806 
1807   os::Solaris::print_distro_info(st);
1808 
1809   os::Posix::print_uname_info(st);
1810 
1811   os::Solaris::print_libversion_info(st);
1812 
1813   os::Posix::print_rlimit_info(st);
1814 
1815   os::Posix::print_load_average(st);
1816 }
1817 
1818 void os::Solaris::print_distro_info(outputStream* st) {
1819   if (!_print_ascii_file("/etc/release", st)) {
1820     st->print("Solaris");
1821   }
1822   st->cr();
1823 }
1824 
1825 void os::get_summary_os_info(char* buf, size_t buflen) {
1826   strncpy(buf, "Solaris", buflen);  // default to plain solaris
1827   FILE* fp = fopen("/etc/release", "r");
1828   if (fp != NULL) {
1829     char tmp[256];
1830     // Only get the first line and chop out everything but the os name.
1831     if (fgets(tmp, sizeof(tmp), fp)) {
1832       char* ptr = tmp;
1833       // skip past whitespace characters
1834       while (*ptr != '\0' && (*ptr == ' ' || *ptr == '\t' || *ptr == '\n')) ptr++;
1835       if (*ptr != '\0') {
1836         char* nl = strchr(ptr, '\n');
1837         if (nl != NULL) *nl = '\0';
1838         strncpy(buf, ptr, buflen);
1839       }
1840     }
1841     fclose(fp);
1842   }
1843 }
1844 
1845 void os::Solaris::print_libversion_info(outputStream* st) {
1846   st->print("  (T2 libthread)");
1847   st->cr();
1848 }
1849 
1850 static bool check_addr0(outputStream* st) {
1851   jboolean status = false;
1852   const int read_chunk = 200;
1853   int ret = 0;
1854   int nmap = 0;
1855   int fd = ::open("/proc/self/map",O_RDONLY);
1856   if (fd >= 0) {
1857     prmap_t *p = NULL;
1858     char *mbuff = (char *) calloc(read_chunk, sizeof(prmap_t));
1859     if (NULL == mbuff) {
1860       ::close(fd);
1861       return status;
1862     }
1863     while ((ret = ::read(fd, mbuff, read_chunk*sizeof(prmap_t))) > 0) {
1864       //check if read() has not read partial data
1865       if( 0 != ret % sizeof(prmap_t)){
1866         break;
1867       }
1868       nmap = ret / sizeof(prmap_t);
1869       p = (prmap_t *)mbuff;
1870       for(int i = 0; i < nmap; i++){
1871         if (p->pr_vaddr == 0x0) {
1872           st->print("Warning: Address: " PTR_FORMAT ", Size: " SIZE_FORMAT "K, ",p->pr_vaddr, p->pr_size/1024);
1873           st->print("Mapped file: %s, ", p->pr_mapname[0] == '\0' ? "None" : p->pr_mapname);
1874           st->print("Access: ");
1875           st->print("%s",(p->pr_mflags & MA_READ)  ? "r" : "-");
1876           st->print("%s",(p->pr_mflags & MA_WRITE) ? "w" : "-");
1877           st->print("%s",(p->pr_mflags & MA_EXEC)  ? "x" : "-");
1878           st->cr();
1879           status = true;
1880         }
1881         p++;
1882       }
1883     }
1884     free(mbuff);
1885     ::close(fd);
1886   }
1887   return status;
1888 }
1889 
1890 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1891   // Get MHz with system call. We don't seem to already have this.
1892   processor_info_t stats;
1893   processorid_t id = getcpuid();
1894   int clock = 0;
1895   if (processor_info(id, &stats) != -1) {
1896     clock = stats.pi_clock;  // pi_processor_type isn't more informative than below
1897   }
1898 #ifdef AMD64
1899   snprintf(buf, buflen, "x86 64 bit %d MHz", clock);
1900 #else
1901   // must be sparc
1902   snprintf(buf, buflen, "Sparcv9 64 bit %d MHz", clock);
1903 #endif
1904 }
1905 
1906 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1907   // Nothing to do for now.
1908 }
1909 
1910 void os::print_memory_info(outputStream* st) {
1911   st->print("Memory:");
1912   st->print(" %dk page", os::vm_page_size()>>10);
1913   st->print(", physical " UINT64_FORMAT "k", os::physical_memory()>>10);
1914   st->print("(" UINT64_FORMAT "k free)", os::available_memory() >> 10);
1915   st->cr();
1916   (void) check_addr0(st);
1917 }
1918 
1919 // Moved from whole group, because we need them here for diagnostic
1920 // prints.
1921 #define OLDMAXSIGNUM 32
1922 static int Maxsignum = 0;
1923 static int *ourSigFlags = NULL;
1924 
1925 int os::Solaris::get_our_sigflags(int sig) {
1926   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1927   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1928   return ourSigFlags[sig];
1929 }
1930 
1931 void os::Solaris::set_our_sigflags(int sig, int flags) {
1932   assert(ourSigFlags!=NULL, "signal data structure not initialized");
1933   assert(sig > 0 && sig < Maxsignum, "vm signal out of expected range");
1934   ourSigFlags[sig] = flags;
1935 }
1936 
1937 
1938 static const char* get_signal_handler_name(address handler,
1939                                            char* buf, int buflen) {
1940   int offset;
1941   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
1942   if (found) {
1943     // skip directory names
1944     const char *p1, *p2;
1945     p1 = buf;
1946     size_t len = strlen(os::file_separator());
1947     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
1948     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
1949   } else {
1950     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
1951   }
1952   return buf;
1953 }
1954 
1955 static void print_signal_handler(outputStream* st, int sig,
1956                                  char* buf, size_t buflen) {
1957   struct sigaction sa;
1958 
1959   sigaction(sig, NULL, &sa);
1960 
1961   st->print("%s: ", os::exception_name(sig, buf, buflen));
1962 
1963   address handler = (sa.sa_flags & SA_SIGINFO)
1964                   ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
1965                   : CAST_FROM_FN_PTR(address, sa.sa_handler);
1966 
1967   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
1968     st->print("SIG_DFL");
1969   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
1970     st->print("SIG_IGN");
1971   } else {
1972     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
1973   }
1974 
1975   st->print(", sa_mask[0]=");
1976   os::Posix::print_signal_set_short(st, &sa.sa_mask);
1977 
1978   address rh = VMError::get_resetted_sighandler(sig);
1979   // May be, handler was resetted by VMError?
1980   if (rh != NULL) {
1981     handler = rh;
1982     sa.sa_flags = VMError::get_resetted_sigflags(sig);
1983   }
1984 
1985   st->print(", sa_flags=");
1986   os::Posix::print_sa_flags(st, sa.sa_flags);
1987 
1988   // Check: is it our handler?
1989   if (handler == CAST_FROM_FN_PTR(address, signalHandler)) {
1990     // It is our signal handler
1991     // check for flags
1992     if (sa.sa_flags != os::Solaris::get_our_sigflags(sig)) {
1993       st->print(
1994                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
1995                 os::Solaris::get_our_sigflags(sig));
1996     }
1997   }
1998   st->cr();
1999 }
2000 
2001 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2002   st->print_cr("Signal Handlers:");
2003   print_signal_handler(st, SIGSEGV, buf, buflen);
2004   print_signal_handler(st, SIGBUS , buf, buflen);
2005   print_signal_handler(st, SIGFPE , buf, buflen);
2006   print_signal_handler(st, SIGPIPE, buf, buflen);
2007   print_signal_handler(st, SIGXFSZ, buf, buflen);
2008   print_signal_handler(st, SIGILL , buf, buflen);
2009   print_signal_handler(st, ASYNC_SIGNAL, buf, buflen);
2010   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2011   print_signal_handler(st, SHUTDOWN1_SIGNAL , buf, buflen);
2012   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2013   print_signal_handler(st, SHUTDOWN3_SIGNAL, buf, buflen);
2014   print_signal_handler(st, os::Solaris::SIGasync(), buf, buflen);
2015 }
2016 
2017 static char saved_jvm_path[MAXPATHLEN] = { 0 };
2018 
2019 // Find the full path to the current module, libjvm.so
2020 void os::jvm_path(char *buf, jint buflen) {
2021   // Error checking.
2022   if (buflen < MAXPATHLEN) {
2023     assert(false, "must use a large-enough buffer");
2024     buf[0] = '\0';
2025     return;
2026   }
2027   // Lazy resolve the path to current module.
2028   if (saved_jvm_path[0] != 0) {
2029     strcpy(buf, saved_jvm_path);
2030     return;
2031   }
2032 
2033   Dl_info dlinfo;
2034   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
2035   assert(ret != 0, "cannot locate libjvm");
2036   if (ret != 0 && dlinfo.dli_fname != NULL) {
2037     os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
2038   } else {
2039     buf[0] = '\0';
2040     return;
2041   }
2042 
2043   if (Arguments::sun_java_launcher_is_altjvm()) {
2044     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2045     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2046     // If "/jre/lib/" appears at the right place in the string, then
2047     // assume we are installed in a JDK and we're done.  Otherwise, check
2048     // for a JAVA_HOME environment variable and fix up the path so it
2049     // looks like libjvm.so is installed there (append a fake suffix
2050     // hotspot/libjvm.so).
2051     const char *p = buf + strlen(buf) - 1;
2052     for (int count = 0; p > buf && count < 5; ++count) {
2053       for (--p; p > buf && *p != '/'; --p)
2054         /* empty */ ;
2055     }
2056 
2057     if (strncmp(p, "/jre/lib/", 9) != 0) {
2058       // Look for JAVA_HOME in the environment.
2059       char* java_home_var = ::getenv("JAVA_HOME");
2060       if (java_home_var != NULL && java_home_var[0] != 0) {
2061         char* jrelib_p;
2062         int   len;
2063 
2064         // Check the current module name "libjvm.so".
2065         p = strrchr(buf, '/');
2066         assert(strstr(p, "/libjvm") == p, "invalid library name");
2067 
2068         os::Posix::realpath(java_home_var, buf, buflen);
2069         // determine if this is a legacy image or modules image
2070         // modules image doesn't have "jre" subdirectory
2071         len = strlen(buf);
2072         assert(len < buflen, "Ran out of buffer space");
2073         jrelib_p = buf + len;
2074         snprintf(jrelib_p, buflen-len, "/jre/lib");
2075         if (0 != access(buf, F_OK)) {
2076           snprintf(jrelib_p, buflen-len, "/lib");
2077         }
2078 
2079         if (0 == access(buf, F_OK)) {
2080           // Use current module name "libjvm.so"
2081           len = strlen(buf);
2082           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2083         } else {
2084           // Go back to path of .so
2085           os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
2086         }
2087       }
2088     }
2089   }
2090 
2091   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2092   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2093 }
2094 
2095 
2096 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2097   // no prefix required, not even "_"
2098 }
2099 
2100 
2101 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2102   // no suffix required
2103 }
2104 
2105 // This method is a copy of JDK's sysGetLastErrorString
2106 // from src/solaris/hpi/src/system_md.c
2107 
2108 size_t os::lasterror(char *buf, size_t len) {
2109   if (errno == 0)  return 0;
2110 
2111   const char *s = os::strerror(errno);
2112   size_t n = ::strlen(s);
2113   if (n >= len) {
2114     n = len - 1;
2115   }
2116   ::strncpy(buf, s, n);
2117   buf[n] = '\0';
2118   return n;
2119 }
2120 
2121 
2122 // sun.misc.Signal
2123 
2124 extern "C" {
2125   static void UserHandler(int sig, void *siginfo, void *context) {
2126     // Ctrl-C is pressed during error reporting, likely because the error
2127     // handler fails to abort. Let VM die immediately.
2128     if (sig == SIGINT && is_error_reported()) {
2129       os::die();
2130     }
2131 
2132     os::signal_notify(sig);
2133     // We do not need to reinstate the signal handler each time...
2134   }
2135 }
2136 
2137 void* os::user_handler() {
2138   return CAST_FROM_FN_PTR(void*, UserHandler);
2139 }
2140 
2141 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2142   struct timespec ts;
2143   unpackTime(&ts, false, (sec * NANOSECS_PER_SEC) + nsec);
2144 
2145   return ts;
2146 }
2147 
2148 extern "C" {
2149   typedef void (*sa_handler_t)(int);
2150   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2151 }
2152 
2153 void* os::signal(int signal_number, void* handler) {
2154   struct sigaction sigAct, oldSigAct;
2155   sigfillset(&(sigAct.sa_mask));
2156   sigAct.sa_flags = SA_RESTART & ~SA_RESETHAND;
2157   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2158 
2159   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2160     // -1 means registration failed
2161     return (void *)-1;
2162   }
2163 
2164   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2165 }
2166 
2167 void os::signal_raise(int signal_number) {
2168   raise(signal_number);
2169 }
2170 
2171 // The following code is moved from os.cpp for making this
2172 // code platform specific, which it is by its very nature.
2173 
2174 // a counter for each possible signal value
2175 static int Sigexit = 0;
2176 static int Maxlibjsigsigs;
2177 static jint *pending_signals = NULL;
2178 static int *preinstalled_sigs = NULL;
2179 static struct sigaction *chainedsigactions = NULL;
2180 static sema_t sig_sem;
2181 typedef int (*version_getting_t)();
2182 version_getting_t os::Solaris::get_libjsig_version = NULL;
2183 static int libjsigversion = NULL;
2184 
2185 int os::sigexitnum_pd() {
2186   assert(Sigexit > 0, "signal memory not yet initialized");
2187   return Sigexit;
2188 }
2189 
2190 void os::Solaris::init_signal_mem() {
2191   // Initialize signal structures
2192   Maxsignum = SIGRTMAX;
2193   Sigexit = Maxsignum+1;
2194   assert(Maxsignum >0, "Unable to obtain max signal number");
2195 
2196   Maxlibjsigsigs = Maxsignum;
2197 
2198   // pending_signals has one int per signal
2199   // The additional signal is for SIGEXIT - exit signal to signal_thread
2200   pending_signals = (jint *)os::malloc(sizeof(jint) * (Sigexit+1), mtInternal);
2201   memset(pending_signals, 0, (sizeof(jint) * (Sigexit+1)));
2202 
2203   if (UseSignalChaining) {
2204     chainedsigactions = (struct sigaction *)malloc(sizeof(struct sigaction)
2205                                                    * (Maxsignum + 1), mtInternal);
2206     memset(chainedsigactions, 0, (sizeof(struct sigaction) * (Maxsignum + 1)));
2207     preinstalled_sigs = (int *)os::malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2208     memset(preinstalled_sigs, 0, (sizeof(int) * (Maxsignum + 1)));
2209   }
2210   ourSigFlags = (int*)malloc(sizeof(int) * (Maxsignum + 1), mtInternal);
2211   memset(ourSigFlags, 0, sizeof(int) * (Maxsignum + 1));
2212 }
2213 
2214 void os::signal_init_pd() {
2215   int ret;
2216 
2217   ret = ::sema_init(&sig_sem, 0, NULL, NULL);
2218   assert(ret == 0, "sema_init() failed");
2219 }
2220 
2221 void os::signal_notify(int signal_number) {
2222   int ret;
2223 
2224   Atomic::inc(&pending_signals[signal_number]);
2225   ret = ::sema_post(&sig_sem);
2226   assert(ret == 0, "sema_post() failed");
2227 }
2228 
2229 static int check_pending_signals(bool wait_for_signal) {
2230   int ret;
2231   while (true) {
2232     for (int i = 0; i < Sigexit + 1; i++) {
2233       jint n = pending_signals[i];
2234       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2235         return i;
2236       }
2237     }
2238     if (!wait_for_signal) {
2239       return -1;
2240     }
2241     JavaThread *thread = JavaThread::current();
2242     ThreadBlockInVM tbivm(thread);
2243 
2244     bool threadIsSuspended;
2245     do {
2246       thread->set_suspend_equivalent();
2247       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2248       while ((ret = ::sema_wait(&sig_sem)) == EINTR)
2249         ;
2250       assert(ret == 0, "sema_wait() failed");
2251 
2252       // were we externally suspended while we were waiting?
2253       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2254       if (threadIsSuspended) {
2255         // The semaphore has been incremented, but while we were waiting
2256         // another thread suspended us. We don't want to continue running
2257         // while suspended because that would surprise the thread that
2258         // suspended us.
2259         ret = ::sema_post(&sig_sem);
2260         assert(ret == 0, "sema_post() failed");
2261 
2262         thread->java_suspend_self();
2263       }
2264     } while (threadIsSuspended);
2265   }
2266 }
2267 
2268 int os::signal_lookup() {
2269   return check_pending_signals(false);
2270 }
2271 
2272 int os::signal_wait() {
2273   return check_pending_signals(true);
2274 }
2275 
2276 ////////////////////////////////////////////////////////////////////////////////
2277 // Virtual Memory
2278 
2279 static int page_size = -1;
2280 
2281 // The mmap MAP_ALIGN flag is supported on Solaris 9 and later.  init_2() will
2282 // clear this var if support is not available.
2283 static bool has_map_align = true;
2284 
2285 int os::vm_page_size() {
2286   assert(page_size != -1, "must call os::init");
2287   return page_size;
2288 }
2289 
2290 // Solaris allocates memory by pages.
2291 int os::vm_allocation_granularity() {
2292   assert(page_size != -1, "must call os::init");
2293   return page_size;
2294 }
2295 
2296 static bool recoverable_mmap_error(int err) {
2297   // See if the error is one we can let the caller handle. This
2298   // list of errno values comes from the Solaris mmap(2) man page.
2299   switch (err) {
2300   case EBADF:
2301   case EINVAL:
2302   case ENOTSUP:
2303     // let the caller deal with these errors
2304     return true;
2305 
2306   default:
2307     // Any remaining errors on this OS can cause our reserved mapping
2308     // to be lost. That can cause confusion where different data
2309     // structures think they have the same memory mapped. The worst
2310     // scenario is if both the VM and a library think they have the
2311     // same memory mapped.
2312     return false;
2313   }
2314 }
2315 
2316 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec,
2317                                     int err) {
2318   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2319           ", %d) failed; error='%s' (errno=%d)", addr, bytes, exec,
2320           os::strerror(err), err);
2321 }
2322 
2323 static void warn_fail_commit_memory(char* addr, size_t bytes,
2324                                     size_t alignment_hint, bool exec,
2325                                     int err) {
2326   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2327           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, bytes,
2328           alignment_hint, exec, os::strerror(err), err);
2329 }
2330 
2331 int os::Solaris::commit_memory_impl(char* addr, size_t bytes, bool exec) {
2332   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2333   size_t size = bytes;
2334   char *res = Solaris::mmap_chunk(addr, size, MAP_PRIVATE|MAP_FIXED, prot);
2335   if (res != NULL) {
2336     if (UseNUMAInterleaving) {
2337       numa_make_global(addr, bytes);
2338     }
2339     return 0;
2340   }
2341 
2342   int err = errno;  // save errno from mmap() call in mmap_chunk()
2343 
2344   if (!recoverable_mmap_error(err)) {
2345     warn_fail_commit_memory(addr, bytes, exec, err);
2346     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "committing reserved memory.");
2347   }
2348 
2349   return err;
2350 }
2351 
2352 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
2353   return Solaris::commit_memory_impl(addr, bytes, exec) == 0;
2354 }
2355 
2356 void os::pd_commit_memory_or_exit(char* addr, size_t bytes, bool exec,
2357                                   const char* mesg) {
2358   assert(mesg != NULL, "mesg must be specified");
2359   int err = os::Solaris::commit_memory_impl(addr, bytes, exec);
2360   if (err != 0) {
2361     // the caller wants all commit errors to exit with the specified mesg:
2362     warn_fail_commit_memory(addr, bytes, exec, err);
2363     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2364   }
2365 }
2366 
2367 size_t os::Solaris::page_size_for_alignment(size_t alignment) {
2368   assert(is_size_aligned(alignment, (size_t) vm_page_size()),
2369          SIZE_FORMAT " is not aligned to " SIZE_FORMAT,
2370          alignment, (size_t) vm_page_size());
2371 
2372   for (int i = 0; _page_sizes[i] != 0; i++) {
2373     if (is_size_aligned(alignment, _page_sizes[i])) {
2374       return _page_sizes[i];
2375     }
2376   }
2377 
2378   return (size_t) vm_page_size();
2379 }
2380 
2381 int os::Solaris::commit_memory_impl(char* addr, size_t bytes,
2382                                     size_t alignment_hint, bool exec) {
2383   int err = Solaris::commit_memory_impl(addr, bytes, exec);
2384   if (err == 0 && UseLargePages && alignment_hint > 0) {
2385     assert(is_size_aligned(bytes, alignment_hint),
2386            SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, alignment_hint);
2387 
2388     // The syscall memcntl requires an exact page size (see man memcntl for details).
2389     size_t page_size = page_size_for_alignment(alignment_hint);
2390     if (page_size > (size_t) vm_page_size()) {
2391       (void)Solaris::setup_large_pages(addr, bytes, page_size);
2392     }
2393   }
2394   return err;
2395 }
2396 
2397 bool os::pd_commit_memory(char* addr, size_t bytes, size_t alignment_hint,
2398                           bool exec) {
2399   return Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec) == 0;
2400 }
2401 
2402 void os::pd_commit_memory_or_exit(char* addr, size_t bytes,
2403                                   size_t alignment_hint, bool exec,
2404                                   const char* mesg) {
2405   assert(mesg != NULL, "mesg must be specified");
2406   int err = os::Solaris::commit_memory_impl(addr, bytes, alignment_hint, exec);
2407   if (err != 0) {
2408     // the caller wants all commit errors to exit with the specified mesg:
2409     warn_fail_commit_memory(addr, bytes, alignment_hint, exec, err);
2410     vm_exit_out_of_memory(bytes, OOM_MMAP_ERROR, "%s", mesg);
2411   }
2412 }
2413 
2414 // Uncommit the pages in a specified region.
2415 void os::pd_free_memory(char* addr, size_t bytes, size_t alignment_hint) {
2416   if (madvise(addr, bytes, MADV_FREE) < 0) {
2417     debug_only(warning("MADV_FREE failed."));
2418     return;
2419   }
2420 }
2421 
2422 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2423   return os::commit_memory(addr, size, !ExecMem);
2424 }
2425 
2426 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2427   return os::uncommit_memory(addr, size);
2428 }
2429 
2430 // Change the page size in a given range.
2431 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2432   assert((intptr_t)addr % alignment_hint == 0, "Address should be aligned.");
2433   assert((intptr_t)(addr + bytes) % alignment_hint == 0, "End should be aligned.");
2434   if (UseLargePages) {
2435     size_t page_size = Solaris::page_size_for_alignment(alignment_hint);
2436     if (page_size > (size_t) vm_page_size()) {
2437       Solaris::setup_large_pages(addr, bytes, page_size);
2438     }
2439   }
2440 }
2441 
2442 // Tell the OS to make the range local to the first-touching LWP
2443 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2444   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2445   if (madvise(addr, bytes, MADV_ACCESS_LWP) < 0) {
2446     debug_only(warning("MADV_ACCESS_LWP failed."));
2447   }
2448 }
2449 
2450 // Tell the OS that this range would be accessed from different LWPs.
2451 void os::numa_make_global(char *addr, size_t bytes) {
2452   assert((intptr_t)addr % os::vm_page_size() == 0, "Address should be page-aligned.");
2453   if (madvise(addr, bytes, MADV_ACCESS_MANY) < 0) {
2454     debug_only(warning("MADV_ACCESS_MANY failed."));
2455   }
2456 }
2457 
2458 // Get the number of the locality groups.
2459 size_t os::numa_get_groups_num() {
2460   size_t n = Solaris::lgrp_nlgrps(Solaris::lgrp_cookie());
2461   return n != -1 ? n : 1;
2462 }
2463 
2464 // Get a list of leaf locality groups. A leaf lgroup is group that
2465 // doesn't have any children. Typical leaf group is a CPU or a CPU/memory
2466 // board. An LWP is assigned to one of these groups upon creation.
2467 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2468   if ((ids[0] = Solaris::lgrp_root(Solaris::lgrp_cookie())) == -1) {
2469     ids[0] = 0;
2470     return 1;
2471   }
2472   int result_size = 0, top = 1, bottom = 0, cur = 0;
2473   for (int k = 0; k < size; k++) {
2474     int r = Solaris::lgrp_children(Solaris::lgrp_cookie(), ids[cur],
2475                                    (Solaris::lgrp_id_t*)&ids[top], size - top);
2476     if (r == -1) {
2477       ids[0] = 0;
2478       return 1;
2479     }
2480     if (!r) {
2481       // That's a leaf node.
2482       assert(bottom <= cur, "Sanity check");
2483       // Check if the node has memory
2484       if (Solaris::lgrp_resources(Solaris::lgrp_cookie(), ids[cur],
2485                                   NULL, 0, LGRP_RSRC_MEM) > 0) {
2486         ids[bottom++] = ids[cur];
2487       }
2488     }
2489     top += r;
2490     cur++;
2491   }
2492   if (bottom == 0) {
2493     // Handle a situation, when the OS reports no memory available.
2494     // Assume UMA architecture.
2495     ids[0] = 0;
2496     return 1;
2497   }
2498   return bottom;
2499 }
2500 
2501 // Detect the topology change. Typically happens during CPU plugging-unplugging.
2502 bool os::numa_topology_changed() {
2503   int is_stale = Solaris::lgrp_cookie_stale(Solaris::lgrp_cookie());
2504   if (is_stale != -1 && is_stale) {
2505     Solaris::lgrp_fini(Solaris::lgrp_cookie());
2506     Solaris::lgrp_cookie_t c = Solaris::lgrp_init(Solaris::LGRP_VIEW_CALLER);
2507     assert(c != 0, "Failure to initialize LGRP API");
2508     Solaris::set_lgrp_cookie(c);
2509     return true;
2510   }
2511   return false;
2512 }
2513 
2514 // Get the group id of the current LWP.
2515 int os::numa_get_group_id() {
2516   int lgrp_id = Solaris::lgrp_home(P_LWPID, P_MYID);
2517   if (lgrp_id == -1) {
2518     return 0;
2519   }
2520   const int size = os::numa_get_groups_num();
2521   int *ids = (int*)alloca(size * sizeof(int));
2522 
2523   // Get the ids of all lgroups with memory; r is the count.
2524   int r = Solaris::lgrp_resources(Solaris::lgrp_cookie(), lgrp_id,
2525                                   (Solaris::lgrp_id_t*)ids, size, LGRP_RSRC_MEM);
2526   if (r <= 0) {
2527     return 0;
2528   }
2529   return ids[os::random() % r];
2530 }
2531 
2532 // Request information about the page.
2533 bool os::get_page_info(char *start, page_info* info) {
2534   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2535   uint64_t addr = (uintptr_t)start;
2536   uint64_t outdata[2];
2537   uint_t validity = 0;
2538 
2539   if (meminfo(&addr, 1, info_types, 2, outdata, &validity) < 0) {
2540     return false;
2541   }
2542 
2543   info->size = 0;
2544   info->lgrp_id = -1;
2545 
2546   if ((validity & 1) != 0) {
2547     if ((validity & 2) != 0) {
2548       info->lgrp_id = outdata[0];
2549     }
2550     if ((validity & 4) != 0) {
2551       info->size = outdata[1];
2552     }
2553     return true;
2554   }
2555   return false;
2556 }
2557 
2558 // Scan the pages from start to end until a page different than
2559 // the one described in the info parameter is encountered.
2560 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2561                      page_info* page_found) {
2562   const uint_t info_types[] = { MEMINFO_VLGRP, MEMINFO_VPAGESIZE };
2563   const size_t types = sizeof(info_types) / sizeof(info_types[0]);
2564   uint64_t addrs[MAX_MEMINFO_CNT], outdata[types * MAX_MEMINFO_CNT + 1];
2565   uint_t validity[MAX_MEMINFO_CNT];
2566 
2567   size_t page_size = MAX2((size_t)os::vm_page_size(), page_expected->size);
2568   uint64_t p = (uint64_t)start;
2569   while (p < (uint64_t)end) {
2570     addrs[0] = p;
2571     size_t addrs_count = 1;
2572     while (addrs_count < MAX_MEMINFO_CNT && addrs[addrs_count - 1] + page_size < (uint64_t)end) {
2573       addrs[addrs_count] = addrs[addrs_count - 1] + page_size;
2574       addrs_count++;
2575     }
2576 
2577     if (meminfo(addrs, addrs_count, info_types, types, outdata, validity) < 0) {
2578       return NULL;
2579     }
2580 
2581     size_t i = 0;
2582     for (; i < addrs_count; i++) {
2583       if ((validity[i] & 1) != 0) {
2584         if ((validity[i] & 4) != 0) {
2585           if (outdata[types * i + 1] != page_expected->size) {
2586             break;
2587           }
2588         } else if (page_expected->size != 0) {
2589           break;
2590         }
2591 
2592         if ((validity[i] & 2) != 0 && page_expected->lgrp_id > 0) {
2593           if (outdata[types * i] != page_expected->lgrp_id) {
2594             break;
2595           }
2596         }
2597       } else {
2598         return NULL;
2599       }
2600     }
2601 
2602     if (i < addrs_count) {
2603       if ((validity[i] & 2) != 0) {
2604         page_found->lgrp_id = outdata[types * i];
2605       } else {
2606         page_found->lgrp_id = -1;
2607       }
2608       if ((validity[i] & 4) != 0) {
2609         page_found->size = outdata[types * i + 1];
2610       } else {
2611         page_found->size = 0;
2612       }
2613       return (char*)addrs[i];
2614     }
2615 
2616     p = addrs[addrs_count - 1] + page_size;
2617   }
2618   return end;
2619 }
2620 
2621 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
2622   size_t size = bytes;
2623   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2624   // uncommitted page. Otherwise, the read/write might succeed if we
2625   // have enough swap space to back the physical page.
2626   return
2627     NULL != Solaris::mmap_chunk(addr, size,
2628                                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE,
2629                                 PROT_NONE);
2630 }
2631 
2632 char* os::Solaris::mmap_chunk(char *addr, size_t size, int flags, int prot) {
2633   char *b = (char *)mmap(addr, size, prot, flags, os::Solaris::_dev_zero_fd, 0);
2634 
2635   if (b == MAP_FAILED) {
2636     return NULL;
2637   }
2638   return b;
2639 }
2640 
2641 char* os::Solaris::anon_mmap(char* requested_addr, size_t bytes,
2642                              size_t alignment_hint, bool fixed) {
2643   char* addr = requested_addr;
2644   int flags = MAP_PRIVATE | MAP_NORESERVE;
2645 
2646   assert(!(fixed && (alignment_hint > 0)),
2647          "alignment hint meaningless with fixed mmap");
2648 
2649   if (fixed) {
2650     flags |= MAP_FIXED;
2651   } else if (has_map_align && (alignment_hint > (size_t) vm_page_size())) {
2652     flags |= MAP_ALIGN;
2653     addr = (char*) alignment_hint;
2654   }
2655 
2656   // Map uncommitted pages PROT_NONE so we fail early if we touch an
2657   // uncommitted page. Otherwise, the read/write might succeed if we
2658   // have enough swap space to back the physical page.
2659   return mmap_chunk(addr, bytes, flags, PROT_NONE);
2660 }
2661 
2662 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2663                             size_t alignment_hint) {
2664   char* addr = Solaris::anon_mmap(requested_addr, bytes, alignment_hint,
2665                                   (requested_addr != NULL));
2666 
2667   guarantee(requested_addr == NULL || requested_addr == addr,
2668             "OS failed to return requested mmap address.");
2669   return addr;
2670 }
2671 
2672 // Reserve memory at an arbitrary address, only if that area is
2673 // available (and not reserved for something else).
2674 
2675 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2676   const int max_tries = 10;
2677   char* base[max_tries];
2678   size_t size[max_tries];
2679 
2680   // Solaris adds a gap between mmap'ed regions.  The size of the gap
2681   // is dependent on the requested size and the MMU.  Our initial gap
2682   // value here is just a guess and will be corrected later.
2683   bool had_top_overlap = false;
2684   bool have_adjusted_gap = false;
2685   size_t gap = 0x400000;
2686 
2687   // Assert only that the size is a multiple of the page size, since
2688   // that's all that mmap requires, and since that's all we really know
2689   // about at this low abstraction level.  If we need higher alignment,
2690   // we can either pass an alignment to this method or verify alignment
2691   // in one of the methods further up the call chain.  See bug 5044738.
2692   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
2693 
2694   // Since snv_84, Solaris attempts to honor the address hint - see 5003415.
2695   // Give it a try, if the kernel honors the hint we can return immediately.
2696   char* addr = Solaris::anon_mmap(requested_addr, bytes, 0, false);
2697 
2698   volatile int err = errno;
2699   if (addr == requested_addr) {
2700     return addr;
2701   } else if (addr != NULL) {
2702     pd_unmap_memory(addr, bytes);
2703   }
2704 
2705   if (log_is_enabled(Warning, os)) {
2706     char buf[256];
2707     buf[0] = '\0';
2708     if (addr == NULL) {
2709       jio_snprintf(buf, sizeof(buf), ": %s", os::strerror(err));
2710     }
2711     log_info(os)("attempt_reserve_memory_at: couldn't reserve " SIZE_FORMAT " bytes at "
2712             PTR_FORMAT ": reserve_memory_helper returned " PTR_FORMAT
2713             "%s", bytes, requested_addr, addr, buf);
2714   }
2715 
2716   // Address hint method didn't work.  Fall back to the old method.
2717   // In theory, once SNV becomes our oldest supported platform, this
2718   // code will no longer be needed.
2719   //
2720   // Repeatedly allocate blocks until the block is allocated at the
2721   // right spot. Give up after max_tries.
2722   int i;
2723   for (i = 0; i < max_tries; ++i) {
2724     base[i] = reserve_memory(bytes);
2725 
2726     if (base[i] != NULL) {
2727       // Is this the block we wanted?
2728       if (base[i] == requested_addr) {
2729         size[i] = bytes;
2730         break;
2731       }
2732 
2733       // check that the gap value is right
2734       if (had_top_overlap && !have_adjusted_gap) {
2735         size_t actual_gap = base[i-1] - base[i] - bytes;
2736         if (gap != actual_gap) {
2737           // adjust the gap value and retry the last 2 allocations
2738           assert(i > 0, "gap adjustment code problem");
2739           have_adjusted_gap = true;  // adjust the gap only once, just in case
2740           gap = actual_gap;
2741           log_info(os)("attempt_reserve_memory_at: adjusted gap to 0x%lx", gap);
2742           unmap_memory(base[i], bytes);
2743           unmap_memory(base[i-1], size[i-1]);
2744           i-=2;
2745           continue;
2746         }
2747       }
2748 
2749       // Does this overlap the block we wanted? Give back the overlapped
2750       // parts and try again.
2751       //
2752       // There is still a bug in this code: if top_overlap == bytes,
2753       // the overlap is offset from requested region by the value of gap.
2754       // In this case giving back the overlapped part will not work,
2755       // because we'll give back the entire block at base[i] and
2756       // therefore the subsequent allocation will not generate a new gap.
2757       // This could be fixed with a new algorithm that used larger
2758       // or variable size chunks to find the requested region -
2759       // but such a change would introduce additional complications.
2760       // It's rare enough that the planets align for this bug,
2761       // so we'll just wait for a fix for 6204603/5003415 which
2762       // will provide a mmap flag to allow us to avoid this business.
2763 
2764       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
2765       if (top_overlap >= 0 && top_overlap < bytes) {
2766         had_top_overlap = true;
2767         unmap_memory(base[i], top_overlap);
2768         base[i] += top_overlap;
2769         size[i] = bytes - top_overlap;
2770       } else {
2771         size_t bottom_overlap = base[i] + bytes - requested_addr;
2772         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
2773           if (bottom_overlap == 0) {
2774             log_info(os)("attempt_reserve_memory_at: possible alignment bug");
2775           }
2776           unmap_memory(requested_addr, bottom_overlap);
2777           size[i] = bytes - bottom_overlap;
2778         } else {
2779           size[i] = bytes;
2780         }
2781       }
2782     }
2783   }
2784 
2785   // Give back the unused reserved pieces.
2786 
2787   for (int j = 0; j < i; ++j) {
2788     if (base[j] != NULL) {
2789       unmap_memory(base[j], size[j]);
2790     }
2791   }
2792 
2793   return (i < max_tries) ? requested_addr : NULL;
2794 }
2795 
2796 bool os::pd_release_memory(char* addr, size_t bytes) {
2797   size_t size = bytes;
2798   return munmap(addr, size) == 0;
2799 }
2800 
2801 static bool solaris_mprotect(char* addr, size_t bytes, int prot) {
2802   assert(addr == (char*)align_size_down((uintptr_t)addr, os::vm_page_size()),
2803          "addr must be page aligned");
2804   int retVal = mprotect(addr, bytes, prot);
2805   return retVal == 0;
2806 }
2807 
2808 // Protect memory (Used to pass readonly pages through
2809 // JNI GetArray<type>Elements with empty arrays.)
2810 // Also, used for serialization page and for compressed oops null pointer
2811 // checking.
2812 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2813                         bool is_committed) {
2814   unsigned int p = 0;
2815   switch (prot) {
2816   case MEM_PROT_NONE: p = PROT_NONE; break;
2817   case MEM_PROT_READ: p = PROT_READ; break;
2818   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2819   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2820   default:
2821     ShouldNotReachHere();
2822   }
2823   // is_committed is unused.
2824   return solaris_mprotect(addr, bytes, p);
2825 }
2826 
2827 // guard_memory and unguard_memory only happens within stack guard pages.
2828 // Since ISM pertains only to the heap, guard and unguard memory should not
2829 /// happen with an ISM region.
2830 bool os::guard_memory(char* addr, size_t bytes) {
2831   return solaris_mprotect(addr, bytes, PROT_NONE);
2832 }
2833 
2834 bool os::unguard_memory(char* addr, size_t bytes) {
2835   return solaris_mprotect(addr, bytes, PROT_READ|PROT_WRITE);
2836 }
2837 
2838 // Large page support
2839 static size_t _large_page_size = 0;
2840 
2841 // Insertion sort for small arrays (descending order).
2842 static void insertion_sort_descending(size_t* array, int len) {
2843   for (int i = 0; i < len; i++) {
2844     size_t val = array[i];
2845     for (size_t key = i; key > 0 && array[key - 1] < val; --key) {
2846       size_t tmp = array[key];
2847       array[key] = array[key - 1];
2848       array[key - 1] = tmp;
2849     }
2850   }
2851 }
2852 
2853 bool os::Solaris::mpss_sanity_check(bool warn, size_t* page_size) {
2854   const unsigned int usable_count = VM_Version::page_size_count();
2855   if (usable_count == 1) {
2856     return false;
2857   }
2858 
2859   // Find the right getpagesizes interface.  When solaris 11 is the minimum
2860   // build platform, getpagesizes() (without the '2') can be called directly.
2861   typedef int (*gps_t)(size_t[], int);
2862   gps_t gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes2"));
2863   if (gps_func == NULL) {
2864     gps_func = CAST_TO_FN_PTR(gps_t, dlsym(RTLD_DEFAULT, "getpagesizes"));
2865     if (gps_func == NULL) {
2866       if (warn) {
2867         warning("MPSS is not supported by the operating system.");
2868       }
2869       return false;
2870     }
2871   }
2872 
2873   // Fill the array of page sizes.
2874   int n = (*gps_func)(_page_sizes, page_sizes_max);
2875   assert(n > 0, "Solaris bug?");
2876 
2877   if (n == page_sizes_max) {
2878     // Add a sentinel value (necessary only if the array was completely filled
2879     // since it is static (zeroed at initialization)).
2880     _page_sizes[--n] = 0;
2881     DEBUG_ONLY(warning("increase the size of the os::_page_sizes array.");)
2882   }
2883   assert(_page_sizes[n] == 0, "missing sentinel");
2884   trace_page_sizes("available page sizes", _page_sizes, n);
2885 
2886   if (n == 1) return false;     // Only one page size available.
2887 
2888   // Skip sizes larger than 4M (or LargePageSizeInBytes if it was set) and
2889   // select up to usable_count elements.  First sort the array, find the first
2890   // acceptable value, then copy the usable sizes to the top of the array and
2891   // trim the rest.  Make sure to include the default page size :-).
2892   //
2893   // A better policy could get rid of the 4M limit by taking the sizes of the
2894   // important VM memory regions (java heap and possibly the code cache) into
2895   // account.
2896   insertion_sort_descending(_page_sizes, n);
2897   const size_t size_limit =
2898     FLAG_IS_DEFAULT(LargePageSizeInBytes) ? 4 * M : LargePageSizeInBytes;
2899   int beg;
2900   for (beg = 0; beg < n && _page_sizes[beg] > size_limit; ++beg) /* empty */;
2901   const int end = MIN2((int)usable_count, n) - 1;
2902   for (int cur = 0; cur < end; ++cur, ++beg) {
2903     _page_sizes[cur] = _page_sizes[beg];
2904   }
2905   _page_sizes[end] = vm_page_size();
2906   _page_sizes[end + 1] = 0;
2907 
2908   if (_page_sizes[end] > _page_sizes[end - 1]) {
2909     // Default page size is not the smallest; sort again.
2910     insertion_sort_descending(_page_sizes, end + 1);
2911   }
2912   *page_size = _page_sizes[0];
2913 
2914   trace_page_sizes("usable page sizes", _page_sizes, end + 1);
2915   return true;
2916 }
2917 
2918 void os::large_page_init() {
2919   if (UseLargePages) {
2920     // print a warning if any large page related flag is specified on command line
2921     bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages)        ||
2922                            !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2923 
2924     UseLargePages = Solaris::mpss_sanity_check(warn_on_failure, &_large_page_size);
2925   }
2926 }
2927 
2928 bool os::Solaris::is_valid_page_size(size_t bytes) {
2929   for (int i = 0; _page_sizes[i] != 0; i++) {
2930     if (_page_sizes[i] == bytes) {
2931       return true;
2932     }
2933   }
2934   return false;
2935 }
2936 
2937 bool os::Solaris::setup_large_pages(caddr_t start, size_t bytes, size_t align) {
2938   assert(is_valid_page_size(align), SIZE_FORMAT " is not a valid page size", align);
2939   assert(is_ptr_aligned((void*) start, align),
2940          PTR_FORMAT " is not aligned to " SIZE_FORMAT, p2i((void*) start), align);
2941   assert(is_size_aligned(bytes, align),
2942          SIZE_FORMAT " is not aligned to " SIZE_FORMAT, bytes, align);
2943 
2944   // Signal to OS that we want large pages for addresses
2945   // from addr, addr + bytes
2946   struct memcntl_mha mpss_struct;
2947   mpss_struct.mha_cmd = MHA_MAPSIZE_VA;
2948   mpss_struct.mha_pagesize = align;
2949   mpss_struct.mha_flags = 0;
2950   // Upon successful completion, memcntl() returns 0
2951   if (memcntl(start, bytes, MC_HAT_ADVISE, (caddr_t) &mpss_struct, 0, 0)) {
2952     debug_only(warning("Attempt to use MPSS failed."));
2953     return false;
2954   }
2955   return true;
2956 }
2957 
2958 char* os::reserve_memory_special(size_t size, size_t alignment, char* addr, bool exec) {
2959   fatal("os::reserve_memory_special should not be called on Solaris.");
2960   return NULL;
2961 }
2962 
2963 bool os::release_memory_special(char* base, size_t bytes) {
2964   fatal("os::release_memory_special should not be called on Solaris.");
2965   return false;
2966 }
2967 
2968 size_t os::large_page_size() {
2969   return _large_page_size;
2970 }
2971 
2972 // MPSS allows application to commit large page memory on demand; with ISM
2973 // the entire memory region must be allocated as shared memory.
2974 bool os::can_commit_large_page_memory() {
2975   return true;
2976 }
2977 
2978 bool os::can_execute_large_page_memory() {
2979   return true;
2980 }
2981 
2982 // Read calls from inside the vm need to perform state transitions
2983 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2984   size_t res;
2985   JavaThread* thread = (JavaThread*)Thread::current();
2986   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2987   ThreadBlockInVM tbiv(thread);
2988   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
2989   return res;
2990 }
2991 
2992 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2993   size_t res;
2994   JavaThread* thread = (JavaThread*)Thread::current();
2995   assert(thread->thread_state() == _thread_in_vm, "Assumed _thread_in_vm");
2996   ThreadBlockInVM tbiv(thread);
2997   RESTARTABLE(::pread(fd, buf, (size_t) nBytes, offset), res);
2998   return res;
2999 }
3000 
3001 size_t os::restartable_read(int fd, void *buf, unsigned int nBytes) {
3002   size_t res;
3003   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
3004          "Assumed _thread_in_native");
3005   RESTARTABLE(::read(fd, buf, (size_t) nBytes), res);
3006   return res;
3007 }
3008 
3009 void os::naked_short_sleep(jlong ms) {
3010   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3011 
3012   // usleep is deprecated and removed from POSIX, in favour of nanosleep, but
3013   // Solaris requires -lrt for this.
3014   usleep((ms * 1000));
3015 
3016   return;
3017 }
3018 
3019 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3020 void os::infinite_sleep() {
3021   while (true) {    // sleep forever ...
3022     ::sleep(100);   // ... 100 seconds at a time
3023   }
3024 }
3025 
3026 // Used to convert frequent JVM_Yield() to nops
3027 bool os::dont_yield() {
3028   if (DontYieldALot) {
3029     static hrtime_t last_time = 0;
3030     hrtime_t diff = getTimeNanos() - last_time;
3031 
3032     if (diff < DontYieldALotInterval * 1000000) {
3033       return true;
3034     }
3035 
3036     last_time += diff;
3037 
3038     return false;
3039   } else {
3040     return false;
3041   }
3042 }
3043 
3044 // Note that yield semantics are defined by the scheduling class to which
3045 // the thread currently belongs.  Typically, yield will _not yield to
3046 // other equal or higher priority threads that reside on the dispatch queues
3047 // of other CPUs.
3048 
3049 void os::naked_yield() {
3050   thr_yield();
3051 }
3052 
3053 // Interface for setting lwp priorities.  We are using T2 libthread,
3054 // which forces the use of bound threads, so all of our threads will
3055 // be assigned to real lwp's.  Using the thr_setprio function is
3056 // meaningless in this mode so we must adjust the real lwp's priority.
3057 // The routines below implement the getting and setting of lwp priorities.
3058 //
3059 // Note: There are three priority scales used on Solaris.  Java priotities
3060 //       which range from 1 to 10, libthread "thr_setprio" scale which range
3061 //       from 0 to 127, and the current scheduling class of the process we
3062 //       are running in.  This is typically from -60 to +60.
3063 //       The setting of the lwp priorities in done after a call to thr_setprio
3064 //       so Java priorities are mapped to libthread priorities and we map from
3065 //       the latter to lwp priorities.  We don't keep priorities stored in
3066 //       Java priorities since some of our worker threads want to set priorities
3067 //       higher than all Java threads.
3068 //
3069 // For related information:
3070 // (1)  man -s 2 priocntl
3071 // (2)  man -s 4 priocntl
3072 // (3)  man dispadmin
3073 // =    librt.so
3074 // =    libthread/common/rtsched.c - thrp_setlwpprio().
3075 // =    ps -cL <pid> ... to validate priority.
3076 // =    sched_get_priority_min and _max
3077 //              pthread_create
3078 //              sched_setparam
3079 //              pthread_setschedparam
3080 //
3081 // Assumptions:
3082 // +    We assume that all threads in the process belong to the same
3083 //              scheduling class.   IE. an homogenous process.
3084 // +    Must be root or in IA group to change change "interactive" attribute.
3085 //              Priocntl() will fail silently.  The only indication of failure is when
3086 //              we read-back the value and notice that it hasn't changed.
3087 // +    Interactive threads enter the runq at the head, non-interactive at the tail.
3088 // +    For RT, change timeslice as well.  Invariant:
3089 //              constant "priority integral"
3090 //              Konst == TimeSlice * (60-Priority)
3091 //              Given a priority, compute appropriate timeslice.
3092 // +    Higher numerical values have higher priority.
3093 
3094 // sched class attributes
3095 typedef struct {
3096   int   schedPolicy;              // classID
3097   int   maxPrio;
3098   int   minPrio;
3099 } SchedInfo;
3100 
3101 
3102 static SchedInfo tsLimits, iaLimits, rtLimits, fxLimits;
3103 
3104 #ifdef ASSERT
3105 static int  ReadBackValidate = 1;
3106 #endif
3107 static int  myClass     = 0;
3108 static int  myMin       = 0;
3109 static int  myMax       = 0;
3110 static int  myCur       = 0;
3111 static bool priocntl_enable = false;
3112 
3113 static const int criticalPrio = FXCriticalPriority;
3114 static int java_MaxPriority_to_os_priority = 0; // Saved mapping
3115 
3116 
3117 // lwp_priocntl_init
3118 //
3119 // Try to determine the priority scale for our process.
3120 //
3121 // Return errno or 0 if OK.
3122 //
3123 static int lwp_priocntl_init() {
3124   int rslt;
3125   pcinfo_t ClassInfo;
3126   pcparms_t ParmInfo;
3127   int i;
3128 
3129   if (!UseThreadPriorities) return 0;
3130 
3131   // If ThreadPriorityPolicy is 1, switch tables
3132   if (ThreadPriorityPolicy == 1) {
3133     for (i = 0; i < CriticalPriority+1; i++)
3134       os::java_to_os_priority[i] = prio_policy1[i];
3135   }
3136   if (UseCriticalJavaThreadPriority) {
3137     // MaxPriority always maps to the FX scheduling class and criticalPrio.
3138     // See set_native_priority() and set_lwp_class_and_priority().
3139     // Save original MaxPriority mapping in case attempt to
3140     // use critical priority fails.
3141     java_MaxPriority_to_os_priority = os::java_to_os_priority[MaxPriority];
3142     // Set negative to distinguish from other priorities
3143     os::java_to_os_priority[MaxPriority] = -criticalPrio;
3144   }
3145 
3146   // Get IDs for a set of well-known scheduling classes.
3147   // TODO-FIXME: GETCLINFO returns the current # of classes in the
3148   // the system.  We should have a loop that iterates over the
3149   // classID values, which are known to be "small" integers.
3150 
3151   strcpy(ClassInfo.pc_clname, "TS");
3152   ClassInfo.pc_cid = -1;
3153   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3154   if (rslt < 0) return errno;
3155   assert(ClassInfo.pc_cid != -1, "cid for TS class is -1");
3156   tsLimits.schedPolicy = ClassInfo.pc_cid;
3157   tsLimits.maxPrio = ((tsinfo_t*)ClassInfo.pc_clinfo)->ts_maxupri;
3158   tsLimits.minPrio = -tsLimits.maxPrio;
3159 
3160   strcpy(ClassInfo.pc_clname, "IA");
3161   ClassInfo.pc_cid = -1;
3162   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3163   if (rslt < 0) return errno;
3164   assert(ClassInfo.pc_cid != -1, "cid for IA class is -1");
3165   iaLimits.schedPolicy = ClassInfo.pc_cid;
3166   iaLimits.maxPrio = ((iainfo_t*)ClassInfo.pc_clinfo)->ia_maxupri;
3167   iaLimits.minPrio = -iaLimits.maxPrio;
3168 
3169   strcpy(ClassInfo.pc_clname, "RT");
3170   ClassInfo.pc_cid = -1;
3171   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3172   if (rslt < 0) return errno;
3173   assert(ClassInfo.pc_cid != -1, "cid for RT class is -1");
3174   rtLimits.schedPolicy = ClassInfo.pc_cid;
3175   rtLimits.maxPrio = ((rtinfo_t*)ClassInfo.pc_clinfo)->rt_maxpri;
3176   rtLimits.minPrio = 0;
3177 
3178   strcpy(ClassInfo.pc_clname, "FX");
3179   ClassInfo.pc_cid = -1;
3180   rslt = priocntl(P_ALL, 0, PC_GETCID, (caddr_t)&ClassInfo);
3181   if (rslt < 0) return errno;
3182   assert(ClassInfo.pc_cid != -1, "cid for FX class is -1");
3183   fxLimits.schedPolicy = ClassInfo.pc_cid;
3184   fxLimits.maxPrio = ((fxinfo_t*)ClassInfo.pc_clinfo)->fx_maxupri;
3185   fxLimits.minPrio = 0;
3186 
3187   // Query our "current" scheduling class.
3188   // This will normally be IA, TS or, rarely, FX or RT.
3189   memset(&ParmInfo, 0, sizeof(ParmInfo));
3190   ParmInfo.pc_cid = PC_CLNULL;
3191   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3192   if (rslt < 0) return errno;
3193   myClass = ParmInfo.pc_cid;
3194 
3195   // We now know our scheduling classId, get specific information
3196   // about the class.
3197   ClassInfo.pc_cid = myClass;
3198   ClassInfo.pc_clname[0] = 0;
3199   rslt = priocntl((idtype)0, 0, PC_GETCLINFO, (caddr_t)&ClassInfo);
3200   if (rslt < 0) return errno;
3201 
3202   if (ThreadPriorityVerbose) {
3203     tty->print_cr("lwp_priocntl_init: Class=%d(%s)...", myClass, ClassInfo.pc_clname);
3204   }
3205 
3206   memset(&ParmInfo, 0, sizeof(pcparms_t));
3207   ParmInfo.pc_cid = PC_CLNULL;
3208   rslt = priocntl(P_PID, P_MYID, PC_GETPARMS, (caddr_t)&ParmInfo);
3209   if (rslt < 0) return errno;
3210 
3211   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3212     myMin = rtLimits.minPrio;
3213     myMax = rtLimits.maxPrio;
3214   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3215     iaparms_t *iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3216     myMin = iaLimits.minPrio;
3217     myMax = iaLimits.maxPrio;
3218     myMax = MIN2(myMax, (int)iaInfo->ia_uprilim);       // clamp - restrict
3219   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3220     tsparms_t *tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3221     myMin = tsLimits.minPrio;
3222     myMax = tsLimits.maxPrio;
3223     myMax = MIN2(myMax, (int)tsInfo->ts_uprilim);       // clamp - restrict
3224   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3225     fxparms_t *fxInfo = (fxparms_t*)ParmInfo.pc_clparms;
3226     myMin = fxLimits.minPrio;
3227     myMax = fxLimits.maxPrio;
3228     myMax = MIN2(myMax, (int)fxInfo->fx_uprilim);       // clamp - restrict
3229   } else {
3230     // No clue - punt
3231     if (ThreadPriorityVerbose) {
3232       tty->print_cr("Unknown scheduling class: %s ... \n",
3233                     ClassInfo.pc_clname);
3234     }
3235     return EINVAL;      // no clue, punt
3236   }
3237 
3238   if (ThreadPriorityVerbose) {
3239     tty->print_cr("Thread priority Range: [%d..%d]\n", myMin, myMax);
3240   }
3241 
3242   priocntl_enable = true;  // Enable changing priorities
3243   return 0;
3244 }
3245 
3246 #define IAPRI(x)        ((iaparms_t *)((x).pc_clparms))
3247 #define RTPRI(x)        ((rtparms_t *)((x).pc_clparms))
3248 #define TSPRI(x)        ((tsparms_t *)((x).pc_clparms))
3249 #define FXPRI(x)        ((fxparms_t *)((x).pc_clparms))
3250 
3251 
3252 // scale_to_lwp_priority
3253 //
3254 // Convert from the libthread "thr_setprio" scale to our current
3255 // lwp scheduling class scale.
3256 //
3257 static int scale_to_lwp_priority(int rMin, int rMax, int x) {
3258   int v;
3259 
3260   if (x == 127) return rMax;            // avoid round-down
3261   v = (((x*(rMax-rMin)))/128)+rMin;
3262   return v;
3263 }
3264 
3265 
3266 // set_lwp_class_and_priority
3267 int set_lwp_class_and_priority(int ThreadID, int lwpid,
3268                                int newPrio, int new_class, bool scale) {
3269   int rslt;
3270   int Actual, Expected, prv;
3271   pcparms_t ParmInfo;                   // for GET-SET
3272 #ifdef ASSERT
3273   pcparms_t ReadBack;                   // for readback
3274 #endif
3275 
3276   // Set priority via PC_GETPARMS, update, PC_SETPARMS
3277   // Query current values.
3278   // TODO: accelerate this by eliminating the PC_GETPARMS call.
3279   // Cache "pcparms_t" in global ParmCache.
3280   // TODO: elide set-to-same-value
3281 
3282   // If something went wrong on init, don't change priorities.
3283   if (!priocntl_enable) {
3284     if (ThreadPriorityVerbose) {
3285       tty->print_cr("Trying to set priority but init failed, ignoring");
3286     }
3287     return EINVAL;
3288   }
3289 
3290   // If lwp hasn't started yet, just return
3291   // the _start routine will call us again.
3292   if (lwpid <= 0) {
3293     if (ThreadPriorityVerbose) {
3294       tty->print_cr("deferring the set_lwp_class_and_priority of thread "
3295                     INTPTR_FORMAT " to %d, lwpid not set",
3296                     ThreadID, newPrio);
3297     }
3298     return 0;
3299   }
3300 
3301   if (ThreadPriorityVerbose) {
3302     tty->print_cr ("set_lwp_class_and_priority("
3303                    INTPTR_FORMAT "@" INTPTR_FORMAT " %d) ",
3304                    ThreadID, lwpid, newPrio);
3305   }
3306 
3307   memset(&ParmInfo, 0, sizeof(pcparms_t));
3308   ParmInfo.pc_cid = PC_CLNULL;
3309   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ParmInfo);
3310   if (rslt < 0) return errno;
3311 
3312   int cur_class = ParmInfo.pc_cid;
3313   ParmInfo.pc_cid = (id_t)new_class;
3314 
3315   if (new_class == rtLimits.schedPolicy) {
3316     rtparms_t *rtInfo  = (rtparms_t*)ParmInfo.pc_clparms;
3317     rtInfo->rt_pri     = scale ? scale_to_lwp_priority(rtLimits.minPrio,
3318                                                        rtLimits.maxPrio, newPrio)
3319                                : newPrio;
3320     rtInfo->rt_tqsecs  = RT_NOCHANGE;
3321     rtInfo->rt_tqnsecs = RT_NOCHANGE;
3322     if (ThreadPriorityVerbose) {
3323       tty->print_cr("RT: %d->%d\n", newPrio, rtInfo->rt_pri);
3324     }
3325   } else if (new_class == iaLimits.schedPolicy) {
3326     iaparms_t* iaInfo  = (iaparms_t*)ParmInfo.pc_clparms;
3327     int maxClamped     = MIN2(iaLimits.maxPrio,
3328                               cur_class == new_class
3329                               ? (int)iaInfo->ia_uprilim : iaLimits.maxPrio);
3330     iaInfo->ia_upri    = scale ? scale_to_lwp_priority(iaLimits.minPrio,
3331                                                        maxClamped, newPrio)
3332                                : newPrio;
3333     iaInfo->ia_uprilim = cur_class == new_class
3334                            ? IA_NOCHANGE : (pri_t)iaLimits.maxPrio;
3335     iaInfo->ia_mode    = IA_NOCHANGE;
3336     if (ThreadPriorityVerbose) {
3337       tty->print_cr("IA: [%d...%d] %d->%d\n",
3338                     iaLimits.minPrio, maxClamped, newPrio, iaInfo->ia_upri);
3339     }
3340   } else if (new_class == tsLimits.schedPolicy) {
3341     tsparms_t* tsInfo  = (tsparms_t*)ParmInfo.pc_clparms;
3342     int maxClamped     = MIN2(tsLimits.maxPrio,
3343                               cur_class == new_class
3344                               ? (int)tsInfo->ts_uprilim : tsLimits.maxPrio);
3345     tsInfo->ts_upri    = scale ? scale_to_lwp_priority(tsLimits.minPrio,
3346                                                        maxClamped, newPrio)
3347                                : newPrio;
3348     tsInfo->ts_uprilim = cur_class == new_class
3349                            ? TS_NOCHANGE : (pri_t)tsLimits.maxPrio;
3350     if (ThreadPriorityVerbose) {
3351       tty->print_cr("TS: [%d...%d] %d->%d\n",
3352                     tsLimits.minPrio, maxClamped, newPrio, tsInfo->ts_upri);
3353     }
3354   } else if (new_class == fxLimits.schedPolicy) {
3355     fxparms_t* fxInfo  = (fxparms_t*)ParmInfo.pc_clparms;
3356     int maxClamped     = MIN2(fxLimits.maxPrio,
3357                               cur_class == new_class
3358                               ? (int)fxInfo->fx_uprilim : fxLimits.maxPrio);
3359     fxInfo->fx_upri    = scale ? scale_to_lwp_priority(fxLimits.minPrio,
3360                                                        maxClamped, newPrio)
3361                                : newPrio;
3362     fxInfo->fx_uprilim = cur_class == new_class
3363                            ? FX_NOCHANGE : (pri_t)fxLimits.maxPrio;
3364     fxInfo->fx_tqsecs  = FX_NOCHANGE;
3365     fxInfo->fx_tqnsecs = FX_NOCHANGE;
3366     if (ThreadPriorityVerbose) {
3367       tty->print_cr("FX: [%d...%d] %d->%d\n",
3368                     fxLimits.minPrio, maxClamped, newPrio, fxInfo->fx_upri);
3369     }
3370   } else {
3371     if (ThreadPriorityVerbose) {
3372       tty->print_cr("Unknown new scheduling class %d\n", new_class);
3373     }
3374     return EINVAL;    // no clue, punt
3375   }
3376 
3377   rslt = priocntl(P_LWPID, lwpid, PC_SETPARMS, (caddr_t)&ParmInfo);
3378   if (ThreadPriorityVerbose && rslt) {
3379     tty->print_cr ("PC_SETPARMS ->%d %d\n", rslt, errno);
3380   }
3381   if (rslt < 0) return errno;
3382 
3383 #ifdef ASSERT
3384   // Sanity check: read back what we just attempted to set.
3385   // In theory it could have changed in the interim ...
3386   //
3387   // The priocntl system call is tricky.
3388   // Sometimes it'll validate the priority value argument and
3389   // return EINVAL if unhappy.  At other times it fails silently.
3390   // Readbacks are prudent.
3391 
3392   if (!ReadBackValidate) return 0;
3393 
3394   memset(&ReadBack, 0, sizeof(pcparms_t));
3395   ReadBack.pc_cid = PC_CLNULL;
3396   rslt = priocntl(P_LWPID, lwpid, PC_GETPARMS, (caddr_t)&ReadBack);
3397   assert(rslt >= 0, "priocntl failed");
3398   Actual = Expected = 0xBAD;
3399   assert(ParmInfo.pc_cid == ReadBack.pc_cid, "cid's don't match");
3400   if (ParmInfo.pc_cid == rtLimits.schedPolicy) {
3401     Actual   = RTPRI(ReadBack)->rt_pri;
3402     Expected = RTPRI(ParmInfo)->rt_pri;
3403   } else if (ParmInfo.pc_cid == iaLimits.schedPolicy) {
3404     Actual   = IAPRI(ReadBack)->ia_upri;
3405     Expected = IAPRI(ParmInfo)->ia_upri;
3406   } else if (ParmInfo.pc_cid == tsLimits.schedPolicy) {
3407     Actual   = TSPRI(ReadBack)->ts_upri;
3408     Expected = TSPRI(ParmInfo)->ts_upri;
3409   } else if (ParmInfo.pc_cid == fxLimits.schedPolicy) {
3410     Actual   = FXPRI(ReadBack)->fx_upri;
3411     Expected = FXPRI(ParmInfo)->fx_upri;
3412   } else {
3413     if (ThreadPriorityVerbose) {
3414       tty->print_cr("set_lwp_class_and_priority: unexpected class in readback: %d\n",
3415                     ParmInfo.pc_cid);
3416     }
3417   }
3418 
3419   if (Actual != Expected) {
3420     if (ThreadPriorityVerbose) {
3421       tty->print_cr ("set_lwp_class_and_priority(%d %d) Class=%d: actual=%d vs expected=%d\n",
3422                      lwpid, newPrio, ReadBack.pc_cid, Actual, Expected);
3423     }
3424   }
3425 #endif
3426 
3427   return 0;
3428 }
3429 
3430 // Solaris only gives access to 128 real priorities at a time,
3431 // so we expand Java's ten to fill this range.  This would be better
3432 // if we dynamically adjusted relative priorities.
3433 //
3434 // The ThreadPriorityPolicy option allows us to select 2 different
3435 // priority scales.
3436 //
3437 // ThreadPriorityPolicy=0
3438 // Since the Solaris' default priority is MaximumPriority, we do not
3439 // set a priority lower than Max unless a priority lower than
3440 // NormPriority is requested.
3441 //
3442 // ThreadPriorityPolicy=1
3443 // This mode causes the priority table to get filled with
3444 // linear values.  NormPriority get's mapped to 50% of the
3445 // Maximum priority an so on.  This will cause VM threads
3446 // to get unfair treatment against other Solaris processes
3447 // which do not explicitly alter their thread priorities.
3448 
3449 int os::java_to_os_priority[CriticalPriority + 1] = {
3450   -99999,         // 0 Entry should never be used
3451 
3452   0,              // 1 MinPriority
3453   32,             // 2
3454   64,             // 3
3455 
3456   96,             // 4
3457   127,            // 5 NormPriority
3458   127,            // 6
3459 
3460   127,            // 7
3461   127,            // 8
3462   127,            // 9 NearMaxPriority
3463 
3464   127,            // 10 MaxPriority
3465 
3466   -criticalPrio   // 11 CriticalPriority
3467 };
3468 
3469 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3470   OSThread* osthread = thread->osthread();
3471 
3472   // Save requested priority in case the thread hasn't been started
3473   osthread->set_native_priority(newpri);
3474 
3475   // Check for critical priority request
3476   bool fxcritical = false;
3477   if (newpri == -criticalPrio) {
3478     fxcritical = true;
3479     newpri = criticalPrio;
3480   }
3481 
3482   assert(newpri >= MinimumPriority && newpri <= MaximumPriority, "bad priority mapping");
3483   if (!UseThreadPriorities) return OS_OK;
3484 
3485   int status = 0;
3486 
3487   if (!fxcritical) {
3488     // Use thr_setprio only if we have a priority that thr_setprio understands
3489     status = thr_setprio(thread->osthread()->thread_id(), newpri);
3490   }
3491 
3492   int lwp_status =
3493           set_lwp_class_and_priority(osthread->thread_id(),
3494                                      osthread->lwp_id(),
3495                                      newpri,
3496                                      fxcritical ? fxLimits.schedPolicy : myClass,
3497                                      !fxcritical);
3498   if (lwp_status != 0 && fxcritical) {
3499     // Try again, this time without changing the scheduling class
3500     newpri = java_MaxPriority_to_os_priority;
3501     lwp_status = set_lwp_class_and_priority(osthread->thread_id(),
3502                                             osthread->lwp_id(),
3503                                             newpri, myClass, false);
3504   }
3505   status |= lwp_status;
3506   return (status == 0) ? OS_OK : OS_ERR;
3507 }
3508 
3509 
3510 OSReturn os::get_native_priority(const Thread* const thread,
3511                                  int *priority_ptr) {
3512   int p;
3513   if (!UseThreadPriorities) {
3514     *priority_ptr = NormalPriority;
3515     return OS_OK;
3516   }
3517   int status = thr_getprio(thread->osthread()->thread_id(), &p);
3518   if (status != 0) {
3519     return OS_ERR;
3520   }
3521   *priority_ptr = p;
3522   return OS_OK;
3523 }
3524 
3525 
3526 // Hint to the underlying OS that a task switch would not be good.
3527 // Void return because it's a hint and can fail.
3528 void os::hint_no_preempt() {
3529   schedctl_start(schedctl_init());
3530 }
3531 
3532 static void resume_clear_context(OSThread *osthread) {
3533   osthread->set_ucontext(NULL);
3534 }
3535 
3536 static void suspend_save_context(OSThread *osthread, ucontext_t* context) {
3537   osthread->set_ucontext(context);
3538 }
3539 
3540 static PosixSemaphore sr_semaphore;
3541 
3542 void os::Solaris::SR_handler(Thread* thread, ucontext_t* uc) {
3543   // Save and restore errno to avoid confusing native code with EINTR
3544   // after sigsuspend.
3545   int old_errno = errno;
3546 
3547   OSThread* osthread = thread->osthread();
3548   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3549 
3550   os::SuspendResume::State current = osthread->sr.state();
3551   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3552     suspend_save_context(osthread, uc);
3553 
3554     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3555     os::SuspendResume::State state = osthread->sr.suspended();
3556     if (state == os::SuspendResume::SR_SUSPENDED) {
3557       sigset_t suspend_set;  // signals for sigsuspend()
3558 
3559       // get current set of blocked signals and unblock resume signal
3560       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3561       sigdelset(&suspend_set, os::Solaris::SIGasync());
3562 
3563       sr_semaphore.signal();
3564       // wait here until we are resumed
3565       while (1) {
3566         sigsuspend(&suspend_set);
3567 
3568         os::SuspendResume::State result = osthread->sr.running();
3569         if (result == os::SuspendResume::SR_RUNNING) {
3570           sr_semaphore.signal();
3571           break;
3572         }
3573       }
3574 
3575     } else if (state == os::SuspendResume::SR_RUNNING) {
3576       // request was cancelled, continue
3577     } else {
3578       ShouldNotReachHere();
3579     }
3580 
3581     resume_clear_context(osthread);
3582   } else if (current == os::SuspendResume::SR_RUNNING) {
3583     // request was cancelled, continue
3584   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3585     // ignore
3586   } else {
3587     // ignore
3588   }
3589 
3590   errno = old_errno;
3591 }
3592 
3593 void os::print_statistics() {
3594 }
3595 
3596 bool os::message_box(const char* title, const char* message) {
3597   int i;
3598   fdStream err(defaultStream::error_fd());
3599   for (i = 0; i < 78; i++) err.print_raw("=");
3600   err.cr();
3601   err.print_raw_cr(title);
3602   for (i = 0; i < 78; i++) err.print_raw("-");
3603   err.cr();
3604   err.print_raw_cr(message);
3605   for (i = 0; i < 78; i++) err.print_raw("=");
3606   err.cr();
3607 
3608   char buf[16];
3609   // Prevent process from exiting upon "read error" without consuming all CPU
3610   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3611 
3612   return buf[0] == 'y' || buf[0] == 'Y';
3613 }
3614 
3615 static int sr_notify(OSThread* osthread) {
3616   int status = thr_kill(osthread->thread_id(), os::Solaris::SIGasync());
3617   assert_status(status == 0, status, "thr_kill");
3618   return status;
3619 }
3620 
3621 // "Randomly" selected value for how long we want to spin
3622 // before bailing out on suspending a thread, also how often
3623 // we send a signal to a thread we want to resume
3624 static const int RANDOMLY_LARGE_INTEGER = 1000000;
3625 static const int RANDOMLY_LARGE_INTEGER2 = 100;
3626 
3627 static bool do_suspend(OSThread* osthread) {
3628   assert(osthread->sr.is_running(), "thread should be running");
3629   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
3630 
3631   // mark as suspended and send signal
3632   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
3633     // failed to switch, state wasn't running?
3634     ShouldNotReachHere();
3635     return false;
3636   }
3637 
3638   if (sr_notify(osthread) != 0) {
3639     ShouldNotReachHere();
3640   }
3641 
3642   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
3643   while (true) {
3644     if (sr_semaphore.timedwait(0, 2000 * NANOSECS_PER_MILLISEC)) {
3645       break;
3646     } else {
3647       // timeout
3648       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
3649       if (cancelled == os::SuspendResume::SR_RUNNING) {
3650         return false;
3651       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
3652         // make sure that we consume the signal on the semaphore as well
3653         sr_semaphore.wait();
3654         break;
3655       } else {
3656         ShouldNotReachHere();
3657         return false;
3658       }
3659     }
3660   }
3661 
3662   guarantee(osthread->sr.is_suspended(), "Must be suspended");
3663   return true;
3664 }
3665 
3666 static void do_resume(OSThread* osthread) {
3667   assert(osthread->sr.is_suspended(), "thread should be suspended");
3668   assert(!sr_semaphore.trywait(), "invalid semaphore state");
3669 
3670   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
3671     // failed to switch to WAKEUP_REQUEST
3672     ShouldNotReachHere();
3673     return;
3674   }
3675 
3676   while (true) {
3677     if (sr_notify(osthread) == 0) {
3678       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
3679         if (osthread->sr.is_running()) {
3680           return;
3681         }
3682       }
3683     } else {
3684       ShouldNotReachHere();
3685     }
3686   }
3687 
3688   guarantee(osthread->sr.is_running(), "Must be running!");
3689 }
3690 
3691 void os::SuspendedThreadTask::internal_do_task() {
3692   if (do_suspend(_thread->osthread())) {
3693     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3694     do_task(context);
3695     do_resume(_thread->osthread());
3696   }
3697 }
3698 
3699 class PcFetcher : public os::SuspendedThreadTask {
3700  public:
3701   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
3702   ExtendedPC result();
3703  protected:
3704   void do_task(const os::SuspendedThreadTaskContext& context);
3705  private:
3706   ExtendedPC _epc;
3707 };
3708 
3709 ExtendedPC PcFetcher::result() {
3710   guarantee(is_done(), "task is not done yet.");
3711   return _epc;
3712 }
3713 
3714 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
3715   Thread* thread = context.thread();
3716   OSThread* osthread = thread->osthread();
3717   if (osthread->ucontext() != NULL) {
3718     _epc = os::Solaris::ucontext_get_pc((const ucontext_t *) context.ucontext());
3719   } else {
3720     // NULL context is unexpected, double-check this is the VMThread
3721     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
3722   }
3723 }
3724 
3725 // A lightweight implementation that does not suspend the target thread and
3726 // thus returns only a hint. Used for profiling only!
3727 ExtendedPC os::get_thread_pc(Thread* thread) {
3728   // Make sure that it is called by the watcher and the Threads lock is owned.
3729   assert(Thread::current()->is_Watcher_thread(), "Must be watcher and own Threads_lock");
3730   // For now, is only used to profile the VM Thread
3731   assert(thread->is_VM_thread(), "Can only be called for VMThread");
3732   PcFetcher fetcher(thread);
3733   fetcher.run();
3734   return fetcher.result();
3735 }
3736 
3737 
3738 // This does not do anything on Solaris. This is basically a hook for being
3739 // able to use structured exception handling (thread-local exception filters) on, e.g., Win32.
3740 void os::os_exception_wrapper(java_call_t f, JavaValue* value,
3741                               const methodHandle& method, JavaCallArguments* args,
3742                               Thread* thread) {
3743   f(value, method, args, thread);
3744 }
3745 
3746 // This routine may be used by user applications as a "hook" to catch signals.
3747 // The user-defined signal handler must pass unrecognized signals to this
3748 // routine, and if it returns true (non-zero), then the signal handler must
3749 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3750 // routine will never retun false (zero), but instead will execute a VM panic
3751 // routine kill the process.
3752 //
3753 // If this routine returns false, it is OK to call it again.  This allows
3754 // the user-defined signal handler to perform checks either before or after
3755 // the VM performs its own checks.  Naturally, the user code would be making
3756 // a serious error if it tried to handle an exception (such as a null check
3757 // or breakpoint) that the VM was generating for its own correct operation.
3758 //
3759 // This routine may recognize any of the following kinds of signals:
3760 // SIGBUS, SIGSEGV, SIGILL, SIGFPE, BREAK_SIGNAL, SIGPIPE, SIGXFSZ,
3761 // os::Solaris::SIGasync
3762 // It should be consulted by handlers for any of those signals.
3763 //
3764 // The caller of this routine must pass in the three arguments supplied
3765 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3766 // field of the structure passed to sigaction().  This routine assumes that
3767 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3768 //
3769 // Note that the VM will print warnings if it detects conflicting signal
3770 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3771 //
3772 extern "C" JNIEXPORT int JVM_handle_solaris_signal(int signo,
3773                                                    siginfo_t* siginfo,
3774                                                    void* ucontext,
3775                                                    int abort_if_unrecognized);
3776 
3777 
3778 void signalHandler(int sig, siginfo_t* info, void* ucVoid) {
3779   int orig_errno = errno;  // Preserve errno value over signal handler.
3780   JVM_handle_solaris_signal(sig, info, ucVoid, true);
3781   errno = orig_errno;
3782 }
3783 
3784 // This boolean allows users to forward their own non-matching signals
3785 // to JVM_handle_solaris_signal, harmlessly.
3786 bool os::Solaris::signal_handlers_are_installed = false;
3787 
3788 // For signal-chaining
3789 bool os::Solaris::libjsig_is_loaded = false;
3790 typedef struct sigaction *(*get_signal_t)(int);
3791 get_signal_t os::Solaris::get_signal_action = NULL;
3792 
3793 struct sigaction* os::Solaris::get_chained_signal_action(int sig) {
3794   struct sigaction *actp = NULL;
3795 
3796   if ((libjsig_is_loaded)  && (sig <= Maxlibjsigsigs)) {
3797     // Retrieve the old signal handler from libjsig
3798     actp = (*get_signal_action)(sig);
3799   }
3800   if (actp == NULL) {
3801     // Retrieve the preinstalled signal handler from jvm
3802     actp = get_preinstalled_handler(sig);
3803   }
3804 
3805   return actp;
3806 }
3807 
3808 static bool call_chained_handler(struct sigaction *actp, int sig,
3809                                  siginfo_t *siginfo, void *context) {
3810   // Call the old signal handler
3811   if (actp->sa_handler == SIG_DFL) {
3812     // It's more reasonable to let jvm treat it as an unexpected exception
3813     // instead of taking the default action.
3814     return false;
3815   } else if (actp->sa_handler != SIG_IGN) {
3816     if ((actp->sa_flags & SA_NODEFER) == 0) {
3817       // automaticlly block the signal
3818       sigaddset(&(actp->sa_mask), sig);
3819     }
3820 
3821     sa_handler_t hand;
3822     sa_sigaction_t sa;
3823     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3824     // retrieve the chained handler
3825     if (siginfo_flag_set) {
3826       sa = actp->sa_sigaction;
3827     } else {
3828       hand = actp->sa_handler;
3829     }
3830 
3831     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3832       actp->sa_handler = SIG_DFL;
3833     }
3834 
3835     // try to honor the signal mask
3836     sigset_t oset;
3837     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3838 
3839     // call into the chained handler
3840     if (siginfo_flag_set) {
3841       (*sa)(sig, siginfo, context);
3842     } else {
3843       (*hand)(sig);
3844     }
3845 
3846     // restore the signal mask
3847     pthread_sigmask(SIG_SETMASK, &oset, 0);
3848   }
3849   // Tell jvm's signal handler the signal is taken care of.
3850   return true;
3851 }
3852 
3853 bool os::Solaris::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3854   bool chained = false;
3855   // signal-chaining
3856   if (UseSignalChaining) {
3857     struct sigaction *actp = get_chained_signal_action(sig);
3858     if (actp != NULL) {
3859       chained = call_chained_handler(actp, sig, siginfo, context);
3860     }
3861   }
3862   return chained;
3863 }
3864 
3865 struct sigaction* os::Solaris::get_preinstalled_handler(int sig) {
3866   assert((chainedsigactions != (struct sigaction *)NULL) &&
3867          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3868   if (preinstalled_sigs[sig] != 0) {
3869     return &chainedsigactions[sig];
3870   }
3871   return NULL;
3872 }
3873 
3874 void os::Solaris::save_preinstalled_handler(int sig,
3875                                             struct sigaction& oldAct) {
3876   assert(sig > 0 && sig <= Maxsignum, "vm signal out of expected range");
3877   assert((chainedsigactions != (struct sigaction *)NULL) &&
3878          (preinstalled_sigs != (int *)NULL), "signals not yet initialized");
3879   chainedsigactions[sig] = oldAct;
3880   preinstalled_sigs[sig] = 1;
3881 }
3882 
3883 void os::Solaris::set_signal_handler(int sig, bool set_installed,
3884                                      bool oktochain) {
3885   // Check for overwrite.
3886   struct sigaction oldAct;
3887   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3888   void* oldhand =
3889       oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3890                           : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3891   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3892       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3893       oldhand != CAST_FROM_FN_PTR(void*, signalHandler)) {
3894     if (AllowUserSignalHandlers || !set_installed) {
3895       // Do not overwrite; user takes responsibility to forward to us.
3896       return;
3897     } else if (UseSignalChaining) {
3898       if (oktochain) {
3899         // save the old handler in jvm
3900         save_preinstalled_handler(sig, oldAct);
3901       } else {
3902         vm_exit_during_initialization("Signal chaining not allowed for VM interrupt signal.");
3903       }
3904       // libjsig also interposes the sigaction() call below and saves the
3905       // old sigaction on it own.
3906     } else {
3907       fatal("Encountered unexpected pre-existing sigaction handler "
3908             "%#lx for signal %d.", (long)oldhand, sig);
3909     }
3910   }
3911 
3912   struct sigaction sigAct;
3913   sigfillset(&(sigAct.sa_mask));
3914   sigAct.sa_handler = SIG_DFL;
3915 
3916   sigAct.sa_sigaction = signalHandler;
3917   // Handle SIGSEGV on alternate signal stack if
3918   // not using stack banging
3919   if (!UseStackBanging && sig == SIGSEGV) {
3920     sigAct.sa_flags = SA_SIGINFO | SA_RESTART | SA_ONSTACK;
3921   } else {
3922     sigAct.sa_flags = SA_SIGINFO | SA_RESTART;
3923   }
3924   os::Solaris::set_our_sigflags(sig, sigAct.sa_flags);
3925 
3926   sigaction(sig, &sigAct, &oldAct);
3927 
3928   void* oldhand2 = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3929                                        : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3930   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3931 }
3932 
3933 
3934 #define DO_SIGNAL_CHECK(sig)                      \
3935   do {                                            \
3936     if (!sigismember(&check_signal_done, sig)) {  \
3937       os::Solaris::check_signal_handler(sig);     \
3938     }                                             \
3939   } while (0)
3940 
3941 // This method is a periodic task to check for misbehaving JNI applications
3942 // under CheckJNI, we can add any periodic checks here
3943 
3944 void os::run_periodic_checks() {
3945   // A big source of grief is hijacking virt. addr 0x0 on Solaris,
3946   // thereby preventing a NULL checks.
3947   if (!check_addr0_done) check_addr0_done = check_addr0(tty);
3948 
3949   if (check_signals == false) return;
3950 
3951   // SEGV and BUS if overridden could potentially prevent
3952   // generation of hs*.log in the event of a crash, debugging
3953   // such a case can be very challenging, so we absolutely
3954   // check for the following for a good measure:
3955   DO_SIGNAL_CHECK(SIGSEGV);
3956   DO_SIGNAL_CHECK(SIGILL);
3957   DO_SIGNAL_CHECK(SIGFPE);
3958   DO_SIGNAL_CHECK(SIGBUS);
3959   DO_SIGNAL_CHECK(SIGPIPE);
3960   DO_SIGNAL_CHECK(SIGXFSZ);
3961 
3962   // ReduceSignalUsage allows the user to override these handlers
3963   // see comments at the very top and jvm_solaris.h
3964   if (!ReduceSignalUsage) {
3965     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3966     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3967     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3968     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3969   }
3970 
3971   // See comments above for using JVM1/JVM2
3972   DO_SIGNAL_CHECK(os::Solaris::SIGasync());
3973 
3974 }
3975 
3976 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3977 
3978 static os_sigaction_t os_sigaction = NULL;
3979 
3980 void os::Solaris::check_signal_handler(int sig) {
3981   char buf[O_BUFLEN];
3982   address jvmHandler = NULL;
3983 
3984   struct sigaction act;
3985   if (os_sigaction == NULL) {
3986     // only trust the default sigaction, in case it has been interposed
3987     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
3988     if (os_sigaction == NULL) return;
3989   }
3990 
3991   os_sigaction(sig, (struct sigaction*)NULL, &act);
3992 
3993   address thisHandler = (act.sa_flags & SA_SIGINFO)
3994     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3995     : CAST_FROM_FN_PTR(address, act.sa_handler);
3996 
3997 
3998   switch (sig) {
3999   case SIGSEGV:
4000   case SIGBUS:
4001   case SIGFPE:
4002   case SIGPIPE:
4003   case SIGXFSZ:
4004   case SIGILL:
4005     jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4006     break;
4007 
4008   case SHUTDOWN1_SIGNAL:
4009   case SHUTDOWN2_SIGNAL:
4010   case SHUTDOWN3_SIGNAL:
4011   case BREAK_SIGNAL:
4012     jvmHandler = (address)user_handler();
4013     break;
4014 
4015   default:
4016     int asynsig = os::Solaris::SIGasync();
4017 
4018     if (sig == asynsig) {
4019       jvmHandler = CAST_FROM_FN_PTR(address, signalHandler);
4020     } else {
4021       return;
4022     }
4023     break;
4024   }
4025 
4026 
4027   if (thisHandler != jvmHandler) {
4028     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4029     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4030     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4031     // No need to check this sig any longer
4032     sigaddset(&check_signal_done, sig);
4033     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4034     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4035       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4036                     exception_name(sig, buf, O_BUFLEN));
4037     }
4038   } else if(os::Solaris::get_our_sigflags(sig) != 0 && act.sa_flags != os::Solaris::get_our_sigflags(sig)) {
4039     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4040     tty->print("expected:");
4041     os::Posix::print_sa_flags(tty, os::Solaris::get_our_sigflags(sig));
4042     tty->cr();
4043     tty->print("  found:");
4044     os::Posix::print_sa_flags(tty, act.sa_flags);
4045     tty->cr();
4046     // No need to check this sig any longer
4047     sigaddset(&check_signal_done, sig);
4048   }
4049 
4050   // Print all the signal handler state
4051   if (sigismember(&check_signal_done, sig)) {
4052     print_signal_handlers(tty, buf, O_BUFLEN);
4053   }
4054 
4055 }
4056 
4057 void os::Solaris::install_signal_handlers() {
4058   bool libjsigdone = false;
4059   signal_handlers_are_installed = true;
4060 
4061   // signal-chaining
4062   typedef void (*signal_setting_t)();
4063   signal_setting_t begin_signal_setting = NULL;
4064   signal_setting_t end_signal_setting = NULL;
4065   begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4066                                         dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4067   if (begin_signal_setting != NULL) {
4068     end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4069                                         dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4070     get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4071                                        dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4072     get_libjsig_version = CAST_TO_FN_PTR(version_getting_t,
4073                                          dlsym(RTLD_DEFAULT, "JVM_get_libjsig_version"));
4074     libjsig_is_loaded = true;
4075     if (os::Solaris::get_libjsig_version != NULL) {
4076       libjsigversion =  (*os::Solaris::get_libjsig_version)();
4077     }
4078     assert(UseSignalChaining, "should enable signal-chaining");
4079   }
4080   if (libjsig_is_loaded) {
4081     // Tell libjsig jvm is setting signal handlers
4082     (*begin_signal_setting)();
4083   }
4084 
4085   set_signal_handler(SIGSEGV, true, true);
4086   set_signal_handler(SIGPIPE, true, true);
4087   set_signal_handler(SIGXFSZ, true, true);
4088   set_signal_handler(SIGBUS, true, true);
4089   set_signal_handler(SIGILL, true, true);
4090   set_signal_handler(SIGFPE, true, true);
4091 
4092 
4093   if (os::Solaris::SIGasync() > OLDMAXSIGNUM) {
4094     // Pre-1.4.1 Libjsig limited to signal chaining signals <= 32 so
4095     // can not register overridable signals which might be > 32
4096     if (libjsig_is_loaded && libjsigversion <= JSIG_VERSION_1_4_1) {
4097       // Tell libjsig jvm has finished setting signal handlers
4098       (*end_signal_setting)();
4099       libjsigdone = true;
4100     }
4101   }
4102 
4103   set_signal_handler(os::Solaris::SIGasync(), true, true);
4104 
4105   if (libjsig_is_loaded && !libjsigdone) {
4106     // Tell libjsig jvm finishes setting signal handlers
4107     (*end_signal_setting)();
4108   }
4109 
4110   // We don't activate signal checker if libjsig is in place, we trust ourselves
4111   // and if UserSignalHandler is installed all bets are off.
4112   // Log that signal checking is off only if -verbose:jni is specified.
4113   if (CheckJNICalls) {
4114     if (libjsig_is_loaded) {
4115       if (PrintJNIResolving) {
4116         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4117       }
4118       check_signals = false;
4119     }
4120     if (AllowUserSignalHandlers) {
4121       if (PrintJNIResolving) {
4122         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4123       }
4124       check_signals = false;
4125     }
4126   }
4127 }
4128 
4129 
4130 void report_error(const char* file_name, int line_no, const char* title,
4131                   const char* format, ...);
4132 
4133 // (Static) wrappers for the liblgrp API
4134 os::Solaris::lgrp_home_func_t os::Solaris::_lgrp_home;
4135 os::Solaris::lgrp_init_func_t os::Solaris::_lgrp_init;
4136 os::Solaris::lgrp_fini_func_t os::Solaris::_lgrp_fini;
4137 os::Solaris::lgrp_root_func_t os::Solaris::_lgrp_root;
4138 os::Solaris::lgrp_children_func_t os::Solaris::_lgrp_children;
4139 os::Solaris::lgrp_resources_func_t os::Solaris::_lgrp_resources;
4140 os::Solaris::lgrp_nlgrps_func_t os::Solaris::_lgrp_nlgrps;
4141 os::Solaris::lgrp_cookie_stale_func_t os::Solaris::_lgrp_cookie_stale;
4142 os::Solaris::lgrp_cookie_t os::Solaris::_lgrp_cookie = 0;
4143 
4144 static address resolve_symbol_lazy(const char* name) {
4145   address addr = (address) dlsym(RTLD_DEFAULT, name);
4146   if (addr == NULL) {
4147     // RTLD_DEFAULT was not defined on some early versions of 2.5.1
4148     addr = (address) dlsym(RTLD_NEXT, name);
4149   }
4150   return addr;
4151 }
4152 
4153 static address resolve_symbol(const char* name) {
4154   address addr = resolve_symbol_lazy(name);
4155   if (addr == NULL) {
4156     fatal(dlerror());
4157   }
4158   return addr;
4159 }
4160 
4161 void os::Solaris::libthread_init() {
4162   address func = (address)dlsym(RTLD_DEFAULT, "_thr_suspend_allmutators");
4163 
4164   lwp_priocntl_init();
4165 
4166   // RTLD_DEFAULT was not defined on some early versions of 5.5.1
4167   if (func == NULL) {
4168     func = (address) dlsym(RTLD_NEXT, "_thr_suspend_allmutators");
4169     // Guarantee that this VM is running on an new enough OS (5.6 or
4170     // later) that it will have a new enough libthread.so.
4171     guarantee(func != NULL, "libthread.so is too old.");
4172   }
4173 
4174   int size;
4175   void (*handler_info_func)(address *, int *);
4176   handler_info_func = CAST_TO_FN_PTR(void (*)(address *, int *), resolve_symbol("thr_sighndlrinfo"));
4177   handler_info_func(&handler_start, &size);
4178   handler_end = handler_start + size;
4179 }
4180 
4181 
4182 int_fnP_mutex_tP os::Solaris::_mutex_lock;
4183 int_fnP_mutex_tP os::Solaris::_mutex_trylock;
4184 int_fnP_mutex_tP os::Solaris::_mutex_unlock;
4185 int_fnP_mutex_tP_i_vP os::Solaris::_mutex_init;
4186 int_fnP_mutex_tP os::Solaris::_mutex_destroy;
4187 int os::Solaris::_mutex_scope = USYNC_THREAD;
4188 
4189 int_fnP_cond_tP_mutex_tP_timestruc_tP os::Solaris::_cond_timedwait;
4190 int_fnP_cond_tP_mutex_tP os::Solaris::_cond_wait;
4191 int_fnP_cond_tP os::Solaris::_cond_signal;
4192 int_fnP_cond_tP os::Solaris::_cond_broadcast;
4193 int_fnP_cond_tP_i_vP os::Solaris::_cond_init;
4194 int_fnP_cond_tP os::Solaris::_cond_destroy;
4195 int os::Solaris::_cond_scope = USYNC_THREAD;
4196 
4197 void os::Solaris::synchronization_init() {
4198   if (UseLWPSynchronization) {
4199     os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_lock")));
4200     os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_trylock")));
4201     os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("_lwp_mutex_unlock")));
4202     os::Solaris::set_mutex_init(lwp_mutex_init);
4203     os::Solaris::set_mutex_destroy(lwp_mutex_destroy);
4204     os::Solaris::set_mutex_scope(USYNC_THREAD);
4205 
4206     os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("_lwp_cond_timedwait")));
4207     os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("_lwp_cond_wait")));
4208     os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_signal")));
4209     os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("_lwp_cond_broadcast")));
4210     os::Solaris::set_cond_init(lwp_cond_init);
4211     os::Solaris::set_cond_destroy(lwp_cond_destroy);
4212     os::Solaris::set_cond_scope(USYNC_THREAD);
4213   } else {
4214     os::Solaris::set_mutex_scope(USYNC_THREAD);
4215     os::Solaris::set_cond_scope(USYNC_THREAD);
4216 
4217     if (UsePthreads) {
4218       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_lock")));
4219       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_trylock")));
4220       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_unlock")));
4221       os::Solaris::set_mutex_init(pthread_mutex_default_init);
4222       os::Solaris::set_mutex_destroy(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("pthread_mutex_destroy")));
4223 
4224       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("pthread_cond_timedwait")));
4225       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("pthread_cond_wait")));
4226       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_signal")));
4227       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_broadcast")));
4228       os::Solaris::set_cond_init(pthread_cond_default_init);
4229       os::Solaris::set_cond_destroy(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("pthread_cond_destroy")));
4230     } else {
4231       os::Solaris::set_mutex_lock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_lock")));
4232       os::Solaris::set_mutex_trylock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_trylock")));
4233       os::Solaris::set_mutex_unlock(CAST_TO_FN_PTR(int_fnP_mutex_tP, resolve_symbol("mutex_unlock")));
4234       os::Solaris::set_mutex_init(::mutex_init);
4235       os::Solaris::set_mutex_destroy(::mutex_destroy);
4236 
4237       os::Solaris::set_cond_timedwait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP_timestruc_tP, resolve_symbol("cond_timedwait")));
4238       os::Solaris::set_cond_wait(CAST_TO_FN_PTR(int_fnP_cond_tP_mutex_tP, resolve_symbol("cond_wait")));
4239       os::Solaris::set_cond_signal(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_signal")));
4240       os::Solaris::set_cond_broadcast(CAST_TO_FN_PTR(int_fnP_cond_tP, resolve_symbol("cond_broadcast")));
4241       os::Solaris::set_cond_init(::cond_init);
4242       os::Solaris::set_cond_destroy(::cond_destroy);
4243     }
4244   }
4245 }
4246 
4247 bool os::Solaris::liblgrp_init() {
4248   void *handle = dlopen("liblgrp.so.1", RTLD_LAZY);
4249   if (handle != NULL) {
4250     os::Solaris::set_lgrp_home(CAST_TO_FN_PTR(lgrp_home_func_t, dlsym(handle, "lgrp_home")));
4251     os::Solaris::set_lgrp_init(CAST_TO_FN_PTR(lgrp_init_func_t, dlsym(handle, "lgrp_init")));
4252     os::Solaris::set_lgrp_fini(CAST_TO_FN_PTR(lgrp_fini_func_t, dlsym(handle, "lgrp_fini")));
4253     os::Solaris::set_lgrp_root(CAST_TO_FN_PTR(lgrp_root_func_t, dlsym(handle, "lgrp_root")));
4254     os::Solaris::set_lgrp_children(CAST_TO_FN_PTR(lgrp_children_func_t, dlsym(handle, "lgrp_children")));
4255     os::Solaris::set_lgrp_resources(CAST_TO_FN_PTR(lgrp_resources_func_t, dlsym(handle, "lgrp_resources")));
4256     os::Solaris::set_lgrp_nlgrps(CAST_TO_FN_PTR(lgrp_nlgrps_func_t, dlsym(handle, "lgrp_nlgrps")));
4257     os::Solaris::set_lgrp_cookie_stale(CAST_TO_FN_PTR(lgrp_cookie_stale_func_t,
4258                                                       dlsym(handle, "lgrp_cookie_stale")));
4259 
4260     lgrp_cookie_t c = lgrp_init(LGRP_VIEW_CALLER);
4261     set_lgrp_cookie(c);
4262     return true;
4263   }
4264   return false;
4265 }
4266 
4267 // int pset_getloadavg(psetid_t pset, double loadavg[], int nelem);
4268 typedef long (*pset_getloadavg_type)(psetid_t pset, double loadavg[], int nelem);
4269 static pset_getloadavg_type pset_getloadavg_ptr = NULL;
4270 
4271 void init_pset_getloadavg_ptr(void) {
4272   pset_getloadavg_ptr =
4273     (pset_getloadavg_type)dlsym(RTLD_DEFAULT, "pset_getloadavg");
4274   if (pset_getloadavg_ptr == NULL) {
4275     log_warning(os)("pset_getloadavg function not found");
4276   }
4277 }
4278 
4279 int os::Solaris::_dev_zero_fd = -1;
4280 
4281 // this is called _before_ the global arguments have been parsed
4282 void os::init(void) {
4283   _initial_pid = getpid();
4284 
4285   max_hrtime = first_hrtime = gethrtime();
4286 
4287   init_random(1234567);
4288 
4289   page_size = sysconf(_SC_PAGESIZE);
4290   if (page_size == -1) {
4291     fatal("os_solaris.cpp: os::init: sysconf failed (%s)", os::strerror(errno));
4292   }
4293   init_page_sizes((size_t) page_size);
4294 
4295   Solaris::initialize_system_info();
4296 
4297   int fd = ::open("/dev/zero", O_RDWR);
4298   if (fd < 0) {
4299     fatal("os::init: cannot open /dev/zero (%s)", os::strerror(errno));
4300   } else {
4301     Solaris::set_dev_zero_fd(fd);
4302 
4303     // Close on exec, child won't inherit.
4304     fcntl(fd, F_SETFD, FD_CLOEXEC);
4305   }
4306 
4307   clock_tics_per_sec = CLK_TCK;
4308 
4309   // check if dladdr1() exists; dladdr1 can provide more information than
4310   // dladdr for os::dll_address_to_function_name. It comes with SunOS 5.9
4311   // and is available on linker patches for 5.7 and 5.8.
4312   // libdl.so must have been loaded, this call is just an entry lookup
4313   void * hdl = dlopen("libdl.so", RTLD_NOW);
4314   if (hdl) {
4315     dladdr1_func = CAST_TO_FN_PTR(dladdr1_func_type, dlsym(hdl, "dladdr1"));
4316   }
4317 
4318   // (Solaris only) this switches to calls that actually do locking.
4319   ThreadCritical::initialize();
4320 
4321   main_thread = thr_self();
4322 
4323   // Constant minimum stack size allowed. It must be at least
4324   // the minimum of what the OS supports (thr_min_stack()), and
4325   // enough to allow the thread to get to user bytecode execution.
4326   Posix::_compiler_thread_min_stack_allowed = MAX2(thr_min_stack(),
4327                                                    Posix::_compiler_thread_min_stack_allowed);
4328   Posix::_java_thread_min_stack_allowed = MAX2(thr_min_stack(),
4329                                                Posix::_java_thread_min_stack_allowed);
4330   Posix::_vm_internal_thread_min_stack_allowed = MAX2(thr_min_stack(),
4331                                                       Posix::_vm_internal_thread_min_stack_allowed);
4332 
4333   // dynamic lookup of functions that may not be available in our lowest
4334   // supported Solaris release
4335   void * handle = dlopen("libc.so.1", RTLD_LAZY);
4336   if (handle != NULL) {
4337     Solaris::_pthread_setname_np =  // from 11.3
4338         (Solaris::pthread_setname_np_func_t)dlsym(handle, "pthread_setname_np");
4339   }
4340 }
4341 
4342 // To install functions for atexit system call
4343 extern "C" {
4344   static void perfMemory_exit_helper() {
4345     perfMemory_exit();
4346   }
4347 }
4348 
4349 // this is called _after_ the global arguments have been parsed
4350 jint os::init_2(void) {
4351   // try to enable extended file IO ASAP, see 6431278
4352   os::Solaris::try_enable_extended_io();
4353 
4354   // Allocate a single page and mark it as readable for safepoint polling.  Also
4355   // use this first mmap call to check support for MAP_ALIGN.
4356   address polling_page = (address)Solaris::mmap_chunk((char*)page_size,
4357                                                       page_size,
4358                                                       MAP_PRIVATE | MAP_ALIGN,
4359                                                       PROT_READ);
4360   if (polling_page == NULL) {
4361     has_map_align = false;
4362     polling_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE,
4363                                                 PROT_READ);
4364   }
4365 
4366   os::set_polling_page(polling_page);
4367   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4368 
4369   if (!UseMembar) {
4370     address mem_serialize_page = (address)Solaris::mmap_chunk(NULL, page_size, MAP_PRIVATE, PROT_READ | PROT_WRITE);
4371     guarantee(mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4372     os::set_memory_serialize_page(mem_serialize_page);
4373     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4374   }
4375 
4376   // Check and sets minimum stack sizes against command line options
4377   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4378     return JNI_ERR;
4379   }
4380 
4381   Solaris::libthread_init();
4382 
4383   if (UseNUMA) {
4384     if (!Solaris::liblgrp_init()) {
4385       UseNUMA = false;
4386     } else {
4387       size_t lgrp_limit = os::numa_get_groups_num();
4388       int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtInternal);
4389       size_t lgrp_num = os::numa_get_leaf_groups(lgrp_ids, lgrp_limit);
4390       FREE_C_HEAP_ARRAY(int, lgrp_ids);
4391       if (lgrp_num < 2) {
4392         // There's only one locality group, disable NUMA.
4393         UseNUMA = false;
4394       }
4395     }
4396     if (!UseNUMA && ForceNUMA) {
4397       UseNUMA = true;
4398     }
4399   }
4400 
4401   Solaris::signal_sets_init();
4402   Solaris::init_signal_mem();
4403   Solaris::install_signal_handlers();
4404 
4405   if (libjsigversion < JSIG_VERSION_1_4_1) {
4406     Maxlibjsigsigs = OLDMAXSIGNUM;
4407   }
4408 
4409   // initialize synchronization primitives to use either thread or
4410   // lwp synchronization (controlled by UseLWPSynchronization)
4411   Solaris::synchronization_init();
4412 
4413   if (MaxFDLimit) {
4414     // set the number of file descriptors to max. print out error
4415     // if getrlimit/setrlimit fails but continue regardless.
4416     struct rlimit nbr_files;
4417     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4418     if (status != 0) {
4419       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4420     } else {
4421       nbr_files.rlim_cur = nbr_files.rlim_max;
4422       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4423       if (status != 0) {
4424         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4425       }
4426     }
4427   }
4428 
4429   // Calculate theoretical max. size of Threads to guard gainst
4430   // artifical out-of-memory situations, where all available address-
4431   // space has been reserved by thread stacks. Default stack size is 1Mb.
4432   size_t pre_thread_stack_size = (JavaThread::stack_size_at_create()) ?
4433     JavaThread::stack_size_at_create() : (1*K*K);
4434   assert(pre_thread_stack_size != 0, "Must have a stack");
4435   // Solaris has a maximum of 4Gb of user programs. Calculate the thread limit when
4436   // we should start doing Virtual Memory banging. Currently when the threads will
4437   // have used all but 200Mb of space.
4438   size_t max_address_space = ((unsigned int)4 * K * K * K) - (200 * K * K);
4439   Solaris::_os_thread_limit = max_address_space / pre_thread_stack_size;
4440 
4441   // at-exit methods are called in the reverse order of their registration.
4442   // In Solaris 7 and earlier, atexit functions are called on return from
4443   // main or as a result of a call to exit(3C). There can be only 32 of
4444   // these functions registered and atexit() does not set errno. In Solaris
4445   // 8 and later, there is no limit to the number of functions registered
4446   // and atexit() sets errno. In addition, in Solaris 8 and later, atexit
4447   // functions are called upon dlclose(3DL) in addition to return from main
4448   // and exit(3C).
4449 
4450   if (PerfAllowAtExitRegistration) {
4451     // only register atexit functions if PerfAllowAtExitRegistration is set.
4452     // atexit functions can be delayed until process exit time, which
4453     // can be problematic for embedded VM situations. Embedded VMs should
4454     // call DestroyJavaVM() to assure that VM resources are released.
4455 
4456     // note: perfMemory_exit_helper atexit function may be removed in
4457     // the future if the appropriate cleanup code can be added to the
4458     // VM_Exit VMOperation's doit method.
4459     if (atexit(perfMemory_exit_helper) != 0) {
4460       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4461     }
4462   }
4463 
4464   // Init pset_loadavg function pointer
4465   init_pset_getloadavg_ptr();
4466 
4467   return JNI_OK;
4468 }
4469 
4470 // Mark the polling page as unreadable
4471 void os::make_polling_page_unreadable(void) {
4472   if (mprotect((char *)_polling_page, page_size, PROT_NONE) != 0) {
4473     fatal("Could not disable polling page");
4474   }
4475 }
4476 
4477 // Mark the polling page as readable
4478 void os::make_polling_page_readable(void) {
4479   if (mprotect((char *)_polling_page, page_size, PROT_READ) != 0) {
4480     fatal("Could not enable polling page");
4481   }
4482 }
4483 
4484 // Is a (classpath) directory empty?
4485 bool os::dir_is_empty(const char* path) {
4486   DIR *dir = NULL;
4487   struct dirent *ptr;
4488 
4489   dir = opendir(path);
4490   if (dir == NULL) return true;
4491 
4492   // Scan the directory
4493   bool result = true;
4494   char buf[sizeof(struct dirent) + MAX_PATH];
4495   struct dirent *dbuf = (struct dirent *) buf;
4496   while (result && (ptr = readdir(dir, dbuf)) != NULL) {
4497     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4498       result = false;
4499     }
4500   }
4501   closedir(dir);
4502   return result;
4503 }
4504 
4505 // This code originates from JDK's sysOpen and open64_w
4506 // from src/solaris/hpi/src/system_md.c
4507 
4508 int os::open(const char *path, int oflag, int mode) {
4509   if (strlen(path) > MAX_PATH - 1) {
4510     errno = ENAMETOOLONG;
4511     return -1;
4512   }
4513   int fd;
4514 
4515   fd = ::open64(path, oflag, mode);
4516   if (fd == -1) return -1;
4517 
4518   // If the open succeeded, the file might still be a directory
4519   {
4520     struct stat64 buf64;
4521     int ret = ::fstat64(fd, &buf64);
4522     int st_mode = buf64.st_mode;
4523 
4524     if (ret != -1) {
4525       if ((st_mode & S_IFMT) == S_IFDIR) {
4526         errno = EISDIR;
4527         ::close(fd);
4528         return -1;
4529       }
4530     } else {
4531       ::close(fd);
4532       return -1;
4533     }
4534   }
4535 
4536   // 32-bit Solaris systems suffer from:
4537   //
4538   // - an historical default soft limit of 256 per-process file
4539   //   descriptors that is too low for many Java programs.
4540   //
4541   // - a design flaw where file descriptors created using stdio
4542   //   fopen must be less than 256, _even_ when the first limit above
4543   //   has been raised.  This can cause calls to fopen (but not calls to
4544   //   open, for example) to fail mysteriously, perhaps in 3rd party
4545   //   native code (although the JDK itself uses fopen).  One can hardly
4546   //   criticize them for using this most standard of all functions.
4547   //
4548   // We attempt to make everything work anyways by:
4549   //
4550   // - raising the soft limit on per-process file descriptors beyond
4551   //   256
4552   //
4553   // - As of Solaris 10u4, we can request that Solaris raise the 256
4554   //   stdio fopen limit by calling function enable_extended_FILE_stdio.
4555   //   This is done in init_2 and recorded in enabled_extended_FILE_stdio
4556   //
4557   // - If we are stuck on an old (pre 10u4) Solaris system, we can
4558   //   workaround the bug by remapping non-stdio file descriptors below
4559   //   256 to ones beyond 256, which is done below.
4560   //
4561   // See:
4562   // 1085341: 32-bit stdio routines should support file descriptors >255
4563   // 6533291: Work around 32-bit Solaris stdio limit of 256 open files
4564   // 6431278: Netbeans crash on 32 bit Solaris: need to call
4565   //          enable_extended_FILE_stdio() in VM initialisation
4566   // Giri Mandalika's blog
4567   // http://technopark02.blogspot.com/2005_05_01_archive.html
4568   //
4569 #ifndef  _LP64
4570   if ((!enabled_extended_FILE_stdio) && fd < 256) {
4571     int newfd = ::fcntl(fd, F_DUPFD, 256);
4572     if (newfd != -1) {
4573       ::close(fd);
4574       fd = newfd;
4575     }
4576   }
4577 #endif // 32-bit Solaris
4578 
4579   // All file descriptors that are opened in the JVM and not
4580   // specifically destined for a subprocess should have the
4581   // close-on-exec flag set.  If we don't set it, then careless 3rd
4582   // party native code might fork and exec without closing all
4583   // appropriate file descriptors (e.g. as we do in closeDescriptors in
4584   // UNIXProcess.c), and this in turn might:
4585   //
4586   // - cause end-of-file to fail to be detected on some file
4587   //   descriptors, resulting in mysterious hangs, or
4588   //
4589   // - might cause an fopen in the subprocess to fail on a system
4590   //   suffering from bug 1085341.
4591   //
4592   // (Yes, the default setting of the close-on-exec flag is a Unix
4593   // design flaw)
4594   //
4595   // See:
4596   // 1085341: 32-bit stdio routines should support file descriptors >255
4597   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4598   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4599   //
4600 #ifdef FD_CLOEXEC
4601   {
4602     int flags = ::fcntl(fd, F_GETFD);
4603     if (flags != -1) {
4604       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4605     }
4606   }
4607 #endif
4608 
4609   return fd;
4610 }
4611 
4612 // create binary file, rewriting existing file if required
4613 int os::create_binary_file(const char* path, bool rewrite_existing) {
4614   int oflags = O_WRONLY | O_CREAT;
4615   if (!rewrite_existing) {
4616     oflags |= O_EXCL;
4617   }
4618   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4619 }
4620 
4621 // return current position of file pointer
4622 jlong os::current_file_offset(int fd) {
4623   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4624 }
4625 
4626 // move file pointer to the specified offset
4627 jlong os::seek_to_file_offset(int fd, jlong offset) {
4628   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4629 }
4630 
4631 jlong os::lseek(int fd, jlong offset, int whence) {
4632   return (jlong) ::lseek64(fd, offset, whence);
4633 }
4634 
4635 char * os::native_path(char *path) {
4636   return path;
4637 }
4638 
4639 int os::ftruncate(int fd, jlong length) {
4640   return ::ftruncate64(fd, length);
4641 }
4642 
4643 int os::fsync(int fd)  {
4644   RESTARTABLE_RETURN_INT(::fsync(fd));
4645 }
4646 
4647 int os::available(int fd, jlong *bytes) {
4648   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
4649          "Assumed _thread_in_native");
4650   jlong cur, end;
4651   int mode;
4652   struct stat64 buf64;
4653 
4654   if (::fstat64(fd, &buf64) >= 0) {
4655     mode = buf64.st_mode;
4656     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4657       int n,ioctl_return;
4658 
4659       RESTARTABLE(::ioctl(fd, FIONREAD, &n), ioctl_return);
4660       if (ioctl_return>= 0) {
4661         *bytes = n;
4662         return 1;
4663       }
4664     }
4665   }
4666   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4667     return 0;
4668   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4669     return 0;
4670   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4671     return 0;
4672   }
4673   *bytes = end - cur;
4674   return 1;
4675 }
4676 
4677 // Map a block of memory.
4678 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4679                         char *addr, size_t bytes, bool read_only,
4680                         bool allow_exec) {
4681   int prot;
4682   int flags;
4683 
4684   if (read_only) {
4685     prot = PROT_READ;
4686     flags = MAP_SHARED;
4687   } else {
4688     prot = PROT_READ | PROT_WRITE;
4689     flags = MAP_PRIVATE;
4690   }
4691 
4692   if (allow_exec) {
4693     prot |= PROT_EXEC;
4694   }
4695 
4696   if (addr != NULL) {
4697     flags |= MAP_FIXED;
4698   }
4699 
4700   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4701                                      fd, file_offset);
4702   if (mapped_address == MAP_FAILED) {
4703     return NULL;
4704   }
4705   return mapped_address;
4706 }
4707 
4708 
4709 // Remap a block of memory.
4710 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4711                           char *addr, size_t bytes, bool read_only,
4712                           bool allow_exec) {
4713   // same as map_memory() on this OS
4714   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4715                         allow_exec);
4716 }
4717 
4718 
4719 // Unmap a block of memory.
4720 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4721   return munmap(addr, bytes) == 0;
4722 }
4723 
4724 void os::pause() {
4725   char filename[MAX_PATH];
4726   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4727     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4728   } else {
4729     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4730   }
4731 
4732   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4733   if (fd != -1) {
4734     struct stat buf;
4735     ::close(fd);
4736     while (::stat(filename, &buf) == 0) {
4737       (void)::poll(NULL, 0, 100);
4738     }
4739   } else {
4740     jio_fprintf(stderr,
4741                 "Could not open pause file '%s', continuing immediately.\n", filename);
4742   }
4743 }
4744 
4745 #ifndef PRODUCT
4746 #ifdef INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4747 // Turn this on if you need to trace synch operations.
4748 // Set RECORD_SYNCH_LIMIT to a large-enough value,
4749 // and call record_synch_enable and record_synch_disable
4750 // around the computation of interest.
4751 
4752 void record_synch(char* name, bool returning);  // defined below
4753 
4754 class RecordSynch {
4755   char* _name;
4756  public:
4757   RecordSynch(char* name) :_name(name) { record_synch(_name, false); }
4758   ~RecordSynch()                       { record_synch(_name, true); }
4759 };
4760 
4761 #define CHECK_SYNCH_OP(ret, name, params, args, inner)          \
4762 extern "C" ret name params {                                    \
4763   typedef ret name##_t params;                                  \
4764   static name##_t* implem = NULL;                               \
4765   static int callcount = 0;                                     \
4766   if (implem == NULL) {                                         \
4767     implem = (name##_t*) dlsym(RTLD_NEXT, #name);               \
4768     if (implem == NULL)  fatal(dlerror());                      \
4769   }                                                             \
4770   ++callcount;                                                  \
4771   RecordSynch _rs(#name);                                       \
4772   inner;                                                        \
4773   return implem args;                                           \
4774 }
4775 // in dbx, examine callcounts this way:
4776 // for n in $(eval whereis callcount | awk '{print $2}'); do print $n; done
4777 
4778 #define CHECK_POINTER_OK(p) \
4779   (!Universe::is_fully_initialized() || !Universe::is_reserved_heap((oop)(p)))
4780 #define CHECK_MU \
4781   if (!CHECK_POINTER_OK(mu)) fatal("Mutex must be in C heap only.");
4782 #define CHECK_CV \
4783   if (!CHECK_POINTER_OK(cv)) fatal("Condvar must be in C heap only.");
4784 #define CHECK_P(p) \
4785   if (!CHECK_POINTER_OK(p))  fatal(false,  "Pointer must be in C heap only.");
4786 
4787 #define CHECK_MUTEX(mutex_op) \
4788   CHECK_SYNCH_OP(int, mutex_op, (mutex_t *mu), (mu), CHECK_MU);
4789 
4790 CHECK_MUTEX(   mutex_lock)
4791 CHECK_MUTEX(  _mutex_lock)
4792 CHECK_MUTEX( mutex_unlock)
4793 CHECK_MUTEX(_mutex_unlock)
4794 CHECK_MUTEX( mutex_trylock)
4795 CHECK_MUTEX(_mutex_trylock)
4796 
4797 #define CHECK_COND(cond_op) \
4798   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu), (cv, mu), CHECK_MU; CHECK_CV);
4799 
4800 CHECK_COND( cond_wait);
4801 CHECK_COND(_cond_wait);
4802 CHECK_COND(_cond_wait_cancel);
4803 
4804 #define CHECK_COND2(cond_op) \
4805   CHECK_SYNCH_OP(int, cond_op, (cond_t *cv, mutex_t *mu, timestruc_t* ts), (cv, mu, ts), CHECK_MU; CHECK_CV);
4806 
4807 CHECK_COND2( cond_timedwait);
4808 CHECK_COND2(_cond_timedwait);
4809 CHECK_COND2(_cond_timedwait_cancel);
4810 
4811 // do the _lwp_* versions too
4812 #define mutex_t lwp_mutex_t
4813 #define cond_t  lwp_cond_t
4814 CHECK_MUTEX(  _lwp_mutex_lock)
4815 CHECK_MUTEX(  _lwp_mutex_unlock)
4816 CHECK_MUTEX(  _lwp_mutex_trylock)
4817 CHECK_MUTEX( __lwp_mutex_lock)
4818 CHECK_MUTEX( __lwp_mutex_unlock)
4819 CHECK_MUTEX( __lwp_mutex_trylock)
4820 CHECK_MUTEX(___lwp_mutex_lock)
4821 CHECK_MUTEX(___lwp_mutex_unlock)
4822 
4823 CHECK_COND(  _lwp_cond_wait);
4824 CHECK_COND( __lwp_cond_wait);
4825 CHECK_COND(___lwp_cond_wait);
4826 
4827 CHECK_COND2(  _lwp_cond_timedwait);
4828 CHECK_COND2( __lwp_cond_timedwait);
4829 #undef mutex_t
4830 #undef cond_t
4831 
4832 CHECK_SYNCH_OP(int, _lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4833 CHECK_SYNCH_OP(int,__lwp_suspend2,       (int lwp, int *n), (lwp, n), 0);
4834 CHECK_SYNCH_OP(int, _lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4835 CHECK_SYNCH_OP(int,__lwp_kill,           (int lwp, int n),  (lwp, n), 0);
4836 CHECK_SYNCH_OP(int, _lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4837 CHECK_SYNCH_OP(int,__lwp_sema_wait,      (lwp_sema_t* p),   (p),  CHECK_P(p));
4838 CHECK_SYNCH_OP(int, _lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4839 CHECK_SYNCH_OP(int,__lwp_cond_broadcast, (lwp_cond_t* cv),  (cv), CHECK_CV);
4840 
4841 
4842 // recording machinery:
4843 
4844 enum { RECORD_SYNCH_LIMIT = 200 };
4845 char* record_synch_name[RECORD_SYNCH_LIMIT];
4846 void* record_synch_arg0ptr[RECORD_SYNCH_LIMIT];
4847 bool record_synch_returning[RECORD_SYNCH_LIMIT];
4848 thread_t record_synch_thread[RECORD_SYNCH_LIMIT];
4849 int record_synch_count = 0;
4850 bool record_synch_enabled = false;
4851 
4852 // in dbx, examine recorded data this way:
4853 // for n in name arg0ptr returning thread; do print record_synch_$n[0..record_synch_count-1]; done
4854 
4855 void record_synch(char* name, bool returning) {
4856   if (record_synch_enabled) {
4857     if (record_synch_count < RECORD_SYNCH_LIMIT) {
4858       record_synch_name[record_synch_count] = name;
4859       record_synch_returning[record_synch_count] = returning;
4860       record_synch_thread[record_synch_count] = thr_self();
4861       record_synch_arg0ptr[record_synch_count] = &name;
4862       record_synch_count++;
4863     }
4864     // put more checking code here:
4865     // ...
4866   }
4867 }
4868 
4869 void record_synch_enable() {
4870   // start collecting trace data, if not already doing so
4871   if (!record_synch_enabled)  record_synch_count = 0;
4872   record_synch_enabled = true;
4873 }
4874 
4875 void record_synch_disable() {
4876   // stop collecting trace data
4877   record_synch_enabled = false;
4878 }
4879 
4880 #endif // INTERPOSE_ON_SYSTEM_SYNCH_FUNCTIONS
4881 #endif // PRODUCT
4882 
4883 const intptr_t thr_time_off  = (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4884 const intptr_t thr_time_size = (intptr_t)(&((prusage_t *)(NULL))->pr_ttime) -
4885                                (intptr_t)(&((prusage_t *)(NULL))->pr_utime);
4886 
4887 
4888 // JVMTI & JVM monitoring and management support
4889 // The thread_cpu_time() and current_thread_cpu_time() are only
4890 // supported if is_thread_cpu_time_supported() returns true.
4891 // They are not supported on Solaris T1.
4892 
4893 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4894 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4895 // of a thread.
4896 //
4897 // current_thread_cpu_time() and thread_cpu_time(Thread *)
4898 // returns the fast estimate available on the platform.
4899 
4900 // hrtime_t gethrvtime() return value includes
4901 // user time but does not include system time
4902 jlong os::current_thread_cpu_time() {
4903   return (jlong) gethrvtime();
4904 }
4905 
4906 jlong os::thread_cpu_time(Thread *thread) {
4907   // return user level CPU time only to be consistent with
4908   // what current_thread_cpu_time returns.
4909   // thread_cpu_time_info() must be changed if this changes
4910   return os::thread_cpu_time(thread, false /* user time only */);
4911 }
4912 
4913 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4914   if (user_sys_cpu_time) {
4915     return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4916   } else {
4917     return os::current_thread_cpu_time();
4918   }
4919 }
4920 
4921 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4922   char proc_name[64];
4923   int count;
4924   prusage_t prusage;
4925   jlong lwp_time;
4926   int fd;
4927 
4928   sprintf(proc_name, "/proc/%d/lwp/%d/lwpusage",
4929           getpid(),
4930           thread->osthread()->lwp_id());
4931   fd = ::open(proc_name, O_RDONLY);
4932   if (fd == -1) return -1;
4933 
4934   do {
4935     count = ::pread(fd,
4936                     (void *)&prusage.pr_utime,
4937                     thr_time_size,
4938                     thr_time_off);
4939   } while (count < 0 && errno == EINTR);
4940   ::close(fd);
4941   if (count < 0) return -1;
4942 
4943   if (user_sys_cpu_time) {
4944     // user + system CPU time
4945     lwp_time = (((jlong)prusage.pr_stime.tv_sec +
4946                  (jlong)prusage.pr_utime.tv_sec) * (jlong)1000000000) +
4947                  (jlong)prusage.pr_stime.tv_nsec +
4948                  (jlong)prusage.pr_utime.tv_nsec;
4949   } else {
4950     // user level CPU time only
4951     lwp_time = ((jlong)prusage.pr_utime.tv_sec * (jlong)1000000000) +
4952                 (jlong)prusage.pr_utime.tv_nsec;
4953   }
4954 
4955   return (lwp_time);
4956 }
4957 
4958 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4959   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4960   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4961   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4962   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4963 }
4964 
4965 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4966   info_ptr->max_value = ALL_64_BITS;      // will not wrap in less than 64 bits
4967   info_ptr->may_skip_backward = false;    // elapsed time not wall time
4968   info_ptr->may_skip_forward = false;     // elapsed time not wall time
4969   info_ptr->kind = JVMTI_TIMER_USER_CPU;  // only user time is returned
4970 }
4971 
4972 bool os::is_thread_cpu_time_supported() {
4973   return true;
4974 }
4975 
4976 // System loadavg support.  Returns -1 if load average cannot be obtained.
4977 // Return the load average for our processor set if the primitive exists
4978 // (Solaris 9 and later).  Otherwise just return system wide loadavg.
4979 int os::loadavg(double loadavg[], int nelem) {
4980   if (pset_getloadavg_ptr != NULL) {
4981     return (*pset_getloadavg_ptr)(PS_MYID, loadavg, nelem);
4982   } else {
4983     return ::getloadavg(loadavg, nelem);
4984   }
4985 }
4986 
4987 //---------------------------------------------------------------------------------
4988 
4989 bool os::find(address addr, outputStream* st) {
4990   Dl_info dlinfo;
4991   memset(&dlinfo, 0, sizeof(dlinfo));
4992   if (dladdr(addr, &dlinfo) != 0) {
4993     st->print(PTR_FORMAT ": ", addr);
4994     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4995       st->print("%s+%#lx", dlinfo.dli_sname, addr-(intptr_t)dlinfo.dli_saddr);
4996     } else if (dlinfo.dli_fbase != NULL) {
4997       st->print("<offset %#lx>", addr-(intptr_t)dlinfo.dli_fbase);
4998     } else {
4999       st->print("<absolute address>");
5000     }
5001     if (dlinfo.dli_fname != NULL) {
5002       st->print(" in %s", dlinfo.dli_fname);
5003     }
5004     if (dlinfo.dli_fbase != NULL) {
5005       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5006     }
5007     st->cr();
5008 
5009     if (Verbose) {
5010       // decode some bytes around the PC
5011       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5012       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5013       address       lowest = (address) dlinfo.dli_sname;
5014       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5015       if (begin < lowest)  begin = lowest;
5016       Dl_info dlinfo2;
5017       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5018           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5019         end = (address) dlinfo2.dli_saddr;
5020       }
5021       Disassembler::decode(begin, end, st);
5022     }
5023     return true;
5024   }
5025   return false;
5026 }
5027 
5028 // Following function has been added to support HotSparc's libjvm.so running
5029 // under Solaris production JDK 1.2.2 / 1.3.0.  These came from
5030 // src/solaris/hpi/native_threads in the EVM codebase.
5031 //
5032 // NOTE: This is no longer needed in the 1.3.1 and 1.4 production release
5033 // libraries and should thus be removed. We will leave it behind for a while
5034 // until we no longer want to able to run on top of 1.3.0 Solaris production
5035 // JDK. See 4341971.
5036 
5037 #define STACK_SLACK 0x800
5038 
5039 extern "C" {
5040   intptr_t sysThreadAvailableStackWithSlack() {
5041     stack_t st;
5042     intptr_t retval, stack_top;
5043     retval = thr_stksegment(&st);
5044     assert(retval == 0, "incorrect return value from thr_stksegment");
5045     assert((address)&st < (address)st.ss_sp, "Invalid stack base returned");
5046     assert((address)&st > (address)st.ss_sp-st.ss_size, "Invalid stack size returned");
5047     stack_top=(intptr_t)st.ss_sp-st.ss_size;
5048     return ((intptr_t)&stack_top - stack_top - STACK_SLACK);
5049   }
5050 }
5051 
5052 // ObjectMonitor park-unpark infrastructure ...
5053 //
5054 // We implement Solaris and Linux PlatformEvents with the
5055 // obvious condvar-mutex-flag triple.
5056 // Another alternative that works quite well is pipes:
5057 // Each PlatformEvent consists of a pipe-pair.
5058 // The thread associated with the PlatformEvent
5059 // calls park(), which reads from the input end of the pipe.
5060 // Unpark() writes into the other end of the pipe.
5061 // The write-side of the pipe must be set NDELAY.
5062 // Unfortunately pipes consume a large # of handles.
5063 // Native solaris lwp_park() and lwp_unpark() work nicely, too.
5064 // Using pipes for the 1st few threads might be workable, however.
5065 //
5066 // park() is permitted to return spuriously.
5067 // Callers of park() should wrap the call to park() in
5068 // an appropriate loop.  A litmus test for the correct
5069 // usage of park is the following: if park() were modified
5070 // to immediately return 0 your code should still work,
5071 // albeit degenerating to a spin loop.
5072 //
5073 // In a sense, park()-unpark() just provides more polite spinning
5074 // and polling with the key difference over naive spinning being
5075 // that a parked thread needs to be explicitly unparked() in order
5076 // to wake up and to poll the underlying condition.
5077 //
5078 // Assumption:
5079 //    Only one parker can exist on an event, which is why we allocate
5080 //    them per-thread. Multiple unparkers can coexist.
5081 //
5082 // _Event transitions in park()
5083 //   -1 => -1 : illegal
5084 //    1 =>  0 : pass - return immediately
5085 //    0 => -1 : block; then set _Event to 0 before returning
5086 //
5087 // _Event transitions in unpark()
5088 //    0 => 1 : just return
5089 //    1 => 1 : just return
5090 //   -1 => either 0 or 1; must signal target thread
5091 //         That is, we can safely transition _Event from -1 to either
5092 //         0 or 1.
5093 //
5094 // _Event serves as a restricted-range semaphore.
5095 //   -1 : thread is blocked, i.e. there is a waiter
5096 //    0 : neutral: thread is running or ready,
5097 //        could have been signaled after a wait started
5098 //    1 : signaled - thread is running or ready
5099 //
5100 // Another possible encoding of _Event would be with
5101 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5102 //
5103 // TODO-FIXME: add DTRACE probes for:
5104 // 1.   Tx parks
5105 // 2.   Ty unparks Tx
5106 // 3.   Tx resumes from park
5107 
5108 
5109 // value determined through experimentation
5110 #define ROUNDINGFIX 11
5111 
5112 // utility to compute the abstime argument to timedwait.
5113 // TODO-FIXME: switch from compute_abstime() to unpackTime().
5114 
5115 static timestruc_t* compute_abstime(timestruc_t* abstime, jlong millis) {
5116   // millis is the relative timeout time
5117   // abstime will be the absolute timeout time
5118   if (millis < 0)  millis = 0;
5119   struct timeval now;
5120   int status = gettimeofday(&now, NULL);
5121   assert(status == 0, "gettimeofday");
5122   jlong seconds = millis / 1000;
5123   jlong max_wait_period;
5124 
5125   if (UseLWPSynchronization) {
5126     // forward port of fix for 4275818 (not sleeping long enough)
5127     // There was a bug in Solaris 6, 7 and pre-patch 5 of 8 where
5128     // _lwp_cond_timedwait() used a round_down algorithm rather
5129     // than a round_up. For millis less than our roundfactor
5130     // it rounded down to 0 which doesn't meet the spec.
5131     // For millis > roundfactor we may return a bit sooner, but
5132     // since we can not accurately identify the patch level and
5133     // this has already been fixed in Solaris 9 and 8 we will
5134     // leave it alone rather than always rounding down.
5135 
5136     if (millis > 0 && millis < ROUNDINGFIX) millis = ROUNDINGFIX;
5137     // It appears that when we go directly through Solaris _lwp_cond_timedwait()
5138     // the acceptable max time threshold is smaller than for libthread on 2.5.1 and 2.6
5139     max_wait_period = 21000000;
5140   } else {
5141     max_wait_period = 50000000;
5142   }
5143   millis %= 1000;
5144   if (seconds > max_wait_period) {      // see man cond_timedwait(3T)
5145     seconds = max_wait_period;
5146   }
5147   abstime->tv_sec = now.tv_sec  + seconds;
5148   long       usec = now.tv_usec + millis * 1000;
5149   if (usec >= 1000000) {
5150     abstime->tv_sec += 1;
5151     usec -= 1000000;
5152   }
5153   abstime->tv_nsec = usec * 1000;
5154   return abstime;
5155 }
5156 
5157 void os::PlatformEvent::park() {           // AKA: down()
5158   // Transitions for _Event:
5159   //   -1 => -1 : illegal
5160   //    1 =>  0 : pass - return immediately
5161   //    0 => -1 : block; then set _Event to 0 before returning
5162 
5163   // Invariant: Only the thread associated with the Event/PlatformEvent
5164   // may call park().
5165   assert(_nParked == 0, "invariant");
5166 
5167   int v;
5168   for (;;) {
5169     v = _Event;
5170     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5171   }
5172   guarantee(v >= 0, "invariant");
5173   if (v == 0) {
5174     // Do this the hard way by blocking ...
5175     // See http://monaco.sfbay/detail.jsf?cr=5094058.
5176     // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5177     // Only for SPARC >= V8PlusA
5178 #if defined(__sparc) && defined(COMPILER2)
5179     if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5180 #endif
5181     int status = os::Solaris::mutex_lock(_mutex);
5182     assert_status(status == 0, status, "mutex_lock");
5183     guarantee(_nParked == 0, "invariant");
5184     ++_nParked;
5185     while (_Event < 0) {
5186       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5187       // Treat this the same as if the wait was interrupted
5188       // With usr/lib/lwp going to kernel, always handle ETIME
5189       status = os::Solaris::cond_wait(_cond, _mutex);
5190       if (status == ETIME) status = EINTR;
5191       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5192     }
5193     --_nParked;
5194     _Event = 0;
5195     status = os::Solaris::mutex_unlock(_mutex);
5196     assert_status(status == 0, status, "mutex_unlock");
5197     // Paranoia to ensure our locked and lock-free paths interact
5198     // correctly with each other.
5199     OrderAccess::fence();
5200   }
5201 }
5202 
5203 int os::PlatformEvent::park(jlong millis) {
5204   // Transitions for _Event:
5205   //   -1 => -1 : illegal
5206   //    1 =>  0 : pass - return immediately
5207   //    0 => -1 : block; then set _Event to 0 before returning
5208 
5209   guarantee(_nParked == 0, "invariant");
5210   int v;
5211   for (;;) {
5212     v = _Event;
5213     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5214   }
5215   guarantee(v >= 0, "invariant");
5216   if (v != 0) return OS_OK;
5217 
5218   int ret = OS_TIMEOUT;
5219   timestruc_t abst;
5220   compute_abstime(&abst, millis);
5221 
5222   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5223   // For Solaris SPARC set fprs.FEF=0 prior to parking.
5224   // Only for SPARC >= V8PlusA
5225 #if defined(__sparc) && defined(COMPILER2)
5226   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5227 #endif
5228   int status = os::Solaris::mutex_lock(_mutex);
5229   assert_status(status == 0, status, "mutex_lock");
5230   guarantee(_nParked == 0, "invariant");
5231   ++_nParked;
5232   while (_Event < 0) {
5233     int status = os::Solaris::cond_timedwait(_cond, _mutex, &abst);
5234     assert_status(status == 0 || status == EINTR ||
5235                   status == ETIME || status == ETIMEDOUT,
5236                   status, "cond_timedwait");
5237     if (!FilterSpuriousWakeups) break;                // previous semantics
5238     if (status == ETIME || status == ETIMEDOUT) break;
5239     // We consume and ignore EINTR and spurious wakeups.
5240   }
5241   --_nParked;
5242   if (_Event >= 0) ret = OS_OK;
5243   _Event = 0;
5244   status = os::Solaris::mutex_unlock(_mutex);
5245   assert_status(status == 0, status, "mutex_unlock");
5246   // Paranoia to ensure our locked and lock-free paths interact
5247   // correctly with each other.
5248   OrderAccess::fence();
5249   return ret;
5250 }
5251 
5252 void os::PlatformEvent::unpark() {
5253   // Transitions for _Event:
5254   //    0 => 1 : just return
5255   //    1 => 1 : just return
5256   //   -1 => either 0 or 1; must signal target thread
5257   //         That is, we can safely transition _Event from -1 to either
5258   //         0 or 1.
5259   // See also: "Semaphores in Plan 9" by Mullender & Cox
5260   //
5261   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5262   // that it will take two back-to-back park() calls for the owning
5263   // thread to block. This has the benefit of forcing a spurious return
5264   // from the first park() call after an unpark() call which will help
5265   // shake out uses of park() and unpark() without condition variables.
5266 
5267   if (Atomic::xchg(1, &_Event) >= 0) return;
5268 
5269   // If the thread associated with the event was parked, wake it.
5270   // Wait for the thread assoc with the PlatformEvent to vacate.
5271   int status = os::Solaris::mutex_lock(_mutex);
5272   assert_status(status == 0, status, "mutex_lock");
5273   int AnyWaiters = _nParked;
5274   status = os::Solaris::mutex_unlock(_mutex);
5275   assert_status(status == 0, status, "mutex_unlock");
5276   guarantee(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5277   if (AnyWaiters != 0) {
5278     // Note that we signal() *after* dropping the lock for "immortal" Events.
5279     // This is safe and avoids a common class of  futile wakeups.  In rare
5280     // circumstances this can cause a thread to return prematurely from
5281     // cond_{timed}wait() but the spurious wakeup is benign and the victim
5282     // will simply re-test the condition and re-park itself.
5283     // This provides particular benefit if the underlying platform does not
5284     // provide wait morphing.
5285     status = os::Solaris::cond_signal(_cond);
5286     assert_status(status == 0, status, "cond_signal");
5287   }
5288 }
5289 
5290 // JSR166
5291 // -------------------------------------------------------
5292 
5293 // The solaris and linux implementations of park/unpark are fairly
5294 // conservative for now, but can be improved. They currently use a
5295 // mutex/condvar pair, plus _counter.
5296 // Park decrements _counter if > 0, else does a condvar wait.  Unpark
5297 // sets count to 1 and signals condvar.  Only one thread ever waits
5298 // on the condvar. Contention seen when trying to park implies that someone
5299 // is unparking you, so don't wait. And spurious returns are fine, so there
5300 // is no need to track notifications.
5301 
5302 #define MAX_SECS 100000000
5303 
5304 // This code is common to linux and solaris and will be moved to a
5305 // common place in dolphin.
5306 //
5307 // The passed in time value is either a relative time in nanoseconds
5308 // or an absolute time in milliseconds. Either way it has to be unpacked
5309 // into suitable seconds and nanoseconds components and stored in the
5310 // given timespec structure.
5311 // Given time is a 64-bit value and the time_t used in the timespec is only
5312 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5313 // overflow if times way in the future are given. Further on Solaris versions
5314 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5315 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5316 // As it will be 28 years before "now + 100000000" will overflow we can
5317 // ignore overflow and just impose a hard-limit on seconds using the value
5318 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5319 // years from "now".
5320 //
5321 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5322   assert(time > 0, "convertTime");
5323 
5324   struct timeval now;
5325   int status = gettimeofday(&now, NULL);
5326   assert(status == 0, "gettimeofday");
5327 
5328   time_t max_secs = now.tv_sec + MAX_SECS;
5329 
5330   if (isAbsolute) {
5331     jlong secs = time / 1000;
5332     if (secs > max_secs) {
5333       absTime->tv_sec = max_secs;
5334     } else {
5335       absTime->tv_sec = secs;
5336     }
5337     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5338   } else {
5339     jlong secs = time / NANOSECS_PER_SEC;
5340     if (secs >= MAX_SECS) {
5341       absTime->tv_sec = max_secs;
5342       absTime->tv_nsec = 0;
5343     } else {
5344       absTime->tv_sec = now.tv_sec + secs;
5345       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5346       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5347         absTime->tv_nsec -= NANOSECS_PER_SEC;
5348         ++absTime->tv_sec; // note: this must be <= max_secs
5349       }
5350     }
5351   }
5352   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5353   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5354   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5355   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5356 }
5357 
5358 void Parker::park(bool isAbsolute, jlong time) {
5359   // Ideally we'd do something useful while spinning, such
5360   // as calling unpackTime().
5361 
5362   // Optional fast-path check:
5363   // Return immediately if a permit is available.
5364   // We depend on Atomic::xchg() having full barrier semantics
5365   // since we are doing a lock-free update to _counter.
5366   if (Atomic::xchg(0, &_counter) > 0) return;
5367 
5368   // Optional fast-exit: Check interrupt before trying to wait
5369   Thread* thread = Thread::current();
5370   assert(thread->is_Java_thread(), "Must be JavaThread");
5371   JavaThread *jt = (JavaThread *)thread;
5372   if (Thread::is_interrupted(thread, false)) {
5373     return;
5374   }
5375 
5376   // First, demultiplex/decode time arguments
5377   timespec absTime;
5378   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5379     return;
5380   }
5381   if (time > 0) {
5382     // Warning: this code might be exposed to the old Solaris time
5383     // round-down bugs.  Grep "roundingFix" for details.
5384     unpackTime(&absTime, isAbsolute, time);
5385   }
5386 
5387   // Enter safepoint region
5388   // Beware of deadlocks such as 6317397.
5389   // The per-thread Parker:: _mutex is a classic leaf-lock.
5390   // In particular a thread must never block on the Threads_lock while
5391   // holding the Parker:: mutex.  If safepoints are pending both the
5392   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5393   ThreadBlockInVM tbivm(jt);
5394 
5395   // Don't wait if cannot get lock since interference arises from
5396   // unblocking.  Also. check interrupt before trying wait
5397   if (Thread::is_interrupted(thread, false) ||
5398       os::Solaris::mutex_trylock(_mutex) != 0) {
5399     return;
5400   }
5401 
5402   int status;
5403 
5404   if (_counter > 0)  { // no wait needed
5405     _counter = 0;
5406     status = os::Solaris::mutex_unlock(_mutex);
5407     assert(status == 0, "invariant");
5408     // Paranoia to ensure our locked and lock-free paths interact
5409     // correctly with each other and Java-level accesses.
5410     OrderAccess::fence();
5411     return;
5412   }
5413 
5414 #ifdef ASSERT
5415   // Don't catch signals while blocked; let the running threads have the signals.
5416   // (This allows a debugger to break into the running thread.)
5417   sigset_t oldsigs;
5418   sigset_t* allowdebug_blocked = os::Solaris::allowdebug_blocked_signals();
5419   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5420 #endif
5421 
5422   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5423   jt->set_suspend_equivalent();
5424   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5425 
5426   // Do this the hard way by blocking ...
5427   // See http://monaco.sfbay/detail.jsf?cr=5094058.
5428   // TODO-FIXME: for Solaris SPARC set fprs.FEF=0 prior to parking.
5429   // Only for SPARC >= V8PlusA
5430 #if defined(__sparc) && defined(COMPILER2)
5431   if (ClearFPUAtPark) { _mark_fpu_nosave(); }
5432 #endif
5433 
5434   if (time == 0) {
5435     status = os::Solaris::cond_wait(_cond, _mutex);
5436   } else {
5437     status = os::Solaris::cond_timedwait (_cond, _mutex, &absTime);
5438   }
5439   // Note that an untimed cond_wait() can sometimes return ETIME on older
5440   // versions of the Solaris.
5441   assert_status(status == 0 || status == EINTR ||
5442                 status == ETIME || status == ETIMEDOUT,
5443                 status, "cond_timedwait");
5444 
5445 #ifdef ASSERT
5446   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5447 #endif
5448   _counter = 0;
5449   status = os::Solaris::mutex_unlock(_mutex);
5450   assert_status(status == 0, status, "mutex_unlock");
5451   // Paranoia to ensure our locked and lock-free paths interact
5452   // correctly with each other and Java-level accesses.
5453   OrderAccess::fence();
5454 
5455   // If externally suspended while waiting, re-suspend
5456   if (jt->handle_special_suspend_equivalent_condition()) {
5457     jt->java_suspend_self();
5458   }
5459 }
5460 
5461 void Parker::unpark() {
5462   int status = os::Solaris::mutex_lock(_mutex);
5463   assert(status == 0, "invariant");
5464   const int s = _counter;
5465   _counter = 1;
5466   status = os::Solaris::mutex_unlock(_mutex);
5467   assert(status == 0, "invariant");
5468 
5469   if (s < 1) {
5470     status = os::Solaris::cond_signal(_cond);
5471     assert(status == 0, "invariant");
5472   }
5473 }
5474 
5475 extern char** environ;
5476 
5477 // Run the specified command in a separate process. Return its exit value,
5478 // or -1 on failure (e.g. can't fork a new process).
5479 // Unlike system(), this function can be called from signal handler. It
5480 // doesn't block SIGINT et al.
5481 int os::fork_and_exec(char* cmd) {
5482   char * argv[4];
5483   argv[0] = (char *)"sh";
5484   argv[1] = (char *)"-c";
5485   argv[2] = cmd;
5486   argv[3] = NULL;
5487 
5488   // fork is async-safe, fork1 is not so can't use in signal handler
5489   pid_t pid;
5490   Thread* t = Thread::current_or_null_safe();
5491   if (t != NULL && t->is_inside_signal_handler()) {
5492     pid = fork();
5493   } else {
5494     pid = fork1();
5495   }
5496 
5497   if (pid < 0) {
5498     // fork failed
5499     warning("fork failed: %s", os::strerror(errno));
5500     return -1;
5501 
5502   } else if (pid == 0) {
5503     // child process
5504 
5505     // try to be consistent with system(), which uses "/usr/bin/sh" on Solaris
5506     execve("/usr/bin/sh", argv, environ);
5507 
5508     // execve failed
5509     _exit(-1);
5510 
5511   } else  {
5512     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5513     // care about the actual exit code, for now.
5514 
5515     int status;
5516 
5517     // Wait for the child process to exit.  This returns immediately if
5518     // the child has already exited. */
5519     while (waitpid(pid, &status, 0) < 0) {
5520       switch (errno) {
5521       case ECHILD: return 0;
5522       case EINTR: break;
5523       default: return -1;
5524       }
5525     }
5526 
5527     if (WIFEXITED(status)) {
5528       // The child exited normally; get its exit code.
5529       return WEXITSTATUS(status);
5530     } else if (WIFSIGNALED(status)) {
5531       // The child exited because of a signal
5532       // The best value to return is 0x80 + signal number,
5533       // because that is what all Unix shells do, and because
5534       // it allows callers to distinguish between process exit and
5535       // process death by signal.
5536       return 0x80 + WTERMSIG(status);
5537     } else {
5538       // Unknown exit code; pass it through
5539       return status;
5540     }
5541   }
5542 }
5543 
5544 // is_headless_jre()
5545 //
5546 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5547 // in order to report if we are running in a headless jre
5548 //
5549 // Since JDK8 xawt/libmawt.so was moved into the same directory
5550 // as libawt.so, and renamed libawt_xawt.so
5551 //
5552 bool os::is_headless_jre() {
5553   struct stat statbuf;
5554   char buf[MAXPATHLEN];
5555   char libmawtpath[MAXPATHLEN];
5556   const char *xawtstr  = "/xawt/libmawt.so";
5557   const char *new_xawtstr = "/libawt_xawt.so";
5558   char *p;
5559 
5560   // Get path to libjvm.so
5561   os::jvm_path(buf, sizeof(buf));
5562 
5563   // Get rid of libjvm.so
5564   p = strrchr(buf, '/');
5565   if (p == NULL) {
5566     return false;
5567   } else {
5568     *p = '\0';
5569   }
5570 
5571   // Get rid of client or server
5572   p = strrchr(buf, '/');
5573   if (p == NULL) {
5574     return false;
5575   } else {
5576     *p = '\0';
5577   }
5578 
5579   // check xawt/libmawt.so
5580   strcpy(libmawtpath, buf);
5581   strcat(libmawtpath, xawtstr);
5582   if (::stat(libmawtpath, &statbuf) == 0) return false;
5583 
5584   // check libawt_xawt.so
5585   strcpy(libmawtpath, buf);
5586   strcat(libmawtpath, new_xawtstr);
5587   if (::stat(libmawtpath, &statbuf) == 0) return false;
5588 
5589   return true;
5590 }
5591 
5592 size_t os::write(int fd, const void *buf, unsigned int nBytes) {
5593   size_t res;
5594   RESTARTABLE((size_t) ::write(fd, buf, (size_t) nBytes), res);
5595   return res;
5596 }
5597 
5598 int os::close(int fd) {
5599   return ::close(fd);
5600 }
5601 
5602 int os::socket_close(int fd) {
5603   return ::close(fd);
5604 }
5605 
5606 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5607   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5608          "Assumed _thread_in_native");
5609   RESTARTABLE_RETURN_INT((int)::recv(fd, buf, nBytes, flags));
5610 }
5611 
5612 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5613   assert(((JavaThread*)Thread::current())->thread_state() == _thread_in_native,
5614          "Assumed _thread_in_native");
5615   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5616 }
5617 
5618 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5619   RESTARTABLE_RETURN_INT((int)::send(fd, buf, nBytes, flags));
5620 }
5621 
5622 // As both poll and select can be interrupted by signals, we have to be
5623 // prepared to restart the system call after updating the timeout, unless
5624 // a poll() is done with timeout == -1, in which case we repeat with this
5625 // "wait forever" value.
5626 
5627 int os::connect(int fd, struct sockaddr *him, socklen_t len) {
5628   int _result;
5629   _result = ::connect(fd, him, len);
5630 
5631   // On Solaris, when a connect() call is interrupted, the connection
5632   // can be established asynchronously (see 6343810). Subsequent calls
5633   // to connect() must check the errno value which has the semantic
5634   // described below (copied from the connect() man page). Handling
5635   // of asynchronously established connections is required for both
5636   // blocking and non-blocking sockets.
5637   //     EINTR            The  connection  attempt  was   interrupted
5638   //                      before  any data arrived by the delivery of
5639   //                      a signal. The connection, however, will  be
5640   //                      established asynchronously.
5641   //
5642   //     EINPROGRESS      The socket is non-blocking, and the connec-
5643   //                      tion  cannot  be completed immediately.
5644   //
5645   //     EALREADY         The socket is non-blocking,  and a previous
5646   //                      connection  attempt  has  not yet been com-
5647   //                      pleted.
5648   //
5649   //     EISCONN          The socket is already connected.
5650   if (_result == OS_ERR && errno == EINTR) {
5651     // restarting a connect() changes its errno semantics
5652     RESTARTABLE(::connect(fd, him, len), _result);
5653     // undo these changes
5654     if (_result == OS_ERR) {
5655       if (errno == EALREADY) {
5656         errno = EINPROGRESS; // fall through
5657       } else if (errno == EISCONN) {
5658         errno = 0;
5659         return OS_OK;
5660       }
5661     }
5662   }
5663   return _result;
5664 }
5665 
5666 // Get the default path to the core file
5667 // Returns the length of the string
5668 int os::get_core_path(char* buffer, size_t bufferSize) {
5669   const char* p = get_current_directory(buffer, bufferSize);
5670 
5671   if (p == NULL) {
5672     assert(p != NULL, "failed to get current directory");
5673     return 0;
5674   }
5675 
5676   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
5677                                               p, current_process_id());
5678 
5679   return strlen(buffer);
5680 }
5681 
5682 #ifndef PRODUCT
5683 void TestReserveMemorySpecial_test() {
5684   // No tests available for this platform
5685 }
5686 #endif
5687 
5688 bool os::start_debugging(char *buf, int buflen) {
5689   int len = (int)strlen(buf);
5690   char *p = &buf[len];
5691 
5692   jio_snprintf(p, buflen-len,
5693                "\n\n"
5694                "Do you want to debug the problem?\n\n"
5695                "To debug, run 'dbx - %d'; then switch to thread " INTX_FORMAT "\n"
5696                "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
5697                "Otherwise, press RETURN to abort...",
5698                os::current_process_id(), os::current_thread_id());
5699 
5700   bool yes = os::message_box("Unexpected Error", buf);
5701 
5702   if (yes) {
5703     // yes, user asked VM to launch debugger
5704     jio_snprintf(buf, sizeof(buf), "dbx - %d", os::current_process_id());
5705 
5706     os::fork_and_exec(buf);
5707     yes = false;
5708   }
5709   return yes;
5710 }