1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2018 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // According to the AIX OS doc #pragma alloca must be used
  27 // with C++ compiler before referencing the function alloca()
  28 #pragma alloca
  29 
  30 // no precompiled headers
  31 #include "jvm.h"
  32 #include "classfile/classLoader.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/icBuffer.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "logging/log.hpp"
  40 #include "libo4.hpp"
  41 #include "libperfstat_aix.hpp"
  42 #include "libodm_aix.hpp"
  43 #include "loadlib_aix.hpp"
  44 #include "memory/allocation.inline.hpp"
  45 #include "memory/filemap.hpp"
  46 #include "misc_aix.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "os_aix.inline.hpp"
  49 #include "os_share_aix.hpp"
  50 #include "porting_aix.hpp"
  51 #include "prims/jniFastGetField.hpp"
  52 #include "prims/jvm_misc.hpp"
  53 #include "runtime/arguments.hpp"
  54 #include "runtime/atomic.hpp"
  55 #include "runtime/extendedPC.hpp"
  56 #include "runtime/globals.hpp"
  57 #include "runtime/interfaceSupport.inline.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/javaCalls.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/orderAccess.hpp"
  63 #include "runtime/os.hpp"
  64 #include "runtime/osThread.hpp"
  65 #include "runtime/perfMemory.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/statSampler.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/thread.inline.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/timer.hpp"
  72 #include "runtime/vm_version.hpp"
  73 #include "services/attachListener.hpp"
  74 #include "services/runtimeService.hpp"
  75 #include "utilities/align.hpp"
  76 #include "utilities/decoder.hpp"
  77 #include "utilities/defaultStream.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/growableArray.hpp"
  80 #include "utilities/vmError.hpp"
  81 
  82 // put OS-includes here (sorted alphabetically)
  83 #include <errno.h>
  84 #include <fcntl.h>
  85 #include <inttypes.h>
  86 #include <poll.h>
  87 #include <procinfo.h>
  88 #include <pthread.h>
  89 #include <pwd.h>
  90 #include <semaphore.h>
  91 #include <signal.h>
  92 #include <stdint.h>
  93 #include <stdio.h>
  94 #include <string.h>
  95 #include <unistd.h>
  96 #include <sys/ioctl.h>
  97 #include <sys/ipc.h>
  98 #include <sys/mman.h>
  99 #include <sys/resource.h>
 100 #include <sys/select.h>
 101 #include <sys/shm.h>
 102 #include <sys/socket.h>
 103 #include <sys/stat.h>
 104 #include <sys/sysinfo.h>
 105 #include <sys/systemcfg.h>
 106 #include <sys/time.h>
 107 #include <sys/times.h>
 108 #include <sys/types.h>
 109 #include <sys/utsname.h>
 110 #include <sys/vminfo.h>
 111 #include <sys/wait.h>
 112 
 113 // Missing prototypes for various system APIs.
 114 extern "C"
 115 int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);
 116 
 117 #if !defined(_AIXVERSION_610)
 118 extern "C" int getthrds64(pid_t, struct thrdentry64*, int, tid64_t*, int);
 119 extern "C" int getprocs64(procentry64*, int, fdsinfo*, int, pid_t*, int);
 120 extern "C" int getargs(procsinfo*, int, char*, int);
 121 #endif
 122 
 123 #define MAX_PATH (2 * K)
 124 
 125 // for timer info max values which include all bits
 126 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 127 // for multipage initialization error analysis (in 'g_multipage_error')
 128 #define ERROR_MP_OS_TOO_OLD                          100
 129 #define ERROR_MP_EXTSHM_ACTIVE                       101
 130 #define ERROR_MP_VMGETINFO_FAILED                    102
 131 #define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103
 132 
 133 // excerpts from systemcfg.h that might be missing on older os levels
 134 #ifndef PV_5_Compat
 135   #define PV_5_Compat 0x0F8000   /* Power PC 5 */
 136 #endif
 137 #ifndef PV_6
 138   #define PV_6 0x100000          /* Power PC 6 */
 139 #endif
 140 #ifndef PV_6_1
 141   #define PV_6_1 0x100001        /* Power PC 6 DD1.x */
 142 #endif
 143 #ifndef PV_6_Compat
 144   #define PV_6_Compat 0x108000   /* Power PC 6 */
 145 #endif
 146 #ifndef PV_7
 147   #define PV_7 0x200000          /* Power PC 7 */
 148 #endif
 149 #ifndef PV_7_Compat
 150   #define PV_7_Compat 0x208000   /* Power PC 7 */
 151 #endif
 152 #ifndef PV_8
 153   #define PV_8 0x300000          /* Power PC 8 */
 154 #endif
 155 #ifndef PV_8_Compat
 156   #define PV_8_Compat 0x308000   /* Power PC 8 */
 157 #endif
 158 
 159 static address resolve_function_descriptor_to_code_pointer(address p);
 160 
 161 static void vmembk_print_on(outputStream* os);
 162 
 163 ////////////////////////////////////////////////////////////////////////////////
 164 // global variables (for a description see os_aix.hpp)
 165 
 166 julong    os::Aix::_physical_memory = 0;
 167 
 168 pthread_t os::Aix::_main_thread = ((pthread_t)0);
 169 int       os::Aix::_page_size = -1;
 170 
 171 // -1 = uninitialized, 0 if AIX, 1 if OS/400 pase
 172 int       os::Aix::_on_pase = -1;
 173 
 174 // 0 = uninitialized, otherwise 32 bit number:
 175 //  0xVVRRTTSS
 176 //  VV - major version
 177 //  RR - minor version
 178 //  TT - tech level, if known, 0 otherwise
 179 //  SS - service pack, if known, 0 otherwise
 180 uint32_t  os::Aix::_os_version = 0;
 181 
 182 // -1 = uninitialized, 0 - no, 1 - yes
 183 int       os::Aix::_xpg_sus_mode = -1;
 184 
 185 // -1 = uninitialized, 0 - no, 1 - yes
 186 int       os::Aix::_extshm = -1;
 187 
 188 ////////////////////////////////////////////////////////////////////////////////
 189 // local variables
 190 
 191 static volatile jlong max_real_time = 0;
 192 static jlong    initial_time_count = 0;
 193 static int      clock_tics_per_sec = 100;
 194 static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
 195 static bool     check_signals      = true;
 196 static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
 197 static sigset_t SR_sigset;
 198 
 199 // Process break recorded at startup.
 200 static address g_brk_at_startup = NULL;
 201 
 202 // This describes the state of multipage support of the underlying
 203 // OS. Note that this is of no interest to the outsize world and
 204 // therefore should not be defined in AIX class.
 205 //
 206 // AIX supports four different page sizes - 4K, 64K, 16MB, 16GB. The
 207 // latter two (16M "large" resp. 16G "huge" pages) require special
 208 // setup and are normally not available.
 209 //
 210 // AIX supports multiple page sizes per process, for:
 211 //  - Stack (of the primordial thread, so not relevant for us)
 212 //  - Data - data, bss, heap, for us also pthread stacks
 213 //  - Text - text code
 214 //  - shared memory
 215 //
 216 // Default page sizes can be set via linker options (-bdatapsize, -bstacksize, ...)
 217 // and via environment variable LDR_CNTRL (DATAPSIZE, STACKPSIZE, ...).
 218 //
 219 // For shared memory, page size can be set dynamically via
 220 // shmctl(). Different shared memory regions can have different page
 221 // sizes.
 222 //
 223 // More information can be found at AIBM info center:
 224 //   http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_app_support.htm
 225 //
 226 static struct {
 227   size_t pagesize;            // sysconf _SC_PAGESIZE (4K)
 228   size_t datapsize;           // default data page size (LDR_CNTRL DATAPSIZE)
 229   size_t shmpsize;            // default shared memory page size (LDR_CNTRL SHMPSIZE)
 230   size_t pthr_stack_pagesize; // stack page size of pthread threads
 231   size_t textpsize;           // default text page size (LDR_CNTRL STACKPSIZE)
 232   bool can_use_64K_pages;     // True if we can alloc 64K pages dynamically with Sys V shm.
 233   bool can_use_16M_pages;     // True if we can alloc 16M pages dynamically with Sys V shm.
 234   int error;                  // Error describing if something went wrong at multipage init.
 235 } g_multipage_support = {
 236   (size_t) -1,
 237   (size_t) -1,
 238   (size_t) -1,
 239   (size_t) -1,
 240   (size_t) -1,
 241   false, false,
 242   0
 243 };
 244 
 245 // We must not accidentally allocate memory close to the BRK - even if
 246 // that would work - because then we prevent the BRK segment from
 247 // growing which may result in a malloc OOM even though there is
 248 // enough memory. The problem only arises if we shmat() or mmap() at
 249 // a specific wish address, e.g. to place the heap in a
 250 // compressed-oops-friendly way.
 251 static bool is_close_to_brk(address a) {
 252   assert0(g_brk_at_startup != NULL);
 253   if (a >= g_brk_at_startup &&
 254       a < (g_brk_at_startup + MaxExpectedDataSegmentSize)) {
 255     return true;
 256   }
 257   return false;
 258 }
 259 
 260 julong os::available_memory() {
 261   return Aix::available_memory();
 262 }
 263 
 264 julong os::Aix::available_memory() {
 265   // Avoid expensive API call here, as returned value will always be null.
 266   if (os::Aix::on_pase()) {
 267     return 0x0LL;
 268   }
 269   os::Aix::meminfo_t mi;
 270   if (os::Aix::get_meminfo(&mi)) {
 271     return mi.real_free;
 272   } else {
 273     return ULONG_MAX;
 274   }
 275 }
 276 
 277 julong os::physical_memory() {
 278   return Aix::physical_memory();
 279 }
 280 
 281 // Return true if user is running as root.
 282 
 283 bool os::have_special_privileges() {
 284   static bool init = false;
 285   static bool privileges = false;
 286   if (!init) {
 287     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 288     init = true;
 289   }
 290   return privileges;
 291 }
 292 
 293 // Helper function, emulates disclaim64 using multiple 32bit disclaims
 294 // because we cannot use disclaim64() on AS/400 and old AIX releases.
 295 static bool my_disclaim64(char* addr, size_t size) {
 296 
 297   if (size == 0) {
 298     return true;
 299   }
 300 
 301   // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
 302   const unsigned int maxDisclaimSize = 0x40000000;
 303 
 304   const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
 305   const unsigned int lastDisclaimSize = (size % maxDisclaimSize);
 306 
 307   char* p = addr;
 308 
 309   for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
 310     if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 311       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
 312       return false;
 313     }
 314     p += maxDisclaimSize;
 315   }
 316 
 317   if (lastDisclaimSize > 0) {
 318     if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 319       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
 320       return false;
 321     }
 322   }
 323 
 324   return true;
 325 }
 326 
 327 // Cpu architecture string
 328 #if defined(PPC32)
 329 static char cpu_arch[] = "ppc";
 330 #elif defined(PPC64)
 331 static char cpu_arch[] = "ppc64";
 332 #else
 333 #error Add appropriate cpu_arch setting
 334 #endif
 335 
 336 // Wrap the function "vmgetinfo" which is not available on older OS releases.
 337 static int checked_vmgetinfo(void *out, int command, int arg) {
 338   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 339     guarantee(false, "cannot call vmgetinfo on AS/400 older than V6R1");
 340   }
 341   return ::vmgetinfo(out, command, arg);
 342 }
 343 
 344 // Given an address, returns the size of the page backing that address.
 345 size_t os::Aix::query_pagesize(void* addr) {
 346 
 347   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 348     // AS/400 older than V6R1: no vmgetinfo here, default to 4K
 349     return 4*K;
 350   }
 351 
 352   vm_page_info pi;
 353   pi.addr = (uint64_t)addr;
 354   if (checked_vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
 355     return pi.pagesize;
 356   } else {
 357     assert(false, "vmgetinfo failed to retrieve page size");
 358     return 4*K;
 359   }
 360 }
 361 
 362 void os::Aix::initialize_system_info() {
 363 
 364   // Get the number of online(logical) cpus instead of configured.
 365   os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
 366   assert(_processor_count > 0, "_processor_count must be > 0");
 367 
 368   // Retrieve total physical storage.
 369   os::Aix::meminfo_t mi;
 370   if (!os::Aix::get_meminfo(&mi)) {
 371     assert(false, "os::Aix::get_meminfo failed.");
 372   }
 373   _physical_memory = (julong) mi.real_total;
 374 }
 375 
 376 // Helper function for tracing page sizes.
 377 static const char* describe_pagesize(size_t pagesize) {
 378   switch (pagesize) {
 379     case 4*K : return "4K";
 380     case 64*K: return "64K";
 381     case 16*M: return "16M";
 382     case 16*G: return "16G";
 383     default:
 384       assert(false, "surprise");
 385       return "??";
 386   }
 387 }
 388 
 389 // Probe OS for multipage support.
 390 // Will fill the global g_multipage_support structure.
 391 // Must be called before calling os::large_page_init().
 392 static void query_multipage_support() {
 393 
 394   guarantee(g_multipage_support.pagesize == -1,
 395             "do not call twice");
 396 
 397   g_multipage_support.pagesize = ::sysconf(_SC_PAGESIZE);
 398 
 399   // This really would surprise me.
 400   assert(g_multipage_support.pagesize == 4*K, "surprise!");
 401 
 402   // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
 403   // Default data page size is defined either by linker options (-bdatapsize)
 404   // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
 405   // default should be 4K.
 406   {
 407     void* p = ::malloc(16*M);
 408     g_multipage_support.datapsize = os::Aix::query_pagesize(p);
 409     ::free(p);
 410   }
 411 
 412   // Query default shm page size (LDR_CNTRL SHMPSIZE).
 413   // Note that this is pure curiosity. We do not rely on default page size but set
 414   // our own page size after allocated.
 415   {
 416     const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
 417     guarantee(shmid != -1, "shmget failed");
 418     void* p = ::shmat(shmid, NULL, 0);
 419     ::shmctl(shmid, IPC_RMID, NULL);
 420     guarantee(p != (void*) -1, "shmat failed");
 421     g_multipage_support.shmpsize = os::Aix::query_pagesize(p);
 422     ::shmdt(p);
 423   }
 424 
 425   // Before querying the stack page size, make sure we are not running as primordial
 426   // thread (because primordial thread's stack may have different page size than
 427   // pthread thread stacks). Running a VM on the primordial thread won't work for a
 428   // number of reasons so we may just as well guarantee it here.
 429   guarantee0(!os::is_primordial_thread());
 430 
 431   // Query pthread stack page size. Should be the same as data page size because
 432   // pthread stacks are allocated from C-Heap.
 433   {
 434     int dummy = 0;
 435     g_multipage_support.pthr_stack_pagesize = os::Aix::query_pagesize(&dummy);
 436   }
 437 
 438   // Query default text page size (LDR_CNTRL TEXTPSIZE).
 439   {
 440     address any_function =
 441       resolve_function_descriptor_to_code_pointer((address)describe_pagesize);
 442     g_multipage_support.textpsize = os::Aix::query_pagesize(any_function);
 443   }
 444 
 445   // Now probe for support of 64K pages and 16M pages.
 446 
 447   // Before OS/400 V6R1, there is no support for pages other than 4K.
 448   if (os::Aix::on_pase_V5R4_or_older()) {
 449     trcVerbose("OS/400 < V6R1 - no large page support.");
 450     g_multipage_support.error = ERROR_MP_OS_TOO_OLD;
 451     goto query_multipage_support_end;
 452   }
 453 
 454   // Now check which page sizes the OS claims it supports, and of those, which actually can be used.
 455   {
 456     const int MAX_PAGE_SIZES = 4;
 457     psize_t sizes[MAX_PAGE_SIZES];
 458     const int num_psizes = checked_vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
 459     if (num_psizes == -1) {
 460       trcVerbose("vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)", errno);
 461       trcVerbose("disabling multipage support.");
 462       g_multipage_support.error = ERROR_MP_VMGETINFO_FAILED;
 463       goto query_multipage_support_end;
 464     }
 465     guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
 466     assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
 467     trcVerbose("vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
 468     for (int i = 0; i < num_psizes; i ++) {
 469       trcVerbose(" %s ", describe_pagesize(sizes[i]));
 470     }
 471 
 472     // Can we use 64K, 16M pages?
 473     for (int i = 0; i < num_psizes; i ++) {
 474       const size_t pagesize = sizes[i];
 475       if (pagesize != 64*K && pagesize != 16*M) {
 476         continue;
 477       }
 478       bool can_use = false;
 479       trcVerbose("Probing support for %s pages...", describe_pagesize(pagesize));
 480       const int shmid = ::shmget(IPC_PRIVATE, pagesize,
 481         IPC_CREAT | S_IRUSR | S_IWUSR);
 482       guarantee0(shmid != -1); // Should always work.
 483       // Try to set pagesize.
 484       struct shmid_ds shm_buf = { 0 };
 485       shm_buf.shm_pagesize = pagesize;
 486       if (::shmctl(shmid, SHM_PAGESIZE, &shm_buf) != 0) {
 487         const int en = errno;
 488         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 489         trcVerbose("shmctl(SHM_PAGESIZE) failed with errno=%n",
 490           errno);
 491       } else {
 492         // Attach and double check pageisze.
 493         void* p = ::shmat(shmid, NULL, 0);
 494         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 495         guarantee0(p != (void*) -1); // Should always work.
 496         const size_t real_pagesize = os::Aix::query_pagesize(p);
 497         if (real_pagesize != pagesize) {
 498           trcVerbose("real page size (0x%llX) differs.", real_pagesize);
 499         } else {
 500           can_use = true;
 501         }
 502         ::shmdt(p);
 503       }
 504       trcVerbose("Can use: %s", (can_use ? "yes" : "no"));
 505       if (pagesize == 64*K) {
 506         g_multipage_support.can_use_64K_pages = can_use;
 507       } else if (pagesize == 16*M) {
 508         g_multipage_support.can_use_16M_pages = can_use;
 509       }
 510     }
 511 
 512   } // end: check which pages can be used for shared memory
 513 
 514 query_multipage_support_end:
 515 
 516   trcVerbose("base page size (sysconf _SC_PAGESIZE): %s",
 517       describe_pagesize(g_multipage_support.pagesize));
 518   trcVerbose("Data page size (C-Heap, bss, etc): %s",
 519       describe_pagesize(g_multipage_support.datapsize));
 520   trcVerbose("Text page size: %s",
 521       describe_pagesize(g_multipage_support.textpsize));
 522   trcVerbose("Thread stack page size (pthread): %s",
 523       describe_pagesize(g_multipage_support.pthr_stack_pagesize));
 524   trcVerbose("Default shared memory page size: %s",
 525       describe_pagesize(g_multipage_support.shmpsize));
 526   trcVerbose("Can use 64K pages dynamically with shared meory: %s",
 527       (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
 528   trcVerbose("Can use 16M pages dynamically with shared memory: %s",
 529       (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
 530   trcVerbose("Multipage error details: %d",
 531       g_multipage_support.error);
 532 
 533   // sanity checks
 534   assert0(g_multipage_support.pagesize == 4*K);
 535   assert0(g_multipage_support.datapsize == 4*K || g_multipage_support.datapsize == 64*K);
 536   assert0(g_multipage_support.textpsize == 4*K || g_multipage_support.textpsize == 64*K);
 537   assert0(g_multipage_support.pthr_stack_pagesize == g_multipage_support.datapsize);
 538   assert0(g_multipage_support.shmpsize == 4*K || g_multipage_support.shmpsize == 64*K);
 539 
 540 }
 541 
 542 void os::init_system_properties_values() {
 543 
 544 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 545 #define EXTENSIONS_DIR  "/lib/ext"
 546 
 547   // Buffer that fits several sprintfs.
 548   // Note that the space for the trailing null is provided
 549   // by the nulls included by the sizeof operator.
 550   const size_t bufsize =
 551     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 552          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR)); // extensions dir
 553   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 554 
 555   // sysclasspath, java_home, dll_dir
 556   {
 557     char *pslash;
 558     os::jvm_path(buf, bufsize);
 559 
 560     // Found the full path to libjvm.so.
 561     // Now cut the path to <java_home>/jre if we can.
 562     pslash = strrchr(buf, '/');
 563     if (pslash != NULL) {
 564       *pslash = '\0';            // Get rid of /libjvm.so.
 565     }
 566     pslash = strrchr(buf, '/');
 567     if (pslash != NULL) {
 568       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 569     }
 570     Arguments::set_dll_dir(buf);
 571 
 572     if (pslash != NULL) {
 573       pslash = strrchr(buf, '/');
 574       if (pslash != NULL) {
 575         *pslash = '\0';        // Get rid of /lib.
 576       }
 577     }
 578     Arguments::set_java_home(buf);
 579     if (!set_boot_path('/', ':')) {
 580       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 581     }
 582   }
 583 
 584   // Where to look for native libraries.
 585 
 586   // On Aix we get the user setting of LIBPATH.
 587   // Eventually, all the library path setting will be done here.
 588   // Get the user setting of LIBPATH.
 589   const char *v = ::getenv("LIBPATH");
 590   const char *v_colon = ":";
 591   if (v == NULL) { v = ""; v_colon = ""; }
 592 
 593   // Concatenate user and invariant part of ld_library_path.
 594   // That's +1 for the colon and +1 for the trailing '\0'.
 595   char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
 596   sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
 597   Arguments::set_library_path(ld_library_path);
 598   FREE_C_HEAP_ARRAY(char, ld_library_path);
 599 
 600   // Extensions directories.
 601   sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
 602   Arguments::set_ext_dirs(buf);
 603 
 604   FREE_C_HEAP_ARRAY(char, buf);
 605 
 606 #undef DEFAULT_LIBPATH
 607 #undef EXTENSIONS_DIR
 608 }
 609 
 610 ////////////////////////////////////////////////////////////////////////////////
 611 // breakpoint support
 612 
 613 void os::breakpoint() {
 614   BREAKPOINT;
 615 }
 616 
 617 extern "C" void breakpoint() {
 618   // use debugger to set breakpoint here
 619 }
 620 
 621 ////////////////////////////////////////////////////////////////////////////////
 622 // signal support
 623 
 624 debug_only(static bool signal_sets_initialized = false);
 625 static sigset_t unblocked_sigs, vm_sigs;
 626 
 627 void os::Aix::signal_sets_init() {
 628   // Should also have an assertion stating we are still single-threaded.
 629   assert(!signal_sets_initialized, "Already initialized");
 630   // Fill in signals that are necessarily unblocked for all threads in
 631   // the VM. Currently, we unblock the following signals:
 632   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 633   //                         by -Xrs (=ReduceSignalUsage));
 634   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 635   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 636   // the dispositions or masks wrt these signals.
 637   // Programs embedding the VM that want to use the above signals for their
 638   // own purposes must, at this time, use the "-Xrs" option to prevent
 639   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 640   // (See bug 4345157, and other related bugs).
 641   // In reality, though, unblocking these signals is really a nop, since
 642   // these signals are not blocked by default.
 643   sigemptyset(&unblocked_sigs);
 644   sigaddset(&unblocked_sigs, SIGILL);
 645   sigaddset(&unblocked_sigs, SIGSEGV);
 646   sigaddset(&unblocked_sigs, SIGBUS);
 647   sigaddset(&unblocked_sigs, SIGFPE);
 648   sigaddset(&unblocked_sigs, SIGTRAP);
 649   sigaddset(&unblocked_sigs, SR_signum);
 650 
 651   if (!ReduceSignalUsage) {
 652    if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 653      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 654    }
 655    if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 656      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 657    }
 658    if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 659      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 660    }
 661   }
 662   // Fill in signals that are blocked by all but the VM thread.
 663   sigemptyset(&vm_sigs);
 664   if (!ReduceSignalUsage)
 665     sigaddset(&vm_sigs, BREAK_SIGNAL);
 666   debug_only(signal_sets_initialized = true);
 667 }
 668 
 669 // These are signals that are unblocked while a thread is running Java.
 670 // (For some reason, they get blocked by default.)
 671 sigset_t* os::Aix::unblocked_signals() {
 672   assert(signal_sets_initialized, "Not initialized");
 673   return &unblocked_sigs;
 674 }
 675 
 676 // These are the signals that are blocked while a (non-VM) thread is
 677 // running Java. Only the VM thread handles these signals.
 678 sigset_t* os::Aix::vm_signals() {
 679   assert(signal_sets_initialized, "Not initialized");
 680   return &vm_sigs;
 681 }
 682 
 683 void os::Aix::hotspot_sigmask(Thread* thread) {
 684 
 685   //Save caller's signal mask before setting VM signal mask
 686   sigset_t caller_sigmask;
 687   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 688 
 689   OSThread* osthread = thread->osthread();
 690   osthread->set_caller_sigmask(caller_sigmask);
 691 
 692   pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);
 693 
 694   if (!ReduceSignalUsage) {
 695     if (thread->is_VM_thread()) {
 696       // Only the VM thread handles BREAK_SIGNAL ...
 697       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 698     } else {
 699       // ... all other threads block BREAK_SIGNAL
 700       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 701     }
 702   }
 703 }
 704 
 705 // retrieve memory information.
 706 // Returns false if something went wrong;
 707 // content of pmi undefined in this case.
 708 bool os::Aix::get_meminfo(meminfo_t* pmi) {
 709 
 710   assert(pmi, "get_meminfo: invalid parameter");
 711 
 712   memset(pmi, 0, sizeof(meminfo_t));
 713 
 714   if (os::Aix::on_pase()) {
 715     // On PASE, use the libo4 porting library.
 716 
 717     unsigned long long virt_total = 0;
 718     unsigned long long real_total = 0;
 719     unsigned long long real_free = 0;
 720     unsigned long long pgsp_total = 0;
 721     unsigned long long pgsp_free = 0;
 722     if (libo4::get_memory_info(&virt_total, &real_total, &real_free, &pgsp_total, &pgsp_free)) {
 723       pmi->virt_total = virt_total;
 724       pmi->real_total = real_total;
 725       pmi->real_free = real_free;
 726       pmi->pgsp_total = pgsp_total;
 727       pmi->pgsp_free = pgsp_free;
 728       return true;
 729     }
 730     return false;
 731 
 732   } else {
 733 
 734     // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
 735     // See:
 736     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 737     //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
 738     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 739     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 740 
 741     perfstat_memory_total_t psmt;
 742     memset (&psmt, '\0', sizeof(psmt));
 743     const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
 744     if (rc == -1) {
 745       trcVerbose("perfstat_memory_total() failed (errno=%d)", errno);
 746       assert(0, "perfstat_memory_total() failed");
 747       return false;
 748     }
 749 
 750     assert(rc == 1, "perfstat_memory_total() - weird return code");
 751 
 752     // excerpt from
 753     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 754     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 755     // The fields of perfstat_memory_total_t:
 756     // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
 757     // u_longlong_t real_total         Total real memory (in 4 KB pages).
 758     // u_longlong_t real_free          Free real memory (in 4 KB pages).
 759     // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
 760     // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).
 761 
 762     pmi->virt_total = psmt.virt_total * 4096;
 763     pmi->real_total = psmt.real_total * 4096;
 764     pmi->real_free = psmt.real_free * 4096;
 765     pmi->pgsp_total = psmt.pgsp_total * 4096;
 766     pmi->pgsp_free = psmt.pgsp_free * 4096;
 767 
 768     return true;
 769 
 770   }
 771 } // end os::Aix::get_meminfo
 772 
 773 //////////////////////////////////////////////////////////////////////////////
 774 // create new thread
 775 
 776 // Thread start routine for all newly created threads
 777 static void *thread_native_entry(Thread *thread) {
 778 
 779   thread->record_stack_base_and_size();
 780 
 781   const pthread_t pthread_id = ::pthread_self();
 782   const tid_t kernel_thread_id = ::thread_self();
 783 
 784   LogTarget(Info, os, thread) lt;
 785   if (lt.is_enabled()) {
 786     address low_address = thread->stack_end();
 787     address high_address = thread->stack_base();
 788     lt.print("Thread is alive (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT
 789              ", stack [" PTR_FORMAT " - " PTR_FORMAT " (" SIZE_FORMAT "k using %uk pages)).",
 790              os::current_thread_id(), (uintx) kernel_thread_id, low_address, high_address,
 791              (high_address - low_address) / K, os::Aix::query_pagesize(low_address) / K);
 792   }
 793 
 794   // Normally, pthread stacks on AIX live in the data segment (are allocated with malloc()
 795   // by the pthread library). In rare cases, this may not be the case, e.g. when third-party
 796   // tools hook pthread_create(). In this case, we may run into problems establishing
 797   // guard pages on those stacks, because the stacks may reside in memory which is not
 798   // protectable (shmated).
 799   if (thread->stack_base() > ::sbrk(0)) {
 800     log_warning(os, thread)("Thread stack not in data segment.");
 801   }
 802 
 803   // Try to randomize the cache line index of hot stack frames.
 804   // This helps when threads of the same stack traces evict each other's
 805   // cache lines. The threads can be either from the same JVM instance, or
 806   // from different JVM instances. The benefit is especially true for
 807   // processors with hyperthreading technology.
 808 
 809   static int counter = 0;
 810   int pid = os::current_process_id();
 811   alloca(((pid ^ counter++) & 7) * 128);
 812 
 813   thread->initialize_thread_current();
 814 
 815   OSThread* osthread = thread->osthread();
 816 
 817   // Thread_id is pthread id.
 818   osthread->set_thread_id(pthread_id);
 819 
 820   // .. but keep kernel thread id too for diagnostics
 821   osthread->set_kernel_thread_id(kernel_thread_id);
 822 
 823   // Initialize signal mask for this thread.
 824   os::Aix::hotspot_sigmask(thread);
 825 
 826   // Initialize floating point control register.
 827   os::Aix::init_thread_fpu_state();
 828 
 829   assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
 830 
 831   // Call one more level start routine.
 832   thread->call_run();
 833 
 834   // Note: at this point the thread object may already have deleted itself.
 835   // Prevent dereferencing it from here on out.
 836   thread = NULL;
 837 
 838   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 839     os::current_thread_id(), (uintx) kernel_thread_id);
 840 
 841   return 0;
 842 }
 843 
 844 bool os::create_thread(Thread* thread, ThreadType thr_type,
 845                        size_t req_stack_size) {
 846 
 847   assert(thread->osthread() == NULL, "caller responsible");
 848 
 849   // Allocate the OSThread object.
 850   OSThread* osthread = new OSThread(NULL, NULL);
 851   if (osthread == NULL) {
 852     return false;
 853   }
 854 
 855   // Set the correct thread state.
 856   osthread->set_thread_type(thr_type);
 857 
 858   // Initial state is ALLOCATED but not INITIALIZED
 859   osthread->set_state(ALLOCATED);
 860 
 861   thread->set_osthread(osthread);
 862 
 863   // Init thread attributes.
 864   pthread_attr_t attr;
 865   pthread_attr_init(&attr);
 866   guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");
 867 
 868   // Make sure we run in 1:1 kernel-user-thread mode.
 869   if (os::Aix::on_aix()) {
 870     guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
 871     guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
 872   }
 873 
 874   // Start in suspended state, and in os::thread_start, wake the thread up.
 875   guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");
 876 
 877   // Calculate stack size if it's not specified by caller.
 878   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 879 
 880   // JDK-8187028: It was observed that on some configurations (4K backed thread stacks)
 881   // the real thread stack size may be smaller than the requested stack size, by as much as 64K.
 882   // This very much looks like a pthread lib error. As a workaround, increase the stack size
 883   // by 64K for small thread stacks (arbitrarily choosen to be < 4MB)
 884   if (stack_size < 4096 * K) {
 885     stack_size += 64 * K;
 886   }
 887 
 888   // On Aix, pthread_attr_setstacksize fails with huge values and leaves the
 889   // thread size in attr unchanged. If this is the minimal stack size as set
 890   // by pthread_attr_init this leads to crashes after thread creation. E.g. the
 891   // guard pages might not fit on the tiny stack created.
 892   int ret = pthread_attr_setstacksize(&attr, stack_size);
 893   if (ret != 0) {
 894     log_warning(os, thread)("The %sthread stack size specified is invalid: " SIZE_FORMAT "k",
 895                             (thr_type == compiler_thread) ? "compiler " : ((thr_type == java_thread) ? "" : "VM "),
 896                             stack_size / K);
 897     thread->set_osthread(NULL);
 898     delete osthread;
 899     return false;
 900   }
 901 
 902   // Save some cycles and a page by disabling OS guard pages where we have our own
 903   // VM guard pages (in java threads). For other threads, keep system default guard
 904   // pages in place.
 905   if (thr_type == java_thread || thr_type == compiler_thread) {
 906     ret = pthread_attr_setguardsize(&attr, 0);
 907   }
 908 
 909   pthread_t tid = 0;
 910   if (ret == 0) {
 911     ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 912   }
 913 
 914   if (ret == 0) {
 915     char buf[64];
 916     log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 917       (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 918   } else {
 919     char buf[64];
 920     log_warning(os, thread)("Failed to start thread - pthread_create failed (%d=%s) for attributes: %s.",
 921       ret, os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 922   }
 923 
 924   pthread_attr_destroy(&attr);
 925 
 926   if (ret != 0) {
 927     // Need to clean up stuff we've allocated so far.
 928     thread->set_osthread(NULL);
 929     delete osthread;
 930     return false;
 931   }
 932 
 933   // OSThread::thread_id is the pthread id.
 934   osthread->set_thread_id(tid);
 935 
 936   return true;
 937 }
 938 
 939 /////////////////////////////////////////////////////////////////////////////
 940 // attach existing thread
 941 
 942 // bootstrap the main thread
 943 bool os::create_main_thread(JavaThread* thread) {
 944   assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
 945   return create_attached_thread(thread);
 946 }
 947 
 948 bool os::create_attached_thread(JavaThread* thread) {
 949 #ifdef ASSERT
 950     thread->verify_not_published();
 951 #endif
 952 
 953   // Allocate the OSThread object
 954   OSThread* osthread = new OSThread(NULL, NULL);
 955 
 956   if (osthread == NULL) {
 957     return false;
 958   }
 959 
 960   const pthread_t pthread_id = ::pthread_self();
 961   const tid_t kernel_thread_id = ::thread_self();
 962 
 963   // OSThread::thread_id is the pthread id.
 964   osthread->set_thread_id(pthread_id);
 965 
 966   // .. but keep kernel thread id too for diagnostics
 967   osthread->set_kernel_thread_id(kernel_thread_id);
 968 
 969   // initialize floating point control register
 970   os::Aix::init_thread_fpu_state();
 971 
 972   // Initial thread state is RUNNABLE
 973   osthread->set_state(RUNNABLE);
 974 
 975   thread->set_osthread(osthread);
 976 
 977   if (UseNUMA) {
 978     int lgrp_id = os::numa_get_group_id();
 979     if (lgrp_id != -1) {
 980       thread->set_lgrp_id(lgrp_id);
 981     }
 982   }
 983 
 984   // initialize signal mask for this thread
 985   // and save the caller's signal mask
 986   os::Aix::hotspot_sigmask(thread);
 987 
 988   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 989     os::current_thread_id(), (uintx) kernel_thread_id);
 990 
 991   return true;
 992 }
 993 
 994 void os::pd_start_thread(Thread* thread) {
 995   int status = pthread_continue_np(thread->osthread()->pthread_id());
 996   assert(status == 0, "thr_continue failed");
 997 }
 998 
 999 // Free OS resources related to the OSThread
1000 void os::free_thread(OSThread* osthread) {
1001   assert(osthread != NULL, "osthread not set");
1002 
1003   // We are told to free resources of the argument thread,
1004   // but we can only really operate on the current thread.
1005   assert(Thread::current()->osthread() == osthread,
1006          "os::free_thread but not current thread");
1007 
1008   // Restore caller's signal mask
1009   sigset_t sigmask = osthread->caller_sigmask();
1010   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1011 
1012   delete osthread;
1013 }
1014 
1015 ////////////////////////////////////////////////////////////////////////////////
1016 // time support
1017 
1018 // Time since start-up in seconds to a fine granularity.
1019 // Used by VMSelfDestructTimer and the MemProfiler.
1020 double os::elapsedTime() {
1021   return (double)(os::elapsed_counter()) * 0.000001;
1022 }
1023 
1024 jlong os::elapsed_counter() {
1025   timeval time;
1026   int status = gettimeofday(&time, NULL);
1027   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1028 }
1029 
1030 jlong os::elapsed_frequency() {
1031   return (1000 * 1000);
1032 }
1033 
1034 bool os::supports_vtime() { return true; }
1035 bool os::enable_vtime()   { return false; }
1036 bool os::vtime_enabled()  { return false; }
1037 
1038 double os::elapsedVTime() {
1039   struct rusage usage;
1040   int retval = getrusage(RUSAGE_THREAD, &usage);
1041   if (retval == 0) {
1042     return usage.ru_utime.tv_sec + usage.ru_stime.tv_sec + (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000.0 * 1000);
1043   } else {
1044     // better than nothing, but not much
1045     return elapsedTime();
1046   }
1047 }
1048 
1049 jlong os::javaTimeMillis() {
1050   timeval time;
1051   int status = gettimeofday(&time, NULL);
1052   assert(status != -1, "aix error at gettimeofday()");
1053   return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
1054 }
1055 
1056 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1057   timeval time;
1058   int status = gettimeofday(&time, NULL);
1059   assert(status != -1, "aix error at gettimeofday()");
1060   seconds = jlong(time.tv_sec);
1061   nanos = jlong(time.tv_usec) * 1000;
1062 }
1063 
1064 // We use mread_real_time here.
1065 // On AIX: If the CPU has a time register, the result will be RTC_POWER and
1066 // it has to be converted to real time. AIX documentations suggests to do
1067 // this unconditionally, so we do it.
1068 //
1069 // See: https://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.basetrf2/read_real_time.htm
1070 //
1071 // On PASE: mread_real_time will always return RTC_POWER_PC data, so no
1072 // conversion is necessary. However, mread_real_time will not return
1073 // monotonic results but merely matches read_real_time. So we need a tweak
1074 // to ensure monotonic results.
1075 //
1076 // For PASE no public documentation exists, just word by IBM
1077 jlong os::javaTimeNanos() {
1078   timebasestruct_t time;
1079   int rc = mread_real_time(&time, TIMEBASE_SZ);
1080   if (os::Aix::on_pase()) {
1081     assert(rc == RTC_POWER, "expected time format RTC_POWER from mread_real_time in PASE");
1082     jlong now = jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1083     jlong prev = max_real_time;
1084     if (now <= prev) {
1085       return prev;   // same or retrograde time;
1086     }
1087     jlong obsv = Atomic::cmpxchg(now, &max_real_time, prev);
1088     assert(obsv >= prev, "invariant");   // Monotonicity
1089     // If the CAS succeeded then we're done and return "now".
1090     // If the CAS failed and the observed value "obsv" is >= now then
1091     // we should return "obsv".  If the CAS failed and now > obsv > prv then
1092     // some other thread raced this thread and installed a new value, in which case
1093     // we could either (a) retry the entire operation, (b) retry trying to install now
1094     // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1095     // we might discard a higher "now" value in deference to a slightly lower but freshly
1096     // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1097     // to (a) or (b) -- and greatly reduces coherence traffic.
1098     // We might also condition (c) on the magnitude of the delta between obsv and now.
1099     // Avoiding excessive CAS operations to hot RW locations is critical.
1100     // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1101     return (prev == obsv) ? now : obsv;
1102   } else {
1103     if (rc != RTC_POWER) {
1104       rc = time_base_to_time(&time, TIMEBASE_SZ);
1105       assert(rc != -1, "error calling time_base_to_time()");
1106     }
1107     return jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1108   }
1109 }
1110 
1111 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1112   info_ptr->max_value = ALL_64_BITS;
1113   // mread_real_time() is monotonic (see 'os::javaTimeNanos()')
1114   info_ptr->may_skip_backward = false;
1115   info_ptr->may_skip_forward = false;
1116   info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
1117 }
1118 
1119 // Return the real, user, and system times in seconds from an
1120 // arbitrary fixed point in the past.
1121 bool os::getTimesSecs(double* process_real_time,
1122                       double* process_user_time,
1123                       double* process_system_time) {
1124   struct tms ticks;
1125   clock_t real_ticks = times(&ticks);
1126 
1127   if (real_ticks == (clock_t) (-1)) {
1128     return false;
1129   } else {
1130     double ticks_per_second = (double) clock_tics_per_sec;
1131     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1132     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1133     *process_real_time = ((double) real_ticks) / ticks_per_second;
1134 
1135     return true;
1136   }
1137 }
1138 
1139 char * os::local_time_string(char *buf, size_t buflen) {
1140   struct tm t;
1141   time_t long_time;
1142   time(&long_time);
1143   localtime_r(&long_time, &t);
1144   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1145                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1146                t.tm_hour, t.tm_min, t.tm_sec);
1147   return buf;
1148 }
1149 
1150 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
1151   return localtime_r(clock, res);
1152 }
1153 
1154 ////////////////////////////////////////////////////////////////////////////////
1155 // runtime exit support
1156 
1157 // Note: os::shutdown() might be called very early during initialization, or
1158 // called from signal handler. Before adding something to os::shutdown(), make
1159 // sure it is async-safe and can handle partially initialized VM.
1160 void os::shutdown() {
1161 
1162   // allow PerfMemory to attempt cleanup of any persistent resources
1163   perfMemory_exit();
1164 
1165   // needs to remove object in file system
1166   AttachListener::abort();
1167 
1168   // flush buffered output, finish log files
1169   ostream_abort();
1170 
1171   // Check for abort hook
1172   abort_hook_t abort_hook = Arguments::abort_hook();
1173   if (abort_hook != NULL) {
1174     abort_hook();
1175   }
1176 }
1177 
1178 // Note: os::abort() might be called very early during initialization, or
1179 // called from signal handler. Before adding something to os::abort(), make
1180 // sure it is async-safe and can handle partially initialized VM.
1181 void os::abort(bool dump_core, void* siginfo, const void* context) {
1182   os::shutdown();
1183   if (dump_core) {
1184 #ifndef PRODUCT
1185     fdStream out(defaultStream::output_fd());
1186     out.print_raw("Current thread is ");
1187     char buf[16];
1188     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1189     out.print_raw_cr(buf);
1190     out.print_raw_cr("Dumping core ...");
1191 #endif
1192     ::abort(); // dump core
1193   }
1194 
1195   ::exit(1);
1196 }
1197 
1198 // Die immediately, no exit hook, no abort hook, no cleanup.
1199 void os::die() {
1200   ::abort();
1201 }
1202 
1203 intx os::current_thread_id() {
1204   return (intx)pthread_self();
1205 }
1206 
1207 int os::current_process_id() {
1208   return getpid();
1209 }
1210 
1211 // DLL functions
1212 
1213 const char* os::dll_file_extension() { return ".so"; }
1214 
1215 // This must be hard coded because it's the system's temporary
1216 // directory not the java application's temp directory, ala java.io.tmpdir.
1217 const char* os::get_temp_directory() { return "/tmp"; }
1218 
1219 // Check if addr is inside libjvm.so.
1220 bool os::address_is_in_vm(address addr) {
1221 
1222   // Input could be a real pc or a function pointer literal. The latter
1223   // would be a function descriptor residing in the data segment of a module.
1224   loaded_module_t lm;
1225   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL) {
1226     return lm.is_in_vm;
1227   } else if (LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
1228     return lm.is_in_vm;
1229   } else {
1230     return false;
1231   }
1232 
1233 }
1234 
1235 // Resolve an AIX function descriptor literal to a code pointer.
1236 // If the input is a valid code pointer to a text segment of a loaded module,
1237 //   it is returned unchanged.
1238 // If the input is a valid AIX function descriptor, it is resolved to the
1239 //   code entry point.
1240 // If the input is neither a valid function descriptor nor a valid code pointer,
1241 //   NULL is returned.
1242 static address resolve_function_descriptor_to_code_pointer(address p) {
1243 
1244   if (LoadedLibraries::find_for_text_address(p, NULL) != NULL) {
1245     // It is a real code pointer.
1246     return p;
1247   } else if (LoadedLibraries::find_for_data_address(p, NULL) != NULL) {
1248     // Pointer to data segment, potential function descriptor.
1249     address code_entry = (address)(((FunctionDescriptor*)p)->entry());
1250     if (LoadedLibraries::find_for_text_address(code_entry, NULL) != NULL) {
1251       // It is a function descriptor.
1252       return code_entry;
1253     }
1254   }
1255 
1256   return NULL;
1257 }
1258 
1259 bool os::dll_address_to_function_name(address addr, char *buf,
1260                                       int buflen, int *offset,
1261                                       bool demangle) {
1262   if (offset) {
1263     *offset = -1;
1264   }
1265   // Buf is not optional, but offset is optional.
1266   assert(buf != NULL, "sanity check");
1267   buf[0] = '\0';
1268 
1269   // Resolve function ptr literals first.
1270   addr = resolve_function_descriptor_to_code_pointer(addr);
1271   if (!addr) {
1272     return false;
1273   }
1274 
1275   return AixSymbols::get_function_name(addr, buf, buflen, offset, NULL, demangle);
1276 }
1277 
1278 bool os::dll_address_to_library_name(address addr, char* buf,
1279                                      int buflen, int* offset) {
1280   if (offset) {
1281     *offset = -1;
1282   }
1283   // Buf is not optional, but offset is optional.
1284   assert(buf != NULL, "sanity check");
1285   buf[0] = '\0';
1286 
1287   // Resolve function ptr literals first.
1288   addr = resolve_function_descriptor_to_code_pointer(addr);
1289   if (!addr) {
1290     return false;
1291   }
1292 
1293   return AixSymbols::get_module_name(addr, buf, buflen);
1294 }
1295 
1296 // Loads .dll/.so and in case of error it checks if .dll/.so was built
1297 // for the same architecture as Hotspot is running on.
1298 void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1299 
1300   if (ebuf && ebuflen > 0) {
1301     ebuf[0] = '\0';
1302     ebuf[ebuflen - 1] = '\0';
1303   }
1304 
1305   if (!filename || strlen(filename) == 0) {
1306     ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
1307     return NULL;
1308   }
1309 
1310   // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
1311   void * result= ::dlopen(filename, RTLD_LAZY);
1312   if (result != NULL) {
1313     // Reload dll cache. Don't do this in signal handling.
1314     LoadedLibraries::reload();
1315     return result;
1316   } else {
1317     // error analysis when dlopen fails
1318     const char* const error_report = ::dlerror();
1319     if (error_report && ebuf && ebuflen > 0) {
1320       snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
1321                filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
1322     }
1323   }
1324   return NULL;
1325 }
1326 
1327 void* os::dll_lookup(void* handle, const char* name) {
1328   void* res = dlsym(handle, name);
1329   return res;
1330 }
1331 
1332 void* os::get_default_process_handle() {
1333   return (void*)::dlopen(NULL, RTLD_LAZY);
1334 }
1335 
1336 void os::print_dll_info(outputStream *st) {
1337   st->print_cr("Dynamic libraries:");
1338   LoadedLibraries::print(st);
1339 }
1340 
1341 void os::get_summary_os_info(char* buf, size_t buflen) {
1342   // There might be something more readable than uname results for AIX.
1343   struct utsname name;
1344   uname(&name);
1345   snprintf(buf, buflen, "%s %s", name.release, name.version);
1346 }
1347 
1348 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1349   // Not yet implemented.
1350   return 0;
1351 }
1352 
1353 void os::print_os_info_brief(outputStream* st) {
1354   uint32_t ver = os::Aix::os_version();
1355   st->print_cr("AIX kernel version %u.%u.%u.%u",
1356                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1357 
1358   os::Posix::print_uname_info(st);
1359 
1360   // Linux uses print_libversion_info(st); here.
1361 }
1362 
1363 void os::print_os_info(outputStream* st) {
1364   st->print("OS:");
1365 
1366   st->print("uname:");
1367   struct utsname name;
1368   uname(&name);
1369   st->print(name.sysname); st->print(" ");
1370   st->print(name.nodename); st->print(" ");
1371   st->print(name.release); st->print(" ");
1372   st->print(name.version); st->print(" ");
1373   st->print(name.machine);
1374   st->cr();
1375 
1376   uint32_t ver = os::Aix::os_version();
1377   st->print_cr("AIX kernel version %u.%u.%u.%u",
1378                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1379 
1380   os::Posix::print_rlimit_info(st);
1381 
1382   // load average
1383   st->print("load average:");
1384   double loadavg[3] = {-1.L, -1.L, -1.L};
1385   os::loadavg(loadavg, 3);
1386   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1387   st->cr();
1388 
1389   // print wpar info
1390   libperfstat::wparinfo_t wi;
1391   if (libperfstat::get_wparinfo(&wi)) {
1392     st->print_cr("wpar info");
1393     st->print_cr("name: %s", wi.name);
1394     st->print_cr("id:   %d", wi.wpar_id);
1395     st->print_cr("type: %s", (wi.app_wpar ? "application" : "system"));
1396   }
1397 
1398   // print partition info
1399   libperfstat::partitioninfo_t pi;
1400   if (libperfstat::get_partitioninfo(&pi)) {
1401     st->print_cr("partition info");
1402     st->print_cr(" name: %s", pi.name);
1403   }
1404 
1405 }
1406 
1407 void os::print_memory_info(outputStream* st) {
1408 
1409   st->print_cr("Memory:");
1410 
1411   st->print_cr("  Base page size (sysconf _SC_PAGESIZE):  %s",
1412     describe_pagesize(g_multipage_support.pagesize));
1413   st->print_cr("  Data page size (C-Heap, bss, etc):      %s",
1414     describe_pagesize(g_multipage_support.datapsize));
1415   st->print_cr("  Text page size:                         %s",
1416     describe_pagesize(g_multipage_support.textpsize));
1417   st->print_cr("  Thread stack page size (pthread):       %s",
1418     describe_pagesize(g_multipage_support.pthr_stack_pagesize));
1419   st->print_cr("  Default shared memory page size:        %s",
1420     describe_pagesize(g_multipage_support.shmpsize));
1421   st->print_cr("  Can use 64K pages dynamically with shared meory:  %s",
1422     (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
1423   st->print_cr("  Can use 16M pages dynamically with shared memory: %s",
1424     (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
1425   st->print_cr("  Multipage error: %d",
1426     g_multipage_support.error);
1427   st->cr();
1428   st->print_cr("  os::vm_page_size:       %s", describe_pagesize(os::vm_page_size()));
1429 
1430   // print out LDR_CNTRL because it affects the default page sizes
1431   const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
1432   st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");
1433 
1434   // Print out EXTSHM because it is an unsupported setting.
1435   const char* const extshm = ::getenv("EXTSHM");
1436   st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");
1437   if ( (strcmp(extshm, "on") == 0) || (strcmp(extshm, "ON") == 0) ) {
1438     st->print_cr("  *** Unsupported! Please remove EXTSHM from your environment! ***");
1439   }
1440 
1441   // Print out AIXTHREAD_GUARDPAGES because it affects the size of pthread stacks.
1442   const char* const aixthread_guardpages = ::getenv("AIXTHREAD_GUARDPAGES");
1443   st->print_cr("  AIXTHREAD_GUARDPAGES=%s.",
1444       aixthread_guardpages ? aixthread_guardpages : "<unset>");
1445   st->cr();
1446 
1447   os::Aix::meminfo_t mi;
1448   if (os::Aix::get_meminfo(&mi)) {
1449     if (os::Aix::on_aix()) {
1450       st->print_cr("physical total : " SIZE_FORMAT, mi.real_total);
1451       st->print_cr("physical free  : " SIZE_FORMAT, mi.real_free);
1452       st->print_cr("swap total     : " SIZE_FORMAT, mi.pgsp_total);
1453       st->print_cr("swap free      : " SIZE_FORMAT, mi.pgsp_free);
1454     } else {
1455       // PASE - Numbers are result of QWCRSSTS; they mean:
1456       // real_total: Sum of all system pools
1457       // real_free: always 0
1458       // pgsp_total: we take the size of the system ASP
1459       // pgsp_free: size of system ASP times percentage of system ASP unused
1460       st->print_cr("physical total     : " SIZE_FORMAT, mi.real_total);
1461       st->print_cr("system asp total   : " SIZE_FORMAT, mi.pgsp_total);
1462       st->print_cr("%% system asp used : %.2f",
1463         mi.pgsp_total ? (100.0f * (mi.pgsp_total - mi.pgsp_free) / mi.pgsp_total) : -1.0f);
1464     }
1465   }
1466   st->cr();
1467 
1468   // Print program break.
1469   st->print_cr("Program break at VM startup: " PTR_FORMAT ".", p2i(g_brk_at_startup));
1470   address brk_now = (address)::sbrk(0);
1471   if (brk_now != (address)-1) {
1472     st->print_cr("Program break now          : " PTR_FORMAT " (distance: " SIZE_FORMAT "k).",
1473                  p2i(brk_now), (size_t)((brk_now - g_brk_at_startup) / K));
1474   }
1475   st->print_cr("MaxExpectedDataSegmentSize    : " SIZE_FORMAT "k.", MaxExpectedDataSegmentSize / K);
1476   st->cr();
1477 
1478   // Print segments allocated with os::reserve_memory.
1479   st->print_cr("internal virtual memory regions used by vm:");
1480   vmembk_print_on(st);
1481 }
1482 
1483 // Get a string for the cpuinfo that is a summary of the cpu type
1484 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1485   // read _system_configuration.version
1486   switch (_system_configuration.version) {
1487   case PV_8:
1488     strncpy(buf, "Power PC 8", buflen);
1489     break;
1490   case PV_7:
1491     strncpy(buf, "Power PC 7", buflen);
1492     break;
1493   case PV_6_1:
1494     strncpy(buf, "Power PC 6 DD1.x", buflen);
1495     break;
1496   case PV_6:
1497     strncpy(buf, "Power PC 6", buflen);
1498     break;
1499   case PV_5:
1500     strncpy(buf, "Power PC 5", buflen);
1501     break;
1502   case PV_5_2:
1503     strncpy(buf, "Power PC 5_2", buflen);
1504     break;
1505   case PV_5_3:
1506     strncpy(buf, "Power PC 5_3", buflen);
1507     break;
1508   case PV_5_Compat:
1509     strncpy(buf, "PV_5_Compat", buflen);
1510     break;
1511   case PV_6_Compat:
1512     strncpy(buf, "PV_6_Compat", buflen);
1513     break;
1514   case PV_7_Compat:
1515     strncpy(buf, "PV_7_Compat", buflen);
1516     break;
1517   case PV_8_Compat:
1518     strncpy(buf, "PV_8_Compat", buflen);
1519     break;
1520   default:
1521     strncpy(buf, "unknown", buflen);
1522   }
1523 }
1524 
1525 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1526   // Nothing to do beyond of what os::print_cpu_info() does.
1527 }
1528 
1529 static void print_signal_handler(outputStream* st, int sig,
1530                                  char* buf, size_t buflen);
1531 
1532 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1533   st->print_cr("Signal Handlers:");
1534   print_signal_handler(st, SIGSEGV, buf, buflen);
1535   print_signal_handler(st, SIGBUS , buf, buflen);
1536   print_signal_handler(st, SIGFPE , buf, buflen);
1537   print_signal_handler(st, SIGPIPE, buf, buflen);
1538   print_signal_handler(st, SIGXFSZ, buf, buflen);
1539   print_signal_handler(st, SIGILL , buf, buflen);
1540   print_signal_handler(st, SR_signum, buf, buflen);
1541   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1542   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1543   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1544   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1545   print_signal_handler(st, SIGTRAP, buf, buflen);
1546   // We also want to know if someone else adds a SIGDANGER handler because
1547   // that will interfere with OOM killling.
1548   print_signal_handler(st, SIGDANGER, buf, buflen);
1549 }
1550 
1551 static char saved_jvm_path[MAXPATHLEN] = {0};
1552 
1553 // Find the full path to the current module, libjvm.so.
1554 void os::jvm_path(char *buf, jint buflen) {
1555   // Error checking.
1556   if (buflen < MAXPATHLEN) {
1557     assert(false, "must use a large-enough buffer");
1558     buf[0] = '\0';
1559     return;
1560   }
1561   // Lazy resolve the path to current module.
1562   if (saved_jvm_path[0] != 0) {
1563     strcpy(buf, saved_jvm_path);
1564     return;
1565   }
1566 
1567   Dl_info dlinfo;
1568   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1569   assert(ret != 0, "cannot locate libjvm");
1570   char* rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1571   assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");
1572 
1573   if (Arguments::sun_java_launcher_is_altjvm()) {
1574     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1575     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
1576     // If "/jre/lib/" appears at the right place in the string, then
1577     // assume we are installed in a JDK and we're done. Otherwise, check
1578     // for a JAVA_HOME environment variable and fix up the path so it
1579     // looks like libjvm.so is installed there (append a fake suffix
1580     // hotspot/libjvm.so).
1581     const char *p = buf + strlen(buf) - 1;
1582     for (int count = 0; p > buf && count < 4; ++count) {
1583       for (--p; p > buf && *p != '/'; --p)
1584         /* empty */ ;
1585     }
1586 
1587     if (strncmp(p, "/jre/lib/", 9) != 0) {
1588       // Look for JAVA_HOME in the environment.
1589       char* java_home_var = ::getenv("JAVA_HOME");
1590       if (java_home_var != NULL && java_home_var[0] != 0) {
1591         char* jrelib_p;
1592         int len;
1593 
1594         // Check the current module name "libjvm.so".
1595         p = strrchr(buf, '/');
1596         if (p == NULL) {
1597           return;
1598         }
1599         assert(strstr(p, "/libjvm") == p, "invalid library name");
1600 
1601         rp = os::Posix::realpath(java_home_var, buf, buflen);
1602         if (rp == NULL) {
1603           return;
1604         }
1605 
1606         // determine if this is a legacy image or modules image
1607         // modules image doesn't have "jre" subdirectory
1608         len = strlen(buf);
1609         assert(len < buflen, "Ran out of buffer room");
1610         jrelib_p = buf + len;
1611         snprintf(jrelib_p, buflen-len, "/jre/lib");
1612         if (0 != access(buf, F_OK)) {
1613           snprintf(jrelib_p, buflen-len, "/lib");
1614         }
1615 
1616         if (0 == access(buf, F_OK)) {
1617           // Use current module name "libjvm.so"
1618           len = strlen(buf);
1619           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1620         } else {
1621           // Go back to path of .so
1622           rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1623           if (rp == NULL) {
1624             return;
1625           }
1626         }
1627       }
1628     }
1629   }
1630 
1631   strncpy(saved_jvm_path, buf, sizeof(saved_jvm_path));
1632   saved_jvm_path[sizeof(saved_jvm_path) - 1] = '\0';
1633 }
1634 
1635 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1636   // no prefix required, not even "_"
1637 }
1638 
1639 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1640   // no suffix required
1641 }
1642 
1643 ////////////////////////////////////////////////////////////////////////////////
1644 // sun.misc.Signal support
1645 
1646 static volatile jint sigint_count = 0;
1647 
1648 static void
1649 UserHandler(int sig, void *siginfo, void *context) {
1650   // 4511530 - sem_post is serialized and handled by the manager thread. When
1651   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1652   // don't want to flood the manager thread with sem_post requests.
1653   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1654     return;
1655 
1656   // Ctrl-C is pressed during error reporting, likely because the error
1657   // handler fails to abort. Let VM die immediately.
1658   if (sig == SIGINT && VMError::is_error_reported()) {
1659     os::die();
1660   }
1661 
1662   os::signal_notify(sig);
1663 }
1664 
1665 void* os::user_handler() {
1666   return CAST_FROM_FN_PTR(void*, UserHandler);
1667 }
1668 
1669 extern "C" {
1670   typedef void (*sa_handler_t)(int);
1671   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1672 }
1673 
1674 void* os::signal(int signal_number, void* handler) {
1675   struct sigaction sigAct, oldSigAct;
1676 
1677   sigfillset(&(sigAct.sa_mask));
1678 
1679   // Do not block out synchronous signals in the signal handler.
1680   // Blocking synchronous signals only makes sense if you can really
1681   // be sure that those signals won't happen during signal handling,
1682   // when the blocking applies. Normal signal handlers are lean and
1683   // do not cause signals. But our signal handlers tend to be "risky"
1684   // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
1685   // On AIX, PASE there was a case where a SIGSEGV happened, followed
1686   // by a SIGILL, which was blocked due to the signal mask. The process
1687   // just hung forever. Better to crash from a secondary signal than to hang.
1688   sigdelset(&(sigAct.sa_mask), SIGSEGV);
1689   sigdelset(&(sigAct.sa_mask), SIGBUS);
1690   sigdelset(&(sigAct.sa_mask), SIGILL);
1691   sigdelset(&(sigAct.sa_mask), SIGFPE);
1692   sigdelset(&(sigAct.sa_mask), SIGTRAP);
1693 
1694   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1695 
1696   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1697 
1698   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1699     // -1 means registration failed
1700     return (void *)-1;
1701   }
1702 
1703   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1704 }
1705 
1706 void os::signal_raise(int signal_number) {
1707   ::raise(signal_number);
1708 }
1709 
1710 //
1711 // The following code is moved from os.cpp for making this
1712 // code platform specific, which it is by its very nature.
1713 //
1714 
1715 // Will be modified when max signal is changed to be dynamic
1716 int os::sigexitnum_pd() {
1717   return NSIG;
1718 }
1719 
1720 // a counter for each possible signal value
1721 static volatile jint pending_signals[NSIG+1] = { 0 };
1722 
1723 // Wrapper functions for: sem_init(), sem_post(), sem_wait()
1724 // On AIX, we use sem_init(), sem_post(), sem_wait()
1725 // On Pase, we need to use msem_lock() and msem_unlock(), because Posix Semaphores
1726 // do not seem to work at all on PASE (unimplemented, will cause SIGILL).
1727 // Note that just using msem_.. APIs for both PASE and AIX is not an option either, as
1728 // on AIX, msem_..() calls are suspected of causing problems.
1729 static sem_t sig_sem;
1730 static msemaphore* p_sig_msem = 0;
1731 
1732 static void local_sem_init() {
1733   if (os::Aix::on_aix()) {
1734     int rc = ::sem_init(&sig_sem, 0, 0);
1735     guarantee(rc != -1, "sem_init failed");
1736   } else {
1737     // Memory semaphores must live in shared mem.
1738     guarantee0(p_sig_msem == NULL);
1739     p_sig_msem = (msemaphore*)os::reserve_memory(sizeof(msemaphore), NULL);
1740     guarantee(p_sig_msem, "Cannot allocate memory for memory semaphore");
1741     guarantee(::msem_init(p_sig_msem, 0) == p_sig_msem, "msem_init failed");
1742   }
1743 }
1744 
1745 static void local_sem_post() {
1746   static bool warn_only_once = false;
1747   if (os::Aix::on_aix()) {
1748     int rc = ::sem_post(&sig_sem);
1749     if (rc == -1 && !warn_only_once) {
1750       trcVerbose("sem_post failed (errno = %d, %s)", errno, os::errno_name(errno));
1751       warn_only_once = true;
1752     }
1753   } else {
1754     guarantee0(p_sig_msem != NULL);
1755     int rc = ::msem_unlock(p_sig_msem, 0);
1756     if (rc == -1 && !warn_only_once) {
1757       trcVerbose("msem_unlock failed (errno = %d, %s)", errno, os::errno_name(errno));
1758       warn_only_once = true;
1759     }
1760   }
1761 }
1762 
1763 static void local_sem_wait() {
1764   static bool warn_only_once = false;
1765   if (os::Aix::on_aix()) {
1766     int rc = ::sem_wait(&sig_sem);
1767     if (rc == -1 && !warn_only_once) {
1768       trcVerbose("sem_wait failed (errno = %d, %s)", errno, os::errno_name(errno));
1769       warn_only_once = true;
1770     }
1771   } else {
1772     guarantee0(p_sig_msem != NULL); // must init before use
1773     int rc = ::msem_lock(p_sig_msem, 0);
1774     if (rc == -1 && !warn_only_once) {
1775       trcVerbose("msem_lock failed (errno = %d, %s)", errno, os::errno_name(errno));
1776       warn_only_once = true;
1777     }
1778   }
1779 }
1780 
1781 static void jdk_misc_signal_init() {
1782   // Initialize signal structures
1783   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1784 
1785   // Initialize signal semaphore
1786   local_sem_init();
1787 }
1788 
1789 void os::signal_notify(int sig) {
1790   Atomic::inc(&pending_signals[sig]);
1791   local_sem_post();
1792 }
1793 
1794 static int check_pending_signals() {
1795   Atomic::store(0, &sigint_count);
1796   for (;;) {
1797     for (int i = 0; i < NSIG + 1; i++) {
1798       jint n = pending_signals[i];
1799       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1800         return i;
1801       }
1802     }
1803     JavaThread *thread = JavaThread::current();
1804     ThreadBlockInVM tbivm(thread);
1805 
1806     bool threadIsSuspended;
1807     do {
1808       thread->set_suspend_equivalent();
1809       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1810 
1811       local_sem_wait();
1812 
1813       // were we externally suspended while we were waiting?
1814       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1815       if (threadIsSuspended) {
1816         //
1817         // The semaphore has been incremented, but while we were waiting
1818         // another thread suspended us. We don't want to continue running
1819         // while suspended because that would surprise the thread that
1820         // suspended us.
1821         //
1822 
1823         local_sem_post();
1824 
1825         thread->java_suspend_self();
1826       }
1827     } while (threadIsSuspended);
1828   }
1829 }
1830 
1831 int os::signal_wait() {
1832   return check_pending_signals();
1833 }
1834 
1835 ////////////////////////////////////////////////////////////////////////////////
1836 // Virtual Memory
1837 
1838 // We need to keep small simple bookkeeping for os::reserve_memory and friends.
1839 
1840 #define VMEM_MAPPED  1
1841 #define VMEM_SHMATED 2
1842 
1843 struct vmembk_t {
1844   int type;         // 1 - mmap, 2 - shmat
1845   char* addr;
1846   size_t size;      // Real size, may be larger than usersize.
1847   size_t pagesize;  // page size of area
1848   vmembk_t* next;
1849 
1850   bool contains_addr(char* p) const {
1851     return p >= addr && p < (addr + size);
1852   }
1853 
1854   bool contains_range(char* p, size_t s) const {
1855     return contains_addr(p) && contains_addr(p + s - 1);
1856   }
1857 
1858   void print_on(outputStream* os) const {
1859     os->print("[" PTR_FORMAT " - " PTR_FORMAT "] (" UINTX_FORMAT
1860       " bytes, %d %s pages), %s",
1861       addr, addr + size - 1, size, size / pagesize, describe_pagesize(pagesize),
1862       (type == VMEM_SHMATED ? "shmat" : "mmap")
1863     );
1864   }
1865 
1866   // Check that range is a sub range of memory block (or equal to memory block);
1867   // also check that range is fully page aligned to the page size if the block.
1868   void assert_is_valid_subrange(char* p, size_t s) const {
1869     if (!contains_range(p, s)) {
1870       trcVerbose("[" PTR_FORMAT " - " PTR_FORMAT "] is not a sub "
1871               "range of [" PTR_FORMAT " - " PTR_FORMAT "].",
1872               p, p + s, addr, addr + size);
1873       guarantee0(false);
1874     }
1875     if (!is_aligned_to(p, pagesize) || !is_aligned_to(p + s, pagesize)) {
1876       trcVerbose("range [" PTR_FORMAT " - " PTR_FORMAT "] is not"
1877               " aligned to pagesize (%lu)", p, p + s, (unsigned long) pagesize);
1878       guarantee0(false);
1879     }
1880   }
1881 };
1882 
1883 static struct {
1884   vmembk_t* first;
1885   MiscUtils::CritSect cs;
1886 } vmem;
1887 
1888 static void vmembk_add(char* addr, size_t size, size_t pagesize, int type) {
1889   vmembk_t* p = (vmembk_t*) ::malloc(sizeof(vmembk_t));
1890   assert0(p);
1891   if (p) {
1892     MiscUtils::AutoCritSect lck(&vmem.cs);
1893     p->addr = addr; p->size = size;
1894     p->pagesize = pagesize;
1895     p->type = type;
1896     p->next = vmem.first;
1897     vmem.first = p;
1898   }
1899 }
1900 
1901 static vmembk_t* vmembk_find(char* addr) {
1902   MiscUtils::AutoCritSect lck(&vmem.cs);
1903   for (vmembk_t* p = vmem.first; p; p = p->next) {
1904     if (p->addr <= addr && (p->addr + p->size) > addr) {
1905       return p;
1906     }
1907   }
1908   return NULL;
1909 }
1910 
1911 static void vmembk_remove(vmembk_t* p0) {
1912   MiscUtils::AutoCritSect lck(&vmem.cs);
1913   assert0(p0);
1914   assert0(vmem.first); // List should not be empty.
1915   for (vmembk_t** pp = &(vmem.first); *pp; pp = &((*pp)->next)) {
1916     if (*pp == p0) {
1917       *pp = p0->next;
1918       ::free(p0);
1919       return;
1920     }
1921   }
1922   assert0(false); // Not found?
1923 }
1924 
1925 static void vmembk_print_on(outputStream* os) {
1926   MiscUtils::AutoCritSect lck(&vmem.cs);
1927   for (vmembk_t* vmi = vmem.first; vmi; vmi = vmi->next) {
1928     vmi->print_on(os);
1929     os->cr();
1930   }
1931 }
1932 
1933 // Reserve and attach a section of System V memory.
1934 // If <requested_addr> is not NULL, function will attempt to attach the memory at the given
1935 // address. Failing that, it will attach the memory anywhere.
1936 // If <requested_addr> is NULL, function will attach the memory anywhere.
1937 //
1938 // <alignment_hint> is being ignored by this function. It is very probable however that the
1939 // alignment requirements are met anyway, because shmat() attaches at 256M boundaries.
1940 // Should this be not enogh, we can put more work into it.
1941 static char* reserve_shmated_memory (
1942   size_t bytes,
1943   char* requested_addr,
1944   size_t alignment_hint) {
1945 
1946   trcVerbose("reserve_shmated_memory " UINTX_FORMAT " bytes, wishaddress "
1947     PTR_FORMAT ", alignment_hint " UINTX_FORMAT "...",
1948     bytes, requested_addr, alignment_hint);
1949 
1950   // Either give me wish address or wish alignment but not both.
1951   assert0(!(requested_addr != NULL && alignment_hint != 0));
1952 
1953   // We must prevent anyone from attaching too close to the
1954   // BRK because that may cause malloc OOM.
1955   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
1956     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
1957       "Will attach anywhere.", requested_addr);
1958     // Act like the OS refused to attach there.
1959     requested_addr = NULL;
1960   }
1961 
1962   // For old AS/400's (V5R4 and older) we should not even be here - System V shared memory is not
1963   // really supported (max size 4GB), so reserve_mmapped_memory should have been used instead.
1964   if (os::Aix::on_pase_V5R4_or_older()) {
1965     ShouldNotReachHere();
1966   }
1967 
1968   // Align size of shm up to 64K to avoid errors if we later try to change the page size.
1969   const size_t size = align_up(bytes, 64*K);
1970 
1971   // Reserve the shared segment.
1972   int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
1973   if (shmid == -1) {
1974     trcVerbose("shmget(.., " UINTX_FORMAT ", ..) failed (errno: %d).", size, errno);
1975     return NULL;
1976   }
1977 
1978   // Important note:
1979   // It is very important that we, upon leaving this function, do not leave a shm segment alive.
1980   // We must right after attaching it remove it from the system. System V shm segments are global and
1981   // survive the process.
1982   // So, from here on: Do not assert, do not return, until we have called shmctl(IPC_RMID) (A).
1983 
1984   struct shmid_ds shmbuf;
1985   memset(&shmbuf, 0, sizeof(shmbuf));
1986   shmbuf.shm_pagesize = 64*K;
1987   if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) != 0) {
1988     trcVerbose("Failed to set page size (need " UINTX_FORMAT " 64K pages) - shmctl failed with %d.",
1989                size / (64*K), errno);
1990     // I want to know if this ever happens.
1991     assert(false, "failed to set page size for shmat");
1992   }
1993 
1994   // Now attach the shared segment.
1995   // Note that I attach with SHM_RND - which means that the requested address is rounded down, if
1996   // needed, to the next lowest segment boundary. Otherwise the attach would fail if the address
1997   // were not a segment boundary.
1998   char* const addr = (char*) shmat(shmid, requested_addr, SHM_RND);
1999   const int errno_shmat = errno;
2000 
2001   // (A) Right after shmat and before handing shmat errors delete the shm segment.
2002   if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
2003     trcVerbose("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
2004     assert(false, "failed to remove shared memory segment!");
2005   }
2006 
2007   // Handle shmat error. If we failed to attach, just return.
2008   if (addr == (char*)-1) {
2009     trcVerbose("Failed to attach segment at " PTR_FORMAT " (%d).", requested_addr, errno_shmat);
2010     return NULL;
2011   }
2012 
2013   // Just for info: query the real page size. In case setting the page size did not
2014   // work (see above), the system may have given us something other then 4K (LDR_CNTRL).
2015   const size_t real_pagesize = os::Aix::query_pagesize(addr);
2016   if (real_pagesize != shmbuf.shm_pagesize) {
2017     trcVerbose("pagesize is, surprisingly, %h.", real_pagesize);
2018   }
2019 
2020   if (addr) {
2021     trcVerbose("shm-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes, " UINTX_FORMAT " %s pages)",
2022       addr, addr + size - 1, size, size/real_pagesize, describe_pagesize(real_pagesize));
2023   } else {
2024     if (requested_addr != NULL) {
2025       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at with address " PTR_FORMAT ".", size, requested_addr);
2026     } else {
2027       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at any address.", size);
2028     }
2029   }
2030 
2031   // book-keeping
2032   vmembk_add(addr, size, real_pagesize, VMEM_SHMATED);
2033   assert0(is_aligned_to(addr, os::vm_page_size()));
2034 
2035   return addr;
2036 }
2037 
2038 static bool release_shmated_memory(char* addr, size_t size) {
2039 
2040   trcVerbose("release_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2041     addr, addr + size - 1);
2042 
2043   bool rc = false;
2044 
2045   // TODO: is there a way to verify shm size without doing bookkeeping?
2046   if (::shmdt(addr) != 0) {
2047     trcVerbose("error (%d).", errno);
2048   } else {
2049     trcVerbose("ok.");
2050     rc = true;
2051   }
2052   return rc;
2053 }
2054 
2055 static bool uncommit_shmated_memory(char* addr, size_t size) {
2056   trcVerbose("uncommit_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2057     addr, addr + size - 1);
2058 
2059   const bool rc = my_disclaim64(addr, size);
2060 
2061   if (!rc) {
2062     trcVerbose("my_disclaim64(" PTR_FORMAT ", " UINTX_FORMAT ") failed.\n", addr, size);
2063     return false;
2064   }
2065   return true;
2066 }
2067 
2068 ////////////////////////////////  mmap-based routines /////////////////////////////////
2069 
2070 // Reserve memory via mmap.
2071 // If <requested_addr> is given, an attempt is made to attach at the given address.
2072 // Failing that, memory is allocated at any address.
2073 // If <alignment_hint> is given and <requested_addr> is NULL, an attempt is made to
2074 // allocate at an address aligned with the given alignment. Failing that, memory
2075 // is aligned anywhere.
2076 static char* reserve_mmaped_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2077   trcVerbose("reserve_mmaped_memory " UINTX_FORMAT " bytes, wishaddress " PTR_FORMAT ", "
2078     "alignment_hint " UINTX_FORMAT "...",
2079     bytes, requested_addr, alignment_hint);
2080 
2081   // If a wish address is given, but not aligned to 4K page boundary, mmap will fail.
2082   if (requested_addr && !is_aligned_to(requested_addr, os::vm_page_size()) != 0) {
2083     trcVerbose("Wish address " PTR_FORMAT " not aligned to page boundary.", requested_addr);
2084     return NULL;
2085   }
2086 
2087   // We must prevent anyone from attaching too close to the
2088   // BRK because that may cause malloc OOM.
2089   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2090     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2091       "Will attach anywhere.", requested_addr);
2092     // Act like the OS refused to attach there.
2093     requested_addr = NULL;
2094   }
2095 
2096   // Specify one or the other but not both.
2097   assert0(!(requested_addr != NULL && alignment_hint > 0));
2098 
2099   // In 64K mode, we claim the global page size (os::vm_page_size())
2100   // is 64K. This is one of the few points where that illusion may
2101   // break, because mmap() will always return memory aligned to 4K. So
2102   // we must ensure we only ever return memory aligned to 64k.
2103   if (alignment_hint) {
2104     alignment_hint = lcm(alignment_hint, os::vm_page_size());
2105   } else {
2106     alignment_hint = os::vm_page_size();
2107   }
2108 
2109   // Size shall always be a multiple of os::vm_page_size (esp. in 64K mode).
2110   const size_t size = align_up(bytes, os::vm_page_size());
2111 
2112   // alignment: Allocate memory large enough to include an aligned range of the right size and
2113   // cut off the leading and trailing waste pages.
2114   assert0(alignment_hint != 0 && is_aligned_to(alignment_hint, os::vm_page_size())); // see above
2115   const size_t extra_size = size + alignment_hint;
2116 
2117   // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
2118   // later use msync(MS_INVALIDATE) (see os::uncommit_memory).
2119   int flags = MAP_ANONYMOUS | MAP_SHARED;
2120 
2121   // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
2122   // it means if wishaddress is given but MAP_FIXED is not set.
2123   //
2124   // Important! Behaviour differs depending on whether SPEC1170 mode is active or not.
2125   // SPEC1170 mode active: behaviour like POSIX, MAP_FIXED will clobber existing mappings.
2126   // SPEC1170 mode not active: behaviour, unlike POSIX, is that no existing mappings will
2127   // get clobbered.
2128   if (requested_addr != NULL) {
2129     if (!os::Aix::xpg_sus_mode()) {  // not SPEC1170 Behaviour
2130       flags |= MAP_FIXED;
2131     }
2132   }
2133 
2134   char* addr = (char*)::mmap(requested_addr, extra_size,
2135       PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);
2136 
2137   if (addr == MAP_FAILED) {
2138     trcVerbose("mmap(" PTR_FORMAT ", " UINTX_FORMAT ", ..) failed (%d)", requested_addr, size, errno);
2139     return NULL;
2140   }
2141 
2142   // Handle alignment.
2143   char* const addr_aligned = align_up(addr, alignment_hint);
2144   const size_t waste_pre = addr_aligned - addr;
2145   char* const addr_aligned_end = addr_aligned + size;
2146   const size_t waste_post = extra_size - waste_pre - size;
2147   if (waste_pre > 0) {
2148     ::munmap(addr, waste_pre);
2149   }
2150   if (waste_post > 0) {
2151     ::munmap(addr_aligned_end, waste_post);
2152   }
2153   addr = addr_aligned;
2154 
2155   if (addr) {
2156     trcVerbose("mmap-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes)",
2157       addr, addr + bytes, bytes);
2158   } else {
2159     if (requested_addr != NULL) {
2160       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at wish address " PTR_FORMAT ".", bytes, requested_addr);
2161     } else {
2162       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at any address.", bytes);
2163     }
2164   }
2165 
2166   // bookkeeping
2167   vmembk_add(addr, size, 4*K, VMEM_MAPPED);
2168 
2169   // Test alignment, see above.
2170   assert0(is_aligned_to(addr, os::vm_page_size()));
2171 
2172   return addr;
2173 }
2174 
2175 static bool release_mmaped_memory(char* addr, size_t size) {
2176   assert0(is_aligned_to(addr, os::vm_page_size()));
2177   assert0(is_aligned_to(size, os::vm_page_size()));
2178 
2179   trcVerbose("release_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2180     addr, addr + size - 1);
2181   bool rc = false;
2182 
2183   if (::munmap(addr, size) != 0) {
2184     trcVerbose("failed (%d)\n", errno);
2185     rc = false;
2186   } else {
2187     trcVerbose("ok.");
2188     rc = true;
2189   }
2190 
2191   return rc;
2192 }
2193 
2194 static bool uncommit_mmaped_memory(char* addr, size_t size) {
2195 
2196   assert0(is_aligned_to(addr, os::vm_page_size()));
2197   assert0(is_aligned_to(size, os::vm_page_size()));
2198 
2199   trcVerbose("uncommit_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2200     addr, addr + size - 1);
2201   bool rc = false;
2202 
2203   // Uncommit mmap memory with msync MS_INVALIDATE.
2204   if (::msync(addr, size, MS_INVALIDATE) != 0) {
2205     trcVerbose("failed (%d)\n", errno);
2206     rc = false;
2207   } else {
2208     trcVerbose("ok.");
2209     rc = true;
2210   }
2211 
2212   return rc;
2213 }
2214 
2215 int os::vm_page_size() {
2216   // Seems redundant as all get out.
2217   assert(os::Aix::page_size() != -1, "must call os::init");
2218   return os::Aix::page_size();
2219 }
2220 
2221 // Aix allocates memory by pages.
2222 int os::vm_allocation_granularity() {
2223   assert(os::Aix::page_size() != -1, "must call os::init");
2224   return os::Aix::page_size();
2225 }
2226 
2227 #ifdef PRODUCT
2228 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2229                                     int err) {
2230   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2231           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2232           os::errno_name(err), err);
2233 }
2234 #endif
2235 
2236 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2237                                   const char* mesg) {
2238   assert(mesg != NULL, "mesg must be specified");
2239   if (!pd_commit_memory(addr, size, exec)) {
2240     // Add extra info in product mode for vm_exit_out_of_memory():
2241     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2242     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2243   }
2244 }
2245 
2246 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2247 
2248   assert(is_aligned_to(addr, os::vm_page_size()),
2249     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2250     p2i(addr), os::vm_page_size());
2251   assert(is_aligned_to(size, os::vm_page_size()),
2252     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2253     size, os::vm_page_size());
2254 
2255   vmembk_t* const vmi = vmembk_find(addr);
2256   guarantee0(vmi);
2257   vmi->assert_is_valid_subrange(addr, size);
2258 
2259   trcVerbose("commit_memory [" PTR_FORMAT " - " PTR_FORMAT "].", addr, addr + size - 1);
2260 
2261   if (UseExplicitCommit) {
2262     // AIX commits memory on touch. So, touch all pages to be committed.
2263     for (char* p = addr; p < (addr + size); p += 4*K) {
2264       *p = '\0';
2265     }
2266   }
2267 
2268   return true;
2269 }
2270 
2271 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) {
2272   return pd_commit_memory(addr, size, exec);
2273 }
2274 
2275 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2276                                   size_t alignment_hint, bool exec,
2277                                   const char* mesg) {
2278   // Alignment_hint is ignored on this OS.
2279   pd_commit_memory_or_exit(addr, size, exec, mesg);
2280 }
2281 
2282 bool os::pd_uncommit_memory(char* addr, size_t size) {
2283   assert(is_aligned_to(addr, os::vm_page_size()),
2284     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2285     p2i(addr), os::vm_page_size());
2286   assert(is_aligned_to(size, os::vm_page_size()),
2287     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2288     size, os::vm_page_size());
2289 
2290   // Dynamically do different things for mmap/shmat.
2291   const vmembk_t* const vmi = vmembk_find(addr);
2292   guarantee0(vmi);
2293   vmi->assert_is_valid_subrange(addr, size);
2294 
2295   if (vmi->type == VMEM_SHMATED) {
2296     return uncommit_shmated_memory(addr, size);
2297   } else {
2298     return uncommit_mmaped_memory(addr, size);
2299   }
2300 }
2301 
2302 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2303   // Do not call this; no need to commit stack pages on AIX.
2304   ShouldNotReachHere();
2305   return true;
2306 }
2307 
2308 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2309   // Do not call this; no need to commit stack pages on AIX.
2310   ShouldNotReachHere();
2311   return true;
2312 }
2313 
2314 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2315 }
2316 
2317 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2318 }
2319 
2320 void os::numa_make_global(char *addr, size_t bytes) {
2321 }
2322 
2323 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2324 }
2325 
2326 bool os::numa_topology_changed() {
2327   return false;
2328 }
2329 
2330 size_t os::numa_get_groups_num() {
2331   return 1;
2332 }
2333 
2334 int os::numa_get_group_id() {
2335   return 0;
2336 }
2337 
2338 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2339   if (size > 0) {
2340     ids[0] = 0;
2341     return 1;
2342   }
2343   return 0;
2344 }
2345 
2346 bool os::get_page_info(char *start, page_info* info) {
2347   return false;
2348 }
2349 
2350 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2351   return end;
2352 }
2353 
2354 // Reserves and attaches a shared memory segment.
2355 // Will assert if a wish address is given and could not be obtained.
2356 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2357 
2358   // All other Unices do a mmap(MAP_FIXED) if the addr is given,
2359   // thereby clobbering old mappings at that place. That is probably
2360   // not intended, never used and almost certainly an error were it
2361   // ever be used this way (to try attaching at a specified address
2362   // without clobbering old mappings an alternate API exists,
2363   // os::attempt_reserve_memory_at()).
2364   // Instead of mimicking the dangerous coding of the other platforms, here I
2365   // just ignore the request address (release) or assert(debug).
2366   assert0(requested_addr == NULL);
2367 
2368   // Always round to os::vm_page_size(), which may be larger than 4K.
2369   bytes = align_up(bytes, os::vm_page_size());
2370   const size_t alignment_hint0 =
2371     alignment_hint ? align_up(alignment_hint, os::vm_page_size()) : 0;
2372 
2373   // In 4K mode always use mmap.
2374   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2375   if (os::vm_page_size() == 4*K) {
2376     return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2377   } else {
2378     if (bytes >= Use64KPagesThreshold) {
2379       return reserve_shmated_memory(bytes, requested_addr, alignment_hint);
2380     } else {
2381       return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2382     }
2383   }
2384 }
2385 
2386 bool os::pd_release_memory(char* addr, size_t size) {
2387 
2388   // Dynamically do different things for mmap/shmat.
2389   vmembk_t* const vmi = vmembk_find(addr);
2390   guarantee0(vmi);
2391 
2392   // Always round to os::vm_page_size(), which may be larger than 4K.
2393   size = align_up(size, os::vm_page_size());
2394   addr = align_up(addr, os::vm_page_size());
2395 
2396   bool rc = false;
2397   bool remove_bookkeeping = false;
2398   if (vmi->type == VMEM_SHMATED) {
2399     // For shmatted memory, we do:
2400     // - If user wants to release the whole range, release the memory (shmdt).
2401     // - If user only wants to release a partial range, uncommit (disclaim) that
2402     //   range. That way, at least, we do not use memory anymore (bust still page
2403     //   table space).
2404     vmi->assert_is_valid_subrange(addr, size);
2405     if (addr == vmi->addr && size == vmi->size) {
2406       rc = release_shmated_memory(addr, size);
2407       remove_bookkeeping = true;
2408     } else {
2409       rc = uncommit_shmated_memory(addr, size);
2410     }
2411   } else {
2412     // User may unmap partial regions but region has to be fully contained.
2413 #ifdef ASSERT
2414     vmi->assert_is_valid_subrange(addr, size);
2415 #endif
2416     rc = release_mmaped_memory(addr, size);
2417     remove_bookkeeping = true;
2418   }
2419 
2420   // update bookkeeping
2421   if (rc && remove_bookkeeping) {
2422     vmembk_remove(vmi);
2423   }
2424 
2425   return rc;
2426 }
2427 
2428 static bool checked_mprotect(char* addr, size_t size, int prot) {
2429 
2430   // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
2431   // not tell me if protection failed when trying to protect an un-protectable range.
2432   //
2433   // This means if the memory was allocated using shmget/shmat, protection wont work
2434   // but mprotect will still return 0:
2435   //
2436   // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm
2437 
2438   bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;
2439 
2440   if (!rc) {
2441     const char* const s_errno = os::errno_name(errno);
2442     warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
2443     return false;
2444   }
2445 
2446   // mprotect success check
2447   //
2448   // Mprotect said it changed the protection but can I believe it?
2449   //
2450   // To be sure I need to check the protection afterwards. Try to
2451   // read from protected memory and check whether that causes a segfault.
2452   //
2453   if (!os::Aix::xpg_sus_mode()) {
2454 
2455     if (CanUseSafeFetch32()) {
2456 
2457       const bool read_protected =
2458         (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2459          SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2460 
2461       if (prot & PROT_READ) {
2462         rc = !read_protected;
2463       } else {
2464         rc = read_protected;
2465       }
2466 
2467       if (!rc) {
2468         if (os::Aix::on_pase()) {
2469           // There is an issue on older PASE systems where mprotect() will return success but the
2470           // memory will not be protected.
2471           // This has nothing to do with the problem of using mproect() on SPEC1170 incompatible
2472           // machines; we only see it rarely, when using mprotect() to protect the guard page of
2473           // a stack. It is an OS error.
2474           //
2475           // A valid strategy is just to try again. This usually works. :-/
2476 
2477           ::usleep(1000);
2478           if (::mprotect(addr, size, prot) == 0) {
2479             const bool read_protected_2 =
2480               (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2481               SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2482             rc = true;
2483           }
2484         }
2485       }
2486     }
2487   }
2488 
2489   assert(rc == true, "mprotect failed.");
2490 
2491   return rc;
2492 }
2493 
2494 // Set protections specified
2495 bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
2496   unsigned int p = 0;
2497   switch (prot) {
2498   case MEM_PROT_NONE: p = PROT_NONE; break;
2499   case MEM_PROT_READ: p = PROT_READ; break;
2500   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2501   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2502   default:
2503     ShouldNotReachHere();
2504   }
2505   // is_committed is unused.
2506   return checked_mprotect(addr, size, p);
2507 }
2508 
2509 bool os::guard_memory(char* addr, size_t size) {
2510   return checked_mprotect(addr, size, PROT_NONE);
2511 }
2512 
2513 bool os::unguard_memory(char* addr, size_t size) {
2514   return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2515 }
2516 
2517 // Large page support
2518 
2519 static size_t _large_page_size = 0;
2520 
2521 // Enable large page support if OS allows that.
2522 void os::large_page_init() {
2523   return; // Nothing to do. See query_multipage_support and friends.
2524 }
2525 
2526 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2527   // reserve_memory_special() is used to allocate large paged memory. On AIX, we implement
2528   // 64k paged memory reservation using the normal memory allocation paths (os::reserve_memory()),
2529   // so this is not needed.
2530   assert(false, "should not be called on AIX");
2531   return NULL;
2532 }
2533 
2534 bool os::release_memory_special(char* base, size_t bytes) {
2535   // Detaching the SHM segment will also delete it, see reserve_memory_special().
2536   Unimplemented();
2537   return false;
2538 }
2539 
2540 size_t os::large_page_size() {
2541   return _large_page_size;
2542 }
2543 
2544 bool os::can_commit_large_page_memory() {
2545   // Does not matter, we do not support huge pages.
2546   return false;
2547 }
2548 
2549 bool os::can_execute_large_page_memory() {
2550   // Does not matter, we do not support huge pages.
2551   return false;
2552 }
2553 
2554 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2555   assert(file_desc >= 0, "file_desc is not valid");
2556   char* result = NULL;
2557 
2558   // Always round to os::vm_page_size(), which may be larger than 4K.
2559   bytes = align_up(bytes, os::vm_page_size());
2560   result = reserve_mmaped_memory(bytes, requested_addr, 0);
2561 
2562   if (result != NULL) {
2563     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2564       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2565     }
2566   }
2567   return result;
2568 }
2569 
2570 // Reserve memory at an arbitrary address, only if that area is
2571 // available (and not reserved for something else).
2572 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2573   char* addr = NULL;
2574 
2575   // Always round to os::vm_page_size(), which may be larger than 4K.
2576   bytes = align_up(bytes, os::vm_page_size());
2577 
2578   // In 4K mode always use mmap.
2579   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2580   if (os::vm_page_size() == 4*K) {
2581     return reserve_mmaped_memory(bytes, requested_addr, 0);
2582   } else {
2583     if (bytes >= Use64KPagesThreshold) {
2584       return reserve_shmated_memory(bytes, requested_addr, 0);
2585     } else {
2586       return reserve_mmaped_memory(bytes, requested_addr, 0);
2587     }
2588   }
2589 
2590   return addr;
2591 }
2592 
2593 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2594   return ::read(fd, buf, nBytes);
2595 }
2596 
2597 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2598   return ::pread(fd, buf, nBytes, offset);
2599 }
2600 
2601 void os::naked_short_sleep(jlong ms) {
2602   struct timespec req;
2603 
2604   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2605   req.tv_sec = 0;
2606   if (ms > 0) {
2607     req.tv_nsec = (ms % 1000) * 1000000;
2608   }
2609   else {
2610     req.tv_nsec = 1;
2611   }
2612 
2613   nanosleep(&req, NULL);
2614 
2615   return;
2616 }
2617 
2618 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2619 void os::infinite_sleep() {
2620   while (true) {    // sleep forever ...
2621     ::sleep(100);   // ... 100 seconds at a time
2622   }
2623 }
2624 
2625 // Used to convert frequent JVM_Yield() to nops
2626 bool os::dont_yield() {
2627   return DontYieldALot;
2628 }
2629 
2630 void os::naked_yield() {
2631   sched_yield();
2632 }
2633 
2634 ////////////////////////////////////////////////////////////////////////////////
2635 // thread priority support
2636 
2637 // From AIX manpage to pthread_setschedparam
2638 // (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
2639 //    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
2640 //
2641 // "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
2642 // range from 40 to 80, where 40 is the least favored priority and 80
2643 // is the most favored."
2644 //
2645 // (Actually, I doubt this even has an impact on AIX, as we do kernel
2646 // scheduling there; however, this still leaves iSeries.)
2647 //
2648 // We use the same values for AIX and PASE.
2649 int os::java_to_os_priority[CriticalPriority + 1] = {
2650   54,             // 0 Entry should never be used
2651 
2652   55,             // 1 MinPriority
2653   55,             // 2
2654   56,             // 3
2655 
2656   56,             // 4
2657   57,             // 5 NormPriority
2658   57,             // 6
2659 
2660   58,             // 7
2661   58,             // 8
2662   59,             // 9 NearMaxPriority
2663 
2664   60,             // 10 MaxPriority
2665 
2666   60              // 11 CriticalPriority
2667 };
2668 
2669 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2670   if (!UseThreadPriorities) return OS_OK;
2671   pthread_t thr = thread->osthread()->pthread_id();
2672   int policy = SCHED_OTHER;
2673   struct sched_param param;
2674   param.sched_priority = newpri;
2675   int ret = pthread_setschedparam(thr, policy, &param);
2676 
2677   if (ret != 0) {
2678     trcVerbose("Could not change priority for thread %d to %d (error %d, %s)",
2679         (int)thr, newpri, ret, os::errno_name(ret));
2680   }
2681   return (ret == 0) ? OS_OK : OS_ERR;
2682 }
2683 
2684 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2685   if (!UseThreadPriorities) {
2686     *priority_ptr = java_to_os_priority[NormPriority];
2687     return OS_OK;
2688   }
2689   pthread_t thr = thread->osthread()->pthread_id();
2690   int policy = SCHED_OTHER;
2691   struct sched_param param;
2692   int ret = pthread_getschedparam(thr, &policy, &param);
2693   *priority_ptr = param.sched_priority;
2694 
2695   return (ret == 0) ? OS_OK : OS_ERR;
2696 }
2697 
2698 ////////////////////////////////////////////////////////////////////////////////
2699 // suspend/resume support
2700 
2701 //  The low-level signal-based suspend/resume support is a remnant from the
2702 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2703 //  within hotspot. Currently used by JFR's OSThreadSampler
2704 //
2705 //  The remaining code is greatly simplified from the more general suspension
2706 //  code that used to be used.
2707 //
2708 //  The protocol is quite simple:
2709 //  - suspend:
2710 //      - sends a signal to the target thread
2711 //      - polls the suspend state of the osthread using a yield loop
2712 //      - target thread signal handler (SR_handler) sets suspend state
2713 //        and blocks in sigsuspend until continued
2714 //  - resume:
2715 //      - sets target osthread state to continue
2716 //      - sends signal to end the sigsuspend loop in the SR_handler
2717 //
2718 //  Note that the SR_lock plays no role in this suspend/resume protocol,
2719 //  but is checked for NULL in SR_handler as a thread termination indicator.
2720 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
2721 //
2722 //  Note that resume_clear_context() and suspend_save_context() are needed
2723 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
2724 //  which in part is used by:
2725 //    - Forte Analyzer: AsyncGetCallTrace()
2726 //    - StackBanging: get_frame_at_stack_banging_point()
2727 
2728 static void resume_clear_context(OSThread *osthread) {
2729   osthread->set_ucontext(NULL);
2730   osthread->set_siginfo(NULL);
2731 }
2732 
2733 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2734   osthread->set_ucontext(context);
2735   osthread->set_siginfo(siginfo);
2736 }
2737 
2738 //
2739 // Handler function invoked when a thread's execution is suspended or
2740 // resumed. We have to be careful that only async-safe functions are
2741 // called here (Note: most pthread functions are not async safe and
2742 // should be avoided.)
2743 //
2744 // Note: sigwait() is a more natural fit than sigsuspend() from an
2745 // interface point of view, but sigwait() prevents the signal hander
2746 // from being run. libpthread would get very confused by not having
2747 // its signal handlers run and prevents sigwait()'s use with the
2748 // mutex granting granting signal.
2749 //
2750 // Currently only ever called on the VMThread and JavaThreads (PC sampling).
2751 //
2752 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2753   // Save and restore errno to avoid confusing native code with EINTR
2754   // after sigsuspend.
2755   int old_errno = errno;
2756 
2757   Thread* thread = Thread::current_or_null_safe();
2758   assert(thread != NULL, "Missing current thread in SR_handler");
2759 
2760   // On some systems we have seen signal delivery get "stuck" until the signal
2761   // mask is changed as part of thread termination. Check that the current thread
2762   // has not already terminated (via SR_lock()) - else the following assertion
2763   // will fail because the thread is no longer a JavaThread as the ~JavaThread
2764   // destructor has completed.
2765 
2766   if (thread->SR_lock() == NULL) {
2767     return;
2768   }
2769 
2770   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2771 
2772   OSThread* osthread = thread->osthread();
2773 
2774   os::SuspendResume::State current = osthread->sr.state();
2775   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2776     suspend_save_context(osthread, siginfo, context);
2777 
2778     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2779     os::SuspendResume::State state = osthread->sr.suspended();
2780     if (state == os::SuspendResume::SR_SUSPENDED) {
2781       sigset_t suspend_set;  // signals for sigsuspend()
2782 
2783       // get current set of blocked signals and unblock resume signal
2784       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2785       sigdelset(&suspend_set, SR_signum);
2786 
2787       // wait here until we are resumed
2788       while (1) {
2789         sigsuspend(&suspend_set);
2790 
2791         os::SuspendResume::State result = osthread->sr.running();
2792         if (result == os::SuspendResume::SR_RUNNING) {
2793           break;
2794         }
2795       }
2796 
2797     } else if (state == os::SuspendResume::SR_RUNNING) {
2798       // request was cancelled, continue
2799     } else {
2800       ShouldNotReachHere();
2801     }
2802 
2803     resume_clear_context(osthread);
2804   } else if (current == os::SuspendResume::SR_RUNNING) {
2805     // request was cancelled, continue
2806   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2807     // ignore
2808   } else {
2809     ShouldNotReachHere();
2810   }
2811 
2812   errno = old_errno;
2813 }
2814 
2815 static int SR_initialize() {
2816   struct sigaction act;
2817   char *s;
2818   // Get signal number to use for suspend/resume
2819   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2820     int sig = ::strtol(s, 0, 10);
2821     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2822         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2823       SR_signum = sig;
2824     } else {
2825       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2826               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2827     }
2828   }
2829 
2830   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2831         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2832 
2833   sigemptyset(&SR_sigset);
2834   sigaddset(&SR_sigset, SR_signum);
2835 
2836   // Set up signal handler for suspend/resume.
2837   act.sa_flags = SA_RESTART|SA_SIGINFO;
2838   act.sa_handler = (void (*)(int)) SR_handler;
2839 
2840   // SR_signum is blocked by default.
2841   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2842 
2843   if (sigaction(SR_signum, &act, 0) == -1) {
2844     return -1;
2845   }
2846 
2847   // Save signal flag
2848   os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
2849   return 0;
2850 }
2851 
2852 static int SR_finalize() {
2853   return 0;
2854 }
2855 
2856 static int sr_notify(OSThread* osthread) {
2857   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2858   assert_status(status == 0, status, "pthread_kill");
2859   return status;
2860 }
2861 
2862 // "Randomly" selected value for how long we want to spin
2863 // before bailing out on suspending a thread, also how often
2864 // we send a signal to a thread we want to resume
2865 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2866 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2867 
2868 // returns true on success and false on error - really an error is fatal
2869 // but this seems the normal response to library errors
2870 static bool do_suspend(OSThread* osthread) {
2871   assert(osthread->sr.is_running(), "thread should be running");
2872   // mark as suspended and send signal
2873 
2874   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2875     // failed to switch, state wasn't running?
2876     ShouldNotReachHere();
2877     return false;
2878   }
2879 
2880   if (sr_notify(osthread) != 0) {
2881     // try to cancel, switch to running
2882 
2883     os::SuspendResume::State result = osthread->sr.cancel_suspend();
2884     if (result == os::SuspendResume::SR_RUNNING) {
2885       // cancelled
2886       return false;
2887     } else if (result == os::SuspendResume::SR_SUSPENDED) {
2888       // somehow managed to suspend
2889       return true;
2890     } else {
2891       ShouldNotReachHere();
2892       return false;
2893     }
2894   }
2895 
2896   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2897 
2898   for (int n = 0; !osthread->sr.is_suspended(); n++) {
2899     for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
2900       os::naked_yield();
2901     }
2902 
2903     // timeout, try to cancel the request
2904     if (n >= RANDOMLY_LARGE_INTEGER) {
2905       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2906       if (cancelled == os::SuspendResume::SR_RUNNING) {
2907         return false;
2908       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2909         return true;
2910       } else {
2911         ShouldNotReachHere();
2912         return false;
2913       }
2914     }
2915   }
2916 
2917   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2918   return true;
2919 }
2920 
2921 static void do_resume(OSThread* osthread) {
2922   //assert(osthread->sr.is_suspended(), "thread should be suspended");
2923 
2924   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2925     // failed to switch to WAKEUP_REQUEST
2926     ShouldNotReachHere();
2927     return;
2928   }
2929 
2930   while (!osthread->sr.is_running()) {
2931     if (sr_notify(osthread) == 0) {
2932       for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
2933         for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
2934           os::naked_yield();
2935         }
2936       }
2937     } else {
2938       ShouldNotReachHere();
2939     }
2940   }
2941 
2942   guarantee(osthread->sr.is_running(), "Must be running!");
2943 }
2944 
2945 ///////////////////////////////////////////////////////////////////////////////////
2946 // signal handling (except suspend/resume)
2947 
2948 // This routine may be used by user applications as a "hook" to catch signals.
2949 // The user-defined signal handler must pass unrecognized signals to this
2950 // routine, and if it returns true (non-zero), then the signal handler must
2951 // return immediately. If the flag "abort_if_unrecognized" is true, then this
2952 // routine will never retun false (zero), but instead will execute a VM panic
2953 // routine kill the process.
2954 //
2955 // If this routine returns false, it is OK to call it again. This allows
2956 // the user-defined signal handler to perform checks either before or after
2957 // the VM performs its own checks. Naturally, the user code would be making
2958 // a serious error if it tried to handle an exception (such as a null check
2959 // or breakpoint) that the VM was generating for its own correct operation.
2960 //
2961 // This routine may recognize any of the following kinds of signals:
2962 //   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2963 // It should be consulted by handlers for any of those signals.
2964 //
2965 // The caller of this routine must pass in the three arguments supplied
2966 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2967 // field of the structure passed to sigaction(). This routine assumes that
2968 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2969 //
2970 // Note that the VM will print warnings if it detects conflicting signal
2971 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2972 //
2973 extern "C" JNIEXPORT int
2974 JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
2975 
2976 // Set thread signal mask (for some reason on AIX sigthreadmask() seems
2977 // to be the thing to call; documentation is not terribly clear about whether
2978 // pthread_sigmask also works, and if it does, whether it does the same.
2979 bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
2980   const int rc = ::pthread_sigmask(how, set, oset);
2981   // return value semantics differ slightly for error case:
2982   // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
2983   // (so, pthread_sigmask is more theadsafe for error handling)
2984   // But success is always 0.
2985   return rc == 0 ? true : false;
2986 }
2987 
2988 // Function to unblock all signals which are, according
2989 // to POSIX, typical program error signals. If they happen while being blocked,
2990 // they typically will bring down the process immediately.
2991 bool unblock_program_error_signals() {
2992   sigset_t set;
2993   ::sigemptyset(&set);
2994   ::sigaddset(&set, SIGILL);
2995   ::sigaddset(&set, SIGBUS);
2996   ::sigaddset(&set, SIGFPE);
2997   ::sigaddset(&set, SIGSEGV);
2998   return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
2999 }
3000 
3001 // Renamed from 'signalHandler' to avoid collision with other shared libs.
3002 static void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
3003   assert(info != NULL && uc != NULL, "it must be old kernel");
3004 
3005   // Never leave program error signals blocked;
3006   // on all our platforms they would bring down the process immediately when
3007   // getting raised while being blocked.
3008   unblock_program_error_signals();
3009 
3010   int orig_errno = errno;  // Preserve errno value over signal handler.
3011   JVM_handle_aix_signal(sig, info, uc, true);
3012   errno = orig_errno;
3013 }
3014 
3015 // This boolean allows users to forward their own non-matching signals
3016 // to JVM_handle_aix_signal, harmlessly.
3017 bool os::Aix::signal_handlers_are_installed = false;
3018 
3019 // For signal-chaining
3020 struct sigaction sigact[NSIG];
3021 sigset_t sigs;
3022 bool os::Aix::libjsig_is_loaded = false;
3023 typedef struct sigaction *(*get_signal_t)(int);
3024 get_signal_t os::Aix::get_signal_action = NULL;
3025 
3026 struct sigaction* os::Aix::get_chained_signal_action(int sig) {
3027   struct sigaction *actp = NULL;
3028 
3029   if (libjsig_is_loaded) {
3030     // Retrieve the old signal handler from libjsig
3031     actp = (*get_signal_action)(sig);
3032   }
3033   if (actp == NULL) {
3034     // Retrieve the preinstalled signal handler from jvm
3035     actp = get_preinstalled_handler(sig);
3036   }
3037 
3038   return actp;
3039 }
3040 
3041 static bool call_chained_handler(struct sigaction *actp, int sig,
3042                                  siginfo_t *siginfo, void *context) {
3043   // Call the old signal handler
3044   if (actp->sa_handler == SIG_DFL) {
3045     // It's more reasonable to let jvm treat it as an unexpected exception
3046     // instead of taking the default action.
3047     return false;
3048   } else if (actp->sa_handler != SIG_IGN) {
3049     if ((actp->sa_flags & SA_NODEFER) == 0) {
3050       // automaticlly block the signal
3051       sigaddset(&(actp->sa_mask), sig);
3052     }
3053 
3054     sa_handler_t hand = NULL;
3055     sa_sigaction_t sa = NULL;
3056     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3057     // retrieve the chained handler
3058     if (siginfo_flag_set) {
3059       sa = actp->sa_sigaction;
3060     } else {
3061       hand = actp->sa_handler;
3062     }
3063 
3064     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3065       actp->sa_handler = SIG_DFL;
3066     }
3067 
3068     // try to honor the signal mask
3069     sigset_t oset;
3070     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3071 
3072     // call into the chained handler
3073     if (siginfo_flag_set) {
3074       (*sa)(sig, siginfo, context);
3075     } else {
3076       (*hand)(sig);
3077     }
3078 
3079     // restore the signal mask
3080     pthread_sigmask(SIG_SETMASK, &oset, 0);
3081   }
3082   // Tell jvm's signal handler the signal is taken care of.
3083   return true;
3084 }
3085 
3086 bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3087   bool chained = false;
3088   // signal-chaining
3089   if (UseSignalChaining) {
3090     struct sigaction *actp = get_chained_signal_action(sig);
3091     if (actp != NULL) {
3092       chained = call_chained_handler(actp, sig, siginfo, context);
3093     }
3094   }
3095   return chained;
3096 }
3097 
3098 struct sigaction* os::Aix::get_preinstalled_handler(int sig) {
3099   if (sigismember(&sigs, sig)) {
3100     return &sigact[sig];
3101   }
3102   return NULL;
3103 }
3104 
3105 void os::Aix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3106   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3107   sigact[sig] = oldAct;
3108   sigaddset(&sigs, sig);
3109 }
3110 
3111 // for diagnostic
3112 int sigflags[NSIG];
3113 
3114 int os::Aix::get_our_sigflags(int sig) {
3115   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3116   return sigflags[sig];
3117 }
3118 
3119 void os::Aix::set_our_sigflags(int sig, int flags) {
3120   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3121   if (sig > 0 && sig < NSIG) {
3122     sigflags[sig] = flags;
3123   }
3124 }
3125 
3126 void os::Aix::set_signal_handler(int sig, bool set_installed) {
3127   // Check for overwrite.
3128   struct sigaction oldAct;
3129   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3130 
3131   void* oldhand = oldAct.sa_sigaction
3132     ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3133     : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3134   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3135       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3136       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
3137     if (AllowUserSignalHandlers || !set_installed) {
3138       // Do not overwrite; user takes responsibility to forward to us.
3139       return;
3140     } else if (UseSignalChaining) {
3141       // save the old handler in jvm
3142       save_preinstalled_handler(sig, oldAct);
3143       // libjsig also interposes the sigaction() call below and saves the
3144       // old sigaction on it own.
3145     } else {
3146       fatal("Encountered unexpected pre-existing sigaction handler "
3147             "%#lx for signal %d.", (long)oldhand, sig);
3148     }
3149   }
3150 
3151   struct sigaction sigAct;
3152   sigfillset(&(sigAct.sa_mask));
3153   if (!set_installed) {
3154     sigAct.sa_handler = SIG_DFL;
3155     sigAct.sa_flags = SA_RESTART;
3156   } else {
3157     sigAct.sa_sigaction = javaSignalHandler;
3158     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3159   }
3160   // Save flags, which are set by ours
3161   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3162   sigflags[sig] = sigAct.sa_flags;
3163 
3164   int ret = sigaction(sig, &sigAct, &oldAct);
3165   assert(ret == 0, "check");
3166 
3167   void* oldhand2 = oldAct.sa_sigaction
3168                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3169                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3170   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3171 }
3172 
3173 // install signal handlers for signals that HotSpot needs to
3174 // handle in order to support Java-level exception handling.
3175 void os::Aix::install_signal_handlers() {
3176   if (!signal_handlers_are_installed) {
3177     signal_handlers_are_installed = true;
3178 
3179     // signal-chaining
3180     typedef void (*signal_setting_t)();
3181     signal_setting_t begin_signal_setting = NULL;
3182     signal_setting_t end_signal_setting = NULL;
3183     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3184                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3185     if (begin_signal_setting != NULL) {
3186       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3187                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3188       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3189                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3190       libjsig_is_loaded = true;
3191       assert(UseSignalChaining, "should enable signal-chaining");
3192     }
3193     if (libjsig_is_loaded) {
3194       // Tell libjsig jvm is setting signal handlers.
3195       (*begin_signal_setting)();
3196     }
3197 
3198     ::sigemptyset(&sigs);
3199     set_signal_handler(SIGSEGV, true);
3200     set_signal_handler(SIGPIPE, true);
3201     set_signal_handler(SIGBUS, true);
3202     set_signal_handler(SIGILL, true);
3203     set_signal_handler(SIGFPE, true);
3204     set_signal_handler(SIGTRAP, true);
3205     set_signal_handler(SIGXFSZ, true);
3206 
3207     if (libjsig_is_loaded) {
3208       // Tell libjsig jvm finishes setting signal handlers.
3209       (*end_signal_setting)();
3210     }
3211 
3212     // We don't activate signal checker if libjsig is in place, we trust ourselves
3213     // and if UserSignalHandler is installed all bets are off.
3214     // Log that signal checking is off only if -verbose:jni is specified.
3215     if (CheckJNICalls) {
3216       if (libjsig_is_loaded) {
3217         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3218         check_signals = false;
3219       }
3220       if (AllowUserSignalHandlers) {
3221         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3222         check_signals = false;
3223       }
3224       // Need to initialize check_signal_done.
3225       ::sigemptyset(&check_signal_done);
3226     }
3227   }
3228 }
3229 
3230 static const char* get_signal_handler_name(address handler,
3231                                            char* buf, int buflen) {
3232   int offset;
3233   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3234   if (found) {
3235     // skip directory names
3236     const char *p1, *p2;
3237     p1 = buf;
3238     size_t len = strlen(os::file_separator());
3239     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3240     // The way os::dll_address_to_library_name is implemented on Aix
3241     // right now, it always returns -1 for the offset which is not
3242     // terribly informative.
3243     // Will fix that. For now, omit the offset.
3244     jio_snprintf(buf, buflen, "%s", p1);
3245   } else {
3246     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3247   }
3248   return buf;
3249 }
3250 
3251 static void print_signal_handler(outputStream* st, int sig,
3252                                  char* buf, size_t buflen) {
3253   struct sigaction sa;
3254   sigaction(sig, NULL, &sa);
3255 
3256   st->print("%s: ", os::exception_name(sig, buf, buflen));
3257 
3258   address handler = (sa.sa_flags & SA_SIGINFO)
3259     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3260     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3261 
3262   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3263     st->print("SIG_DFL");
3264   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3265     st->print("SIG_IGN");
3266   } else {
3267     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3268   }
3269 
3270   // Print readable mask.
3271   st->print(", sa_mask[0]=");
3272   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3273 
3274   address rh = VMError::get_resetted_sighandler(sig);
3275   // May be, handler was resetted by VMError?
3276   if (rh != NULL) {
3277     handler = rh;
3278     sa.sa_flags = VMError::get_resetted_sigflags(sig);
3279   }
3280 
3281   // Print textual representation of sa_flags.
3282   st->print(", sa_flags=");
3283   os::Posix::print_sa_flags(st, sa.sa_flags);
3284 
3285   // Check: is it our handler?
3286   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
3287       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3288     // It is our signal handler.
3289     // Check for flags, reset system-used one!
3290     if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
3291       st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3292                 os::Aix::get_our_sigflags(sig));
3293     }
3294   }
3295   st->cr();
3296 }
3297 
3298 #define DO_SIGNAL_CHECK(sig) \
3299   if (!sigismember(&check_signal_done, sig)) \
3300     os::Aix::check_signal_handler(sig)
3301 
3302 // This method is a periodic task to check for misbehaving JNI applications
3303 // under CheckJNI, we can add any periodic checks here
3304 
3305 void os::run_periodic_checks() {
3306 
3307   if (check_signals == false) return;
3308 
3309   // SEGV and BUS if overridden could potentially prevent
3310   // generation of hs*.log in the event of a crash, debugging
3311   // such a case can be very challenging, so we absolutely
3312   // check the following for a good measure:
3313   DO_SIGNAL_CHECK(SIGSEGV);
3314   DO_SIGNAL_CHECK(SIGILL);
3315   DO_SIGNAL_CHECK(SIGFPE);
3316   DO_SIGNAL_CHECK(SIGBUS);
3317   DO_SIGNAL_CHECK(SIGPIPE);
3318   DO_SIGNAL_CHECK(SIGXFSZ);
3319   if (UseSIGTRAP) {
3320     DO_SIGNAL_CHECK(SIGTRAP);
3321   }
3322 
3323   // ReduceSignalUsage allows the user to override these handlers
3324   // see comments at the very top and jvm_md.h
3325   if (!ReduceSignalUsage) {
3326     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3327     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3328     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3329     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3330   }
3331 
3332   DO_SIGNAL_CHECK(SR_signum);
3333 }
3334 
3335 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3336 
3337 static os_sigaction_t os_sigaction = NULL;
3338 
3339 void os::Aix::check_signal_handler(int sig) {
3340   char buf[O_BUFLEN];
3341   address jvmHandler = NULL;
3342 
3343   struct sigaction act;
3344   if (os_sigaction == NULL) {
3345     // only trust the default sigaction, in case it has been interposed
3346     os_sigaction = CAST_TO_FN_PTR(os_sigaction_t, dlsym(RTLD_DEFAULT, "sigaction"));
3347     if (os_sigaction == NULL) return;
3348   }
3349 
3350   os_sigaction(sig, (struct sigaction*)NULL, &act);
3351 
3352   address thisHandler = (act.sa_flags & SA_SIGINFO)
3353     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3354     : CAST_FROM_FN_PTR(address, act.sa_handler);
3355 
3356   switch(sig) {
3357   case SIGSEGV:
3358   case SIGBUS:
3359   case SIGFPE:
3360   case SIGPIPE:
3361   case SIGILL:
3362   case SIGXFSZ:
3363     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
3364     break;
3365 
3366   case SHUTDOWN1_SIGNAL:
3367   case SHUTDOWN2_SIGNAL:
3368   case SHUTDOWN3_SIGNAL:
3369   case BREAK_SIGNAL:
3370     jvmHandler = (address)user_handler();
3371     break;
3372 
3373   default:
3374     if (sig == SR_signum) {
3375       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3376     } else {
3377       return;
3378     }
3379     break;
3380   }
3381 
3382   if (thisHandler != jvmHandler) {
3383     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3384     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3385     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3386     // No need to check this sig any longer
3387     sigaddset(&check_signal_done, sig);
3388     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3389     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3390       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3391                     exception_name(sig, buf, O_BUFLEN));
3392     }
3393   } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
3394     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3395     tty->print("expected:");
3396     os::Posix::print_sa_flags(tty, os::Aix::get_our_sigflags(sig));
3397     tty->cr();
3398     tty->print("  found:");
3399     os::Posix::print_sa_flags(tty, act.sa_flags);
3400     tty->cr();
3401     // No need to check this sig any longer
3402     sigaddset(&check_signal_done, sig);
3403   }
3404 
3405   // Dump all the signal
3406   if (sigismember(&check_signal_done, sig)) {
3407     print_signal_handlers(tty, buf, O_BUFLEN);
3408   }
3409 }
3410 
3411 // To install functions for atexit system call
3412 extern "C" {
3413   static void perfMemory_exit_helper() {
3414     perfMemory_exit();
3415   }
3416 }
3417 
3418 // This is called _before_ the most of global arguments have been parsed.
3419 void os::init(void) {
3420   // This is basic, we want to know if that ever changes.
3421   // (Shared memory boundary is supposed to be a 256M aligned.)
3422   assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");
3423 
3424   // Record process break at startup.
3425   g_brk_at_startup = (address) ::sbrk(0);
3426   assert(g_brk_at_startup != (address) -1, "sbrk failed");
3427 
3428   // First off, we need to know whether we run on AIX or PASE, and
3429   // the OS level we run on.
3430   os::Aix::initialize_os_info();
3431 
3432   // Scan environment (SPEC1170 behaviour, etc).
3433   os::Aix::scan_environment();
3434 
3435   // Probe multipage support.
3436   query_multipage_support();
3437 
3438   // Act like we only have one page size by eliminating corner cases which
3439   // we did not support very well anyway.
3440   // We have two input conditions:
3441   // 1) Data segment page size. This is controlled by linker setting (datapsize) on the
3442   //    launcher, and/or by LDR_CNTRL environment variable. The latter overrules the linker
3443   //    setting.
3444   //    Data segment page size is important for us because it defines the thread stack page
3445   //    size, which is needed for guard page handling, stack banging etc.
3446   // 2) The ability to allocate 64k pages dynamically. If this is a given, java heap can
3447   //    and should be allocated with 64k pages.
3448   //
3449   // So, we do the following:
3450   // LDR_CNTRL    can_use_64K_pages_dynamically       what we do                      remarks
3451   // 4K           no                                  4K                              old systems (aix 5.2, as/400 v5r4) or new systems with AME activated
3452   // 4k           yes                                 64k (treat 4k stacks as 64k)    different loader than java and standard settings
3453   // 64k          no              --- AIX 5.2 ? ---
3454   // 64k          yes                                 64k                             new systems and standard java loader (we set datapsize=64k when linking)
3455 
3456   // We explicitly leave no option to change page size, because only upgrading would work,
3457   // not downgrading (if stack page size is 64k you cannot pretend its 4k).
3458 
3459   if (g_multipage_support.datapsize == 4*K) {
3460     // datapsize = 4K. Data segment, thread stacks are 4K paged.
3461     if (g_multipage_support.can_use_64K_pages) {
3462       // .. but we are able to use 64K pages dynamically.
3463       // This would be typical for java launchers which are not linked
3464       // with datapsize=64K (like, any other launcher but our own).
3465       //
3466       // In this case it would be smart to allocate the java heap with 64K
3467       // to get the performance benefit, and to fake 64k pages for the
3468       // data segment (when dealing with thread stacks).
3469       //
3470       // However, leave a possibility to downgrade to 4K, using
3471       // -XX:-Use64KPages.
3472       if (Use64KPages) {
3473         trcVerbose("64K page mode (faked for data segment)");
3474         Aix::_page_size = 64*K;
3475       } else {
3476         trcVerbose("4K page mode (Use64KPages=off)");
3477         Aix::_page_size = 4*K;
3478       }
3479     } else {
3480       // .. and not able to allocate 64k pages dynamically. Here, just
3481       // fall back to 4K paged mode and use mmap for everything.
3482       trcVerbose("4K page mode");
3483       Aix::_page_size = 4*K;
3484       FLAG_SET_ERGO(bool, Use64KPages, false);
3485     }
3486   } else {
3487     // datapsize = 64k. Data segment, thread stacks are 64k paged.
3488     // This normally means that we can allocate 64k pages dynamically.
3489     // (There is one special case where this may be false: EXTSHM=on.
3490     // but we decided to not support that mode).
3491     assert0(g_multipage_support.can_use_64K_pages);
3492     Aix::_page_size = 64*K;
3493     trcVerbose("64K page mode");
3494     FLAG_SET_ERGO(bool, Use64KPages, true);
3495   }
3496 
3497   // For now UseLargePages is just ignored.
3498   FLAG_SET_ERGO(bool, UseLargePages, false);
3499   _page_sizes[0] = 0;
3500 
3501   // debug trace
3502   trcVerbose("os::vm_page_size %s", describe_pagesize(os::vm_page_size()));
3503 
3504   // Next, we need to initialize libo4 and libperfstat libraries.
3505   if (os::Aix::on_pase()) {
3506     os::Aix::initialize_libo4();
3507   } else {
3508     os::Aix::initialize_libperfstat();
3509   }
3510 
3511   // Reset the perfstat information provided by ODM.
3512   if (os::Aix::on_aix()) {
3513     libperfstat::perfstat_reset();
3514   }
3515 
3516   // Now initialze basic system properties. Note that for some of the values we
3517   // need libperfstat etc.
3518   os::Aix::initialize_system_info();
3519 
3520   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3521 
3522   init_random(1234567);
3523 
3524   // _main_thread points to the thread that created/loaded the JVM.
3525   Aix::_main_thread = pthread_self();
3526 
3527   initial_time_count = os::elapsed_counter();
3528 
3529   os::Posix::init();
3530 }
3531 
3532 // This is called _after_ the global arguments have been parsed.
3533 jint os::init_2(void) {
3534 
3535   os::Posix::init_2();
3536 
3537   if (os::Aix::on_pase()) {
3538     trcVerbose("Running on PASE.");
3539   } else {
3540     trcVerbose("Running on AIX (not PASE).");
3541   }
3542 
3543   trcVerbose("processor count: %d", os::_processor_count);
3544   trcVerbose("physical memory: %lu", Aix::_physical_memory);
3545 
3546   // Initially build up the loaded dll map.
3547   LoadedLibraries::reload();
3548   if (Verbose) {
3549     trcVerbose("Loaded Libraries: ");
3550     LoadedLibraries::print(tty);
3551   }
3552 
3553   // initialize suspend/resume support - must do this before signal_sets_init()
3554   if (SR_initialize() != 0) {
3555     perror("SR_initialize failed");
3556     return JNI_ERR;
3557   }
3558 
3559   Aix::signal_sets_init();
3560   Aix::install_signal_handlers();
3561   // Initialize data for jdk.internal.misc.Signal
3562   if (!ReduceSignalUsage) {
3563     jdk_misc_signal_init();
3564   }
3565 
3566   // Check and sets minimum stack sizes against command line options
3567   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3568     return JNI_ERR;
3569   }
3570 
3571   if (UseNUMA) {
3572     UseNUMA = false;
3573     warning("NUMA optimizations are not available on this OS.");
3574   }
3575 
3576   if (MaxFDLimit) {
3577     // Set the number of file descriptors to max. print out error
3578     // if getrlimit/setrlimit fails but continue regardless.
3579     struct rlimit nbr_files;
3580     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3581     if (status != 0) {
3582       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3583     } else {
3584       nbr_files.rlim_cur = nbr_files.rlim_max;
3585       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3586       if (status != 0) {
3587         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3588       }
3589     }
3590   }
3591 
3592   if (PerfAllowAtExitRegistration) {
3593     // Only register atexit functions if PerfAllowAtExitRegistration is set.
3594     // At exit functions can be delayed until process exit time, which
3595     // can be problematic for embedded VM situations. Embedded VMs should
3596     // call DestroyJavaVM() to assure that VM resources are released.
3597 
3598     // Note: perfMemory_exit_helper atexit function may be removed in
3599     // the future if the appropriate cleanup code can be added to the
3600     // VM_Exit VMOperation's doit method.
3601     if (atexit(perfMemory_exit_helper) != 0) {
3602       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3603     }
3604   }
3605 
3606   return JNI_OK;
3607 }
3608 
3609 // Mark the polling page as unreadable
3610 void os::make_polling_page_unreadable(void) {
3611   if (!guard_memory((char*)_polling_page, Aix::page_size())) {
3612     fatal("Could not disable polling page");
3613   }
3614 };
3615 
3616 // Mark the polling page as readable
3617 void os::make_polling_page_readable(void) {
3618   // Changed according to os_linux.cpp.
3619   if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
3620     fatal("Could not enable polling page at " PTR_FORMAT, _polling_page);
3621   }
3622 };
3623 
3624 int os::active_processor_count() {
3625   // User has overridden the number of active processors
3626   if (ActiveProcessorCount > 0) {
3627     log_trace(os)("active_processor_count: "
3628                   "active processor count set by user : %d",
3629                   ActiveProcessorCount);
3630     return ActiveProcessorCount;
3631   }
3632 
3633   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3634   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3635   return online_cpus;
3636 }
3637 
3638 void os::set_native_thread_name(const char *name) {
3639   // Not yet implemented.
3640   return;
3641 }
3642 
3643 bool os::distribute_processes(uint length, uint* distribution) {
3644   // Not yet implemented.
3645   return false;
3646 }
3647 
3648 bool os::bind_to_processor(uint processor_id) {
3649   // Not yet implemented.
3650   return false;
3651 }
3652 
3653 void os::SuspendedThreadTask::internal_do_task() {
3654   if (do_suspend(_thread->osthread())) {
3655     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3656     do_task(context);
3657     do_resume(_thread->osthread());
3658   }
3659 }
3660 
3661 ////////////////////////////////////////////////////////////////////////////////
3662 // debug support
3663 
3664 bool os::find(address addr, outputStream* st) {
3665 
3666   st->print(PTR_FORMAT ": ", addr);
3667 
3668   loaded_module_t lm;
3669   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL ||
3670       LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
3671     st->print_cr("%s", lm.path);
3672     return true;
3673   }
3674 
3675   return false;
3676 }
3677 
3678 ////////////////////////////////////////////////////////////////////////////////
3679 // misc
3680 
3681 // This does not do anything on Aix. This is basically a hook for being
3682 // able to use structured exception handling (thread-local exception filters)
3683 // on, e.g., Win32.
3684 void
3685 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
3686                          JavaCallArguments* args, Thread* thread) {
3687   f(value, method, args, thread);
3688 }
3689 
3690 void os::print_statistics() {
3691 }
3692 
3693 bool os::message_box(const char* title, const char* message) {
3694   int i;
3695   fdStream err(defaultStream::error_fd());
3696   for (i = 0; i < 78; i++) err.print_raw("=");
3697   err.cr();
3698   err.print_raw_cr(title);
3699   for (i = 0; i < 78; i++) err.print_raw("-");
3700   err.cr();
3701   err.print_raw_cr(message);
3702   for (i = 0; i < 78; i++) err.print_raw("=");
3703   err.cr();
3704 
3705   char buf[16];
3706   // Prevent process from exiting upon "read error" without consuming all CPU
3707   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3708 
3709   return buf[0] == 'y' || buf[0] == 'Y';
3710 }
3711 
3712 // Is a (classpath) directory empty?
3713 bool os::dir_is_empty(const char* path) {
3714   DIR *dir = NULL;
3715   struct dirent *ptr;
3716 
3717   dir = opendir(path);
3718   if (dir == NULL) return true;
3719 
3720   /* Scan the directory */
3721   bool result = true;
3722   while (result && (ptr = readdir(dir)) != NULL) {
3723     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3724       result = false;
3725     }
3726   }
3727   closedir(dir);
3728   return result;
3729 }
3730 
3731 // This code originates from JDK's sysOpen and open64_w
3732 // from src/solaris/hpi/src/system_md.c
3733 
3734 int os::open(const char *path, int oflag, int mode) {
3735 
3736   if (strlen(path) > MAX_PATH - 1) {
3737     errno = ENAMETOOLONG;
3738     return -1;
3739   }
3740   int fd;
3741 
3742   fd = ::open64(path, oflag, mode);
3743   if (fd == -1) return -1;
3744 
3745   // If the open succeeded, the file might still be a directory.
3746   {
3747     struct stat64 buf64;
3748     int ret = ::fstat64(fd, &buf64);
3749     int st_mode = buf64.st_mode;
3750 
3751     if (ret != -1) {
3752       if ((st_mode & S_IFMT) == S_IFDIR) {
3753         errno = EISDIR;
3754         ::close(fd);
3755         return -1;
3756       }
3757     } else {
3758       ::close(fd);
3759       return -1;
3760     }
3761   }
3762 
3763   // All file descriptors that are opened in the JVM and not
3764   // specifically destined for a subprocess should have the
3765   // close-on-exec flag set. If we don't set it, then careless 3rd
3766   // party native code might fork and exec without closing all
3767   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3768   // UNIXProcess.c), and this in turn might:
3769   //
3770   // - cause end-of-file to fail to be detected on some file
3771   //   descriptors, resulting in mysterious hangs, or
3772   //
3773   // - might cause an fopen in the subprocess to fail on a system
3774   //   suffering from bug 1085341.
3775   //
3776   // (Yes, the default setting of the close-on-exec flag is a Unix
3777   // design flaw.)
3778   //
3779   // See:
3780   // 1085341: 32-bit stdio routines should support file descriptors >255
3781   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3782   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3783 #ifdef FD_CLOEXEC
3784   {
3785     int flags = ::fcntl(fd, F_GETFD);
3786     if (flags != -1)
3787       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3788   }
3789 #endif
3790 
3791   return fd;
3792 }
3793 
3794 // create binary file, rewriting existing file if required
3795 int os::create_binary_file(const char* path, bool rewrite_existing) {
3796   int oflags = O_WRONLY | O_CREAT;
3797   if (!rewrite_existing) {
3798     oflags |= O_EXCL;
3799   }
3800   return ::open64(path, oflags, S_IREAD | S_IWRITE);
3801 }
3802 
3803 // return current position of file pointer
3804 jlong os::current_file_offset(int fd) {
3805   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3806 }
3807 
3808 // move file pointer to the specified offset
3809 jlong os::seek_to_file_offset(int fd, jlong offset) {
3810   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3811 }
3812 
3813 // This code originates from JDK's sysAvailable
3814 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3815 
3816 int os::available(int fd, jlong *bytes) {
3817   jlong cur, end;
3818   int mode;
3819   struct stat64 buf64;
3820 
3821   if (::fstat64(fd, &buf64) >= 0) {
3822     mode = buf64.st_mode;
3823     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3824       int n;
3825       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3826         *bytes = n;
3827         return 1;
3828       }
3829     }
3830   }
3831   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
3832     return 0;
3833   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
3834     return 0;
3835   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
3836     return 0;
3837   }
3838   *bytes = end - cur;
3839   return 1;
3840 }
3841 
3842 // Map a block of memory.
3843 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3844                         char *addr, size_t bytes, bool read_only,
3845                         bool allow_exec) {
3846   int prot;
3847   int flags = MAP_PRIVATE;
3848 
3849   if (read_only) {
3850     prot = PROT_READ;
3851     flags = MAP_SHARED;
3852   } else {
3853     prot = PROT_READ | PROT_WRITE;
3854     flags = MAP_PRIVATE;
3855   }
3856 
3857   if (allow_exec) {
3858     prot |= PROT_EXEC;
3859   }
3860 
3861   if (addr != NULL) {
3862     flags |= MAP_FIXED;
3863   }
3864 
3865   // Allow anonymous mappings if 'fd' is -1.
3866   if (fd == -1) {
3867     flags |= MAP_ANONYMOUS;
3868   }
3869 
3870   char* mapped_address = (char*)::mmap(addr, (size_t)bytes, prot, flags,
3871                                      fd, file_offset);
3872   if (mapped_address == MAP_FAILED) {
3873     return NULL;
3874   }
3875   return mapped_address;
3876 }
3877 
3878 // Remap a block of memory.
3879 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3880                           char *addr, size_t bytes, bool read_only,
3881                           bool allow_exec) {
3882   // same as map_memory() on this OS
3883   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3884                         allow_exec);
3885 }
3886 
3887 // Unmap a block of memory.
3888 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3889   return munmap(addr, bytes) == 0;
3890 }
3891 
3892 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3893 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3894 // of a thread.
3895 //
3896 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3897 // the fast estimate available on the platform.
3898 
3899 jlong os::current_thread_cpu_time() {
3900   // return user + sys since the cost is the same
3901   const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
3902   assert(n >= 0, "negative CPU time");
3903   return n;
3904 }
3905 
3906 jlong os::thread_cpu_time(Thread* thread) {
3907   // consistent with what current_thread_cpu_time() returns
3908   const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
3909   assert(n >= 0, "negative CPU time");
3910   return n;
3911 }
3912 
3913 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3914   const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3915   assert(n >= 0, "negative CPU time");
3916   return n;
3917 }
3918 
3919 static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
3920   bool error = false;
3921 
3922   jlong sys_time = 0;
3923   jlong user_time = 0;
3924 
3925   // Reimplemented using getthrds64().
3926   //
3927   // Works like this:
3928   // For the thread in question, get the kernel thread id. Then get the
3929   // kernel thread statistics using that id.
3930   //
3931   // This only works of course when no pthread scheduling is used,
3932   // i.e. there is a 1:1 relationship to kernel threads.
3933   // On AIX, see AIXTHREAD_SCOPE variable.
3934 
3935   pthread_t pthtid = thread->osthread()->pthread_id();
3936 
3937   // retrieve kernel thread id for the pthread:
3938   tid64_t tid = 0;
3939   struct __pthrdsinfo pinfo;
3940   // I just love those otherworldly IBM APIs which force me to hand down
3941   // dummy buffers for stuff I dont care for...
3942   char dummy[1];
3943   int dummy_size = sizeof(dummy);
3944   if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
3945                           dummy, &dummy_size) == 0) {
3946     tid = pinfo.__pi_tid;
3947   } else {
3948     tty->print_cr("pthread_getthrds_np failed.");
3949     error = true;
3950   }
3951 
3952   // retrieve kernel timing info for that kernel thread
3953   if (!error) {
3954     struct thrdentry64 thrdentry;
3955     if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
3956       sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
3957       user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
3958     } else {
3959       tty->print_cr("pthread_getthrds_np failed.");
3960       error = true;
3961     }
3962   }
3963 
3964   if (p_sys_time) {
3965     *p_sys_time = sys_time;
3966   }
3967 
3968   if (p_user_time) {
3969     *p_user_time = user_time;
3970   }
3971 
3972   if (error) {
3973     return false;
3974   }
3975 
3976   return true;
3977 }
3978 
3979 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3980   jlong sys_time;
3981   jlong user_time;
3982 
3983   if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
3984     return -1;
3985   }
3986 
3987   return user_sys_cpu_time ? sys_time + user_time : user_time;
3988 }
3989 
3990 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3991   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3992   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3993   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3994   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3995 }
3996 
3997 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3998   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3999   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4000   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4001   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4002 }
4003 
4004 bool os::is_thread_cpu_time_supported() {
4005   return true;
4006 }
4007 
4008 // System loadavg support. Returns -1 if load average cannot be obtained.
4009 // For now just return the system wide load average (no processor sets).
4010 int os::loadavg(double values[], int nelem) {
4011 
4012   guarantee(nelem >= 0 && nelem <= 3, "argument error");
4013   guarantee(values, "argument error");
4014 
4015   if (os::Aix::on_pase()) {
4016 
4017     // AS/400 PASE: use libo4 porting library
4018     double v[3] = { 0.0, 0.0, 0.0 };
4019 
4020     if (libo4::get_load_avg(v, v + 1, v + 2)) {
4021       for (int i = 0; i < nelem; i ++) {
4022         values[i] = v[i];
4023       }
4024       return nelem;
4025     } else {
4026       return -1;
4027     }
4028 
4029   } else {
4030 
4031     // AIX: use libperfstat
4032     libperfstat::cpuinfo_t ci;
4033     if (libperfstat::get_cpuinfo(&ci)) {
4034       for (int i = 0; i < nelem; i++) {
4035         values[i] = ci.loadavg[i];
4036       }
4037     } else {
4038       return -1;
4039     }
4040     return nelem;
4041   }
4042 }
4043 
4044 void os::pause() {
4045   char filename[MAX_PATH];
4046   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4047     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4048   } else {
4049     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4050   }
4051 
4052   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4053   if (fd != -1) {
4054     struct stat buf;
4055     ::close(fd);
4056     while (::stat(filename, &buf) == 0) {
4057       (void)::poll(NULL, 0, 100);
4058     }
4059   } else {
4060     trcVerbose("Could not open pause file '%s', continuing immediately.", filename);
4061   }
4062 }
4063 
4064 bool os::is_primordial_thread(void) {
4065   if (pthread_self() == (pthread_t)1) {
4066     return true;
4067   } else {
4068     return false;
4069   }
4070 }
4071 
4072 // OS recognitions (PASE/AIX, OS level) call this before calling any
4073 // one of Aix::on_pase(), Aix::os_version() static
4074 void os::Aix::initialize_os_info() {
4075 
4076   assert(_on_pase == -1 && _os_version == 0, "already called.");
4077 
4078   struct utsname uts;
4079   memset(&uts, 0, sizeof(uts));
4080   strcpy(uts.sysname, "?");
4081   if (::uname(&uts) == -1) {
4082     trcVerbose("uname failed (%d)", errno);
4083     guarantee(0, "Could not determine whether we run on AIX or PASE");
4084   } else {
4085     trcVerbose("uname says: sysname \"%s\" version \"%s\" release \"%s\" "
4086                "node \"%s\" machine \"%s\"\n",
4087                uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
4088     const int major = atoi(uts.version);
4089     assert(major > 0, "invalid OS version");
4090     const int minor = atoi(uts.release);
4091     assert(minor > 0, "invalid OS release");
4092     _os_version = (major << 24) | (minor << 16);
4093     char ver_str[20] = {0};
4094     char *name_str = "unknown OS";
4095     if (strcmp(uts.sysname, "OS400") == 0) {
4096       // We run on AS/400 PASE. We do not support versions older than V5R4M0.
4097       _on_pase = 1;
4098       if (os_version_short() < 0x0504) {
4099         trcVerbose("OS/400 releases older than V5R4M0 not supported.");
4100         assert(false, "OS/400 release too old.");
4101       }
4102       name_str = "OS/400 (pase)";
4103       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u", major, minor);
4104     } else if (strcmp(uts.sysname, "AIX") == 0) {
4105       // We run on AIX. We do not support versions older than AIX 5.3.
4106       _on_pase = 0;
4107       // Determine detailed AIX version: Version, Release, Modification, Fix Level.
4108       odmWrapper::determine_os_kernel_version(&_os_version);
4109       if (os_version_short() < 0x0503) {
4110         trcVerbose("AIX release older than AIX 5.3 not supported.");
4111         assert(false, "AIX release too old.");
4112       }
4113       name_str = "AIX";
4114       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u.%u.%u",
4115                    major, minor, (_os_version >> 8) & 0xFF, _os_version & 0xFF);
4116     } else {
4117       assert(false, name_str);
4118     }
4119     trcVerbose("We run on %s %s", name_str, ver_str);
4120   }
4121 
4122   guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");
4123 } // end: os::Aix::initialize_os_info()
4124 
4125 // Scan environment for important settings which might effect the VM.
4126 // Trace out settings. Warn about invalid settings and/or correct them.
4127 //
4128 // Must run after os::Aix::initialue_os_info().
4129 void os::Aix::scan_environment() {
4130 
4131   char* p;
4132   int rc;
4133 
4134   // Warn explicity if EXTSHM=ON is used. That switch changes how
4135   // System V shared memory behaves. One effect is that page size of
4136   // shared memory cannot be change dynamically, effectivly preventing
4137   // large pages from working.
4138   // This switch was needed on AIX 32bit, but on AIX 64bit the general
4139   // recommendation is (in OSS notes) to switch it off.
4140   p = ::getenv("EXTSHM");
4141   trcVerbose("EXTSHM=%s.", p ? p : "<unset>");
4142   if (p && strcasecmp(p, "ON") == 0) {
4143     _extshm = 1;
4144     trcVerbose("*** Unsupported mode! Please remove EXTSHM from your environment! ***");
4145     if (!AllowExtshm) {
4146       // We allow under certain conditions the user to continue. However, we want this
4147       // to be a fatal error by default. On certain AIX systems, leaving EXTSHM=ON means
4148       // that the VM is not able to allocate 64k pages for the heap.
4149       // We do not want to run with reduced performance.
4150       vm_exit_during_initialization("EXTSHM is ON. Please remove EXTSHM from your environment.");
4151     }
4152   } else {
4153     _extshm = 0;
4154   }
4155 
4156   // SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
4157   // Not tested, not supported.
4158   //
4159   // Note that it might be worth the trouble to test and to require it, if only to
4160   // get useful return codes for mprotect.
4161   //
4162   // Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
4163   // exec() ? before loading the libjvm ? ....)
4164   p = ::getenv("XPG_SUS_ENV");
4165   trcVerbose("XPG_SUS_ENV=%s.", p ? p : "<unset>");
4166   if (p && strcmp(p, "ON") == 0) {
4167     _xpg_sus_mode = 1;
4168     trcVerbose("Unsupported setting: XPG_SUS_ENV=ON");
4169     // This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
4170     // clobber address ranges. If we ever want to support that, we have to do some
4171     // testing first.
4172     guarantee(false, "XPG_SUS_ENV=ON not supported");
4173   } else {
4174     _xpg_sus_mode = 0;
4175   }
4176 
4177   if (os::Aix::on_pase()) {
4178     p = ::getenv("QIBM_MULTI_THREADED");
4179     trcVerbose("QIBM_MULTI_THREADED=%s.", p ? p : "<unset>");
4180   }
4181 
4182   p = ::getenv("LDR_CNTRL");
4183   trcVerbose("LDR_CNTRL=%s.", p ? p : "<unset>");
4184   if (os::Aix::on_pase() && os::Aix::os_version_short() == 0x0701) {
4185     if (p && ::strstr(p, "TEXTPSIZE")) {
4186       trcVerbose("*** WARNING - LDR_CNTRL contains TEXTPSIZE. "
4187         "you may experience hangs or crashes on OS/400 V7R1.");
4188     }
4189   }
4190 
4191   p = ::getenv("AIXTHREAD_GUARDPAGES");
4192   trcVerbose("AIXTHREAD_GUARDPAGES=%s.", p ? p : "<unset>");
4193 
4194 } // end: os::Aix::scan_environment()
4195 
4196 // PASE: initialize the libo4 library (PASE porting library).
4197 void os::Aix::initialize_libo4() {
4198   guarantee(os::Aix::on_pase(), "OS/400 only.");
4199   if (!libo4::init()) {
4200     trcVerbose("libo4 initialization failed.");
4201     assert(false, "libo4 initialization failed");
4202   } else {
4203     trcVerbose("libo4 initialized.");
4204   }
4205 }
4206 
4207 // AIX: initialize the libperfstat library.
4208 void os::Aix::initialize_libperfstat() {
4209   assert(os::Aix::on_aix(), "AIX only");
4210   if (!libperfstat::init()) {
4211     trcVerbose("libperfstat initialization failed.");
4212     assert(false, "libperfstat initialization failed");
4213   } else {
4214     trcVerbose("libperfstat initialized.");
4215   }
4216 }
4217 
4218 /////////////////////////////////////////////////////////////////////////////
4219 // thread stack
4220 
4221 // Get the current stack base from the OS (actually, the pthread library).
4222 // Note: usually not page aligned.
4223 address os::current_stack_base() {
4224   AixMisc::stackbounds_t bounds;
4225   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4226   guarantee(rc, "Unable to retrieve stack bounds.");
4227   return bounds.base;
4228 }
4229 
4230 // Get the current stack size from the OS (actually, the pthread library).
4231 // Returned size is such that (base - size) is always aligned to page size.
4232 size_t os::current_stack_size() {
4233   AixMisc::stackbounds_t bounds;
4234   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4235   guarantee(rc, "Unable to retrieve stack bounds.");
4236   // Align the returned stack size such that the stack low address
4237   // is aligned to page size (Note: base is usually not and we do not care).
4238   // We need to do this because caller code will assume stack low address is
4239   // page aligned and will place guard pages without checking.
4240   address low = bounds.base - bounds.size;
4241   address low_aligned = (address)align_up(low, os::vm_page_size());
4242   size_t s = bounds.base - low_aligned;
4243   return s;
4244 }
4245 
4246 extern char** environ;
4247 
4248 // Run the specified command in a separate process. Return its exit value,
4249 // or -1 on failure (e.g. can't fork a new process).
4250 // Unlike system(), this function can be called from signal handler. It
4251 // doesn't block SIGINT et al.
4252 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
4253   char * argv[4] = {"sh", "-c", cmd, NULL};
4254 
4255   pid_t pid = fork();
4256 
4257   if (pid < 0) {
4258     // fork failed
4259     return -1;
4260 
4261   } else if (pid == 0) {
4262     // child process
4263 
4264     // Try to be consistent with system(), which uses "/usr/bin/sh" on AIX.
4265     execve("/usr/bin/sh", argv, environ);
4266 
4267     // execve failed
4268     _exit(-1);
4269 
4270   } else {
4271     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4272     // care about the actual exit code, for now.
4273 
4274     int status;
4275 
4276     // Wait for the child process to exit. This returns immediately if
4277     // the child has already exited. */
4278     while (waitpid(pid, &status, 0) < 0) {
4279       switch (errno) {
4280         case ECHILD: return 0;
4281         case EINTR: break;
4282         default: return -1;
4283       }
4284     }
4285 
4286     if (WIFEXITED(status)) {
4287       // The child exited normally; get its exit code.
4288       return WEXITSTATUS(status);
4289     } else if (WIFSIGNALED(status)) {
4290       // The child exited because of a signal.
4291       // The best value to return is 0x80 + signal number,
4292       // because that is what all Unix shells do, and because
4293       // it allows callers to distinguish between process exit and
4294       // process death by signal.
4295       return 0x80 + WTERMSIG(status);
4296     } else {
4297       // Unknown exit code; pass it through.
4298       return status;
4299     }
4300   }
4301   return -1;
4302 }
4303 
4304 // Get the default path to the core file
4305 // Returns the length of the string
4306 int os::get_core_path(char* buffer, size_t bufferSize) {
4307   const char* p = get_current_directory(buffer, bufferSize);
4308 
4309   if (p == NULL) {
4310     assert(p != NULL, "failed to get current directory");
4311     return 0;
4312   }
4313 
4314   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
4315                                                p, current_process_id());
4316 
4317   return strlen(buffer);
4318 }
4319 
4320 #ifndef PRODUCT
4321 void TestReserveMemorySpecial_test() {
4322   // No tests available for this platform
4323 }
4324 #endif
4325 
4326 bool os::start_debugging(char *buf, int buflen) {
4327   int len = (int)strlen(buf);
4328   char *p = &buf[len];
4329 
4330   jio_snprintf(p, buflen -len,
4331                  "\n\n"
4332                  "Do you want to debug the problem?\n\n"
4333                  "To debug, run 'dbx -a %d'; then switch to thread tid " INTX_FORMAT ", k-tid " INTX_FORMAT "\n"
4334                  "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
4335                  "Otherwise, press RETURN to abort...",
4336                  os::current_process_id(),
4337                  os::current_thread_id(), thread_self());
4338 
4339   bool yes = os::message_box("Unexpected Error", buf);
4340 
4341   if (yes) {
4342     // yes, user asked VM to launch debugger
4343     jio_snprintf(buf, buflen, "dbx -a %d", os::current_process_id());
4344 
4345     os::fork_and_exec(buf);
4346     yes = false;
4347   }
4348   return yes;
4349 }
4350 
4351 static inline time_t get_mtime(const char* filename) {
4352   struct stat st;
4353   int ret = os::stat(filename, &st);
4354   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
4355   return st.st_mtime;
4356 }
4357 
4358 int os::compare_file_modified_times(const char* file1, const char* file2) {
4359   time_t t1 = get_mtime(file1);
4360   time_t t2 = get_mtime(file2);
4361   return t1 - t2;
4362 }