1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "asm/macroAssembler.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "os_share_linux.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm_misc.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/extendedPC.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/interfaceSupport.inline.hpp"
  43 #include "runtime/java.hpp"
  44 #include "runtime/javaCalls.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "runtime/osThread.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "runtime/thread.inline.hpp"
  50 #include "runtime/timer.hpp"
  51 #include "services/memTracker.hpp"
  52 #include "utilities/align.hpp"
  53 #include "utilities/debug.hpp"
  54 #include "utilities/events.hpp"
  55 #include "utilities/vmError.hpp"
  56 
  57 // put OS-includes here
  58 # include <sys/types.h>
  59 # include <sys/mman.h>
  60 # include <pthread.h>
  61 # include <signal.h>
  62 # include <errno.h>
  63 # include <dlfcn.h>
  64 # include <stdlib.h>
  65 # include <stdio.h>
  66 # include <unistd.h>
  67 # include <sys/resource.h>
  68 # include <pthread.h>
  69 # include <sys/stat.h>
  70 # include <sys/time.h>
  71 # include <sys/utsname.h>
  72 # include <sys/socket.h>
  73 # include <sys/wait.h>
  74 # include <pwd.h>
  75 # include <poll.h>
  76 # include <ucontext.h>
  77 #ifndef AMD64
  78 # include <fpu_control.h>
  79 #endif
  80 
  81 #ifdef AMD64
  82 #define REG_SP REG_RSP
  83 #define REG_PC REG_RIP
  84 #define REG_FP REG_RBP
  85 #define SPELL_REG_SP "rsp"
  86 #define SPELL_REG_FP "rbp"
  87 #else
  88 #define REG_SP REG_UESP
  89 #define REG_PC REG_EIP
  90 #define REG_FP REG_EBP
  91 #define SPELL_REG_SP "esp"
  92 #define SPELL_REG_FP "ebp"
  93 #endif // AMD64
  94 
  95 address os::current_stack_pointer() {
  96 #ifdef SPARC_WORKS
  97   register void *esp;
  98   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
  99   return (address) ((char*)esp + sizeof(long)*2);
 100 #elif defined(__clang__)
 101   intptr_t* esp;
 102   __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
 103   return (address) esp;
 104 #else
 105   register void *esp __asm__ (SPELL_REG_SP);
 106   return (address) esp;
 107 #endif
 108 }
 109 
 110 char* os::non_memory_address_word() {
 111   // Must never look like an address returned by reserve_memory,
 112   // even in its subfields (as defined by the CPU immediate fields,
 113   // if the CPU splits constants across multiple instructions).
 114 
 115   return (char*) -1;
 116 }
 117 
 118 void os::initialize_thread(Thread* thr) {
 119 // Nothing to do.
 120 }
 121 
 122 address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
 123   return (address)uc->uc_mcontext.gregs[REG_PC];
 124 }
 125 
 126 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
 127   uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
 128 }
 129 
 130 intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
 131   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 132 }
 133 
 134 intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
 135   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 136 }
 137 
 138 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 139 // is currently interrupted by SIGPROF.
 140 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 141 // frames. Currently we don't do that on Linux, so it's the same as
 142 // os::fetch_frame_from_context().
 143 // This method is also used for stack overflow signal handling.
 144 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
 145   const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 146 
 147   assert(thread != NULL, "just checking");
 148   assert(ret_sp != NULL, "just checking");
 149   assert(ret_fp != NULL, "just checking");
 150 
 151   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 152 }
 153 
 154 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
 155                     intptr_t** ret_sp, intptr_t** ret_fp) {
 156 
 157   ExtendedPC  epc;
 158   const ucontext_t* uc = (const ucontext_t*)ucVoid;
 159 
 160   if (uc != NULL) {
 161     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 162     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 163     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 164   } else {
 165     // construct empty ExtendedPC for return value checking
 166     epc = ExtendedPC(NULL);
 167     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 168     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 169   }
 170 
 171   return epc;
 172 }
 173 
 174 frame os::fetch_frame_from_context(const void* ucVoid) {
 175   intptr_t* sp;
 176   intptr_t* fp;
 177   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 178   return frame(sp, fp, epc.pc());
 179 }
 180 
 181 frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
 182   intptr_t* sp;
 183   intptr_t* fp;
 184   ExtendedPC epc = os::Linux::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
 185   return frame(sp, fp, epc.pc());
 186 }
 187 
 188 bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
 189   address pc = (address) os::Linux::ucontext_get_pc(uc);
 190   if (Interpreter::contains(pc)) {
 191     // interpreter performs stack banging after the fixed frame header has
 192     // been generated while the compilers perform it before. To maintain
 193     // semantic consistency between interpreted and compiled frames, the
 194     // method returns the Java sender of the current frame.
 195     *fr = os::fetch_frame_from_ucontext(thread, uc);
 196     if (!fr->is_first_java_frame()) {
 197       // get_frame_at_stack_banging_point() is only called when we
 198       // have well defined stacks so java_sender() calls do not need
 199       // to assert safe_for_sender() first.
 200       *fr = fr->java_sender();
 201     }
 202   } else {
 203     // more complex code with compiled code
 204     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
 205     CodeBlob* cb = CodeCache::find_blob(pc);
 206     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
 207       // Not sure where the pc points to, fallback to default
 208       // stack overflow handling
 209       return false;
 210     } else {
 211       // in compiled code, the stack banging is performed just after the return pc
 212       // has been pushed on the stack
 213       intptr_t* fp = os::Linux::ucontext_get_fp(uc);
 214       intptr_t* sp = os::Linux::ucontext_get_sp(uc);
 215       *fr = frame(sp + 1, fp, (address)*sp);
 216       if (!fr->is_java_frame()) {
 217         assert(!fr->is_first_frame(), "Safety check");
 218         // See java_sender() comment above.
 219         *fr = fr->java_sender();
 220       }
 221     }
 222   }
 223   assert(fr->is_java_frame(), "Safety check");
 224   return true;
 225 }
 226 
 227 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 228 // turned off by -fomit-frame-pointer,
 229 frame os::get_sender_for_C_frame(frame* fr) {
 230   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 231 }
 232 
 233 intptr_t* _get_previous_fp() {
 234 #ifdef SPARC_WORKS
 235   register intptr_t **ebp;
 236   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
 237 #elif defined(__clang__)
 238   intptr_t **ebp;
 239   __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
 240 #else
 241   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 242 #endif
 243   // ebp is for this frame (_get_previous_fp). We want the ebp for the
 244   // caller of os::current_frame*(), so go up two frames. However, for
 245   // optimized builds, _get_previous_fp() will be inlined, so only go
 246   // up 1 frame in that case.
 247 #ifdef _NMT_NOINLINE_
 248   return **(intptr_t***)ebp;
 249 #else
 250   return *ebp;
 251 #endif
 252 }
 253 
 254 
 255 frame os::current_frame() {
 256   intptr_t* fp = _get_previous_fp();
 257   frame myframe((intptr_t*)os::current_stack_pointer(),
 258                 (intptr_t*)fp,
 259                 CAST_FROM_FN_PTR(address, os::current_frame));
 260   if (os::is_first_C_frame(&myframe)) {
 261     // stack is not walkable
 262     return frame();
 263   } else {
 264     return os::get_sender_for_C_frame(&myframe);
 265   }
 266 }
 267 
 268 // Utility functions
 269 
 270 // From IA32 System Programming Guide
 271 enum {
 272   trap_page_fault = 0xE
 273 };
 274 
 275 extern "C" JNIEXPORT int
 276 JVM_handle_linux_signal(int sig,
 277                         siginfo_t* info,
 278                         void* ucVoid,
 279                         int abort_if_unrecognized) {
 280   ucontext_t* uc = (ucontext_t*) ucVoid;
 281 
 282   Thread* t = Thread::current_or_null_safe();
 283 
 284   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 285   // (no destructors can be run)
 286   os::ThreadCrashProtection::check_crash_protection(sig, t);
 287 
 288   SignalHandlerMark shm(t);
 289 
 290   // Note: it's not uncommon that JNI code uses signal/sigset to install
 291   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 292   // or have a SIGILL handler when detecting CPU type). When that happens,
 293   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 294   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 295   // that do not require siginfo/ucontext first.
 296 
 297   if (sig == SIGPIPE || sig == SIGXFSZ) {
 298     // allow chained handler to go first
 299     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 300       return true;
 301     } else {
 302       // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
 303       return true;
 304     }
 305   }
 306 
 307   #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
 308   if ( (sig == SIGSEGV || sig == SIGBUS) && info != NULL && info->si_addr == g_assert_poison) {
 309     handle_assert_poison_fault(ucVoid, info->si_addr);
 310     return 1;
 311   }
 312   #endif
 313 
 314   JavaThread* thread = NULL;
 315   VMThread* vmthread = NULL;
 316   if (os::Linux::signal_handlers_are_installed) {
 317     if (t != NULL ){
 318       if(t->is_Java_thread()) {
 319         thread = (JavaThread*)t;
 320       }
 321       else if(t->is_VM_thread()){
 322         vmthread = (VMThread *)t;
 323       }
 324     }
 325   }
 326 /*
 327   NOTE: does not seem to work on linux.
 328   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 329     // can't decode this kind of signal
 330     info = NULL;
 331   } else {
 332     assert(sig == info->si_signo, "bad siginfo");
 333   }
 334 */
 335   // decide if this trap can be handled by a stub
 336   address stub = NULL;
 337 
 338   address pc          = NULL;
 339 
 340   //%note os_trap_1
 341   if (info != NULL && uc != NULL && thread != NULL) {
 342     pc = (address) os::Linux::ucontext_get_pc(uc);
 343 
 344     if (StubRoutines::is_safefetch_fault(pc)) {
 345       os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 346       return 1;
 347     }
 348 
 349 #ifndef AMD64
 350     // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
 351     // This can happen in any running code (currently more frequently in
 352     // interpreter code but has been seen in compiled code)
 353     if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
 354       fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
 355             "to unstable signal handling in this distribution.");
 356     }
 357 #endif // AMD64
 358 
 359     // Handle ALL stack overflow variations here
 360     if (sig == SIGSEGV) {
 361       address addr = (address) info->si_addr;
 362 
 363       // check if fault address is within thread stack
 364       if (thread->on_local_stack(addr)) {
 365         // stack overflow
 366         if (thread->in_stack_yellow_reserved_zone(addr)) {
 367           if (thread->thread_state() == _thread_in_Java) {
 368             if (thread->in_stack_reserved_zone(addr)) {
 369               frame fr;
 370               if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
 371                 assert(fr.is_java_frame(), "Must be a Java frame");
 372                 frame activation =
 373                   SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 374                 if (activation.sp() != NULL) {
 375                   thread->disable_stack_reserved_zone();
 376                   if (activation.is_interpreted_frame()) {
 377                     thread->set_reserved_stack_activation((address)(
 378                       activation.fp() + frame::interpreter_frame_initial_sp_offset));
 379                   } else {
 380                     thread->set_reserved_stack_activation((address)activation.unextended_sp());
 381                   }
 382                   return 1;
 383                 }
 384               }
 385             }
 386             // Throw a stack overflow exception.  Guard pages will be reenabled
 387             // while unwinding the stack.
 388             thread->disable_stack_yellow_reserved_zone();
 389             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 390           } else {
 391             // Thread was in the vm or native code.  Return and try to finish.
 392             thread->disable_stack_yellow_reserved_zone();
 393             return 1;
 394           }
 395         } else if (thread->in_stack_red_zone(addr)) {
 396           // Fatal red zone violation.  Disable the guard pages and fall through
 397           // to handle_unexpected_exception way down below.
 398           thread->disable_stack_red_zone();
 399           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 400 
 401           // This is a likely cause, but hard to verify. Let's just print
 402           // it as a hint.
 403           tty->print_raw_cr("Please check if any of your loaded .so files has "
 404                             "enabled executable stack (see man page execstack(8))");
 405         } else {
 406           // Accessing stack address below sp may cause SEGV if current
 407           // thread has MAP_GROWSDOWN stack. This should only happen when
 408           // current thread was created by user code with MAP_GROWSDOWN flag
 409           // and then attached to VM. See notes in os_linux.cpp.
 410           if (thread->osthread()->expanding_stack() == 0) {
 411              thread->osthread()->set_expanding_stack();
 412              if (os::Linux::manually_expand_stack(thread, addr)) {
 413                thread->osthread()->clear_expanding_stack();
 414                return 1;
 415              }
 416              thread->osthread()->clear_expanding_stack();
 417           } else {
 418              fatal("recursive segv. expanding stack.");
 419           }
 420         }
 421       }
 422     }
 423 
 424     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 425       // Verify that OS save/restore AVX registers.
 426       stub = VM_Version::cpuinfo_cont_addr();
 427     }
 428 
 429     if (thread->thread_state() == _thread_in_Java) {
 430       // Java thread running in Java code => find exception handler if any
 431       // a fault inside compiled code, the interpreter, or a stub
 432 
 433       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 434         stub = SharedRuntime::get_poll_stub(pc);
 435       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 436         // BugId 4454115: A read from a MappedByteBuffer can fault
 437         // here if the underlying file has been truncated.
 438         // Do not crash the VM in such a case.
 439         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 440         CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
 441         if (nm != NULL && nm->has_unsafe_access()) {
 442           address next_pc = Assembler::locate_next_instruction(pc);
 443           stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 444         }
 445       }
 446       else
 447 
 448 #ifdef AMD64
 449       if (sig == SIGFPE  &&
 450           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 451         stub =
 452           SharedRuntime::
 453           continuation_for_implicit_exception(thread,
 454                                               pc,
 455                                               SharedRuntime::
 456                                               IMPLICIT_DIVIDE_BY_ZERO);
 457 #else
 458       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 459         // HACK: si_code does not work on linux 2.2.12-20!!!
 460         int op = pc[0];
 461         if (op == 0xDB) {
 462           // FIST
 463           // TODO: The encoding of D2I in i486.ad can cause an exception
 464           // prior to the fist instruction if there was an invalid operation
 465           // pending. We want to dismiss that exception. From the win_32
 466           // side it also seems that if it really was the fist causing
 467           // the exception that we do the d2i by hand with different
 468           // rounding. Seems kind of weird.
 469           // NOTE: that we take the exception at the NEXT floating point instruction.
 470           assert(pc[0] == 0xDB, "not a FIST opcode");
 471           assert(pc[1] == 0x14, "not a FIST opcode");
 472           assert(pc[2] == 0x24, "not a FIST opcode");
 473           return true;
 474         } else if (op == 0xF7) {
 475           // IDIV
 476           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 477         } else {
 478           // TODO: handle more cases if we are using other x86 instructions
 479           //   that can generate SIGFPE signal on linux.
 480           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 481           fatal("please update this code.");
 482         }
 483 #endif // AMD64
 484       } else if (sig == SIGSEGV &&
 485                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 486           // Determination of interpreter/vtable stub/compiled code null exception
 487           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 488       }
 489     } else if (thread->thread_state() == _thread_in_vm &&
 490                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 491                thread->doing_unsafe_access()) {
 492         address next_pc = Assembler::locate_next_instruction(pc);
 493         stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 494     }
 495 
 496     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 497     // and the heap gets shrunk before the field access.
 498     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 499       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 500       if (addr != (address)-1) {
 501         stub = addr;
 502       }
 503     }
 504 
 505     // Check to see if we caught the safepoint code in the
 506     // process of write protecting the memory serialization page.
 507     // It write enables the page immediately after protecting it
 508     // so we can just return to retry the write.
 509     if ((sig == SIGSEGV) &&
 510         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 511       // Block current thread until the memory serialize page permission restored.
 512       os::block_on_serialize_page_trap();
 513       return true;
 514     }
 515   }
 516 
 517 #ifndef AMD64
 518   // Execution protection violation
 519   //
 520   // This should be kept as the last step in the triage.  We don't
 521   // have a dedicated trap number for a no-execute fault, so be
 522   // conservative and allow other handlers the first shot.
 523   //
 524   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 525   // this si_code is so generic that it is almost meaningless; and
 526   // the si_code for this condition may change in the future.
 527   // Furthermore, a false-positive should be harmless.
 528   if (UnguardOnExecutionViolation > 0 &&
 529       (sig == SIGSEGV || sig == SIGBUS) &&
 530       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
 531     int page_size = os::vm_page_size();
 532     address addr = (address) info->si_addr;
 533     address pc = os::Linux::ucontext_get_pc(uc);
 534     // Make sure the pc and the faulting address are sane.
 535     //
 536     // If an instruction spans a page boundary, and the page containing
 537     // the beginning of the instruction is executable but the following
 538     // page is not, the pc and the faulting address might be slightly
 539     // different - we still want to unguard the 2nd page in this case.
 540     //
 541     // 15 bytes seems to be a (very) safe value for max instruction size.
 542     bool pc_is_near_addr =
 543       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 544     bool instr_spans_page_boundary =
 545       (align_down((intptr_t) pc ^ (intptr_t) addr,
 546                        (intptr_t) page_size) > 0);
 547 
 548     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 549       static volatile address last_addr =
 550         (address) os::non_memory_address_word();
 551 
 552       // In conservative mode, don't unguard unless the address is in the VM
 553       if (addr != last_addr &&
 554           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 555 
 556         // Set memory to RWX and retry
 557         address page_start = align_down(addr, page_size);
 558         bool res = os::protect_memory((char*) page_start, page_size,
 559                                       os::MEM_PROT_RWX);
 560 
 561         log_debug(os)("Execution protection violation "
 562                       "at " INTPTR_FORMAT
 563                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
 564                       p2i(page_start), (res ? "success" : "failed"), errno);
 565         stub = pc;
 566 
 567         // Set last_addr so if we fault again at the same address, we don't end
 568         // up in an endless loop.
 569         //
 570         // There are two potential complications here.  Two threads trapping at
 571         // the same address at the same time could cause one of the threads to
 572         // think it already unguarded, and abort the VM.  Likely very rare.
 573         //
 574         // The other race involves two threads alternately trapping at
 575         // different addresses and failing to unguard the page, resulting in
 576         // an endless loop.  This condition is probably even more unlikely than
 577         // the first.
 578         //
 579         // Although both cases could be avoided by using locks or thread local
 580         // last_addr, these solutions are unnecessary complication: this
 581         // handler is a best-effort safety net, not a complete solution.  It is
 582         // disabled by default and should only be used as a workaround in case
 583         // we missed any no-execute-unsafe VM code.
 584 
 585         last_addr = addr;
 586       }
 587     }
 588   }
 589 #endif // !AMD64
 590 
 591   if (stub != NULL) {
 592     // save all thread context in case we need to restore it
 593     if (thread != NULL) thread->set_saved_exception_pc(pc);
 594 
 595     os::Linux::ucontext_set_pc(uc, stub);
 596     return true;
 597   }
 598 
 599   // signal-chaining
 600   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 601      return true;
 602   }
 603 
 604   if (!abort_if_unrecognized) {
 605     // caller wants another chance, so give it to him
 606     return false;
 607   }
 608 
 609   if (pc == NULL && uc != NULL) {
 610     pc = os::Linux::ucontext_get_pc(uc);
 611   }
 612 
 613   // unmask current signal
 614   sigset_t newset;
 615   sigemptyset(&newset);
 616   sigaddset(&newset, sig);
 617   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 618 
 619   VMError::report_and_die(t, sig, pc, info, ucVoid);
 620 
 621   ShouldNotReachHere();
 622   return true; // Mute compiler
 623 }
 624 
 625 void os::Linux::init_thread_fpu_state(void) {
 626 #ifndef AMD64
 627   // set fpu to 53 bit precision
 628   set_fpu_control_word(0x27f);
 629 #endif // !AMD64
 630 }
 631 
 632 int os::Linux::get_fpu_control_word(void) {
 633 #ifdef AMD64
 634   return 0;
 635 #else
 636   int fpu_control;
 637   _FPU_GETCW(fpu_control);
 638   return fpu_control & 0xffff;
 639 #endif // AMD64
 640 }
 641 
 642 void os::Linux::set_fpu_control_word(int fpu_control) {
 643 #ifndef AMD64
 644   _FPU_SETCW(fpu_control);
 645 #endif // !AMD64
 646 }
 647 
 648 // Check that the linux kernel version is 2.4 or higher since earlier
 649 // versions do not support SSE without patches.
 650 bool os::supports_sse() {
 651 #ifdef AMD64
 652   return true;
 653 #else
 654   struct utsname uts;
 655   if( uname(&uts) != 0 ) return false; // uname fails?
 656   char *minor_string;
 657   int major = strtol(uts.release,&minor_string,10);
 658   int minor = strtol(minor_string+1,NULL,10);
 659   bool result = (major > 2 || (major==2 && minor >= 4));
 660   log_info(os)("OS version is %d.%d, which %s support SSE/SSE2",
 661                major,minor, result ? "DOES" : "does NOT");
 662   return result;
 663 #endif // AMD64
 664 }
 665 
 666 bool os::is_allocatable(size_t bytes) {
 667 #ifdef AMD64
 668   // unused on amd64?
 669   return true;
 670 #else
 671 
 672   if (bytes < 2 * G) {
 673     return true;
 674   }
 675 
 676   char* addr = reserve_memory(bytes, NULL);
 677 
 678   if (addr != NULL) {
 679     release_memory(addr, bytes);
 680   }
 681 
 682   return addr != NULL;
 683 #endif // AMD64
 684 }
 685 
 686 ////////////////////////////////////////////////////////////////////////////////
 687 // thread stack
 688 
 689 // Minimum usable stack sizes required to get to user code. Space for
 690 // HotSpot guard pages is added later.
 691 size_t os::Posix::_compiler_thread_min_stack_allowed = 48 * K;
 692 size_t os::Posix::_java_thread_min_stack_allowed = 40 * K;
 693 #ifdef _LP64
 694 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
 695 #else
 696 size_t os::Posix::_vm_internal_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K;
 697 #endif // _LP64
 698 
 699 // return default stack size for thr_type
 700 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
 701   // default stack size (compiler thread needs larger stack)
 702 #ifdef AMD64
 703   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 704 #else
 705   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 706 #endif // AMD64
 707   return s;
 708 }
 709 
 710 /////////////////////////////////////////////////////////////////////////////
 711 // helper functions for fatal error handler
 712 
 713 void os::print_context(outputStream *st, const void *context) {
 714   if (context == NULL) return;
 715 
 716   const ucontext_t *uc = (const ucontext_t*)context;
 717   st->print_cr("Registers:");
 718 #ifdef AMD64
 719   st->print(  "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]);
 720   st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]);
 721   st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]);
 722   st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]);
 723   st->cr();
 724   st->print(  "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]);
 725   st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]);
 726   st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]);
 727   st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]);
 728   st->cr();
 729   st->print(  "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]);
 730   st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]);
 731   st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]);
 732   st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]);
 733   st->cr();
 734   st->print(  "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]);
 735   st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]);
 736   st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]);
 737   st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]);
 738   st->cr();
 739   st->print(  "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]);
 740   st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]);
 741   st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]);
 742   st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]);
 743   st->cr();
 744   st->print("  TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]);
 745 #else
 746   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 747   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 748   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 749   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 750   st->cr();
 751   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
 752   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 753   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 754   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 755   st->cr();
 756   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
 757   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 758   st->print(", CR2=" PTR64_FORMAT, (uint64_t)uc->uc_mcontext.cr2);
 759 #endif // AMD64
 760   st->cr();
 761   st->cr();
 762 
 763   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 764   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
 765   print_hex_dump(st, (address)sp, (address)(sp + 8), sizeof(intptr_t));
 766   st->cr();
 767 
 768   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 769   // point to garbage if entry point in an nmethod is corrupted. Leave
 770   // this at the end, and hope for the best.
 771   address pc = os::Linux::ucontext_get_pc(uc);
 772   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
 773   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 774 }
 775 
 776 void os::print_register_info(outputStream *st, const void *context) {
 777   if (context == NULL) return;
 778 
 779   const ucontext_t *uc = (const ucontext_t*)context;
 780 
 781   st->print_cr("Register to memory mapping:");
 782   st->cr();
 783 
 784   // this is horrendously verbose but the layout of the registers in the
 785   // context does not match how we defined our abstract Register set, so
 786   // we can't just iterate through the gregs area
 787 
 788   // this is only for the "general purpose" registers
 789 
 790 #ifdef AMD64
 791   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 792   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 793   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 794   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 795   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 796   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 797   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 798   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 799   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 800   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 801   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 802   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 803   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 804   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 805   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 806   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 807 #else
 808   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
 809   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
 810   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
 811   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
 812   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
 813   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
 814   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
 815   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
 816 #endif // AMD64
 817 
 818   st->cr();
 819 }
 820 
 821 void os::setup_fpu() {
 822 #ifndef AMD64
 823   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 824   __asm__ volatile (  "fldcw (%0)" :
 825                       : "r" (fpu_cntrl) : "memory");
 826 #endif // !AMD64
 827 }
 828 
 829 #ifndef PRODUCT
 830 void os::verify_stack_alignment() {
 831 #ifdef AMD64
 832   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 833 #endif
 834 }
 835 #endif
 836 
 837 
 838 /*
 839  * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
 840  * updates (JDK-8023956).
 841  */
 842 void os::workaround_expand_exec_shield_cs_limit() {
 843 #if defined(IA32)
 844   size_t page_size = os::vm_page_size();
 845 
 846   /*
 847    * JDK-8197429
 848    *
 849    * Expand the stack mapping to the end of the initial stack before
 850    * attempting to install the codebuf.  This is needed because newer
 851    * Linux kernels impose a distance of a megabyte between stack
 852    * memory and other memory regions.  If we try to install the
 853    * codebuf before expanding the stack the installation will appear
 854    * to succeed but we'll get a segfault later if we expand the stack
 855    * in Java code.
 856    *
 857    */
 858   if (os::is_primordial_thread()) {
 859     address limit = Linux::initial_thread_stack_bottom();
 860     if (! DisablePrimordialThreadGuardPages) {
 861       limit += JavaThread::stack_red_zone_size() +
 862         JavaThread::stack_yellow_zone_size();
 863     }
 864     os::Linux::expand_stack_to(limit);
 865   }
 866 
 867   /*
 868    * Take the highest VA the OS will give us and exec
 869    *
 870    * Although using -(pagesz) as mmap hint works on newer kernel as you would
 871    * think, older variants affected by this work-around don't (search forward only).
 872    *
 873    * On the affected distributions, we understand the memory layout to be:
 874    *
 875    *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
 876    *
 877    * A few pages south main stack will do it.
 878    *
 879    * If we are embedded in an app other than launcher (initial != main stack),
 880    * we don't have much control or understanding of the address space, just let it slide.
 881    */
 882   char* hint = (char*)(Linux::initial_thread_stack_bottom() -
 883                        (JavaThread::stack_guard_zone_size() + page_size));
 884   char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
 885 
 886   if (codebuf == NULL) {
 887     // JDK-8197429: There may be a stack gap of one megabyte between
 888     // the limit of the stack and the nearest memory region: this is a
 889     // Linux kernel workaround for CVE-2017-1000364.  If we failed to
 890     // map our codebuf, try again at an address one megabyte lower.
 891     hint -= 1 * M;
 892     codebuf = os::attempt_reserve_memory_at(page_size, hint);
 893   }
 894 
 895   if ((codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true))) {
 896     return; // No matter, we tried, best effort.
 897   }
 898 
 899   MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
 900 
 901   log_info(os)("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
 902 
 903   // Some code to exec: the 'ret' instruction
 904   codebuf[0] = 0xC3;
 905 
 906   // Call the code in the codebuf
 907   __asm__ volatile("call *%0" : : "r"(codebuf));
 908 
 909   // keep the page mapped so CS limit isn't reduced.
 910 #endif
 911 }
 912 
 913 int os::extra_bang_size_in_bytes() {
 914   // JDK-8050147 requires the full cache line bang for x86.
 915   return VM_Version::L1_line_size();
 916 }