1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "compiler/disassembler.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/barrierSetAssembler.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "memory/universe.hpp"
  36 #include "oops/accessDecorators.hpp"
  37 #include "oops/compressedOops.inline.hpp"
  38 #include "oops/klass.inline.hpp"
  39 #include "prims/methodHandles.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/flags/flagSetting.hpp"
  42 #include "runtime/interfaceSupport.inline.hpp"
  43 #include "runtime/objectMonitor.hpp"
  44 #include "runtime/os.hpp"
  45 #include "runtime/safepoint.hpp"
  46 #include "runtime/safepointMechanism.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "runtime/thread.hpp"
  50 #include "utilities/macros.hpp"
  51 #include "crc32c.h"
  52 #ifdef COMPILER2
  53 #include "opto/intrinsicnode.hpp"
  54 #endif
  55 
  56 #ifdef PRODUCT
  57 #define BLOCK_COMMENT(str) /* nothing */
  58 #define STOP(error) stop(error)
  59 #else
  60 #define BLOCK_COMMENT(str) block_comment(str)
  61 #define STOP(error) block_comment(error); stop(error)
  62 #endif
  63 
  64 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  65 
  66 #ifdef ASSERT
  67 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  68 #endif
  69 
  70 static Assembler::Condition reverse[] = {
  71     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  72     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  73     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  74     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  75     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  76     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  77     Assembler::above          /* belowEqual    = 0x6 */ ,
  78     Assembler::belowEqual     /* above         = 0x7 */ ,
  79     Assembler::positive       /* negative      = 0x8 */ ,
  80     Assembler::negative       /* positive      = 0x9 */ ,
  81     Assembler::noParity       /* parity        = 0xa */ ,
  82     Assembler::parity         /* noParity      = 0xb */ ,
  83     Assembler::greaterEqual   /* less          = 0xc */ ,
  84     Assembler::less           /* greaterEqual  = 0xd */ ,
  85     Assembler::greater        /* lessEqual     = 0xe */ ,
  86     Assembler::lessEqual      /* greater       = 0xf, */
  87 
  88 };
  89 
  90 
  91 // Implementation of MacroAssembler
  92 
  93 // First all the versions that have distinct versions depending on 32/64 bit
  94 // Unless the difference is trivial (1 line or so).
  95 
  96 #ifndef _LP64
  97 
  98 // 32bit versions
  99 
 100 Address MacroAssembler::as_Address(AddressLiteral adr) {
 101   return Address(adr.target(), adr.rspec());
 102 }
 103 
 104 Address MacroAssembler::as_Address(ArrayAddress adr) {
 105   return Address::make_array(adr);
 106 }
 107 
 108 void MacroAssembler::call_VM_leaf_base(address entry_point,
 109                                        int number_of_arguments) {
 110   call(RuntimeAddress(entry_point));
 111   increment(rsp, number_of_arguments * wordSize);
 112 }
 113 
 114 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 115   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 116 }
 117 
 118 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 119   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 120 }
 121 
 122 void MacroAssembler::cmpoop_raw(Address src1, jobject obj) {
 123   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 124 }
 125 
 126 void MacroAssembler::cmpoop_raw(Register src1, jobject obj) {
 127   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 128 }
 129 
 130 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 131   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 132   bs->obj_equals(this, src1, obj);
 133 }
 134 
 135 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 136   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 137   bs->obj_equals(this, src1, obj);
 138 }
 139 
 140 void MacroAssembler::extend_sign(Register hi, Register lo) {
 141   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 142   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 143     cdql();
 144   } else {
 145     movl(hi, lo);
 146     sarl(hi, 31);
 147   }
 148 }
 149 
 150 void MacroAssembler::jC2(Register tmp, Label& L) {
 151   // set parity bit if FPU flag C2 is set (via rax)
 152   save_rax(tmp);
 153   fwait(); fnstsw_ax();
 154   sahf();
 155   restore_rax(tmp);
 156   // branch
 157   jcc(Assembler::parity, L);
 158 }
 159 
 160 void MacroAssembler::jnC2(Register tmp, Label& L) {
 161   // set parity bit if FPU flag C2 is set (via rax)
 162   save_rax(tmp);
 163   fwait(); fnstsw_ax();
 164   sahf();
 165   restore_rax(tmp);
 166   // branch
 167   jcc(Assembler::noParity, L);
 168 }
 169 
 170 // 32bit can do a case table jump in one instruction but we no longer allow the base
 171 // to be installed in the Address class
 172 void MacroAssembler::jump(ArrayAddress entry) {
 173   jmp(as_Address(entry));
 174 }
 175 
 176 // Note: y_lo will be destroyed
 177 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 178   // Long compare for Java (semantics as described in JVM spec.)
 179   Label high, low, done;
 180 
 181   cmpl(x_hi, y_hi);
 182   jcc(Assembler::less, low);
 183   jcc(Assembler::greater, high);
 184   // x_hi is the return register
 185   xorl(x_hi, x_hi);
 186   cmpl(x_lo, y_lo);
 187   jcc(Assembler::below, low);
 188   jcc(Assembler::equal, done);
 189 
 190   bind(high);
 191   xorl(x_hi, x_hi);
 192   increment(x_hi);
 193   jmp(done);
 194 
 195   bind(low);
 196   xorl(x_hi, x_hi);
 197   decrementl(x_hi);
 198 
 199   bind(done);
 200 }
 201 
 202 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 203     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 204 }
 205 
 206 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 207   // leal(dst, as_Address(adr));
 208   // see note in movl as to why we must use a move
 209   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 210 }
 211 
 212 void MacroAssembler::leave() {
 213   mov(rsp, rbp);
 214   pop(rbp);
 215 }
 216 
 217 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 218   // Multiplication of two Java long values stored on the stack
 219   // as illustrated below. Result is in rdx:rax.
 220   //
 221   // rsp ---> [  ??  ] \               \
 222   //            ....    | y_rsp_offset  |
 223   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 224   //          [ y_hi ]                  | (in bytes)
 225   //            ....                    |
 226   //          [ x_lo ]                 /
 227   //          [ x_hi ]
 228   //            ....
 229   //
 230   // Basic idea: lo(result) = lo(x_lo * y_lo)
 231   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 232   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 233   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 234   Label quick;
 235   // load x_hi, y_hi and check if quick
 236   // multiplication is possible
 237   movl(rbx, x_hi);
 238   movl(rcx, y_hi);
 239   movl(rax, rbx);
 240   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 241   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 242   // do full multiplication
 243   // 1st step
 244   mull(y_lo);                                    // x_hi * y_lo
 245   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 246   // 2nd step
 247   movl(rax, x_lo);
 248   mull(rcx);                                     // x_lo * y_hi
 249   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 250   // 3rd step
 251   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 252   movl(rax, x_lo);
 253   mull(y_lo);                                    // x_lo * y_lo
 254   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 255 }
 256 
 257 void MacroAssembler::lneg(Register hi, Register lo) {
 258   negl(lo);
 259   adcl(hi, 0);
 260   negl(hi);
 261 }
 262 
 263 void MacroAssembler::lshl(Register hi, Register lo) {
 264   // Java shift left long support (semantics as described in JVM spec., p.305)
 265   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 266   // shift value is in rcx !
 267   assert(hi != rcx, "must not use rcx");
 268   assert(lo != rcx, "must not use rcx");
 269   const Register s = rcx;                        // shift count
 270   const int      n = BitsPerWord;
 271   Label L;
 272   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 273   cmpl(s, n);                                    // if (s < n)
 274   jcc(Assembler::less, L);                       // else (s >= n)
 275   movl(hi, lo);                                  // x := x << n
 276   xorl(lo, lo);
 277   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 278   bind(L);                                       // s (mod n) < n
 279   shldl(hi, lo);                                 // x := x << s
 280   shll(lo);
 281 }
 282 
 283 
 284 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 285   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 286   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 287   assert(hi != rcx, "must not use rcx");
 288   assert(lo != rcx, "must not use rcx");
 289   const Register s = rcx;                        // shift count
 290   const int      n = BitsPerWord;
 291   Label L;
 292   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 293   cmpl(s, n);                                    // if (s < n)
 294   jcc(Assembler::less, L);                       // else (s >= n)
 295   movl(lo, hi);                                  // x := x >> n
 296   if (sign_extension) sarl(hi, 31);
 297   else                xorl(hi, hi);
 298   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 299   bind(L);                                       // s (mod n) < n
 300   shrdl(lo, hi);                                 // x := x >> s
 301   if (sign_extension) sarl(hi);
 302   else                shrl(hi);
 303 }
 304 
 305 void MacroAssembler::movoop(Register dst, jobject obj) {
 306   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movoop(Address dst, jobject obj) {
 310   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 311 }
 312 
 313 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 314   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 315 }
 316 
 317 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 318   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 319 }
 320 
 321 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 322   // scratch register is not used,
 323   // it is defined to match parameters of 64-bit version of this method.
 324   if (src.is_lval()) {
 325     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 326   } else {
 327     movl(dst, as_Address(src));
 328   }
 329 }
 330 
 331 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 332   movl(as_Address(dst), src);
 333 }
 334 
 335 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 336   movl(dst, as_Address(src));
 337 }
 338 
 339 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 340 void MacroAssembler::movptr(Address dst, intptr_t src) {
 341   movl(dst, src);
 342 }
 343 
 344 
 345 void MacroAssembler::pop_callee_saved_registers() {
 346   pop(rcx);
 347   pop(rdx);
 348   pop(rdi);
 349   pop(rsi);
 350 }
 351 
 352 void MacroAssembler::pop_fTOS() {
 353   fld_d(Address(rsp, 0));
 354   addl(rsp, 2 * wordSize);
 355 }
 356 
 357 void MacroAssembler::push_callee_saved_registers() {
 358   push(rsi);
 359   push(rdi);
 360   push(rdx);
 361   push(rcx);
 362 }
 363 
 364 void MacroAssembler::push_fTOS() {
 365   subl(rsp, 2 * wordSize);
 366   fstp_d(Address(rsp, 0));
 367 }
 368 
 369 
 370 void MacroAssembler::pushoop(jobject obj) {
 371   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 372 }
 373 
 374 void MacroAssembler::pushklass(Metadata* obj) {
 375   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 376 }
 377 
 378 void MacroAssembler::pushptr(AddressLiteral src) {
 379   if (src.is_lval()) {
 380     push_literal32((int32_t)src.target(), src.rspec());
 381   } else {
 382     pushl(as_Address(src));
 383   }
 384 }
 385 
 386 void MacroAssembler::set_word_if_not_zero(Register dst) {
 387   xorl(dst, dst);
 388   set_byte_if_not_zero(dst);
 389 }
 390 
 391 static void pass_arg0(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 static void pass_arg1(MacroAssembler* masm, Register arg) {
 396   masm->push(arg);
 397 }
 398 
 399 static void pass_arg2(MacroAssembler* masm, Register arg) {
 400   masm->push(arg);
 401 }
 402 
 403 static void pass_arg3(MacroAssembler* masm, Register arg) {
 404   masm->push(arg);
 405 }
 406 
 407 #ifndef PRODUCT
 408 extern "C" void findpc(intptr_t x);
 409 #endif
 410 
 411 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 412   // In order to get locks to work, we need to fake a in_VM state
 413   JavaThread* thread = JavaThread::current();
 414   JavaThreadState saved_state = thread->thread_state();
 415   thread->set_thread_state(_thread_in_vm);
 416   if (ShowMessageBoxOnError) {
 417     JavaThread* thread = JavaThread::current();
 418     JavaThreadState saved_state = thread->thread_state();
 419     thread->set_thread_state(_thread_in_vm);
 420     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 421       ttyLocker ttyl;
 422       BytecodeCounter::print();
 423     }
 424     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 425     // This is the value of eip which points to where verify_oop will return.
 426     if (os::message_box(msg, "Execution stopped, print registers?")) {
 427       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 428       BREAKPOINT;
 429     }
 430   }
 431   fatal("DEBUG MESSAGE: %s", msg);
 432 }
 433 
 434 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 435   ttyLocker ttyl;
 436   FlagSetting fs(Debugging, true);
 437   tty->print_cr("eip = 0x%08x", eip);
 438 #ifndef PRODUCT
 439   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 440     tty->cr();
 441     findpc(eip);
 442     tty->cr();
 443   }
 444 #endif
 445 #define PRINT_REG(rax) \
 446   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 447   PRINT_REG(rax);
 448   PRINT_REG(rbx);
 449   PRINT_REG(rcx);
 450   PRINT_REG(rdx);
 451   PRINT_REG(rdi);
 452   PRINT_REG(rsi);
 453   PRINT_REG(rbp);
 454   PRINT_REG(rsp);
 455 #undef PRINT_REG
 456   // Print some words near top of staack.
 457   int* dump_sp = (int*) rsp;
 458   for (int col1 = 0; col1 < 8; col1++) {
 459     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 460     os::print_location(tty, *dump_sp++);
 461   }
 462   for (int row = 0; row < 16; row++) {
 463     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 464     for (int col = 0; col < 8; col++) {
 465       tty->print(" 0x%08x", *dump_sp++);
 466     }
 467     tty->cr();
 468   }
 469   // Print some instructions around pc:
 470   Disassembler::decode((address)eip-64, (address)eip);
 471   tty->print_cr("--------");
 472   Disassembler::decode((address)eip, (address)eip+32);
 473 }
 474 
 475 void MacroAssembler::stop(const char* msg) {
 476   ExternalAddress message((address)msg);
 477   // push address of message
 478   pushptr(message.addr());
 479   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 480   pusha();                                            // push registers
 481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 482   hlt();
 483 }
 484 
 485 void MacroAssembler::warn(const char* msg) {
 486   push_CPU_state();
 487 
 488   ExternalAddress message((address) msg);
 489   // push address of message
 490   pushptr(message.addr());
 491 
 492   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 493   addl(rsp, wordSize);       // discard argument
 494   pop_CPU_state();
 495 }
 496 
 497 void MacroAssembler::print_state() {
 498   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 499   pusha();                                            // push registers
 500 
 501   push_CPU_state();
 502   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 503   pop_CPU_state();
 504 
 505   popa();
 506   addl(rsp, wordSize);
 507 }
 508 
 509 #else // _LP64
 510 
 511 // 64 bit versions
 512 
 513 Address MacroAssembler::as_Address(AddressLiteral adr) {
 514   // amd64 always does this as a pc-rel
 515   // we can be absolute or disp based on the instruction type
 516   // jmp/call are displacements others are absolute
 517   assert(!adr.is_lval(), "must be rval");
 518   assert(reachable(adr), "must be");
 519   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 520 
 521 }
 522 
 523 Address MacroAssembler::as_Address(ArrayAddress adr) {
 524   AddressLiteral base = adr.base();
 525   lea(rscratch1, base);
 526   Address index = adr.index();
 527   assert(index._disp == 0, "must not have disp"); // maybe it can?
 528   Address array(rscratch1, index._index, index._scale, index._disp);
 529   return array;
 530 }
 531 
 532 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 533   Label L, E;
 534 
 535 #ifdef _WIN64
 536   // Windows always allocates space for it's register args
 537   assert(num_args <= 4, "only register arguments supported");
 538   subq(rsp,  frame::arg_reg_save_area_bytes);
 539 #endif
 540 
 541   // Align stack if necessary
 542   testl(rsp, 15);
 543   jcc(Assembler::zero, L);
 544 
 545   subq(rsp, 8);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549   addq(rsp, 8);
 550   jmp(E);
 551 
 552   bind(L);
 553   {
 554     call(RuntimeAddress(entry_point));
 555   }
 556 
 557   bind(E);
 558 
 559 #ifdef _WIN64
 560   // restore stack pointer
 561   addq(rsp, frame::arg_reg_save_area_bytes);
 562 #endif
 563 
 564 }
 565 
 566 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 567   assert(!src2.is_lval(), "should use cmpptr");
 568 
 569   if (reachable(src2)) {
 570     cmpq(src1, as_Address(src2));
 571   } else {
 572     lea(rscratch1, src2);
 573     Assembler::cmpq(src1, Address(rscratch1, 0));
 574   }
 575 }
 576 
 577 int MacroAssembler::corrected_idivq(Register reg) {
 578   // Full implementation of Java ldiv and lrem; checks for special
 579   // case as described in JVM spec., p.243 & p.271.  The function
 580   // returns the (pc) offset of the idivl instruction - may be needed
 581   // for implicit exceptions.
 582   //
 583   //         normal case                           special case
 584   //
 585   // input : rax: dividend                         min_long
 586   //         reg: divisor   (may not be eax/edx)   -1
 587   //
 588   // output: rax: quotient  (= rax idiv reg)       min_long
 589   //         rdx: remainder (= rax irem reg)       0
 590   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 591   static const int64_t min_long = 0x8000000000000000;
 592   Label normal_case, special_case;
 593 
 594   // check for special case
 595   cmp64(rax, ExternalAddress((address) &min_long));
 596   jcc(Assembler::notEqual, normal_case);
 597   xorl(rdx, rdx); // prepare rdx for possible special case (where
 598                   // remainder = 0)
 599   cmpq(reg, -1);
 600   jcc(Assembler::equal, special_case);
 601 
 602   // handle normal case
 603   bind(normal_case);
 604   cdqq();
 605   int idivq_offset = offset();
 606   idivq(reg);
 607 
 608   // normal and special case exit
 609   bind(special_case);
 610 
 611   return idivq_offset;
 612 }
 613 
 614 void MacroAssembler::decrementq(Register reg, int value) {
 615   if (value == min_jint) { subq(reg, value); return; }
 616   if (value <  0) { incrementq(reg, -value); return; }
 617   if (value == 0) {                        ; return; }
 618   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 619   /* else */      { subq(reg, value)       ; return; }
 620 }
 621 
 622 void MacroAssembler::decrementq(Address dst, int value) {
 623   if (value == min_jint) { subq(dst, value); return; }
 624   if (value <  0) { incrementq(dst, -value); return; }
 625   if (value == 0) {                        ; return; }
 626   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 627   /* else */      { subq(dst, value)       ; return; }
 628 }
 629 
 630 void MacroAssembler::incrementq(AddressLiteral dst) {
 631   if (reachable(dst)) {
 632     incrementq(as_Address(dst));
 633   } else {
 634     lea(rscratch1, dst);
 635     incrementq(Address(rscratch1, 0));
 636   }
 637 }
 638 
 639 void MacroAssembler::incrementq(Register reg, int value) {
 640   if (value == min_jint) { addq(reg, value); return; }
 641   if (value <  0) { decrementq(reg, -value); return; }
 642   if (value == 0) {                        ; return; }
 643   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 644   /* else */      { addq(reg, value)       ; return; }
 645 }
 646 
 647 void MacroAssembler::incrementq(Address dst, int value) {
 648   if (value == min_jint) { addq(dst, value); return; }
 649   if (value <  0) { decrementq(dst, -value); return; }
 650   if (value == 0) {                        ; return; }
 651   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 652   /* else */      { addq(dst, value)       ; return; }
 653 }
 654 
 655 // 32bit can do a case table jump in one instruction but we no longer allow the base
 656 // to be installed in the Address class
 657 void MacroAssembler::jump(ArrayAddress entry) {
 658   lea(rscratch1, entry.base());
 659   Address dispatch = entry.index();
 660   assert(dispatch._base == noreg, "must be");
 661   dispatch._base = rscratch1;
 662   jmp(dispatch);
 663 }
 664 
 665 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 666   ShouldNotReachHere(); // 64bit doesn't use two regs
 667   cmpq(x_lo, y_lo);
 668 }
 669 
 670 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 671     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 672 }
 673 
 674 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 675   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 676   movptr(dst, rscratch1);
 677 }
 678 
 679 void MacroAssembler::leave() {
 680   // %%% is this really better? Why not on 32bit too?
 681   emit_int8((unsigned char)0xC9); // LEAVE
 682 }
 683 
 684 void MacroAssembler::lneg(Register hi, Register lo) {
 685   ShouldNotReachHere(); // 64bit doesn't use two regs
 686   negq(lo);
 687 }
 688 
 689 void MacroAssembler::movoop(Register dst, jobject obj) {
 690   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 691 }
 692 
 693 void MacroAssembler::movoop(Address dst, jobject obj) {
 694   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 695   movq(dst, rscratch1);
 696 }
 697 
 698 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 699   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 700 }
 701 
 702 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 703   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 704   movq(dst, rscratch1);
 705 }
 706 
 707 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 708   if (src.is_lval()) {
 709     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 710   } else {
 711     if (reachable(src)) {
 712       movq(dst, as_Address(src));
 713     } else {
 714       lea(scratch, src);
 715       movq(dst, Address(scratch, 0));
 716     }
 717   }
 718 }
 719 
 720 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 721   movq(as_Address(dst), src);
 722 }
 723 
 724 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 725   movq(dst, as_Address(src));
 726 }
 727 
 728 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 729 void MacroAssembler::movptr(Address dst, intptr_t src) {
 730   mov64(rscratch1, src);
 731   movq(dst, rscratch1);
 732 }
 733 
 734 // These are mostly for initializing NULL
 735 void MacroAssembler::movptr(Address dst, int32_t src) {
 736   movslq(dst, src);
 737 }
 738 
 739 void MacroAssembler::movptr(Register dst, int32_t src) {
 740   mov64(dst, (intptr_t)src);
 741 }
 742 
 743 void MacroAssembler::pushoop(jobject obj) {
 744   movoop(rscratch1, obj);
 745   push(rscratch1);
 746 }
 747 
 748 void MacroAssembler::pushklass(Metadata* obj) {
 749   mov_metadata(rscratch1, obj);
 750   push(rscratch1);
 751 }
 752 
 753 void MacroAssembler::pushptr(AddressLiteral src) {
 754   lea(rscratch1, src);
 755   if (src.is_lval()) {
 756     push(rscratch1);
 757   } else {
 758     pushq(Address(rscratch1, 0));
 759   }
 760 }
 761 
 762 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 763   // we must set sp to zero to clear frame
 764   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 765   // must clear fp, so that compiled frames are not confused; it is
 766   // possible that we need it only for debugging
 767   if (clear_fp) {
 768     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 769   }
 770 
 771   // Always clear the pc because it could have been set by make_walkable()
 772   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 773   vzeroupper();
 774 }
 775 
 776 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 777                                          Register last_java_fp,
 778                                          address  last_java_pc) {
 779   vzeroupper();
 780   // determine last_java_sp register
 781   if (!last_java_sp->is_valid()) {
 782     last_java_sp = rsp;
 783   }
 784 
 785   // last_java_fp is optional
 786   if (last_java_fp->is_valid()) {
 787     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 788            last_java_fp);
 789   }
 790 
 791   // last_java_pc is optional
 792   if (last_java_pc != NULL) {
 793     Address java_pc(r15_thread,
 794                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 795     lea(rscratch1, InternalAddress(last_java_pc));
 796     movptr(java_pc, rscratch1);
 797   }
 798 
 799   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 800 }
 801 
 802 static void pass_arg0(MacroAssembler* masm, Register arg) {
 803   if (c_rarg0 != arg ) {
 804     masm->mov(c_rarg0, arg);
 805   }
 806 }
 807 
 808 static void pass_arg1(MacroAssembler* masm, Register arg) {
 809   if (c_rarg1 != arg ) {
 810     masm->mov(c_rarg1, arg);
 811   }
 812 }
 813 
 814 static void pass_arg2(MacroAssembler* masm, Register arg) {
 815   if (c_rarg2 != arg ) {
 816     masm->mov(c_rarg2, arg);
 817   }
 818 }
 819 
 820 static void pass_arg3(MacroAssembler* masm, Register arg) {
 821   if (c_rarg3 != arg ) {
 822     masm->mov(c_rarg3, arg);
 823   }
 824 }
 825 
 826 void MacroAssembler::stop(const char* msg) {
 827   if (ShowMessageBoxOnError) {
 828     address rip = pc();
 829     pusha(); // get regs on stack
 830     lea(c_rarg1, InternalAddress(rip));
 831     movq(c_rarg2, rsp); // pass pointer to regs array
 832   }
 833   lea(c_rarg0, ExternalAddress((address) msg));
 834   andq(rsp, -16); // align stack as required by ABI
 835   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 836   hlt();
 837 }
 838 
 839 void MacroAssembler::warn(const char* msg) {
 840   push(rbp);
 841   movq(rbp, rsp);
 842   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 843   push_CPU_state();   // keeps alignment at 16 bytes
 844   lea(c_rarg0, ExternalAddress((address) msg));
 845   lea(rax, ExternalAddress(CAST_FROM_FN_PTR(address, warning)));
 846   call(rax);
 847   pop_CPU_state();
 848   mov(rsp, rbp);
 849   pop(rbp);
 850 }
 851 
 852 void MacroAssembler::print_state() {
 853   address rip = pc();
 854   pusha();            // get regs on stack
 855   push(rbp);
 856   movq(rbp, rsp);
 857   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 858   push_CPU_state();   // keeps alignment at 16 bytes
 859 
 860   lea(c_rarg0, InternalAddress(rip));
 861   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 862   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 863 
 864   pop_CPU_state();
 865   mov(rsp, rbp);
 866   pop(rbp);
 867   popa();
 868 }
 869 
 870 #ifndef PRODUCT
 871 extern "C" void findpc(intptr_t x);
 872 #endif
 873 
 874 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 875   // In order to get locks to work, we need to fake a in_VM state
 876   if (ShowMessageBoxOnError) {
 877     JavaThread* thread = JavaThread::current();
 878     JavaThreadState saved_state = thread->thread_state();
 879     thread->set_thread_state(_thread_in_vm);
 880 #ifndef PRODUCT
 881     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 882       ttyLocker ttyl;
 883       BytecodeCounter::print();
 884     }
 885 #endif
 886     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 887     // XXX correct this offset for amd64
 888     // This is the value of eip which points to where verify_oop will return.
 889     if (os::message_box(msg, "Execution stopped, print registers?")) {
 890       print_state64(pc, regs);
 891       BREAKPOINT;
 892     }
 893   }
 894   fatal("DEBUG MESSAGE: %s", msg);
 895 }
 896 
 897 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 898   ttyLocker ttyl;
 899   FlagSetting fs(Debugging, true);
 900   tty->print_cr("rip = 0x%016lx", (intptr_t)pc);
 901 #ifndef PRODUCT
 902   tty->cr();
 903   findpc(pc);
 904   tty->cr();
 905 #endif
 906 #define PRINT_REG(rax, value) \
 907   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 908   PRINT_REG(rax, regs[15]);
 909   PRINT_REG(rbx, regs[12]);
 910   PRINT_REG(rcx, regs[14]);
 911   PRINT_REG(rdx, regs[13]);
 912   PRINT_REG(rdi, regs[8]);
 913   PRINT_REG(rsi, regs[9]);
 914   PRINT_REG(rbp, regs[10]);
 915   PRINT_REG(rsp, regs[11]);
 916   PRINT_REG(r8 , regs[7]);
 917   PRINT_REG(r9 , regs[6]);
 918   PRINT_REG(r10, regs[5]);
 919   PRINT_REG(r11, regs[4]);
 920   PRINT_REG(r12, regs[3]);
 921   PRINT_REG(r13, regs[2]);
 922   PRINT_REG(r14, regs[1]);
 923   PRINT_REG(r15, regs[0]);
 924 #undef PRINT_REG
 925   // Print some words near top of staack.
 926   int64_t* rsp = (int64_t*) regs[11];
 927   int64_t* dump_sp = rsp;
 928   for (int col1 = 0; col1 < 8; col1++) {
 929     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 930     os::print_location(tty, *dump_sp++);
 931   }
 932   for (int row = 0; row < 25; row++) {
 933     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 934     for (int col = 0; col < 4; col++) {
 935       tty->print(" 0x%016lx", (intptr_t)*dump_sp++);
 936     }
 937     tty->cr();
 938   }
 939   // Print some instructions around pc:
 940   Disassembler::decode((address)pc-64, (address)pc);
 941   tty->print_cr("--------");
 942   Disassembler::decode((address)pc, (address)pc+32);
 943 }
 944 
 945 #endif // _LP64
 946 
 947 // Now versions that are common to 32/64 bit
 948 
 949 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 950   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 951 }
 952 
 953 void MacroAssembler::addptr(Register dst, Register src) {
 954   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 955 }
 956 
 957 void MacroAssembler::addptr(Address dst, Register src) {
 958   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 959 }
 960 
 961 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 962   if (reachable(src)) {
 963     Assembler::addsd(dst, as_Address(src));
 964   } else {
 965     lea(rscratch1, src);
 966     Assembler::addsd(dst, Address(rscratch1, 0));
 967   }
 968 }
 969 
 970 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 971   if (reachable(src)) {
 972     addss(dst, as_Address(src));
 973   } else {
 974     lea(rscratch1, src);
 975     addss(dst, Address(rscratch1, 0));
 976   }
 977 }
 978 
 979 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 980   if (reachable(src)) {
 981     Assembler::addpd(dst, as_Address(src));
 982   } else {
 983     lea(rscratch1, src);
 984     Assembler::addpd(dst, Address(rscratch1, 0));
 985   }
 986 }
 987 
 988 void MacroAssembler::align(int modulus) {
 989   align(modulus, offset());
 990 }
 991 
 992 void MacroAssembler::align(int modulus, int target) {
 993   if (target % modulus != 0) {
 994     nop(modulus - (target % modulus));
 995   }
 996 }
 997 
 998 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
 999   // Used in sign-masking with aligned address.
1000   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1001   if (reachable(src)) {
1002     Assembler::andpd(dst, as_Address(src));
1003   } else {
1004     lea(scratch_reg, src);
1005     Assembler::andpd(dst, Address(scratch_reg, 0));
1006   }
1007 }
1008 
1009 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
1010   // Used in sign-masking with aligned address.
1011   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1012   if (reachable(src)) {
1013     Assembler::andps(dst, as_Address(src));
1014   } else {
1015     lea(scratch_reg, src);
1016     Assembler::andps(dst, Address(scratch_reg, 0));
1017   }
1018 }
1019 
1020 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1021   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1022 }
1023 
1024 void MacroAssembler::atomic_incl(Address counter_addr) {
1025   lock();
1026   incrementl(counter_addr);
1027 }
1028 
1029 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1030   if (reachable(counter_addr)) {
1031     atomic_incl(as_Address(counter_addr));
1032   } else {
1033     lea(scr, counter_addr);
1034     atomic_incl(Address(scr, 0));
1035   }
1036 }
1037 
1038 #ifdef _LP64
1039 void MacroAssembler::atomic_incq(Address counter_addr) {
1040   lock();
1041   incrementq(counter_addr);
1042 }
1043 
1044 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1045   if (reachable(counter_addr)) {
1046     atomic_incq(as_Address(counter_addr));
1047   } else {
1048     lea(scr, counter_addr);
1049     atomic_incq(Address(scr, 0));
1050   }
1051 }
1052 #endif
1053 
1054 // Writes to stack successive pages until offset reached to check for
1055 // stack overflow + shadow pages.  This clobbers tmp.
1056 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1057   movptr(tmp, rsp);
1058   // Bang stack for total size given plus shadow page size.
1059   // Bang one page at a time because large size can bang beyond yellow and
1060   // red zones.
1061   Label loop;
1062   bind(loop);
1063   movl(Address(tmp, (-os::vm_page_size())), size );
1064   subptr(tmp, os::vm_page_size());
1065   subl(size, os::vm_page_size());
1066   jcc(Assembler::greater, loop);
1067 
1068   // Bang down shadow pages too.
1069   // At this point, (tmp-0) is the last address touched, so don't
1070   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1071   // was post-decremented.)  Skip this address by starting at i=1, and
1072   // touch a few more pages below.  N.B.  It is important to touch all
1073   // the way down including all pages in the shadow zone.
1074   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1075     // this could be any sized move but this is can be a debugging crumb
1076     // so the bigger the better.
1077     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1078   }
1079 }
1080 
1081 void MacroAssembler::reserved_stack_check() {
1082     // testing if reserved zone needs to be enabled
1083     Label no_reserved_zone_enabling;
1084     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1085     NOT_LP64(get_thread(rsi);)
1086 
1087     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1088     jcc(Assembler::below, no_reserved_zone_enabling);
1089 
1090     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1091     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1092     should_not_reach_here();
1093 
1094     bind(no_reserved_zone_enabling);
1095 }
1096 
1097 int MacroAssembler::biased_locking_enter(Register lock_reg,
1098                                          Register obj_reg,
1099                                          Register swap_reg,
1100                                          Register tmp_reg,
1101                                          bool swap_reg_contains_mark,
1102                                          Label& done,
1103                                          Label* slow_case,
1104                                          BiasedLockingCounters* counters) {
1105   assert(UseBiasedLocking, "why call this otherwise?");
1106   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1107   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1108   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1109   assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits, "biased locking makes assumptions about bit layout");
1110   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1111   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1112 
1113   if (PrintBiasedLockingStatistics && counters == NULL) {
1114     counters = BiasedLocking::counters();
1115   }
1116   // Biased locking
1117   // See whether the lock is currently biased toward our thread and
1118   // whether the epoch is still valid
1119   // Note that the runtime guarantees sufficient alignment of JavaThread
1120   // pointers to allow age to be placed into low bits
1121   // First check to see whether biasing is even enabled for this object
1122   Label cas_label;
1123   int null_check_offset = -1;
1124   if (!swap_reg_contains_mark) {
1125     null_check_offset = offset();
1126     movptr(swap_reg, mark_addr);
1127   }
1128   movptr(tmp_reg, swap_reg);
1129   andptr(tmp_reg, markWord::biased_lock_mask_in_place);
1130   cmpptr(tmp_reg, markWord::biased_lock_pattern);
1131   jcc(Assembler::notEqual, cas_label);
1132   // The bias pattern is present in the object's header. Need to check
1133   // whether the bias owner and the epoch are both still current.
1134 #ifndef _LP64
1135   // Note that because there is no current thread register on x86_32 we
1136   // need to store off the mark word we read out of the object to
1137   // avoid reloading it and needing to recheck invariants below. This
1138   // store is unfortunate but it makes the overall code shorter and
1139   // simpler.
1140   movptr(saved_mark_addr, swap_reg);
1141 #endif
1142   if (swap_reg_contains_mark) {
1143     null_check_offset = offset();
1144   }
1145   load_prototype_header(tmp_reg, obj_reg);
1146 #ifdef _LP64
1147   orptr(tmp_reg, r15_thread);
1148   xorptr(tmp_reg, swap_reg);
1149   Register header_reg = tmp_reg;
1150 #else
1151   xorptr(tmp_reg, swap_reg);
1152   get_thread(swap_reg);
1153   xorptr(swap_reg, tmp_reg);
1154   Register header_reg = swap_reg;
1155 #endif
1156   andptr(header_reg, ~((int) markWord::age_mask_in_place));
1157   if (counters != NULL) {
1158     cond_inc32(Assembler::zero,
1159                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1160   }
1161   jcc(Assembler::equal, done);
1162 
1163   Label try_revoke_bias;
1164   Label try_rebias;
1165 
1166   // At this point we know that the header has the bias pattern and
1167   // that we are not the bias owner in the current epoch. We need to
1168   // figure out more details about the state of the header in order to
1169   // know what operations can be legally performed on the object's
1170   // header.
1171 
1172   // If the low three bits in the xor result aren't clear, that means
1173   // the prototype header is no longer biased and we have to revoke
1174   // the bias on this object.
1175   testptr(header_reg, markWord::biased_lock_mask_in_place);
1176   jccb(Assembler::notZero, try_revoke_bias);
1177 
1178   // Biasing is still enabled for this data type. See whether the
1179   // epoch of the current bias is still valid, meaning that the epoch
1180   // bits of the mark word are equal to the epoch bits of the
1181   // prototype header. (Note that the prototype header's epoch bits
1182   // only change at a safepoint.) If not, attempt to rebias the object
1183   // toward the current thread. Note that we must be absolutely sure
1184   // that the current epoch is invalid in order to do this because
1185   // otherwise the manipulations it performs on the mark word are
1186   // illegal.
1187   testptr(header_reg, markWord::epoch_mask_in_place);
1188   jccb(Assembler::notZero, try_rebias);
1189 
1190   // The epoch of the current bias is still valid but we know nothing
1191   // about the owner; it might be set or it might be clear. Try to
1192   // acquire the bias of the object using an atomic operation. If this
1193   // fails we will go in to the runtime to revoke the object's bias.
1194   // Note that we first construct the presumed unbiased header so we
1195   // don't accidentally blow away another thread's valid bias.
1196   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1197   andptr(swap_reg,
1198          markWord::biased_lock_mask_in_place | markWord::age_mask_in_place | markWord::epoch_mask_in_place);
1199 #ifdef _LP64
1200   movptr(tmp_reg, swap_reg);
1201   orptr(tmp_reg, r15_thread);
1202 #else
1203   get_thread(tmp_reg);
1204   orptr(tmp_reg, swap_reg);
1205 #endif
1206   lock();
1207   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1208   // If the biasing toward our thread failed, this means that
1209   // another thread succeeded in biasing it toward itself and we
1210   // need to revoke that bias. The revocation will occur in the
1211   // interpreter runtime in the slow case.
1212   if (counters != NULL) {
1213     cond_inc32(Assembler::zero,
1214                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1215   }
1216   if (slow_case != NULL) {
1217     jcc(Assembler::notZero, *slow_case);
1218   }
1219   jmp(done);
1220 
1221   bind(try_rebias);
1222   // At this point we know the epoch has expired, meaning that the
1223   // current "bias owner", if any, is actually invalid. Under these
1224   // circumstances _only_, we are allowed to use the current header's
1225   // value as the comparison value when doing the cas to acquire the
1226   // bias in the current epoch. In other words, we allow transfer of
1227   // the bias from one thread to another directly in this situation.
1228   //
1229   // FIXME: due to a lack of registers we currently blow away the age
1230   // bits in this situation. Should attempt to preserve them.
1231   load_prototype_header(tmp_reg, obj_reg);
1232 #ifdef _LP64
1233   orptr(tmp_reg, r15_thread);
1234 #else
1235   get_thread(swap_reg);
1236   orptr(tmp_reg, swap_reg);
1237   movptr(swap_reg, saved_mark_addr);
1238 #endif
1239   lock();
1240   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1241   // If the biasing toward our thread failed, then another thread
1242   // succeeded in biasing it toward itself and we need to revoke that
1243   // bias. The revocation will occur in the runtime in the slow case.
1244   if (counters != NULL) {
1245     cond_inc32(Assembler::zero,
1246                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1247   }
1248   if (slow_case != NULL) {
1249     jcc(Assembler::notZero, *slow_case);
1250   }
1251   jmp(done);
1252 
1253   bind(try_revoke_bias);
1254   // The prototype mark in the klass doesn't have the bias bit set any
1255   // more, indicating that objects of this data type are not supposed
1256   // to be biased any more. We are going to try to reset the mark of
1257   // this object to the prototype value and fall through to the
1258   // CAS-based locking scheme. Note that if our CAS fails, it means
1259   // that another thread raced us for the privilege of revoking the
1260   // bias of this particular object, so it's okay to continue in the
1261   // normal locking code.
1262   //
1263   // FIXME: due to a lack of registers we currently blow away the age
1264   // bits in this situation. Should attempt to preserve them.
1265   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1266   load_prototype_header(tmp_reg, obj_reg);
1267   lock();
1268   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1269   // Fall through to the normal CAS-based lock, because no matter what
1270   // the result of the above CAS, some thread must have succeeded in
1271   // removing the bias bit from the object's header.
1272   if (counters != NULL) {
1273     cond_inc32(Assembler::zero,
1274                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1275   }
1276 
1277   bind(cas_label);
1278 
1279   return null_check_offset;
1280 }
1281 
1282 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1283   assert(UseBiasedLocking, "why call this otherwise?");
1284 
1285   // Check for biased locking unlock case, which is a no-op
1286   // Note: we do not have to check the thread ID for two reasons.
1287   // First, the interpreter checks for IllegalMonitorStateException at
1288   // a higher level. Second, if the bias was revoked while we held the
1289   // lock, the object could not be rebiased toward another thread, so
1290   // the bias bit would be clear.
1291   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1292   andptr(temp_reg, markWord::biased_lock_mask_in_place);
1293   cmpptr(temp_reg, markWord::biased_lock_pattern);
1294   jcc(Assembler::equal, done);
1295 }
1296 
1297 #ifdef COMPILER2
1298 
1299 #if INCLUDE_RTM_OPT
1300 
1301 // Update rtm_counters based on abort status
1302 // input: abort_status
1303 //        rtm_counters (RTMLockingCounters*)
1304 // flags are killed
1305 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1306 
1307   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1308   if (PrintPreciseRTMLockingStatistics) {
1309     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1310       Label check_abort;
1311       testl(abort_status, (1<<i));
1312       jccb(Assembler::equal, check_abort);
1313       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1314       bind(check_abort);
1315     }
1316   }
1317 }
1318 
1319 // Branch if (random & (count-1) != 0), count is 2^n
1320 // tmp, scr and flags are killed
1321 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1322   assert(tmp == rax, "");
1323   assert(scr == rdx, "");
1324   rdtsc(); // modifies EDX:EAX
1325   andptr(tmp, count-1);
1326   jccb(Assembler::notZero, brLabel);
1327 }
1328 
1329 // Perform abort ratio calculation, set no_rtm bit if high ratio
1330 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1331 // tmpReg, rtm_counters_Reg and flags are killed
1332 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1333                                                  Register rtm_counters_Reg,
1334                                                  RTMLockingCounters* rtm_counters,
1335                                                  Metadata* method_data) {
1336   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1337 
1338   if (RTMLockingCalculationDelay > 0) {
1339     // Delay calculation
1340     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1341     testptr(tmpReg, tmpReg);
1342     jccb(Assembler::equal, L_done);
1343   }
1344   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1345   //   Aborted transactions = abort_count * 100
1346   //   All transactions = total_count *  RTMTotalCountIncrRate
1347   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1348 
1349   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1350   cmpptr(tmpReg, RTMAbortThreshold);
1351   jccb(Assembler::below, L_check_always_rtm2);
1352   imulptr(tmpReg, tmpReg, 100);
1353 
1354   Register scrReg = rtm_counters_Reg;
1355   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1356   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1357   imulptr(scrReg, scrReg, RTMAbortRatio);
1358   cmpptr(tmpReg, scrReg);
1359   jccb(Assembler::below, L_check_always_rtm1);
1360   if (method_data != NULL) {
1361     // set rtm_state to "no rtm" in MDO
1362     mov_metadata(tmpReg, method_data);
1363     lock();
1364     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1365   }
1366   jmpb(L_done);
1367   bind(L_check_always_rtm1);
1368   // Reload RTMLockingCounters* address
1369   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1370   bind(L_check_always_rtm2);
1371   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1372   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1373   jccb(Assembler::below, L_done);
1374   if (method_data != NULL) {
1375     // set rtm_state to "always rtm" in MDO
1376     mov_metadata(tmpReg, method_data);
1377     lock();
1378     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1379   }
1380   bind(L_done);
1381 }
1382 
1383 // Update counters and perform abort ratio calculation
1384 // input:  abort_status_Reg
1385 // rtm_counters_Reg, flags are killed
1386 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1387                                    Register rtm_counters_Reg,
1388                                    RTMLockingCounters* rtm_counters,
1389                                    Metadata* method_data,
1390                                    bool profile_rtm) {
1391 
1392   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1393   // update rtm counters based on rax value at abort
1394   // reads abort_status_Reg, updates flags
1395   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1396   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1397   if (profile_rtm) {
1398     // Save abort status because abort_status_Reg is used by following code.
1399     if (RTMRetryCount > 0) {
1400       push(abort_status_Reg);
1401     }
1402     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1403     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1404     // restore abort status
1405     if (RTMRetryCount > 0) {
1406       pop(abort_status_Reg);
1407     }
1408   }
1409 }
1410 
1411 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1412 // inputs: retry_count_Reg
1413 //       : abort_status_Reg
1414 // output: retry_count_Reg decremented by 1
1415 // flags are killed
1416 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1417   Label doneRetry;
1418   assert(abort_status_Reg == rax, "");
1419   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1420   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1421   // if reason is in 0x6 and retry count != 0 then retry
1422   andptr(abort_status_Reg, 0x6);
1423   jccb(Assembler::zero, doneRetry);
1424   testl(retry_count_Reg, retry_count_Reg);
1425   jccb(Assembler::zero, doneRetry);
1426   pause();
1427   decrementl(retry_count_Reg);
1428   jmp(retryLabel);
1429   bind(doneRetry);
1430 }
1431 
1432 // Spin and retry if lock is busy,
1433 // inputs: box_Reg (monitor address)
1434 //       : retry_count_Reg
1435 // output: retry_count_Reg decremented by 1
1436 //       : clear z flag if retry count exceeded
1437 // tmp_Reg, scr_Reg, flags are killed
1438 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1439                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1440   Label SpinLoop, SpinExit, doneRetry;
1441   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1442 
1443   testl(retry_count_Reg, retry_count_Reg);
1444   jccb(Assembler::zero, doneRetry);
1445   decrementl(retry_count_Reg);
1446   movptr(scr_Reg, RTMSpinLoopCount);
1447 
1448   bind(SpinLoop);
1449   pause();
1450   decrementl(scr_Reg);
1451   jccb(Assembler::lessEqual, SpinExit);
1452   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1453   testptr(tmp_Reg, tmp_Reg);
1454   jccb(Assembler::notZero, SpinLoop);
1455 
1456   bind(SpinExit);
1457   jmp(retryLabel);
1458   bind(doneRetry);
1459   incrementl(retry_count_Reg); // clear z flag
1460 }
1461 
1462 // Use RTM for normal stack locks
1463 // Input: objReg (object to lock)
1464 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1465                                        Register retry_on_abort_count_Reg,
1466                                        RTMLockingCounters* stack_rtm_counters,
1467                                        Metadata* method_data, bool profile_rtm,
1468                                        Label& DONE_LABEL, Label& IsInflated) {
1469   assert(UseRTMForStackLocks, "why call this otherwise?");
1470   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1471   assert(tmpReg == rax, "");
1472   assert(scrReg == rdx, "");
1473   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1474 
1475   if (RTMRetryCount > 0) {
1476     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1477     bind(L_rtm_retry);
1478   }
1479   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1480   testptr(tmpReg, markWord::monitor_value);  // inflated vs stack-locked|neutral|biased
1481   jcc(Assembler::notZero, IsInflated);
1482 
1483   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1484     Label L_noincrement;
1485     if (RTMTotalCountIncrRate > 1) {
1486       // tmpReg, scrReg and flags are killed
1487       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1488     }
1489     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1490     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1491     bind(L_noincrement);
1492   }
1493   xbegin(L_on_abort);
1494   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1495   andptr(tmpReg, markWord::biased_lock_mask_in_place); // look at 3 lock bits
1496   cmpptr(tmpReg, markWord::unlocked_value);            // bits = 001 unlocked
1497   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1498 
1499   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1500   if (UseRTMXendForLockBusy) {
1501     xend();
1502     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1503     jmp(L_decrement_retry);
1504   }
1505   else {
1506     xabort(0);
1507   }
1508   bind(L_on_abort);
1509   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1510     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1511   }
1512   bind(L_decrement_retry);
1513   if (RTMRetryCount > 0) {
1514     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1515     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1516   }
1517 }
1518 
1519 // Use RTM for inflating locks
1520 // inputs: objReg (object to lock)
1521 //         boxReg (on-stack box address (displaced header location) - KILLED)
1522 //         tmpReg (ObjectMonitor address + markWord::monitor_value)
1523 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1524                                           Register scrReg, Register retry_on_busy_count_Reg,
1525                                           Register retry_on_abort_count_Reg,
1526                                           RTMLockingCounters* rtm_counters,
1527                                           Metadata* method_data, bool profile_rtm,
1528                                           Label& DONE_LABEL) {
1529   assert(UseRTMLocking, "why call this otherwise?");
1530   assert(tmpReg == rax, "");
1531   assert(scrReg == rdx, "");
1532   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1533   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1534 
1535   // Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
1536   movptr(Address(boxReg, 0), (int32_t)intptr_t(markWord::unused_mark().value()));
1537   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1538 
1539   if (RTMRetryCount > 0) {
1540     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1541     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1542     bind(L_rtm_retry);
1543   }
1544   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1545     Label L_noincrement;
1546     if (RTMTotalCountIncrRate > 1) {
1547       // tmpReg, scrReg and flags are killed
1548       branch_on_random_using_rdtsc(tmpReg, scrReg, RTMTotalCountIncrRate, L_noincrement);
1549     }
1550     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1551     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1552     bind(L_noincrement);
1553   }
1554   xbegin(L_on_abort);
1555   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1556   movptr(tmpReg, Address(tmpReg, owner_offset));
1557   testptr(tmpReg, tmpReg);
1558   jcc(Assembler::zero, DONE_LABEL);
1559   if (UseRTMXendForLockBusy) {
1560     xend();
1561     jmp(L_decrement_retry);
1562   }
1563   else {
1564     xabort(0);
1565   }
1566   bind(L_on_abort);
1567   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1568   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1569     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1570   }
1571   if (RTMRetryCount > 0) {
1572     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1573     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1574   }
1575 
1576   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1577   testptr(tmpReg, tmpReg) ;
1578   jccb(Assembler::notZero, L_decrement_retry) ;
1579 
1580   // Appears unlocked - try to swing _owner from null to non-null.
1581   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1582 #ifdef _LP64
1583   Register threadReg = r15_thread;
1584 #else
1585   get_thread(scrReg);
1586   Register threadReg = scrReg;
1587 #endif
1588   lock();
1589   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1590 
1591   if (RTMRetryCount > 0) {
1592     // success done else retry
1593     jccb(Assembler::equal, DONE_LABEL) ;
1594     bind(L_decrement_retry);
1595     // Spin and retry if lock is busy.
1596     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1597   }
1598   else {
1599     bind(L_decrement_retry);
1600   }
1601 }
1602 
1603 #endif //  INCLUDE_RTM_OPT
1604 
1605 // fast_lock and fast_unlock used by C2
1606 
1607 // Because the transitions from emitted code to the runtime
1608 // monitorenter/exit helper stubs are so slow it's critical that
1609 // we inline both the stack-locking fast path and the inflated fast path.
1610 //
1611 // See also: cmpFastLock and cmpFastUnlock.
1612 //
1613 // What follows is a specialized inline transliteration of the code
1614 // in enter() and exit(). If we're concerned about I$ bloat another
1615 // option would be to emit TrySlowEnter and TrySlowExit methods
1616 // at startup-time.  These methods would accept arguments as
1617 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1618 // indications in the icc.ZFlag.  fast_lock and fast_unlock would simply
1619 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1620 // In practice, however, the # of lock sites is bounded and is usually small.
1621 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1622 // if the processor uses simple bimodal branch predictors keyed by EIP
1623 // Since the helper routines would be called from multiple synchronization
1624 // sites.
1625 //
1626 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1627 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1628 // to those specialized methods.  That'd give us a mostly platform-independent
1629 // implementation that the JITs could optimize and inline at their pleasure.
1630 // Done correctly, the only time we'd need to cross to native could would be
1631 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1632 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1633 // (b) explicit barriers or fence operations.
1634 //
1635 // TODO:
1636 //
1637 // *  Arrange for C2 to pass "Self" into fast_lock and fast_unlock in one of the registers (scr).
1638 //    This avoids manifesting the Self pointer in the fast_lock and fast_unlock terminals.
1639 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1640 //    the lock operators would typically be faster than reifying Self.
1641 //
1642 // *  Ideally I'd define the primitives as:
1643 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1644 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1645 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1646 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1647 //    Furthermore the register assignments are overconstrained, possibly resulting in
1648 //    sub-optimal code near the synchronization site.
1649 //
1650 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1651 //    Alternately, use a better sp-proximity test.
1652 //
1653 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1654 //    Either one is sufficient to uniquely identify a thread.
1655 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1656 //
1657 // *  Intrinsify notify() and notifyAll() for the common cases where the
1658 //    object is locked by the calling thread but the waitlist is empty.
1659 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1660 //
1661 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1662 //    But beware of excessive branch density on AMD Opterons.
1663 //
1664 // *  Both fast_lock and fast_unlock set the ICC.ZF to indicate success
1665 //    or failure of the fast path.  If the fast path fails then we pass
1666 //    control to the slow path, typically in C.  In fast_lock and
1667 //    fast_unlock we often branch to DONE_LABEL, just to find that C2
1668 //    will emit a conditional branch immediately after the node.
1669 //    So we have branches to branches and lots of ICC.ZF games.
1670 //    Instead, it might be better to have C2 pass a "FailureLabel"
1671 //    into fast_lock and fast_unlock.  In the case of success, control
1672 //    will drop through the node.  ICC.ZF is undefined at exit.
1673 //    In the case of failure, the node will branch directly to the
1674 //    FailureLabel
1675 
1676 
1677 // obj: object to lock
1678 // box: on-stack box address (displaced header location) - KILLED
1679 // rax,: tmp -- KILLED
1680 // scr: tmp -- KILLED
1681 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1682                                Register scrReg, Register cx1Reg, Register cx2Reg,
1683                                BiasedLockingCounters* counters,
1684                                RTMLockingCounters* rtm_counters,
1685                                RTMLockingCounters* stack_rtm_counters,
1686                                Metadata* method_data,
1687                                bool use_rtm, bool profile_rtm) {
1688   // Ensure the register assignments are disjoint
1689   assert(tmpReg == rax, "");
1690 
1691   if (use_rtm) {
1692     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1693   } else {
1694     assert(cx1Reg == noreg, "");
1695     assert(cx2Reg == noreg, "");
1696     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1697   }
1698 
1699   if (counters != NULL) {
1700     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1701   }
1702 
1703   // Possible cases that we'll encounter in fast_lock
1704   // ------------------------------------------------
1705   // * Inflated
1706   //    -- unlocked
1707   //    -- Locked
1708   //       = by self
1709   //       = by other
1710   // * biased
1711   //    -- by Self
1712   //    -- by other
1713   // * neutral
1714   // * stack-locked
1715   //    -- by self
1716   //       = sp-proximity test hits
1717   //       = sp-proximity test generates false-negative
1718   //    -- by other
1719   //
1720 
1721   Label IsInflated, DONE_LABEL;
1722 
1723   // it's stack-locked, biased or neutral
1724   // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1725   // order to reduce the number of conditional branches in the most common cases.
1726   // Beware -- there's a subtle invariant that fetch of the markword
1727   // at [FETCH], below, will never observe a biased encoding (*101b).
1728   // If this invariant is not held we risk exclusion (safety) failure.
1729   if (UseBiasedLocking && !UseOptoBiasInlining) {
1730     biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1731   }
1732 
1733 #if INCLUDE_RTM_OPT
1734   if (UseRTMForStackLocks && use_rtm) {
1735     rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1736                       stack_rtm_counters, method_data, profile_rtm,
1737                       DONE_LABEL, IsInflated);
1738   }
1739 #endif // INCLUDE_RTM_OPT
1740 
1741   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1742   testptr(tmpReg, markWord::monitor_value); // inflated vs stack-locked|neutral|biased
1743   jccb(Assembler::notZero, IsInflated);
1744 
1745   // Attempt stack-locking ...
1746   orptr (tmpReg, markWord::unlocked_value);
1747   movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1748   lock();
1749   cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1750   if (counters != NULL) {
1751     cond_inc32(Assembler::equal,
1752                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1753   }
1754   jcc(Assembler::equal, DONE_LABEL);           // Success
1755 
1756   // Recursive locking.
1757   // The object is stack-locked: markword contains stack pointer to BasicLock.
1758   // Locked by current thread if difference with current SP is less than one page.
1759   subptr(tmpReg, rsp);
1760   // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1761   andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1762   movptr(Address(boxReg, 0), tmpReg);
1763   if (counters != NULL) {
1764     cond_inc32(Assembler::equal,
1765                ExternalAddress((address)counters->fast_path_entry_count_addr()));
1766   }
1767   jmp(DONE_LABEL);
1768 
1769   bind(IsInflated);
1770   // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markWord::monitor_value
1771 
1772 #if INCLUDE_RTM_OPT
1773   // Use the same RTM locking code in 32- and 64-bit VM.
1774   if (use_rtm) {
1775     rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1776                          rtm_counters, method_data, profile_rtm, DONE_LABEL);
1777   } else {
1778 #endif // INCLUDE_RTM_OPT
1779 
1780 #ifndef _LP64
1781   // The object is inflated.
1782 
1783   // boxReg refers to the on-stack BasicLock in the current frame.
1784   // We'd like to write:
1785   //   set box->_displaced_header = markWord::unused_mark().  Any non-0 value suffices.
1786   // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1787   // additional latency as we have another ST in the store buffer that must drain.
1788 
1789   // avoid ST-before-CAS
1790   // register juggle because we need tmpReg for cmpxchgptr below
1791   movptr(scrReg, boxReg);
1792   movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1793 
1794   // Optimistic form: consider XORL tmpReg,tmpReg
1795   movptr(tmpReg, NULL_WORD);
1796 
1797   // Appears unlocked - try to swing _owner from null to non-null.
1798   // Ideally, I'd manifest "Self" with get_thread and then attempt
1799   // to CAS the register containing Self into m->Owner.
1800   // But we don't have enough registers, so instead we can either try to CAS
1801   // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1802   // we later store "Self" into m->Owner.  Transiently storing a stack address
1803   // (rsp or the address of the box) into  m->owner is harmless.
1804   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1805   lock();
1806   cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1807   movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1808   // If we weren't able to swing _owner from NULL to the BasicLock
1809   // then take the slow path.
1810   jccb  (Assembler::notZero, DONE_LABEL);
1811   // update _owner from BasicLock to thread
1812   get_thread (scrReg);                    // beware: clobbers ICCs
1813   movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1814   xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1815 
1816   // If the CAS fails we can either retry or pass control to the slow path.
1817   // We use the latter tactic.
1818   // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1819   // If the CAS was successful ...
1820   //   Self has acquired the lock
1821   //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1822   // Intentional fall-through into DONE_LABEL ...
1823 #else // _LP64
1824   // It's inflated and we use scrReg for ObjectMonitor* in this section.
1825   movq(scrReg, tmpReg);
1826   xorq(tmpReg, tmpReg);
1827   lock();
1828   cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1829   // Unconditionally set box->_displaced_header = markWord::unused_mark().
1830   // Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
1831   movptr(Address(boxReg, 0), (int32_t)intptr_t(markWord::unused_mark().value()));
1832   // Intentional fall-through into DONE_LABEL ...
1833   // Propagate ICC.ZF from CAS above into DONE_LABEL.
1834 #endif // _LP64
1835 #if INCLUDE_RTM_OPT
1836   } // use_rtm()
1837 #endif
1838   // DONE_LABEL is a hot target - we'd really like to place it at the
1839   // start of cache line by padding with NOPs.
1840   // See the AMD and Intel software optimization manuals for the
1841   // most efficient "long" NOP encodings.
1842   // Unfortunately none of our alignment mechanisms suffice.
1843   bind(DONE_LABEL);
1844 
1845   // At DONE_LABEL the icc ZFlag is set as follows ...
1846   // fast_unlock uses the same protocol.
1847   // ZFlag == 1 -> Success
1848   // ZFlag == 0 -> Failure - force control through the slow path
1849 }
1850 
1851 // obj: object to unlock
1852 // box: box address (displaced header location), killed.  Must be EAX.
1853 // tmp: killed, cannot be obj nor box.
1854 //
1855 // Some commentary on balanced locking:
1856 //
1857 // fast_lock and fast_unlock are emitted only for provably balanced lock sites.
1858 // Methods that don't have provably balanced locking are forced to run in the
1859 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1860 // The interpreter provides two properties:
1861 // I1:  At return-time the interpreter automatically and quietly unlocks any
1862 //      objects acquired the current activation (frame).  Recall that the
1863 //      interpreter maintains an on-stack list of locks currently held by
1864 //      a frame.
1865 // I2:  If a method attempts to unlock an object that is not held by the
1866 //      the frame the interpreter throws IMSX.
1867 //
1868 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1869 // B() doesn't have provably balanced locking so it runs in the interpreter.
1870 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1871 // is still locked by A().
1872 //
1873 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1874 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1875 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1876 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1877 // Arguably given that the spec legislates the JNI case as undefined our implementation
1878 // could reasonably *avoid* checking owner in fast_unlock().
1879 // In the interest of performance we elide m->Owner==Self check in unlock.
1880 // A perfectly viable alternative is to elide the owner check except when
1881 // Xcheck:jni is enabled.
1882 
1883 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1884   assert(boxReg == rax, "");
1885   assert_different_registers(objReg, boxReg, tmpReg);
1886 
1887   Label DONE_LABEL, Stacked, CheckSucc;
1888 
1889   // Critically, the biased locking test must have precedence over
1890   // and appear before the (box->dhw == 0) recursive stack-lock test.
1891   if (UseBiasedLocking && !UseOptoBiasInlining) {
1892     biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1893   }
1894 
1895 #if INCLUDE_RTM_OPT
1896   if (UseRTMForStackLocks && use_rtm) {
1897     assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1898     Label L_regular_unlock;
1899     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // fetch markword
1900     andptr(tmpReg, markWord::biased_lock_mask_in_place);              // look at 3 lock bits
1901     cmpptr(tmpReg, markWord::unlocked_value);                         // bits = 001 unlocked
1902     jccb(Assembler::notEqual, L_regular_unlock);                      // if !HLE RegularLock
1903     xend();                                                           // otherwise end...
1904     jmp(DONE_LABEL);                                                  // ... and we're done
1905     bind(L_regular_unlock);
1906   }
1907 #endif
1908 
1909   cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD);                   // Examine the displaced header
1910   jcc   (Assembler::zero, DONE_LABEL);                              // 0 indicates recursive stack-lock
1911   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Examine the object's markword
1912   testptr(tmpReg, markWord::monitor_value);                         // Inflated?
1913   jccb  (Assembler::zero, Stacked);
1914 
1915   // It's inflated.
1916 #if INCLUDE_RTM_OPT
1917   if (use_rtm) {
1918     Label L_regular_inflated_unlock;
1919     int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1920     movptr(boxReg, Address(tmpReg, owner_offset));
1921     testptr(boxReg, boxReg);
1922     jccb(Assembler::notZero, L_regular_inflated_unlock);
1923     xend();
1924     jmpb(DONE_LABEL);
1925     bind(L_regular_inflated_unlock);
1926   }
1927 #endif
1928 
1929   // Despite our balanced locking property we still check that m->_owner == Self
1930   // as java routines or native JNI code called by this thread might
1931   // have released the lock.
1932   // Refer to the comments in synchronizer.cpp for how we might encode extra
1933   // state in _succ so we can avoid fetching EntryList|cxq.
1934   //
1935   // I'd like to add more cases in fast_lock() and fast_unlock() --
1936   // such as recursive enter and exit -- but we have to be wary of
1937   // I$ bloat, T$ effects and BP$ effects.
1938   //
1939   // If there's no contention try a 1-0 exit.  That is, exit without
1940   // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
1941   // we detect and recover from the race that the 1-0 exit admits.
1942   //
1943   // Conceptually fast_unlock() must execute a STST|LDST "release" barrier
1944   // before it STs null into _owner, releasing the lock.  Updates
1945   // to data protected by the critical section must be visible before
1946   // we drop the lock (and thus before any other thread could acquire
1947   // the lock and observe the fields protected by the lock).
1948   // IA32's memory-model is SPO, so STs are ordered with respect to
1949   // each other and there's no need for an explicit barrier (fence).
1950   // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
1951 #ifndef _LP64
1952   get_thread (boxReg);
1953 
1954   // Note that we could employ various encoding schemes to reduce
1955   // the number of loads below (currently 4) to just 2 or 3.
1956   // Refer to the comments in synchronizer.cpp.
1957   // In practice the chain of fetches doesn't seem to impact performance, however.
1958   xorptr(boxReg, boxReg);
1959   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
1960   jccb  (Assembler::notZero, DONE_LABEL);
1961   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
1962   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
1963   jccb  (Assembler::notZero, CheckSucc);
1964   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
1965   jmpb  (DONE_LABEL);
1966 
1967   bind (Stacked);
1968   // It's not inflated and it's not recursively stack-locked and it's not biased.
1969   // It must be stack-locked.
1970   // Try to reset the header to displaced header.
1971   // The "box" value on the stack is stable, so we can reload
1972   // and be assured we observe the same value as above.
1973   movptr(tmpReg, Address(boxReg, 0));
1974   lock();
1975   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
1976   // Intention fall-thru into DONE_LABEL
1977 
1978   // DONE_LABEL is a hot target - we'd really like to place it at the
1979   // start of cache line by padding with NOPs.
1980   // See the AMD and Intel software optimization manuals for the
1981   // most efficient "long" NOP encodings.
1982   // Unfortunately none of our alignment mechanisms suffice.
1983   bind (CheckSucc);
1984 #else // _LP64
1985   // It's inflated
1986   xorptr(boxReg, boxReg);
1987   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
1988   jccb  (Assembler::notZero, DONE_LABEL);
1989   movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
1990   orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
1991   jccb  (Assembler::notZero, CheckSucc);
1992   // Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
1993   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
1994   jmpb  (DONE_LABEL);
1995 
1996   // Try to avoid passing control into the slow_path ...
1997   Label LSuccess, LGoSlowPath ;
1998   bind  (CheckSucc);
1999 
2000   // The following optional optimization can be elided if necessary
2001   // Effectively: if (succ == null) goto slow path
2002   // The code reduces the window for a race, however,
2003   // and thus benefits performance.
2004   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2005   jccb  (Assembler::zero, LGoSlowPath);
2006 
2007   xorptr(boxReg, boxReg);
2008   // Without cast to int32_t this style of movptr will destroy r10 which is typically obj.
2009   movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2010 
2011   // Memory barrier/fence
2012   // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2013   // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2014   // This is faster on Nehalem and AMD Shanghai/Barcelona.
2015   // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2016   // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2017   // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2018   lock(); addl(Address(rsp, 0), 0);
2019 
2020   cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2021   jccb  (Assembler::notZero, LSuccess);
2022 
2023   // Rare inopportune interleaving - race.
2024   // The successor vanished in the small window above.
2025   // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2026   // We need to ensure progress and succession.
2027   // Try to reacquire the lock.
2028   // If that fails then the new owner is responsible for succession and this
2029   // thread needs to take no further action and can exit via the fast path (success).
2030   // If the re-acquire succeeds then pass control into the slow path.
2031   // As implemented, this latter mode is horrible because we generated more
2032   // coherence traffic on the lock *and* artifically extended the critical section
2033   // length while by virtue of passing control into the slow path.
2034 
2035   // box is really RAX -- the following CMPXCHG depends on that binding
2036   // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2037   lock();
2038   cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2039   // There's no successor so we tried to regrab the lock.
2040   // If that didn't work, then another thread grabbed the
2041   // lock so we're done (and exit was a success).
2042   jccb  (Assembler::notEqual, LSuccess);
2043   // Intentional fall-through into slow path
2044 
2045   bind  (LGoSlowPath);
2046   orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2047   jmpb  (DONE_LABEL);
2048 
2049   bind  (LSuccess);
2050   testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2051   jmpb  (DONE_LABEL);
2052 
2053   bind  (Stacked);
2054   movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2055   lock();
2056   cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2057 
2058 #endif
2059   bind(DONE_LABEL);
2060 }
2061 #endif // COMPILER2
2062 
2063 void MacroAssembler::c2bool(Register x) {
2064   // implements x == 0 ? 0 : 1
2065   // note: must only look at least-significant byte of x
2066   //       since C-style booleans are stored in one byte
2067   //       only! (was bug)
2068   andl(x, 0xFF);
2069   setb(Assembler::notZero, x);
2070 }
2071 
2072 // Wouldn't need if AddressLiteral version had new name
2073 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2074   Assembler::call(L, rtype);
2075 }
2076 
2077 void MacroAssembler::call(Register entry) {
2078   Assembler::call(entry);
2079 }
2080 
2081 void MacroAssembler::call(AddressLiteral entry) {
2082   if (reachable(entry)) {
2083     Assembler::call_literal(entry.target(), entry.rspec());
2084   } else {
2085     lea(rscratch1, entry);
2086     Assembler::call(rscratch1);
2087   }
2088 }
2089 
2090 void MacroAssembler::ic_call(address entry, jint method_index) {
2091   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2092   movptr(rax, (intptr_t)Universe::non_oop_word());
2093   call(AddressLiteral(entry, rh));
2094 }
2095 
2096 // Implementation of call_VM versions
2097 
2098 void MacroAssembler::call_VM(Register oop_result,
2099                              address entry_point,
2100                              bool check_exceptions) {
2101   Label C, E;
2102   call(C, relocInfo::none);
2103   jmp(E);
2104 
2105   bind(C);
2106   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2107   ret(0);
2108 
2109   bind(E);
2110 }
2111 
2112 void MacroAssembler::call_VM(Register oop_result,
2113                              address entry_point,
2114                              Register arg_1,
2115                              bool check_exceptions) {
2116   Label C, E;
2117   call(C, relocInfo::none);
2118   jmp(E);
2119 
2120   bind(C);
2121   pass_arg1(this, arg_1);
2122   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2123   ret(0);
2124 
2125   bind(E);
2126 }
2127 
2128 void MacroAssembler::call_VM(Register oop_result,
2129                              address entry_point,
2130                              Register arg_1,
2131                              Register arg_2,
2132                              bool check_exceptions) {
2133   Label C, E;
2134   call(C, relocInfo::none);
2135   jmp(E);
2136 
2137   bind(C);
2138 
2139   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2140 
2141   pass_arg2(this, arg_2);
2142   pass_arg1(this, arg_1);
2143   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2144   ret(0);
2145 
2146   bind(E);
2147 }
2148 
2149 void MacroAssembler::call_VM(Register oop_result,
2150                              address entry_point,
2151                              Register arg_1,
2152                              Register arg_2,
2153                              Register arg_3,
2154                              bool check_exceptions) {
2155   Label C, E;
2156   call(C, relocInfo::none);
2157   jmp(E);
2158 
2159   bind(C);
2160 
2161   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2162   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2163   pass_arg3(this, arg_3);
2164 
2165   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2166   pass_arg2(this, arg_2);
2167 
2168   pass_arg1(this, arg_1);
2169   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2170   ret(0);
2171 
2172   bind(E);
2173 }
2174 
2175 void MacroAssembler::call_VM(Register oop_result,
2176                              Register last_java_sp,
2177                              address entry_point,
2178                              int number_of_arguments,
2179                              bool check_exceptions) {
2180   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2181   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2182 }
2183 
2184 void MacroAssembler::call_VM(Register oop_result,
2185                              Register last_java_sp,
2186                              address entry_point,
2187                              Register arg_1,
2188                              bool check_exceptions) {
2189   pass_arg1(this, arg_1);
2190   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2191 }
2192 
2193 void MacroAssembler::call_VM(Register oop_result,
2194                              Register last_java_sp,
2195                              address entry_point,
2196                              Register arg_1,
2197                              Register arg_2,
2198                              bool check_exceptions) {
2199 
2200   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2201   pass_arg2(this, arg_2);
2202   pass_arg1(this, arg_1);
2203   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2204 }
2205 
2206 void MacroAssembler::call_VM(Register oop_result,
2207                              Register last_java_sp,
2208                              address entry_point,
2209                              Register arg_1,
2210                              Register arg_2,
2211                              Register arg_3,
2212                              bool check_exceptions) {
2213   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2214   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2215   pass_arg3(this, arg_3);
2216   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2217   pass_arg2(this, arg_2);
2218   pass_arg1(this, arg_1);
2219   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2220 }
2221 
2222 void MacroAssembler::super_call_VM(Register oop_result,
2223                                    Register last_java_sp,
2224                                    address entry_point,
2225                                    int number_of_arguments,
2226                                    bool check_exceptions) {
2227   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2228   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2229 }
2230 
2231 void MacroAssembler::super_call_VM(Register oop_result,
2232                                    Register last_java_sp,
2233                                    address entry_point,
2234                                    Register arg_1,
2235                                    bool check_exceptions) {
2236   pass_arg1(this, arg_1);
2237   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2238 }
2239 
2240 void MacroAssembler::super_call_VM(Register oop_result,
2241                                    Register last_java_sp,
2242                                    address entry_point,
2243                                    Register arg_1,
2244                                    Register arg_2,
2245                                    bool check_exceptions) {
2246 
2247   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2248   pass_arg2(this, arg_2);
2249   pass_arg1(this, arg_1);
2250   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2251 }
2252 
2253 void MacroAssembler::super_call_VM(Register oop_result,
2254                                    Register last_java_sp,
2255                                    address entry_point,
2256                                    Register arg_1,
2257                                    Register arg_2,
2258                                    Register arg_3,
2259                                    bool check_exceptions) {
2260   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2261   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2262   pass_arg3(this, arg_3);
2263   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2264   pass_arg2(this, arg_2);
2265   pass_arg1(this, arg_1);
2266   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2267 }
2268 
2269 void MacroAssembler::call_VM_base(Register oop_result,
2270                                   Register java_thread,
2271                                   Register last_java_sp,
2272                                   address  entry_point,
2273                                   int      number_of_arguments,
2274                                   bool     check_exceptions) {
2275   // determine java_thread register
2276   if (!java_thread->is_valid()) {
2277 #ifdef _LP64
2278     java_thread = r15_thread;
2279 #else
2280     java_thread = rdi;
2281     get_thread(java_thread);
2282 #endif // LP64
2283   }
2284   // determine last_java_sp register
2285   if (!last_java_sp->is_valid()) {
2286     last_java_sp = rsp;
2287   }
2288   // debugging support
2289   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2290   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2291 #ifdef ASSERT
2292   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2293   // r12 is the heapbase.
2294   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2295 #endif // ASSERT
2296 
2297   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2298   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2299 
2300   // push java thread (becomes first argument of C function)
2301 
2302   NOT_LP64(push(java_thread); number_of_arguments++);
2303   LP64_ONLY(mov(c_rarg0, r15_thread));
2304 
2305   // set last Java frame before call
2306   assert(last_java_sp != rbp, "can't use ebp/rbp");
2307 
2308   // Only interpreter should have to set fp
2309   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2310 
2311   // do the call, remove parameters
2312   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2313 
2314   // restore the thread (cannot use the pushed argument since arguments
2315   // may be overwritten by C code generated by an optimizing compiler);
2316   // however can use the register value directly if it is callee saved.
2317   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2318     // rdi & rsi (also r15) are callee saved -> nothing to do
2319 #ifdef ASSERT
2320     guarantee(java_thread != rax, "change this code");
2321     push(rax);
2322     { Label L;
2323       get_thread(rax);
2324       cmpptr(java_thread, rax);
2325       jcc(Assembler::equal, L);
2326       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2327       bind(L);
2328     }
2329     pop(rax);
2330 #endif
2331   } else {
2332     get_thread(java_thread);
2333   }
2334   // reset last Java frame
2335   // Only interpreter should have to clear fp
2336   reset_last_Java_frame(java_thread, true);
2337 
2338    // C++ interp handles this in the interpreter
2339   check_and_handle_popframe(java_thread);
2340   check_and_handle_earlyret(java_thread);
2341 
2342   if (check_exceptions) {
2343     // check for pending exceptions (java_thread is set upon return)
2344     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2345 #ifndef _LP64
2346     jump_cc(Assembler::notEqual,
2347             RuntimeAddress(StubRoutines::forward_exception_entry()));
2348 #else
2349     // This used to conditionally jump to forward_exception however it is
2350     // possible if we relocate that the branch will not reach. So we must jump
2351     // around so we can always reach
2352 
2353     Label ok;
2354     jcc(Assembler::equal, ok);
2355     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2356     bind(ok);
2357 #endif // LP64
2358   }
2359 
2360   // get oop result if there is one and reset the value in the thread
2361   if (oop_result->is_valid()) {
2362     get_vm_result(oop_result, java_thread);
2363   }
2364 }
2365 
2366 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2367 
2368   // Calculate the value for last_Java_sp
2369   // somewhat subtle. call_VM does an intermediate call
2370   // which places a return address on the stack just under the
2371   // stack pointer as the user finsihed with it. This allows
2372   // use to retrieve last_Java_pc from last_Java_sp[-1].
2373   // On 32bit we then have to push additional args on the stack to accomplish
2374   // the actual requested call. On 64bit call_VM only can use register args
2375   // so the only extra space is the return address that call_VM created.
2376   // This hopefully explains the calculations here.
2377 
2378 #ifdef _LP64
2379   // We've pushed one address, correct last_Java_sp
2380   lea(rax, Address(rsp, wordSize));
2381 #else
2382   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2383 #endif // LP64
2384 
2385   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2386 
2387 }
2388 
2389 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2390 void MacroAssembler::call_VM_leaf0(address entry_point) {
2391   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2392 }
2393 
2394 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2395   call_VM_leaf_base(entry_point, number_of_arguments);
2396 }
2397 
2398 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2399   pass_arg0(this, arg_0);
2400   call_VM_leaf(entry_point, 1);
2401 }
2402 
2403 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2404 
2405   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2406   pass_arg1(this, arg_1);
2407   pass_arg0(this, arg_0);
2408   call_VM_leaf(entry_point, 2);
2409 }
2410 
2411 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2412   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2413   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2414   pass_arg2(this, arg_2);
2415   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2416   pass_arg1(this, arg_1);
2417   pass_arg0(this, arg_0);
2418   call_VM_leaf(entry_point, 3);
2419 }
2420 
2421 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2422   pass_arg0(this, arg_0);
2423   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2424 }
2425 
2426 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2427 
2428   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2429   pass_arg1(this, arg_1);
2430   pass_arg0(this, arg_0);
2431   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2432 }
2433 
2434 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2435   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2436   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2437   pass_arg2(this, arg_2);
2438   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2439   pass_arg1(this, arg_1);
2440   pass_arg0(this, arg_0);
2441   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2442 }
2443 
2444 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2445   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2446   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2447   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2448   pass_arg3(this, arg_3);
2449   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2450   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2451   pass_arg2(this, arg_2);
2452   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2453   pass_arg1(this, arg_1);
2454   pass_arg0(this, arg_0);
2455   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2456 }
2457 
2458 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2459   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2460   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2461   verify_oop(oop_result, "broken oop in call_VM_base");
2462 }
2463 
2464 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2465   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2466   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2467 }
2468 
2469 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2470 }
2471 
2472 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2473 }
2474 
2475 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2476   if (reachable(src1)) {
2477     cmpl(as_Address(src1), imm);
2478   } else {
2479     lea(rscratch1, src1);
2480     cmpl(Address(rscratch1, 0), imm);
2481   }
2482 }
2483 
2484 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2485   assert(!src2.is_lval(), "use cmpptr");
2486   if (reachable(src2)) {
2487     cmpl(src1, as_Address(src2));
2488   } else {
2489     lea(rscratch1, src2);
2490     cmpl(src1, Address(rscratch1, 0));
2491   }
2492 }
2493 
2494 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2495   Assembler::cmpl(src1, imm);
2496 }
2497 
2498 void MacroAssembler::cmp32(Register src1, Address src2) {
2499   Assembler::cmpl(src1, src2);
2500 }
2501 
2502 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2503   ucomisd(opr1, opr2);
2504 
2505   Label L;
2506   if (unordered_is_less) {
2507     movl(dst, -1);
2508     jcc(Assembler::parity, L);
2509     jcc(Assembler::below , L);
2510     movl(dst, 0);
2511     jcc(Assembler::equal , L);
2512     increment(dst);
2513   } else { // unordered is greater
2514     movl(dst, 1);
2515     jcc(Assembler::parity, L);
2516     jcc(Assembler::above , L);
2517     movl(dst, 0);
2518     jcc(Assembler::equal , L);
2519     decrementl(dst);
2520   }
2521   bind(L);
2522 }
2523 
2524 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2525   ucomiss(opr1, opr2);
2526 
2527   Label L;
2528   if (unordered_is_less) {
2529     movl(dst, -1);
2530     jcc(Assembler::parity, L);
2531     jcc(Assembler::below , L);
2532     movl(dst, 0);
2533     jcc(Assembler::equal , L);
2534     increment(dst);
2535   } else { // unordered is greater
2536     movl(dst, 1);
2537     jcc(Assembler::parity, L);
2538     jcc(Assembler::above , L);
2539     movl(dst, 0);
2540     jcc(Assembler::equal , L);
2541     decrementl(dst);
2542   }
2543   bind(L);
2544 }
2545 
2546 
2547 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2548   if (reachable(src1)) {
2549     cmpb(as_Address(src1), imm);
2550   } else {
2551     lea(rscratch1, src1);
2552     cmpb(Address(rscratch1, 0), imm);
2553   }
2554 }
2555 
2556 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2557 #ifdef _LP64
2558   if (src2.is_lval()) {
2559     movptr(rscratch1, src2);
2560     Assembler::cmpq(src1, rscratch1);
2561   } else if (reachable(src2)) {
2562     cmpq(src1, as_Address(src2));
2563   } else {
2564     lea(rscratch1, src2);
2565     Assembler::cmpq(src1, Address(rscratch1, 0));
2566   }
2567 #else
2568   if (src2.is_lval()) {
2569     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2570   } else {
2571     cmpl(src1, as_Address(src2));
2572   }
2573 #endif // _LP64
2574 }
2575 
2576 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2577   assert(src2.is_lval(), "not a mem-mem compare");
2578 #ifdef _LP64
2579   // moves src2's literal address
2580   movptr(rscratch1, src2);
2581   Assembler::cmpq(src1, rscratch1);
2582 #else
2583   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2584 #endif // _LP64
2585 }
2586 
2587 void MacroAssembler::cmpoop(Register src1, Register src2) {
2588   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2589   bs->obj_equals(this, src1, src2);
2590 }
2591 
2592 void MacroAssembler::cmpoop(Register src1, Address src2) {
2593   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2594   bs->obj_equals(this, src1, src2);
2595 }
2596 
2597 #ifdef _LP64
2598 void MacroAssembler::cmpoop(Register src1, jobject src2) {
2599   movoop(rscratch1, src2);
2600   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2601   bs->obj_equals(this, src1, rscratch1);
2602 }
2603 #endif
2604 
2605 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2606   if (reachable(adr)) {
2607     lock();
2608     cmpxchgptr(reg, as_Address(adr));
2609   } else {
2610     lea(rscratch1, adr);
2611     lock();
2612     cmpxchgptr(reg, Address(rscratch1, 0));
2613   }
2614 }
2615 
2616 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2617   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2618 }
2619 
2620 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2621   if (reachable(src)) {
2622     Assembler::comisd(dst, as_Address(src));
2623   } else {
2624     lea(rscratch1, src);
2625     Assembler::comisd(dst, Address(rscratch1, 0));
2626   }
2627 }
2628 
2629 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2630   if (reachable(src)) {
2631     Assembler::comiss(dst, as_Address(src));
2632   } else {
2633     lea(rscratch1, src);
2634     Assembler::comiss(dst, Address(rscratch1, 0));
2635   }
2636 }
2637 
2638 
2639 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2640   Condition negated_cond = negate_condition(cond);
2641   Label L;
2642   jcc(negated_cond, L);
2643   pushf(); // Preserve flags
2644   atomic_incl(counter_addr);
2645   popf();
2646   bind(L);
2647 }
2648 
2649 int MacroAssembler::corrected_idivl(Register reg) {
2650   // Full implementation of Java idiv and irem; checks for
2651   // special case as described in JVM spec., p.243 & p.271.
2652   // The function returns the (pc) offset of the idivl
2653   // instruction - may be needed for implicit exceptions.
2654   //
2655   //         normal case                           special case
2656   //
2657   // input : rax,: dividend                         min_int
2658   //         reg: divisor   (may not be rax,/rdx)   -1
2659   //
2660   // output: rax,: quotient  (= rax, idiv reg)       min_int
2661   //         rdx: remainder (= rax, irem reg)       0
2662   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2663   const int min_int = 0x80000000;
2664   Label normal_case, special_case;
2665 
2666   // check for special case
2667   cmpl(rax, min_int);
2668   jcc(Assembler::notEqual, normal_case);
2669   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2670   cmpl(reg, -1);
2671   jcc(Assembler::equal, special_case);
2672 
2673   // handle normal case
2674   bind(normal_case);
2675   cdql();
2676   int idivl_offset = offset();
2677   idivl(reg);
2678 
2679   // normal and special case exit
2680   bind(special_case);
2681 
2682   return idivl_offset;
2683 }
2684 
2685 
2686 
2687 void MacroAssembler::decrementl(Register reg, int value) {
2688   if (value == min_jint) {subl(reg, value) ; return; }
2689   if (value <  0) { incrementl(reg, -value); return; }
2690   if (value == 0) {                        ; return; }
2691   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2692   /* else */      { subl(reg, value)       ; return; }
2693 }
2694 
2695 void MacroAssembler::decrementl(Address dst, int value) {
2696   if (value == min_jint) {subl(dst, value) ; return; }
2697   if (value <  0) { incrementl(dst, -value); return; }
2698   if (value == 0) {                        ; return; }
2699   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2700   /* else */      { subl(dst, value)       ; return; }
2701 }
2702 
2703 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2704   assert (shift_value > 0, "illegal shift value");
2705   Label _is_positive;
2706   testl (reg, reg);
2707   jcc (Assembler::positive, _is_positive);
2708   int offset = (1 << shift_value) - 1 ;
2709 
2710   if (offset == 1) {
2711     incrementl(reg);
2712   } else {
2713     addl(reg, offset);
2714   }
2715 
2716   bind (_is_positive);
2717   sarl(reg, shift_value);
2718 }
2719 
2720 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2721   if (reachable(src)) {
2722     Assembler::divsd(dst, as_Address(src));
2723   } else {
2724     lea(rscratch1, src);
2725     Assembler::divsd(dst, Address(rscratch1, 0));
2726   }
2727 }
2728 
2729 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2730   if (reachable(src)) {
2731     Assembler::divss(dst, as_Address(src));
2732   } else {
2733     lea(rscratch1, src);
2734     Assembler::divss(dst, Address(rscratch1, 0));
2735   }
2736 }
2737 
2738 // !defined(COMPILER2) is because of stupid core builds
2739 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2740 void MacroAssembler::empty_FPU_stack() {
2741   if (VM_Version::supports_mmx()) {
2742     emms();
2743   } else {
2744     for (int i = 8; i-- > 0; ) ffree(i);
2745   }
2746 }
2747 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2748 
2749 
2750 void MacroAssembler::enter() {
2751   push(rbp);
2752   mov(rbp, rsp);
2753 }
2754 
2755 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2756 void MacroAssembler::fat_nop() {
2757   if (UseAddressNop) {
2758     addr_nop_5();
2759   } else {
2760     emit_int8(0x26); // es:
2761     emit_int8(0x2e); // cs:
2762     emit_int8(0x64); // fs:
2763     emit_int8(0x65); // gs:
2764     emit_int8((unsigned char)0x90);
2765   }
2766 }
2767 
2768 void MacroAssembler::fcmp(Register tmp) {
2769   fcmp(tmp, 1, true, true);
2770 }
2771 
2772 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2773   assert(!pop_right || pop_left, "usage error");
2774   if (VM_Version::supports_cmov()) {
2775     assert(tmp == noreg, "unneeded temp");
2776     if (pop_left) {
2777       fucomip(index);
2778     } else {
2779       fucomi(index);
2780     }
2781     if (pop_right) {
2782       fpop();
2783     }
2784   } else {
2785     assert(tmp != noreg, "need temp");
2786     if (pop_left) {
2787       if (pop_right) {
2788         fcompp();
2789       } else {
2790         fcomp(index);
2791       }
2792     } else {
2793       fcom(index);
2794     }
2795     // convert FPU condition into eflags condition via rax,
2796     save_rax(tmp);
2797     fwait(); fnstsw_ax();
2798     sahf();
2799     restore_rax(tmp);
2800   }
2801   // condition codes set as follows:
2802   //
2803   // CF (corresponds to C0) if x < y
2804   // PF (corresponds to C2) if unordered
2805   // ZF (corresponds to C3) if x = y
2806 }
2807 
2808 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
2809   fcmp2int(dst, unordered_is_less, 1, true, true);
2810 }
2811 
2812 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
2813   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
2814   Label L;
2815   if (unordered_is_less) {
2816     movl(dst, -1);
2817     jcc(Assembler::parity, L);
2818     jcc(Assembler::below , L);
2819     movl(dst, 0);
2820     jcc(Assembler::equal , L);
2821     increment(dst);
2822   } else { // unordered is greater
2823     movl(dst, 1);
2824     jcc(Assembler::parity, L);
2825     jcc(Assembler::above , L);
2826     movl(dst, 0);
2827     jcc(Assembler::equal , L);
2828     decrementl(dst);
2829   }
2830   bind(L);
2831 }
2832 
2833 void MacroAssembler::fld_d(AddressLiteral src) {
2834   fld_d(as_Address(src));
2835 }
2836 
2837 void MacroAssembler::fld_s(AddressLiteral src) {
2838   fld_s(as_Address(src));
2839 }
2840 
2841 void MacroAssembler::fld_x(AddressLiteral src) {
2842   Assembler::fld_x(as_Address(src));
2843 }
2844 
2845 void MacroAssembler::fldcw(AddressLiteral src) {
2846   Assembler::fldcw(as_Address(src));
2847 }
2848 
2849 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
2850   if (reachable(src)) {
2851     Assembler::mulpd(dst, as_Address(src));
2852   } else {
2853     lea(rscratch1, src);
2854     Assembler::mulpd(dst, Address(rscratch1, 0));
2855   }
2856 }
2857 
2858 void MacroAssembler::increase_precision() {
2859   subptr(rsp, BytesPerWord);
2860   fnstcw(Address(rsp, 0));
2861   movl(rax, Address(rsp, 0));
2862   orl(rax, 0x300);
2863   push(rax);
2864   fldcw(Address(rsp, 0));
2865   pop(rax);
2866 }
2867 
2868 void MacroAssembler::restore_precision() {
2869   fldcw(Address(rsp, 0));
2870   addptr(rsp, BytesPerWord);
2871 }
2872 
2873 void MacroAssembler::fpop() {
2874   ffree();
2875   fincstp();
2876 }
2877 
2878 void MacroAssembler::load_float(Address src) {
2879   if (UseSSE >= 1) {
2880     movflt(xmm0, src);
2881   } else {
2882     LP64_ONLY(ShouldNotReachHere());
2883     NOT_LP64(fld_s(src));
2884   }
2885 }
2886 
2887 void MacroAssembler::store_float(Address dst) {
2888   if (UseSSE >= 1) {
2889     movflt(dst, xmm0);
2890   } else {
2891     LP64_ONLY(ShouldNotReachHere());
2892     NOT_LP64(fstp_s(dst));
2893   }
2894 }
2895 
2896 void MacroAssembler::load_double(Address src) {
2897   if (UseSSE >= 2) {
2898     movdbl(xmm0, src);
2899   } else {
2900     LP64_ONLY(ShouldNotReachHere());
2901     NOT_LP64(fld_d(src));
2902   }
2903 }
2904 
2905 void MacroAssembler::store_double(Address dst) {
2906   if (UseSSE >= 2) {
2907     movdbl(dst, xmm0);
2908   } else {
2909     LP64_ONLY(ShouldNotReachHere());
2910     NOT_LP64(fstp_d(dst));
2911   }
2912 }
2913 
2914 void MacroAssembler::fremr(Register tmp) {
2915   save_rax(tmp);
2916   { Label L;
2917     bind(L);
2918     fprem();
2919     fwait(); fnstsw_ax();
2920 #ifdef _LP64
2921     testl(rax, 0x400);
2922     jcc(Assembler::notEqual, L);
2923 #else
2924     sahf();
2925     jcc(Assembler::parity, L);
2926 #endif // _LP64
2927   }
2928   restore_rax(tmp);
2929   // Result is in ST0.
2930   // Note: fxch & fpop to get rid of ST1
2931   // (otherwise FPU stack could overflow eventually)
2932   fxch(1);
2933   fpop();
2934 }
2935 
2936 // dst = c = a * b + c
2937 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
2938   Assembler::vfmadd231sd(c, a, b);
2939   if (dst != c) {
2940     movdbl(dst, c);
2941   }
2942 }
2943 
2944 // dst = c = a * b + c
2945 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
2946   Assembler::vfmadd231ss(c, a, b);
2947   if (dst != c) {
2948     movflt(dst, c);
2949   }
2950 }
2951 
2952 // dst = c = a * b + c
2953 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
2954   Assembler::vfmadd231pd(c, a, b, vector_len);
2955   if (dst != c) {
2956     vmovdqu(dst, c);
2957   }
2958 }
2959 
2960 // dst = c = a * b + c
2961 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) {
2962   Assembler::vfmadd231ps(c, a, b, vector_len);
2963   if (dst != c) {
2964     vmovdqu(dst, c);
2965   }
2966 }
2967 
2968 // dst = c = a * b + c
2969 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
2970   Assembler::vfmadd231pd(c, a, b, vector_len);
2971   if (dst != c) {
2972     vmovdqu(dst, c);
2973   }
2974 }
2975 
2976 // dst = c = a * b + c
2977 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) {
2978   Assembler::vfmadd231ps(c, a, b, vector_len);
2979   if (dst != c) {
2980     vmovdqu(dst, c);
2981   }
2982 }
2983 
2984 void MacroAssembler::incrementl(AddressLiteral dst) {
2985   if (reachable(dst)) {
2986     incrementl(as_Address(dst));
2987   } else {
2988     lea(rscratch1, dst);
2989     incrementl(Address(rscratch1, 0));
2990   }
2991 }
2992 
2993 void MacroAssembler::incrementl(ArrayAddress dst) {
2994   incrementl(as_Address(dst));
2995 }
2996 
2997 void MacroAssembler::incrementl(Register reg, int value) {
2998   if (value == min_jint) {addl(reg, value) ; return; }
2999   if (value <  0) { decrementl(reg, -value); return; }
3000   if (value == 0) {                        ; return; }
3001   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3002   /* else */      { addl(reg, value)       ; return; }
3003 }
3004 
3005 void MacroAssembler::incrementl(Address dst, int value) {
3006   if (value == min_jint) {addl(dst, value) ; return; }
3007   if (value <  0) { decrementl(dst, -value); return; }
3008   if (value == 0) {                        ; return; }
3009   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3010   /* else */      { addl(dst, value)       ; return; }
3011 }
3012 
3013 void MacroAssembler::jump(AddressLiteral dst) {
3014   if (reachable(dst)) {
3015     jmp_literal(dst.target(), dst.rspec());
3016   } else {
3017     lea(rscratch1, dst);
3018     jmp(rscratch1);
3019   }
3020 }
3021 
3022 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3023   if (reachable(dst)) {
3024     InstructionMark im(this);
3025     relocate(dst.reloc());
3026     const int short_size = 2;
3027     const int long_size = 6;
3028     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3029     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3030       // 0111 tttn #8-bit disp
3031       emit_int8(0x70 | cc);
3032       emit_int8((offs - short_size) & 0xFF);
3033     } else {
3034       // 0000 1111 1000 tttn #32-bit disp
3035       emit_int8(0x0F);
3036       emit_int8((unsigned char)(0x80 | cc));
3037       emit_int32(offs - long_size);
3038     }
3039   } else {
3040 #ifdef ASSERT
3041     warning("reversing conditional branch");
3042 #endif /* ASSERT */
3043     Label skip;
3044     jccb(reverse[cc], skip);
3045     lea(rscratch1, dst);
3046     Assembler::jmp(rscratch1);
3047     bind(skip);
3048   }
3049 }
3050 
3051 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3052   if (reachable(src)) {
3053     Assembler::ldmxcsr(as_Address(src));
3054   } else {
3055     lea(rscratch1, src);
3056     Assembler::ldmxcsr(Address(rscratch1, 0));
3057   }
3058 }
3059 
3060 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3061   int off;
3062   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3063     off = offset();
3064     movsbl(dst, src); // movsxb
3065   } else {
3066     off = load_unsigned_byte(dst, src);
3067     shll(dst, 24);
3068     sarl(dst, 24);
3069   }
3070   return off;
3071 }
3072 
3073 // Note: load_signed_short used to be called load_signed_word.
3074 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3075 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3076 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3077 int MacroAssembler::load_signed_short(Register dst, Address src) {
3078   int off;
3079   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3080     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3081     // version but this is what 64bit has always done. This seems to imply
3082     // that users are only using 32bits worth.
3083     off = offset();
3084     movswl(dst, src); // movsxw
3085   } else {
3086     off = load_unsigned_short(dst, src);
3087     shll(dst, 16);
3088     sarl(dst, 16);
3089   }
3090   return off;
3091 }
3092 
3093 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3094   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3095   // and "3.9 Partial Register Penalties", p. 22).
3096   int off;
3097   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3098     off = offset();
3099     movzbl(dst, src); // movzxb
3100   } else {
3101     xorl(dst, dst);
3102     off = offset();
3103     movb(dst, src);
3104   }
3105   return off;
3106 }
3107 
3108 // Note: load_unsigned_short used to be called load_unsigned_word.
3109 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3110   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3111   // and "3.9 Partial Register Penalties", p. 22).
3112   int off;
3113   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3114     off = offset();
3115     movzwl(dst, src); // movzxw
3116   } else {
3117     xorl(dst, dst);
3118     off = offset();
3119     movw(dst, src);
3120   }
3121   return off;
3122 }
3123 
3124 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3125   switch (size_in_bytes) {
3126 #ifndef _LP64
3127   case  8:
3128     assert(dst2 != noreg, "second dest register required");
3129     movl(dst,  src);
3130     movl(dst2, src.plus_disp(BytesPerInt));
3131     break;
3132 #else
3133   case  8:  movq(dst, src); break;
3134 #endif
3135   case  4:  movl(dst, src); break;
3136   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3137   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3138   default:  ShouldNotReachHere();
3139   }
3140 }
3141 
3142 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3143   switch (size_in_bytes) {
3144 #ifndef _LP64
3145   case  8:
3146     assert(src2 != noreg, "second source register required");
3147     movl(dst,                        src);
3148     movl(dst.plus_disp(BytesPerInt), src2);
3149     break;
3150 #else
3151   case  8:  movq(dst, src); break;
3152 #endif
3153   case  4:  movl(dst, src); break;
3154   case  2:  movw(dst, src); break;
3155   case  1:  movb(dst, src); break;
3156   default:  ShouldNotReachHere();
3157   }
3158 }
3159 
3160 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3161   if (reachable(dst)) {
3162     movl(as_Address(dst), src);
3163   } else {
3164     lea(rscratch1, dst);
3165     movl(Address(rscratch1, 0), src);
3166   }
3167 }
3168 
3169 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3170   if (reachable(src)) {
3171     movl(dst, as_Address(src));
3172   } else {
3173     lea(rscratch1, src);
3174     movl(dst, Address(rscratch1, 0));
3175   }
3176 }
3177 
3178 // C++ bool manipulation
3179 
3180 void MacroAssembler::movbool(Register dst, Address src) {
3181   if(sizeof(bool) == 1)
3182     movb(dst, src);
3183   else if(sizeof(bool) == 2)
3184     movw(dst, src);
3185   else if(sizeof(bool) == 4)
3186     movl(dst, src);
3187   else
3188     // unsupported
3189     ShouldNotReachHere();
3190 }
3191 
3192 void MacroAssembler::movbool(Address dst, bool boolconst) {
3193   if(sizeof(bool) == 1)
3194     movb(dst, (int) boolconst);
3195   else if(sizeof(bool) == 2)
3196     movw(dst, (int) boolconst);
3197   else if(sizeof(bool) == 4)
3198     movl(dst, (int) boolconst);
3199   else
3200     // unsupported
3201     ShouldNotReachHere();
3202 }
3203 
3204 void MacroAssembler::movbool(Address dst, Register src) {
3205   if(sizeof(bool) == 1)
3206     movb(dst, src);
3207   else if(sizeof(bool) == 2)
3208     movw(dst, src);
3209   else if(sizeof(bool) == 4)
3210     movl(dst, src);
3211   else
3212     // unsupported
3213     ShouldNotReachHere();
3214 }
3215 
3216 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3217   movb(as_Address(dst), src);
3218 }
3219 
3220 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3221   if (reachable(src)) {
3222     movdl(dst, as_Address(src));
3223   } else {
3224     lea(rscratch1, src);
3225     movdl(dst, Address(rscratch1, 0));
3226   }
3227 }
3228 
3229 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3230   if (reachable(src)) {
3231     movq(dst, as_Address(src));
3232   } else {
3233     lea(rscratch1, src);
3234     movq(dst, Address(rscratch1, 0));
3235   }
3236 }
3237 
3238 #ifdef COMPILER2
3239 void MacroAssembler::setvectmask(Register dst, Register src) {
3240   guarantee(PostLoopMultiversioning, "must be");
3241   Assembler::movl(dst, 1);
3242   Assembler::shlxl(dst, dst, src);
3243   Assembler::decl(dst);
3244   Assembler::kmovdl(k1, dst);
3245   Assembler::movl(dst, src);
3246 }
3247 
3248 void MacroAssembler::restorevectmask() {
3249   guarantee(PostLoopMultiversioning, "must be");
3250   Assembler::knotwl(k1, k0);
3251 }
3252 #endif // COMPILER2
3253 
3254 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3255   if (reachable(src)) {
3256     if (UseXmmLoadAndClearUpper) {
3257       movsd (dst, as_Address(src));
3258     } else {
3259       movlpd(dst, as_Address(src));
3260     }
3261   } else {
3262     lea(rscratch1, src);
3263     if (UseXmmLoadAndClearUpper) {
3264       movsd (dst, Address(rscratch1, 0));
3265     } else {
3266       movlpd(dst, Address(rscratch1, 0));
3267     }
3268   }
3269 }
3270 
3271 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3272   if (reachable(src)) {
3273     movss(dst, as_Address(src));
3274   } else {
3275     lea(rscratch1, src);
3276     movss(dst, Address(rscratch1, 0));
3277   }
3278 }
3279 
3280 void MacroAssembler::movptr(Register dst, Register src) {
3281   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3282 }
3283 
3284 void MacroAssembler::movptr(Register dst, Address src) {
3285   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3286 }
3287 
3288 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3289 void MacroAssembler::movptr(Register dst, intptr_t src) {
3290   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3291 }
3292 
3293 void MacroAssembler::movptr(Address dst, Register src) {
3294   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3295 }
3296 
3297 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3298     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3299     Assembler::movdqu(dst, src);
3300 }
3301 
3302 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3303     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3304     Assembler::movdqu(dst, src);
3305 }
3306 
3307 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3308     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3309     Assembler::movdqu(dst, src);
3310 }
3311 
3312 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3313   if (reachable(src)) {
3314     movdqu(dst, as_Address(src));
3315   } else {
3316     lea(scratchReg, src);
3317     movdqu(dst, Address(scratchReg, 0));
3318   }
3319 }
3320 
3321 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3322     assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3323     Assembler::vmovdqu(dst, src);
3324 }
3325 
3326 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3327     assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3328     Assembler::vmovdqu(dst, src);
3329 }
3330 
3331 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3332     assert(((dst->encoding() < 16  && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3333     Assembler::vmovdqu(dst, src);
3334 }
3335 
3336 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3337   if (reachable(src)) {
3338     vmovdqu(dst, as_Address(src));
3339   }
3340   else {
3341     lea(scratch_reg, src);
3342     vmovdqu(dst, Address(scratch_reg, 0));
3343   }
3344 }
3345 
3346 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) {
3347   if (reachable(src)) {
3348     Assembler::evmovdquq(dst, as_Address(src), vector_len);
3349   } else {
3350     lea(rscratch, src);
3351     Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len);
3352   }
3353 }
3354 
3355 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3356   if (reachable(src)) {
3357     Assembler::movdqa(dst, as_Address(src));
3358   } else {
3359     lea(rscratch1, src);
3360     Assembler::movdqa(dst, Address(rscratch1, 0));
3361   }
3362 }
3363 
3364 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3365   if (reachable(src)) {
3366     Assembler::movsd(dst, as_Address(src));
3367   } else {
3368     lea(rscratch1, src);
3369     Assembler::movsd(dst, Address(rscratch1, 0));
3370   }
3371 }
3372 
3373 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3374   if (reachable(src)) {
3375     Assembler::movss(dst, as_Address(src));
3376   } else {
3377     lea(rscratch1, src);
3378     Assembler::movss(dst, Address(rscratch1, 0));
3379   }
3380 }
3381 
3382 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3383   if (reachable(src)) {
3384     Assembler::mulsd(dst, as_Address(src));
3385   } else {
3386     lea(rscratch1, src);
3387     Assembler::mulsd(dst, Address(rscratch1, 0));
3388   }
3389 }
3390 
3391 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3392   if (reachable(src)) {
3393     Assembler::mulss(dst, as_Address(src));
3394   } else {
3395     lea(rscratch1, src);
3396     Assembler::mulss(dst, Address(rscratch1, 0));
3397   }
3398 }
3399 
3400 void MacroAssembler::null_check(Register reg, int offset) {
3401   if (needs_explicit_null_check(offset)) {
3402     // provoke OS NULL exception if reg = NULL by
3403     // accessing M[reg] w/o changing any (non-CC) registers
3404     // NOTE: cmpl is plenty here to provoke a segv
3405     cmpptr(rax, Address(reg, 0));
3406     // Note: should probably use testl(rax, Address(reg, 0));
3407     //       may be shorter code (however, this version of
3408     //       testl needs to be implemented first)
3409   } else {
3410     // nothing to do, (later) access of M[reg + offset]
3411     // will provoke OS NULL exception if reg = NULL
3412   }
3413 }
3414 
3415 void MacroAssembler::os_breakpoint() {
3416   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3417   // (e.g., MSVC can't call ps() otherwise)
3418   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3419 }
3420 
3421 void MacroAssembler::unimplemented(const char* what) {
3422   const char* buf = NULL;
3423   {
3424     ResourceMark rm;
3425     stringStream ss;
3426     ss.print("unimplemented: %s", what);
3427     buf = code_string(ss.as_string());
3428   }
3429   stop(buf);
3430 }
3431 
3432 #ifdef _LP64
3433 #define XSTATE_BV 0x200
3434 #endif
3435 
3436 void MacroAssembler::pop_CPU_state() {
3437   pop_FPU_state();
3438   pop_IU_state();
3439 }
3440 
3441 void MacroAssembler::pop_FPU_state() {
3442 #ifndef _LP64
3443   frstor(Address(rsp, 0));
3444 #else
3445   fxrstor(Address(rsp, 0));
3446 #endif
3447   addptr(rsp, FPUStateSizeInWords * wordSize);
3448 }
3449 
3450 void MacroAssembler::pop_IU_state() {
3451   popa();
3452   LP64_ONLY(addq(rsp, 8));
3453   popf();
3454 }
3455 
3456 // Save Integer and Float state
3457 // Warning: Stack must be 16 byte aligned (64bit)
3458 void MacroAssembler::push_CPU_state() {
3459   push_IU_state();
3460   push_FPU_state();
3461 }
3462 
3463 void MacroAssembler::push_FPU_state() {
3464   subptr(rsp, FPUStateSizeInWords * wordSize);
3465 #ifndef _LP64
3466   fnsave(Address(rsp, 0));
3467   fwait();
3468 #else
3469   fxsave(Address(rsp, 0));
3470 #endif // LP64
3471 }
3472 
3473 void MacroAssembler::push_IU_state() {
3474   // Push flags first because pusha kills them
3475   pushf();
3476   // Make sure rsp stays 16-byte aligned
3477   LP64_ONLY(subq(rsp, 8));
3478   pusha();
3479 }
3480 
3481 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3482   if (!java_thread->is_valid()) {
3483     java_thread = rdi;
3484     get_thread(java_thread);
3485   }
3486   // we must set sp to zero to clear frame
3487   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3488   if (clear_fp) {
3489     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3490   }
3491 
3492   // Always clear the pc because it could have been set by make_walkable()
3493   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3494 
3495   vzeroupper();
3496 }
3497 
3498 void MacroAssembler::restore_rax(Register tmp) {
3499   if (tmp == noreg) pop(rax);
3500   else if (tmp != rax) mov(rax, tmp);
3501 }
3502 
3503 void MacroAssembler::round_to(Register reg, int modulus) {
3504   addptr(reg, modulus - 1);
3505   andptr(reg, -modulus);
3506 }
3507 
3508 void MacroAssembler::save_rax(Register tmp) {
3509   if (tmp == noreg) push(rax);
3510   else if (tmp != rax) mov(tmp, rax);
3511 }
3512 
3513 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg) {
3514   if (SafepointMechanism::uses_thread_local_poll()) {
3515 #ifdef _LP64
3516     assert(thread_reg == r15_thread, "should be");
3517 #else
3518     if (thread_reg == noreg) {
3519       thread_reg = temp_reg;
3520       get_thread(thread_reg);
3521     }
3522 #endif
3523     testb(Address(thread_reg, Thread::polling_page_offset()), SafepointMechanism::poll_bit());
3524     jcc(Assembler::notZero, slow_path); // handshake bit set implies poll
3525   } else {
3526     cmp32(ExternalAddress(SafepointSynchronize::address_of_state()),
3527         SafepointSynchronize::_not_synchronized);
3528     jcc(Assembler::notEqual, slow_path);
3529   }
3530 }
3531 
3532 // Calls to C land
3533 //
3534 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3535 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3536 // has to be reset to 0. This is required to allow proper stack traversal.
3537 void MacroAssembler::set_last_Java_frame(Register java_thread,
3538                                          Register last_java_sp,
3539                                          Register last_java_fp,
3540                                          address  last_java_pc) {
3541   vzeroupper();
3542   // determine java_thread register
3543   if (!java_thread->is_valid()) {
3544     java_thread = rdi;
3545     get_thread(java_thread);
3546   }
3547   // determine last_java_sp register
3548   if (!last_java_sp->is_valid()) {
3549     last_java_sp = rsp;
3550   }
3551 
3552   // last_java_fp is optional
3553 
3554   if (last_java_fp->is_valid()) {
3555     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3556   }
3557 
3558   // last_java_pc is optional
3559 
3560   if (last_java_pc != NULL) {
3561     lea(Address(java_thread,
3562                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3563         InternalAddress(last_java_pc));
3564 
3565   }
3566   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3567 }
3568 
3569 void MacroAssembler::shlptr(Register dst, int imm8) {
3570   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3571 }
3572 
3573 void MacroAssembler::shrptr(Register dst, int imm8) {
3574   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3575 }
3576 
3577 void MacroAssembler::sign_extend_byte(Register reg) {
3578   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3579     movsbl(reg, reg); // movsxb
3580   } else {
3581     shll(reg, 24);
3582     sarl(reg, 24);
3583   }
3584 }
3585 
3586 void MacroAssembler::sign_extend_short(Register reg) {
3587   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3588     movswl(reg, reg); // movsxw
3589   } else {
3590     shll(reg, 16);
3591     sarl(reg, 16);
3592   }
3593 }
3594 
3595 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3596   assert(reachable(src), "Address should be reachable");
3597   testl(dst, as_Address(src));
3598 }
3599 
3600 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3601   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3602   Assembler::pcmpeqb(dst, src);
3603 }
3604 
3605 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3606   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3607   Assembler::pcmpeqw(dst, src);
3608 }
3609 
3610 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3611   assert((dst->encoding() < 16),"XMM register should be 0-15");
3612   Assembler::pcmpestri(dst, src, imm8);
3613 }
3614 
3615 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3616   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3617   Assembler::pcmpestri(dst, src, imm8);
3618 }
3619 
3620 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3621   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3622   Assembler::pmovzxbw(dst, src);
3623 }
3624 
3625 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3626   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3627   Assembler::pmovzxbw(dst, src);
3628 }
3629 
3630 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3631   assert((src->encoding() < 16),"XMM register should be 0-15");
3632   Assembler::pmovmskb(dst, src);
3633 }
3634 
3635 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3636   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3637   Assembler::ptest(dst, src);
3638 }
3639 
3640 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3641   if (reachable(src)) {
3642     Assembler::sqrtsd(dst, as_Address(src));
3643   } else {
3644     lea(rscratch1, src);
3645     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3646   }
3647 }
3648 
3649 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3650   if (reachable(src)) {
3651     Assembler::sqrtss(dst, as_Address(src));
3652   } else {
3653     lea(rscratch1, src);
3654     Assembler::sqrtss(dst, Address(rscratch1, 0));
3655   }
3656 }
3657 
3658 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3659   if (reachable(src)) {
3660     Assembler::subsd(dst, as_Address(src));
3661   } else {
3662     lea(rscratch1, src);
3663     Assembler::subsd(dst, Address(rscratch1, 0));
3664   }
3665 }
3666 
3667 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg) {
3668   if (reachable(src)) {
3669     Assembler::roundsd(dst, as_Address(src), rmode);
3670   } else {
3671     lea(scratch_reg, src);
3672     Assembler::roundsd(dst, Address(scratch_reg, 0), rmode);
3673   }
3674 }
3675 
3676 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3677   if (reachable(src)) {
3678     Assembler::subss(dst, as_Address(src));
3679   } else {
3680     lea(rscratch1, src);
3681     Assembler::subss(dst, Address(rscratch1, 0));
3682   }
3683 }
3684 
3685 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3686   if (reachable(src)) {
3687     Assembler::ucomisd(dst, as_Address(src));
3688   } else {
3689     lea(rscratch1, src);
3690     Assembler::ucomisd(dst, Address(rscratch1, 0));
3691   }
3692 }
3693 
3694 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3695   if (reachable(src)) {
3696     Assembler::ucomiss(dst, as_Address(src));
3697   } else {
3698     lea(rscratch1, src);
3699     Assembler::ucomiss(dst, Address(rscratch1, 0));
3700   }
3701 }
3702 
3703 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3704   // Used in sign-bit flipping with aligned address.
3705   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3706   if (reachable(src)) {
3707     Assembler::xorpd(dst, as_Address(src));
3708   } else {
3709     lea(scratch_reg, src);
3710     Assembler::xorpd(dst, Address(scratch_reg, 0));
3711   }
3712 }
3713 
3714 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
3715   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3716     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3717   }
3718   else {
3719     Assembler::xorpd(dst, src);
3720   }
3721 }
3722 
3723 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
3724   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
3725     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
3726   } else {
3727     Assembler::xorps(dst, src);
3728   }
3729 }
3730 
3731 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg) {
3732   // Used in sign-bit flipping with aligned address.
3733   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3734   if (reachable(src)) {
3735     Assembler::xorps(dst, as_Address(src));
3736   } else {
3737     lea(scratch_reg, src);
3738     Assembler::xorps(dst, Address(scratch_reg, 0));
3739   }
3740 }
3741 
3742 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3743   // Used in sign-bit flipping with aligned address.
3744   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3745   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3746   if (reachable(src)) {
3747     Assembler::pshufb(dst, as_Address(src));
3748   } else {
3749     lea(rscratch1, src);
3750     Assembler::pshufb(dst, Address(rscratch1, 0));
3751   }
3752 }
3753 
3754 // AVX 3-operands instructions
3755 
3756 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3757   if (reachable(src)) {
3758     vaddsd(dst, nds, as_Address(src));
3759   } else {
3760     lea(rscratch1, src);
3761     vaddsd(dst, nds, Address(rscratch1, 0));
3762   }
3763 }
3764 
3765 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3766   if (reachable(src)) {
3767     vaddss(dst, nds, as_Address(src));
3768   } else {
3769     lea(rscratch1, src);
3770     vaddss(dst, nds, Address(rscratch1, 0));
3771   }
3772 }
3773 
3774 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) {
3775   assert(UseAVX > 0, "requires some form of AVX");
3776   if (reachable(src)) {
3777     Assembler::vpaddd(dst, nds, as_Address(src), vector_len);
3778   } else {
3779     lea(rscratch, src);
3780     Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len);
3781   }
3782 }
3783 
3784 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3785   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3786   vandps(dst, nds, negate_field, vector_len);
3787 }
3788 
3789 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
3790   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
3791   vandpd(dst, nds, negate_field, vector_len);
3792 }
3793 
3794 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3795   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3796   Assembler::vpaddb(dst, nds, src, vector_len);
3797 }
3798 
3799 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3800   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3801   Assembler::vpaddb(dst, nds, src, vector_len);
3802 }
3803 
3804 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3805   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3806   Assembler::vpaddw(dst, nds, src, vector_len);
3807 }
3808 
3809 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3810   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3811   Assembler::vpaddw(dst, nds, src, vector_len);
3812 }
3813 
3814 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3815   if (reachable(src)) {
3816     Assembler::vpand(dst, nds, as_Address(src), vector_len);
3817   } else {
3818     lea(scratch_reg, src);
3819     Assembler::vpand(dst, nds, Address(scratch_reg, 0), vector_len);
3820   }
3821 }
3822 
3823 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
3824   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3825   Assembler::vpbroadcastw(dst, src, vector_len);
3826 }
3827 
3828 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3829   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3830   Assembler::vpcmpeqb(dst, nds, src, vector_len);
3831 }
3832 
3833 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3834   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3835   Assembler::vpcmpeqw(dst, nds, src, vector_len);
3836 }
3837 
3838 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3839   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3840   Assembler::vpmovzxbw(dst, src, vector_len);
3841 }
3842 
3843 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
3844   assert((src->encoding() < 16),"XMM register should be 0-15");
3845   Assembler::vpmovmskb(dst, src);
3846 }
3847 
3848 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3849   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3850   Assembler::vpmullw(dst, nds, src, vector_len);
3851 }
3852 
3853 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3854   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3855   Assembler::vpmullw(dst, nds, src, vector_len);
3856 }
3857 
3858 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3859   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3860   Assembler::vpsubb(dst, nds, src, vector_len);
3861 }
3862 
3863 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3864   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3865   Assembler::vpsubb(dst, nds, src, vector_len);
3866 }
3867 
3868 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3869   assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3870   Assembler::vpsubw(dst, nds, src, vector_len);
3871 }
3872 
3873 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3874   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3875   Assembler::vpsubw(dst, nds, src, vector_len);
3876 }
3877 
3878 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3879   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3880   Assembler::vpsraw(dst, nds, shift, vector_len);
3881 }
3882 
3883 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3884   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3885   Assembler::vpsraw(dst, nds, shift, vector_len);
3886 }
3887 
3888 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3889   assert(UseAVX > 2,"");
3890   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3891      vector_len = 2;
3892   }
3893   Assembler::evpsraq(dst, nds, shift, vector_len);
3894 }
3895 
3896 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3897   assert(UseAVX > 2,"");
3898   if (!VM_Version::supports_avx512vl() && vector_len < 2) {
3899      vector_len = 2;
3900   }
3901   Assembler::evpsraq(dst, nds, shift, vector_len);
3902 }
3903 
3904 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3905   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3906   Assembler::vpsrlw(dst, nds, shift, vector_len);
3907 }
3908 
3909 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3910   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3911   Assembler::vpsrlw(dst, nds, shift, vector_len);
3912 }
3913 
3914 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
3915   assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3916   Assembler::vpsllw(dst, nds, shift, vector_len);
3917 }
3918 
3919 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
3920   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3921   Assembler::vpsllw(dst, nds, shift, vector_len);
3922 }
3923 
3924 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
3925   assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15");
3926   Assembler::vptest(dst, src);
3927 }
3928 
3929 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3930   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3931   Assembler::punpcklbw(dst, src);
3932 }
3933 
3934 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) {
3935   assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15");
3936   Assembler::pshufd(dst, src, mode);
3937 }
3938 
3939 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3940   assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15");
3941   Assembler::pshuflw(dst, src, mode);
3942 }
3943 
3944 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3945   if (reachable(src)) {
3946     vandpd(dst, nds, as_Address(src), vector_len);
3947   } else {
3948     lea(scratch_reg, src);
3949     vandpd(dst, nds, Address(scratch_reg, 0), vector_len);
3950   }
3951 }
3952 
3953 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
3954   if (reachable(src)) {
3955     vandps(dst, nds, as_Address(src), vector_len);
3956   } else {
3957     lea(scratch_reg, src);
3958     vandps(dst, nds, Address(scratch_reg, 0), vector_len);
3959   }
3960 }
3961 
3962 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3963   if (reachable(src)) {
3964     vdivsd(dst, nds, as_Address(src));
3965   } else {
3966     lea(rscratch1, src);
3967     vdivsd(dst, nds, Address(rscratch1, 0));
3968   }
3969 }
3970 
3971 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3972   if (reachable(src)) {
3973     vdivss(dst, nds, as_Address(src));
3974   } else {
3975     lea(rscratch1, src);
3976     vdivss(dst, nds, Address(rscratch1, 0));
3977   }
3978 }
3979 
3980 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3981   if (reachable(src)) {
3982     vmulsd(dst, nds, as_Address(src));
3983   } else {
3984     lea(rscratch1, src);
3985     vmulsd(dst, nds, Address(rscratch1, 0));
3986   }
3987 }
3988 
3989 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3990   if (reachable(src)) {
3991     vmulss(dst, nds, as_Address(src));
3992   } else {
3993     lea(rscratch1, src);
3994     vmulss(dst, nds, Address(rscratch1, 0));
3995   }
3996 }
3997 
3998 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3999   if (reachable(src)) {
4000     vsubsd(dst, nds, as_Address(src));
4001   } else {
4002     lea(rscratch1, src);
4003     vsubsd(dst, nds, Address(rscratch1, 0));
4004   }
4005 }
4006 
4007 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4008   if (reachable(src)) {
4009     vsubss(dst, nds, as_Address(src));
4010   } else {
4011     lea(rscratch1, src);
4012     vsubss(dst, nds, Address(rscratch1, 0));
4013   }
4014 }
4015 
4016 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4017   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4018   vxorps(dst, nds, src, Assembler::AVX_128bit);
4019 }
4020 
4021 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4022   assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15");
4023   vxorpd(dst, nds, src, Assembler::AVX_128bit);
4024 }
4025 
4026 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4027   if (reachable(src)) {
4028     vxorpd(dst, nds, as_Address(src), vector_len);
4029   } else {
4030     lea(scratch_reg, src);
4031     vxorpd(dst, nds, Address(scratch_reg, 0), vector_len);
4032   }
4033 }
4034 
4035 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4036   if (reachable(src)) {
4037     vxorps(dst, nds, as_Address(src), vector_len);
4038   } else {
4039     lea(scratch_reg, src);
4040     vxorps(dst, nds, Address(scratch_reg, 0), vector_len);
4041   }
4042 }
4043 
4044 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg) {
4045   if (UseAVX > 1 || (vector_len < 1)) {
4046     if (reachable(src)) {
4047       Assembler::vpxor(dst, nds, as_Address(src), vector_len);
4048     } else {
4049       lea(scratch_reg, src);
4050       Assembler::vpxor(dst, nds, Address(scratch_reg, 0), vector_len);
4051     }
4052   }
4053   else {
4054     MacroAssembler::vxorpd(dst, nds, src, vector_len, scratch_reg);
4055   }
4056 }
4057 
4058 //-------------------------------------------------------------------------------------------
4059 #ifdef COMPILER2
4060 // Generic instructions support for use in .ad files C2 code generation
4061 
4062 void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, Register scr) {
4063   if (opcode == Op_AbsVD) {
4064     andpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), scr);
4065   } else {
4066     assert((opcode == Op_NegVD),"opcode should be Op_NegD");
4067     xorpd(dst, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), scr);
4068   }
4069 }
4070 
4071 void MacroAssembler::vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
4072   if (opcode == Op_AbsVD) {
4073     vandpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_mask()), vector_len, scr);
4074   } else {
4075     assert((opcode == Op_NegVD),"opcode should be Op_NegD");
4076     vxorpd(dst, src, ExternalAddress(StubRoutines::x86::vector_double_sign_flip()), vector_len, scr);
4077   }
4078 }
4079 
4080 void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, Register scr) {
4081   if (opcode == Op_AbsVF) {
4082     andps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), scr);
4083   } else {
4084     assert((opcode == Op_NegVF),"opcode should be Op_NegF");
4085     xorps(dst, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), scr);
4086   }
4087 }
4088 
4089 void MacroAssembler::vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr) {
4090   if (opcode == Op_AbsVF) {
4091     vandps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_mask()), vector_len, scr);
4092   } else {
4093     assert((opcode == Op_NegVF),"opcode should be Op_NegF");
4094     vxorps(dst, src, ExternalAddress(StubRoutines::x86::vector_float_sign_flip()), vector_len, scr);
4095   }
4096 }
4097 
4098 void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src) {
4099   if (sign) {
4100     pmovsxbw(dst, src);
4101   } else {
4102     pmovzxbw(dst, src);
4103   }
4104 }
4105 
4106 void MacroAssembler::vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len) {
4107   if (sign) {
4108     vpmovsxbw(dst, src, vector_len);
4109   } else {
4110     vpmovzxbw(dst, src, vector_len);
4111   }
4112 }
4113 
4114 void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister src) {
4115   if (opcode == Op_RShiftVI) {
4116     psrad(dst, src);
4117   } else if (opcode == Op_LShiftVI) {
4118     pslld(dst, src);
4119   } else {
4120     assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
4121     psrld(dst, src);
4122   }
4123 }
4124 
4125 void MacroAssembler::vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4126   if (opcode == Op_RShiftVI) {
4127     vpsrad(dst, nds, src, vector_len);
4128   } else if (opcode == Op_LShiftVI) {
4129     vpslld(dst, nds, src, vector_len);
4130   } else {
4131     assert((opcode == Op_URShiftVI),"opcode should be Op_URShiftVI");
4132     vpsrld(dst, nds, src, vector_len);
4133   }
4134 }
4135 
4136 void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister src) {
4137   if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
4138     psraw(dst, src);
4139   } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
4140     psllw(dst, src);
4141   } else {
4142     assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
4143     psrlw(dst, src);
4144   }
4145 }
4146 
4147 void MacroAssembler::vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4148   if ((opcode == Op_RShiftVS) || (opcode == Op_RShiftVB)) {
4149     vpsraw(dst, nds, src, vector_len);
4150   } else if ((opcode == Op_LShiftVS) || (opcode == Op_LShiftVB)) {
4151     vpsllw(dst, nds, src, vector_len);
4152   } else {
4153     assert(((opcode == Op_URShiftVS) || (opcode == Op_URShiftVB)),"opcode should be one of Op_URShiftVS or Op_URShiftVB");
4154     vpsrlw(dst, nds, src, vector_len);
4155   }
4156 }
4157 
4158 void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister src) {
4159   if (opcode == Op_RShiftVL) {
4160     psrlq(dst, src);  // using srl to implement sra on pre-avs512 systems
4161   } else if (opcode == Op_LShiftVL) {
4162     psllq(dst, src);
4163   } else {
4164     assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
4165     psrlq(dst, src);
4166   }
4167 }
4168 
4169 void MacroAssembler::vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4170   if (opcode == Op_RShiftVL) {
4171     evpsraq(dst, nds, src, vector_len);
4172   } else if (opcode == Op_LShiftVL) {
4173     vpsllq(dst, nds, src, vector_len);
4174   } else {
4175     assert((opcode == Op_URShiftVL),"opcode should be Op_URShiftVL");
4176     vpsrlq(dst, nds, src, vector_len);
4177   }
4178 }
4179 #endif
4180 //-------------------------------------------------------------------------------------------
4181 
4182 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
4183   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
4184   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
4185   // The inverted mask is sign-extended
4186   andptr(possibly_jweak, inverted_jweak_mask);
4187 }
4188 
4189 void MacroAssembler::resolve_jobject(Register value,
4190                                      Register thread,
4191                                      Register tmp) {
4192   assert_different_registers(value, thread, tmp);
4193   Label done, not_weak;
4194   testptr(value, value);
4195   jcc(Assembler::zero, done);                // Use NULL as-is.
4196   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
4197   jcc(Assembler::zero, not_weak);
4198   // Resolve jweak.
4199   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
4200                  value, Address(value, -JNIHandles::weak_tag_value), tmp, thread);
4201   verify_oop(value);
4202   jmp(done);
4203   bind(not_weak);
4204   // Resolve (untagged) jobject.
4205   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread);
4206   verify_oop(value);
4207   bind(done);
4208 }
4209 
4210 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4211   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4212 }
4213 
4214 // Force generation of a 4 byte immediate value even if it fits into 8bit
4215 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4216   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4217 }
4218 
4219 void MacroAssembler::subptr(Register dst, Register src) {
4220   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4221 }
4222 
4223 // C++ bool manipulation
4224 void MacroAssembler::testbool(Register dst) {
4225   if(sizeof(bool) == 1)
4226     testb(dst, 0xff);
4227   else if(sizeof(bool) == 2) {
4228     // testw implementation needed for two byte bools
4229     ShouldNotReachHere();
4230   } else if(sizeof(bool) == 4)
4231     testl(dst, dst);
4232   else
4233     // unsupported
4234     ShouldNotReachHere();
4235 }
4236 
4237 void MacroAssembler::testptr(Register dst, Register src) {
4238   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4239 }
4240 
4241 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4242 void MacroAssembler::tlab_allocate(Register thread, Register obj,
4243                                    Register var_size_in_bytes,
4244                                    int con_size_in_bytes,
4245                                    Register t1,
4246                                    Register t2,
4247                                    Label& slow_case) {
4248   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4249   bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
4250 }
4251 
4252 // Defines obj, preserves var_size_in_bytes
4253 void MacroAssembler::eden_allocate(Register thread, Register obj,
4254                                    Register var_size_in_bytes,
4255                                    int con_size_in_bytes,
4256                                    Register t1,
4257                                    Label& slow_case) {
4258   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
4259   bs->eden_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
4260 }
4261 
4262 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
4263 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
4264   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
4265   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
4266   Label done;
4267 
4268   testptr(length_in_bytes, length_in_bytes);
4269   jcc(Assembler::zero, done);
4270 
4271   // initialize topmost word, divide index by 2, check if odd and test if zero
4272   // note: for the remaining code to work, index must be a multiple of BytesPerWord
4273 #ifdef ASSERT
4274   {
4275     Label L;
4276     testptr(length_in_bytes, BytesPerWord - 1);
4277     jcc(Assembler::zero, L);
4278     stop("length must be a multiple of BytesPerWord");
4279     bind(L);
4280   }
4281 #endif
4282   Register index = length_in_bytes;
4283   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
4284   if (UseIncDec) {
4285     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
4286   } else {
4287     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
4288     shrptr(index, 1);
4289   }
4290 #ifndef _LP64
4291   // index could have not been a multiple of 8 (i.e., bit 2 was set)
4292   {
4293     Label even;
4294     // note: if index was a multiple of 8, then it cannot
4295     //       be 0 now otherwise it must have been 0 before
4296     //       => if it is even, we don't need to check for 0 again
4297     jcc(Assembler::carryClear, even);
4298     // clear topmost word (no jump would be needed if conditional assignment worked here)
4299     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
4300     // index could be 0 now, must check again
4301     jcc(Assembler::zero, done);
4302     bind(even);
4303   }
4304 #endif // !_LP64
4305   // initialize remaining object fields: index is a multiple of 2 now
4306   {
4307     Label loop;
4308     bind(loop);
4309     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
4310     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
4311     decrement(index);
4312     jcc(Assembler::notZero, loop);
4313   }
4314 
4315   bind(done);
4316 }
4317 
4318 // Look up the method for a megamorphic invokeinterface call.
4319 // The target method is determined by <intf_klass, itable_index>.
4320 // The receiver klass is in recv_klass.
4321 // On success, the result will be in method_result, and execution falls through.
4322 // On failure, execution transfers to the given label.
4323 void MacroAssembler::lookup_interface_method(Register recv_klass,
4324                                              Register intf_klass,
4325                                              RegisterOrConstant itable_index,
4326                                              Register method_result,
4327                                              Register scan_temp,
4328                                              Label& L_no_such_interface,
4329                                              bool return_method) {
4330   assert_different_registers(recv_klass, intf_klass, scan_temp);
4331   assert_different_registers(method_result, intf_klass, scan_temp);
4332   assert(recv_klass != method_result || !return_method,
4333          "recv_klass can be destroyed when method isn't needed");
4334 
4335   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4336          "caller must use same register for non-constant itable index as for method");
4337 
4338   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4339   int vtable_base = in_bytes(Klass::vtable_start_offset());
4340   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4341   int scan_step   = itableOffsetEntry::size() * wordSize;
4342   int vte_size    = vtableEntry::size_in_bytes();
4343   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4344   assert(vte_size == wordSize, "else adjust times_vte_scale");
4345 
4346   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
4347 
4348   // %%% Could store the aligned, prescaled offset in the klassoop.
4349   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4350 
4351   if (return_method) {
4352     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4353     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4354     lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4355   }
4356 
4357   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4358   //   if (scan->interface() == intf) {
4359   //     result = (klass + scan->offset() + itable_index);
4360   //   }
4361   // }
4362   Label search, found_method;
4363 
4364   for (int peel = 1; peel >= 0; peel--) {
4365     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4366     cmpptr(intf_klass, method_result);
4367 
4368     if (peel) {
4369       jccb(Assembler::equal, found_method);
4370     } else {
4371       jccb(Assembler::notEqual, search);
4372       // (invert the test to fall through to found_method...)
4373     }
4374 
4375     if (!peel)  break;
4376 
4377     bind(search);
4378 
4379     // Check that the previous entry is non-null.  A null entry means that
4380     // the receiver class doesn't implement the interface, and wasn't the
4381     // same as when the caller was compiled.
4382     testptr(method_result, method_result);
4383     jcc(Assembler::zero, L_no_such_interface);
4384     addptr(scan_temp, scan_step);
4385   }
4386 
4387   bind(found_method);
4388 
4389   if (return_method) {
4390     // Got a hit.
4391     movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4392     movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4393   }
4394 }
4395 
4396 
4397 // virtual method calling
4398 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4399                                            RegisterOrConstant vtable_index,
4400                                            Register method_result) {
4401   const int base = in_bytes(Klass::vtable_start_offset());
4402   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4403   Address vtable_entry_addr(recv_klass,
4404                             vtable_index, Address::times_ptr,
4405                             base + vtableEntry::method_offset_in_bytes());
4406   movptr(method_result, vtable_entry_addr);
4407 }
4408 
4409 
4410 void MacroAssembler::check_klass_subtype(Register sub_klass,
4411                            Register super_klass,
4412                            Register temp_reg,
4413                            Label& L_success) {
4414   Label L_failure;
4415   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4416   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4417   bind(L_failure);
4418 }
4419 
4420 
4421 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4422                                                    Register super_klass,
4423                                                    Register temp_reg,
4424                                                    Label* L_success,
4425                                                    Label* L_failure,
4426                                                    Label* L_slow_path,
4427                                         RegisterOrConstant super_check_offset) {
4428   assert_different_registers(sub_klass, super_klass, temp_reg);
4429   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4430   if (super_check_offset.is_register()) {
4431     assert_different_registers(sub_klass, super_klass,
4432                                super_check_offset.as_register());
4433   } else if (must_load_sco) {
4434     assert(temp_reg != noreg, "supply either a temp or a register offset");
4435   }
4436 
4437   Label L_fallthrough;
4438   int label_nulls = 0;
4439   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4440   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4441   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4442   assert(label_nulls <= 1, "at most one NULL in the batch");
4443 
4444   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4445   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4446   Address super_check_offset_addr(super_klass, sco_offset);
4447 
4448   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4449   // range of a jccb.  If this routine grows larger, reconsider at
4450   // least some of these.
4451 #define local_jcc(assembler_cond, label)                                \
4452   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4453   else                             jcc( assembler_cond, label) /*omit semi*/
4454 
4455   // Hacked jmp, which may only be used just before L_fallthrough.
4456 #define final_jmp(label)                                                \
4457   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4458   else                            jmp(label)                /*omit semi*/
4459 
4460   // If the pointers are equal, we are done (e.g., String[] elements).
4461   // This self-check enables sharing of secondary supertype arrays among
4462   // non-primary types such as array-of-interface.  Otherwise, each such
4463   // type would need its own customized SSA.
4464   // We move this check to the front of the fast path because many
4465   // type checks are in fact trivially successful in this manner,
4466   // so we get a nicely predicted branch right at the start of the check.
4467   cmpptr(sub_klass, super_klass);
4468   local_jcc(Assembler::equal, *L_success);
4469 
4470   // Check the supertype display:
4471   if (must_load_sco) {
4472     // Positive movl does right thing on LP64.
4473     movl(temp_reg, super_check_offset_addr);
4474     super_check_offset = RegisterOrConstant(temp_reg);
4475   }
4476   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4477   cmpptr(super_klass, super_check_addr); // load displayed supertype
4478 
4479   // This check has worked decisively for primary supers.
4480   // Secondary supers are sought in the super_cache ('super_cache_addr').
4481   // (Secondary supers are interfaces and very deeply nested subtypes.)
4482   // This works in the same check above because of a tricky aliasing
4483   // between the super_cache and the primary super display elements.
4484   // (The 'super_check_addr' can address either, as the case requires.)
4485   // Note that the cache is updated below if it does not help us find
4486   // what we need immediately.
4487   // So if it was a primary super, we can just fail immediately.
4488   // Otherwise, it's the slow path for us (no success at this point).
4489 
4490   if (super_check_offset.is_register()) {
4491     local_jcc(Assembler::equal, *L_success);
4492     cmpl(super_check_offset.as_register(), sc_offset);
4493     if (L_failure == &L_fallthrough) {
4494       local_jcc(Assembler::equal, *L_slow_path);
4495     } else {
4496       local_jcc(Assembler::notEqual, *L_failure);
4497       final_jmp(*L_slow_path);
4498     }
4499   } else if (super_check_offset.as_constant() == sc_offset) {
4500     // Need a slow path; fast failure is impossible.
4501     if (L_slow_path == &L_fallthrough) {
4502       local_jcc(Assembler::equal, *L_success);
4503     } else {
4504       local_jcc(Assembler::notEqual, *L_slow_path);
4505       final_jmp(*L_success);
4506     }
4507   } else {
4508     // No slow path; it's a fast decision.
4509     if (L_failure == &L_fallthrough) {
4510       local_jcc(Assembler::equal, *L_success);
4511     } else {
4512       local_jcc(Assembler::notEqual, *L_failure);
4513       final_jmp(*L_success);
4514     }
4515   }
4516 
4517   bind(L_fallthrough);
4518 
4519 #undef local_jcc
4520 #undef final_jmp
4521 }
4522 
4523 
4524 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
4525                                                    Register super_klass,
4526                                                    Register temp_reg,
4527                                                    Register temp2_reg,
4528                                                    Label* L_success,
4529                                                    Label* L_failure,
4530                                                    bool set_cond_codes) {
4531   assert_different_registers(sub_klass, super_klass, temp_reg);
4532   if (temp2_reg != noreg)
4533     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
4534 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
4535 
4536   Label L_fallthrough;
4537   int label_nulls = 0;
4538   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4539   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4540   assert(label_nulls <= 1, "at most one NULL in the batch");
4541 
4542   // a couple of useful fields in sub_klass:
4543   int ss_offset = in_bytes(Klass::secondary_supers_offset());
4544   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4545   Address secondary_supers_addr(sub_klass, ss_offset);
4546   Address super_cache_addr(     sub_klass, sc_offset);
4547 
4548   // Do a linear scan of the secondary super-klass chain.
4549   // This code is rarely used, so simplicity is a virtue here.
4550   // The repne_scan instruction uses fixed registers, which we must spill.
4551   // Don't worry too much about pre-existing connections with the input regs.
4552 
4553   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
4554   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
4555 
4556   // Get super_klass value into rax (even if it was in rdi or rcx).
4557   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
4558   if (super_klass != rax || UseCompressedOops) {
4559     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
4560     mov(rax, super_klass);
4561   }
4562   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
4563   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
4564 
4565 #ifndef PRODUCT
4566   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
4567   ExternalAddress pst_counter_addr((address) pst_counter);
4568   NOT_LP64(  incrementl(pst_counter_addr) );
4569   LP64_ONLY( lea(rcx, pst_counter_addr) );
4570   LP64_ONLY( incrementl(Address(rcx, 0)) );
4571 #endif //PRODUCT
4572 
4573   // We will consult the secondary-super array.
4574   movptr(rdi, secondary_supers_addr);
4575   // Load the array length.  (Positive movl does right thing on LP64.)
4576   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
4577   // Skip to start of data.
4578   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
4579 
4580   // Scan RCX words at [RDI] for an occurrence of RAX.
4581   // Set NZ/Z based on last compare.
4582   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
4583   // not change flags (only scas instruction which is repeated sets flags).
4584   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
4585 
4586     testptr(rax,rax); // Set Z = 0
4587     repne_scan();
4588 
4589   // Unspill the temp. registers:
4590   if (pushed_rdi)  pop(rdi);
4591   if (pushed_rcx)  pop(rcx);
4592   if (pushed_rax)  pop(rax);
4593 
4594   if (set_cond_codes) {
4595     // Special hack for the AD files:  rdi is guaranteed non-zero.
4596     assert(!pushed_rdi, "rdi must be left non-NULL");
4597     // Also, the condition codes are properly set Z/NZ on succeed/failure.
4598   }
4599 
4600   if (L_failure == &L_fallthrough)
4601         jccb(Assembler::notEqual, *L_failure);
4602   else  jcc(Assembler::notEqual, *L_failure);
4603 
4604   // Success.  Cache the super we found and proceed in triumph.
4605   movptr(super_cache_addr, super_klass);
4606 
4607   if (L_success != &L_fallthrough) {
4608     jmp(*L_success);
4609   }
4610 
4611 #undef IS_A_TEMP
4612 
4613   bind(L_fallthrough);
4614 }
4615 
4616 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) {
4617   assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required");
4618 
4619   Label L_fallthrough;
4620   if (L_fast_path == NULL) {
4621     L_fast_path = &L_fallthrough;
4622   } else if (L_slow_path == NULL) {
4623     L_slow_path = &L_fallthrough;
4624   }
4625 
4626   // Fast path check: class is fully initialized
4627   cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
4628   jcc(Assembler::equal, *L_fast_path);
4629 
4630   // Fast path check: current thread is initializer thread
4631   cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset()));
4632   if (L_slow_path == &L_fallthrough) {
4633     jcc(Assembler::equal, *L_fast_path);
4634     bind(*L_slow_path);
4635   } else if (L_fast_path == &L_fallthrough) {
4636     jcc(Assembler::notEqual, *L_slow_path);
4637     bind(*L_fast_path);
4638   } else {
4639     Unimplemented();
4640   }
4641 }
4642 
4643 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
4644   if (VM_Version::supports_cmov()) {
4645     cmovl(cc, dst, src);
4646   } else {
4647     Label L;
4648     jccb(negate_condition(cc), L);
4649     movl(dst, src);
4650     bind(L);
4651   }
4652 }
4653 
4654 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
4655   if (VM_Version::supports_cmov()) {
4656     cmovl(cc, dst, src);
4657   } else {
4658     Label L;
4659     jccb(negate_condition(cc), L);
4660     movl(dst, src);
4661     bind(L);
4662   }
4663 }
4664 
4665 void MacroAssembler::verify_oop(Register reg, const char* s) {
4666   if (!VerifyOops) return;
4667 
4668   // Pass register number to verify_oop_subroutine
4669   const char* b = NULL;
4670   {
4671     ResourceMark rm;
4672     stringStream ss;
4673     ss.print("verify_oop: %s: %s", reg->name(), s);
4674     b = code_string(ss.as_string());
4675   }
4676   BLOCK_COMMENT("verify_oop {");
4677 #ifdef _LP64
4678   push(rscratch1);                    // save r10, trashed by movptr()
4679 #endif
4680   push(rax);                          // save rax,
4681   push(reg);                          // pass register argument
4682   ExternalAddress buffer((address) b);
4683   // avoid using pushptr, as it modifies scratch registers
4684   // and our contract is not to modify anything
4685   movptr(rax, buffer.addr());
4686   push(rax);
4687   // call indirectly to solve generation ordering problem
4688   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4689   call(rax);
4690   // Caller pops the arguments (oop, message) and restores rax, r10
4691   BLOCK_COMMENT("} verify_oop");
4692 }
4693 
4694 
4695 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
4696                                                       Register tmp,
4697                                                       int offset) {
4698   intptr_t value = *delayed_value_addr;
4699   if (value != 0)
4700     return RegisterOrConstant(value + offset);
4701 
4702   // load indirectly to solve generation ordering problem
4703   movptr(tmp, ExternalAddress((address) delayed_value_addr));
4704 
4705 #ifdef ASSERT
4706   { Label L;
4707     testptr(tmp, tmp);
4708     if (WizardMode) {
4709       const char* buf = NULL;
4710       {
4711         ResourceMark rm;
4712         stringStream ss;
4713         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
4714         buf = code_string(ss.as_string());
4715       }
4716       jcc(Assembler::notZero, L);
4717       STOP(buf);
4718     } else {
4719       jccb(Assembler::notZero, L);
4720       hlt();
4721     }
4722     bind(L);
4723   }
4724 #endif
4725 
4726   if (offset != 0)
4727     addptr(tmp, offset);
4728 
4729   return RegisterOrConstant(tmp);
4730 }
4731 
4732 
4733 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
4734                                          int extra_slot_offset) {
4735   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
4736   int stackElementSize = Interpreter::stackElementSize;
4737   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
4738 #ifdef ASSERT
4739   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
4740   assert(offset1 - offset == stackElementSize, "correct arithmetic");
4741 #endif
4742   Register             scale_reg    = noreg;
4743   Address::ScaleFactor scale_factor = Address::no_scale;
4744   if (arg_slot.is_constant()) {
4745     offset += arg_slot.as_constant() * stackElementSize;
4746   } else {
4747     scale_reg    = arg_slot.as_register();
4748     scale_factor = Address::times(stackElementSize);
4749   }
4750   offset += wordSize;           // return PC is on stack
4751   return Address(rsp, scale_reg, scale_factor, offset);
4752 }
4753 
4754 
4755 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
4756   if (!VerifyOops) return;
4757 
4758   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
4759   // Pass register number to verify_oop_subroutine
4760   const char* b = NULL;
4761   {
4762     ResourceMark rm;
4763     stringStream ss;
4764     ss.print("verify_oop_addr: %s", s);
4765     b = code_string(ss.as_string());
4766   }
4767 #ifdef _LP64
4768   push(rscratch1);                    // save r10, trashed by movptr()
4769 #endif
4770   push(rax);                          // save rax,
4771   // addr may contain rsp so we will have to adjust it based on the push
4772   // we just did (and on 64 bit we do two pushes)
4773   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
4774   // stores rax into addr which is backwards of what was intended.
4775   if (addr.uses(rsp)) {
4776     lea(rax, addr);
4777     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
4778   } else {
4779     pushptr(addr);
4780   }
4781 
4782   ExternalAddress buffer((address) b);
4783   // pass msg argument
4784   // avoid using pushptr, as it modifies scratch registers
4785   // and our contract is not to modify anything
4786   movptr(rax, buffer.addr());
4787   push(rax);
4788 
4789   // call indirectly to solve generation ordering problem
4790   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
4791   call(rax);
4792   // Caller pops the arguments (addr, message) and restores rax, r10.
4793 }
4794 
4795 void MacroAssembler::verify_tlab() {
4796 #ifdef ASSERT
4797   if (UseTLAB && VerifyOops) {
4798     Label next, ok;
4799     Register t1 = rsi;
4800     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
4801 
4802     push(t1);
4803     NOT_LP64(push(thread_reg));
4804     NOT_LP64(get_thread(thread_reg));
4805 
4806     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4807     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4808     jcc(Assembler::aboveEqual, next);
4809     STOP("assert(top >= start)");
4810     should_not_reach_here();
4811 
4812     bind(next);
4813     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4814     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4815     jcc(Assembler::aboveEqual, ok);
4816     STOP("assert(top <= end)");
4817     should_not_reach_here();
4818 
4819     bind(ok);
4820     NOT_LP64(pop(thread_reg));
4821     pop(t1);
4822   }
4823 #endif
4824 }
4825 
4826 class ControlWord {
4827  public:
4828   int32_t _value;
4829 
4830   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
4831   int  precision_control() const       { return  (_value >>  8) & 3      ; }
4832   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4833   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4834   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4835   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4836   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4837   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4838 
4839   void print() const {
4840     // rounding control
4841     const char* rc;
4842     switch (rounding_control()) {
4843       case 0: rc = "round near"; break;
4844       case 1: rc = "round down"; break;
4845       case 2: rc = "round up  "; break;
4846       case 3: rc = "chop      "; break;
4847     };
4848     // precision control
4849     const char* pc;
4850     switch (precision_control()) {
4851       case 0: pc = "24 bits "; break;
4852       case 1: pc = "reserved"; break;
4853       case 2: pc = "53 bits "; break;
4854       case 3: pc = "64 bits "; break;
4855     };
4856     // flags
4857     char f[9];
4858     f[0] = ' ';
4859     f[1] = ' ';
4860     f[2] = (precision   ()) ? 'P' : 'p';
4861     f[3] = (underflow   ()) ? 'U' : 'u';
4862     f[4] = (overflow    ()) ? 'O' : 'o';
4863     f[5] = (zero_divide ()) ? 'Z' : 'z';
4864     f[6] = (denormalized()) ? 'D' : 'd';
4865     f[7] = (invalid     ()) ? 'I' : 'i';
4866     f[8] = '\x0';
4867     // output
4868     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
4869   }
4870 
4871 };
4872 
4873 class StatusWord {
4874  public:
4875   int32_t _value;
4876 
4877   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
4878   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
4879   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
4880   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
4881   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
4882   int  top() const                     { return  (_value >> 11) & 7      ; }
4883   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
4884   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
4885   bool precision() const               { return ((_value >>  5) & 1) != 0; }
4886   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
4887   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
4888   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
4889   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
4890   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
4891 
4892   void print() const {
4893     // condition codes
4894     char c[5];
4895     c[0] = (C3()) ? '3' : '-';
4896     c[1] = (C2()) ? '2' : '-';
4897     c[2] = (C1()) ? '1' : '-';
4898     c[3] = (C0()) ? '0' : '-';
4899     c[4] = '\x0';
4900     // flags
4901     char f[9];
4902     f[0] = (error_status()) ? 'E' : '-';
4903     f[1] = (stack_fault ()) ? 'S' : '-';
4904     f[2] = (precision   ()) ? 'P' : '-';
4905     f[3] = (underflow   ()) ? 'U' : '-';
4906     f[4] = (overflow    ()) ? 'O' : '-';
4907     f[5] = (zero_divide ()) ? 'Z' : '-';
4908     f[6] = (denormalized()) ? 'D' : '-';
4909     f[7] = (invalid     ()) ? 'I' : '-';
4910     f[8] = '\x0';
4911     // output
4912     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
4913   }
4914 
4915 };
4916 
4917 class TagWord {
4918  public:
4919   int32_t _value;
4920 
4921   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
4922 
4923   void print() const {
4924     printf("%04x", _value & 0xFFFF);
4925   }
4926 
4927 };
4928 
4929 class FPU_Register {
4930  public:
4931   int32_t _m0;
4932   int32_t _m1;
4933   int16_t _ex;
4934 
4935   bool is_indefinite() const           {
4936     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
4937   }
4938 
4939   void print() const {
4940     char  sign = (_ex < 0) ? '-' : '+';
4941     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
4942     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
4943   };
4944 
4945 };
4946 
4947 class FPU_State {
4948  public:
4949   enum {
4950     register_size       = 10,
4951     number_of_registers =  8,
4952     register_mask       =  7
4953   };
4954 
4955   ControlWord  _control_word;
4956   StatusWord   _status_word;
4957   TagWord      _tag_word;
4958   int32_t      _error_offset;
4959   int32_t      _error_selector;
4960   int32_t      _data_offset;
4961   int32_t      _data_selector;
4962   int8_t       _register[register_size * number_of_registers];
4963 
4964   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
4965   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
4966 
4967   const char* tag_as_string(int tag) const {
4968     switch (tag) {
4969       case 0: return "valid";
4970       case 1: return "zero";
4971       case 2: return "special";
4972       case 3: return "empty";
4973     }
4974     ShouldNotReachHere();
4975     return NULL;
4976   }
4977 
4978   void print() const {
4979     // print computation registers
4980     { int t = _status_word.top();
4981       for (int i = 0; i < number_of_registers; i++) {
4982         int j = (i - t) & register_mask;
4983         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
4984         st(j)->print();
4985         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
4986       }
4987     }
4988     printf("\n");
4989     // print control registers
4990     printf("ctrl = "); _control_word.print(); printf("\n");
4991     printf("stat = "); _status_word .print(); printf("\n");
4992     printf("tags = "); _tag_word    .print(); printf("\n");
4993   }
4994 
4995 };
4996 
4997 class Flag_Register {
4998  public:
4999   int32_t _value;
5000 
5001   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5002   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5003   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5004   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5005   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5006   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5007   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5008 
5009   void print() const {
5010     // flags
5011     char f[8];
5012     f[0] = (overflow       ()) ? 'O' : '-';
5013     f[1] = (direction      ()) ? 'D' : '-';
5014     f[2] = (sign           ()) ? 'S' : '-';
5015     f[3] = (zero           ()) ? 'Z' : '-';
5016     f[4] = (auxiliary_carry()) ? 'A' : '-';
5017     f[5] = (parity         ()) ? 'P' : '-';
5018     f[6] = (carry          ()) ? 'C' : '-';
5019     f[7] = '\x0';
5020     // output
5021     printf("%08x  flags = %s", _value, f);
5022   }
5023 
5024 };
5025 
5026 class IU_Register {
5027  public:
5028   int32_t _value;
5029 
5030   void print() const {
5031     printf("%08x  %11d", _value, _value);
5032   }
5033 
5034 };
5035 
5036 class IU_State {
5037  public:
5038   Flag_Register _eflags;
5039   IU_Register   _rdi;
5040   IU_Register   _rsi;
5041   IU_Register   _rbp;
5042   IU_Register   _rsp;
5043   IU_Register   _rbx;
5044   IU_Register   _rdx;
5045   IU_Register   _rcx;
5046   IU_Register   _rax;
5047 
5048   void print() const {
5049     // computation registers
5050     printf("rax,  = "); _rax.print(); printf("\n");
5051     printf("rbx,  = "); _rbx.print(); printf("\n");
5052     printf("rcx  = "); _rcx.print(); printf("\n");
5053     printf("rdx  = "); _rdx.print(); printf("\n");
5054     printf("rdi  = "); _rdi.print(); printf("\n");
5055     printf("rsi  = "); _rsi.print(); printf("\n");
5056     printf("rbp,  = "); _rbp.print(); printf("\n");
5057     printf("rsp  = "); _rsp.print(); printf("\n");
5058     printf("\n");
5059     // control registers
5060     printf("flgs = "); _eflags.print(); printf("\n");
5061   }
5062 };
5063 
5064 
5065 class CPU_State {
5066  public:
5067   FPU_State _fpu_state;
5068   IU_State  _iu_state;
5069 
5070   void print() const {
5071     printf("--------------------------------------------------\n");
5072     _iu_state .print();
5073     printf("\n");
5074     _fpu_state.print();
5075     printf("--------------------------------------------------\n");
5076   }
5077 
5078 };
5079 
5080 
5081 static void _print_CPU_state(CPU_State* state) {
5082   state->print();
5083 };
5084 
5085 
5086 void MacroAssembler::print_CPU_state() {
5087   push_CPU_state();
5088   push(rsp);                // pass CPU state
5089   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5090   addptr(rsp, wordSize);       // discard argument
5091   pop_CPU_state();
5092 }
5093 
5094 
5095 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5096   static int counter = 0;
5097   FPU_State* fs = &state->_fpu_state;
5098   counter++;
5099   // For leaf calls, only verify that the top few elements remain empty.
5100   // We only need 1 empty at the top for C2 code.
5101   if( stack_depth < 0 ) {
5102     if( fs->tag_for_st(7) != 3 ) {
5103       printf("FPR7 not empty\n");
5104       state->print();
5105       assert(false, "error");
5106       return false;
5107     }
5108     return true;                // All other stack states do not matter
5109   }
5110 
5111   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5112          "bad FPU control word");
5113 
5114   // compute stack depth
5115   int i = 0;
5116   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5117   int d = i;
5118   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5119   // verify findings
5120   if (i != FPU_State::number_of_registers) {
5121     // stack not contiguous
5122     printf("%s: stack not contiguous at ST%d\n", s, i);
5123     state->print();
5124     assert(false, "error");
5125     return false;
5126   }
5127   // check if computed stack depth corresponds to expected stack depth
5128   if (stack_depth < 0) {
5129     // expected stack depth is -stack_depth or less
5130     if (d > -stack_depth) {
5131       // too many elements on the stack
5132       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5133       state->print();
5134       assert(false, "error");
5135       return false;
5136     }
5137   } else {
5138     // expected stack depth is stack_depth
5139     if (d != stack_depth) {
5140       // wrong stack depth
5141       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5142       state->print();
5143       assert(false, "error");
5144       return false;
5145     }
5146   }
5147   // everything is cool
5148   return true;
5149 }
5150 
5151 
5152 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5153   if (!VerifyFPU) return;
5154   push_CPU_state();
5155   push(rsp);                // pass CPU state
5156   ExternalAddress msg((address) s);
5157   // pass message string s
5158   pushptr(msg.addr());
5159   push(stack_depth);        // pass stack depth
5160   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5161   addptr(rsp, 3 * wordSize);   // discard arguments
5162   // check for error
5163   { Label L;
5164     testl(rax, rax);
5165     jcc(Assembler::notZero, L);
5166     int3();                  // break if error condition
5167     bind(L);
5168   }
5169   pop_CPU_state();
5170 }
5171 
5172 void MacroAssembler::restore_cpu_control_state_after_jni() {
5173   // Either restore the MXCSR register after returning from the JNI Call
5174   // or verify that it wasn't changed (with -Xcheck:jni flag).
5175   if (VM_Version::supports_sse()) {
5176     if (RestoreMXCSROnJNICalls) {
5177       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5178     } else if (CheckJNICalls) {
5179       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5180     }
5181   }
5182   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5183   vzeroupper();
5184   // Reset k1 to 0xffff.
5185 
5186 #ifdef COMPILER2
5187   if (PostLoopMultiversioning && VM_Version::supports_evex()) {
5188     push(rcx);
5189     movl(rcx, 0xffff);
5190     kmovwl(k1, rcx);
5191     pop(rcx);
5192   }
5193 #endif // COMPILER2
5194 
5195 #ifndef _LP64
5196   // Either restore the x87 floating pointer control word after returning
5197   // from the JNI call or verify that it wasn't changed.
5198   if (CheckJNICalls) {
5199     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5200   }
5201 #endif // _LP64
5202 }
5203 
5204 // ((OopHandle)result).resolve();
5205 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
5206   assert_different_registers(result, tmp);
5207 
5208   // Only 64 bit platforms support GCs that require a tmp register
5209   // Only IN_HEAP loads require a thread_tmp register
5210   // OopHandle::resolve is an indirection like jobject.
5211   access_load_at(T_OBJECT, IN_NATIVE,
5212                  result, Address(result, 0), tmp, /*tmp_thread*/noreg);
5213 }
5214 
5215 // ((WeakHandle)result).resolve();
5216 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) {
5217   assert_different_registers(rresult, rtmp);
5218   Label resolved;
5219 
5220   // A null weak handle resolves to null.
5221   cmpptr(rresult, 0);
5222   jcc(Assembler::equal, resolved);
5223 
5224   // Only 64 bit platforms support GCs that require a tmp register
5225   // Only IN_HEAP loads require a thread_tmp register
5226   // WeakHandle::resolve is an indirection like jweak.
5227   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
5228                  rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg);
5229   bind(resolved);
5230 }
5231 
5232 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
5233   // get mirror
5234   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
5235   load_method_holder(mirror, method);
5236   movptr(mirror, Address(mirror, mirror_offset));
5237   resolve_oop_handle(mirror, tmp);
5238 }
5239 
5240 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
5241   load_method_holder(rresult, rmethod);
5242   movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
5243 }
5244 
5245 void MacroAssembler::load_method_holder(Register holder, Register method) {
5246   movptr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
5247   movptr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
5248   movptr(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass*
5249 }
5250 
5251 void MacroAssembler::load_klass(Register dst, Register src) {
5252 #ifdef _LP64
5253   if (UseCompressedClassPointers) {
5254     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5255     decode_klass_not_null(dst);
5256   } else
5257 #endif
5258     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5259 }
5260 
5261 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5262   load_klass(dst, src);
5263   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5264 }
5265 
5266 void MacroAssembler::store_klass(Register dst, Register src) {
5267 #ifdef _LP64
5268   if (UseCompressedClassPointers) {
5269     encode_klass_not_null(src);
5270     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5271   } else
5272 #endif
5273     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5274 }
5275 
5276 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
5277                                     Register tmp1, Register thread_tmp) {
5278   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5279   decorators = AccessInternal::decorator_fixup(decorators);
5280   bool as_raw = (decorators & AS_RAW) != 0;
5281   if (as_raw) {
5282     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5283   } else {
5284     bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
5285   }
5286 }
5287 
5288 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
5289                                      Register tmp1, Register tmp2) {
5290   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5291   decorators = AccessInternal::decorator_fixup(decorators);
5292   bool as_raw = (decorators & AS_RAW) != 0;
5293   if (as_raw) {
5294     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, tmp2);
5295   } else {
5296     bs->store_at(this, decorators, type, dst, src, tmp1, tmp2);
5297   }
5298 }
5299 
5300 void MacroAssembler::resolve(DecoratorSet decorators, Register obj) {
5301   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
5302   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
5303     decorators |= ACCESS_READ | ACCESS_WRITE;
5304   }
5305   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5306   return bs->resolve(this, decorators, obj);
5307 }
5308 
5309 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
5310                                    Register thread_tmp, DecoratorSet decorators) {
5311   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
5312 }
5313 
5314 // Doesn't do verfication, generates fixed size code
5315 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
5316                                             Register thread_tmp, DecoratorSet decorators) {
5317   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp);
5318 }
5319 
5320 void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
5321                                     Register tmp2, DecoratorSet decorators) {
5322   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
5323 }
5324 
5325 // Used for storing NULLs.
5326 void MacroAssembler::store_heap_oop_null(Address dst) {
5327   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
5328 }
5329 
5330 #ifdef _LP64
5331 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5332   if (UseCompressedClassPointers) {
5333     // Store to klass gap in destination
5334     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5335   }
5336 }
5337 
5338 #ifdef ASSERT
5339 void MacroAssembler::verify_heapbase(const char* msg) {
5340   assert (UseCompressedOops, "should be compressed");
5341   assert (Universe::heap() != NULL, "java heap should be initialized");
5342   if (CheckCompressedOops) {
5343     Label ok;
5344     push(rscratch1); // cmpptr trashes rscratch1
5345     cmpptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
5346     jcc(Assembler::equal, ok);
5347     STOP(msg);
5348     bind(ok);
5349     pop(rscratch1);
5350   }
5351 }
5352 #endif
5353 
5354 // Algorithm must match oop.inline.hpp encode_heap_oop.
5355 void MacroAssembler::encode_heap_oop(Register r) {
5356 #ifdef ASSERT
5357   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5358 #endif
5359   verify_oop(r, "broken oop in encode_heap_oop");
5360   if (CompressedOops::base() == NULL) {
5361     if (CompressedOops::shift() != 0) {
5362       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5363       shrq(r, LogMinObjAlignmentInBytes);
5364     }
5365     return;
5366   }
5367   testq(r, r);
5368   cmovq(Assembler::equal, r, r12_heapbase);
5369   subq(r, r12_heapbase);
5370   shrq(r, LogMinObjAlignmentInBytes);
5371 }
5372 
5373 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5374 #ifdef ASSERT
5375   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5376   if (CheckCompressedOops) {
5377     Label ok;
5378     testq(r, r);
5379     jcc(Assembler::notEqual, ok);
5380     STOP("null oop passed to encode_heap_oop_not_null");
5381     bind(ok);
5382   }
5383 #endif
5384   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5385   if (CompressedOops::base() != NULL) {
5386     subq(r, r12_heapbase);
5387   }
5388   if (CompressedOops::shift() != 0) {
5389     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5390     shrq(r, LogMinObjAlignmentInBytes);
5391   }
5392 }
5393 
5394 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5395 #ifdef ASSERT
5396   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5397   if (CheckCompressedOops) {
5398     Label ok;
5399     testq(src, src);
5400     jcc(Assembler::notEqual, ok);
5401     STOP("null oop passed to encode_heap_oop_not_null2");
5402     bind(ok);
5403   }
5404 #endif
5405   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5406   if (dst != src) {
5407     movq(dst, src);
5408   }
5409   if (CompressedOops::base() != NULL) {
5410     subq(dst, r12_heapbase);
5411   }
5412   if (CompressedOops::shift() != 0) {
5413     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5414     shrq(dst, LogMinObjAlignmentInBytes);
5415   }
5416 }
5417 
5418 void  MacroAssembler::decode_heap_oop(Register r) {
5419 #ifdef ASSERT
5420   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5421 #endif
5422   if (CompressedOops::base() == NULL) {
5423     if (CompressedOops::shift() != 0) {
5424       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5425       shlq(r, LogMinObjAlignmentInBytes);
5426     }
5427   } else {
5428     Label done;
5429     shlq(r, LogMinObjAlignmentInBytes);
5430     jccb(Assembler::equal, done);
5431     addq(r, r12_heapbase);
5432     bind(done);
5433   }
5434   verify_oop(r, "broken oop in decode_heap_oop");
5435 }
5436 
5437 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5438   // Note: it will change flags
5439   assert (UseCompressedOops, "should only be used for compressed headers");
5440   assert (Universe::heap() != NULL, "java heap should be initialized");
5441   // Cannot assert, unverified entry point counts instructions (see .ad file)
5442   // vtableStubs also counts instructions in pd_code_size_limit.
5443   // Also do not verify_oop as this is called by verify_oop.
5444   if (CompressedOops::shift() != 0) {
5445     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5446     shlq(r, LogMinObjAlignmentInBytes);
5447     if (CompressedOops::base() != NULL) {
5448       addq(r, r12_heapbase);
5449     }
5450   } else {
5451     assert (CompressedOops::base() == NULL, "sanity");
5452   }
5453 }
5454 
5455 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5456   // Note: it will change flags
5457   assert (UseCompressedOops, "should only be used for compressed headers");
5458   assert (Universe::heap() != NULL, "java heap should be initialized");
5459   // Cannot assert, unverified entry point counts instructions (see .ad file)
5460   // vtableStubs also counts instructions in pd_code_size_limit.
5461   // Also do not verify_oop as this is called by verify_oop.
5462   if (CompressedOops::shift() != 0) {
5463     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
5464     if (LogMinObjAlignmentInBytes == Address::times_8) {
5465       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5466     } else {
5467       if (dst != src) {
5468         movq(dst, src);
5469       }
5470       shlq(dst, LogMinObjAlignmentInBytes);
5471       if (CompressedOops::base() != NULL) {
5472         addq(dst, r12_heapbase);
5473       }
5474     }
5475   } else {
5476     assert (CompressedOops::base() == NULL, "sanity");
5477     if (dst != src) {
5478       movq(dst, src);
5479     }
5480   }
5481 }
5482 
5483 void MacroAssembler::encode_klass_not_null(Register r) {
5484   if (CompressedKlassPointers::base() != NULL) {
5485     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5486     assert(r != r12_heapbase, "Encoding a klass in r12");
5487     mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
5488     subq(r, r12_heapbase);
5489   }
5490   if (CompressedKlassPointers::shift() != 0) {
5491     assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5492     shrq(r, LogKlassAlignmentInBytes);
5493   }
5494   if (CompressedKlassPointers::base() != NULL) {
5495     reinit_heapbase();
5496   }
5497 }
5498 
5499 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5500   if (dst == src) {
5501     encode_klass_not_null(src);
5502   } else {
5503     if (CompressedKlassPointers::base() != NULL) {
5504       mov64(dst, (int64_t)CompressedKlassPointers::base());
5505       negq(dst);
5506       addq(dst, src);
5507     } else {
5508       movptr(dst, src);
5509     }
5510     if (CompressedKlassPointers::shift() != 0) {
5511       assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5512       shrq(dst, LogKlassAlignmentInBytes);
5513     }
5514   }
5515 }
5516 
5517 // Function instr_size_for_decode_klass_not_null() counts the instructions
5518 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5519 // when (Universe::heap() != NULL).  Hence, if the instructions they
5520 // generate change, then this method needs to be updated.
5521 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5522   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5523   if (CompressedKlassPointers::base() != NULL) {
5524     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5525     return (CompressedKlassPointers::shift() == 0 ? 20 : 24);
5526   } else {
5527     // longest load decode klass function, mov64, leaq
5528     return 16;
5529   }
5530 }
5531 
5532 // !!! If the instructions that get generated here change then function
5533 // instr_size_for_decode_klass_not_null() needs to get updated.
5534 void  MacroAssembler::decode_klass_not_null(Register r) {
5535   // Note: it will change flags
5536   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5537   assert(r != r12_heapbase, "Decoding a klass in r12");
5538   // Cannot assert, unverified entry point counts instructions (see .ad file)
5539   // vtableStubs also counts instructions in pd_code_size_limit.
5540   // Also do not verify_oop as this is called by verify_oop.
5541   if (CompressedKlassPointers::shift() != 0) {
5542     assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5543     shlq(r, LogKlassAlignmentInBytes);
5544   }
5545   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5546   if (CompressedKlassPointers::base() != NULL) {
5547     mov64(r12_heapbase, (int64_t)CompressedKlassPointers::base());
5548     addq(r, r12_heapbase);
5549     reinit_heapbase();
5550   }
5551 }
5552 
5553 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5554   // Note: it will change flags
5555   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5556   if (dst == src) {
5557     decode_klass_not_null(dst);
5558   } else {
5559     // Cannot assert, unverified entry point counts instructions (see .ad file)
5560     // vtableStubs also counts instructions in pd_code_size_limit.
5561     // Also do not verify_oop as this is called by verify_oop.
5562     mov64(dst, (int64_t)CompressedKlassPointers::base());
5563     if (CompressedKlassPointers::shift() != 0) {
5564       assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
5565       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
5566       leaq(dst, Address(dst, src, Address::times_8, 0));
5567     } else {
5568       addq(dst, src);
5569     }
5570   }
5571 }
5572 
5573 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5574   assert (UseCompressedOops, "should only be used for compressed headers");
5575   assert (Universe::heap() != NULL, "java heap should be initialized");
5576   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5577   int oop_index = oop_recorder()->find_index(obj);
5578   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5579   mov_narrow_oop(dst, oop_index, rspec);
5580 }
5581 
5582 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
5583   assert (UseCompressedOops, "should only be used for compressed headers");
5584   assert (Universe::heap() != NULL, "java heap should be initialized");
5585   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5586   int oop_index = oop_recorder()->find_index(obj);
5587   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5588   mov_narrow_oop(dst, oop_index, rspec);
5589 }
5590 
5591 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
5592   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5593   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5594   int klass_index = oop_recorder()->find_index(k);
5595   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5596   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5597 }
5598 
5599 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
5600   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5601   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5602   int klass_index = oop_recorder()->find_index(k);
5603   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5604   mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5605 }
5606 
5607 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
5608   assert (UseCompressedOops, "should only be used for compressed headers");
5609   assert (Universe::heap() != NULL, "java heap should be initialized");
5610   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5611   int oop_index = oop_recorder()->find_index(obj);
5612   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5613   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5614 }
5615 
5616 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
5617   assert (UseCompressedOops, "should only be used for compressed headers");
5618   assert (Universe::heap() != NULL, "java heap should be initialized");
5619   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5620   int oop_index = oop_recorder()->find_index(obj);
5621   RelocationHolder rspec = oop_Relocation::spec(oop_index);
5622   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
5623 }
5624 
5625 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
5626   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5627   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5628   int klass_index = oop_recorder()->find_index(k);
5629   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5630   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5631 }
5632 
5633 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
5634   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5635   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5636   int klass_index = oop_recorder()->find_index(k);
5637   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
5638   Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec);
5639 }
5640 
5641 void MacroAssembler::reinit_heapbase() {
5642   if (UseCompressedOops || UseCompressedClassPointers) {
5643     if (Universe::heap() != NULL) {
5644       if (CompressedOops::base() == NULL) {
5645         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
5646       } else {
5647         mov64(r12_heapbase, (int64_t)CompressedOops::ptrs_base());
5648       }
5649     } else {
5650       movptr(r12_heapbase, ExternalAddress((address)CompressedOops::ptrs_base_addr()));
5651     }
5652   }
5653 }
5654 
5655 #endif // _LP64
5656 
5657 // C2 compiled method's prolog code.
5658 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub) {
5659 
5660   // WARNING: Initial instruction MUST be 5 bytes or longer so that
5661   // NativeJump::patch_verified_entry will be able to patch out the entry
5662   // code safely. The push to verify stack depth is ok at 5 bytes,
5663   // the frame allocation can be either 3 or 6 bytes. So if we don't do
5664   // stack bang then we must use the 6 byte frame allocation even if
5665   // we have no frame. :-(
5666   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
5667 
5668   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
5669   // Remove word for return addr
5670   framesize -= wordSize;
5671   stack_bang_size -= wordSize;
5672 
5673   // Calls to C2R adapters often do not accept exceptional returns.
5674   // We require that their callers must bang for them.  But be careful, because
5675   // some VM calls (such as call site linkage) can use several kilobytes of
5676   // stack.  But the stack safety zone should account for that.
5677   // See bugs 4446381, 4468289, 4497237.
5678   if (stack_bang_size > 0) {
5679     generate_stack_overflow_check(stack_bang_size);
5680 
5681     // We always push rbp, so that on return to interpreter rbp, will be
5682     // restored correctly and we can correct the stack.
5683     push(rbp);
5684     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5685     if (PreserveFramePointer) {
5686       mov(rbp, rsp);
5687     }
5688     // Remove word for ebp
5689     framesize -= wordSize;
5690 
5691     // Create frame
5692     if (framesize) {
5693       subptr(rsp, framesize);
5694     }
5695   } else {
5696     // Create frame (force generation of a 4 byte immediate value)
5697     subptr_imm32(rsp, framesize);
5698 
5699     // Save RBP register now.
5700     framesize -= wordSize;
5701     movptr(Address(rsp, framesize), rbp);
5702     // Save caller's stack pointer into RBP if the frame pointer is preserved.
5703     if (PreserveFramePointer) {
5704       movptr(rbp, rsp);
5705       if (framesize > 0) {
5706         addptr(rbp, framesize);
5707       }
5708     }
5709   }
5710 
5711   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
5712     framesize -= wordSize;
5713     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
5714   }
5715 
5716 #ifndef _LP64
5717   // If method sets FPU control word do it now
5718   if (fp_mode_24b) {
5719     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
5720   }
5721   if (UseSSE >= 2 && VerifyFPU) {
5722     verify_FPU(0, "FPU stack must be clean on entry");
5723   }
5724 #endif
5725 
5726 #ifdef ASSERT
5727   if (VerifyStackAtCalls) {
5728     Label L;
5729     push(rax);
5730     mov(rax, rsp);
5731     andptr(rax, StackAlignmentInBytes-1);
5732     cmpptr(rax, StackAlignmentInBytes-wordSize);
5733     pop(rax);
5734     jcc(Assembler::equal, L);
5735     STOP("Stack is not properly aligned!");
5736     bind(L);
5737   }
5738 #endif
5739 
5740   if (!is_stub) {
5741     BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
5742     bs->nmethod_entry_barrier(this);
5743   }
5744 }
5745 
5746 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
5747 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp) {
5748   // cnt - number of qwords (8-byte words).
5749   // base - start address, qword aligned.
5750   Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end;
5751   if (UseAVX >= 2) {
5752     vpxor(xtmp, xtmp, xtmp, AVX_256bit);
5753   } else {
5754     pxor(xtmp, xtmp);
5755   }
5756   jmp(L_zero_64_bytes);
5757 
5758   BIND(L_loop);
5759   if (UseAVX >= 2) {
5760     vmovdqu(Address(base,  0), xtmp);
5761     vmovdqu(Address(base, 32), xtmp);
5762   } else {
5763     movdqu(Address(base,  0), xtmp);
5764     movdqu(Address(base, 16), xtmp);
5765     movdqu(Address(base, 32), xtmp);
5766     movdqu(Address(base, 48), xtmp);
5767   }
5768   addptr(base, 64);
5769 
5770   BIND(L_zero_64_bytes);
5771   subptr(cnt, 8);
5772   jccb(Assembler::greaterEqual, L_loop);
5773   addptr(cnt, 4);
5774   jccb(Assembler::less, L_tail);
5775   // Copy trailing 32 bytes
5776   if (UseAVX >= 2) {
5777     vmovdqu(Address(base, 0), xtmp);
5778   } else {
5779     movdqu(Address(base,  0), xtmp);
5780     movdqu(Address(base, 16), xtmp);
5781   }
5782   addptr(base, 32);
5783   subptr(cnt, 4);
5784 
5785   BIND(L_tail);
5786   addptr(cnt, 4);
5787   jccb(Assembler::lessEqual, L_end);
5788   decrement(cnt);
5789 
5790   BIND(L_sloop);
5791   movq(Address(base, 0), xtmp);
5792   addptr(base, 8);
5793   decrement(cnt);
5794   jccb(Assembler::greaterEqual, L_sloop);
5795   BIND(L_end);
5796 }
5797 
5798 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, bool is_large) {
5799   // cnt - number of qwords (8-byte words).
5800   // base - start address, qword aligned.
5801   // is_large - if optimizers know cnt is larger than InitArrayShortSize
5802   assert(base==rdi, "base register must be edi for rep stos");
5803   assert(tmp==rax,   "tmp register must be eax for rep stos");
5804   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
5805   assert(InitArrayShortSize % BytesPerLong == 0,
5806     "InitArrayShortSize should be the multiple of BytesPerLong");
5807 
5808   Label DONE;
5809 
5810   if (!is_large || !UseXMMForObjInit) {
5811     xorptr(tmp, tmp);
5812   }
5813 
5814   if (!is_large) {
5815     Label LOOP, LONG;
5816     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
5817     jccb(Assembler::greater, LONG);
5818 
5819     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5820 
5821     decrement(cnt);
5822     jccb(Assembler::negative, DONE); // Zero length
5823 
5824     // Use individual pointer-sized stores for small counts:
5825     BIND(LOOP);
5826     movptr(Address(base, cnt, Address::times_ptr), tmp);
5827     decrement(cnt);
5828     jccb(Assembler::greaterEqual, LOOP);
5829     jmpb(DONE);
5830 
5831     BIND(LONG);
5832   }
5833 
5834   // Use longer rep-prefixed ops for non-small counts:
5835   if (UseFastStosb) {
5836     shlptr(cnt, 3); // convert to number of bytes
5837     rep_stosb();
5838   } else if (UseXMMForObjInit) {
5839     movptr(tmp, base);
5840     xmm_clear_mem(tmp, cnt, xtmp);
5841   } else {
5842     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
5843     rep_stos();
5844   }
5845 
5846   BIND(DONE);
5847 }
5848 
5849 #ifdef COMPILER2
5850 
5851 // IndexOf for constant substrings with size >= 8 chars
5852 // which don't need to be loaded through stack.
5853 void MacroAssembler::string_indexofC8(Register str1, Register str2,
5854                                       Register cnt1, Register cnt2,
5855                                       int int_cnt2,  Register result,
5856                                       XMMRegister vec, Register tmp,
5857                                       int ae) {
5858   ShortBranchVerifier sbv(this);
5859   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
5860   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
5861 
5862   // This method uses the pcmpestri instruction with bound registers
5863   //   inputs:
5864   //     xmm - substring
5865   //     rax - substring length (elements count)
5866   //     mem - scanned string
5867   //     rdx - string length (elements count)
5868   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
5869   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
5870   //   outputs:
5871   //     rcx - matched index in string
5872   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
5873   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
5874   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
5875   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
5876   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
5877 
5878   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
5879         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
5880         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
5881 
5882   // Note, inline_string_indexOf() generates checks:
5883   // if (substr.count > string.count) return -1;
5884   // if (substr.count == 0) return 0;
5885   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
5886 
5887   // Load substring.
5888   if (ae == StrIntrinsicNode::UL) {
5889     pmovzxbw(vec, Address(str2, 0));
5890   } else {
5891     movdqu(vec, Address(str2, 0));
5892   }
5893   movl(cnt2, int_cnt2);
5894   movptr(result, str1); // string addr
5895 
5896   if (int_cnt2 > stride) {
5897     jmpb(SCAN_TO_SUBSTR);
5898 
5899     // Reload substr for rescan, this code
5900     // is executed only for large substrings (> 8 chars)
5901     bind(RELOAD_SUBSTR);
5902     if (ae == StrIntrinsicNode::UL) {
5903       pmovzxbw(vec, Address(str2, 0));
5904     } else {
5905       movdqu(vec, Address(str2, 0));
5906     }
5907     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
5908 
5909     bind(RELOAD_STR);
5910     // We came here after the beginning of the substring was
5911     // matched but the rest of it was not so we need to search
5912     // again. Start from the next element after the previous match.
5913 
5914     // cnt2 is number of substring reminding elements and
5915     // cnt1 is number of string reminding elements when cmp failed.
5916     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
5917     subl(cnt1, cnt2);
5918     addl(cnt1, int_cnt2);
5919     movl(cnt2, int_cnt2); // Now restore cnt2
5920 
5921     decrementl(cnt1);     // Shift to next element
5922     cmpl(cnt1, cnt2);
5923     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5924 
5925     addptr(result, (1<<scale1));
5926 
5927   } // (int_cnt2 > 8)
5928 
5929   // Scan string for start of substr in 16-byte vectors
5930   bind(SCAN_TO_SUBSTR);
5931   pcmpestri(vec, Address(result, 0), mode);
5932   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
5933   subl(cnt1, stride);
5934   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
5935   cmpl(cnt1, cnt2);
5936   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
5937   addptr(result, 16);
5938   jmpb(SCAN_TO_SUBSTR);
5939 
5940   // Found a potential substr
5941   bind(FOUND_CANDIDATE);
5942   // Matched whole vector if first element matched (tmp(rcx) == 0).
5943   if (int_cnt2 == stride) {
5944     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
5945   } else { // int_cnt2 > 8
5946     jccb(Assembler::overflow, FOUND_SUBSTR);
5947   }
5948   // After pcmpestri tmp(rcx) contains matched element index
5949   // Compute start addr of substr
5950   lea(result, Address(result, tmp, scale1));
5951 
5952   // Make sure string is still long enough
5953   subl(cnt1, tmp);
5954   cmpl(cnt1, cnt2);
5955   if (int_cnt2 == stride) {
5956     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
5957   } else { // int_cnt2 > 8
5958     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
5959   }
5960   // Left less then substring.
5961 
5962   bind(RET_NOT_FOUND);
5963   movl(result, -1);
5964   jmp(EXIT);
5965 
5966   if (int_cnt2 > stride) {
5967     // This code is optimized for the case when whole substring
5968     // is matched if its head is matched.
5969     bind(MATCH_SUBSTR_HEAD);
5970     pcmpestri(vec, Address(result, 0), mode);
5971     // Reload only string if does not match
5972     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
5973 
5974     Label CONT_SCAN_SUBSTR;
5975     // Compare the rest of substring (> 8 chars).
5976     bind(FOUND_SUBSTR);
5977     // First 8 chars are already matched.
5978     negptr(cnt2);
5979     addptr(cnt2, stride);
5980 
5981     bind(SCAN_SUBSTR);
5982     subl(cnt1, stride);
5983     cmpl(cnt2, -stride); // Do not read beyond substring
5984     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
5985     // Back-up strings to avoid reading beyond substring:
5986     // cnt1 = cnt1 - cnt2 + 8
5987     addl(cnt1, cnt2); // cnt2 is negative
5988     addl(cnt1, stride);
5989     movl(cnt2, stride); negptr(cnt2);
5990     bind(CONT_SCAN_SUBSTR);
5991     if (int_cnt2 < (int)G) {
5992       int tail_off1 = int_cnt2<<scale1;
5993       int tail_off2 = int_cnt2<<scale2;
5994       if (ae == StrIntrinsicNode::UL) {
5995         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
5996       } else {
5997         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
5998       }
5999       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
6000     } else {
6001       // calculate index in register to avoid integer overflow (int_cnt2*2)
6002       movl(tmp, int_cnt2);
6003       addptr(tmp, cnt2);
6004       if (ae == StrIntrinsicNode::UL) {
6005         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
6006       } else {
6007         movdqu(vec, Address(str2, tmp, scale2, 0));
6008       }
6009       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
6010     }
6011     // Need to reload strings pointers if not matched whole vector
6012     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6013     addptr(cnt2, stride);
6014     jcc(Assembler::negative, SCAN_SUBSTR);
6015     // Fall through if found full substring
6016 
6017   } // (int_cnt2 > 8)
6018 
6019   bind(RET_FOUND);
6020   // Found result if we matched full small substring.
6021   // Compute substr offset
6022   subptr(result, str1);
6023   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6024     shrl(result, 1); // index
6025   }
6026   bind(EXIT);
6027 
6028 } // string_indexofC8
6029 
6030 // Small strings are loaded through stack if they cross page boundary.
6031 void MacroAssembler::string_indexof(Register str1, Register str2,
6032                                     Register cnt1, Register cnt2,
6033                                     int int_cnt2,  Register result,
6034                                     XMMRegister vec, Register tmp,
6035                                     int ae) {
6036   ShortBranchVerifier sbv(this);
6037   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6038   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
6039 
6040   //
6041   // int_cnt2 is length of small (< 8 chars) constant substring
6042   // or (-1) for non constant substring in which case its length
6043   // is in cnt2 register.
6044   //
6045   // Note, inline_string_indexOf() generates checks:
6046   // if (substr.count > string.count) return -1;
6047   // if (substr.count == 0) return 0;
6048   //
6049   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
6050   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
6051   // This method uses the pcmpestri instruction with bound registers
6052   //   inputs:
6053   //     xmm - substring
6054   //     rax - substring length (elements count)
6055   //     mem - scanned string
6056   //     rdx - string length (elements count)
6057   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6058   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
6059   //   outputs:
6060   //     rcx - matched index in string
6061   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6062   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
6063   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
6064   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
6065 
6066   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6067         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6068         FOUND_CANDIDATE;
6069 
6070   { //========================================================
6071     // We don't know where these strings are located
6072     // and we can't read beyond them. Load them through stack.
6073     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6074 
6075     movptr(tmp, rsp); // save old SP
6076 
6077     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6078       if (int_cnt2 == (1>>scale2)) { // One byte
6079         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
6080         load_unsigned_byte(result, Address(str2, 0));
6081         movdl(vec, result); // move 32 bits
6082       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
6083         // Not enough header space in 32-bit VM: 12+3 = 15.
6084         movl(result, Address(str2, -1));
6085         shrl(result, 8);
6086         movdl(vec, result); // move 32 bits
6087       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
6088         load_unsigned_short(result, Address(str2, 0));
6089         movdl(vec, result); // move 32 bits
6090       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
6091         movdl(vec, Address(str2, 0)); // move 32 bits
6092       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
6093         movq(vec, Address(str2, 0));  // move 64 bits
6094       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
6095         // Array header size is 12 bytes in 32-bit VM
6096         // + 6 bytes for 3 chars == 18 bytes,
6097         // enough space to load vec and shift.
6098         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6099         if (ae == StrIntrinsicNode::UL) {
6100           int tail_off = int_cnt2-8;
6101           pmovzxbw(vec, Address(str2, tail_off));
6102           psrldq(vec, -2*tail_off);
6103         }
6104         else {
6105           int tail_off = int_cnt2*(1<<scale2);
6106           movdqu(vec, Address(str2, tail_off-16));
6107           psrldq(vec, 16-tail_off);
6108         }
6109       }
6110     } else { // not constant substring
6111       cmpl(cnt2, stride);
6112       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6113 
6114       // We can read beyond string if srt+16 does not cross page boundary
6115       // since heaps are aligned and mapped by pages.
6116       assert(os::vm_page_size() < (int)G, "default page should be small");
6117       movl(result, str2); // We need only low 32 bits
6118       andl(result, (os::vm_page_size()-1));
6119       cmpl(result, (os::vm_page_size()-16));
6120       jccb(Assembler::belowEqual, CHECK_STR);
6121 
6122       // Move small strings to stack to allow load 16 bytes into vec.
6123       subptr(rsp, 16);
6124       int stk_offset = wordSize-(1<<scale2);
6125       push(cnt2);
6126 
6127       bind(COPY_SUBSTR);
6128       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
6129         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
6130         movb(Address(rsp, cnt2, scale2, stk_offset), result);
6131       } else if (ae == StrIntrinsicNode::UU) {
6132         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
6133         movw(Address(rsp, cnt2, scale2, stk_offset), result);
6134       }
6135       decrement(cnt2);
6136       jccb(Assembler::notZero, COPY_SUBSTR);
6137 
6138       pop(cnt2);
6139       movptr(str2, rsp);  // New substring address
6140     } // non constant
6141 
6142     bind(CHECK_STR);
6143     cmpl(cnt1, stride);
6144     jccb(Assembler::aboveEqual, BIG_STRINGS);
6145 
6146     // Check cross page boundary.
6147     movl(result, str1); // We need only low 32 bits
6148     andl(result, (os::vm_page_size()-1));
6149     cmpl(result, (os::vm_page_size()-16));
6150     jccb(Assembler::belowEqual, BIG_STRINGS);
6151 
6152     subptr(rsp, 16);
6153     int stk_offset = -(1<<scale1);
6154     if (int_cnt2 < 0) { // not constant
6155       push(cnt2);
6156       stk_offset += wordSize;
6157     }
6158     movl(cnt2, cnt1);
6159 
6160     bind(COPY_STR);
6161     if (ae == StrIntrinsicNode::LL) {
6162       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
6163       movb(Address(rsp, cnt2, scale1, stk_offset), result);
6164     } else {
6165       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
6166       movw(Address(rsp, cnt2, scale1, stk_offset), result);
6167     }
6168     decrement(cnt2);
6169     jccb(Assembler::notZero, COPY_STR);
6170 
6171     if (int_cnt2 < 0) { // not constant
6172       pop(cnt2);
6173     }
6174     movptr(str1, rsp);  // New string address
6175 
6176     bind(BIG_STRINGS);
6177     // Load substring.
6178     if (int_cnt2 < 0) { // -1
6179       if (ae == StrIntrinsicNode::UL) {
6180         pmovzxbw(vec, Address(str2, 0));
6181       } else {
6182         movdqu(vec, Address(str2, 0));
6183       }
6184       push(cnt2);       // substr count
6185       push(str2);       // substr addr
6186       push(str1);       // string addr
6187     } else {
6188       // Small (< 8 chars) constant substrings are loaded already.
6189       movl(cnt2, int_cnt2);
6190     }
6191     push(tmp);  // original SP
6192 
6193   } // Finished loading
6194 
6195   //========================================================
6196   // Start search
6197   //
6198 
6199   movptr(result, str1); // string addr
6200 
6201   if (int_cnt2  < 0) {  // Only for non constant substring
6202     jmpb(SCAN_TO_SUBSTR);
6203 
6204     // SP saved at sp+0
6205     // String saved at sp+1*wordSize
6206     // Substr saved at sp+2*wordSize
6207     // Substr count saved at sp+3*wordSize
6208 
6209     // Reload substr for rescan, this code
6210     // is executed only for large substrings (> 8 chars)
6211     bind(RELOAD_SUBSTR);
6212     movptr(str2, Address(rsp, 2*wordSize));
6213     movl(cnt2, Address(rsp, 3*wordSize));
6214     if (ae == StrIntrinsicNode::UL) {
6215       pmovzxbw(vec, Address(str2, 0));
6216     } else {
6217       movdqu(vec, Address(str2, 0));
6218     }
6219     // We came here after the beginning of the substring was
6220     // matched but the rest of it was not so we need to search
6221     // again. Start from the next element after the previous match.
6222     subptr(str1, result); // Restore counter
6223     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6224       shrl(str1, 1);
6225     }
6226     addl(cnt1, str1);
6227     decrementl(cnt1);   // Shift to next element
6228     cmpl(cnt1, cnt2);
6229     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6230 
6231     addptr(result, (1<<scale1));
6232   } // non constant
6233 
6234   // Scan string for start of substr in 16-byte vectors
6235   bind(SCAN_TO_SUBSTR);
6236   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6237   pcmpestri(vec, Address(result, 0), mode);
6238   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6239   subl(cnt1, stride);
6240   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6241   cmpl(cnt1, cnt2);
6242   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6243   addptr(result, 16);
6244 
6245   bind(ADJUST_STR);
6246   cmpl(cnt1, stride); // Do not read beyond string
6247   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6248   // Back-up string to avoid reading beyond string.
6249   lea(result, Address(result, cnt1, scale1, -16));
6250   movl(cnt1, stride);
6251   jmpb(SCAN_TO_SUBSTR);
6252 
6253   // Found a potential substr
6254   bind(FOUND_CANDIDATE);
6255   // After pcmpestri tmp(rcx) contains matched element index
6256 
6257   // Make sure string is still long enough
6258   subl(cnt1, tmp);
6259   cmpl(cnt1, cnt2);
6260   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6261   // Left less then substring.
6262 
6263   bind(RET_NOT_FOUND);
6264   movl(result, -1);
6265   jmp(CLEANUP);
6266 
6267   bind(FOUND_SUBSTR);
6268   // Compute start addr of substr
6269   lea(result, Address(result, tmp, scale1));
6270   if (int_cnt2 > 0) { // Constant substring
6271     // Repeat search for small substring (< 8 chars)
6272     // from new point without reloading substring.
6273     // Have to check that we don't read beyond string.
6274     cmpl(tmp, stride-int_cnt2);
6275     jccb(Assembler::greater, ADJUST_STR);
6276     // Fall through if matched whole substring.
6277   } else { // non constant
6278     assert(int_cnt2 == -1, "should be != 0");
6279 
6280     addl(tmp, cnt2);
6281     // Found result if we matched whole substring.
6282     cmpl(tmp, stride);
6283     jcc(Assembler::lessEqual, RET_FOUND);
6284 
6285     // Repeat search for small substring (<= 8 chars)
6286     // from new point 'str1' without reloading substring.
6287     cmpl(cnt2, stride);
6288     // Have to check that we don't read beyond string.
6289     jccb(Assembler::lessEqual, ADJUST_STR);
6290 
6291     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6292     // Compare the rest of substring (> 8 chars).
6293     movptr(str1, result);
6294 
6295     cmpl(tmp, cnt2);
6296     // First 8 chars are already matched.
6297     jccb(Assembler::equal, CHECK_NEXT);
6298 
6299     bind(SCAN_SUBSTR);
6300     pcmpestri(vec, Address(str1, 0), mode);
6301     // Need to reload strings pointers if not matched whole vector
6302     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6303 
6304     bind(CHECK_NEXT);
6305     subl(cnt2, stride);
6306     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6307     addptr(str1, 16);
6308     if (ae == StrIntrinsicNode::UL) {
6309       addptr(str2, 8);
6310     } else {
6311       addptr(str2, 16);
6312     }
6313     subl(cnt1, stride);
6314     cmpl(cnt2, stride); // Do not read beyond substring
6315     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6316     // Back-up strings to avoid reading beyond substring.
6317 
6318     if (ae == StrIntrinsicNode::UL) {
6319       lea(str2, Address(str2, cnt2, scale2, -8));
6320       lea(str1, Address(str1, cnt2, scale1, -16));
6321     } else {
6322       lea(str2, Address(str2, cnt2, scale2, -16));
6323       lea(str1, Address(str1, cnt2, scale1, -16));
6324     }
6325     subl(cnt1, cnt2);
6326     movl(cnt2, stride);
6327     addl(cnt1, stride);
6328     bind(CONT_SCAN_SUBSTR);
6329     if (ae == StrIntrinsicNode::UL) {
6330       pmovzxbw(vec, Address(str2, 0));
6331     } else {
6332       movdqu(vec, Address(str2, 0));
6333     }
6334     jmp(SCAN_SUBSTR);
6335 
6336     bind(RET_FOUND_LONG);
6337     movptr(str1, Address(rsp, wordSize));
6338   } // non constant
6339 
6340   bind(RET_FOUND);
6341   // Compute substr offset
6342   subptr(result, str1);
6343   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
6344     shrl(result, 1); // index
6345   }
6346   bind(CLEANUP);
6347   pop(rsp); // restore SP
6348 
6349 } // string_indexof
6350 
6351 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
6352                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
6353   ShortBranchVerifier sbv(this);
6354   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
6355 
6356   int stride = 8;
6357 
6358   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
6359         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
6360         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
6361         FOUND_SEQ_CHAR, DONE_LABEL;
6362 
6363   movptr(result, str1);
6364   if (UseAVX >= 2) {
6365     cmpl(cnt1, stride);
6366     jcc(Assembler::less, SCAN_TO_CHAR);
6367     cmpl(cnt1, 2*stride);
6368     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
6369     movdl(vec1, ch);
6370     vpbroadcastw(vec1, vec1, Assembler::AVX_256bit);
6371     vpxor(vec2, vec2);
6372     movl(tmp, cnt1);
6373     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
6374     andl(cnt1,0x0000000F);  //tail count (in chars)
6375 
6376     bind(SCAN_TO_16_CHAR_LOOP);
6377     vmovdqu(vec3, Address(result, 0));
6378     vpcmpeqw(vec3, vec3, vec1, 1);
6379     vptest(vec2, vec3);
6380     jcc(Assembler::carryClear, FOUND_CHAR);
6381     addptr(result, 32);
6382     subl(tmp, 2*stride);
6383     jcc(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
6384     jmp(SCAN_TO_8_CHAR);
6385     bind(SCAN_TO_8_CHAR_INIT);
6386     movdl(vec1, ch);
6387     pshuflw(vec1, vec1, 0x00);
6388     pshufd(vec1, vec1, 0);
6389     pxor(vec2, vec2);
6390   }
6391   bind(SCAN_TO_8_CHAR);
6392   cmpl(cnt1, stride);
6393   jcc(Assembler::less, SCAN_TO_CHAR);
6394   if (UseAVX < 2) {
6395     movdl(vec1, ch);
6396     pshuflw(vec1, vec1, 0x00);
6397     pshufd(vec1, vec1, 0);
6398     pxor(vec2, vec2);
6399   }
6400   movl(tmp, cnt1);
6401   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
6402   andl(cnt1,0x00000007);  //tail count (in chars)
6403 
6404   bind(SCAN_TO_8_CHAR_LOOP);
6405   movdqu(vec3, Address(result, 0));
6406   pcmpeqw(vec3, vec1);
6407   ptest(vec2, vec3);
6408   jcc(Assembler::carryClear, FOUND_CHAR);
6409   addptr(result, 16);
6410   subl(tmp, stride);
6411   jcc(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
6412   bind(SCAN_TO_CHAR);
6413   testl(cnt1, cnt1);
6414   jcc(Assembler::zero, RET_NOT_FOUND);
6415   bind(SCAN_TO_CHAR_LOOP);
6416   load_unsigned_short(tmp, Address(result, 0));
6417   cmpl(ch, tmp);
6418   jccb(Assembler::equal, FOUND_SEQ_CHAR);
6419   addptr(result, 2);
6420   subl(cnt1, 1);
6421   jccb(Assembler::zero, RET_NOT_FOUND);
6422   jmp(SCAN_TO_CHAR_LOOP);
6423 
6424   bind(RET_NOT_FOUND);
6425   movl(result, -1);
6426   jmpb(DONE_LABEL);
6427 
6428   bind(FOUND_CHAR);
6429   if (UseAVX >= 2) {
6430     vpmovmskb(tmp, vec3);
6431   } else {
6432     pmovmskb(tmp, vec3);
6433   }
6434   bsfl(ch, tmp);
6435   addl(result, ch);
6436 
6437   bind(FOUND_SEQ_CHAR);
6438   subptr(result, str1);
6439   shrl(result, 1);
6440 
6441   bind(DONE_LABEL);
6442 } // string_indexof_char
6443 
6444 // helper function for string_compare
6445 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
6446                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
6447                                         Address::ScaleFactor scale2, Register index, int ae) {
6448   if (ae == StrIntrinsicNode::LL) {
6449     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
6450     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
6451   } else if (ae == StrIntrinsicNode::UU) {
6452     load_unsigned_short(elem1, Address(str1, index, scale, 0));
6453     load_unsigned_short(elem2, Address(str2, index, scale, 0));
6454   } else {
6455     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
6456     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
6457   }
6458 }
6459 
6460 // Compare strings, used for char[] and byte[].
6461 void MacroAssembler::string_compare(Register str1, Register str2,
6462                                     Register cnt1, Register cnt2, Register result,
6463                                     XMMRegister vec1, int ae) {
6464   ShortBranchVerifier sbv(this);
6465   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6466   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
6467   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
6468   int stride2x2 = 0x40;
6469   Address::ScaleFactor scale = Address::no_scale;
6470   Address::ScaleFactor scale1 = Address::no_scale;
6471   Address::ScaleFactor scale2 = Address::no_scale;
6472 
6473   if (ae != StrIntrinsicNode::LL) {
6474     stride2x2 = 0x20;
6475   }
6476 
6477   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
6478     shrl(cnt2, 1);
6479   }
6480   // Compute the minimum of the string lengths and the
6481   // difference of the string lengths (stack).
6482   // Do the conditional move stuff
6483   movl(result, cnt1);
6484   subl(cnt1, cnt2);
6485   push(cnt1);
6486   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
6487 
6488   // Is the minimum length zero?
6489   testl(cnt2, cnt2);
6490   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6491   if (ae == StrIntrinsicNode::LL) {
6492     // Load first bytes
6493     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
6494     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
6495   } else if (ae == StrIntrinsicNode::UU) {
6496     // Load first characters
6497     load_unsigned_short(result, Address(str1, 0));
6498     load_unsigned_short(cnt1, Address(str2, 0));
6499   } else {
6500     load_unsigned_byte(result, Address(str1, 0));
6501     load_unsigned_short(cnt1, Address(str2, 0));
6502   }
6503   subl(result, cnt1);
6504   jcc(Assembler::notZero,  POP_LABEL);
6505 
6506   if (ae == StrIntrinsicNode::UU) {
6507     // Divide length by 2 to get number of chars
6508     shrl(cnt2, 1);
6509   }
6510   cmpl(cnt2, 1);
6511   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6512 
6513   // Check if the strings start at the same location and setup scale and stride
6514   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6515     cmpptr(str1, str2);
6516     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6517     if (ae == StrIntrinsicNode::LL) {
6518       scale = Address::times_1;
6519       stride = 16;
6520     } else {
6521       scale = Address::times_2;
6522       stride = 8;
6523     }
6524   } else {
6525     scale1 = Address::times_1;
6526     scale2 = Address::times_2;
6527     // scale not used
6528     stride = 8;
6529   }
6530 
6531   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6532     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6533     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6534     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
6535     Label COMPARE_TAIL_LONG;
6536     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
6537 
6538     int pcmpmask = 0x19;
6539     if (ae == StrIntrinsicNode::LL) {
6540       pcmpmask &= ~0x01;
6541     }
6542 
6543     // Setup to compare 16-chars (32-bytes) vectors,
6544     // start from first character again because it has aligned address.
6545     if (ae == StrIntrinsicNode::LL) {
6546       stride2 = 32;
6547     } else {
6548       stride2 = 16;
6549     }
6550     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6551       adr_stride = stride << scale;
6552     } else {
6553       adr_stride1 = 8;  //stride << scale1;
6554       adr_stride2 = 16; //stride << scale2;
6555     }
6556 
6557     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6558     // rax and rdx are used by pcmpestri as elements counters
6559     movl(result, cnt2);
6560     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6561     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6562 
6563     // fast path : compare first 2 8-char vectors.
6564     bind(COMPARE_16_CHARS);
6565     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6566       movdqu(vec1, Address(str1, 0));
6567     } else {
6568       pmovzxbw(vec1, Address(str1, 0));
6569     }
6570     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6571     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6572 
6573     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6574       movdqu(vec1, Address(str1, adr_stride));
6575       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6576     } else {
6577       pmovzxbw(vec1, Address(str1, adr_stride1));
6578       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
6579     }
6580     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6581     addl(cnt1, stride);
6582 
6583     // Compare the characters at index in cnt1
6584     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
6585     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6586     subl(result, cnt2);
6587     jmp(POP_LABEL);
6588 
6589     // Setup the registers to start vector comparison loop
6590     bind(COMPARE_WIDE_VECTORS);
6591     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6592       lea(str1, Address(str1, result, scale));
6593       lea(str2, Address(str2, result, scale));
6594     } else {
6595       lea(str1, Address(str1, result, scale1));
6596       lea(str2, Address(str2, result, scale2));
6597     }
6598     subl(result, stride2);
6599     subl(cnt2, stride2);
6600     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
6601     negptr(result);
6602 
6603     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6604     bind(COMPARE_WIDE_VECTORS_LOOP);
6605 
6606 #ifdef _LP64
6607     if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
6608       cmpl(cnt2, stride2x2);
6609       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
6610       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
6611       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
6612 
6613       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
6614       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6615         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
6616         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6617       } else {
6618         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
6619         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
6620       }
6621       kortestql(k7, k7);
6622       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
6623       addptr(result, stride2x2);  // update since we already compared at this addr
6624       subl(cnt2, stride2x2);      // and sub the size too
6625       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
6626 
6627       vpxor(vec1, vec1);
6628       jmpb(COMPARE_WIDE_TAIL);
6629     }//if (VM_Version::supports_avx512vlbw())
6630 #endif // _LP64
6631 
6632 
6633     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6634     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6635       vmovdqu(vec1, Address(str1, result, scale));
6636       vpxor(vec1, Address(str2, result, scale));
6637     } else {
6638       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
6639       vpxor(vec1, Address(str2, result, scale2));
6640     }
6641     vptest(vec1, vec1);
6642     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
6643     addptr(result, stride2);
6644     subl(cnt2, stride2);
6645     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6646     // clean upper bits of YMM registers
6647     vpxor(vec1, vec1);
6648 
6649     // compare wide vectors tail
6650     bind(COMPARE_WIDE_TAIL);
6651     testptr(result, result);
6652     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6653 
6654     movl(result, stride2);
6655     movl(cnt2, result);
6656     negptr(result);
6657     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
6658 
6659     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6660     bind(VECTOR_NOT_EQUAL);
6661     // clean upper bits of YMM registers
6662     vpxor(vec1, vec1);
6663     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6664       lea(str1, Address(str1, result, scale));
6665       lea(str2, Address(str2, result, scale));
6666     } else {
6667       lea(str1, Address(str1, result, scale1));
6668       lea(str2, Address(str2, result, scale2));
6669     }
6670     jmp(COMPARE_16_CHARS);
6671 
6672     // Compare tail chars, length between 1 to 15 chars
6673     bind(COMPARE_TAIL_LONG);
6674     movl(cnt2, result);
6675     cmpl(cnt2, stride);
6676     jcc(Assembler::less, COMPARE_SMALL_STR);
6677 
6678     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6679       movdqu(vec1, Address(str1, 0));
6680     } else {
6681       pmovzxbw(vec1, Address(str1, 0));
6682     }
6683     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6684     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6685     subptr(cnt2, stride);
6686     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6687     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6688       lea(str1, Address(str1, result, scale));
6689       lea(str2, Address(str2, result, scale));
6690     } else {
6691       lea(str1, Address(str1, result, scale1));
6692       lea(str2, Address(str2, result, scale2));
6693     }
6694     negptr(cnt2);
6695     jmpb(WHILE_HEAD_LABEL);
6696 
6697     bind(COMPARE_SMALL_STR);
6698   } else if (UseSSE42Intrinsics) {
6699     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6700     int pcmpmask = 0x19;
6701     // Setup to compare 8-char (16-byte) vectors,
6702     // start from first character again because it has aligned address.
6703     movl(result, cnt2);
6704     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6705     if (ae == StrIntrinsicNode::LL) {
6706       pcmpmask &= ~0x01;
6707     }
6708     jcc(Assembler::zero, COMPARE_TAIL);
6709     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6710       lea(str1, Address(str1, result, scale));
6711       lea(str2, Address(str2, result, scale));
6712     } else {
6713       lea(str1, Address(str1, result, scale1));
6714       lea(str2, Address(str2, result, scale2));
6715     }
6716     negptr(result);
6717 
6718     // pcmpestri
6719     //   inputs:
6720     //     vec1- substring
6721     //     rax - negative string length (elements count)
6722     //     mem - scanned string
6723     //     rdx - string length (elements count)
6724     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6725     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6726     //   outputs:
6727     //     rcx - first mismatched element index
6728     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6729 
6730     bind(COMPARE_WIDE_VECTORS);
6731     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6732       movdqu(vec1, Address(str1, result, scale));
6733       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6734     } else {
6735       pmovzxbw(vec1, Address(str1, result, scale1));
6736       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6737     }
6738     // After pcmpestri cnt1(rcx) contains mismatched element index
6739 
6740     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6741     addptr(result, stride);
6742     subptr(cnt2, stride);
6743     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6744 
6745     // compare wide vectors tail
6746     testptr(result, result);
6747     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6748 
6749     movl(cnt2, stride);
6750     movl(result, stride);
6751     negptr(result);
6752     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6753       movdqu(vec1, Address(str1, result, scale));
6754       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6755     } else {
6756       pmovzxbw(vec1, Address(str1, result, scale1));
6757       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
6758     }
6759     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6760 
6761     // Mismatched characters in the vectors
6762     bind(VECTOR_NOT_EQUAL);
6763     addptr(cnt1, result);
6764     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
6765     subl(result, cnt2);
6766     jmpb(POP_LABEL);
6767 
6768     bind(COMPARE_TAIL); // limit is zero
6769     movl(cnt2, result);
6770     // Fallthru to tail compare
6771   }
6772   // Shift str2 and str1 to the end of the arrays, negate min
6773   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
6774     lea(str1, Address(str1, cnt2, scale));
6775     lea(str2, Address(str2, cnt2, scale));
6776   } else {
6777     lea(str1, Address(str1, cnt2, scale1));
6778     lea(str2, Address(str2, cnt2, scale2));
6779   }
6780   decrementl(cnt2);  // first character was compared already
6781   negptr(cnt2);
6782 
6783   // Compare the rest of the elements
6784   bind(WHILE_HEAD_LABEL);
6785   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
6786   subl(result, cnt1);
6787   jccb(Assembler::notZero, POP_LABEL);
6788   increment(cnt2);
6789   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6790 
6791   // Strings are equal up to min length.  Return the length difference.
6792   bind(LENGTH_DIFF_LABEL);
6793   pop(result);
6794   if (ae == StrIntrinsicNode::UU) {
6795     // Divide diff by 2 to get number of chars
6796     sarl(result, 1);
6797   }
6798   jmpb(DONE_LABEL);
6799 
6800 #ifdef _LP64
6801   if (VM_Version::supports_avx512vlbw()) {
6802 
6803     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
6804 
6805     kmovql(cnt1, k7);
6806     notq(cnt1);
6807     bsfq(cnt2, cnt1);
6808     if (ae != StrIntrinsicNode::LL) {
6809       // Divide diff by 2 to get number of chars
6810       sarl(cnt2, 1);
6811     }
6812     addq(result, cnt2);
6813     if (ae == StrIntrinsicNode::LL) {
6814       load_unsigned_byte(cnt1, Address(str2, result));
6815       load_unsigned_byte(result, Address(str1, result));
6816     } else if (ae == StrIntrinsicNode::UU) {
6817       load_unsigned_short(cnt1, Address(str2, result, scale));
6818       load_unsigned_short(result, Address(str1, result, scale));
6819     } else {
6820       load_unsigned_short(cnt1, Address(str2, result, scale2));
6821       load_unsigned_byte(result, Address(str1, result, scale1));
6822     }
6823     subl(result, cnt1);
6824     jmpb(POP_LABEL);
6825   }//if (VM_Version::supports_avx512vlbw())
6826 #endif // _LP64
6827 
6828   // Discard the stored length difference
6829   bind(POP_LABEL);
6830   pop(cnt1);
6831 
6832   // That's it
6833   bind(DONE_LABEL);
6834   if(ae == StrIntrinsicNode::UL) {
6835     negl(result);
6836   }
6837 
6838 }
6839 
6840 // Search for Non-ASCII character (Negative byte value) in a byte array,
6841 // return true if it has any and false otherwise.
6842 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
6843 //   @HotSpotIntrinsicCandidate
6844 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
6845 //     for (int i = off; i < off + len; i++) {
6846 //       if (ba[i] < 0) {
6847 //         return true;
6848 //       }
6849 //     }
6850 //     return false;
6851 //   }
6852 void MacroAssembler::has_negatives(Register ary1, Register len,
6853   Register result, Register tmp1,
6854   XMMRegister vec1, XMMRegister vec2) {
6855   // rsi: byte array
6856   // rcx: len
6857   // rax: result
6858   ShortBranchVerifier sbv(this);
6859   assert_different_registers(ary1, len, result, tmp1);
6860   assert_different_registers(vec1, vec2);
6861   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
6862 
6863   // len == 0
6864   testl(len, len);
6865   jcc(Assembler::zero, FALSE_LABEL);
6866 
6867   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
6868     VM_Version::supports_avx512vlbw() &&
6869     VM_Version::supports_bmi2()) {
6870 
6871     Label test_64_loop, test_tail;
6872     Register tmp3_aliased = len;
6873 
6874     movl(tmp1, len);
6875     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
6876 
6877     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
6878     andl(len, ~(64 - 1));    // vector count (in chars)
6879     jccb(Assembler::zero, test_tail);
6880 
6881     lea(ary1, Address(ary1, len, Address::times_1));
6882     negptr(len);
6883 
6884     bind(test_64_loop);
6885     // Check whether our 64 elements of size byte contain negatives
6886     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
6887     kortestql(k2, k2);
6888     jcc(Assembler::notZero, TRUE_LABEL);
6889 
6890     addptr(len, 64);
6891     jccb(Assembler::notZero, test_64_loop);
6892 
6893 
6894     bind(test_tail);
6895     // bail out when there is nothing to be done
6896     testl(tmp1, -1);
6897     jcc(Assembler::zero, FALSE_LABEL);
6898 
6899     // ~(~0 << len) applied up to two times (for 32-bit scenario)
6900 #ifdef _LP64
6901     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
6902     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
6903     notq(tmp3_aliased);
6904     kmovql(k3, tmp3_aliased);
6905 #else
6906     Label k_init;
6907     jmp(k_init);
6908 
6909     // We could not read 64-bits from a general purpose register thus we move
6910     // data required to compose 64 1's to the instruction stream
6911     // We emit 64 byte wide series of elements from 0..63 which later on would
6912     // be used as a compare targets with tail count contained in tmp1 register.
6913     // Result would be a k register having tmp1 consecutive number or 1
6914     // counting from least significant bit.
6915     address tmp = pc();
6916     emit_int64(0x0706050403020100);
6917     emit_int64(0x0F0E0D0C0B0A0908);
6918     emit_int64(0x1716151413121110);
6919     emit_int64(0x1F1E1D1C1B1A1918);
6920     emit_int64(0x2726252423222120);
6921     emit_int64(0x2F2E2D2C2B2A2928);
6922     emit_int64(0x3736353433323130);
6923     emit_int64(0x3F3E3D3C3B3A3938);
6924 
6925     bind(k_init);
6926     lea(len, InternalAddress(tmp));
6927     // create mask to test for negative byte inside a vector
6928     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
6929     evpcmpgtb(k3, vec1, Address(len, 0), Assembler::AVX_512bit);
6930 
6931 #endif
6932     evpcmpgtb(k2, k3, vec2, Address(ary1, 0), Assembler::AVX_512bit);
6933     ktestq(k2, k3);
6934     jcc(Assembler::notZero, TRUE_LABEL);
6935 
6936     jmp(FALSE_LABEL);
6937   } else {
6938     movl(result, len); // copy
6939 
6940     if (UseAVX >= 2 && UseSSE >= 2) {
6941       // With AVX2, use 32-byte vector compare
6942       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6943 
6944       // Compare 32-byte vectors
6945       andl(result, 0x0000001f);  //   tail count (in bytes)
6946       andl(len, 0xffffffe0);   // vector count (in bytes)
6947       jccb(Assembler::zero, COMPARE_TAIL);
6948 
6949       lea(ary1, Address(ary1, len, Address::times_1));
6950       negptr(len);
6951 
6952       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
6953       movdl(vec2, tmp1);
6954       vpbroadcastd(vec2, vec2, Assembler::AVX_256bit);
6955 
6956       bind(COMPARE_WIDE_VECTORS);
6957       vmovdqu(vec1, Address(ary1, len, Address::times_1));
6958       vptest(vec1, vec2);
6959       jccb(Assembler::notZero, TRUE_LABEL);
6960       addptr(len, 32);
6961       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6962 
6963       testl(result, result);
6964       jccb(Assembler::zero, FALSE_LABEL);
6965 
6966       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6967       vptest(vec1, vec2);
6968       jccb(Assembler::notZero, TRUE_LABEL);
6969       jmpb(FALSE_LABEL);
6970 
6971       bind(COMPARE_TAIL); // len is zero
6972       movl(len, result);
6973       // Fallthru to tail compare
6974     } else if (UseSSE42Intrinsics) {
6975       // With SSE4.2, use double quad vector compare
6976       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6977 
6978       // Compare 16-byte vectors
6979       andl(result, 0x0000000f);  //   tail count (in bytes)
6980       andl(len, 0xfffffff0);   // vector count (in bytes)
6981       jcc(Assembler::zero, COMPARE_TAIL);
6982 
6983       lea(ary1, Address(ary1, len, Address::times_1));
6984       negptr(len);
6985 
6986       movl(tmp1, 0x80808080);
6987       movdl(vec2, tmp1);
6988       pshufd(vec2, vec2, 0);
6989 
6990       bind(COMPARE_WIDE_VECTORS);
6991       movdqu(vec1, Address(ary1, len, Address::times_1));
6992       ptest(vec1, vec2);
6993       jcc(Assembler::notZero, TRUE_LABEL);
6994       addptr(len, 16);
6995       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6996 
6997       testl(result, result);
6998       jcc(Assembler::zero, FALSE_LABEL);
6999 
7000       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7001       ptest(vec1, vec2);
7002       jccb(Assembler::notZero, TRUE_LABEL);
7003       jmpb(FALSE_LABEL);
7004 
7005       bind(COMPARE_TAIL); // len is zero
7006       movl(len, result);
7007       // Fallthru to tail compare
7008     }
7009   }
7010   // Compare 4-byte vectors
7011   andl(len, 0xfffffffc); // vector count (in bytes)
7012   jccb(Assembler::zero, COMPARE_CHAR);
7013 
7014   lea(ary1, Address(ary1, len, Address::times_1));
7015   negptr(len);
7016 
7017   bind(COMPARE_VECTORS);
7018   movl(tmp1, Address(ary1, len, Address::times_1));
7019   andl(tmp1, 0x80808080);
7020   jccb(Assembler::notZero, TRUE_LABEL);
7021   addptr(len, 4);
7022   jcc(Assembler::notZero, COMPARE_VECTORS);
7023 
7024   // Compare trailing char (final 2 bytes), if any
7025   bind(COMPARE_CHAR);
7026   testl(result, 0x2);   // tail  char
7027   jccb(Assembler::zero, COMPARE_BYTE);
7028   load_unsigned_short(tmp1, Address(ary1, 0));
7029   andl(tmp1, 0x00008080);
7030   jccb(Assembler::notZero, TRUE_LABEL);
7031   subptr(result, 2);
7032   lea(ary1, Address(ary1, 2));
7033 
7034   bind(COMPARE_BYTE);
7035   testl(result, 0x1);   // tail  byte
7036   jccb(Assembler::zero, FALSE_LABEL);
7037   load_unsigned_byte(tmp1, Address(ary1, 0));
7038   andl(tmp1, 0x00000080);
7039   jccb(Assembler::notEqual, TRUE_LABEL);
7040   jmpb(FALSE_LABEL);
7041 
7042   bind(TRUE_LABEL);
7043   movl(result, 1);   // return true
7044   jmpb(DONE);
7045 
7046   bind(FALSE_LABEL);
7047   xorl(result, result); // return false
7048 
7049   // That's it
7050   bind(DONE);
7051   if (UseAVX >= 2 && UseSSE >= 2) {
7052     // clean upper bits of YMM registers
7053     vpxor(vec1, vec1);
7054     vpxor(vec2, vec2);
7055   }
7056 }
7057 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
7058 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
7059                                    Register limit, Register result, Register chr,
7060                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
7061   ShortBranchVerifier sbv(this);
7062   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
7063 
7064   int length_offset  = arrayOopDesc::length_offset_in_bytes();
7065   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
7066 
7067   if (is_array_equ) {
7068     // Check the input args
7069     cmpoop(ary1, ary2);
7070     jcc(Assembler::equal, TRUE_LABEL);
7071 
7072     // Need additional checks for arrays_equals.
7073     testptr(ary1, ary1);
7074     jcc(Assembler::zero, FALSE_LABEL);
7075     testptr(ary2, ary2);
7076     jcc(Assembler::zero, FALSE_LABEL);
7077 
7078     // Check the lengths
7079     movl(limit, Address(ary1, length_offset));
7080     cmpl(limit, Address(ary2, length_offset));
7081     jcc(Assembler::notEqual, FALSE_LABEL);
7082   }
7083 
7084   // count == 0
7085   testl(limit, limit);
7086   jcc(Assembler::zero, TRUE_LABEL);
7087 
7088   if (is_array_equ) {
7089     // Load array address
7090     lea(ary1, Address(ary1, base_offset));
7091     lea(ary2, Address(ary2, base_offset));
7092   }
7093 
7094   if (is_array_equ && is_char) {
7095     // arrays_equals when used for char[].
7096     shll(limit, 1);      // byte count != 0
7097   }
7098   movl(result, limit); // copy
7099 
7100   if (UseAVX >= 2) {
7101     // With AVX2, use 32-byte vector compare
7102     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7103 
7104     // Compare 32-byte vectors
7105     andl(result, 0x0000001f);  //   tail count (in bytes)
7106     andl(limit, 0xffffffe0);   // vector count (in bytes)
7107     jcc(Assembler::zero, COMPARE_TAIL);
7108 
7109     lea(ary1, Address(ary1, limit, Address::times_1));
7110     lea(ary2, Address(ary2, limit, Address::times_1));
7111     negptr(limit);
7112 
7113 #ifdef _LP64
7114     if ((AVX3Threshold == 0) && VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7115       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
7116 
7117       cmpl(limit, -64);
7118       jcc(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7119 
7120       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7121 
7122       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
7123       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
7124       kortestql(k7, k7);
7125       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7126       addptr(limit, 64);  // update since we already compared at this addr
7127       cmpl(limit, -64);
7128       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7129 
7130       // At this point we may still need to compare -limit+result bytes.
7131       // We could execute the next two instruction and just continue via non-wide path:
7132       //  cmpl(limit, 0);
7133       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
7134       // But since we stopped at the points ary{1,2}+limit which are
7135       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
7136       // (|limit| <= 32 and result < 32),
7137       // we may just compare the last 64 bytes.
7138       //
7139       addptr(result, -64);   // it is safe, bc we just came from this area
7140       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
7141       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
7142       kortestql(k7, k7);
7143       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
7144 
7145       jmp(TRUE_LABEL);
7146 
7147       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7148 
7149     }//if (VM_Version::supports_avx512vlbw())
7150 #endif //_LP64
7151     bind(COMPARE_WIDE_VECTORS);
7152     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
7153     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
7154     vpxor(vec1, vec2);
7155 
7156     vptest(vec1, vec1);
7157     jcc(Assembler::notZero, FALSE_LABEL);
7158     addptr(limit, 32);
7159     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7160 
7161     testl(result, result);
7162     jcc(Assembler::zero, TRUE_LABEL);
7163 
7164     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
7165     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
7166     vpxor(vec1, vec2);
7167 
7168     vptest(vec1, vec1);
7169     jccb(Assembler::notZero, FALSE_LABEL);
7170     jmpb(TRUE_LABEL);
7171 
7172     bind(COMPARE_TAIL); // limit is zero
7173     movl(limit, result);
7174     // Fallthru to tail compare
7175   } else if (UseSSE42Intrinsics) {
7176     // With SSE4.2, use double quad vector compare
7177     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
7178 
7179     // Compare 16-byte vectors
7180     andl(result, 0x0000000f);  //   tail count (in bytes)
7181     andl(limit, 0xfffffff0);   // vector count (in bytes)
7182     jcc(Assembler::zero, COMPARE_TAIL);
7183 
7184     lea(ary1, Address(ary1, limit, Address::times_1));
7185     lea(ary2, Address(ary2, limit, Address::times_1));
7186     negptr(limit);
7187 
7188     bind(COMPARE_WIDE_VECTORS);
7189     movdqu(vec1, Address(ary1, limit, Address::times_1));
7190     movdqu(vec2, Address(ary2, limit, Address::times_1));
7191     pxor(vec1, vec2);
7192 
7193     ptest(vec1, vec1);
7194     jcc(Assembler::notZero, FALSE_LABEL);
7195     addptr(limit, 16);
7196     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
7197 
7198     testl(result, result);
7199     jcc(Assembler::zero, TRUE_LABEL);
7200 
7201     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
7202     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
7203     pxor(vec1, vec2);
7204 
7205     ptest(vec1, vec1);
7206     jccb(Assembler::notZero, FALSE_LABEL);
7207     jmpb(TRUE_LABEL);
7208 
7209     bind(COMPARE_TAIL); // limit is zero
7210     movl(limit, result);
7211     // Fallthru to tail compare
7212   }
7213 
7214   // Compare 4-byte vectors
7215   andl(limit, 0xfffffffc); // vector count (in bytes)
7216   jccb(Assembler::zero, COMPARE_CHAR);
7217 
7218   lea(ary1, Address(ary1, limit, Address::times_1));
7219   lea(ary2, Address(ary2, limit, Address::times_1));
7220   negptr(limit);
7221 
7222   bind(COMPARE_VECTORS);
7223   movl(chr, Address(ary1, limit, Address::times_1));
7224   cmpl(chr, Address(ary2, limit, Address::times_1));
7225   jccb(Assembler::notEqual, FALSE_LABEL);
7226   addptr(limit, 4);
7227   jcc(Assembler::notZero, COMPARE_VECTORS);
7228 
7229   // Compare trailing char (final 2 bytes), if any
7230   bind(COMPARE_CHAR);
7231   testl(result, 0x2);   // tail  char
7232   jccb(Assembler::zero, COMPARE_BYTE);
7233   load_unsigned_short(chr, Address(ary1, 0));
7234   load_unsigned_short(limit, Address(ary2, 0));
7235   cmpl(chr, limit);
7236   jccb(Assembler::notEqual, FALSE_LABEL);
7237 
7238   if (is_array_equ && is_char) {
7239     bind(COMPARE_BYTE);
7240   } else {
7241     lea(ary1, Address(ary1, 2));
7242     lea(ary2, Address(ary2, 2));
7243 
7244     bind(COMPARE_BYTE);
7245     testl(result, 0x1);   // tail  byte
7246     jccb(Assembler::zero, TRUE_LABEL);
7247     load_unsigned_byte(chr, Address(ary1, 0));
7248     load_unsigned_byte(limit, Address(ary2, 0));
7249     cmpl(chr, limit);
7250     jccb(Assembler::notEqual, FALSE_LABEL);
7251   }
7252   bind(TRUE_LABEL);
7253   movl(result, 1);   // return true
7254   jmpb(DONE);
7255 
7256   bind(FALSE_LABEL);
7257   xorl(result, result); // return false
7258 
7259   // That's it
7260   bind(DONE);
7261   if (UseAVX >= 2) {
7262     // clean upper bits of YMM registers
7263     vpxor(vec1, vec1);
7264     vpxor(vec2, vec2);
7265   }
7266 }
7267 
7268 #endif
7269 
7270 void MacroAssembler::generate_fill(BasicType t, bool aligned,
7271                                    Register to, Register value, Register count,
7272                                    Register rtmp, XMMRegister xtmp) {
7273   ShortBranchVerifier sbv(this);
7274   assert_different_registers(to, value, count, rtmp);
7275   Label L_exit;
7276   Label L_fill_2_bytes, L_fill_4_bytes;
7277 
7278   int shift = -1;
7279   switch (t) {
7280     case T_BYTE:
7281       shift = 2;
7282       break;
7283     case T_SHORT:
7284       shift = 1;
7285       break;
7286     case T_INT:
7287       shift = 0;
7288       break;
7289     default: ShouldNotReachHere();
7290   }
7291 
7292   if (t == T_BYTE) {
7293     andl(value, 0xff);
7294     movl(rtmp, value);
7295     shll(rtmp, 8);
7296     orl(value, rtmp);
7297   }
7298   if (t == T_SHORT) {
7299     andl(value, 0xffff);
7300   }
7301   if (t == T_BYTE || t == T_SHORT) {
7302     movl(rtmp, value);
7303     shll(rtmp, 16);
7304     orl(value, rtmp);
7305   }
7306 
7307   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7308   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7309   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7310     Label L_skip_align2;
7311     // align source address at 4 bytes address boundary
7312     if (t == T_BYTE) {
7313       Label L_skip_align1;
7314       // One byte misalignment happens only for byte arrays
7315       testptr(to, 1);
7316       jccb(Assembler::zero, L_skip_align1);
7317       movb(Address(to, 0), value);
7318       increment(to);
7319       decrement(count);
7320       BIND(L_skip_align1);
7321     }
7322     // Two bytes misalignment happens only for byte and short (char) arrays
7323     testptr(to, 2);
7324     jccb(Assembler::zero, L_skip_align2);
7325     movw(Address(to, 0), value);
7326     addptr(to, 2);
7327     subl(count, 1<<(shift-1));
7328     BIND(L_skip_align2);
7329   }
7330   if (UseSSE < 2) {
7331     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7332     // Fill 32-byte chunks
7333     subl(count, 8 << shift);
7334     jcc(Assembler::less, L_check_fill_8_bytes);
7335     align(16);
7336 
7337     BIND(L_fill_32_bytes_loop);
7338 
7339     for (int i = 0; i < 32; i += 4) {
7340       movl(Address(to, i), value);
7341     }
7342 
7343     addptr(to, 32);
7344     subl(count, 8 << shift);
7345     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7346     BIND(L_check_fill_8_bytes);
7347     addl(count, 8 << shift);
7348     jccb(Assembler::zero, L_exit);
7349     jmpb(L_fill_8_bytes);
7350 
7351     //
7352     // length is too short, just fill qwords
7353     //
7354     BIND(L_fill_8_bytes_loop);
7355     movl(Address(to, 0), value);
7356     movl(Address(to, 4), value);
7357     addptr(to, 8);
7358     BIND(L_fill_8_bytes);
7359     subl(count, 1 << (shift + 1));
7360     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7361     // fall through to fill 4 bytes
7362   } else {
7363     Label L_fill_32_bytes;
7364     if (!UseUnalignedLoadStores) {
7365       // align to 8 bytes, we know we are 4 byte aligned to start
7366       testptr(to, 4);
7367       jccb(Assembler::zero, L_fill_32_bytes);
7368       movl(Address(to, 0), value);
7369       addptr(to, 4);
7370       subl(count, 1<<shift);
7371     }
7372     BIND(L_fill_32_bytes);
7373     {
7374       assert( UseSSE >= 2, "supported cpu only" );
7375       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7376       movdl(xtmp, value);
7377       if (UseAVX >= 2 && UseUnalignedLoadStores) {
7378         Label L_check_fill_32_bytes;
7379         if (UseAVX > 2) {
7380           // Fill 64-byte chunks
7381           Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2;
7382 
7383           // If number of bytes to fill < AVX3Threshold, perform fill using AVX2
7384           cmpl(count, AVX3Threshold);
7385           jccb(Assembler::below, L_check_fill_64_bytes_avx2);
7386 
7387           vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
7388 
7389           subl(count, 16 << shift);
7390           jccb(Assembler::less, L_check_fill_32_bytes);
7391           align(16);
7392 
7393           BIND(L_fill_64_bytes_loop_avx3);
7394           evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
7395           addptr(to, 64);
7396           subl(count, 16 << shift);
7397           jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3);
7398           jmpb(L_check_fill_32_bytes);
7399 
7400           BIND(L_check_fill_64_bytes_avx2);
7401         }
7402         // Fill 64-byte chunks
7403         Label L_fill_64_bytes_loop;
7404         vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit);
7405 
7406         subl(count, 16 << shift);
7407         jcc(Assembler::less, L_check_fill_32_bytes);
7408         align(16);
7409 
7410         BIND(L_fill_64_bytes_loop);
7411         vmovdqu(Address(to, 0), xtmp);
7412         vmovdqu(Address(to, 32), xtmp);
7413         addptr(to, 64);
7414         subl(count, 16 << shift);
7415         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7416 
7417         BIND(L_check_fill_32_bytes);
7418         addl(count, 8 << shift);
7419         jccb(Assembler::less, L_check_fill_8_bytes);
7420         vmovdqu(Address(to, 0), xtmp);
7421         addptr(to, 32);
7422         subl(count, 8 << shift);
7423 
7424         BIND(L_check_fill_8_bytes);
7425         // clean upper bits of YMM registers
7426         movdl(xtmp, value);
7427         pshufd(xtmp, xtmp, 0);
7428       } else {
7429         // Fill 32-byte chunks
7430         pshufd(xtmp, xtmp, 0);
7431 
7432         subl(count, 8 << shift);
7433         jcc(Assembler::less, L_check_fill_8_bytes);
7434         align(16);
7435 
7436         BIND(L_fill_32_bytes_loop);
7437 
7438         if (UseUnalignedLoadStores) {
7439           movdqu(Address(to, 0), xtmp);
7440           movdqu(Address(to, 16), xtmp);
7441         } else {
7442           movq(Address(to, 0), xtmp);
7443           movq(Address(to, 8), xtmp);
7444           movq(Address(to, 16), xtmp);
7445           movq(Address(to, 24), xtmp);
7446         }
7447 
7448         addptr(to, 32);
7449         subl(count, 8 << shift);
7450         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7451 
7452         BIND(L_check_fill_8_bytes);
7453       }
7454       addl(count, 8 << shift);
7455       jccb(Assembler::zero, L_exit);
7456       jmpb(L_fill_8_bytes);
7457 
7458       //
7459       // length is too short, just fill qwords
7460       //
7461       BIND(L_fill_8_bytes_loop);
7462       movq(Address(to, 0), xtmp);
7463       addptr(to, 8);
7464       BIND(L_fill_8_bytes);
7465       subl(count, 1 << (shift + 1));
7466       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7467     }
7468   }
7469   // fill trailing 4 bytes
7470   BIND(L_fill_4_bytes);
7471   testl(count, 1<<shift);
7472   jccb(Assembler::zero, L_fill_2_bytes);
7473   movl(Address(to, 0), value);
7474   if (t == T_BYTE || t == T_SHORT) {
7475     Label L_fill_byte;
7476     addptr(to, 4);
7477     BIND(L_fill_2_bytes);
7478     // fill trailing 2 bytes
7479     testl(count, 1<<(shift-1));
7480     jccb(Assembler::zero, L_fill_byte);
7481     movw(Address(to, 0), value);
7482     if (t == T_BYTE) {
7483       addptr(to, 2);
7484       BIND(L_fill_byte);
7485       // fill trailing byte
7486       testl(count, 1);
7487       jccb(Assembler::zero, L_exit);
7488       movb(Address(to, 0), value);
7489     } else {
7490       BIND(L_fill_byte);
7491     }
7492   } else {
7493     BIND(L_fill_2_bytes);
7494   }
7495   BIND(L_exit);
7496 }
7497 
7498 // encode char[] to byte[] in ISO_8859_1
7499    //@HotSpotIntrinsicCandidate
7500    //private static int implEncodeISOArray(byte[] sa, int sp,
7501    //byte[] da, int dp, int len) {
7502    //  int i = 0;
7503    //  for (; i < len; i++) {
7504    //    char c = StringUTF16.getChar(sa, sp++);
7505    //    if (c > '\u00FF')
7506    //      break;
7507    //    da[dp++] = (byte)c;
7508    //  }
7509    //  return i;
7510    //}
7511 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7512   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7513   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7514   Register tmp5, Register result) {
7515 
7516   // rsi: src
7517   // rdi: dst
7518   // rdx: len
7519   // rcx: tmp5
7520   // rax: result
7521   ShortBranchVerifier sbv(this);
7522   assert_different_registers(src, dst, len, tmp5, result);
7523   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7524 
7525   // set result
7526   xorl(result, result);
7527   // check for zero length
7528   testl(len, len);
7529   jcc(Assembler::zero, L_done);
7530 
7531   movl(result, len);
7532 
7533   // Setup pointers
7534   lea(src, Address(src, len, Address::times_2)); // char[]
7535   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7536   negptr(len);
7537 
7538   if (UseSSE42Intrinsics || UseAVX >= 2) {
7539     Label L_copy_8_chars, L_copy_8_chars_exit;
7540     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7541 
7542     if (UseAVX >= 2) {
7543       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7544       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7545       movdl(tmp1Reg, tmp5);
7546       vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit);
7547       jmp(L_chars_32_check);
7548 
7549       bind(L_copy_32_chars);
7550       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7551       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7552       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7553       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7554       jccb(Assembler::notZero, L_copy_32_chars_exit);
7555       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
7556       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
7557       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7558 
7559       bind(L_chars_32_check);
7560       addptr(len, 32);
7561       jcc(Assembler::lessEqual, L_copy_32_chars);
7562 
7563       bind(L_copy_32_chars_exit);
7564       subptr(len, 16);
7565       jccb(Assembler::greater, L_copy_16_chars_exit);
7566 
7567     } else if (UseSSE42Intrinsics) {
7568       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7569       movdl(tmp1Reg, tmp5);
7570       pshufd(tmp1Reg, tmp1Reg, 0);
7571       jmpb(L_chars_16_check);
7572     }
7573 
7574     bind(L_copy_16_chars);
7575     if (UseAVX >= 2) {
7576       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7577       vptest(tmp2Reg, tmp1Reg);
7578       jcc(Assembler::notZero, L_copy_16_chars_exit);
7579       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
7580       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
7581     } else {
7582       if (UseAVX > 0) {
7583         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7584         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7585         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
7586       } else {
7587         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7588         por(tmp2Reg, tmp3Reg);
7589         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7590         por(tmp2Reg, tmp4Reg);
7591       }
7592       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7593       jccb(Assembler::notZero, L_copy_16_chars_exit);
7594       packuswb(tmp3Reg, tmp4Reg);
7595     }
7596     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7597 
7598     bind(L_chars_16_check);
7599     addptr(len, 16);
7600     jcc(Assembler::lessEqual, L_copy_16_chars);
7601 
7602     bind(L_copy_16_chars_exit);
7603     if (UseAVX >= 2) {
7604       // clean upper bits of YMM registers
7605       vpxor(tmp2Reg, tmp2Reg);
7606       vpxor(tmp3Reg, tmp3Reg);
7607       vpxor(tmp4Reg, tmp4Reg);
7608       movdl(tmp1Reg, tmp5);
7609       pshufd(tmp1Reg, tmp1Reg, 0);
7610     }
7611     subptr(len, 8);
7612     jccb(Assembler::greater, L_copy_8_chars_exit);
7613 
7614     bind(L_copy_8_chars);
7615     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7616     ptest(tmp3Reg, tmp1Reg);
7617     jccb(Assembler::notZero, L_copy_8_chars_exit);
7618     packuswb(tmp3Reg, tmp1Reg);
7619     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7620     addptr(len, 8);
7621     jccb(Assembler::lessEqual, L_copy_8_chars);
7622 
7623     bind(L_copy_8_chars_exit);
7624     subptr(len, 8);
7625     jccb(Assembler::zero, L_done);
7626   }
7627 
7628   bind(L_copy_1_char);
7629   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7630   testl(tmp5, 0xff00);      // check if Unicode char
7631   jccb(Assembler::notZero, L_copy_1_char_exit);
7632   movb(Address(dst, len, Address::times_1, 0), tmp5);
7633   addptr(len, 1);
7634   jccb(Assembler::less, L_copy_1_char);
7635 
7636   bind(L_copy_1_char_exit);
7637   addptr(result, len); // len is negative count of not processed elements
7638 
7639   bind(L_done);
7640 }
7641 
7642 #ifdef _LP64
7643 /**
7644  * Helper for multiply_to_len().
7645  */
7646 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7647   addq(dest_lo, src1);
7648   adcq(dest_hi, 0);
7649   addq(dest_lo, src2);
7650   adcq(dest_hi, 0);
7651 }
7652 
7653 /**
7654  * Multiply 64 bit by 64 bit first loop.
7655  */
7656 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7657                                            Register y, Register y_idx, Register z,
7658                                            Register carry, Register product,
7659                                            Register idx, Register kdx) {
7660   //
7661   //  jlong carry, x[], y[], z[];
7662   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7663   //    huge_128 product = y[idx] * x[xstart] + carry;
7664   //    z[kdx] = (jlong)product;
7665   //    carry  = (jlong)(product >>> 64);
7666   //  }
7667   //  z[xstart] = carry;
7668   //
7669 
7670   Label L_first_loop, L_first_loop_exit;
7671   Label L_one_x, L_one_y, L_multiply;
7672 
7673   decrementl(xstart);
7674   jcc(Assembler::negative, L_one_x);
7675 
7676   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7677   rorq(x_xstart, 32); // convert big-endian to little-endian
7678 
7679   bind(L_first_loop);
7680   decrementl(idx);
7681   jcc(Assembler::negative, L_first_loop_exit);
7682   decrementl(idx);
7683   jcc(Assembler::negative, L_one_y);
7684   movq(y_idx, Address(y, idx, Address::times_4,  0));
7685   rorq(y_idx, 32); // convert big-endian to little-endian
7686   bind(L_multiply);
7687   movq(product, x_xstart);
7688   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7689   addq(product, carry);
7690   adcq(rdx, 0);
7691   subl(kdx, 2);
7692   movl(Address(z, kdx, Address::times_4,  4), product);
7693   shrq(product, 32);
7694   movl(Address(z, kdx, Address::times_4,  0), product);
7695   movq(carry, rdx);
7696   jmp(L_first_loop);
7697 
7698   bind(L_one_y);
7699   movl(y_idx, Address(y,  0));
7700   jmp(L_multiply);
7701 
7702   bind(L_one_x);
7703   movl(x_xstart, Address(x,  0));
7704   jmp(L_first_loop);
7705 
7706   bind(L_first_loop_exit);
7707 }
7708 
7709 /**
7710  * Multiply 64 bit by 64 bit and add 128 bit.
7711  */
7712 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7713                                             Register yz_idx, Register idx,
7714                                             Register carry, Register product, int offset) {
7715   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7716   //     z[kdx] = (jlong)product;
7717 
7718   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7719   rorq(yz_idx, 32); // convert big-endian to little-endian
7720   movq(product, x_xstart);
7721   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7722   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7723   rorq(yz_idx, 32); // convert big-endian to little-endian
7724 
7725   add2_with_carry(rdx, product, carry, yz_idx);
7726 
7727   movl(Address(z, idx, Address::times_4,  offset+4), product);
7728   shrq(product, 32);
7729   movl(Address(z, idx, Address::times_4,  offset), product);
7730 
7731 }
7732 
7733 /**
7734  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7735  */
7736 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7737                                              Register yz_idx, Register idx, Register jdx,
7738                                              Register carry, Register product,
7739                                              Register carry2) {
7740   //   jlong carry, x[], y[], z[];
7741   //   int kdx = ystart+1;
7742   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7743   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7744   //     z[kdx+idx+1] = (jlong)product;
7745   //     jlong carry2  = (jlong)(product >>> 64);
7746   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7747   //     z[kdx+idx] = (jlong)product;
7748   //     carry  = (jlong)(product >>> 64);
7749   //   }
7750   //   idx += 2;
7751   //   if (idx > 0) {
7752   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7753   //     z[kdx+idx] = (jlong)product;
7754   //     carry  = (jlong)(product >>> 64);
7755   //   }
7756   //
7757 
7758   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7759 
7760   movl(jdx, idx);
7761   andl(jdx, 0xFFFFFFFC);
7762   shrl(jdx, 2);
7763 
7764   bind(L_third_loop);
7765   subl(jdx, 1);
7766   jcc(Assembler::negative, L_third_loop_exit);
7767   subl(idx, 4);
7768 
7769   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7770   movq(carry2, rdx);
7771 
7772   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7773   movq(carry, rdx);
7774   jmp(L_third_loop);
7775 
7776   bind (L_third_loop_exit);
7777 
7778   andl (idx, 0x3);
7779   jcc(Assembler::zero, L_post_third_loop_done);
7780 
7781   Label L_check_1;
7782   subl(idx, 2);
7783   jcc(Assembler::negative, L_check_1);
7784 
7785   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7786   movq(carry, rdx);
7787 
7788   bind (L_check_1);
7789   addl (idx, 0x2);
7790   andl (idx, 0x1);
7791   subl(idx, 1);
7792   jcc(Assembler::negative, L_post_third_loop_done);
7793 
7794   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7795   movq(product, x_xstart);
7796   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7797   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7798 
7799   add2_with_carry(rdx, product, yz_idx, carry);
7800 
7801   movl(Address(z, idx, Address::times_4,  0), product);
7802   shrq(product, 32);
7803 
7804   shlq(rdx, 32);
7805   orq(product, rdx);
7806   movq(carry, product);
7807 
7808   bind(L_post_third_loop_done);
7809 }
7810 
7811 /**
7812  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7813  *
7814  */
7815 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7816                                                   Register carry, Register carry2,
7817                                                   Register idx, Register jdx,
7818                                                   Register yz_idx1, Register yz_idx2,
7819                                                   Register tmp, Register tmp3, Register tmp4) {
7820   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7821 
7822   //   jlong carry, x[], y[], z[];
7823   //   int kdx = ystart+1;
7824   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7825   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7826   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7827   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7828   //     carry  = (jlong)(tmp4 >>> 64);
7829   //     z[kdx+idx+1] = (jlong)tmp3;
7830   //     z[kdx+idx] = (jlong)tmp4;
7831   //   }
7832   //   idx += 2;
7833   //   if (idx > 0) {
7834   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7835   //     z[kdx+idx] = (jlong)yz_idx1;
7836   //     carry  = (jlong)(yz_idx1 >>> 64);
7837   //   }
7838   //
7839 
7840   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7841 
7842   movl(jdx, idx);
7843   andl(jdx, 0xFFFFFFFC);
7844   shrl(jdx, 2);
7845 
7846   bind(L_third_loop);
7847   subl(jdx, 1);
7848   jcc(Assembler::negative, L_third_loop_exit);
7849   subl(idx, 4);
7850 
7851   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7852   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7853   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7854   rorxq(yz_idx2, yz_idx2, 32);
7855 
7856   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7857   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7858 
7859   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7860   rorxq(yz_idx1, yz_idx1, 32);
7861   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7862   rorxq(yz_idx2, yz_idx2, 32);
7863 
7864   if (VM_Version::supports_adx()) {
7865     adcxq(tmp3, carry);
7866     adoxq(tmp3, yz_idx1);
7867 
7868     adcxq(tmp4, tmp);
7869     adoxq(tmp4, yz_idx2);
7870 
7871     movl(carry, 0); // does not affect flags
7872     adcxq(carry2, carry);
7873     adoxq(carry2, carry);
7874   } else {
7875     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7876     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7877   }
7878   movq(carry, carry2);
7879 
7880   movl(Address(z, idx, Address::times_4, 12), tmp3);
7881   shrq(tmp3, 32);
7882   movl(Address(z, idx, Address::times_4,  8), tmp3);
7883 
7884   movl(Address(z, idx, Address::times_4,  4), tmp4);
7885   shrq(tmp4, 32);
7886   movl(Address(z, idx, Address::times_4,  0), tmp4);
7887 
7888   jmp(L_third_loop);
7889 
7890   bind (L_third_loop_exit);
7891 
7892   andl (idx, 0x3);
7893   jcc(Assembler::zero, L_post_third_loop_done);
7894 
7895   Label L_check_1;
7896   subl(idx, 2);
7897   jcc(Assembler::negative, L_check_1);
7898 
7899   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7900   rorxq(yz_idx1, yz_idx1, 32);
7901   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7902   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7903   rorxq(yz_idx2, yz_idx2, 32);
7904 
7905   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7906 
7907   movl(Address(z, idx, Address::times_4,  4), tmp3);
7908   shrq(tmp3, 32);
7909   movl(Address(z, idx, Address::times_4,  0), tmp3);
7910   movq(carry, tmp4);
7911 
7912   bind (L_check_1);
7913   addl (idx, 0x2);
7914   andl (idx, 0x1);
7915   subl(idx, 1);
7916   jcc(Assembler::negative, L_post_third_loop_done);
7917   movl(tmp4, Address(y, idx, Address::times_4,  0));
7918   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7919   movl(tmp4, Address(z, idx, Address::times_4,  0));
7920 
7921   add2_with_carry(carry2, tmp3, tmp4, carry);
7922 
7923   movl(Address(z, idx, Address::times_4,  0), tmp3);
7924   shrq(tmp3, 32);
7925 
7926   shlq(carry2, 32);
7927   orq(tmp3, carry2);
7928   movq(carry, tmp3);
7929 
7930   bind(L_post_third_loop_done);
7931 }
7932 
7933 /**
7934  * Code for BigInteger::multiplyToLen() instrinsic.
7935  *
7936  * rdi: x
7937  * rax: xlen
7938  * rsi: y
7939  * rcx: ylen
7940  * r8:  z
7941  * r11: zlen
7942  * r12: tmp1
7943  * r13: tmp2
7944  * r14: tmp3
7945  * r15: tmp4
7946  * rbx: tmp5
7947  *
7948  */
7949 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7950                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7951   ShortBranchVerifier sbv(this);
7952   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7953 
7954   push(tmp1);
7955   push(tmp2);
7956   push(tmp3);
7957   push(tmp4);
7958   push(tmp5);
7959 
7960   push(xlen);
7961   push(zlen);
7962 
7963   const Register idx = tmp1;
7964   const Register kdx = tmp2;
7965   const Register xstart = tmp3;
7966 
7967   const Register y_idx = tmp4;
7968   const Register carry = tmp5;
7969   const Register product  = xlen;
7970   const Register x_xstart = zlen;  // reuse register
7971 
7972   // First Loop.
7973   //
7974   //  final static long LONG_MASK = 0xffffffffL;
7975   //  int xstart = xlen - 1;
7976   //  int ystart = ylen - 1;
7977   //  long carry = 0;
7978   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7979   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7980   //    z[kdx] = (int)product;
7981   //    carry = product >>> 32;
7982   //  }
7983   //  z[xstart] = (int)carry;
7984   //
7985 
7986   movl(idx, ylen);      // idx = ylen;
7987   movl(kdx, zlen);      // kdx = xlen+ylen;
7988   xorq(carry, carry);   // carry = 0;
7989 
7990   Label L_done;
7991 
7992   movl(xstart, xlen);
7993   decrementl(xstart);
7994   jcc(Assembler::negative, L_done);
7995 
7996   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7997 
7998   Label L_second_loop;
7999   testl(kdx, kdx);
8000   jcc(Assembler::zero, L_second_loop);
8001 
8002   Label L_carry;
8003   subl(kdx, 1);
8004   jcc(Assembler::zero, L_carry);
8005 
8006   movl(Address(z, kdx, Address::times_4,  0), carry);
8007   shrq(carry, 32);
8008   subl(kdx, 1);
8009 
8010   bind(L_carry);
8011   movl(Address(z, kdx, Address::times_4,  0), carry);
8012 
8013   // Second and third (nested) loops.
8014   //
8015   // for (int i = xstart-1; i >= 0; i--) { // Second loop
8016   //   carry = 0;
8017   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
8018   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
8019   //                    (z[k] & LONG_MASK) + carry;
8020   //     z[k] = (int)product;
8021   //     carry = product >>> 32;
8022   //   }
8023   //   z[i] = (int)carry;
8024   // }
8025   //
8026   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
8027 
8028   const Register jdx = tmp1;
8029 
8030   bind(L_second_loop);
8031   xorl(carry, carry);    // carry = 0;
8032   movl(jdx, ylen);       // j = ystart+1
8033 
8034   subl(xstart, 1);       // i = xstart-1;
8035   jcc(Assembler::negative, L_done);
8036 
8037   push (z);
8038 
8039   Label L_last_x;
8040   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
8041   subl(xstart, 1);       // i = xstart-1;
8042   jcc(Assembler::negative, L_last_x);
8043 
8044   if (UseBMI2Instructions) {
8045     movq(rdx,  Address(x, xstart, Address::times_4,  0));
8046     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
8047   } else {
8048     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8049     rorq(x_xstart, 32);  // convert big-endian to little-endian
8050   }
8051 
8052   Label L_third_loop_prologue;
8053   bind(L_third_loop_prologue);
8054 
8055   push (x);
8056   push (xstart);
8057   push (ylen);
8058 
8059 
8060   if (UseBMI2Instructions) {
8061     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
8062   } else { // !UseBMI2Instructions
8063     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
8064   }
8065 
8066   pop(ylen);
8067   pop(xlen);
8068   pop(x);
8069   pop(z);
8070 
8071   movl(tmp3, xlen);
8072   addl(tmp3, 1);
8073   movl(Address(z, tmp3, Address::times_4,  0), carry);
8074   subl(tmp3, 1);
8075   jccb(Assembler::negative, L_done);
8076 
8077   shrq(carry, 32);
8078   movl(Address(z, tmp3, Address::times_4,  0), carry);
8079   jmp(L_second_loop);
8080 
8081   // Next infrequent code is moved outside loops.
8082   bind(L_last_x);
8083   if (UseBMI2Instructions) {
8084     movl(rdx, Address(x,  0));
8085   } else {
8086     movl(x_xstart, Address(x,  0));
8087   }
8088   jmp(L_third_loop_prologue);
8089 
8090   bind(L_done);
8091 
8092   pop(zlen);
8093   pop(xlen);
8094 
8095   pop(tmp5);
8096   pop(tmp4);
8097   pop(tmp3);
8098   pop(tmp2);
8099   pop(tmp1);
8100 }
8101 
8102 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
8103   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
8104   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
8105   Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
8106   Label VECTOR8_TAIL, VECTOR4_TAIL;
8107   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
8108   Label SAME_TILL_END, DONE;
8109   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
8110 
8111   //scale is in rcx in both Win64 and Unix
8112   ShortBranchVerifier sbv(this);
8113 
8114   shlq(length);
8115   xorq(result, result);
8116 
8117   if ((AVX3Threshold == 0) && (UseAVX > 2) &&
8118       VM_Version::supports_avx512vlbw()) {
8119     Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
8120 
8121     cmpq(length, 64);
8122     jcc(Assembler::less, VECTOR32_TAIL);
8123 
8124     movq(tmp1, length);
8125     andq(tmp1, 0x3F);      // tail count
8126     andq(length, ~(0x3F)); //vector count
8127 
8128     bind(VECTOR64_LOOP);
8129     // AVX512 code to compare 64 byte vectors.
8130     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
8131     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
8132     kortestql(k7, k7);
8133     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
8134     addq(result, 64);
8135     subq(length, 64);
8136     jccb(Assembler::notZero, VECTOR64_LOOP);
8137 
8138     //bind(VECTOR64_TAIL);
8139     testq(tmp1, tmp1);
8140     jcc(Assembler::zero, SAME_TILL_END);
8141 
8142     //bind(VECTOR64_TAIL);
8143     // AVX512 code to compare upto 63 byte vectors.
8144     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
8145     shlxq(tmp2, tmp2, tmp1);
8146     notq(tmp2);
8147     kmovql(k3, tmp2);
8148 
8149     evmovdqub(rymm0, k3, Address(obja, result), Assembler::AVX_512bit);
8150     evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit);
8151 
8152     ktestql(k7, k3);
8153     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
8154 
8155     bind(VECTOR64_NOT_EQUAL);
8156     kmovql(tmp1, k7);
8157     notq(tmp1);
8158     tzcntq(tmp1, tmp1);
8159     addq(result, tmp1);
8160     shrq(result);
8161     jmp(DONE);
8162     bind(VECTOR32_TAIL);
8163   }
8164 
8165   cmpq(length, 8);
8166   jcc(Assembler::equal, VECTOR8_LOOP);
8167   jcc(Assembler::less, VECTOR4_TAIL);
8168 
8169   if (UseAVX >= 2) {
8170     Label VECTOR16_TAIL, VECTOR32_LOOP;
8171 
8172     cmpq(length, 16);
8173     jcc(Assembler::equal, VECTOR16_LOOP);
8174     jcc(Assembler::less, VECTOR8_LOOP);
8175 
8176     cmpq(length, 32);
8177     jccb(Assembler::less, VECTOR16_TAIL);
8178 
8179     subq(length, 32);
8180     bind(VECTOR32_LOOP);
8181     vmovdqu(rymm0, Address(obja, result));
8182     vmovdqu(rymm1, Address(objb, result));
8183     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
8184     vptest(rymm2, rymm2);
8185     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
8186     addq(result, 32);
8187     subq(length, 32);
8188     jcc(Assembler::greaterEqual, VECTOR32_LOOP);
8189     addq(length, 32);
8190     jcc(Assembler::equal, SAME_TILL_END);
8191     //falling through if less than 32 bytes left //close the branch here.
8192 
8193     bind(VECTOR16_TAIL);
8194     cmpq(length, 16);
8195     jccb(Assembler::less, VECTOR8_TAIL);
8196     bind(VECTOR16_LOOP);
8197     movdqu(rymm0, Address(obja, result));
8198     movdqu(rymm1, Address(objb, result));
8199     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
8200     ptest(rymm2, rymm2);
8201     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8202     addq(result, 16);
8203     subq(length, 16);
8204     jcc(Assembler::equal, SAME_TILL_END);
8205     //falling through if less than 16 bytes left
8206   } else {//regular intrinsics
8207 
8208     cmpq(length, 16);
8209     jccb(Assembler::less, VECTOR8_TAIL);
8210 
8211     subq(length, 16);
8212     bind(VECTOR16_LOOP);
8213     movdqu(rymm0, Address(obja, result));
8214     movdqu(rymm1, Address(objb, result));
8215     pxor(rymm0, rymm1);
8216     ptest(rymm0, rymm0);
8217     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
8218     addq(result, 16);
8219     subq(length, 16);
8220     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
8221     addq(length, 16);
8222     jcc(Assembler::equal, SAME_TILL_END);
8223     //falling through if less than 16 bytes left
8224   }
8225 
8226   bind(VECTOR8_TAIL);
8227   cmpq(length, 8);
8228   jccb(Assembler::less, VECTOR4_TAIL);
8229   bind(VECTOR8_LOOP);
8230   movq(tmp1, Address(obja, result));
8231   movq(tmp2, Address(objb, result));
8232   xorq(tmp1, tmp2);
8233   testq(tmp1, tmp1);
8234   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
8235   addq(result, 8);
8236   subq(length, 8);
8237   jcc(Assembler::equal, SAME_TILL_END);
8238   //falling through if less than 8 bytes left
8239 
8240   bind(VECTOR4_TAIL);
8241   cmpq(length, 4);
8242   jccb(Assembler::less, BYTES_TAIL);
8243   bind(VECTOR4_LOOP);
8244   movl(tmp1, Address(obja, result));
8245   xorl(tmp1, Address(objb, result));
8246   testl(tmp1, tmp1);
8247   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
8248   addq(result, 4);
8249   subq(length, 4);
8250   jcc(Assembler::equal, SAME_TILL_END);
8251   //falling through if less than 4 bytes left
8252 
8253   bind(BYTES_TAIL);
8254   bind(BYTES_LOOP);
8255   load_unsigned_byte(tmp1, Address(obja, result));
8256   load_unsigned_byte(tmp2, Address(objb, result));
8257   xorl(tmp1, tmp2);
8258   testl(tmp1, tmp1);
8259   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8260   decq(length);
8261   jcc(Assembler::zero, SAME_TILL_END);
8262   incq(result);
8263   load_unsigned_byte(tmp1, Address(obja, result));
8264   load_unsigned_byte(tmp2, Address(objb, result));
8265   xorl(tmp1, tmp2);
8266   testl(tmp1, tmp1);
8267   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8268   decq(length);
8269   jcc(Assembler::zero, SAME_TILL_END);
8270   incq(result);
8271   load_unsigned_byte(tmp1, Address(obja, result));
8272   load_unsigned_byte(tmp2, Address(objb, result));
8273   xorl(tmp1, tmp2);
8274   testl(tmp1, tmp1);
8275   jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
8276   jmp(SAME_TILL_END);
8277 
8278   if (UseAVX >= 2) {
8279     bind(VECTOR32_NOT_EQUAL);
8280     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
8281     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
8282     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
8283     vpmovmskb(tmp1, rymm0);
8284     bsfq(tmp1, tmp1);
8285     addq(result, tmp1);
8286     shrq(result);
8287     jmp(DONE);
8288   }
8289 
8290   bind(VECTOR16_NOT_EQUAL);
8291   if (UseAVX >= 2) {
8292     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
8293     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
8294     pxor(rymm0, rymm2);
8295   } else {
8296     pcmpeqb(rymm2, rymm2);
8297     pxor(rymm0, rymm1);
8298     pcmpeqb(rymm0, rymm1);
8299     pxor(rymm0, rymm2);
8300   }
8301   pmovmskb(tmp1, rymm0);
8302   bsfq(tmp1, tmp1);
8303   addq(result, tmp1);
8304   shrq(result);
8305   jmpb(DONE);
8306 
8307   bind(VECTOR8_NOT_EQUAL);
8308   bind(VECTOR4_NOT_EQUAL);
8309   bsfq(tmp1, tmp1);
8310   shrq(tmp1, 3);
8311   addq(result, tmp1);
8312   bind(BYTES_NOT_EQUAL);
8313   shrq(result);
8314   jmpb(DONE);
8315 
8316   bind(SAME_TILL_END);
8317   mov64(result, -1);
8318 
8319   bind(DONE);
8320 }
8321 
8322 //Helper functions for square_to_len()
8323 
8324 /**
8325  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
8326  * Preserves x and z and modifies rest of the registers.
8327  */
8328 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8329   // Perform square and right shift by 1
8330   // Handle odd xlen case first, then for even xlen do the following
8331   // jlong carry = 0;
8332   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
8333   //     huge_128 product = x[j:j+1] * x[j:j+1];
8334   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
8335   //     z[i+2:i+3] = (jlong)(product >>> 1);
8336   //     carry = (jlong)product;
8337   // }
8338 
8339   xorq(tmp5, tmp5);     // carry
8340   xorq(rdxReg, rdxReg);
8341   xorl(tmp1, tmp1);     // index for x
8342   xorl(tmp4, tmp4);     // index for z
8343 
8344   Label L_first_loop, L_first_loop_exit;
8345 
8346   testl(xlen, 1);
8347   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
8348 
8349   // Square and right shift by 1 the odd element using 32 bit multiply
8350   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
8351   imulq(raxReg, raxReg);
8352   shrq(raxReg, 1);
8353   adcq(tmp5, 0);
8354   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
8355   incrementl(tmp1);
8356   addl(tmp4, 2);
8357 
8358   // Square and  right shift by 1 the rest using 64 bit multiply
8359   bind(L_first_loop);
8360   cmpptr(tmp1, xlen);
8361   jccb(Assembler::equal, L_first_loop_exit);
8362 
8363   // Square
8364   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
8365   rorq(raxReg, 32);    // convert big-endian to little-endian
8366   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
8367 
8368   // Right shift by 1 and save carry
8369   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
8370   rcrq(rdxReg, 1);
8371   rcrq(raxReg, 1);
8372   adcq(tmp5, 0);
8373 
8374   // Store result in z
8375   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
8376   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
8377 
8378   // Update indices for x and z
8379   addl(tmp1, 2);
8380   addl(tmp4, 4);
8381   jmp(L_first_loop);
8382 
8383   bind(L_first_loop_exit);
8384 }
8385 
8386 
8387 /**
8388  * Perform the following multiply add operation using BMI2 instructions
8389  * carry:sum = sum + op1*op2 + carry
8390  * op2 should be in rdx
8391  * op2 is preserved, all other registers are modified
8392  */
8393 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
8394   // assert op2 is rdx
8395   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
8396   addq(sum, carry);
8397   adcq(tmp2, 0);
8398   addq(sum, op1);
8399   adcq(tmp2, 0);
8400   movq(carry, tmp2);
8401 }
8402 
8403 /**
8404  * Perform the following multiply add operation:
8405  * carry:sum = sum + op1*op2 + carry
8406  * Preserves op1, op2 and modifies rest of registers
8407  */
8408 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
8409   // rdx:rax = op1 * op2
8410   movq(raxReg, op2);
8411   mulq(op1);
8412 
8413   //  rdx:rax = sum + carry + rdx:rax
8414   addq(sum, carry);
8415   adcq(rdxReg, 0);
8416   addq(sum, raxReg);
8417   adcq(rdxReg, 0);
8418 
8419   // carry:sum = rdx:sum
8420   movq(carry, rdxReg);
8421 }
8422 
8423 /**
8424  * Add 64 bit long carry into z[] with carry propogation.
8425  * Preserves z and carry register values and modifies rest of registers.
8426  *
8427  */
8428 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
8429   Label L_fourth_loop, L_fourth_loop_exit;
8430 
8431   movl(tmp1, 1);
8432   subl(zlen, 2);
8433   addq(Address(z, zlen, Address::times_4, 0), carry);
8434 
8435   bind(L_fourth_loop);
8436   jccb(Assembler::carryClear, L_fourth_loop_exit);
8437   subl(zlen, 2);
8438   jccb(Assembler::negative, L_fourth_loop_exit);
8439   addq(Address(z, zlen, Address::times_4, 0), tmp1);
8440   jmp(L_fourth_loop);
8441   bind(L_fourth_loop_exit);
8442 }
8443 
8444 /**
8445  * Shift z[] left by 1 bit.
8446  * Preserves x, len, z and zlen registers and modifies rest of the registers.
8447  *
8448  */
8449 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
8450 
8451   Label L_fifth_loop, L_fifth_loop_exit;
8452 
8453   // Fifth loop
8454   // Perform primitiveLeftShift(z, zlen, 1)
8455 
8456   const Register prev_carry = tmp1;
8457   const Register new_carry = tmp4;
8458   const Register value = tmp2;
8459   const Register zidx = tmp3;
8460 
8461   // int zidx, carry;
8462   // long value;
8463   // carry = 0;
8464   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
8465   //    (carry:value)  = (z[i] << 1) | carry ;
8466   //    z[i] = value;
8467   // }
8468 
8469   movl(zidx, zlen);
8470   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
8471 
8472   bind(L_fifth_loop);
8473   decl(zidx);  // Use decl to preserve carry flag
8474   decl(zidx);
8475   jccb(Assembler::negative, L_fifth_loop_exit);
8476 
8477   if (UseBMI2Instructions) {
8478      movq(value, Address(z, zidx, Address::times_4, 0));
8479      rclq(value, 1);
8480      rorxq(value, value, 32);
8481      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8482   }
8483   else {
8484     // clear new_carry
8485     xorl(new_carry, new_carry);
8486 
8487     // Shift z[i] by 1, or in previous carry and save new carry
8488     movq(value, Address(z, zidx, Address::times_4, 0));
8489     shlq(value, 1);
8490     adcl(new_carry, 0);
8491 
8492     orq(value, prev_carry);
8493     rorq(value, 0x20);
8494     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
8495 
8496     // Set previous carry = new carry
8497     movl(prev_carry, new_carry);
8498   }
8499   jmp(L_fifth_loop);
8500 
8501   bind(L_fifth_loop_exit);
8502 }
8503 
8504 
8505 /**
8506  * Code for BigInteger::squareToLen() intrinsic
8507  *
8508  * rdi: x
8509  * rsi: len
8510  * r8:  z
8511  * rcx: zlen
8512  * r12: tmp1
8513  * r13: tmp2
8514  * r14: tmp3
8515  * r15: tmp4
8516  * rbx: tmp5
8517  *
8518  */
8519 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8520 
8521   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply;
8522   push(tmp1);
8523   push(tmp2);
8524   push(tmp3);
8525   push(tmp4);
8526   push(tmp5);
8527 
8528   // First loop
8529   // Store the squares, right shifted one bit (i.e., divided by 2).
8530   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
8531 
8532   // Add in off-diagonal sums.
8533   //
8534   // Second, third (nested) and fourth loops.
8535   // zlen +=2;
8536   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
8537   //    carry = 0;
8538   //    long op2 = x[xidx:xidx+1];
8539   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
8540   //       k -= 2;
8541   //       long op1 = x[j:j+1];
8542   //       long sum = z[k:k+1];
8543   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
8544   //       z[k:k+1] = sum;
8545   //    }
8546   //    add_one_64(z, k, carry, tmp_regs);
8547   // }
8548 
8549   const Register carry = tmp5;
8550   const Register sum = tmp3;
8551   const Register op1 = tmp4;
8552   Register op2 = tmp2;
8553 
8554   push(zlen);
8555   push(len);
8556   addl(zlen,2);
8557   bind(L_second_loop);
8558   xorq(carry, carry);
8559   subl(zlen, 4);
8560   subl(len, 2);
8561   push(zlen);
8562   push(len);
8563   cmpl(len, 0);
8564   jccb(Assembler::lessEqual, L_second_loop_exit);
8565 
8566   // Multiply an array by one 64 bit long.
8567   if (UseBMI2Instructions) {
8568     op2 = rdxReg;
8569     movq(op2, Address(x, len, Address::times_4,  0));
8570     rorxq(op2, op2, 32);
8571   }
8572   else {
8573     movq(op2, Address(x, len, Address::times_4,  0));
8574     rorq(op2, 32);
8575   }
8576 
8577   bind(L_third_loop);
8578   decrementl(len);
8579   jccb(Assembler::negative, L_third_loop_exit);
8580   decrementl(len);
8581   jccb(Assembler::negative, L_last_x);
8582 
8583   movq(op1, Address(x, len, Address::times_4,  0));
8584   rorq(op1, 32);
8585 
8586   bind(L_multiply);
8587   subl(zlen, 2);
8588   movq(sum, Address(z, zlen, Address::times_4,  0));
8589 
8590   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
8591   if (UseBMI2Instructions) {
8592     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
8593   }
8594   else {
8595     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8596   }
8597 
8598   movq(Address(z, zlen, Address::times_4, 0), sum);
8599 
8600   jmp(L_third_loop);
8601   bind(L_third_loop_exit);
8602 
8603   // Fourth loop
8604   // Add 64 bit long carry into z with carry propogation.
8605   // Uses offsetted zlen.
8606   add_one_64(z, zlen, carry, tmp1);
8607 
8608   pop(len);
8609   pop(zlen);
8610   jmp(L_second_loop);
8611 
8612   // Next infrequent code is moved outside loops.
8613   bind(L_last_x);
8614   movl(op1, Address(x, 0));
8615   jmp(L_multiply);
8616 
8617   bind(L_second_loop_exit);
8618   pop(len);
8619   pop(zlen);
8620   pop(len);
8621   pop(zlen);
8622 
8623   // Fifth loop
8624   // Shift z left 1 bit.
8625   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
8626 
8627   // z[zlen-1] |= x[len-1] & 1;
8628   movl(tmp3, Address(x, len, Address::times_4, -4));
8629   andl(tmp3, 1);
8630   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
8631 
8632   pop(tmp5);
8633   pop(tmp4);
8634   pop(tmp3);
8635   pop(tmp2);
8636   pop(tmp1);
8637 }
8638 
8639 /**
8640  * Helper function for mul_add()
8641  * Multiply the in[] by int k and add to out[] starting at offset offs using
8642  * 128 bit by 32 bit multiply and return the carry in tmp5.
8643  * Only quad int aligned length of in[] is operated on in this function.
8644  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
8645  * This function preserves out, in and k registers.
8646  * len and offset point to the appropriate index in "in" & "out" correspondingly
8647  * tmp5 has the carry.
8648  * other registers are temporary and are modified.
8649  *
8650  */
8651 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
8652   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
8653   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8654 
8655   Label L_first_loop, L_first_loop_exit;
8656 
8657   movl(tmp1, len);
8658   shrl(tmp1, 2);
8659 
8660   bind(L_first_loop);
8661   subl(tmp1, 1);
8662   jccb(Assembler::negative, L_first_loop_exit);
8663 
8664   subl(len, 4);
8665   subl(offset, 4);
8666 
8667   Register op2 = tmp2;
8668   const Register sum = tmp3;
8669   const Register op1 = tmp4;
8670   const Register carry = tmp5;
8671 
8672   if (UseBMI2Instructions) {
8673     op2 = rdxReg;
8674   }
8675 
8676   movq(op1, Address(in, len, Address::times_4,  8));
8677   rorq(op1, 32);
8678   movq(sum, Address(out, offset, Address::times_4,  8));
8679   rorq(sum, 32);
8680   if (UseBMI2Instructions) {
8681     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8682   }
8683   else {
8684     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8685   }
8686   // Store back in big endian from little endian
8687   rorq(sum, 0x20);
8688   movq(Address(out, offset, Address::times_4,  8), sum);
8689 
8690   movq(op1, Address(in, len, Address::times_4,  0));
8691   rorq(op1, 32);
8692   movq(sum, Address(out, offset, Address::times_4,  0));
8693   rorq(sum, 32);
8694   if (UseBMI2Instructions) {
8695     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8696   }
8697   else {
8698     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8699   }
8700   // Store back in big endian from little endian
8701   rorq(sum, 0x20);
8702   movq(Address(out, offset, Address::times_4,  0), sum);
8703 
8704   jmp(L_first_loop);
8705   bind(L_first_loop_exit);
8706 }
8707 
8708 /**
8709  * Code for BigInteger::mulAdd() intrinsic
8710  *
8711  * rdi: out
8712  * rsi: in
8713  * r11: offs (out.length - offset)
8714  * rcx: len
8715  * r8:  k
8716  * r12: tmp1
8717  * r13: tmp2
8718  * r14: tmp3
8719  * r15: tmp4
8720  * rbx: tmp5
8721  * Multiply the in[] by word k and add to out[], return the carry in rax
8722  */
8723 void MacroAssembler::mul_add(Register out, Register in, Register offs,
8724    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
8725    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
8726 
8727   Label L_carry, L_last_in, L_done;
8728 
8729 // carry = 0;
8730 // for (int j=len-1; j >= 0; j--) {
8731 //    long product = (in[j] & LONG_MASK) * kLong +
8732 //                   (out[offs] & LONG_MASK) + carry;
8733 //    out[offs--] = (int)product;
8734 //    carry = product >>> 32;
8735 // }
8736 //
8737   push(tmp1);
8738   push(tmp2);
8739   push(tmp3);
8740   push(tmp4);
8741   push(tmp5);
8742 
8743   Register op2 = tmp2;
8744   const Register sum = tmp3;
8745   const Register op1 = tmp4;
8746   const Register carry =  tmp5;
8747 
8748   if (UseBMI2Instructions) {
8749     op2 = rdxReg;
8750     movl(op2, k);
8751   }
8752   else {
8753     movl(op2, k);
8754   }
8755 
8756   xorq(carry, carry);
8757 
8758   //First loop
8759 
8760   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
8761   //The carry is in tmp5
8762   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
8763 
8764   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
8765   decrementl(len);
8766   jccb(Assembler::negative, L_carry);
8767   decrementl(len);
8768   jccb(Assembler::negative, L_last_in);
8769 
8770   movq(op1, Address(in, len, Address::times_4,  0));
8771   rorq(op1, 32);
8772 
8773   subl(offs, 2);
8774   movq(sum, Address(out, offs, Address::times_4,  0));
8775   rorq(sum, 32);
8776 
8777   if (UseBMI2Instructions) {
8778     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
8779   }
8780   else {
8781     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
8782   }
8783 
8784   // Store back in big endian from little endian
8785   rorq(sum, 0x20);
8786   movq(Address(out, offs, Address::times_4,  0), sum);
8787 
8788   testl(len, len);
8789   jccb(Assembler::zero, L_carry);
8790 
8791   //Multiply the last in[] entry, if any
8792   bind(L_last_in);
8793   movl(op1, Address(in, 0));
8794   movl(sum, Address(out, offs, Address::times_4,  -4));
8795 
8796   movl(raxReg, k);
8797   mull(op1); //tmp4 * eax -> edx:eax
8798   addl(sum, carry);
8799   adcl(rdxReg, 0);
8800   addl(sum, raxReg);
8801   adcl(rdxReg, 0);
8802   movl(carry, rdxReg);
8803 
8804   movl(Address(out, offs, Address::times_4,  -4), sum);
8805 
8806   bind(L_carry);
8807   //return tmp5/carry as carry in rax
8808   movl(rax, carry);
8809 
8810   bind(L_done);
8811   pop(tmp5);
8812   pop(tmp4);
8813   pop(tmp3);
8814   pop(tmp2);
8815   pop(tmp1);
8816 }
8817 #endif
8818 
8819 /**
8820  * Emits code to update CRC-32 with a byte value according to constants in table
8821  *
8822  * @param [in,out]crc   Register containing the crc.
8823  * @param [in]val       Register containing the byte to fold into the CRC.
8824  * @param [in]table     Register containing the table of crc constants.
8825  *
8826  * uint32_t crc;
8827  * val = crc_table[(val ^ crc) & 0xFF];
8828  * crc = val ^ (crc >> 8);
8829  *
8830  */
8831 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
8832   xorl(val, crc);
8833   andl(val, 0xFF);
8834   shrl(crc, 8); // unsigned shift
8835   xorl(crc, Address(table, val, Address::times_4, 0));
8836 }
8837 
8838 /**
8839 * Fold four 128-bit data chunks
8840 */
8841 void MacroAssembler::fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8842   evpclmulhdq(xtmp, xK, xcrc, Assembler::AVX_512bit); // [123:64]
8843   evpclmulldq(xcrc, xK, xcrc, Assembler::AVX_512bit); // [63:0]
8844   evpxorq(xcrc, xcrc, Address(buf, offset), Assembler::AVX_512bit /* vector_len */);
8845   evpxorq(xcrc, xcrc, xtmp, Assembler::AVX_512bit /* vector_len */);
8846 }
8847 
8848 /**
8849  * Fold 128-bit data chunk
8850  */
8851 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
8852   if (UseAVX > 0) {
8853     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
8854     vpclmulldq(xcrc, xK, xcrc); // [63:0]
8855     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
8856     pxor(xcrc, xtmp);
8857   } else {
8858     movdqa(xtmp, xcrc);
8859     pclmulhdq(xtmp, xK);   // [123:64]
8860     pclmulldq(xcrc, xK);   // [63:0]
8861     pxor(xcrc, xtmp);
8862     movdqu(xtmp, Address(buf, offset));
8863     pxor(xcrc, xtmp);
8864   }
8865 }
8866 
8867 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
8868   if (UseAVX > 0) {
8869     vpclmulhdq(xtmp, xK, xcrc);
8870     vpclmulldq(xcrc, xK, xcrc);
8871     pxor(xcrc, xbuf);
8872     pxor(xcrc, xtmp);
8873   } else {
8874     movdqa(xtmp, xcrc);
8875     pclmulhdq(xtmp, xK);
8876     pclmulldq(xcrc, xK);
8877     pxor(xcrc, xbuf);
8878     pxor(xcrc, xtmp);
8879   }
8880 }
8881 
8882 /**
8883  * 8-bit folds to compute 32-bit CRC
8884  *
8885  * uint64_t xcrc;
8886  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
8887  */
8888 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
8889   movdl(tmp, xcrc);
8890   andl(tmp, 0xFF);
8891   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
8892   psrldq(xcrc, 1); // unsigned shift one byte
8893   pxor(xcrc, xtmp);
8894 }
8895 
8896 /**
8897  * uint32_t crc;
8898  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
8899  */
8900 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
8901   movl(tmp, crc);
8902   andl(tmp, 0xFF);
8903   shrl(crc, 8);
8904   xorl(crc, Address(table, tmp, Address::times_4, 0));
8905 }
8906 
8907 /**
8908  * @param crc   register containing existing CRC (32-bit)
8909  * @param buf   register pointing to input byte buffer (byte*)
8910  * @param len   register containing number of bytes
8911  * @param table register that will contain address of CRC table
8912  * @param tmp   scratch register
8913  */
8914 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
8915   assert_different_registers(crc, buf, len, table, tmp, rax);
8916 
8917   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
8918   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
8919 
8920   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
8921   // context for the registers used, where all instructions below are using 128-bit mode
8922   // On EVEX without VL and BW, these instructions will all be AVX.
8923   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
8924   notl(crc); // ~crc
8925   cmpl(len, 16);
8926   jcc(Assembler::less, L_tail);
8927 
8928   // Align buffer to 16 bytes
8929   movl(tmp, buf);
8930   andl(tmp, 0xF);
8931   jccb(Assembler::zero, L_aligned);
8932   subl(tmp,  16);
8933   addl(len, tmp);
8934 
8935   align(4);
8936   BIND(L_align_loop);
8937   movsbl(rax, Address(buf, 0)); // load byte with sign extension
8938   update_byte_crc32(crc, rax, table);
8939   increment(buf);
8940   incrementl(tmp);
8941   jccb(Assembler::less, L_align_loop);
8942 
8943   BIND(L_aligned);
8944   movl(tmp, len); // save
8945   shrl(len, 4);
8946   jcc(Assembler::zero, L_tail_restore);
8947 
8948   // Fold total 512 bits of polynomial on each iteration
8949   if (VM_Version::supports_vpclmulqdq()) {
8950     Label Parallel_loop, L_No_Parallel;
8951 
8952     cmpl(len, 8);
8953     jccb(Assembler::less, L_No_Parallel);
8954 
8955     movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
8956     evmovdquq(xmm1, Address(buf, 0), Assembler::AVX_512bit);
8957     movdl(xmm5, crc);
8958     evpxorq(xmm1, xmm1, xmm5, Assembler::AVX_512bit);
8959     addptr(buf, 64);
8960     subl(len, 7);
8961     evshufi64x2(xmm0, xmm0, xmm0, 0x00, Assembler::AVX_512bit); //propagate the mask from 128 bits to 512 bits
8962 
8963     BIND(Parallel_loop);
8964     fold_128bit_crc32_avx512(xmm1, xmm0, xmm5, buf, 0);
8965     addptr(buf, 64);
8966     subl(len, 4);
8967     jcc(Assembler::greater, Parallel_loop);
8968 
8969     vextracti64x2(xmm2, xmm1, 0x01);
8970     vextracti64x2(xmm3, xmm1, 0x02);
8971     vextracti64x2(xmm4, xmm1, 0x03);
8972     jmp(L_fold_512b);
8973 
8974     BIND(L_No_Parallel);
8975   }
8976   // Fold crc into first bytes of vector
8977   movdqa(xmm1, Address(buf, 0));
8978   movdl(rax, xmm1);
8979   xorl(crc, rax);
8980   if (VM_Version::supports_sse4_1()) {
8981     pinsrd(xmm1, crc, 0);
8982   } else {
8983     pinsrw(xmm1, crc, 0);
8984     shrl(crc, 16);
8985     pinsrw(xmm1, crc, 1);
8986   }
8987   addptr(buf, 16);
8988   subl(len, 4); // len > 0
8989   jcc(Assembler::less, L_fold_tail);
8990 
8991   movdqa(xmm2, Address(buf,  0));
8992   movdqa(xmm3, Address(buf, 16));
8993   movdqa(xmm4, Address(buf, 32));
8994   addptr(buf, 48);
8995   subl(len, 3);
8996   jcc(Assembler::lessEqual, L_fold_512b);
8997 
8998   // Fold total 512 bits of polynomial on each iteration,
8999   // 128 bits per each of 4 parallel streams.
9000   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
9001 
9002   align(32);
9003   BIND(L_fold_512b_loop);
9004   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
9005   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
9006   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
9007   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
9008   addptr(buf, 64);
9009   subl(len, 4);
9010   jcc(Assembler::greater, L_fold_512b_loop);
9011 
9012   // Fold 512 bits to 128 bits.
9013   BIND(L_fold_512b);
9014   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9015   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
9016   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
9017   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
9018 
9019   // Fold the rest of 128 bits data chunks
9020   BIND(L_fold_tail);
9021   addl(len, 3);
9022   jccb(Assembler::lessEqual, L_fold_128b);
9023   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
9024 
9025   BIND(L_fold_tail_loop);
9026   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
9027   addptr(buf, 16);
9028   decrementl(len);
9029   jccb(Assembler::greater, L_fold_tail_loop);
9030 
9031   // Fold 128 bits in xmm1 down into 32 bits in crc register.
9032   BIND(L_fold_128b);
9033   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
9034   if (UseAVX > 0) {
9035     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
9036     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
9037     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
9038   } else {
9039     movdqa(xmm2, xmm0);
9040     pclmulqdq(xmm2, xmm1, 0x1);
9041     movdqa(xmm3, xmm0);
9042     pand(xmm3, xmm2);
9043     pclmulqdq(xmm0, xmm3, 0x1);
9044   }
9045   psrldq(xmm1, 8);
9046   psrldq(xmm2, 4);
9047   pxor(xmm0, xmm1);
9048   pxor(xmm0, xmm2);
9049 
9050   // 8 8-bit folds to compute 32-bit CRC.
9051   for (int j = 0; j < 4; j++) {
9052     fold_8bit_crc32(xmm0, table, xmm1, rax);
9053   }
9054   movdl(crc, xmm0); // mov 32 bits to general register
9055   for (int j = 0; j < 4; j++) {
9056     fold_8bit_crc32(crc, table, rax);
9057   }
9058 
9059   BIND(L_tail_restore);
9060   movl(len, tmp); // restore
9061   BIND(L_tail);
9062   andl(len, 0xf);
9063   jccb(Assembler::zero, L_exit);
9064 
9065   // Fold the rest of bytes
9066   align(4);
9067   BIND(L_tail_loop);
9068   movsbl(rax, Address(buf, 0)); // load byte with sign extension
9069   update_byte_crc32(crc, rax, table);
9070   increment(buf);
9071   decrementl(len);
9072   jccb(Assembler::greater, L_tail_loop);
9073 
9074   BIND(L_exit);
9075   notl(crc); // ~c
9076 }
9077 
9078 #ifdef _LP64
9079 // S. Gueron / Information Processing Letters 112 (2012) 184
9080 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
9081 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
9082 // Output: the 64-bit carry-less product of B * CONST
9083 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
9084                                      Register tmp1, Register tmp2, Register tmp3) {
9085   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9086   if (n > 0) {
9087     addq(tmp3, n * 256 * 8);
9088   }
9089   //    Q1 = TABLEExt[n][B & 0xFF];
9090   movl(tmp1, in);
9091   andl(tmp1, 0x000000FF);
9092   shll(tmp1, 3);
9093   addq(tmp1, tmp3);
9094   movq(tmp1, Address(tmp1, 0));
9095 
9096   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9097   movl(tmp2, in);
9098   shrl(tmp2, 8);
9099   andl(tmp2, 0x000000FF);
9100   shll(tmp2, 3);
9101   addq(tmp2, tmp3);
9102   movq(tmp2, Address(tmp2, 0));
9103 
9104   shlq(tmp2, 8);
9105   xorq(tmp1, tmp2);
9106 
9107   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9108   movl(tmp2, in);
9109   shrl(tmp2, 16);
9110   andl(tmp2, 0x000000FF);
9111   shll(tmp2, 3);
9112   addq(tmp2, tmp3);
9113   movq(tmp2, Address(tmp2, 0));
9114 
9115   shlq(tmp2, 16);
9116   xorq(tmp1, tmp2);
9117 
9118   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9119   shrl(in, 24);
9120   andl(in, 0x000000FF);
9121   shll(in, 3);
9122   addq(in, tmp3);
9123   movq(in, Address(in, 0));
9124 
9125   shlq(in, 24);
9126   xorq(in, tmp1);
9127   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9128 }
9129 
9130 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9131                                       Register in_out,
9132                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9133                                       XMMRegister w_xtmp2,
9134                                       Register tmp1,
9135                                       Register n_tmp2, Register n_tmp3) {
9136   if (is_pclmulqdq_supported) {
9137     movdl(w_xtmp1, in_out); // modified blindly
9138 
9139     movl(tmp1, const_or_pre_comp_const_index);
9140     movdl(w_xtmp2, tmp1);
9141     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9142 
9143     movdq(in_out, w_xtmp1);
9144   } else {
9145     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
9146   }
9147 }
9148 
9149 // Recombination Alternative 2: No bit-reflections
9150 // T1 = (CRC_A * U1) << 1
9151 // T2 = (CRC_B * U2) << 1
9152 // C1 = T1 >> 32
9153 // C2 = T2 >> 32
9154 // T1 = T1 & 0xFFFFFFFF
9155 // T2 = T2 & 0xFFFFFFFF
9156 // T1 = CRC32(0, T1)
9157 // T2 = CRC32(0, T2)
9158 // C1 = C1 ^ T1
9159 // C2 = C2 ^ T2
9160 // CRC = C1 ^ C2 ^ CRC_C
9161 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9162                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9163                                      Register tmp1, Register tmp2,
9164                                      Register n_tmp3) {
9165   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9166   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9167   shlq(in_out, 1);
9168   movl(tmp1, in_out);
9169   shrq(in_out, 32);
9170   xorl(tmp2, tmp2);
9171   crc32(tmp2, tmp1, 4);
9172   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
9173   shlq(in1, 1);
9174   movl(tmp1, in1);
9175   shrq(in1, 32);
9176   xorl(tmp2, tmp2);
9177   crc32(tmp2, tmp1, 4);
9178   xorl(in1, tmp2);
9179   xorl(in_out, in1);
9180   xorl(in_out, in2);
9181 }
9182 
9183 // Set N to predefined value
9184 // Subtract from a lenght of a buffer
9185 // execute in a loop:
9186 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
9187 // for i = 1 to N do
9188 //  CRC_A = CRC32(CRC_A, A[i])
9189 //  CRC_B = CRC32(CRC_B, B[i])
9190 //  CRC_C = CRC32(CRC_C, C[i])
9191 // end for
9192 // Recombine
9193 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9194                                        Register in_out1, Register in_out2, Register in_out3,
9195                                        Register tmp1, Register tmp2, Register tmp3,
9196                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9197                                        Register tmp4, Register tmp5,
9198                                        Register n_tmp6) {
9199   Label L_processPartitions;
9200   Label L_processPartition;
9201   Label L_exit;
9202 
9203   bind(L_processPartitions);
9204   cmpl(in_out1, 3 * size);
9205   jcc(Assembler::less, L_exit);
9206     xorl(tmp1, tmp1);
9207     xorl(tmp2, tmp2);
9208     movq(tmp3, in_out2);
9209     addq(tmp3, size);
9210 
9211     bind(L_processPartition);
9212       crc32(in_out3, Address(in_out2, 0), 8);
9213       crc32(tmp1, Address(in_out2, size), 8);
9214       crc32(tmp2, Address(in_out2, size * 2), 8);
9215       addq(in_out2, 8);
9216       cmpq(in_out2, tmp3);
9217       jcc(Assembler::less, L_processPartition);
9218     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9219             w_xtmp1, w_xtmp2, w_xtmp3,
9220             tmp4, tmp5,
9221             n_tmp6);
9222     addq(in_out2, 2 * size);
9223     subl(in_out1, 3 * size);
9224     jmp(L_processPartitions);
9225 
9226   bind(L_exit);
9227 }
9228 #else
9229 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
9230                                      Register tmp1, Register tmp2, Register tmp3,
9231                                      XMMRegister xtmp1, XMMRegister xtmp2) {
9232   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
9233   if (n > 0) {
9234     addl(tmp3, n * 256 * 8);
9235   }
9236   //    Q1 = TABLEExt[n][B & 0xFF];
9237   movl(tmp1, in_out);
9238   andl(tmp1, 0x000000FF);
9239   shll(tmp1, 3);
9240   addl(tmp1, tmp3);
9241   movq(xtmp1, Address(tmp1, 0));
9242 
9243   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
9244   movl(tmp2, in_out);
9245   shrl(tmp2, 8);
9246   andl(tmp2, 0x000000FF);
9247   shll(tmp2, 3);
9248   addl(tmp2, tmp3);
9249   movq(xtmp2, Address(tmp2, 0));
9250 
9251   psllq(xtmp2, 8);
9252   pxor(xtmp1, xtmp2);
9253 
9254   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
9255   movl(tmp2, in_out);
9256   shrl(tmp2, 16);
9257   andl(tmp2, 0x000000FF);
9258   shll(tmp2, 3);
9259   addl(tmp2, tmp3);
9260   movq(xtmp2, Address(tmp2, 0));
9261 
9262   psllq(xtmp2, 16);
9263   pxor(xtmp1, xtmp2);
9264 
9265   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
9266   shrl(in_out, 24);
9267   andl(in_out, 0x000000FF);
9268   shll(in_out, 3);
9269   addl(in_out, tmp3);
9270   movq(xtmp2, Address(in_out, 0));
9271 
9272   psllq(xtmp2, 24);
9273   pxor(xtmp1, xtmp2); // Result in CXMM
9274   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
9275 }
9276 
9277 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
9278                                       Register in_out,
9279                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
9280                                       XMMRegister w_xtmp2,
9281                                       Register tmp1,
9282                                       Register n_tmp2, Register n_tmp3) {
9283   if (is_pclmulqdq_supported) {
9284     movdl(w_xtmp1, in_out);
9285 
9286     movl(tmp1, const_or_pre_comp_const_index);
9287     movdl(w_xtmp2, tmp1);
9288     pclmulqdq(w_xtmp1, w_xtmp2, 0);
9289     // Keep result in XMM since GPR is 32 bit in length
9290   } else {
9291     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
9292   }
9293 }
9294 
9295 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
9296                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9297                                      Register tmp1, Register tmp2,
9298                                      Register n_tmp3) {
9299   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9300   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
9301 
9302   psllq(w_xtmp1, 1);
9303   movdl(tmp1, w_xtmp1);
9304   psrlq(w_xtmp1, 32);
9305   movdl(in_out, w_xtmp1);
9306 
9307   xorl(tmp2, tmp2);
9308   crc32(tmp2, tmp1, 4);
9309   xorl(in_out, tmp2);
9310 
9311   psllq(w_xtmp2, 1);
9312   movdl(tmp1, w_xtmp2);
9313   psrlq(w_xtmp2, 32);
9314   movdl(in1, w_xtmp2);
9315 
9316   xorl(tmp2, tmp2);
9317   crc32(tmp2, tmp1, 4);
9318   xorl(in1, tmp2);
9319   xorl(in_out, in1);
9320   xorl(in_out, in2);
9321 }
9322 
9323 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
9324                                        Register in_out1, Register in_out2, Register in_out3,
9325                                        Register tmp1, Register tmp2, Register tmp3,
9326                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9327                                        Register tmp4, Register tmp5,
9328                                        Register n_tmp6) {
9329   Label L_processPartitions;
9330   Label L_processPartition;
9331   Label L_exit;
9332 
9333   bind(L_processPartitions);
9334   cmpl(in_out1, 3 * size);
9335   jcc(Assembler::less, L_exit);
9336     xorl(tmp1, tmp1);
9337     xorl(tmp2, tmp2);
9338     movl(tmp3, in_out2);
9339     addl(tmp3, size);
9340 
9341     bind(L_processPartition);
9342       crc32(in_out3, Address(in_out2, 0), 4);
9343       crc32(tmp1, Address(in_out2, size), 4);
9344       crc32(tmp2, Address(in_out2, size*2), 4);
9345       crc32(in_out3, Address(in_out2, 0+4), 4);
9346       crc32(tmp1, Address(in_out2, size+4), 4);
9347       crc32(tmp2, Address(in_out2, size*2+4), 4);
9348       addl(in_out2, 8);
9349       cmpl(in_out2, tmp3);
9350       jcc(Assembler::less, L_processPartition);
9351 
9352         push(tmp3);
9353         push(in_out1);
9354         push(in_out2);
9355         tmp4 = tmp3;
9356         tmp5 = in_out1;
9357         n_tmp6 = in_out2;
9358 
9359       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
9360             w_xtmp1, w_xtmp2, w_xtmp3,
9361             tmp4, tmp5,
9362             n_tmp6);
9363 
9364         pop(in_out2);
9365         pop(in_out1);
9366         pop(tmp3);
9367 
9368     addl(in_out2, 2 * size);
9369     subl(in_out1, 3 * size);
9370     jmp(L_processPartitions);
9371 
9372   bind(L_exit);
9373 }
9374 #endif //LP64
9375 
9376 #ifdef _LP64
9377 // Algorithm 2: Pipelined usage of the CRC32 instruction.
9378 // Input: A buffer I of L bytes.
9379 // Output: the CRC32C value of the buffer.
9380 // Notations:
9381 // Write L = 24N + r, with N = floor (L/24).
9382 // r = L mod 24 (0 <= r < 24).
9383 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
9384 // N quadwords, and R consists of r bytes.
9385 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
9386 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
9387 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
9388 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
9389 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9390                                           Register tmp1, Register tmp2, Register tmp3,
9391                                           Register tmp4, Register tmp5, Register tmp6,
9392                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9393                                           bool is_pclmulqdq_supported) {
9394   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9395   Label L_wordByWord;
9396   Label L_byteByByteProlog;
9397   Label L_byteByByte;
9398   Label L_exit;
9399 
9400   if (is_pclmulqdq_supported ) {
9401     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9402     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
9403 
9404     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9405     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9406 
9407     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9408     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9409     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
9410   } else {
9411     const_or_pre_comp_const_index[0] = 1;
9412     const_or_pre_comp_const_index[1] = 0;
9413 
9414     const_or_pre_comp_const_index[2] = 3;
9415     const_or_pre_comp_const_index[3] = 2;
9416 
9417     const_or_pre_comp_const_index[4] = 5;
9418     const_or_pre_comp_const_index[5] = 4;
9419    }
9420   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9421                     in2, in1, in_out,
9422                     tmp1, tmp2, tmp3,
9423                     w_xtmp1, w_xtmp2, w_xtmp3,
9424                     tmp4, tmp5,
9425                     tmp6);
9426   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9427                     in2, in1, in_out,
9428                     tmp1, tmp2, tmp3,
9429                     w_xtmp1, w_xtmp2, w_xtmp3,
9430                     tmp4, tmp5,
9431                     tmp6);
9432   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9433                     in2, in1, in_out,
9434                     tmp1, tmp2, tmp3,
9435                     w_xtmp1, w_xtmp2, w_xtmp3,
9436                     tmp4, tmp5,
9437                     tmp6);
9438   movl(tmp1, in2);
9439   andl(tmp1, 0x00000007);
9440   negl(tmp1);
9441   addl(tmp1, in2);
9442   addq(tmp1, in1);
9443 
9444   BIND(L_wordByWord);
9445   cmpq(in1, tmp1);
9446   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9447     crc32(in_out, Address(in1, 0), 4);
9448     addq(in1, 4);
9449     jmp(L_wordByWord);
9450 
9451   BIND(L_byteByByteProlog);
9452   andl(in2, 0x00000007);
9453   movl(tmp2, 1);
9454 
9455   BIND(L_byteByByte);
9456   cmpl(tmp2, in2);
9457   jccb(Assembler::greater, L_exit);
9458     crc32(in_out, Address(in1, 0), 1);
9459     incq(in1);
9460     incl(tmp2);
9461     jmp(L_byteByByte);
9462 
9463   BIND(L_exit);
9464 }
9465 #else
9466 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
9467                                           Register tmp1, Register  tmp2, Register tmp3,
9468                                           Register tmp4, Register  tmp5, Register tmp6,
9469                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
9470                                           bool is_pclmulqdq_supported) {
9471   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
9472   Label L_wordByWord;
9473   Label L_byteByByteProlog;
9474   Label L_byteByByte;
9475   Label L_exit;
9476 
9477   if (is_pclmulqdq_supported) {
9478     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
9479     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
9480 
9481     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
9482     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
9483 
9484     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
9485     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
9486   } else {
9487     const_or_pre_comp_const_index[0] = 1;
9488     const_or_pre_comp_const_index[1] = 0;
9489 
9490     const_or_pre_comp_const_index[2] = 3;
9491     const_or_pre_comp_const_index[3] = 2;
9492 
9493     const_or_pre_comp_const_index[4] = 5;
9494     const_or_pre_comp_const_index[5] = 4;
9495   }
9496   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
9497                     in2, in1, in_out,
9498                     tmp1, tmp2, tmp3,
9499                     w_xtmp1, w_xtmp2, w_xtmp3,
9500                     tmp4, tmp5,
9501                     tmp6);
9502   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
9503                     in2, in1, in_out,
9504                     tmp1, tmp2, tmp3,
9505                     w_xtmp1, w_xtmp2, w_xtmp3,
9506                     tmp4, tmp5,
9507                     tmp6);
9508   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
9509                     in2, in1, in_out,
9510                     tmp1, tmp2, tmp3,
9511                     w_xtmp1, w_xtmp2, w_xtmp3,
9512                     tmp4, tmp5,
9513                     tmp6);
9514   movl(tmp1, in2);
9515   andl(tmp1, 0x00000007);
9516   negl(tmp1);
9517   addl(tmp1, in2);
9518   addl(tmp1, in1);
9519 
9520   BIND(L_wordByWord);
9521   cmpl(in1, tmp1);
9522   jcc(Assembler::greaterEqual, L_byteByByteProlog);
9523     crc32(in_out, Address(in1,0), 4);
9524     addl(in1, 4);
9525     jmp(L_wordByWord);
9526 
9527   BIND(L_byteByByteProlog);
9528   andl(in2, 0x00000007);
9529   movl(tmp2, 1);
9530 
9531   BIND(L_byteByByte);
9532   cmpl(tmp2, in2);
9533   jccb(Assembler::greater, L_exit);
9534     movb(tmp1, Address(in1, 0));
9535     crc32(in_out, tmp1, 1);
9536     incl(in1);
9537     incl(tmp2);
9538     jmp(L_byteByByte);
9539 
9540   BIND(L_exit);
9541 }
9542 #endif // LP64
9543 #undef BIND
9544 #undef BLOCK_COMMENT
9545 
9546 // Compress char[] array to byte[].
9547 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
9548 //   @HotSpotIntrinsicCandidate
9549 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
9550 //     for (int i = 0; i < len; i++) {
9551 //       int c = src[srcOff++];
9552 //       if (c >>> 8 != 0) {
9553 //         return 0;
9554 //       }
9555 //       dst[dstOff++] = (byte)c;
9556 //     }
9557 //     return len;
9558 //   }
9559 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
9560   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
9561   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
9562   Register tmp5, Register result) {
9563   Label copy_chars_loop, return_length, return_zero, done;
9564 
9565   // rsi: src
9566   // rdi: dst
9567   // rdx: len
9568   // rcx: tmp5
9569   // rax: result
9570 
9571   // rsi holds start addr of source char[] to be compressed
9572   // rdi holds start addr of destination byte[]
9573   // rdx holds length
9574 
9575   assert(len != result, "");
9576 
9577   // save length for return
9578   push(len);
9579 
9580   if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512
9581     VM_Version::supports_avx512vlbw() &&
9582     VM_Version::supports_bmi2()) {
9583 
9584     Label copy_32_loop, copy_loop_tail, below_threshold;
9585 
9586     // alignment
9587     Label post_alignment;
9588 
9589     // if length of the string is less than 16, handle it in an old fashioned way
9590     testl(len, -32);
9591     jcc(Assembler::zero, below_threshold);
9592 
9593     // First check whether a character is compressable ( <= 0xFF).
9594     // Create mask to test for Unicode chars inside zmm vector
9595     movl(result, 0x00FF);
9596     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
9597 
9598     testl(len, -64);
9599     jcc(Assembler::zero, post_alignment);
9600 
9601     movl(tmp5, dst);
9602     andl(tmp5, (32 - 1));
9603     negl(tmp5);
9604     andl(tmp5, (32 - 1));
9605 
9606     // bail out when there is nothing to be done
9607     testl(tmp5, 0xFFFFFFFF);
9608     jcc(Assembler::zero, post_alignment);
9609 
9610     // ~(~0 << len), where len is the # of remaining elements to process
9611     movl(result, 0xFFFFFFFF);
9612     shlxl(result, result, tmp5);
9613     notl(result);
9614     kmovdl(k3, result);
9615 
9616     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9617     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9618     ktestd(k2, k3);
9619     jcc(Assembler::carryClear, return_zero);
9620 
9621     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9622 
9623     addptr(src, tmp5);
9624     addptr(src, tmp5);
9625     addptr(dst, tmp5);
9626     subl(len, tmp5);
9627 
9628     bind(post_alignment);
9629     // end of alignment
9630 
9631     movl(tmp5, len);
9632     andl(tmp5, (32 - 1));    // tail count (in chars)
9633     andl(len, ~(32 - 1));    // vector count (in chars)
9634     jcc(Assembler::zero, copy_loop_tail);
9635 
9636     lea(src, Address(src, len, Address::times_2));
9637     lea(dst, Address(dst, len, Address::times_1));
9638     negptr(len);
9639 
9640     bind(copy_32_loop);
9641     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
9642     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9643     kortestdl(k2, k2);
9644     jcc(Assembler::carryClear, return_zero);
9645 
9646     // All elements in current processed chunk are valid candidates for
9647     // compression. Write a truncated byte elements to the memory.
9648     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
9649     addptr(len, 32);
9650     jcc(Assembler::notZero, copy_32_loop);
9651 
9652     bind(copy_loop_tail);
9653     // bail out when there is nothing to be done
9654     testl(tmp5, 0xFFFFFFFF);
9655     jcc(Assembler::zero, return_length);
9656 
9657     movl(len, tmp5);
9658 
9659     // ~(~0 << len), where len is the # of remaining elements to process
9660     movl(result, 0xFFFFFFFF);
9661     shlxl(result, result, len);
9662     notl(result);
9663 
9664     kmovdl(k3, result);
9665 
9666     evmovdquw(tmp1Reg, k3, Address(src, 0), Assembler::AVX_512bit);
9667     evpcmpuw(k2, k3, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
9668     ktestd(k2, k3);
9669     jcc(Assembler::carryClear, return_zero);
9670 
9671     evpmovwb(Address(dst, 0), k3, tmp1Reg, Assembler::AVX_512bit);
9672     jmp(return_length);
9673 
9674     bind(below_threshold);
9675   }
9676 
9677   if (UseSSE42Intrinsics) {
9678     Label copy_32_loop, copy_16, copy_tail;
9679 
9680     movl(result, len);
9681 
9682     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
9683 
9684     // vectored compression
9685     andl(len, 0xfffffff0);    // vector count (in chars)
9686     andl(result, 0x0000000f);    // tail count (in chars)
9687     testl(len, len);
9688     jcc(Assembler::zero, copy_16);
9689 
9690     // compress 16 chars per iter
9691     movdl(tmp1Reg, tmp5);
9692     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9693     pxor(tmp4Reg, tmp4Reg);
9694 
9695     lea(src, Address(src, len, Address::times_2));
9696     lea(dst, Address(dst, len, Address::times_1));
9697     negptr(len);
9698 
9699     bind(copy_32_loop);
9700     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
9701     por(tmp4Reg, tmp2Reg);
9702     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
9703     por(tmp4Reg, tmp3Reg);
9704     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
9705     jcc(Assembler::notZero, return_zero);
9706     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
9707     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
9708     addptr(len, 16);
9709     jcc(Assembler::notZero, copy_32_loop);
9710 
9711     // compress next vector of 8 chars (if any)
9712     bind(copy_16);
9713     movl(len, result);
9714     andl(len, 0xfffffff8);    // vector count (in chars)
9715     andl(result, 0x00000007);    // tail count (in chars)
9716     testl(len, len);
9717     jccb(Assembler::zero, copy_tail);
9718 
9719     movdl(tmp1Reg, tmp5);
9720     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
9721     pxor(tmp3Reg, tmp3Reg);
9722 
9723     movdqu(tmp2Reg, Address(src, 0));
9724     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
9725     jccb(Assembler::notZero, return_zero);
9726     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
9727     movq(Address(dst, 0), tmp2Reg);
9728     addptr(src, 16);
9729     addptr(dst, 8);
9730 
9731     bind(copy_tail);
9732     movl(len, result);
9733   }
9734   // compress 1 char per iter
9735   testl(len, len);
9736   jccb(Assembler::zero, return_length);
9737   lea(src, Address(src, len, Address::times_2));
9738   lea(dst, Address(dst, len, Address::times_1));
9739   negptr(len);
9740 
9741   bind(copy_chars_loop);
9742   load_unsigned_short(result, Address(src, len, Address::times_2));
9743   testl(result, 0xff00);      // check if Unicode char
9744   jccb(Assembler::notZero, return_zero);
9745   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
9746   increment(len);
9747   jcc(Assembler::notZero, copy_chars_loop);
9748 
9749   // if compression succeeded, return length
9750   bind(return_length);
9751   pop(result);
9752   jmpb(done);
9753 
9754   // if compression failed, return 0
9755   bind(return_zero);
9756   xorl(result, result);
9757   addptr(rsp, wordSize);
9758 
9759   bind(done);
9760 }
9761 
9762 // Inflate byte[] array to char[].
9763 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
9764 //   @HotSpotIntrinsicCandidate
9765 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
9766 //     for (int i = 0; i < len; i++) {
9767 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
9768 //     }
9769 //   }
9770 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
9771   XMMRegister tmp1, Register tmp2) {
9772   Label copy_chars_loop, done, below_threshold, avx3_threshold;
9773   // rsi: src
9774   // rdi: dst
9775   // rdx: len
9776   // rcx: tmp2
9777 
9778   // rsi holds start addr of source byte[] to be inflated
9779   // rdi holds start addr of destination char[]
9780   // rdx holds length
9781   assert_different_registers(src, dst, len, tmp2);
9782   movl(tmp2, len);
9783   if ((UseAVX > 2) && // AVX512
9784     VM_Version::supports_avx512vlbw() &&
9785     VM_Version::supports_bmi2()) {
9786 
9787     Label copy_32_loop, copy_tail;
9788     Register tmp3_aliased = len;
9789 
9790     // if length of the string is less than 16, handle it in an old fashioned way
9791     testl(len, -16);
9792     jcc(Assembler::zero, below_threshold);
9793 
9794     testl(len, -1 * AVX3Threshold);
9795     jcc(Assembler::zero, avx3_threshold);
9796 
9797     // In order to use only one arithmetic operation for the main loop we use
9798     // this pre-calculation
9799     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
9800     andl(len, -32);     // vector count
9801     jccb(Assembler::zero, copy_tail);
9802 
9803     lea(src, Address(src, len, Address::times_1));
9804     lea(dst, Address(dst, len, Address::times_2));
9805     negptr(len);
9806 
9807 
9808     // inflate 32 chars per iter
9809     bind(copy_32_loop);
9810     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
9811     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
9812     addptr(len, 32);
9813     jcc(Assembler::notZero, copy_32_loop);
9814 
9815     bind(copy_tail);
9816     // bail out when there is nothing to be done
9817     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
9818     jcc(Assembler::zero, done);
9819 
9820     // ~(~0 << length), where length is the # of remaining elements to process
9821     movl(tmp3_aliased, -1);
9822     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
9823     notl(tmp3_aliased);
9824     kmovdl(k2, tmp3_aliased);
9825     evpmovzxbw(tmp1, k2, Address(src, 0), Assembler::AVX_512bit);
9826     evmovdquw(Address(dst, 0), k2, tmp1, Assembler::AVX_512bit);
9827 
9828     jmp(done);
9829     bind(avx3_threshold);
9830   }
9831   if (UseSSE42Intrinsics) {
9832     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
9833 
9834     if (UseAVX > 1) {
9835       andl(tmp2, (16 - 1));
9836       andl(len, -16);
9837       jccb(Assembler::zero, copy_new_tail);
9838     } else {
9839       andl(tmp2, 0x00000007);   // tail count (in chars)
9840       andl(len, 0xfffffff8);    // vector count (in chars)
9841       jccb(Assembler::zero, copy_tail);
9842     }
9843 
9844     // vectored inflation
9845     lea(src, Address(src, len, Address::times_1));
9846     lea(dst, Address(dst, len, Address::times_2));
9847     negptr(len);
9848 
9849     if (UseAVX > 1) {
9850       bind(copy_16_loop);
9851       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
9852       vmovdqu(Address(dst, len, Address::times_2), tmp1);
9853       addptr(len, 16);
9854       jcc(Assembler::notZero, copy_16_loop);
9855 
9856       bind(below_threshold);
9857       bind(copy_new_tail);
9858       movl(len, tmp2);
9859       andl(tmp2, 0x00000007);
9860       andl(len, 0xFFFFFFF8);
9861       jccb(Assembler::zero, copy_tail);
9862 
9863       pmovzxbw(tmp1, Address(src, 0));
9864       movdqu(Address(dst, 0), tmp1);
9865       addptr(src, 8);
9866       addptr(dst, 2 * 8);
9867 
9868       jmp(copy_tail, true);
9869     }
9870 
9871     // inflate 8 chars per iter
9872     bind(copy_8_loop);
9873     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
9874     movdqu(Address(dst, len, Address::times_2), tmp1);
9875     addptr(len, 8);
9876     jcc(Assembler::notZero, copy_8_loop);
9877 
9878     bind(copy_tail);
9879     movl(len, tmp2);
9880 
9881     cmpl(len, 4);
9882     jccb(Assembler::less, copy_bytes);
9883 
9884     movdl(tmp1, Address(src, 0));  // load 4 byte chars
9885     pmovzxbw(tmp1, tmp1);
9886     movq(Address(dst, 0), tmp1);
9887     subptr(len, 4);
9888     addptr(src, 4);
9889     addptr(dst, 8);
9890 
9891     bind(copy_bytes);
9892   } else {
9893     bind(below_threshold);
9894   }
9895 
9896   testl(len, len);
9897   jccb(Assembler::zero, done);
9898   lea(src, Address(src, len, Address::times_1));
9899   lea(dst, Address(dst, len, Address::times_2));
9900   negptr(len);
9901 
9902   // inflate 1 char per iter
9903   bind(copy_chars_loop);
9904   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
9905   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
9906   increment(len);
9907   jcc(Assembler::notZero, copy_chars_loop);
9908 
9909   bind(done);
9910 }
9911 
9912 #ifdef _LP64
9913 void MacroAssembler::cache_wb(Address line)
9914 {
9915   // 64 bit cpus always support clflush
9916   assert(VM_Version::supports_clflush(), "clflush should be available");
9917   bool optimized = VM_Version::supports_clflushopt();
9918   bool no_evict = VM_Version::supports_clwb();
9919 
9920   // prefer clwb (writeback without evict) otherwise
9921   // prefer clflushopt (potentially parallel writeback with evict)
9922   // otherwise fallback on clflush (serial writeback with evict)
9923 
9924   if (optimized) {
9925     if (no_evict) {
9926       clwb(line);
9927     } else {
9928       clflushopt(line);
9929     }
9930   } else {
9931     // no need for fence when using CLFLUSH
9932     clflush(line);
9933   }
9934 }
9935 
9936 void MacroAssembler::cache_wbsync(bool is_pre)
9937 {
9938   assert(VM_Version::supports_clflush(), "clflush should be available");
9939   bool optimized = VM_Version::supports_clflushopt();
9940   bool no_evict = VM_Version::supports_clwb();
9941 
9942   // pick the correct implementation
9943 
9944   if (!is_pre && (optimized || no_evict)) {
9945     // need an sfence for post flush when using clflushopt or clwb
9946     // otherwise no no need for any synchroniaztion
9947 
9948     sfence();
9949   }
9950 }
9951 #endif // _LP64
9952 
9953 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
9954   switch (cond) {
9955     // Note some conditions are synonyms for others
9956     case Assembler::zero:         return Assembler::notZero;
9957     case Assembler::notZero:      return Assembler::zero;
9958     case Assembler::less:         return Assembler::greaterEqual;
9959     case Assembler::lessEqual:    return Assembler::greater;
9960     case Assembler::greater:      return Assembler::lessEqual;
9961     case Assembler::greaterEqual: return Assembler::less;
9962     case Assembler::below:        return Assembler::aboveEqual;
9963     case Assembler::belowEqual:   return Assembler::above;
9964     case Assembler::above:        return Assembler::belowEqual;
9965     case Assembler::aboveEqual:   return Assembler::below;
9966     case Assembler::overflow:     return Assembler::noOverflow;
9967     case Assembler::noOverflow:   return Assembler::overflow;
9968     case Assembler::negative:     return Assembler::positive;
9969     case Assembler::positive:     return Assembler::negative;
9970     case Assembler::parity:       return Assembler::noParity;
9971     case Assembler::noParity:     return Assembler::parity;
9972   }
9973   ShouldNotReachHere(); return Assembler::overflow;
9974 }
9975 
9976 SkipIfEqual::SkipIfEqual(
9977     MacroAssembler* masm, const bool* flag_addr, bool value) {
9978   _masm = masm;
9979   _masm->cmp8(ExternalAddress((address)flag_addr), value);
9980   _masm->jcc(Assembler::equal, _label);
9981 }
9982 
9983 SkipIfEqual::~SkipIfEqual() {
9984   _masm->bind(_label);
9985 }
9986 
9987 // 32-bit Windows has its own fast-path implementation
9988 // of get_thread
9989 #if !defined(WIN32) || defined(_LP64)
9990 
9991 // This is simply a call to Thread::current()
9992 void MacroAssembler::get_thread(Register thread) {
9993   if (thread != rax) {
9994     push(rax);
9995   }
9996   LP64_ONLY(push(rdi);)
9997   LP64_ONLY(push(rsi);)
9998   push(rdx);
9999   push(rcx);
10000 #ifdef _LP64
10001   push(r8);
10002   push(r9);
10003   push(r10);
10004   push(r11);
10005 #endif
10006 
10007   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
10008 
10009 #ifdef _LP64
10010   pop(r11);
10011   pop(r10);
10012   pop(r9);
10013   pop(r8);
10014 #endif
10015   pop(rcx);
10016   pop(rdx);
10017   LP64_ONLY(pop(rsi);)
10018   LP64_ONLY(pop(rdi);)
10019   if (thread != rax) {
10020     mov(thread, rax);
10021     pop(rax);
10022   }
10023 }
10024 
10025 #endif