1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2018 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // no precompiled headers
  27 #include "jvm.h"
  28 #include "asm/assembler.inline.hpp"
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/codeCache.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "nativeInst_ppc.hpp"
  38 #include "os_share_linux.hpp"
  39 #include "prims/jniFastGetField.hpp"
  40 #include "prims/jvm_misc.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/extendedPC.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/interfaceSupport.inline.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/javaCalls.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/osThread.hpp"
  49 #include "runtime/safepointMechanism.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/thread.inline.hpp"
  53 #include "runtime/timer.hpp"
  54 #include "utilities/debug.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/vmError.hpp"
  57 
  58 // put OS-includes here
  59 # include <sys/types.h>
  60 # include <sys/mman.h>
  61 # include <pthread.h>
  62 # include <signal.h>
  63 # include <errno.h>
  64 # include <dlfcn.h>
  65 # include <stdlib.h>
  66 # include <stdio.h>
  67 # include <unistd.h>
  68 # include <sys/resource.h>
  69 # include <pthread.h>
  70 # include <sys/stat.h>
  71 # include <sys/time.h>
  72 # include <sys/utsname.h>
  73 # include <sys/socket.h>
  74 # include <sys/wait.h>
  75 # include <pwd.h>
  76 # include <poll.h>
  77 # include <ucontext.h>
  78 
  79 
  80 address os::current_stack_pointer() {
  81   intptr_t* csp;
  82 
  83   // inline assembly `mr regno(csp), R1_SP':
  84   __asm__ __volatile__ ("mr %0, 1":"=r"(csp):);
  85 
  86   return (address) csp;
  87 }
  88 
  89 char* os::non_memory_address_word() {
  90   // Must never look like an address returned by reserve_memory,
  91   // even in its subfields (as defined by the CPU immediate fields,
  92   // if the CPU splits constants across multiple instructions).
  93 
  94   return (char*) -1;
  95 }
  96 
  97 void os::initialize_thread(Thread *thread) { }
  98 
  99 // Frame information (pc, sp, fp) retrieved via ucontext
 100 // always looks like a C-frame according to the frame
 101 // conventions in frame_ppc64.hpp.
 102 address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
 103   // On powerpc64, ucontext_t is not selfcontained but contains
 104   // a pointer to an optional substructure (mcontext_t.regs) containing the volatile
 105   // registers - NIP, among others.
 106   // This substructure may or may not be there depending where uc came from:
 107   // - if uc was handed over as the argument to a sigaction handler, a pointer to the
 108   //   substructure was provided by the kernel when calling the signal handler, and
 109   //   regs->nip can be accessed.
 110   // - if uc was filled by getcontext(), it is undefined - getcontext() does not fill
 111   //   it because the volatile registers are not needed to make setcontext() work.
 112   //   Hopefully it was zero'd out beforehand.
 113   guarantee(uc->uc_mcontext.regs != NULL, "only use ucontext_get_pc in sigaction context");
 114   return (address)uc->uc_mcontext.regs->nip;
 115 }
 116 
 117 // modify PC in ucontext.
 118 // Note: Only use this for an ucontext handed down to a signal handler. See comment
 119 // in ucontext_get_pc.
 120 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
 121   guarantee(uc->uc_mcontext.regs != NULL, "only use ucontext_set_pc in sigaction context");
 122   uc->uc_mcontext.regs->nip = (unsigned long)pc;
 123 }
 124 
 125 static address ucontext_get_lr(const ucontext_t * uc) {
 126   return (address)uc->uc_mcontext.regs->link;
 127 }
 128 
 129 intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
 130   return (intptr_t*)uc->uc_mcontext.regs->gpr[1/*REG_SP*/];
 131 }
 132 
 133 intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
 134   return NULL;
 135 }
 136 
 137 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
 138                     intptr_t** ret_sp, intptr_t** ret_fp) {
 139 
 140   ExtendedPC  epc;
 141   const ucontext_t* uc = (const ucontext_t*)ucVoid;
 142 
 143   if (uc != NULL) {
 144     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 145     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 146     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 147   } else {
 148     // construct empty ExtendedPC for return value checking
 149     epc = ExtendedPC(NULL);
 150     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 151     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 152   }
 153 
 154   return epc;
 155 }
 156 
 157 frame os::fetch_frame_from_context(const void* ucVoid) {
 158   intptr_t* sp;
 159   intptr_t* fp;
 160   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 161   return frame(sp, epc.pc());
 162 }
 163 
 164 bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
 165   address pc = (address) os::Linux::ucontext_get_pc(uc);
 166   if (Interpreter::contains(pc)) {
 167     // Interpreter performs stack banging after the fixed frame header has
 168     // been generated while the compilers perform it before. To maintain
 169     // semantic consistency between interpreted and compiled frames, the
 170     // method returns the Java sender of the current frame.
 171     *fr = os::fetch_frame_from_context(uc);
 172     if (!fr->is_first_java_frame()) {
 173       assert(fr->safe_for_sender(thread), "Safety check");
 174       *fr = fr->java_sender();
 175     }
 176   } else {
 177     // More complex code with compiled code.
 178     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
 179     CodeBlob* cb = CodeCache::find_blob(pc);
 180     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
 181       // Not sure where the pc points to, fallback to default
 182       // stack overflow handling. In compiled code, we bang before
 183       // the frame is complete.
 184       return false;
 185     } else {
 186       intptr_t* sp = os::Linux::ucontext_get_sp(uc);
 187       address lr = ucontext_get_lr(uc);
 188       *fr = frame(sp, lr);
 189       if (!fr->is_java_frame()) {
 190         assert(fr->safe_for_sender(thread), "Safety check");
 191         assert(!fr->is_first_frame(), "Safety check");
 192         *fr = fr->java_sender();
 193       }
 194     }
 195   }
 196   assert(fr->is_java_frame(), "Safety check");
 197   return true;
 198 }
 199 
 200 frame os::get_sender_for_C_frame(frame* fr) {
 201   if (*fr->sp() == 0) {
 202     // fr is the last C frame
 203     return frame(NULL, NULL);
 204   }
 205   return frame(fr->sender_sp(), fr->sender_pc());
 206 }
 207 
 208 
 209 frame os::current_frame() {
 210   intptr_t* csp = (intptr_t*) *((intptr_t*) os::current_stack_pointer());
 211   // hack.
 212   frame topframe(csp, (address)0x8);
 213   // Return sender of sender of current topframe which hopefully
 214   // both have pc != NULL.
 215   frame tmp = os::get_sender_for_C_frame(&topframe);
 216   return os::get_sender_for_C_frame(&tmp);
 217 }
 218 
 219 // Utility functions
 220 
 221 extern "C" JNIEXPORT int
 222 JVM_handle_linux_signal(int sig,
 223                         siginfo_t* info,
 224                         void* ucVoid,
 225                         int abort_if_unrecognized) {
 226   ucontext_t* uc = (ucontext_t*) ucVoid;
 227 
 228   Thread* t = Thread::current_or_null_safe();
 229 
 230   SignalHandlerMark shm(t);
 231 
 232   // Note: it's not uncommon that JNI code uses signal/sigset to install
 233   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 234   // or have a SIGILL handler when detecting CPU type). When that happens,
 235   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 236   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 237   // that do not require siginfo/ucontext first.
 238 
 239   if (sig == SIGPIPE) {
 240     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 241       return true;
 242     } else {
 243       // Ignoring SIGPIPE - see bugs 4229104
 244       return true;
 245     }
 246   }
 247 
 248   // Make the signal handler transaction-aware by checking the existence of a
 249   // second (transactional) context with MSR TS bits active. If the signal is
 250   // caught during a transaction, then just return to the HTM abort handler.
 251   // Please refer to Linux kernel document powerpc/transactional_memory.txt,
 252   // section "Signals".
 253   if (uc && uc->uc_link) {
 254     ucontext_t* second_uc = uc->uc_link;
 255 
 256     // MSR TS bits are 29 and 30 (Power ISA, v2.07B, Book III-S, pp. 857-858,
 257     // 3.2.1 "Machine State Register"), however note that ISA notation for bit
 258     // numbering is MSB 0, so for normal bit numbering (LSB 0) they come to be
 259     // bits 33 and 34. It's not related to endianness, just a notation matter.
 260     if (second_uc->uc_mcontext.regs->msr & 0x600000000) {
 261       if (TraceTraps) {
 262         tty->print_cr("caught signal in transaction, "
 263                         "ignoring to jump to abort handler");
 264       }
 265       // Return control to the HTM abort handler.
 266       return true;
 267     }
 268   }
 269 
 270   #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
 271   if ( (sig == SIGSEGV || sig == SIGBUS) && info != NULL && info->si_addr == g_assert_poison) {
 272     handle_assert_poison_fault(ucVoid, info->si_addr);
 273     return 1;
 274   }
 275   #endif
 276 
 277   JavaThread* thread = NULL;
 278   VMThread* vmthread = NULL;
 279   if (os::Linux::signal_handlers_are_installed) {
 280     if (t != NULL) {
 281       if(t->is_Java_thread()) {
 282         thread = (JavaThread*)t;
 283       } else if(t->is_VM_thread()) {
 284         vmthread = (VMThread *)t;
 285       }
 286     }
 287   }
 288 
 289   // Moved SafeFetch32 handling outside thread!=NULL conditional block to make
 290   // it work if no associated JavaThread object exists.
 291   if (uc) {
 292     address const pc = os::Linux::ucontext_get_pc(uc);
 293     if (pc && StubRoutines::is_safefetch_fault(pc)) {
 294       os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 295       return true;
 296     }
 297   }
 298 
 299   // decide if this trap can be handled by a stub
 300   address stub = NULL;
 301   address pc   = NULL;
 302 
 303   //%note os_trap_1
 304   if (info != NULL && uc != NULL && thread != NULL) {
 305     pc = (address) os::Linux::ucontext_get_pc(uc);
 306 
 307     // Handle ALL stack overflow variations here
 308     if (sig == SIGSEGV) {
 309       // Si_addr may not be valid due to a bug in the linux-ppc64 kernel (see
 310       // comment below). Use get_stack_bang_address instead of si_addr.
 311       address addr = ((NativeInstruction*)pc)->get_stack_bang_address(uc);
 312 
 313       // Check if fault address is within thread stack.
 314       if (thread->on_local_stack(addr)) {
 315         // stack overflow
 316         if (thread->in_stack_yellow_reserved_zone(addr)) {
 317           if (thread->thread_state() == _thread_in_Java) {
 318             if (thread->in_stack_reserved_zone(addr)) {
 319               frame fr;
 320               if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
 321                 assert(fr.is_java_frame(), "Must be a Javac frame");
 322                 frame activation =
 323                   SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 324                 if (activation.sp() != NULL) {
 325                   thread->disable_stack_reserved_zone();
 326                   if (activation.is_interpreted_frame()) {
 327                     thread->set_reserved_stack_activation((address)activation.fp());
 328                   } else {
 329                     thread->set_reserved_stack_activation((address)activation.unextended_sp());
 330                   }
 331                   return 1;
 332                 }
 333               }
 334             }
 335             // Throw a stack overflow exception.
 336             // Guard pages will be reenabled while unwinding the stack.
 337             thread->disable_stack_yellow_reserved_zone();
 338             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 339           } else {
 340             // Thread was in the vm or native code. Return and try to finish.
 341             thread->disable_stack_yellow_reserved_zone();
 342             return 1;
 343           }
 344         } else if (thread->in_stack_red_zone(addr)) {
 345           // Fatal red zone violation.  Disable the guard pages and fall through
 346           // to handle_unexpected_exception way down below.
 347           thread->disable_stack_red_zone();
 348           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 349 
 350           // This is a likely cause, but hard to verify. Let's just print
 351           // it as a hint.
 352           tty->print_raw_cr("Please check if any of your loaded .so files has "
 353                             "enabled executable stack (see man page execstack(8))");
 354         } else {
 355           // Accessing stack address below sp may cause SEGV if current
 356           // thread has MAP_GROWSDOWN stack. This should only happen when
 357           // current thread was created by user code with MAP_GROWSDOWN flag
 358           // and then attached to VM. See notes in os_linux.cpp.
 359           if (thread->osthread()->expanding_stack() == 0) {
 360              thread->osthread()->set_expanding_stack();
 361              if (os::Linux::manually_expand_stack(thread, addr)) {
 362                thread->osthread()->clear_expanding_stack();
 363                return 1;
 364              }
 365              thread->osthread()->clear_expanding_stack();
 366           } else {
 367              fatal("recursive segv. expanding stack.");
 368           }
 369         }
 370       }
 371     }
 372 
 373     if (thread->thread_state() == _thread_in_Java) {
 374       // Java thread running in Java code => find exception handler if any
 375       // a fault inside compiled code, the interpreter, or a stub
 376 
 377       // A VM-related SIGILL may only occur if we are not in the zero page.
 378       // On AIX, we get a SIGILL if we jump to 0x0 or to somewhere else
 379       // in the zero page, because it is filled with 0x0. We ignore
 380       // explicit SIGILLs in the zero page.
 381       if (sig == SIGILL && (pc < (address) 0x200)) {
 382         if (TraceTraps) {
 383           tty->print_raw_cr("SIGILL happened inside zero page.");
 384         }
 385         goto report_and_die;
 386       }
 387 
 388       CodeBlob *cb = NULL;
 389       // Handle signal from NativeJump::patch_verified_entry().
 390       if (( TrapBasedNotEntrantChecks && sig == SIGTRAP && nativeInstruction_at(pc)->is_sigtrap_zombie_not_entrant()) ||
 391           (!TrapBasedNotEntrantChecks && sig == SIGILL  && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant())) {
 392         if (TraceTraps) {
 393           tty->print_cr("trap: zombie_not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL");
 394         }
 395         stub = SharedRuntime::get_handle_wrong_method_stub();
 396       }
 397 
 398       else if (sig == ((SafepointMechanism::uses_thread_local_poll() && USE_POLL_BIT_ONLY) ? SIGTRAP : SIGSEGV) &&
 399                // A linux-ppc64 kernel before 2.6.6 doesn't set si_addr on some segfaults
 400                // in 64bit mode (cf. http://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.6),
 401                // especially when we try to read from the safepoint polling page. So the check
 402                //   (address)info->si_addr == os::get_standard_polling_page()
 403                // doesn't work for us. We use:
 404                ((NativeInstruction*)pc)->is_safepoint_poll() &&
 405                CodeCache::contains((void*) pc) &&
 406                ((cb = CodeCache::find_blob(pc)) != NULL) &&
 407                cb->is_compiled()) {
 408         if (TraceTraps) {
 409           tty->print_cr("trap: safepoint_poll at " INTPTR_FORMAT " (%s)", p2i(pc),
 410                         (SafepointMechanism::uses_thread_local_poll() && USE_POLL_BIT_ONLY) ? "SIGTRAP" : "SIGSEGV");
 411         }
 412         stub = SharedRuntime::get_poll_stub(pc);
 413       }
 414 
 415       // SIGTRAP-based ic miss check in compiled code.
 416       else if (sig == SIGTRAP && TrapBasedICMissChecks &&
 417                nativeInstruction_at(pc)->is_sigtrap_ic_miss_check()) {
 418         if (TraceTraps) {
 419           tty->print_cr("trap: ic_miss_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
 420         }
 421         stub = SharedRuntime::get_ic_miss_stub();
 422       }
 423 
 424       // SIGTRAP-based implicit null check in compiled code.
 425       else if (sig == SIGTRAP && TrapBasedNullChecks &&
 426                nativeInstruction_at(pc)->is_sigtrap_null_check()) {
 427         if (TraceTraps) {
 428           tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
 429         }
 430         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 431       }
 432 
 433       // SIGSEGV-based implicit null check in compiled code.
 434       else if (sig == SIGSEGV && ImplicitNullChecks &&
 435                CodeCache::contains((void*) pc) &&
 436                !MacroAssembler::needs_explicit_null_check((intptr_t) info->si_addr)) {
 437         if (TraceTraps) {
 438           tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", p2i(pc));
 439         }
 440         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 441       }
 442 
 443 #ifdef COMPILER2
 444       // SIGTRAP-based implicit range check in compiled code.
 445       else if (sig == SIGTRAP && TrapBasedRangeChecks &&
 446                nativeInstruction_at(pc)->is_sigtrap_range_check()) {
 447         if (TraceTraps) {
 448           tty->print_cr("trap: range_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
 449         }
 450         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 451       }
 452 #endif
 453       else if (sig == SIGBUS) {
 454         // BugId 4454115: A read from a MappedByteBuffer can fault here if the
 455         // underlying file has been truncated. Do not crash the VM in such a case.
 456         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 457         CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
 458         if (nm != NULL && nm->has_unsafe_access()) {
 459           address next_pc = pc + 4;
 460           next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
 461           os::Linux::ucontext_set_pc(uc, next_pc);
 462           return true;
 463         }
 464       }
 465     }
 466 
 467     else { // thread->thread_state() != _thread_in_Java
 468       if (sig == SIGILL && VM_Version::is_determine_features_test_running()) {
 469         // SIGILL must be caused by VM_Version::determine_features().
 470         *(int *)pc = 0; // patch instruction to 0 to indicate that it causes a SIGILL,
 471                         // flushing of icache is not necessary.
 472         stub = pc + 4;  // continue with next instruction.
 473       }
 474       else if (thread->thread_state() == _thread_in_vm &&
 475                sig == SIGBUS && thread->doing_unsafe_access()) {
 476         address next_pc = pc + 4;
 477         next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
 478         os::Linux::ucontext_set_pc(uc, pc + 4);
 479         return true;
 480       }
 481     }
 482 
 483     // Check to see if we caught the safepoint code in the
 484     // process of write protecting the memory serialization page.
 485     // It write enables the page immediately after protecting it
 486     // so we can just return to retry the write.
 487     if ((sig == SIGSEGV) &&
 488         // Si_addr may not be valid due to a bug in the linux-ppc64 kernel (see comment above).
 489         // Use is_memory_serialization instead of si_addr.
 490         ((NativeInstruction*)pc)->is_memory_serialization(thread, ucVoid)) {
 491       // Synchronization problem in the pseudo memory barrier code (bug id 6546278)
 492       // Block current thread until the memory serialize page permission restored.
 493       os::block_on_serialize_page_trap();
 494       return true;
 495     }
 496   }
 497 
 498   if (stub != NULL) {
 499     // Save all thread context in case we need to restore it.
 500     if (thread != NULL) thread->set_saved_exception_pc(pc);
 501     os::Linux::ucontext_set_pc(uc, stub);
 502     return true;
 503   }
 504 
 505   // signal-chaining
 506   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 507     return true;
 508   }
 509 
 510   if (!abort_if_unrecognized) {
 511     // caller wants another chance, so give it to him
 512     return false;
 513   }
 514 
 515   if (pc == NULL && uc != NULL) {
 516     pc = os::Linux::ucontext_get_pc(uc);
 517   }
 518 
 519 report_and_die:
 520   // unmask current signal
 521   sigset_t newset;
 522   sigemptyset(&newset);
 523   sigaddset(&newset, sig);
 524   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 525 
 526   VMError::report_and_die(t, sig, pc, info, ucVoid);
 527 
 528   ShouldNotReachHere();
 529   return false;
 530 }
 531 
 532 void os::Linux::init_thread_fpu_state(void) {
 533   // Disable FP exceptions.
 534   __asm__ __volatile__ ("mtfsfi 6,0");
 535 }
 536 
 537 int os::Linux::get_fpu_control_word(void) {
 538   // x86 has problems with FPU precision after pthread_cond_timedwait().
 539   // nothing to do on ppc64.
 540   return 0;
 541 }
 542 
 543 void os::Linux::set_fpu_control_word(int fpu_control) {
 544   // x86 has problems with FPU precision after pthread_cond_timedwait().
 545   // nothing to do on ppc64.
 546 }
 547 
 548 ////////////////////////////////////////////////////////////////////////////////
 549 // thread stack
 550 
 551 // Minimum usable stack sizes required to get to user code. Space for
 552 // HotSpot guard pages is added later.
 553 size_t os::Posix::_compiler_thread_min_stack_allowed = 64 * K;
 554 size_t os::Posix::_java_thread_min_stack_allowed = 64 * K;
 555 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
 556 
 557 // Return default stack size for thr_type.
 558 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 559   // Default stack size (compiler thread needs larger stack).
 560   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1024 * K);
 561   return s;
 562 }
 563 
 564 /////////////////////////////////////////////////////////////////////////////
 565 // helper functions for fatal error handler
 566 
 567 void os::print_context(outputStream *st, const void *context) {
 568   if (context == NULL) return;
 569 
 570   const ucontext_t* uc = (const ucontext_t*)context;
 571 
 572   st->print_cr("Registers:");
 573   st->print("pc =" INTPTR_FORMAT "  ", uc->uc_mcontext.regs->nip);
 574   st->print("lr =" INTPTR_FORMAT "  ", uc->uc_mcontext.regs->link);
 575   st->print("ctr=" INTPTR_FORMAT "  ", uc->uc_mcontext.regs->ctr);
 576   st->cr();
 577   for (int i = 0; i < 32; i++) {
 578     st->print("r%-2d=" INTPTR_FORMAT "  ", i, uc->uc_mcontext.regs->gpr[i]);
 579     if (i % 3 == 2) st->cr();
 580   }
 581   st->cr();
 582   st->cr();
 583 
 584   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 585   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
 586   print_hex_dump(st, (address)sp, (address)(sp + 128), sizeof(intptr_t));
 587   st->cr();
 588 
 589   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 590   // point to garbage if entry point in an nmethod is corrupted. Leave
 591   // this at the end, and hope for the best.
 592   address pc = os::Linux::ucontext_get_pc(uc);
 593   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
 594   print_hex_dump(st, pc - 64, pc + 64, /*instrsize=*/4);
 595   st->cr();
 596 }
 597 
 598 void os::print_register_info(outputStream *st, const void *context) {
 599   if (context == NULL) return;
 600 
 601   const ucontext_t *uc = (const ucontext_t*)context;
 602 
 603   st->print_cr("Register to memory mapping:");
 604   st->cr();
 605 
 606   // this is only for the "general purpose" registers
 607   for (int i = 0; i < 32; i++) {
 608     st->print("r%-2d=", i);
 609     print_location(st, uc->uc_mcontext.regs->gpr[i]);
 610   }
 611   st->cr();
 612 }
 613 
 614 extern "C" {
 615   int SpinPause() {
 616     return 0;
 617   }
 618 }
 619 
 620 #ifndef PRODUCT
 621 void os::verify_stack_alignment() {
 622   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 623 }
 624 #endif
 625 
 626 int os::extra_bang_size_in_bytes() {
 627   // PPC does not require the additional stack bang.
 628   return 0;
 629 }