1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "jfr/support/jfrIntrinsics.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/klass.inline.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/callGenerator.hpp"
  41 #include "opto/castnode.hpp"
  42 #include "opto/cfgnode.hpp"
  43 #include "opto/convertnode.hpp"
  44 #include "opto/countbitsnode.hpp"
  45 #include "opto/intrinsicnode.hpp"
  46 #include "opto/idealKit.hpp"
  47 #include "opto/mathexactnode.hpp"
  48 #include "opto/movenode.hpp"
  49 #include "opto/mulnode.hpp"
  50 #include "opto/narrowptrnode.hpp"
  51 #include "opto/opaquenode.hpp"
  52 #include "opto/parse.hpp"
  53 #include "opto/runtime.hpp"
  54 #include "opto/rootnode.hpp"
  55 #include "opto/subnode.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "prims/unsafe.hpp"
  58 #include "runtime/objectMonitor.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "utilities/macros.hpp"
  61 
  62 
  63 class LibraryIntrinsic : public InlineCallGenerator {
  64   // Extend the set of intrinsics known to the runtime:
  65  public:
  66  private:
  67   bool             _is_virtual;
  68   bool             _does_virtual_dispatch;
  69   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  70   int8_t           _last_predicate; // Last generated predicate
  71   vmIntrinsics::ID _intrinsic_id;
  72 
  73  public:
  74   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  75     : InlineCallGenerator(m),
  76       _is_virtual(is_virtual),
  77       _does_virtual_dispatch(does_virtual_dispatch),
  78       _predicates_count((int8_t)predicates_count),
  79       _last_predicate((int8_t)-1),
  80       _intrinsic_id(id)
  81   {
  82   }
  83   virtual bool is_intrinsic() const { return true; }
  84   virtual bool is_virtual()   const { return _is_virtual; }
  85   virtual bool is_predicated() const { return _predicates_count > 0; }
  86   virtual int  predicates_count() const { return _predicates_count; }
  87   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  88   virtual JVMState* generate(JVMState* jvms);
  89   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  90   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  91 };
  92 
  93 
  94 // Local helper class for LibraryIntrinsic:
  95 class LibraryCallKit : public GraphKit {
  96  private:
  97   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  98   Node*             _result;        // the result node, if any
  99   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
 100 
 101   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
 102 
 103  public:
 104   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
 105     : GraphKit(jvms),
 106       _intrinsic(intrinsic),
 107       _result(NULL)
 108   {
 109     // Check if this is a root compile.  In that case we don't have a caller.
 110     if (!jvms->has_method()) {
 111       _reexecute_sp = sp();
 112     } else {
 113       // Find out how many arguments the interpreter needs when deoptimizing
 114       // and save the stack pointer value so it can used by uncommon_trap.
 115       // We find the argument count by looking at the declared signature.
 116       bool ignored_will_link;
 117       ciSignature* declared_signature = NULL;
 118       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 119       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 120       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 121     }
 122   }
 123 
 124   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 125 
 126   ciMethod*         caller()    const    { return jvms()->method(); }
 127   int               bci()       const    { return jvms()->bci(); }
 128   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 129   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 130   ciMethod*         callee()    const    { return _intrinsic->method(); }
 131 
 132   bool  try_to_inline(int predicate);
 133   Node* try_to_predicate(int predicate);
 134 
 135   void push_result() {
 136     // Push the result onto the stack.
 137     if (!stopped() && result() != NULL) {
 138       BasicType bt = result()->bottom_type()->basic_type();
 139       push_node(bt, result());
 140     }
 141   }
 142 
 143  private:
 144   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 145     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 146   }
 147 
 148   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 149   void  set_result(RegionNode* region, PhiNode* value);
 150   Node*     result() { return _result; }
 151 
 152   virtual int reexecute_sp() { return _reexecute_sp; }
 153 
 154   // Helper functions to inline natives
 155   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 156   Node* generate_slow_guard(Node* test, RegionNode* region);
 157   Node* generate_fair_guard(Node* test, RegionNode* region);
 158   Node* generate_negative_guard(Node* index, RegionNode* region,
 159                                 // resulting CastII of index:
 160                                 Node* *pos_index = NULL);
 161   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 162                              Node* array_length,
 163                              RegionNode* region);
 164   void  generate_string_range_check(Node* array, Node* offset,
 165                                     Node* length, bool char_count);
 166   Node* generate_current_thread(Node* &tls_output);
 167   Node* load_mirror_from_klass(Node* klass);
 168   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 169                                       RegionNode* region, int null_path,
 170                                       int offset);
 171   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 172                                RegionNode* region, int null_path) {
 173     int offset = java_lang_Class::klass_offset_in_bytes();
 174     return load_klass_from_mirror_common(mirror, never_see_null,
 175                                          region, null_path,
 176                                          offset);
 177   }
 178   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 179                                      RegionNode* region, int null_path) {
 180     int offset = java_lang_Class::array_klass_offset_in_bytes();
 181     return load_klass_from_mirror_common(mirror, never_see_null,
 182                                          region, null_path,
 183                                          offset);
 184   }
 185   Node* generate_access_flags_guard(Node* kls,
 186                                     int modifier_mask, int modifier_bits,
 187                                     RegionNode* region);
 188   Node* generate_interface_guard(Node* kls, RegionNode* region);
 189   Node* generate_array_guard(Node* kls, RegionNode* region) {
 190     return generate_array_guard_common(kls, region, false, false);
 191   }
 192   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 193     return generate_array_guard_common(kls, region, false, true);
 194   }
 195   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 196     return generate_array_guard_common(kls, region, true, false);
 197   }
 198   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 199     return generate_array_guard_common(kls, region, true, true);
 200   }
 201   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 202                                     bool obj_array, bool not_array);
 203   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 204   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 205                                      bool is_virtual = false, bool is_static = false);
 206   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 207     return generate_method_call(method_id, false, true);
 208   }
 209   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 210     return generate_method_call(method_id, true, false);
 211   }
 212   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 213   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 214 
 215   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 216   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 217   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 218   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 219   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 220                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 221   bool inline_string_indexOfChar();
 222   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 223   bool inline_string_toBytesU();
 224   bool inline_string_getCharsU();
 225   bool inline_string_copy(bool compress);
 226   bool inline_string_char_access(bool is_store);
 227   Node* round_double_node(Node* n);
 228   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 229   bool inline_math_native(vmIntrinsics::ID id);
 230   bool inline_math(vmIntrinsics::ID id);
 231   bool inline_double_math(vmIntrinsics::ID id);
 232   template <typename OverflowOp>
 233   bool inline_math_overflow(Node* arg1, Node* arg2);
 234   void inline_math_mathExact(Node* math, Node* test);
 235   bool inline_math_addExactI(bool is_increment);
 236   bool inline_math_addExactL(bool is_increment);
 237   bool inline_math_multiplyExactI();
 238   bool inline_math_multiplyExactL();
 239   bool inline_math_multiplyHigh();
 240   bool inline_math_negateExactI();
 241   bool inline_math_negateExactL();
 242   bool inline_math_subtractExactI(bool is_decrement);
 243   bool inline_math_subtractExactL(bool is_decrement);
 244   bool inline_min_max(vmIntrinsics::ID id);
 245   bool inline_notify(vmIntrinsics::ID id);
 246   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 247   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 248   int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type);
 249   Node* make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type = T_ILLEGAL, bool can_cast = false);
 250 
 251   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 252   DecoratorSet mo_decorator_for_access_kind(AccessKind kind);
 253   bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 254   static bool klass_needs_init_guard(Node* kls);
 255   bool inline_unsafe_allocate();
 256   bool inline_unsafe_newArray(bool uninitialized);
 257   bool inline_unsafe_writeback0();
 258   bool inline_unsafe_writebackSync0(bool is_pre);
 259   bool inline_unsafe_copyMemory();
 260   bool inline_native_currentThread();
 261 
 262   bool inline_native_time_funcs(address method, const char* funcName);
 263 #ifdef JFR_HAVE_INTRINSICS
 264   bool inline_native_classID();
 265   bool inline_native_getEventWriter();
 266 #endif
 267   bool inline_native_Class_query(vmIntrinsics::ID id);
 268   bool inline_native_subtype_check();
 269   bool inline_native_getLength();
 270   bool inline_array_copyOf(bool is_copyOfRange);
 271   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 272   bool inline_preconditions_checkIndex();
 273   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array);
 274   bool inline_native_clone(bool is_virtual);
 275   bool inline_native_Reflection_getCallerClass();
 276   // Helper function for inlining native object hash method
 277   bool inline_native_hashcode(bool is_virtual, bool is_static);
 278   bool inline_native_getClass();
 279 
 280   // Helper functions for inlining arraycopy
 281   bool inline_arraycopy();
 282   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 283                                                 RegionNode* slow_region);
 284   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 285   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp,
 286                                       uint new_idx);
 287 
 288   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 289   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 290   bool inline_unsafe_fence(vmIntrinsics::ID id);
 291   bool inline_onspinwait();
 292   bool inline_fp_conversions(vmIntrinsics::ID id);
 293   bool inline_number_methods(vmIntrinsics::ID id);
 294   bool inline_reference_get();
 295   bool inline_Class_cast();
 296   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 297   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 298   bool inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id);
 299   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 300   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 301   Node* inline_electronicCodeBook_AESCrypt_predicate(bool decrypting);
 302   Node* inline_counterMode_AESCrypt_predicate();
 303   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 304   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 305   bool inline_ghash_processBlocks();
 306   bool inline_base64_encodeBlock();
 307   bool inline_sha_implCompress(vmIntrinsics::ID id);
 308   bool inline_digestBase_implCompressMB(int predicate);
 309   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 310                                  bool long_state, address stubAddr, const char *stubName,
 311                                  Node* src_start, Node* ofs, Node* limit);
 312   Node* get_state_from_sha_object(Node *sha_object);
 313   Node* get_state_from_sha5_object(Node *sha_object);
 314   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 315   bool inline_encodeISOArray();
 316   bool inline_updateCRC32();
 317   bool inline_updateBytesCRC32();
 318   bool inline_updateByteBufferCRC32();
 319   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 320   bool inline_updateBytesCRC32C();
 321   bool inline_updateDirectByteBufferCRC32C();
 322   bool inline_updateBytesAdler32();
 323   bool inline_updateByteBufferAdler32();
 324   bool inline_multiplyToLen();
 325   bool inline_hasNegatives();
 326   bool inline_squareToLen();
 327   bool inline_mulAdd();
 328   bool inline_montgomeryMultiply();
 329   bool inline_montgomerySquare();
 330   bool inline_vectorizedMismatch();
 331   bool inline_fma(vmIntrinsics::ID id);
 332   bool inline_character_compare(vmIntrinsics::ID id);
 333   bool inline_fp_min_max(vmIntrinsics::ID id);
 334 
 335   bool inline_profileBoolean();
 336   bool inline_isCompileConstant();
 337   void clear_upper_avx() {
 338 #ifdef X86
 339     if (UseAVX >= 2) {
 340       C->set_clear_upper_avx(true);
 341     }
 342 #endif
 343   }
 344 };
 345 
 346 //---------------------------make_vm_intrinsic----------------------------
 347 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 348   vmIntrinsics::ID id = m->intrinsic_id();
 349   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 350 
 351   if (!m->is_loaded()) {
 352     // Do not attempt to inline unloaded methods.
 353     return NULL;
 354   }
 355 
 356   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 357   bool is_available = false;
 358 
 359   {
 360     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 361     // the compiler must transition to '_thread_in_vm' state because both
 362     // methods access VM-internal data.
 363     VM_ENTRY_MARK;
 364     methodHandle mh(THREAD, m->get_Method());
 365     is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) &&
 366                    !C->directive()->is_intrinsic_disabled(mh) &&
 367                    !vmIntrinsics::is_disabled_by_flags(mh);
 368 
 369   }
 370 
 371   if (is_available) {
 372     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 373     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 374     return new LibraryIntrinsic(m, is_virtual,
 375                                 vmIntrinsics::predicates_needed(id),
 376                                 vmIntrinsics::does_virtual_dispatch(id),
 377                                 (vmIntrinsics::ID) id);
 378   } else {
 379     return NULL;
 380   }
 381 }
 382 
 383 //----------------------register_library_intrinsics-----------------------
 384 // Initialize this file's data structures, for each Compile instance.
 385 void Compile::register_library_intrinsics() {
 386   // Nothing to do here.
 387 }
 388 
 389 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 390   LibraryCallKit kit(jvms, this);
 391   Compile* C = kit.C;
 392   int nodes = C->unique();
 393 #ifndef PRODUCT
 394   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 395     char buf[1000];
 396     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 397     tty->print_cr("Intrinsic %s", str);
 398   }
 399 #endif
 400   ciMethod* callee = kit.callee();
 401   const int bci    = kit.bci();
 402 
 403   // Try to inline the intrinsic.
 404   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 405       kit.try_to_inline(_last_predicate)) {
 406     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 407                                           : "(intrinsic)";
 408     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 409     if (C->print_intrinsics() || C->print_inlining()) {
 410       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 411     }
 412     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 413     if (C->log()) {
 414       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 415                      vmIntrinsics::name_at(intrinsic_id()),
 416                      (is_virtual() ? " virtual='1'" : ""),
 417                      C->unique() - nodes);
 418     }
 419     // Push the result from the inlined method onto the stack.
 420     kit.push_result();
 421     C->print_inlining_update(this);
 422     return kit.transfer_exceptions_into_jvms();
 423   }
 424 
 425   // The intrinsic bailed out
 426   if (jvms->has_method()) {
 427     // Not a root compile.
 428     const char* msg;
 429     if (callee->intrinsic_candidate()) {
 430       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 431     } else {
 432       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 433                          : "failed to inline (intrinsic), method not annotated";
 434     }
 435     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg);
 436     if (C->print_intrinsics() || C->print_inlining()) {
 437       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 438     }
 439   } else {
 440     // Root compile
 441     ResourceMark rm;
 442     stringStream msg_stream;
 443     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 444                      vmIntrinsics::name_at(intrinsic_id()),
 445                      is_virtual() ? " (virtual)" : "", bci);
 446     const char *msg = msg_stream.as_string();
 447     log_debug(jit, inlining)("%s", msg);
 448     if (C->print_intrinsics() || C->print_inlining()) {
 449       tty->print("%s", msg);
 450     }
 451   }
 452   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 453   C->print_inlining_update(this);
 454   return NULL;
 455 }
 456 
 457 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 458   LibraryCallKit kit(jvms, this);
 459   Compile* C = kit.C;
 460   int nodes = C->unique();
 461   _last_predicate = predicate;
 462 #ifndef PRODUCT
 463   assert(is_predicated() && predicate < predicates_count(), "sanity");
 464   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 465     char buf[1000];
 466     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 467     tty->print_cr("Predicate for intrinsic %s", str);
 468   }
 469 #endif
 470   ciMethod* callee = kit.callee();
 471   const int bci    = kit.bci();
 472 
 473   Node* slow_ctl = kit.try_to_predicate(predicate);
 474   if (!kit.failing()) {
 475     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 476                                           : "(intrinsic, predicate)";
 477     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 478     if (C->print_intrinsics() || C->print_inlining()) {
 479       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 480     }
 481     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 482     if (C->log()) {
 483       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 484                      vmIntrinsics::name_at(intrinsic_id()),
 485                      (is_virtual() ? " virtual='1'" : ""),
 486                      C->unique() - nodes);
 487     }
 488     return slow_ctl; // Could be NULL if the check folds.
 489   }
 490 
 491   // The intrinsic bailed out
 492   if (jvms->has_method()) {
 493     // Not a root compile.
 494     const char* msg = "failed to generate predicate for intrinsic";
 495     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg);
 496     if (C->print_intrinsics() || C->print_inlining()) {
 497       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 498     }
 499   } else {
 500     // Root compile
 501     ResourceMark rm;
 502     stringStream msg_stream;
 503     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 504                      vmIntrinsics::name_at(intrinsic_id()),
 505                      is_virtual() ? " (virtual)" : "", bci);
 506     const char *msg = msg_stream.as_string();
 507     log_debug(jit, inlining)("%s", msg);
 508     if (C->print_intrinsics() || C->print_inlining()) {
 509       C->print_inlining_stream()->print("%s", msg);
 510     }
 511   }
 512   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 513   return NULL;
 514 }
 515 
 516 bool LibraryCallKit::try_to_inline(int predicate) {
 517   // Handle symbolic names for otherwise undistinguished boolean switches:
 518   const bool is_store       = true;
 519   const bool is_compress    = true;
 520   const bool is_static      = true;
 521   const bool is_volatile    = true;
 522 
 523   if (!jvms()->has_method()) {
 524     // Root JVMState has a null method.
 525     assert(map()->memory()->Opcode() == Op_Parm, "");
 526     // Insert the memory aliasing node
 527     set_all_memory(reset_memory());
 528   }
 529   assert(merged_memory(), "");
 530 
 531 
 532   switch (intrinsic_id()) {
 533   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 534   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 535   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 536 
 537   case vmIntrinsics::_ceil:
 538   case vmIntrinsics::_floor:
 539   case vmIntrinsics::_rint:
 540   case vmIntrinsics::_dsin:
 541   case vmIntrinsics::_dcos:
 542   case vmIntrinsics::_dtan:
 543   case vmIntrinsics::_dabs:
 544   case vmIntrinsics::_fabs:
 545   case vmIntrinsics::_iabs:
 546   case vmIntrinsics::_labs:
 547   case vmIntrinsics::_datan2:
 548   case vmIntrinsics::_dsqrt:
 549   case vmIntrinsics::_dexp:
 550   case vmIntrinsics::_dlog:
 551   case vmIntrinsics::_dlog10:
 552   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 553 
 554   case vmIntrinsics::_min:
 555   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 556 
 557   case vmIntrinsics::_notify:
 558   case vmIntrinsics::_notifyAll:
 559     return inline_notify(intrinsic_id());
 560 
 561   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 562   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 563   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 564   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 565   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 566   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 567   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 568   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 569   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 570   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 571   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 572   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 573   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 574 
 575   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 576 
 577   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 578   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 579   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 580   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 581 
 582   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 583   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 584   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 585   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 586   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 587   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 588   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 589 
 590   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 591   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 592 
 593   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 594   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 595   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 596   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 597 
 598   case vmIntrinsics::_compressStringC:
 599   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 600   case vmIntrinsics::_inflateStringC:
 601   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 602 
 603   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 604   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 605   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 606   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 607   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 608   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 609   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 610   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 611   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 612 
 613   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 614   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 615   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 616   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 617   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 618   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 619   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 620   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 621   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 622 
 623   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 624   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 625   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 626   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 627   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 628   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 629   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 630   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 631   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 632 
 633   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 634   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 635   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 636   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 637   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 638   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 639   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 640   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 641   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 642 
 643   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 644   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 645   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 646   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 647 
 648   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 649   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 650   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 651   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 652 
 653   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 654   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 655   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 656   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 657   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 658   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 659   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 660   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 661   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 662 
 663   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 664   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 665   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 666   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 667   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 668   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 669   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 670   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 671   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 672 
 673   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 674   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 675   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 676   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 677   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 678   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 679   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 680   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 681   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 682 
 683   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 684   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 685   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 686   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 687   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 688   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 689   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 690   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 691   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 692 
 693   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 694   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 695   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 696   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 697   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 698 
 699   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 700   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 701   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 702   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 703   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 704   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 705   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 706   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 707   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 708   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 709   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 710   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 711   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 712   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 713   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 714   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 715   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 716   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 717   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 718   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 719 
 720   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 721   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 722   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 723   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 724   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 725   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 726   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 727   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 728   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 729   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 730   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 731   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 732   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 733   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 734   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 735 
 736   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 737   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 738   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 739   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 740 
 741   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 742   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 743   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 744   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 745   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 746 
 747   case vmIntrinsics::_loadFence:
 748   case vmIntrinsics::_storeFence:
 749   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 750 
 751   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 752 
 753   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 754 
 755 #ifdef JFR_HAVE_INTRINSICS
 756   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime");
 757   case vmIntrinsics::_getClassId:               return inline_native_classID();
 758   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 759 #endif
 760   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 761   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 762   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 763   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 764   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 765   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 766   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 767   case vmIntrinsics::_getLength:                return inline_native_getLength();
 768   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 769   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 770   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 771   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 772   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
 773   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 774 
 775   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 776   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 777 
 778   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 779 
 780   case vmIntrinsics::_isInstance:
 781   case vmIntrinsics::_getModifiers:
 782   case vmIntrinsics::_isInterface:
 783   case vmIntrinsics::_isArray:
 784   case vmIntrinsics::_isPrimitive:
 785   case vmIntrinsics::_getSuperclass:
 786   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 787 
 788   case vmIntrinsics::_floatToRawIntBits:
 789   case vmIntrinsics::_floatToIntBits:
 790   case vmIntrinsics::_intBitsToFloat:
 791   case vmIntrinsics::_doubleToRawLongBits:
 792   case vmIntrinsics::_doubleToLongBits:
 793   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 794 
 795   case vmIntrinsics::_numberOfLeadingZeros_i:
 796   case vmIntrinsics::_numberOfLeadingZeros_l:
 797   case vmIntrinsics::_numberOfTrailingZeros_i:
 798   case vmIntrinsics::_numberOfTrailingZeros_l:
 799   case vmIntrinsics::_bitCount_i:
 800   case vmIntrinsics::_bitCount_l:
 801   case vmIntrinsics::_reverseBytes_i:
 802   case vmIntrinsics::_reverseBytes_l:
 803   case vmIntrinsics::_reverseBytes_s:
 804   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 805 
 806   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 807 
 808   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 809 
 810   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 811 
 812   case vmIntrinsics::_aescrypt_encryptBlock:
 813   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 814 
 815   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 816   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 817     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 818 
 819   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 820   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 821     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 822 
 823   case vmIntrinsics::_counterMode_AESCrypt:
 824     return inline_counterMode_AESCrypt(intrinsic_id());
 825 
 826   case vmIntrinsics::_sha_implCompress:
 827   case vmIntrinsics::_sha2_implCompress:
 828   case vmIntrinsics::_sha5_implCompress:
 829     return inline_sha_implCompress(intrinsic_id());
 830 
 831   case vmIntrinsics::_digestBase_implCompressMB:
 832     return inline_digestBase_implCompressMB(predicate);
 833 
 834   case vmIntrinsics::_multiplyToLen:
 835     return inline_multiplyToLen();
 836 
 837   case vmIntrinsics::_squareToLen:
 838     return inline_squareToLen();
 839 
 840   case vmIntrinsics::_mulAdd:
 841     return inline_mulAdd();
 842 
 843   case vmIntrinsics::_montgomeryMultiply:
 844     return inline_montgomeryMultiply();
 845   case vmIntrinsics::_montgomerySquare:
 846     return inline_montgomerySquare();
 847 
 848   case vmIntrinsics::_vectorizedMismatch:
 849     return inline_vectorizedMismatch();
 850 
 851   case vmIntrinsics::_ghash_processBlocks:
 852     return inline_ghash_processBlocks();
 853   case vmIntrinsics::_base64_encodeBlock:
 854     return inline_base64_encodeBlock();
 855 
 856   case vmIntrinsics::_encodeISOArray:
 857   case vmIntrinsics::_encodeByteISOArray:
 858     return inline_encodeISOArray();
 859 
 860   case vmIntrinsics::_updateCRC32:
 861     return inline_updateCRC32();
 862   case vmIntrinsics::_updateBytesCRC32:
 863     return inline_updateBytesCRC32();
 864   case vmIntrinsics::_updateByteBufferCRC32:
 865     return inline_updateByteBufferCRC32();
 866 
 867   case vmIntrinsics::_updateBytesCRC32C:
 868     return inline_updateBytesCRC32C();
 869   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 870     return inline_updateDirectByteBufferCRC32C();
 871 
 872   case vmIntrinsics::_updateBytesAdler32:
 873     return inline_updateBytesAdler32();
 874   case vmIntrinsics::_updateByteBufferAdler32:
 875     return inline_updateByteBufferAdler32();
 876 
 877   case vmIntrinsics::_profileBoolean:
 878     return inline_profileBoolean();
 879   case vmIntrinsics::_isCompileConstant:
 880     return inline_isCompileConstant();
 881 
 882   case vmIntrinsics::_hasNegatives:
 883     return inline_hasNegatives();
 884 
 885   case vmIntrinsics::_fmaD:
 886   case vmIntrinsics::_fmaF:
 887     return inline_fma(intrinsic_id());
 888 
 889   case vmIntrinsics::_isDigit:
 890   case vmIntrinsics::_isLowerCase:
 891   case vmIntrinsics::_isUpperCase:
 892   case vmIntrinsics::_isWhitespace:
 893     return inline_character_compare(intrinsic_id());
 894 
 895   case vmIntrinsics::_maxF:
 896   case vmIntrinsics::_minF:
 897   case vmIntrinsics::_maxD:
 898   case vmIntrinsics::_minD:
 899     return inline_fp_min_max(intrinsic_id());
 900 
 901   default:
 902     // If you get here, it may be that someone has added a new intrinsic
 903     // to the list in vmSymbols.hpp without implementing it here.
 904 #ifndef PRODUCT
 905     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 906       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 907                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 908     }
 909 #endif
 910     return false;
 911   }
 912 }
 913 
 914 Node* LibraryCallKit::try_to_predicate(int predicate) {
 915   if (!jvms()->has_method()) {
 916     // Root JVMState has a null method.
 917     assert(map()->memory()->Opcode() == Op_Parm, "");
 918     // Insert the memory aliasing node
 919     set_all_memory(reset_memory());
 920   }
 921   assert(merged_memory(), "");
 922 
 923   switch (intrinsic_id()) {
 924   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 925     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 926   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 927     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 928   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 929     return inline_electronicCodeBook_AESCrypt_predicate(false);
 930   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 931     return inline_electronicCodeBook_AESCrypt_predicate(true);
 932   case vmIntrinsics::_counterMode_AESCrypt:
 933     return inline_counterMode_AESCrypt_predicate();
 934   case vmIntrinsics::_digestBase_implCompressMB:
 935     return inline_digestBase_implCompressMB_predicate(predicate);
 936 
 937   default:
 938     // If you get here, it may be that someone has added a new intrinsic
 939     // to the list in vmSymbols.hpp without implementing it here.
 940 #ifndef PRODUCT
 941     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 942       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 943                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 944     }
 945 #endif
 946     Node* slow_ctl = control();
 947     set_control(top()); // No fast path instrinsic
 948     return slow_ctl;
 949   }
 950 }
 951 
 952 //------------------------------set_result-------------------------------
 953 // Helper function for finishing intrinsics.
 954 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 955   record_for_igvn(region);
 956   set_control(_gvn.transform(region));
 957   set_result( _gvn.transform(value));
 958   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 959 }
 960 
 961 //------------------------------generate_guard---------------------------
 962 // Helper function for generating guarded fast-slow graph structures.
 963 // The given 'test', if true, guards a slow path.  If the test fails
 964 // then a fast path can be taken.  (We generally hope it fails.)
 965 // In all cases, GraphKit::control() is updated to the fast path.
 966 // The returned value represents the control for the slow path.
 967 // The return value is never 'top'; it is either a valid control
 968 // or NULL if it is obvious that the slow path can never be taken.
 969 // Also, if region and the slow control are not NULL, the slow edge
 970 // is appended to the region.
 971 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 972   if (stopped()) {
 973     // Already short circuited.
 974     return NULL;
 975   }
 976 
 977   // Build an if node and its projections.
 978   // If test is true we take the slow path, which we assume is uncommon.
 979   if (_gvn.type(test) == TypeInt::ZERO) {
 980     // The slow branch is never taken.  No need to build this guard.
 981     return NULL;
 982   }
 983 
 984   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 985 
 986   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 987   if (if_slow == top()) {
 988     // The slow branch is never taken.  No need to build this guard.
 989     return NULL;
 990   }
 991 
 992   if (region != NULL)
 993     region->add_req(if_slow);
 994 
 995   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 996   set_control(if_fast);
 997 
 998   return if_slow;
 999 }
1000 
1001 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1002   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1003 }
1004 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1005   return generate_guard(test, region, PROB_FAIR);
1006 }
1007 
1008 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1009                                                      Node* *pos_index) {
1010   if (stopped())
1011     return NULL;                // already stopped
1012   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1013     return NULL;                // index is already adequately typed
1014   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1015   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1016   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1017   if (is_neg != NULL && pos_index != NULL) {
1018     // Emulate effect of Parse::adjust_map_after_if.
1019     Node* ccast = new CastIINode(index, TypeInt::POS);
1020     ccast->set_req(0, control());
1021     (*pos_index) = _gvn.transform(ccast);
1022   }
1023   return is_neg;
1024 }
1025 
1026 // Make sure that 'position' is a valid limit index, in [0..length].
1027 // There are two equivalent plans for checking this:
1028 //   A. (offset + copyLength)  unsigned<=  arrayLength
1029 //   B. offset  <=  (arrayLength - copyLength)
1030 // We require that all of the values above, except for the sum and
1031 // difference, are already known to be non-negative.
1032 // Plan A is robust in the face of overflow, if offset and copyLength
1033 // are both hugely positive.
1034 //
1035 // Plan B is less direct and intuitive, but it does not overflow at
1036 // all, since the difference of two non-negatives is always
1037 // representable.  Whenever Java methods must perform the equivalent
1038 // check they generally use Plan B instead of Plan A.
1039 // For the moment we use Plan A.
1040 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1041                                                   Node* subseq_length,
1042                                                   Node* array_length,
1043                                                   RegionNode* region) {
1044   if (stopped())
1045     return NULL;                // already stopped
1046   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1047   if (zero_offset && subseq_length->eqv_uncast(array_length))
1048     return NULL;                // common case of whole-array copy
1049   Node* last = subseq_length;
1050   if (!zero_offset)             // last += offset
1051     last = _gvn.transform(new AddINode(last, offset));
1052   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1053   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1054   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1055   return is_over;
1056 }
1057 
1058 // Emit range checks for the given String.value byte array
1059 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
1060   if (stopped()) {
1061     return; // already stopped
1062   }
1063   RegionNode* bailout = new RegionNode(1);
1064   record_for_igvn(bailout);
1065   if (char_count) {
1066     // Convert char count to byte count
1067     count = _gvn.transform(new LShiftINode(count, intcon(1)));
1068   }
1069 
1070   // Offset and count must not be negative
1071   generate_negative_guard(offset, bailout);
1072   generate_negative_guard(count, bailout);
1073   // Offset + count must not exceed length of array
1074   generate_limit_guard(offset, count, load_array_length(array), bailout);
1075 
1076   if (bailout->req() > 1) {
1077     PreserveJVMState pjvms(this);
1078     set_control(_gvn.transform(bailout));
1079     uncommon_trap(Deoptimization::Reason_intrinsic,
1080                   Deoptimization::Action_maybe_recompile);
1081   }
1082 }
1083 
1084 //--------------------------generate_current_thread--------------------
1085 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1086   ciKlass*    thread_klass = env()->Thread_klass();
1087   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1088   Node* thread = _gvn.transform(new ThreadLocalNode());
1089   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1090   Node* threadObj = _gvn.transform(LoadNode::make(_gvn, NULL, immutable_memory(), p, p->bottom_type()->is_ptr(), thread_type, T_OBJECT, MemNode::unordered));
1091   tls_output = thread;
1092   return threadObj;
1093 }
1094 
1095 
1096 //------------------------------make_string_method_node------------------------
1097 // Helper method for String intrinsic functions. This version is called with
1098 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1099 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1100 // containing the lengths of str1 and str2.
1101 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1102   Node* result = NULL;
1103   switch (opcode) {
1104   case Op_StrIndexOf:
1105     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1106                                 str1_start, cnt1, str2_start, cnt2, ae);
1107     break;
1108   case Op_StrComp:
1109     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1110                              str1_start, cnt1, str2_start, cnt2, ae);
1111     break;
1112   case Op_StrEquals:
1113     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1114     // Use the constant length if there is one because optimized match rule may exist.
1115     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1116                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1117     break;
1118   default:
1119     ShouldNotReachHere();
1120     return NULL;
1121   }
1122 
1123   // All these intrinsics have checks.
1124   C->set_has_split_ifs(true); // Has chance for split-if optimization
1125   clear_upper_avx();
1126 
1127   return _gvn.transform(result);
1128 }
1129 
1130 //------------------------------inline_string_compareTo------------------------
1131 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1132   Node* arg1 = argument(0);
1133   Node* arg2 = argument(1);
1134 
1135   arg1 = must_be_not_null(arg1, true);
1136   arg2 = must_be_not_null(arg2, true);
1137 
1138   // Get start addr and length of first argument
1139   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1140   Node* arg1_cnt    = load_array_length(arg1);
1141 
1142   // Get start addr and length of second argument
1143   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1144   Node* arg2_cnt    = load_array_length(arg2);
1145 
1146   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1147   set_result(result);
1148   return true;
1149 }
1150 
1151 //------------------------------inline_string_equals------------------------
1152 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1153   Node* arg1 = argument(0);
1154   Node* arg2 = argument(1);
1155 
1156   // paths (plus control) merge
1157   RegionNode* region = new RegionNode(3);
1158   Node* phi = new PhiNode(region, TypeInt::BOOL);
1159 
1160   if (!stopped()) {
1161 
1162     arg1 = must_be_not_null(arg1, true);
1163     arg2 = must_be_not_null(arg2, true);
1164 
1165     // Get start addr and length of first argument
1166     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1167     Node* arg1_cnt    = load_array_length(arg1);
1168 
1169     // Get start addr and length of second argument
1170     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1171     Node* arg2_cnt    = load_array_length(arg2);
1172 
1173     // Check for arg1_cnt != arg2_cnt
1174     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1175     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1176     Node* if_ne = generate_slow_guard(bol, NULL);
1177     if (if_ne != NULL) {
1178       phi->init_req(2, intcon(0));
1179       region->init_req(2, if_ne);
1180     }
1181 
1182     // Check for count == 0 is done by assembler code for StrEquals.
1183 
1184     if (!stopped()) {
1185       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1186       phi->init_req(1, equals);
1187       region->init_req(1, control());
1188     }
1189   }
1190 
1191   // post merge
1192   set_control(_gvn.transform(region));
1193   record_for_igvn(region);
1194 
1195   set_result(_gvn.transform(phi));
1196   return true;
1197 }
1198 
1199 //------------------------------inline_array_equals----------------------------
1200 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1201   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1202   Node* arg1 = argument(0);
1203   Node* arg2 = argument(1);
1204 
1205   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1206   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1207   clear_upper_avx();
1208 
1209   return true;
1210 }
1211 
1212 //------------------------------inline_hasNegatives------------------------------
1213 bool LibraryCallKit::inline_hasNegatives() {
1214   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1215     return false;
1216   }
1217 
1218   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1219   // no receiver since it is static method
1220   Node* ba         = argument(0);
1221   Node* offset     = argument(1);
1222   Node* len        = argument(2);
1223 
1224   ba = must_be_not_null(ba, true);
1225 
1226   // Range checks
1227   generate_string_range_check(ba, offset, len, false);
1228   if (stopped()) {
1229     return true;
1230   }
1231   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1232   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1233   set_result(_gvn.transform(result));
1234   return true;
1235 }
1236 
1237 bool LibraryCallKit::inline_preconditions_checkIndex() {
1238   Node* index = argument(0);
1239   Node* length = argument(1);
1240   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1241     return false;
1242   }
1243 
1244   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1245   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1246 
1247   {
1248     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1249     uncommon_trap(Deoptimization::Reason_intrinsic,
1250                   Deoptimization::Action_make_not_entrant);
1251   }
1252 
1253   if (stopped()) {
1254     return false;
1255   }
1256 
1257   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1258   BoolTest::mask btest = BoolTest::lt;
1259   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1260   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1261   _gvn.set_type(rc, rc->Value(&_gvn));
1262   if (!rc_bool->is_Con()) {
1263     record_for_igvn(rc);
1264   }
1265   set_control(_gvn.transform(new IfTrueNode(rc)));
1266   {
1267     PreserveJVMState pjvms(this);
1268     set_control(_gvn.transform(new IfFalseNode(rc)));
1269     uncommon_trap(Deoptimization::Reason_range_check,
1270                   Deoptimization::Action_make_not_entrant);
1271   }
1272 
1273   if (stopped()) {
1274     return false;
1275   }
1276 
1277   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1278   result->set_req(0, control());
1279   result = _gvn.transform(result);
1280   set_result(result);
1281   replace_in_map(index, result);
1282   clear_upper_avx();
1283   return true;
1284 }
1285 
1286 //------------------------------inline_string_indexOf------------------------
1287 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1288   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1289     return false;
1290   }
1291   Node* src = argument(0);
1292   Node* tgt = argument(1);
1293 
1294   // Make the merge point
1295   RegionNode* result_rgn = new RegionNode(4);
1296   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1297 
1298   src = must_be_not_null(src, true);
1299   tgt = must_be_not_null(tgt, true);
1300 
1301   // Get start addr and length of source string
1302   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1303   Node* src_count = load_array_length(src);
1304 
1305   // Get start addr and length of substring
1306   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1307   Node* tgt_count = load_array_length(tgt);
1308 
1309   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1310     // Divide src size by 2 if String is UTF16 encoded
1311     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1312   }
1313   if (ae == StrIntrinsicNode::UU) {
1314     // Divide substring size by 2 if String is UTF16 encoded
1315     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1316   }
1317 
1318   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1319   if (result != NULL) {
1320     result_phi->init_req(3, result);
1321     result_rgn->init_req(3, control());
1322   }
1323   set_control(_gvn.transform(result_rgn));
1324   record_for_igvn(result_rgn);
1325   set_result(_gvn.transform(result_phi));
1326 
1327   return true;
1328 }
1329 
1330 //-----------------------------inline_string_indexOf-----------------------
1331 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1332   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1333     return false;
1334   }
1335   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1336     return false;
1337   }
1338   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1339   Node* src         = argument(0); // byte[]
1340   Node* src_count   = argument(1); // char count
1341   Node* tgt         = argument(2); // byte[]
1342   Node* tgt_count   = argument(3); // char count
1343   Node* from_index  = argument(4); // char index
1344 
1345   src = must_be_not_null(src, true);
1346   tgt = must_be_not_null(tgt, true);
1347 
1348   // Multiply byte array index by 2 if String is UTF16 encoded
1349   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1350   src_count = _gvn.transform(new SubINode(src_count, from_index));
1351   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1352   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1353 
1354   // Range checks
1355   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1356   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1357   if (stopped()) {
1358     return true;
1359   }
1360 
1361   RegionNode* region = new RegionNode(5);
1362   Node* phi = new PhiNode(region, TypeInt::INT);
1363 
1364   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1365   if (result != NULL) {
1366     // The result is index relative to from_index if substring was found, -1 otherwise.
1367     // Generate code which will fold into cmove.
1368     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1369     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1370 
1371     Node* if_lt = generate_slow_guard(bol, NULL);
1372     if (if_lt != NULL) {
1373       // result == -1
1374       phi->init_req(3, result);
1375       region->init_req(3, if_lt);
1376     }
1377     if (!stopped()) {
1378       result = _gvn.transform(new AddINode(result, from_index));
1379       phi->init_req(4, result);
1380       region->init_req(4, control());
1381     }
1382   }
1383 
1384   set_control(_gvn.transform(region));
1385   record_for_igvn(region);
1386   set_result(_gvn.transform(phi));
1387   clear_upper_avx();
1388 
1389   return true;
1390 }
1391 
1392 // Create StrIndexOfNode with fast path checks
1393 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1394                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1395   // Check for substr count > string count
1396   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1397   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1398   Node* if_gt = generate_slow_guard(bol, NULL);
1399   if (if_gt != NULL) {
1400     phi->init_req(1, intcon(-1));
1401     region->init_req(1, if_gt);
1402   }
1403   if (!stopped()) {
1404     // Check for substr count == 0
1405     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1406     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1407     Node* if_zero = generate_slow_guard(bol, NULL);
1408     if (if_zero != NULL) {
1409       phi->init_req(2, intcon(0));
1410       region->init_req(2, if_zero);
1411     }
1412   }
1413   if (!stopped()) {
1414     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1415   }
1416   return NULL;
1417 }
1418 
1419 //-----------------------------inline_string_indexOfChar-----------------------
1420 bool LibraryCallKit::inline_string_indexOfChar() {
1421   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1422     return false;
1423   }
1424   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1425     return false;
1426   }
1427   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1428   Node* src         = argument(0); // byte[]
1429   Node* tgt         = argument(1); // tgt is int ch
1430   Node* from_index  = argument(2);
1431   Node* max         = argument(3);
1432 
1433   src = must_be_not_null(src, true);
1434 
1435   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1436   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1437   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1438 
1439   // Range checks
1440   generate_string_range_check(src, src_offset, src_count, true);
1441   if (stopped()) {
1442     return true;
1443   }
1444 
1445   RegionNode* region = new RegionNode(3);
1446   Node* phi = new PhiNode(region, TypeInt::INT);
1447 
1448   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1449   C->set_has_split_ifs(true); // Has chance for split-if optimization
1450   _gvn.transform(result);
1451 
1452   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1453   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1454 
1455   Node* if_lt = generate_slow_guard(bol, NULL);
1456   if (if_lt != NULL) {
1457     // result == -1
1458     phi->init_req(2, result);
1459     region->init_req(2, if_lt);
1460   }
1461   if (!stopped()) {
1462     result = _gvn.transform(new AddINode(result, from_index));
1463     phi->init_req(1, result);
1464     region->init_req(1, control());
1465   }
1466   set_control(_gvn.transform(region));
1467   record_for_igvn(region);
1468   set_result(_gvn.transform(phi));
1469 
1470   return true;
1471 }
1472 //---------------------------inline_string_copy---------------------
1473 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1474 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1475 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1476 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1477 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1478 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1479 bool LibraryCallKit::inline_string_copy(bool compress) {
1480   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1481     return false;
1482   }
1483   int nargs = 5;  // 2 oops, 3 ints
1484   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1485 
1486   Node* src         = argument(0);
1487   Node* src_offset  = argument(1);
1488   Node* dst         = argument(2);
1489   Node* dst_offset  = argument(3);
1490   Node* length      = argument(4);
1491 
1492   // Check for allocation before we add nodes that would confuse
1493   // tightly_coupled_allocation()
1494   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1495 
1496   // Figure out the size and type of the elements we will be copying.
1497   const Type* src_type = src->Value(&_gvn);
1498   const Type* dst_type = dst->Value(&_gvn);
1499   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1500   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1501   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1502          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1503          "Unsupported array types for inline_string_copy");
1504 
1505   src = must_be_not_null(src, true);
1506   dst = must_be_not_null(dst, true);
1507 
1508   // Convert char[] offsets to byte[] offsets
1509   bool convert_src = (compress && src_elem == T_BYTE);
1510   bool convert_dst = (!compress && dst_elem == T_BYTE);
1511   if (convert_src) {
1512     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1513   } else if (convert_dst) {
1514     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1515   }
1516 
1517   // Range checks
1518   generate_string_range_check(src, src_offset, length, convert_src);
1519   generate_string_range_check(dst, dst_offset, length, convert_dst);
1520   if (stopped()) {
1521     return true;
1522   }
1523 
1524   Node* src_start = array_element_address(src, src_offset, src_elem);
1525   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1526   // 'src_start' points to src array + scaled offset
1527   // 'dst_start' points to dst array + scaled offset
1528   Node* count = NULL;
1529   if (compress) {
1530     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1531   } else {
1532     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1533   }
1534 
1535   if (alloc != NULL) {
1536     if (alloc->maybe_set_complete(&_gvn)) {
1537       // "You break it, you buy it."
1538       InitializeNode* init = alloc->initialization();
1539       assert(init->is_complete(), "we just did this");
1540       init->set_complete_with_arraycopy();
1541       assert(dst->is_CheckCastPP(), "sanity");
1542       assert(dst->in(0)->in(0) == init, "dest pinned");
1543     }
1544     // Do not let stores that initialize this object be reordered with
1545     // a subsequent store that would make this object accessible by
1546     // other threads.
1547     // Record what AllocateNode this StoreStore protects so that
1548     // escape analysis can go from the MemBarStoreStoreNode to the
1549     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1550     // based on the escape status of the AllocateNode.
1551     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1552   }
1553   if (compress) {
1554     set_result(_gvn.transform(count));
1555   }
1556   clear_upper_avx();
1557 
1558   return true;
1559 }
1560 
1561 #ifdef _LP64
1562 #define XTOP ,top() /*additional argument*/
1563 #else  //_LP64
1564 #define XTOP        /*no additional argument*/
1565 #endif //_LP64
1566 
1567 //------------------------inline_string_toBytesU--------------------------
1568 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1569 bool LibraryCallKit::inline_string_toBytesU() {
1570   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1571     return false;
1572   }
1573   // Get the arguments.
1574   Node* value     = argument(0);
1575   Node* offset    = argument(1);
1576   Node* length    = argument(2);
1577 
1578   Node* newcopy = NULL;
1579 
1580   // Set the original stack and the reexecute bit for the interpreter to reexecute
1581   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1582   { PreserveReexecuteState preexecs(this);
1583     jvms()->set_should_reexecute(true);
1584 
1585     // Check if a null path was taken unconditionally.
1586     value = null_check(value);
1587 
1588     RegionNode* bailout = new RegionNode(1);
1589     record_for_igvn(bailout);
1590 
1591     // Range checks
1592     generate_negative_guard(offset, bailout);
1593     generate_negative_guard(length, bailout);
1594     generate_limit_guard(offset, length, load_array_length(value), bailout);
1595     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1596     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1597 
1598     if (bailout->req() > 1) {
1599       PreserveJVMState pjvms(this);
1600       set_control(_gvn.transform(bailout));
1601       uncommon_trap(Deoptimization::Reason_intrinsic,
1602                     Deoptimization::Action_maybe_recompile);
1603     }
1604     if (stopped()) {
1605       return true;
1606     }
1607 
1608     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1609     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1610     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1611     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1612 
1613     // Calculate starting addresses.
1614     Node* src_start = array_element_address(value, offset, T_CHAR);
1615     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1616 
1617     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1618     const TypeInt* toffset = gvn().type(offset)->is_int();
1619     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1620 
1621     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1622     const char* copyfunc_name = "arraycopy";
1623     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1624     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1625                       OptoRuntime::fast_arraycopy_Type(),
1626                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1627                       src_start, dst_start, ConvI2X(length) XTOP);
1628     // Do not let reads from the cloned object float above the arraycopy.
1629     if (alloc != NULL) {
1630       if (alloc->maybe_set_complete(&_gvn)) {
1631         // "You break it, you buy it."
1632         InitializeNode* init = alloc->initialization();
1633         assert(init->is_complete(), "we just did this");
1634         init->set_complete_with_arraycopy();
1635         assert(newcopy->is_CheckCastPP(), "sanity");
1636         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1637       }
1638       // Do not let stores that initialize this object be reordered with
1639       // a subsequent store that would make this object accessible by
1640       // other threads.
1641       // Record what AllocateNode this StoreStore protects so that
1642       // escape analysis can go from the MemBarStoreStoreNode to the
1643       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1644       // based on the escape status of the AllocateNode.
1645       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1646     } else {
1647       insert_mem_bar(Op_MemBarCPUOrder);
1648     }
1649   } // original reexecute is set back here
1650 
1651   C->set_has_split_ifs(true); // Has chance for split-if optimization
1652   if (!stopped()) {
1653     set_result(newcopy);
1654   }
1655   clear_upper_avx();
1656 
1657   return true;
1658 }
1659 
1660 //------------------------inline_string_getCharsU--------------------------
1661 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1662 bool LibraryCallKit::inline_string_getCharsU() {
1663   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1664     return false;
1665   }
1666 
1667   // Get the arguments.
1668   Node* src       = argument(0);
1669   Node* src_begin = argument(1);
1670   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1671   Node* dst       = argument(3);
1672   Node* dst_begin = argument(4);
1673 
1674   // Check for allocation before we add nodes that would confuse
1675   // tightly_coupled_allocation()
1676   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1677 
1678   // Check if a null path was taken unconditionally.
1679   src = null_check(src);
1680   dst = null_check(dst);
1681   if (stopped()) {
1682     return true;
1683   }
1684 
1685   // Get length and convert char[] offset to byte[] offset
1686   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1687   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1688 
1689   // Range checks
1690   generate_string_range_check(src, src_begin, length, true);
1691   generate_string_range_check(dst, dst_begin, length, false);
1692   if (stopped()) {
1693     return true;
1694   }
1695 
1696   if (!stopped()) {
1697     // Calculate starting addresses.
1698     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1699     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1700 
1701     // Check if array addresses are aligned to HeapWordSize
1702     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1703     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1704     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1705                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1706 
1707     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1708     const char* copyfunc_name = "arraycopy";
1709     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1710     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1711                       OptoRuntime::fast_arraycopy_Type(),
1712                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1713                       src_start, dst_start, ConvI2X(length) XTOP);
1714     // Do not let reads from the cloned object float above the arraycopy.
1715     if (alloc != NULL) {
1716       if (alloc->maybe_set_complete(&_gvn)) {
1717         // "You break it, you buy it."
1718         InitializeNode* init = alloc->initialization();
1719         assert(init->is_complete(), "we just did this");
1720         init->set_complete_with_arraycopy();
1721         assert(dst->is_CheckCastPP(), "sanity");
1722         assert(dst->in(0)->in(0) == init, "dest pinned");
1723       }
1724       // Do not let stores that initialize this object be reordered with
1725       // a subsequent store that would make this object accessible by
1726       // other threads.
1727       // Record what AllocateNode this StoreStore protects so that
1728       // escape analysis can go from the MemBarStoreStoreNode to the
1729       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1730       // based on the escape status of the AllocateNode.
1731       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1732     } else {
1733       insert_mem_bar(Op_MemBarCPUOrder);
1734     }
1735   }
1736 
1737   C->set_has_split_ifs(true); // Has chance for split-if optimization
1738   return true;
1739 }
1740 
1741 //----------------------inline_string_char_access----------------------------
1742 // Store/Load char to/from byte[] array.
1743 // static void StringUTF16.putChar(byte[] val, int index, int c)
1744 // static char StringUTF16.getChar(byte[] val, int index)
1745 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1746   Node* value  = argument(0);
1747   Node* index  = argument(1);
1748   Node* ch = is_store ? argument(2) : NULL;
1749 
1750   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1751   // correctly requires matched array shapes.
1752   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1753           "sanity: byte[] and char[] bases agree");
1754   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1755           "sanity: byte[] and char[] scales agree");
1756 
1757   // Bail when getChar over constants is requested: constant folding would
1758   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1759   // Java method would constant fold nicely instead.
1760   if (!is_store && value->is_Con() && index->is_Con()) {
1761     return false;
1762   }
1763 
1764   value = must_be_not_null(value, true);
1765 
1766   Node* adr = array_element_address(value, index, T_CHAR);
1767   if (adr->is_top()) {
1768     return false;
1769   }
1770   if (is_store) {
1771     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1772   } else {
1773     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
1774     set_result(ch);
1775   }
1776   return true;
1777 }
1778 
1779 //--------------------------round_double_node--------------------------------
1780 // Round a double node if necessary.
1781 Node* LibraryCallKit::round_double_node(Node* n) {
1782   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1783     n = _gvn.transform(new RoundDoubleNode(0, n));
1784   return n;
1785 }
1786 
1787 //------------------------------inline_math-----------------------------------
1788 // public static double Math.abs(double)
1789 // public static double Math.sqrt(double)
1790 // public static double Math.log(double)
1791 // public static double Math.log10(double)
1792 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1793   Node* arg = round_double_node(argument(0));
1794   Node* n = NULL;
1795   switch (id) {
1796   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1797   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1798   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1799   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1800   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1801   default:  fatal_unexpected_iid(id);  break;
1802   }
1803   set_result(_gvn.transform(n));
1804   return true;
1805 }
1806 
1807 //------------------------------inline_math-----------------------------------
1808 // public static float Math.abs(float)
1809 // public static int Math.abs(int)
1810 // public static long Math.abs(long)
1811 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1812   Node* arg = argument(0);
1813   Node* n = NULL;
1814   switch (id) {
1815   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1816   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1817   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1818   default:  fatal_unexpected_iid(id);  break;
1819   }
1820   set_result(_gvn.transform(n));
1821   return true;
1822 }
1823 
1824 //------------------------------runtime_math-----------------------------
1825 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1826   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1827          "must be (DD)D or (D)D type");
1828 
1829   // Inputs
1830   Node* a = round_double_node(argument(0));
1831   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1832 
1833   const TypePtr* no_memory_effects = NULL;
1834   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1835                                  no_memory_effects,
1836                                  a, top(), b, b ? top() : NULL);
1837   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1838 #ifdef ASSERT
1839   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1840   assert(value_top == top(), "second value must be top");
1841 #endif
1842 
1843   set_result(value);
1844   return true;
1845 }
1846 
1847 //------------------------------inline_math_native-----------------------------
1848 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1849 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1850   switch (id) {
1851     // These intrinsics are not properly supported on all hardware
1852   case vmIntrinsics::_dsin:
1853     return StubRoutines::dsin() != NULL ?
1854       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1855       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1856   case vmIntrinsics::_dcos:
1857     return StubRoutines::dcos() != NULL ?
1858       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1859       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1860   case vmIntrinsics::_dtan:
1861     return StubRoutines::dtan() != NULL ?
1862       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1863       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1864   case vmIntrinsics::_dlog:
1865     return StubRoutines::dlog() != NULL ?
1866       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1867       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1868   case vmIntrinsics::_dlog10:
1869     return StubRoutines::dlog10() != NULL ?
1870       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1871       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1872 
1873     // These intrinsics are supported on all hardware
1874   case vmIntrinsics::_ceil:
1875   case vmIntrinsics::_floor:
1876   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1877   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1878   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1879   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1880   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1881   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1882 
1883   case vmIntrinsics::_dexp:
1884     return StubRoutines::dexp() != NULL ?
1885       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1886       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1887   case vmIntrinsics::_dpow: {
1888     Node* exp = round_double_node(argument(2));
1889     const TypeD* d = _gvn.type(exp)->isa_double_constant();
1890     if (d != NULL && d->getd() == 2.0) {
1891       // Special case: pow(x, 2.0) => x * x
1892       Node* base = round_double_node(argument(0));
1893       set_result(_gvn.transform(new MulDNode(base, base)));
1894       return true;
1895     }
1896     return StubRoutines::dpow() != NULL ?
1897       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1898       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1899   }
1900 #undef FN_PTR
1901 
1902    // These intrinsics are not yet correctly implemented
1903   case vmIntrinsics::_datan2:
1904     return false;
1905 
1906   default:
1907     fatal_unexpected_iid(id);
1908     return false;
1909   }
1910 }
1911 
1912 static bool is_simple_name(Node* n) {
1913   return (n->req() == 1         // constant
1914           || (n->is_Type() && n->as_Type()->type()->singleton())
1915           || n->is_Proj()       // parameter or return value
1916           || n->is_Phi()        // local of some sort
1917           );
1918 }
1919 
1920 //----------------------------inline_notify-----------------------------------*
1921 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1922   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1923   address func;
1924   if (id == vmIntrinsics::_notify) {
1925     func = OptoRuntime::monitor_notify_Java();
1926   } else {
1927     func = OptoRuntime::monitor_notifyAll_Java();
1928   }
1929   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1930   make_slow_call_ex(call, env()->Throwable_klass(), false);
1931   return true;
1932 }
1933 
1934 
1935 //----------------------------inline_min_max-----------------------------------
1936 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1937   set_result(generate_min_max(id, argument(0), argument(1)));
1938   return true;
1939 }
1940 
1941 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1942   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1943   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1944   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1945   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1946 
1947   {
1948     PreserveJVMState pjvms(this);
1949     PreserveReexecuteState preexecs(this);
1950     jvms()->set_should_reexecute(true);
1951 
1952     set_control(slow_path);
1953     set_i_o(i_o());
1954 
1955     uncommon_trap(Deoptimization::Reason_intrinsic,
1956                   Deoptimization::Action_none);
1957   }
1958 
1959   set_control(fast_path);
1960   set_result(math);
1961 }
1962 
1963 template <typename OverflowOp>
1964 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1965   typedef typename OverflowOp::MathOp MathOp;
1966 
1967   MathOp* mathOp = new MathOp(arg1, arg2);
1968   Node* operation = _gvn.transform( mathOp );
1969   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1970   inline_math_mathExact(operation, ofcheck);
1971   return true;
1972 }
1973 
1974 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1975   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1976 }
1977 
1978 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1979   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1980 }
1981 
1982 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1983   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1984 }
1985 
1986 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1987   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1988 }
1989 
1990 bool LibraryCallKit::inline_math_negateExactI() {
1991   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1992 }
1993 
1994 bool LibraryCallKit::inline_math_negateExactL() {
1995   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1996 }
1997 
1998 bool LibraryCallKit::inline_math_multiplyExactI() {
1999   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2000 }
2001 
2002 bool LibraryCallKit::inline_math_multiplyExactL() {
2003   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2004 }
2005 
2006 bool LibraryCallKit::inline_math_multiplyHigh() {
2007   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2008   return true;
2009 }
2010 
2011 Node*
2012 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2013   // These are the candidate return value:
2014   Node* xvalue = x0;
2015   Node* yvalue = y0;
2016 
2017   if (xvalue == yvalue) {
2018     return xvalue;
2019   }
2020 
2021   bool want_max = (id == vmIntrinsics::_max);
2022 
2023   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2024   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2025   if (txvalue == NULL || tyvalue == NULL)  return top();
2026   // This is not really necessary, but it is consistent with a
2027   // hypothetical MaxINode::Value method:
2028   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2029 
2030   // %%% This folding logic should (ideally) be in a different place.
2031   // Some should be inside IfNode, and there to be a more reliable
2032   // transformation of ?: style patterns into cmoves.  We also want
2033   // more powerful optimizations around cmove and min/max.
2034 
2035   // Try to find a dominating comparison of these guys.
2036   // It can simplify the index computation for Arrays.copyOf
2037   // and similar uses of System.arraycopy.
2038   // First, compute the normalized version of CmpI(x, y).
2039   int   cmp_op = Op_CmpI;
2040   Node* xkey = xvalue;
2041   Node* ykey = yvalue;
2042   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2043   if (ideal_cmpxy->is_Cmp()) {
2044     // E.g., if we have CmpI(length - offset, count),
2045     // it might idealize to CmpI(length, count + offset)
2046     cmp_op = ideal_cmpxy->Opcode();
2047     xkey = ideal_cmpxy->in(1);
2048     ykey = ideal_cmpxy->in(2);
2049   }
2050 
2051   // Start by locating any relevant comparisons.
2052   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2053   Node* cmpxy = NULL;
2054   Node* cmpyx = NULL;
2055   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2056     Node* cmp = start_from->fast_out(k);
2057     if (cmp->outcnt() > 0 &&            // must have prior uses
2058         cmp->in(0) == NULL &&           // must be context-independent
2059         cmp->Opcode() == cmp_op) {      // right kind of compare
2060       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2061       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2062     }
2063   }
2064 
2065   const int NCMPS = 2;
2066   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2067   int cmpn;
2068   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2069     if (cmps[cmpn] != NULL)  break;     // find a result
2070   }
2071   if (cmpn < NCMPS) {
2072     // Look for a dominating test that tells us the min and max.
2073     int depth = 0;                // Limit search depth for speed
2074     Node* dom = control();
2075     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2076       if (++depth >= 100)  break;
2077       Node* ifproj = dom;
2078       if (!ifproj->is_Proj())  continue;
2079       Node* iff = ifproj->in(0);
2080       if (!iff->is_If())  continue;
2081       Node* bol = iff->in(1);
2082       if (!bol->is_Bool())  continue;
2083       Node* cmp = bol->in(1);
2084       if (cmp == NULL)  continue;
2085       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2086         if (cmps[cmpn] == cmp)  break;
2087       if (cmpn == NCMPS)  continue;
2088       BoolTest::mask btest = bol->as_Bool()->_test._test;
2089       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2090       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2091       // At this point, we know that 'x btest y' is true.
2092       switch (btest) {
2093       case BoolTest::eq:
2094         // They are proven equal, so we can collapse the min/max.
2095         // Either value is the answer.  Choose the simpler.
2096         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2097           return yvalue;
2098         return xvalue;
2099       case BoolTest::lt:          // x < y
2100       case BoolTest::le:          // x <= y
2101         return (want_max ? yvalue : xvalue);
2102       case BoolTest::gt:          // x > y
2103       case BoolTest::ge:          // x >= y
2104         return (want_max ? xvalue : yvalue);
2105       default:
2106         break;
2107       }
2108     }
2109   }
2110 
2111   // We failed to find a dominating test.
2112   // Let's pick a test that might GVN with prior tests.
2113   Node*          best_bol   = NULL;
2114   BoolTest::mask best_btest = BoolTest::illegal;
2115   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2116     Node* cmp = cmps[cmpn];
2117     if (cmp == NULL)  continue;
2118     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2119       Node* bol = cmp->fast_out(j);
2120       if (!bol->is_Bool())  continue;
2121       BoolTest::mask btest = bol->as_Bool()->_test._test;
2122       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2123       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2124       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2125         best_bol   = bol->as_Bool();
2126         best_btest = btest;
2127       }
2128     }
2129   }
2130 
2131   Node* answer_if_true  = NULL;
2132   Node* answer_if_false = NULL;
2133   switch (best_btest) {
2134   default:
2135     if (cmpxy == NULL)
2136       cmpxy = ideal_cmpxy;
2137     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2138     // and fall through:
2139   case BoolTest::lt:          // x < y
2140   case BoolTest::le:          // x <= y
2141     answer_if_true  = (want_max ? yvalue : xvalue);
2142     answer_if_false = (want_max ? xvalue : yvalue);
2143     break;
2144   case BoolTest::gt:          // x > y
2145   case BoolTest::ge:          // x >= y
2146     answer_if_true  = (want_max ? xvalue : yvalue);
2147     answer_if_false = (want_max ? yvalue : xvalue);
2148     break;
2149   }
2150 
2151   jint hi, lo;
2152   if (want_max) {
2153     // We can sharpen the minimum.
2154     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2155     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2156   } else {
2157     // We can sharpen the maximum.
2158     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2159     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2160   }
2161 
2162   // Use a flow-free graph structure, to avoid creating excess control edges
2163   // which could hinder other optimizations.
2164   // Since Math.min/max is often used with arraycopy, we want
2165   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2166   Node* cmov = CMoveNode::make(NULL, best_bol,
2167                                answer_if_false, answer_if_true,
2168                                TypeInt::make(lo, hi, widen));
2169 
2170   return _gvn.transform(cmov);
2171 
2172   /*
2173   // This is not as desirable as it may seem, since Min and Max
2174   // nodes do not have a full set of optimizations.
2175   // And they would interfere, anyway, with 'if' optimizations
2176   // and with CMoveI canonical forms.
2177   switch (id) {
2178   case vmIntrinsics::_min:
2179     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2180   case vmIntrinsics::_max:
2181     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2182   default:
2183     ShouldNotReachHere();
2184   }
2185   */
2186 }
2187 
2188 inline int
2189 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2190   const TypePtr* base_type = TypePtr::NULL_PTR;
2191   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2192   if (base_type == NULL) {
2193     // Unknown type.
2194     return Type::AnyPtr;
2195   } else if (base_type == TypePtr::NULL_PTR) {
2196     // Since this is a NULL+long form, we have to switch to a rawptr.
2197     base   = _gvn.transform(new CastX2PNode(offset));
2198     offset = MakeConX(0);
2199     return Type::RawPtr;
2200   } else if (base_type->base() == Type::RawPtr) {
2201     return Type::RawPtr;
2202   } else if (base_type->isa_oopptr()) {
2203     // Base is never null => always a heap address.
2204     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2205       return Type::OopPtr;
2206     }
2207     // Offset is small => always a heap address.
2208     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2209     if (offset_type != NULL &&
2210         base_type->offset() == 0 &&     // (should always be?)
2211         offset_type->_lo >= 0 &&
2212         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2213       return Type::OopPtr;
2214     } else if (type == T_OBJECT) {
2215       // off heap access to an oop doesn't make any sense. Has to be on
2216       // heap.
2217       return Type::OopPtr;
2218     }
2219     // Otherwise, it might either be oop+off or NULL+addr.
2220     return Type::AnyPtr;
2221   } else {
2222     // No information:
2223     return Type::AnyPtr;
2224   }
2225 }
2226 
2227 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type, bool can_cast) {
2228   Node* uncasted_base = base;
2229   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2230   if (kind == Type::RawPtr) {
2231     return basic_plus_adr(top(), uncasted_base, offset);
2232   } else if (kind == Type::AnyPtr) {
2233     assert(base == uncasted_base, "unexpected base change");
2234     if (can_cast) {
2235       if (!_gvn.type(base)->speculative_maybe_null() &&
2236           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2237         // According to profiling, this access is always on
2238         // heap. Casting the base to not null and thus avoiding membars
2239         // around the access should allow better optimizations
2240         Node* null_ctl = top();
2241         base = null_check_oop(base, &null_ctl, true, true, true);
2242         assert(null_ctl->is_top(), "no null control here");
2243         return basic_plus_adr(base, offset);
2244       } else if (_gvn.type(base)->speculative_always_null() &&
2245                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2246         // According to profiling, this access is always off
2247         // heap.
2248         base = null_assert(base);
2249         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2250         offset = MakeConX(0);
2251         return basic_plus_adr(top(), raw_base, offset);
2252       }
2253     }
2254     // We don't know if it's an on heap or off heap access. Fall back
2255     // to raw memory access.
2256     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2257     return basic_plus_adr(top(), raw, offset);
2258   } else {
2259     assert(base == uncasted_base, "unexpected base change");
2260     // We know it's an on heap access so base can't be null
2261     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2262       base = must_be_not_null(base, true);
2263     }
2264     return basic_plus_adr(base, offset);
2265   }
2266 }
2267 
2268 //--------------------------inline_number_methods-----------------------------
2269 // inline int     Integer.numberOfLeadingZeros(int)
2270 // inline int        Long.numberOfLeadingZeros(long)
2271 //
2272 // inline int     Integer.numberOfTrailingZeros(int)
2273 // inline int        Long.numberOfTrailingZeros(long)
2274 //
2275 // inline int     Integer.bitCount(int)
2276 // inline int        Long.bitCount(long)
2277 //
2278 // inline char  Character.reverseBytes(char)
2279 // inline short     Short.reverseBytes(short)
2280 // inline int     Integer.reverseBytes(int)
2281 // inline long       Long.reverseBytes(long)
2282 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2283   Node* arg = argument(0);
2284   Node* n = NULL;
2285   switch (id) {
2286   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2287   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2288   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2289   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2290   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2291   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2292   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2293   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2294   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2295   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2296   default:  fatal_unexpected_iid(id);  break;
2297   }
2298   set_result(_gvn.transform(n));
2299   return true;
2300 }
2301 
2302 //----------------------------inline_unsafe_access----------------------------
2303 
2304 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2305   // Attempt to infer a sharper value type from the offset and base type.
2306   ciKlass* sharpened_klass = NULL;
2307 
2308   // See if it is an instance field, with an object type.
2309   if (alias_type->field() != NULL) {
2310     if (alias_type->field()->type()->is_klass()) {
2311       sharpened_klass = alias_type->field()->type()->as_klass();
2312     }
2313   }
2314 
2315   // See if it is a narrow oop array.
2316   if (adr_type->isa_aryptr()) {
2317     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2318       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2319       if (elem_type != NULL) {
2320         sharpened_klass = elem_type->klass();
2321       }
2322     }
2323   }
2324 
2325   // The sharpened class might be unloaded if there is no class loader
2326   // contraint in place.
2327   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2328     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2329 
2330 #ifndef PRODUCT
2331     if (C->print_intrinsics() || C->print_inlining()) {
2332       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2333       tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2334     }
2335 #endif
2336     // Sharpen the value type.
2337     return tjp;
2338   }
2339   return NULL;
2340 }
2341 
2342 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2343   switch (kind) {
2344       case Relaxed:
2345         return MO_UNORDERED;
2346       case Opaque:
2347         return MO_RELAXED;
2348       case Acquire:
2349         return MO_ACQUIRE;
2350       case Release:
2351         return MO_RELEASE;
2352       case Volatile:
2353         return MO_SEQ_CST;
2354       default:
2355         ShouldNotReachHere();
2356         return 0;
2357   }
2358 }
2359 
2360 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2361   if (callee()->is_static())  return false;  // caller must have the capability!
2362   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2363   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2364   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2365   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2366 
2367   if (is_reference_type(type)) {
2368     decorators |= ON_UNKNOWN_OOP_REF;
2369   }
2370 
2371   if (unaligned) {
2372     decorators |= C2_UNALIGNED;
2373   }
2374 
2375 #ifndef PRODUCT
2376   {
2377     ResourceMark rm;
2378     // Check the signatures.
2379     ciSignature* sig = callee()->signature();
2380 #ifdef ASSERT
2381     if (!is_store) {
2382       // Object getReference(Object base, int/long offset), etc.
2383       BasicType rtype = sig->return_type()->basic_type();
2384       assert(rtype == type, "getter must return the expected value");
2385       assert(sig->count() == 2, "oop getter has 2 arguments");
2386       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2387       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2388     } else {
2389       // void putReference(Object base, int/long offset, Object x), etc.
2390       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2391       assert(sig->count() == 3, "oop putter has 3 arguments");
2392       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2393       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2394       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2395       assert(vtype == type, "putter must accept the expected value");
2396     }
2397 #endif // ASSERT
2398  }
2399 #endif //PRODUCT
2400 
2401   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2402 
2403   Node* receiver = argument(0);  // type: oop
2404 
2405   // Build address expression.
2406   Node* adr;
2407   Node* heap_base_oop = top();
2408   Node* offset = top();
2409   Node* val;
2410 
2411   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2412   Node* base = argument(1);  // type: oop
2413   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2414   offset = argument(2);  // type: long
2415   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2416   // to be plain byte offsets, which are also the same as those accepted
2417   // by oopDesc::field_addr.
2418   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2419          "fieldOffset must be byte-scaled");
2420   // 32-bit machines ignore the high half!
2421   offset = ConvL2X(offset);
2422   adr = make_unsafe_address(base, offset, is_store ? ACCESS_WRITE : ACCESS_READ, type, kind == Relaxed);
2423 
2424   if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) {
2425     if (type != T_OBJECT) {
2426       decorators |= IN_NATIVE; // off-heap primitive access
2427     } else {
2428       return false; // off-heap oop accesses are not supported
2429     }
2430   } else {
2431     heap_base_oop = base; // on-heap or mixed access
2432   }
2433 
2434   // Can base be NULL? Otherwise, always on-heap access.
2435   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2436 
2437   if (!can_access_non_heap) {
2438     decorators |= IN_HEAP;
2439   }
2440 
2441   val = is_store ? argument(4) : NULL;
2442 
2443   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2444   if (adr_type == TypePtr::NULL_PTR) {
2445     return false; // off-heap access with zero address
2446   }
2447 
2448   // Try to categorize the address.
2449   Compile::AliasType* alias_type = C->alias_type(adr_type);
2450   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2451 
2452   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2453       alias_type->adr_type() == TypeAryPtr::RANGE) {
2454     return false; // not supported
2455   }
2456 
2457   bool mismatched = false;
2458   BasicType bt = alias_type->basic_type();
2459   if (bt != T_ILLEGAL) {
2460     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2461     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2462       // Alias type doesn't differentiate between byte[] and boolean[]).
2463       // Use address type to get the element type.
2464       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2465     }
2466     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2467       // accessing an array field with getReference is not a mismatch
2468       bt = T_OBJECT;
2469     }
2470     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2471       // Don't intrinsify mismatched object accesses
2472       return false;
2473     }
2474     mismatched = (bt != type);
2475   } else if (alias_type->adr_type()->isa_oopptr()) {
2476     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2477   }
2478 
2479   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2480 
2481   if (mismatched) {
2482     decorators |= C2_MISMATCHED;
2483   }
2484 
2485   // First guess at the value type.
2486   const Type *value_type = Type::get_const_basic_type(type);
2487 
2488   // Figure out the memory ordering.
2489   decorators |= mo_decorator_for_access_kind(kind);
2490 
2491   if (!is_store && type == T_OBJECT) {
2492     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2493     if (tjp != NULL) {
2494       value_type = tjp;
2495     }
2496   }
2497 
2498   receiver = null_check(receiver);
2499   if (stopped()) {
2500     return true;
2501   }
2502   // Heap pointers get a null-check from the interpreter,
2503   // as a courtesy.  However, this is not guaranteed by Unsafe,
2504   // and it is not possible to fully distinguish unintended nulls
2505   // from intended ones in this API.
2506 
2507   if (!is_store) {
2508     Node* p = NULL;
2509     // Try to constant fold a load from a constant field
2510     ciField* field = alias_type->field();
2511     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2512       // final or stable field
2513       p = make_constant_from_field(field, heap_base_oop);
2514     }
2515 
2516     if (p == NULL) { // Could not constant fold the load
2517       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2518       // Normalize the value returned by getBoolean in the following cases
2519       if (type == T_BOOLEAN &&
2520           (mismatched ||
2521            heap_base_oop == top() ||                  // - heap_base_oop is NULL or
2522            (can_access_non_heap && field == NULL))    // - heap_base_oop is potentially NULL
2523                                                       //   and the unsafe access is made to large offset
2524                                                       //   (i.e., larger than the maximum offset necessary for any
2525                                                       //   field access)
2526             ) {
2527           IdealKit ideal = IdealKit(this);
2528 #define __ ideal.
2529           IdealVariable normalized_result(ideal);
2530           __ declarations_done();
2531           __ set(normalized_result, p);
2532           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2533           __ set(normalized_result, ideal.ConI(1));
2534           ideal.end_if();
2535           final_sync(ideal);
2536           p = __ value(normalized_result);
2537 #undef __
2538       }
2539     }
2540     if (type == T_ADDRESS) {
2541       p = gvn().transform(new CastP2XNode(NULL, p));
2542       p = ConvX2UL(p);
2543     }
2544     // The load node has the control of the preceding MemBarCPUOrder.  All
2545     // following nodes will have the control of the MemBarCPUOrder inserted at
2546     // the end of this method.  So, pushing the load onto the stack at a later
2547     // point is fine.
2548     set_result(p);
2549   } else {
2550     if (bt == T_ADDRESS) {
2551       // Repackage the long as a pointer.
2552       val = ConvL2X(val);
2553       val = gvn().transform(new CastX2PNode(val));
2554     }
2555     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2556   }
2557 
2558   return true;
2559 }
2560 
2561 //----------------------------inline_unsafe_load_store----------------------------
2562 // This method serves a couple of different customers (depending on LoadStoreKind):
2563 //
2564 // LS_cmp_swap:
2565 //
2566 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2567 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2568 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2569 //
2570 // LS_cmp_swap_weak:
2571 //
2572 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2573 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2574 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2575 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2576 //
2577 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2578 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2579 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2580 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2581 //
2582 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2583 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2584 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2585 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2586 //
2587 // LS_cmp_exchange:
2588 //
2589 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2590 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2591 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2592 //
2593 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2594 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2595 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2596 //
2597 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2598 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2599 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2600 //
2601 // LS_get_add:
2602 //
2603 //   int  getAndAddInt( Object o, long offset, int  delta)
2604 //   long getAndAddLong(Object o, long offset, long delta)
2605 //
2606 // LS_get_set:
2607 //
2608 //   int    getAndSet(Object o, long offset, int    newValue)
2609 //   long   getAndSet(Object o, long offset, long   newValue)
2610 //   Object getAndSet(Object o, long offset, Object newValue)
2611 //
2612 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2613   // This basic scheme here is the same as inline_unsafe_access, but
2614   // differs in enough details that combining them would make the code
2615   // overly confusing.  (This is a true fact! I originally combined
2616   // them, but even I was confused by it!) As much code/comments as
2617   // possible are retained from inline_unsafe_access though to make
2618   // the correspondences clearer. - dl
2619 
2620   if (callee()->is_static())  return false;  // caller must have the capability!
2621 
2622   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2623   decorators |= mo_decorator_for_access_kind(access_kind);
2624 
2625 #ifndef PRODUCT
2626   BasicType rtype;
2627   {
2628     ResourceMark rm;
2629     // Check the signatures.
2630     ciSignature* sig = callee()->signature();
2631     rtype = sig->return_type()->basic_type();
2632     switch(kind) {
2633       case LS_get_add:
2634       case LS_get_set: {
2635       // Check the signatures.
2636 #ifdef ASSERT
2637       assert(rtype == type, "get and set must return the expected type");
2638       assert(sig->count() == 3, "get and set has 3 arguments");
2639       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2640       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2641       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2642       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2643 #endif // ASSERT
2644         break;
2645       }
2646       case LS_cmp_swap:
2647       case LS_cmp_swap_weak: {
2648       // Check the signatures.
2649 #ifdef ASSERT
2650       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2651       assert(sig->count() == 4, "CAS has 4 arguments");
2652       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2653       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2654 #endif // ASSERT
2655         break;
2656       }
2657       case LS_cmp_exchange: {
2658       // Check the signatures.
2659 #ifdef ASSERT
2660       assert(rtype == type, "CAS must return the expected type");
2661       assert(sig->count() == 4, "CAS has 4 arguments");
2662       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2663       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2664 #endif // ASSERT
2665         break;
2666       }
2667       default:
2668         ShouldNotReachHere();
2669     }
2670   }
2671 #endif //PRODUCT
2672 
2673   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2674 
2675   // Get arguments:
2676   Node* receiver = NULL;
2677   Node* base     = NULL;
2678   Node* offset   = NULL;
2679   Node* oldval   = NULL;
2680   Node* newval   = NULL;
2681   switch(kind) {
2682     case LS_cmp_swap:
2683     case LS_cmp_swap_weak:
2684     case LS_cmp_exchange: {
2685       const bool two_slot_type = type2size[type] == 2;
2686       receiver = argument(0);  // type: oop
2687       base     = argument(1);  // type: oop
2688       offset   = argument(2);  // type: long
2689       oldval   = argument(4);  // type: oop, int, or long
2690       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2691       break;
2692     }
2693     case LS_get_add:
2694     case LS_get_set: {
2695       receiver = argument(0);  // type: oop
2696       base     = argument(1);  // type: oop
2697       offset   = argument(2);  // type: long
2698       oldval   = NULL;
2699       newval   = argument(4);  // type: oop, int, or long
2700       break;
2701     }
2702     default:
2703       ShouldNotReachHere();
2704   }
2705 
2706   // Build field offset expression.
2707   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2708   // to be plain byte offsets, which are also the same as those accepted
2709   // by oopDesc::field_addr.
2710   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2711   // 32-bit machines ignore the high half of long offsets
2712   offset = ConvL2X(offset);
2713   Node* adr = make_unsafe_address(base, offset, ACCESS_WRITE | ACCESS_READ, type, false);
2714   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2715 
2716   Compile::AliasType* alias_type = C->alias_type(adr_type);
2717   BasicType bt = alias_type->basic_type();
2718   if (bt != T_ILLEGAL &&
2719       (is_reference_type(bt) != (type == T_OBJECT))) {
2720     // Don't intrinsify mismatched object accesses.
2721     return false;
2722   }
2723 
2724   // For CAS, unlike inline_unsafe_access, there seems no point in
2725   // trying to refine types. Just use the coarse types here.
2726   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2727   const Type *value_type = Type::get_const_basic_type(type);
2728 
2729   switch (kind) {
2730     case LS_get_set:
2731     case LS_cmp_exchange: {
2732       if (type == T_OBJECT) {
2733         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2734         if (tjp != NULL) {
2735           value_type = tjp;
2736         }
2737       }
2738       break;
2739     }
2740     case LS_cmp_swap:
2741     case LS_cmp_swap_weak:
2742     case LS_get_add:
2743       break;
2744     default:
2745       ShouldNotReachHere();
2746   }
2747 
2748   // Null check receiver.
2749   receiver = null_check(receiver);
2750   if (stopped()) {
2751     return true;
2752   }
2753 
2754   int alias_idx = C->get_alias_index(adr_type);
2755 
2756   if (is_reference_type(type)) {
2757     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2758 
2759     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2760     // could be delayed during Parse (for example, in adjust_map_after_if()).
2761     // Execute transformation here to avoid barrier generation in such case.
2762     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2763       newval = _gvn.makecon(TypePtr::NULL_PTR);
2764 
2765     if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2766       // Refine the value to a null constant, when it is known to be null
2767       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2768     }
2769   }
2770 
2771   Node* result = NULL;
2772   switch (kind) {
2773     case LS_cmp_exchange: {
2774       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2775                                             oldval, newval, value_type, type, decorators);
2776       break;
2777     }
2778     case LS_cmp_swap_weak:
2779       decorators |= C2_WEAK_CMPXCHG;
2780     case LS_cmp_swap: {
2781       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2782                                              oldval, newval, value_type, type, decorators);
2783       break;
2784     }
2785     case LS_get_set: {
2786       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2787                                      newval, value_type, type, decorators);
2788       break;
2789     }
2790     case LS_get_add: {
2791       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2792                                     newval, value_type, type, decorators);
2793       break;
2794     }
2795     default:
2796       ShouldNotReachHere();
2797   }
2798 
2799   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2800   set_result(result);
2801   return true;
2802 }
2803 
2804 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2805   // Regardless of form, don't allow previous ld/st to move down,
2806   // then issue acquire, release, or volatile mem_bar.
2807   insert_mem_bar(Op_MemBarCPUOrder);
2808   switch(id) {
2809     case vmIntrinsics::_loadFence:
2810       insert_mem_bar(Op_LoadFence);
2811       return true;
2812     case vmIntrinsics::_storeFence:
2813       insert_mem_bar(Op_StoreFence);
2814       return true;
2815     case vmIntrinsics::_fullFence:
2816       insert_mem_bar(Op_MemBarVolatile);
2817       return true;
2818     default:
2819       fatal_unexpected_iid(id);
2820       return false;
2821   }
2822 }
2823 
2824 bool LibraryCallKit::inline_onspinwait() {
2825   insert_mem_bar(Op_OnSpinWait);
2826   return true;
2827 }
2828 
2829 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2830   if (!kls->is_Con()) {
2831     return true;
2832   }
2833   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
2834   if (klsptr == NULL) {
2835     return true;
2836   }
2837   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
2838   // don't need a guard for a klass that is already initialized
2839   return !ik->is_initialized();
2840 }
2841 
2842 //----------------------------inline_unsafe_writeback0-------------------------
2843 // public native void Unsafe.writeback0(long address)
2844 bool LibraryCallKit::inline_unsafe_writeback0() {
2845   if (!Matcher::has_match_rule(Op_CacheWB)) {
2846     return false;
2847   }
2848 #ifndef PRODUCT
2849   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
2850   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
2851   ciSignature* sig = callee()->signature();
2852   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
2853 #endif
2854   null_check_receiver();  // null-check, then ignore
2855   Node *addr = argument(1);
2856   addr = new CastX2PNode(addr);
2857   addr = _gvn.transform(addr);
2858   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
2859   flush = _gvn.transform(flush);
2860   set_memory(flush, TypeRawPtr::BOTTOM);
2861   return true;
2862 }
2863 
2864 //----------------------------inline_unsafe_writeback0-------------------------
2865 // public native void Unsafe.writeback0(long address)
2866 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
2867   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
2868     return false;
2869   }
2870   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
2871     return false;
2872   }
2873 #ifndef PRODUCT
2874   assert(Matcher::has_match_rule(Op_CacheWB),
2875          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
2876                 : "found match rule for CacheWBPostSync but not CacheWB"));
2877 
2878 #endif
2879   null_check_receiver();  // null-check, then ignore
2880   Node *sync;
2881   if (is_pre) {
2882     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2883   } else {
2884     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2885   }
2886   sync = _gvn.transform(sync);
2887   set_memory(sync, TypeRawPtr::BOTTOM);
2888   return true;
2889 }
2890 
2891 //----------------------------inline_unsafe_allocate---------------------------
2892 // public native Object Unsafe.allocateInstance(Class<?> cls);
2893 bool LibraryCallKit::inline_unsafe_allocate() {
2894   if (callee()->is_static())  return false;  // caller must have the capability!
2895 
2896   null_check_receiver();  // null-check, then ignore
2897   Node* cls = null_check(argument(1));
2898   if (stopped())  return true;
2899 
2900   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2901   kls = null_check(kls);
2902   if (stopped())  return true;  // argument was like int.class
2903 
2904   Node* test = NULL;
2905   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2906     // Note:  The argument might still be an illegal value like
2907     // Serializable.class or Object[].class.   The runtime will handle it.
2908     // But we must make an explicit check for initialization.
2909     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2910     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2911     // can generate code to load it as unsigned byte.
2912     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2913     Node* bits = intcon(InstanceKlass::fully_initialized);
2914     test = _gvn.transform(new SubINode(inst, bits));
2915     // The 'test' is non-zero if we need to take a slow path.
2916   }
2917 
2918   Node* obj = new_instance(kls, test);
2919   set_result(obj);
2920   return true;
2921 }
2922 
2923 //------------------------inline_native_time_funcs--------------
2924 // inline code for System.currentTimeMillis() and System.nanoTime()
2925 // these have the same type and signature
2926 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2927   const TypeFunc* tf = OptoRuntime::void_long_Type();
2928   const TypePtr* no_memory_effects = NULL;
2929   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2930   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2931 #ifdef ASSERT
2932   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2933   assert(value_top == top(), "second value must be top");
2934 #endif
2935   set_result(value);
2936   return true;
2937 }
2938 
2939 #ifdef JFR_HAVE_INTRINSICS
2940 
2941 /*
2942 * oop -> myklass
2943 * myklass->trace_id |= USED
2944 * return myklass->trace_id & ~0x3
2945 */
2946 bool LibraryCallKit::inline_native_classID() {
2947   Node* cls = null_check(argument(0), T_OBJECT);
2948   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2949   kls = null_check(kls, T_OBJECT);
2950 
2951   ByteSize offset = KLASS_TRACE_ID_OFFSET;
2952   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2953   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
2954 
2955   Node* clsused = longcon(0x01l); // set the class bit
2956   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
2957   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2958   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
2959 
2960 #ifdef TRACE_ID_META_BITS
2961   Node* mbits = longcon(~TRACE_ID_META_BITS);
2962   tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
2963 #endif
2964 #ifdef TRACE_ID_SHIFT
2965   Node* cbits = intcon(TRACE_ID_SHIFT);
2966   tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
2967 #endif
2968 
2969   set_result(tvalue);
2970   return true;
2971 
2972 }
2973 
2974 bool LibraryCallKit::inline_native_getEventWriter() {
2975   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
2976 
2977   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
2978                                   in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
2979 
2980   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
2981 
2982   Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
2983   Node* test_jobj_eq_null  = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
2984 
2985   IfNode* iff_jobj_null =
2986     create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
2987 
2988   enum { _normal_path = 1,
2989          _null_path = 2,
2990          PATH_LIMIT };
2991 
2992   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
2993   PhiNode*    result_val = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
2994 
2995   Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
2996   result_rgn->init_req(_null_path, jobj_is_null);
2997   result_val->init_req(_null_path, null());
2998 
2999   Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
3000   set_control(jobj_is_not_null);
3001   Node* res = access_load(jobj, TypeInstPtr::NOTNULL, T_OBJECT,
3002                           IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3003   result_rgn->init_req(_normal_path, control());
3004   result_val->init_req(_normal_path, res);
3005 
3006   set_result(result_rgn, result_val);
3007 
3008   return true;
3009 }
3010 
3011 #endif // JFR_HAVE_INTRINSICS
3012 
3013 //------------------------inline_native_currentThread------------------
3014 bool LibraryCallKit::inline_native_currentThread() {
3015   Node* junk = NULL;
3016   set_result(generate_current_thread(junk));
3017   return true;
3018 }
3019 
3020 //---------------------------load_mirror_from_klass----------------------------
3021 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3022 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3023   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3024   Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3025   // mirror = ((OopHandle)mirror)->resolve();
3026   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3027 }
3028 
3029 //-----------------------load_klass_from_mirror_common-------------------------
3030 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3031 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3032 // and branch to the given path on the region.
3033 // If never_see_null, take an uncommon trap on null, so we can optimistically
3034 // compile for the non-null case.
3035 // If the region is NULL, force never_see_null = true.
3036 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3037                                                     bool never_see_null,
3038                                                     RegionNode* region,
3039                                                     int null_path,
3040                                                     int offset) {
3041   if (region == NULL)  never_see_null = true;
3042   Node* p = basic_plus_adr(mirror, offset);
3043   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3044   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3045   Node* null_ctl = top();
3046   kls = null_check_oop(kls, &null_ctl, never_see_null);
3047   if (region != NULL) {
3048     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3049     region->init_req(null_path, null_ctl);
3050   } else {
3051     assert(null_ctl == top(), "no loose ends");
3052   }
3053   return kls;
3054 }
3055 
3056 //--------------------(inline_native_Class_query helpers)---------------------
3057 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3058 // Fall through if (mods & mask) == bits, take the guard otherwise.
3059 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3060   // Branch around if the given klass has the given modifier bit set.
3061   // Like generate_guard, adds a new path onto the region.
3062   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3063   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3064   Node* mask = intcon(modifier_mask);
3065   Node* bits = intcon(modifier_bits);
3066   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3067   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3068   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3069   return generate_fair_guard(bol, region);
3070 }
3071 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3072   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3073 }
3074 
3075 //-------------------------inline_native_Class_query-------------------
3076 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3077   const Type* return_type = TypeInt::BOOL;
3078   Node* prim_return_value = top();  // what happens if it's a primitive class?
3079   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3080   bool expect_prim = false;     // most of these guys expect to work on refs
3081 
3082   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3083 
3084   Node* mirror = argument(0);
3085   Node* obj    = top();
3086 
3087   switch (id) {
3088   case vmIntrinsics::_isInstance:
3089     // nothing is an instance of a primitive type
3090     prim_return_value = intcon(0);
3091     obj = argument(1);
3092     break;
3093   case vmIntrinsics::_getModifiers:
3094     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3095     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3096     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3097     break;
3098   case vmIntrinsics::_isInterface:
3099     prim_return_value = intcon(0);
3100     break;
3101   case vmIntrinsics::_isArray:
3102     prim_return_value = intcon(0);
3103     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3104     break;
3105   case vmIntrinsics::_isPrimitive:
3106     prim_return_value = intcon(1);
3107     expect_prim = true;  // obviously
3108     break;
3109   case vmIntrinsics::_getSuperclass:
3110     prim_return_value = null();
3111     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3112     break;
3113   case vmIntrinsics::_getClassAccessFlags:
3114     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3115     return_type = TypeInt::INT;  // not bool!  6297094
3116     break;
3117   default:
3118     fatal_unexpected_iid(id);
3119     break;
3120   }
3121 
3122   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3123   if (mirror_con == NULL)  return false;  // cannot happen?
3124 
3125 #ifndef PRODUCT
3126   if (C->print_intrinsics() || C->print_inlining()) {
3127     ciType* k = mirror_con->java_mirror_type();
3128     if (k) {
3129       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3130       k->print_name();
3131       tty->cr();
3132     }
3133   }
3134 #endif
3135 
3136   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3137   RegionNode* region = new RegionNode(PATH_LIMIT);
3138   record_for_igvn(region);
3139   PhiNode* phi = new PhiNode(region, return_type);
3140 
3141   // The mirror will never be null of Reflection.getClassAccessFlags, however
3142   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3143   // if it is. See bug 4774291.
3144 
3145   // For Reflection.getClassAccessFlags(), the null check occurs in
3146   // the wrong place; see inline_unsafe_access(), above, for a similar
3147   // situation.
3148   mirror = null_check(mirror);
3149   // If mirror or obj is dead, only null-path is taken.
3150   if (stopped())  return true;
3151 
3152   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3153 
3154   // Now load the mirror's klass metaobject, and null-check it.
3155   // Side-effects region with the control path if the klass is null.
3156   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3157   // If kls is null, we have a primitive mirror.
3158   phi->init_req(_prim_path, prim_return_value);
3159   if (stopped()) { set_result(region, phi); return true; }
3160   bool safe_for_replace = (region->in(_prim_path) == top());
3161 
3162   Node* p;  // handy temp
3163   Node* null_ctl;
3164 
3165   // Now that we have the non-null klass, we can perform the real query.
3166   // For constant classes, the query will constant-fold in LoadNode::Value.
3167   Node* query_value = top();
3168   switch (id) {
3169   case vmIntrinsics::_isInstance:
3170     // nothing is an instance of a primitive type
3171     query_value = gen_instanceof(obj, kls, safe_for_replace);
3172     break;
3173 
3174   case vmIntrinsics::_getModifiers:
3175     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3176     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3177     break;
3178 
3179   case vmIntrinsics::_isInterface:
3180     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3181     if (generate_interface_guard(kls, region) != NULL)
3182       // A guard was added.  If the guard is taken, it was an interface.
3183       phi->add_req(intcon(1));
3184     // If we fall through, it's a plain class.
3185     query_value = intcon(0);
3186     break;
3187 
3188   case vmIntrinsics::_isArray:
3189     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3190     if (generate_array_guard(kls, region) != NULL)
3191       // A guard was added.  If the guard is taken, it was an array.
3192       phi->add_req(intcon(1));
3193     // If we fall through, it's a plain class.
3194     query_value = intcon(0);
3195     break;
3196 
3197   case vmIntrinsics::_isPrimitive:
3198     query_value = intcon(0); // "normal" path produces false
3199     break;
3200 
3201   case vmIntrinsics::_getSuperclass:
3202     // The rules here are somewhat unfortunate, but we can still do better
3203     // with random logic than with a JNI call.
3204     // Interfaces store null or Object as _super, but must report null.
3205     // Arrays store an intermediate super as _super, but must report Object.
3206     // Other types can report the actual _super.
3207     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3208     if (generate_interface_guard(kls, region) != NULL)
3209       // A guard was added.  If the guard is taken, it was an interface.
3210       phi->add_req(null());
3211     if (generate_array_guard(kls, region) != NULL)
3212       // A guard was added.  If the guard is taken, it was an array.
3213       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3214     // If we fall through, it's a plain class.  Get its _super.
3215     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3216     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3217     null_ctl = top();
3218     kls = null_check_oop(kls, &null_ctl);
3219     if (null_ctl != top()) {
3220       // If the guard is taken, Object.superClass is null (both klass and mirror).
3221       region->add_req(null_ctl);
3222       phi   ->add_req(null());
3223     }
3224     if (!stopped()) {
3225       query_value = load_mirror_from_klass(kls);
3226     }
3227     break;
3228 
3229   case vmIntrinsics::_getClassAccessFlags:
3230     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3231     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3232     break;
3233 
3234   default:
3235     fatal_unexpected_iid(id);
3236     break;
3237   }
3238 
3239   // Fall-through is the normal case of a query to a real class.
3240   phi->init_req(1, query_value);
3241   region->init_req(1, control());
3242 
3243   C->set_has_split_ifs(true); // Has chance for split-if optimization
3244   set_result(region, phi);
3245   return true;
3246 }
3247 
3248 //-------------------------inline_Class_cast-------------------
3249 bool LibraryCallKit::inline_Class_cast() {
3250   Node* mirror = argument(0); // Class
3251   Node* obj    = argument(1);
3252   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3253   if (mirror_con == NULL) {
3254     return false;  // dead path (mirror->is_top()).
3255   }
3256   if (obj == NULL || obj->is_top()) {
3257     return false;  // dead path
3258   }
3259   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3260 
3261   // First, see if Class.cast() can be folded statically.
3262   // java_mirror_type() returns non-null for compile-time Class constants.
3263   ciType* tm = mirror_con->java_mirror_type();
3264   if (tm != NULL && tm->is_klass() &&
3265       tp != NULL && tp->klass() != NULL) {
3266     if (!tp->klass()->is_loaded()) {
3267       // Don't use intrinsic when class is not loaded.
3268       return false;
3269     } else {
3270       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3271       if (static_res == Compile::SSC_always_true) {
3272         // isInstance() is true - fold the code.
3273         set_result(obj);
3274         return true;
3275       } else if (static_res == Compile::SSC_always_false) {
3276         // Don't use intrinsic, have to throw ClassCastException.
3277         // If the reference is null, the non-intrinsic bytecode will
3278         // be optimized appropriately.
3279         return false;
3280       }
3281     }
3282   }
3283 
3284   // Bailout intrinsic and do normal inlining if exception path is frequent.
3285   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3286     return false;
3287   }
3288 
3289   // Generate dynamic checks.
3290   // Class.cast() is java implementation of _checkcast bytecode.
3291   // Do checkcast (Parse::do_checkcast()) optimizations here.
3292 
3293   mirror = null_check(mirror);
3294   // If mirror is dead, only null-path is taken.
3295   if (stopped()) {
3296     return true;
3297   }
3298 
3299   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3300   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3301   RegionNode* region = new RegionNode(PATH_LIMIT);
3302   record_for_igvn(region);
3303 
3304   // Now load the mirror's klass metaobject, and null-check it.
3305   // If kls is null, we have a primitive mirror and
3306   // nothing is an instance of a primitive type.
3307   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3308 
3309   Node* res = top();
3310   if (!stopped()) {
3311     Node* bad_type_ctrl = top();
3312     // Do checkcast optimizations.
3313     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3314     region->init_req(_bad_type_path, bad_type_ctrl);
3315   }
3316   if (region->in(_prim_path) != top() ||
3317       region->in(_bad_type_path) != top()) {
3318     // Let Interpreter throw ClassCastException.
3319     PreserveJVMState pjvms(this);
3320     set_control(_gvn.transform(region));
3321     uncommon_trap(Deoptimization::Reason_intrinsic,
3322                   Deoptimization::Action_maybe_recompile);
3323   }
3324   if (!stopped()) {
3325     set_result(res);
3326   }
3327   return true;
3328 }
3329 
3330 
3331 //--------------------------inline_native_subtype_check------------------------
3332 // This intrinsic takes the JNI calls out of the heart of
3333 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3334 bool LibraryCallKit::inline_native_subtype_check() {
3335   // Pull both arguments off the stack.
3336   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3337   args[0] = argument(0);
3338   args[1] = argument(1);
3339   Node* klasses[2];             // corresponding Klasses: superk, subk
3340   klasses[0] = klasses[1] = top();
3341 
3342   enum {
3343     // A full decision tree on {superc is prim, subc is prim}:
3344     _prim_0_path = 1,           // {P,N} => false
3345                                 // {P,P} & superc!=subc => false
3346     _prim_same_path,            // {P,P} & superc==subc => true
3347     _prim_1_path,               // {N,P} => false
3348     _ref_subtype_path,          // {N,N} & subtype check wins => true
3349     _both_ref_path,             // {N,N} & subtype check loses => false
3350     PATH_LIMIT
3351   };
3352 
3353   RegionNode* region = new RegionNode(PATH_LIMIT);
3354   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3355   record_for_igvn(region);
3356 
3357   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3358   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3359   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3360 
3361   // First null-check both mirrors and load each mirror's klass metaobject.
3362   int which_arg;
3363   for (which_arg = 0; which_arg <= 1; which_arg++) {
3364     Node* arg = args[which_arg];
3365     arg = null_check(arg);
3366     if (stopped())  break;
3367     args[which_arg] = arg;
3368 
3369     Node* p = basic_plus_adr(arg, class_klass_offset);
3370     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3371     klasses[which_arg] = _gvn.transform(kls);
3372   }
3373 
3374   // Having loaded both klasses, test each for null.
3375   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3376   for (which_arg = 0; which_arg <= 1; which_arg++) {
3377     Node* kls = klasses[which_arg];
3378     Node* null_ctl = top();
3379     kls = null_check_oop(kls, &null_ctl, never_see_null);
3380     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3381     region->init_req(prim_path, null_ctl);
3382     if (stopped())  break;
3383     klasses[which_arg] = kls;
3384   }
3385 
3386   if (!stopped()) {
3387     // now we have two reference types, in klasses[0..1]
3388     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3389     Node* superk = klasses[0];  // the receiver
3390     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3391     // now we have a successful reference subtype check
3392     region->set_req(_ref_subtype_path, control());
3393   }
3394 
3395   // If both operands are primitive (both klasses null), then
3396   // we must return true when they are identical primitives.
3397   // It is convenient to test this after the first null klass check.
3398   set_control(region->in(_prim_0_path)); // go back to first null check
3399   if (!stopped()) {
3400     // Since superc is primitive, make a guard for the superc==subc case.
3401     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3402     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3403     generate_guard(bol_eq, region, PROB_FAIR);
3404     if (region->req() == PATH_LIMIT+1) {
3405       // A guard was added.  If the added guard is taken, superc==subc.
3406       region->swap_edges(PATH_LIMIT, _prim_same_path);
3407       region->del_req(PATH_LIMIT);
3408     }
3409     region->set_req(_prim_0_path, control()); // Not equal after all.
3410   }
3411 
3412   // these are the only paths that produce 'true':
3413   phi->set_req(_prim_same_path,   intcon(1));
3414   phi->set_req(_ref_subtype_path, intcon(1));
3415 
3416   // pull together the cases:
3417   assert(region->req() == PATH_LIMIT, "sane region");
3418   for (uint i = 1; i < region->req(); i++) {
3419     Node* ctl = region->in(i);
3420     if (ctl == NULL || ctl == top()) {
3421       region->set_req(i, top());
3422       phi   ->set_req(i, top());
3423     } else if (phi->in(i) == NULL) {
3424       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3425     }
3426   }
3427 
3428   set_control(_gvn.transform(region));
3429   set_result(_gvn.transform(phi));
3430   return true;
3431 }
3432 
3433 //---------------------generate_array_guard_common------------------------
3434 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3435                                                   bool obj_array, bool not_array) {
3436 
3437   if (stopped()) {
3438     return NULL;
3439   }
3440 
3441   // If obj_array/non_array==false/false:
3442   // Branch around if the given klass is in fact an array (either obj or prim).
3443   // If obj_array/non_array==false/true:
3444   // Branch around if the given klass is not an array klass of any kind.
3445   // If obj_array/non_array==true/true:
3446   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3447   // If obj_array/non_array==true/false:
3448   // Branch around if the kls is an oop array (Object[] or subtype)
3449   //
3450   // Like generate_guard, adds a new path onto the region.
3451   jint  layout_con = 0;
3452   Node* layout_val = get_layout_helper(kls, layout_con);
3453   if (layout_val == NULL) {
3454     bool query = (obj_array
3455                   ? Klass::layout_helper_is_objArray(layout_con)
3456                   : Klass::layout_helper_is_array(layout_con));
3457     if (query == not_array) {
3458       return NULL;                       // never a branch
3459     } else {                             // always a branch
3460       Node* always_branch = control();
3461       if (region != NULL)
3462         region->add_req(always_branch);
3463       set_control(top());
3464       return always_branch;
3465     }
3466   }
3467   // Now test the correct condition.
3468   jint  nval = (obj_array
3469                 ? (jint)(Klass::_lh_array_tag_type_value
3470                    <<    Klass::_lh_array_tag_shift)
3471                 : Klass::_lh_neutral_value);
3472   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3473   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3474   // invert the test if we are looking for a non-array
3475   if (not_array)  btest = BoolTest(btest).negate();
3476   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3477   return generate_fair_guard(bol, region);
3478 }
3479 
3480 
3481 //-----------------------inline_native_newArray--------------------------
3482 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3483 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3484 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3485   Node* mirror;
3486   Node* count_val;
3487   if (uninitialized) {
3488     mirror    = argument(1);
3489     count_val = argument(2);
3490   } else {
3491     mirror    = argument(0);
3492     count_val = argument(1);
3493   }
3494 
3495   mirror = null_check(mirror);
3496   // If mirror or obj is dead, only null-path is taken.
3497   if (stopped())  return true;
3498 
3499   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3500   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3501   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3502   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3503   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3504 
3505   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3506   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3507                                                   result_reg, _slow_path);
3508   Node* normal_ctl   = control();
3509   Node* no_array_ctl = result_reg->in(_slow_path);
3510 
3511   // Generate code for the slow case.  We make a call to newArray().
3512   set_control(no_array_ctl);
3513   if (!stopped()) {
3514     // Either the input type is void.class, or else the
3515     // array klass has not yet been cached.  Either the
3516     // ensuing call will throw an exception, or else it
3517     // will cache the array klass for next time.
3518     PreserveJVMState pjvms(this);
3519     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3520     Node* slow_result = set_results_for_java_call(slow_call);
3521     // this->control() comes from set_results_for_java_call
3522     result_reg->set_req(_slow_path, control());
3523     result_val->set_req(_slow_path, slow_result);
3524     result_io ->set_req(_slow_path, i_o());
3525     result_mem->set_req(_slow_path, reset_memory());
3526   }
3527 
3528   set_control(normal_ctl);
3529   if (!stopped()) {
3530     // Normal case:  The array type has been cached in the java.lang.Class.
3531     // The following call works fine even if the array type is polymorphic.
3532     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3533     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3534     result_reg->init_req(_normal_path, control());
3535     result_val->init_req(_normal_path, obj);
3536     result_io ->init_req(_normal_path, i_o());
3537     result_mem->init_req(_normal_path, reset_memory());
3538 
3539     if (uninitialized) {
3540       // Mark the allocation so that zeroing is skipped
3541       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3542       alloc->maybe_set_complete(&_gvn);
3543     }
3544   }
3545 
3546   // Return the combined state.
3547   set_i_o(        _gvn.transform(result_io)  );
3548   set_all_memory( _gvn.transform(result_mem));
3549 
3550   C->set_has_split_ifs(true); // Has chance for split-if optimization
3551   set_result(result_reg, result_val);
3552   return true;
3553 }
3554 
3555 //----------------------inline_native_getLength--------------------------
3556 // public static native int java.lang.reflect.Array.getLength(Object array);
3557 bool LibraryCallKit::inline_native_getLength() {
3558   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3559 
3560   Node* array = null_check(argument(0));
3561   // If array is dead, only null-path is taken.
3562   if (stopped())  return true;
3563 
3564   // Deoptimize if it is a non-array.
3565   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3566 
3567   if (non_array != NULL) {
3568     PreserveJVMState pjvms(this);
3569     set_control(non_array);
3570     uncommon_trap(Deoptimization::Reason_intrinsic,
3571                   Deoptimization::Action_maybe_recompile);
3572   }
3573 
3574   // If control is dead, only non-array-path is taken.
3575   if (stopped())  return true;
3576 
3577   // The works fine even if the array type is polymorphic.
3578   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3579   Node* result = load_array_length(array);
3580 
3581   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3582   set_result(result);
3583   return true;
3584 }
3585 
3586 //------------------------inline_array_copyOf----------------------------
3587 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3588 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3589 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3590   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3591 
3592   // Get the arguments.
3593   Node* original          = argument(0);
3594   Node* start             = is_copyOfRange? argument(1): intcon(0);
3595   Node* end               = is_copyOfRange? argument(2): argument(1);
3596   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3597 
3598   Node* newcopy = NULL;
3599 
3600   // Set the original stack and the reexecute bit for the interpreter to reexecute
3601   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3602   { PreserveReexecuteState preexecs(this);
3603     jvms()->set_should_reexecute(true);
3604 
3605     array_type_mirror = null_check(array_type_mirror);
3606     original          = null_check(original);
3607 
3608     // Check if a null path was taken unconditionally.
3609     if (stopped())  return true;
3610 
3611     Node* orig_length = load_array_length(original);
3612 
3613     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3614     klass_node = null_check(klass_node);
3615 
3616     RegionNode* bailout = new RegionNode(1);
3617     record_for_igvn(bailout);
3618 
3619     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3620     // Bail out if that is so.
3621     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3622     if (not_objArray != NULL) {
3623       // Improve the klass node's type from the new optimistic assumption:
3624       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3625       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3626       Node* cast = new CastPPNode(klass_node, akls);
3627       cast->init_req(0, control());
3628       klass_node = _gvn.transform(cast);
3629     }
3630 
3631     // Bail out if either start or end is negative.
3632     generate_negative_guard(start, bailout, &start);
3633     generate_negative_guard(end,   bailout, &end);
3634 
3635     Node* length = end;
3636     if (_gvn.type(start) != TypeInt::ZERO) {
3637       length = _gvn.transform(new SubINode(end, start));
3638     }
3639 
3640     // Bail out if length is negative.
3641     // Without this the new_array would throw
3642     // NegativeArraySizeException but IllegalArgumentException is what
3643     // should be thrown
3644     generate_negative_guard(length, bailout, &length);
3645 
3646     if (bailout->req() > 1) {
3647       PreserveJVMState pjvms(this);
3648       set_control(_gvn.transform(bailout));
3649       uncommon_trap(Deoptimization::Reason_intrinsic,
3650                     Deoptimization::Action_maybe_recompile);
3651     }
3652 
3653     if (!stopped()) {
3654       // How many elements will we copy from the original?
3655       // The answer is MinI(orig_length - start, length).
3656       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3657       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3658 
3659       // Generate a direct call to the right arraycopy function(s).
3660       // We know the copy is disjoint but we might not know if the
3661       // oop stores need checking.
3662       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3663       // This will fail a store-check if x contains any non-nulls.
3664 
3665       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3666       // loads/stores but it is legal only if we're sure the
3667       // Arrays.copyOf would succeed. So we need all input arguments
3668       // to the copyOf to be validated, including that the copy to the
3669       // new array won't trigger an ArrayStoreException. That subtype
3670       // check can be optimized if we know something on the type of
3671       // the input array from type speculation.
3672       if (_gvn.type(klass_node)->singleton()) {
3673         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3674         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3675 
3676         int test = C->static_subtype_check(superk, subk);
3677         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3678           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3679           if (t_original->speculative_type() != NULL) {
3680             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3681           }
3682         }
3683       }
3684 
3685       bool validated = false;
3686       // Reason_class_check rather than Reason_intrinsic because we
3687       // want to intrinsify even if this traps.
3688       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3689         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3690                                                    klass_node);
3691 
3692         if (not_subtype_ctrl != top()) {
3693           PreserveJVMState pjvms(this);
3694           set_control(not_subtype_ctrl);
3695           uncommon_trap(Deoptimization::Reason_class_check,
3696                         Deoptimization::Action_make_not_entrant);
3697           assert(stopped(), "Should be stopped");
3698         }
3699         validated = true;
3700       }
3701 
3702       if (!stopped()) {
3703         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3704 
3705         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
3706                                                 load_object_klass(original), klass_node);
3707         if (!is_copyOfRange) {
3708           ac->set_copyof(validated);
3709         } else {
3710           ac->set_copyofrange(validated);
3711         }
3712         Node* n = _gvn.transform(ac);
3713         if (n == ac) {
3714           ac->connect_outputs(this);
3715         } else {
3716           assert(validated, "shouldn't transform if all arguments not validated");
3717           set_all_memory(n);
3718         }
3719       }
3720     }
3721   } // original reexecute is set back here
3722 
3723   C->set_has_split_ifs(true); // Has chance for split-if optimization
3724   if (!stopped()) {
3725     set_result(newcopy);
3726   }
3727   return true;
3728 }
3729 
3730 
3731 //----------------------generate_virtual_guard---------------------------
3732 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3733 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3734                                              RegionNode* slow_region) {
3735   ciMethod* method = callee();
3736   int vtable_index = method->vtable_index();
3737   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3738          "bad index %d", vtable_index);
3739   // Get the Method* out of the appropriate vtable entry.
3740   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
3741                      vtable_index*vtableEntry::size_in_bytes() +
3742                      vtableEntry::method_offset_in_bytes();
3743   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3744   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3745 
3746   // Compare the target method with the expected method (e.g., Object.hashCode).
3747   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3748 
3749   Node* native_call = makecon(native_call_addr);
3750   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3751   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3752 
3753   return generate_slow_guard(test_native, slow_region);
3754 }
3755 
3756 //-----------------------generate_method_call----------------------------
3757 // Use generate_method_call to make a slow-call to the real
3758 // method if the fast path fails.  An alternative would be to
3759 // use a stub like OptoRuntime::slow_arraycopy_Java.
3760 // This only works for expanding the current library call,
3761 // not another intrinsic.  (E.g., don't use this for making an
3762 // arraycopy call inside of the copyOf intrinsic.)
3763 CallJavaNode*
3764 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3765   // When compiling the intrinsic method itself, do not use this technique.
3766   guarantee(callee() != C->method(), "cannot make slow-call to self");
3767 
3768   ciMethod* method = callee();
3769   // ensure the JVMS we have will be correct for this call
3770   guarantee(method_id == method->intrinsic_id(), "must match");
3771 
3772   const TypeFunc* tf = TypeFunc::make(method);
3773   CallJavaNode* slow_call;
3774   if (is_static) {
3775     assert(!is_virtual, "");
3776     slow_call = new CallStaticJavaNode(C, tf,
3777                            SharedRuntime::get_resolve_static_call_stub(),
3778                            method, bci());
3779   } else if (is_virtual) {
3780     null_check_receiver();
3781     int vtable_index = Method::invalid_vtable_index;
3782     if (UseInlineCaches) {
3783       // Suppress the vtable call
3784     } else {
3785       // hashCode and clone are not a miranda methods,
3786       // so the vtable index is fixed.
3787       // No need to use the linkResolver to get it.
3788        vtable_index = method->vtable_index();
3789        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3790               "bad index %d", vtable_index);
3791     }
3792     slow_call = new CallDynamicJavaNode(tf,
3793                           SharedRuntime::get_resolve_virtual_call_stub(),
3794                           method, vtable_index, bci());
3795   } else {  // neither virtual nor static:  opt_virtual
3796     null_check_receiver();
3797     slow_call = new CallStaticJavaNode(C, tf,
3798                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3799                                 method, bci());
3800     slow_call->set_optimized_virtual(true);
3801   }
3802   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
3803     // To be able to issue a direct call (optimized virtual or virtual)
3804     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
3805     // about the method being invoked should be attached to the call site to
3806     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
3807     slow_call->set_override_symbolic_info(true);
3808   }
3809   set_arguments_for_java_call(slow_call);
3810   set_edges_for_java_call(slow_call);
3811   return slow_call;
3812 }
3813 
3814 
3815 /**
3816  * Build special case code for calls to hashCode on an object. This call may
3817  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
3818  * slightly different code.
3819  */
3820 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3821   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3822   assert(!(is_virtual && is_static), "either virtual, special, or static");
3823 
3824   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3825 
3826   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3827   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
3828   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3829   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3830   Node* obj = NULL;
3831   if (!is_static) {
3832     // Check for hashing null object
3833     obj = null_check_receiver();
3834     if (stopped())  return true;        // unconditionally null
3835     result_reg->init_req(_null_path, top());
3836     result_val->init_req(_null_path, top());
3837   } else {
3838     // Do a null check, and return zero if null.
3839     // System.identityHashCode(null) == 0
3840     obj = argument(0);
3841     Node* null_ctl = top();
3842     obj = null_check_oop(obj, &null_ctl);
3843     result_reg->init_req(_null_path, null_ctl);
3844     result_val->init_req(_null_path, _gvn.intcon(0));
3845   }
3846 
3847   // Unconditionally null?  Then return right away.
3848   if (stopped()) {
3849     set_control( result_reg->in(_null_path));
3850     if (!stopped())
3851       set_result(result_val->in(_null_path));
3852     return true;
3853   }
3854 
3855   // We only go to the fast case code if we pass a number of guards.  The
3856   // paths which do not pass are accumulated in the slow_region.
3857   RegionNode* slow_region = new RegionNode(1);
3858   record_for_igvn(slow_region);
3859 
3860   // If this is a virtual call, we generate a funny guard.  We pull out
3861   // the vtable entry corresponding to hashCode() from the target object.
3862   // If the target method which we are calling happens to be the native
3863   // Object hashCode() method, we pass the guard.  We do not need this
3864   // guard for non-virtual calls -- the caller is known to be the native
3865   // Object hashCode().
3866   if (is_virtual) {
3867     // After null check, get the object's klass.
3868     Node* obj_klass = load_object_klass(obj);
3869     generate_virtual_guard(obj_klass, slow_region);
3870   }
3871 
3872   // Get the header out of the object, use LoadMarkNode when available
3873   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3874   // The control of the load must be NULL. Otherwise, the load can move before
3875   // the null check after castPP removal.
3876   Node* no_ctrl = NULL;
3877   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3878 
3879   // Test the header to see if it is unlocked.
3880   Node *lock_mask      = _gvn.MakeConX(markWord::biased_lock_mask_in_place);
3881   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
3882   Node *unlocked_val   = _gvn.MakeConX(markWord::unlocked_value);
3883   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
3884   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
3885 
3886   generate_slow_guard(test_unlocked, slow_region);
3887 
3888   // Get the hash value and check to see that it has been properly assigned.
3889   // We depend on hash_mask being at most 32 bits and avoid the use of
3890   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3891   // vm: see markWord.hpp.
3892   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
3893   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
3894   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
3895   // This hack lets the hash bits live anywhere in the mark object now, as long
3896   // as the shift drops the relevant bits into the low 32 bits.  Note that
3897   // Java spec says that HashCode is an int so there's no point in capturing
3898   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3899   hshifted_header      = ConvX2I(hshifted_header);
3900   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
3901 
3902   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
3903   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
3904   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
3905 
3906   generate_slow_guard(test_assigned, slow_region);
3907 
3908   Node* init_mem = reset_memory();
3909   // fill in the rest of the null path:
3910   result_io ->init_req(_null_path, i_o());
3911   result_mem->init_req(_null_path, init_mem);
3912 
3913   result_val->init_req(_fast_path, hash_val);
3914   result_reg->init_req(_fast_path, control());
3915   result_io ->init_req(_fast_path, i_o());
3916   result_mem->init_req(_fast_path, init_mem);
3917 
3918   // Generate code for the slow case.  We make a call to hashCode().
3919   set_control(_gvn.transform(slow_region));
3920   if (!stopped()) {
3921     // No need for PreserveJVMState, because we're using up the present state.
3922     set_all_memory(init_mem);
3923     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3924     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3925     Node* slow_result = set_results_for_java_call(slow_call);
3926     // this->control() comes from set_results_for_java_call
3927     result_reg->init_req(_slow_path, control());
3928     result_val->init_req(_slow_path, slow_result);
3929     result_io  ->set_req(_slow_path, i_o());
3930     result_mem ->set_req(_slow_path, reset_memory());
3931   }
3932 
3933   // Return the combined state.
3934   set_i_o(        _gvn.transform(result_io)  );
3935   set_all_memory( _gvn.transform(result_mem));
3936 
3937   set_result(result_reg, result_val);
3938   return true;
3939 }
3940 
3941 //---------------------------inline_native_getClass----------------------------
3942 // public final native Class<?> java.lang.Object.getClass();
3943 //
3944 // Build special case code for calls to getClass on an object.
3945 bool LibraryCallKit::inline_native_getClass() {
3946   Node* obj = null_check_receiver();
3947   if (stopped())  return true;
3948   set_result(load_mirror_from_klass(load_object_klass(obj)));
3949   return true;
3950 }
3951 
3952 //-----------------inline_native_Reflection_getCallerClass---------------------
3953 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
3954 //
3955 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3956 //
3957 // NOTE: This code must perform the same logic as JVM_GetCallerClass
3958 // in that it must skip particular security frames and checks for
3959 // caller sensitive methods.
3960 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3961 #ifndef PRODUCT
3962   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3963     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3964   }
3965 #endif
3966 
3967   if (!jvms()->has_method()) {
3968 #ifndef PRODUCT
3969     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3970       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3971     }
3972 #endif
3973     return false;
3974   }
3975 
3976   // Walk back up the JVM state to find the caller at the required
3977   // depth.
3978   JVMState* caller_jvms = jvms();
3979 
3980   // Cf. JVM_GetCallerClass
3981   // NOTE: Start the loop at depth 1 because the current JVM state does
3982   // not include the Reflection.getCallerClass() frame.
3983   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
3984     ciMethod* m = caller_jvms->method();
3985     switch (n) {
3986     case 0:
3987       fatal("current JVM state does not include the Reflection.getCallerClass frame");
3988       break;
3989     case 1:
3990       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
3991       if (!m->caller_sensitive()) {
3992 #ifndef PRODUCT
3993         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3994           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
3995         }
3996 #endif
3997         return false;  // bail-out; let JVM_GetCallerClass do the work
3998       }
3999       break;
4000     default:
4001       if (!m->is_ignored_by_security_stack_walk()) {
4002         // We have reached the desired frame; return the holder class.
4003         // Acquire method holder as java.lang.Class and push as constant.
4004         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4005         ciInstance* caller_mirror = caller_klass->java_mirror();
4006         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4007 
4008 #ifndef PRODUCT
4009         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4010           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4011           tty->print_cr("  JVM state at this point:");
4012           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4013             ciMethod* m = jvms()->of_depth(i)->method();
4014             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4015           }
4016         }
4017 #endif
4018         return true;
4019       }
4020       break;
4021     }
4022   }
4023 
4024 #ifndef PRODUCT
4025   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4026     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4027     tty->print_cr("  JVM state at this point:");
4028     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4029       ciMethod* m = jvms()->of_depth(i)->method();
4030       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4031     }
4032   }
4033 #endif
4034 
4035   return false;  // bail-out; let JVM_GetCallerClass do the work
4036 }
4037 
4038 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4039   Node* arg = argument(0);
4040   Node* result = NULL;
4041 
4042   switch (id) {
4043   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4044   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4045   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4046   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4047 
4048   case vmIntrinsics::_doubleToLongBits: {
4049     // two paths (plus control) merge in a wood
4050     RegionNode *r = new RegionNode(3);
4051     Node *phi = new PhiNode(r, TypeLong::LONG);
4052 
4053     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4054     // Build the boolean node
4055     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4056 
4057     // Branch either way.
4058     // NaN case is less traveled, which makes all the difference.
4059     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4060     Node *opt_isnan = _gvn.transform(ifisnan);
4061     assert( opt_isnan->is_If(), "Expect an IfNode");
4062     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4063     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4064 
4065     set_control(iftrue);
4066 
4067     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4068     Node *slow_result = longcon(nan_bits); // return NaN
4069     phi->init_req(1, _gvn.transform( slow_result ));
4070     r->init_req(1, iftrue);
4071 
4072     // Else fall through
4073     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4074     set_control(iffalse);
4075 
4076     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4077     r->init_req(2, iffalse);
4078 
4079     // Post merge
4080     set_control(_gvn.transform(r));
4081     record_for_igvn(r);
4082 
4083     C->set_has_split_ifs(true); // Has chance for split-if optimization
4084     result = phi;
4085     assert(result->bottom_type()->isa_long(), "must be");
4086     break;
4087   }
4088 
4089   case vmIntrinsics::_floatToIntBits: {
4090     // two paths (plus control) merge in a wood
4091     RegionNode *r = new RegionNode(3);
4092     Node *phi = new PhiNode(r, TypeInt::INT);
4093 
4094     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4095     // Build the boolean node
4096     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4097 
4098     // Branch either way.
4099     // NaN case is less traveled, which makes all the difference.
4100     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4101     Node *opt_isnan = _gvn.transform(ifisnan);
4102     assert( opt_isnan->is_If(), "Expect an IfNode");
4103     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4104     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4105 
4106     set_control(iftrue);
4107 
4108     static const jint nan_bits = 0x7fc00000;
4109     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4110     phi->init_req(1, _gvn.transform( slow_result ));
4111     r->init_req(1, iftrue);
4112 
4113     // Else fall through
4114     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4115     set_control(iffalse);
4116 
4117     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4118     r->init_req(2, iffalse);
4119 
4120     // Post merge
4121     set_control(_gvn.transform(r));
4122     record_for_igvn(r);
4123 
4124     C->set_has_split_ifs(true); // Has chance for split-if optimization
4125     result = phi;
4126     assert(result->bottom_type()->isa_int(), "must be");
4127     break;
4128   }
4129 
4130   default:
4131     fatal_unexpected_iid(id);
4132     break;
4133   }
4134   set_result(_gvn.transform(result));
4135   return true;
4136 }
4137 
4138 //----------------------inline_unsafe_copyMemory-------------------------
4139 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4140 bool LibraryCallKit::inline_unsafe_copyMemory() {
4141   if (callee()->is_static())  return false;  // caller must have the capability!
4142   null_check_receiver();  // null-check receiver
4143   if (stopped())  return true;
4144 
4145   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4146 
4147   Node* src_ptr =         argument(1);   // type: oop
4148   Node* src_off = ConvL2X(argument(2));  // type: long
4149   Node* dst_ptr =         argument(4);   // type: oop
4150   Node* dst_off = ConvL2X(argument(5));  // type: long
4151   Node* size    = ConvL2X(argument(7));  // type: long
4152 
4153   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4154          "fieldOffset must be byte-scaled");
4155 
4156   Node* src = make_unsafe_address(src_ptr, src_off, ACCESS_READ);
4157   Node* dst = make_unsafe_address(dst_ptr, dst_off, ACCESS_WRITE);
4158 
4159   // Conservatively insert a memory barrier on all memory slices.
4160   // Do not let writes of the copy source or destination float below the copy.
4161   insert_mem_bar(Op_MemBarCPUOrder);
4162 
4163   Node* thread = _gvn.transform(new ThreadLocalNode());
4164   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
4165   BasicType doing_unsafe_access_bt = T_BYTE;
4166   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
4167 
4168   // update volatile field
4169   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
4170 
4171   // Call it.  Note that the length argument is not scaled.
4172   make_runtime_call(RC_LEAF|RC_NO_FP,
4173                     OptoRuntime::fast_arraycopy_Type(),
4174                     StubRoutines::unsafe_arraycopy(),
4175                     "unsafe_arraycopy",
4176                     TypeRawPtr::BOTTOM,
4177                     src, dst, size XTOP);
4178 
4179   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
4180 
4181   // Do not let reads of the copy destination float above the copy.
4182   insert_mem_bar(Op_MemBarCPUOrder);
4183 
4184   return true;
4185 }
4186 
4187 //------------------------clone_coping-----------------------------------
4188 // Helper function for inline_native_clone.
4189 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
4190   assert(obj_size != NULL, "");
4191   Node* raw_obj = alloc_obj->in(1);
4192   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4193 
4194   AllocateNode* alloc = NULL;
4195   if (ReduceBulkZeroing) {
4196     // We will be completely responsible for initializing this object -
4197     // mark Initialize node as complete.
4198     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4199     // The object was just allocated - there should be no any stores!
4200     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4201     // Mark as complete_with_arraycopy so that on AllocateNode
4202     // expansion, we know this AllocateNode is initialized by an array
4203     // copy and a StoreStore barrier exists after the array copy.
4204     alloc->initialization()->set_complete_with_arraycopy();
4205   }
4206 
4207   Node* size = _gvn.transform(obj_size);
4208   access_clone(obj, alloc_obj, size, is_array);
4209 
4210   // Do not let reads from the cloned object float above the arraycopy.
4211   if (alloc != NULL) {
4212     // Do not let stores that initialize this object be reordered with
4213     // a subsequent store that would make this object accessible by
4214     // other threads.
4215     // Record what AllocateNode this StoreStore protects so that
4216     // escape analysis can go from the MemBarStoreStoreNode to the
4217     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4218     // based on the escape status of the AllocateNode.
4219     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
4220   } else {
4221     insert_mem_bar(Op_MemBarCPUOrder);
4222   }
4223 }
4224 
4225 //------------------------inline_native_clone----------------------------
4226 // protected native Object java.lang.Object.clone();
4227 //
4228 // Here are the simple edge cases:
4229 //  null receiver => normal trap
4230 //  virtual and clone was overridden => slow path to out-of-line clone
4231 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4232 //
4233 // The general case has two steps, allocation and copying.
4234 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4235 //
4236 // Copying also has two cases, oop arrays and everything else.
4237 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4238 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4239 //
4240 // These steps fold up nicely if and when the cloned object's klass
4241 // can be sharply typed as an object array, a type array, or an instance.
4242 //
4243 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4244   PhiNode* result_val;
4245 
4246   // Set the reexecute bit for the interpreter to reexecute
4247   // the bytecode that invokes Object.clone if deoptimization happens.
4248   { PreserveReexecuteState preexecs(this);
4249     jvms()->set_should_reexecute(true);
4250 
4251     Node* obj = null_check_receiver();
4252     if (stopped())  return true;
4253 
4254     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4255 
4256     // If we are going to clone an instance, we need its exact type to
4257     // know the number and types of fields to convert the clone to
4258     // loads/stores. Maybe a speculative type can help us.
4259     if (!obj_type->klass_is_exact() &&
4260         obj_type->speculative_type() != NULL &&
4261         obj_type->speculative_type()->is_instance_klass()) {
4262       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4263       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4264           !spec_ik->has_injected_fields()) {
4265         ciKlass* k = obj_type->klass();
4266         if (!k->is_instance_klass() ||
4267             k->as_instance_klass()->is_interface() ||
4268             k->as_instance_klass()->has_subklass()) {
4269           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4270         }
4271       }
4272     }
4273 
4274     // Conservatively insert a memory barrier on all memory slices.
4275     // Do not let writes into the original float below the clone.
4276     insert_mem_bar(Op_MemBarCPUOrder);
4277 
4278     // paths into result_reg:
4279     enum {
4280       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4281       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4282       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4283       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4284       PATH_LIMIT
4285     };
4286     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4287     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4288     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4289     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4290     record_for_igvn(result_reg);
4291 
4292     Node* obj_klass = load_object_klass(obj);
4293     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4294     if (array_ctl != NULL) {
4295       // It's an array.
4296       PreserveJVMState pjvms(this);
4297       set_control(array_ctl);
4298       Node* obj_length = load_array_length(obj);
4299       Node* obj_size  = NULL;
4300       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4301 
4302       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4303       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, BarrierSetC2::Parsing)) {
4304         // If it is an oop array, it requires very special treatment,
4305         // because gc barriers are required when accessing the array.
4306         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4307         if (is_obja != NULL) {
4308           PreserveJVMState pjvms2(this);
4309           set_control(is_obja);
4310           // Generate a direct call to the right arraycopy function(s).
4311           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4312           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false);
4313           ac->set_clone_oop_array();
4314           Node* n = _gvn.transform(ac);
4315           assert(n == ac, "cannot disappear");
4316           ac->connect_outputs(this);
4317 
4318           result_reg->init_req(_objArray_path, control());
4319           result_val->init_req(_objArray_path, alloc_obj);
4320           result_i_o ->set_req(_objArray_path, i_o());
4321           result_mem ->set_req(_objArray_path, reset_memory());
4322         }
4323       }
4324       // Otherwise, there are no barriers to worry about.
4325       // (We can dispense with card marks if we know the allocation
4326       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4327       //  causes the non-eden paths to take compensating steps to
4328       //  simulate a fresh allocation, so that no further
4329       //  card marks are required in compiled code to initialize
4330       //  the object.)
4331 
4332       if (!stopped()) {
4333         copy_to_clone(obj, alloc_obj, obj_size, true);
4334 
4335         // Present the results of the copy.
4336         result_reg->init_req(_array_path, control());
4337         result_val->init_req(_array_path, alloc_obj);
4338         result_i_o ->set_req(_array_path, i_o());
4339         result_mem ->set_req(_array_path, reset_memory());
4340       }
4341     }
4342 
4343     // We only go to the instance fast case code if we pass a number of guards.
4344     // The paths which do not pass are accumulated in the slow_region.
4345     RegionNode* slow_region = new RegionNode(1);
4346     record_for_igvn(slow_region);
4347     if (!stopped()) {
4348       // It's an instance (we did array above).  Make the slow-path tests.
4349       // If this is a virtual call, we generate a funny guard.  We grab
4350       // the vtable entry corresponding to clone() from the target object.
4351       // If the target method which we are calling happens to be the
4352       // Object clone() method, we pass the guard.  We do not need this
4353       // guard for non-virtual calls; the caller is known to be the native
4354       // Object clone().
4355       if (is_virtual) {
4356         generate_virtual_guard(obj_klass, slow_region);
4357       }
4358 
4359       // The object must be easily cloneable and must not have a finalizer.
4360       // Both of these conditions may be checked in a single test.
4361       // We could optimize the test further, but we don't care.
4362       generate_access_flags_guard(obj_klass,
4363                                   // Test both conditions:
4364                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4365                                   // Must be cloneable but not finalizer:
4366                                   JVM_ACC_IS_CLONEABLE_FAST,
4367                                   slow_region);
4368     }
4369 
4370     if (!stopped()) {
4371       // It's an instance, and it passed the slow-path tests.
4372       PreserveJVMState pjvms(this);
4373       Node* obj_size  = NULL;
4374       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4375       // is reexecuted if deoptimization occurs and there could be problems when merging
4376       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4377       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4378 
4379       copy_to_clone(obj, alloc_obj, obj_size, false);
4380 
4381       // Present the results of the slow call.
4382       result_reg->init_req(_instance_path, control());
4383       result_val->init_req(_instance_path, alloc_obj);
4384       result_i_o ->set_req(_instance_path, i_o());
4385       result_mem ->set_req(_instance_path, reset_memory());
4386     }
4387 
4388     // Generate code for the slow case.  We make a call to clone().
4389     set_control(_gvn.transform(slow_region));
4390     if (!stopped()) {
4391       PreserveJVMState pjvms(this);
4392       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4393       // We need to deoptimize on exception (see comment above)
4394       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
4395       // this->control() comes from set_results_for_java_call
4396       result_reg->init_req(_slow_path, control());
4397       result_val->init_req(_slow_path, slow_result);
4398       result_i_o ->set_req(_slow_path, i_o());
4399       result_mem ->set_req(_slow_path, reset_memory());
4400     }
4401 
4402     // Return the combined state.
4403     set_control(    _gvn.transform(result_reg));
4404     set_i_o(        _gvn.transform(result_i_o));
4405     set_all_memory( _gvn.transform(result_mem));
4406   } // original reexecute is set back here
4407 
4408   set_result(_gvn.transform(result_val));
4409   return true;
4410 }
4411 
4412 // If we have a tightly coupled allocation, the arraycopy may take care
4413 // of the array initialization. If one of the guards we insert between
4414 // the allocation and the arraycopy causes a deoptimization, an
4415 // unitialized array will escape the compiled method. To prevent that
4416 // we set the JVM state for uncommon traps between the allocation and
4417 // the arraycopy to the state before the allocation so, in case of
4418 // deoptimization, we'll reexecute the allocation and the
4419 // initialization.
4420 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4421   if (alloc != NULL) {
4422     ciMethod* trap_method = alloc->jvms()->method();
4423     int trap_bci = alloc->jvms()->bci();
4424 
4425     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4426         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4427       // Make sure there's no store between the allocation and the
4428       // arraycopy otherwise visible side effects could be rexecuted
4429       // in case of deoptimization and cause incorrect execution.
4430       bool no_interfering_store = true;
4431       Node* mem = alloc->in(TypeFunc::Memory);
4432       if (mem->is_MergeMem()) {
4433         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4434           Node* n = mms.memory();
4435           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4436             assert(n->is_Store(), "what else?");
4437             no_interfering_store = false;
4438             break;
4439           }
4440         }
4441       } else {
4442         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4443           Node* n = mms.memory();
4444           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4445             assert(n->is_Store(), "what else?");
4446             no_interfering_store = false;
4447             break;
4448           }
4449         }
4450       }
4451 
4452       if (no_interfering_store) {
4453         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4454         uint size = alloc->req();
4455         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4456         old_jvms->set_map(sfpt);
4457         for (uint i = 0; i < size; i++) {
4458           sfpt->init_req(i, alloc->in(i));
4459         }
4460         // re-push array length for deoptimization
4461         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4462         old_jvms->set_sp(old_jvms->sp()+1);
4463         old_jvms->set_monoff(old_jvms->monoff()+1);
4464         old_jvms->set_scloff(old_jvms->scloff()+1);
4465         old_jvms->set_endoff(old_jvms->endoff()+1);
4466         old_jvms->set_should_reexecute(true);
4467 
4468         sfpt->set_i_o(map()->i_o());
4469         sfpt->set_memory(map()->memory());
4470         sfpt->set_control(map()->control());
4471 
4472         JVMState* saved_jvms = jvms();
4473         saved_reexecute_sp = _reexecute_sp;
4474 
4475         set_jvms(sfpt->jvms());
4476         _reexecute_sp = jvms()->sp();
4477 
4478         return saved_jvms;
4479       }
4480     }
4481   }
4482   return NULL;
4483 }
4484 
4485 // In case of a deoptimization, we restart execution at the
4486 // allocation, allocating a new array. We would leave an uninitialized
4487 // array in the heap that GCs wouldn't expect. Move the allocation
4488 // after the traps so we don't allocate the array if we
4489 // deoptimize. This is possible because tightly_coupled_allocation()
4490 // guarantees there's no observer of the allocated array at this point
4491 // and the control flow is simple enough.
4492 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
4493                                                     int saved_reexecute_sp, uint new_idx) {
4494   if (saved_jvms != NULL && !stopped()) {
4495     assert(alloc != NULL, "only with a tightly coupled allocation");
4496     // restore JVM state to the state at the arraycopy
4497     saved_jvms->map()->set_control(map()->control());
4498     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4499     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4500     // If we've improved the types of some nodes (null check) while
4501     // emitting the guards, propagate them to the current state
4502     map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
4503     set_jvms(saved_jvms);
4504     _reexecute_sp = saved_reexecute_sp;
4505 
4506     // Remove the allocation from above the guards
4507     CallProjections callprojs;
4508     alloc->extract_projections(&callprojs, true);
4509     InitializeNode* init = alloc->initialization();
4510     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4511     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4512     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4513     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4514 
4515     // move the allocation here (after the guards)
4516     _gvn.hash_delete(alloc);
4517     alloc->set_req(TypeFunc::Control, control());
4518     alloc->set_req(TypeFunc::I_O, i_o());
4519     Node *mem = reset_memory();
4520     set_all_memory(mem);
4521     alloc->set_req(TypeFunc::Memory, mem);
4522     set_control(init->proj_out_or_null(TypeFunc::Control));
4523     set_i_o(callprojs.fallthrough_ioproj);
4524 
4525     // Update memory as done in GraphKit::set_output_for_allocation()
4526     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4527     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4528     if (ary_type->isa_aryptr() && length_type != NULL) {
4529       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4530     }
4531     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4532     int            elemidx  = C->get_alias_index(telemref);
4533     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
4534     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
4535 
4536     Node* allocx = _gvn.transform(alloc);
4537     assert(allocx == alloc, "where has the allocation gone?");
4538     assert(dest->is_CheckCastPP(), "not an allocation result?");
4539 
4540     _gvn.hash_delete(dest);
4541     dest->set_req(0, control());
4542     Node* destx = _gvn.transform(dest);
4543     assert(destx == dest, "where has the allocation result gone?");
4544   }
4545 }
4546 
4547 
4548 //------------------------------inline_arraycopy-----------------------
4549 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4550 //                                                      Object dest, int destPos,
4551 //                                                      int length);
4552 bool LibraryCallKit::inline_arraycopy() {
4553   // Get the arguments.
4554   Node* src         = argument(0);  // type: oop
4555   Node* src_offset  = argument(1);  // type: int
4556   Node* dest        = argument(2);  // type: oop
4557   Node* dest_offset = argument(3);  // type: int
4558   Node* length      = argument(4);  // type: int
4559 
4560   uint new_idx = C->unique();
4561 
4562   // Check for allocation before we add nodes that would confuse
4563   // tightly_coupled_allocation()
4564   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4565 
4566   int saved_reexecute_sp = -1;
4567   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4568   // See arraycopy_restore_alloc_state() comment
4569   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4570   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4571   // if saved_jvms == NULL and alloc != NULL, we can't emit any guards
4572   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4573 
4574   // The following tests must be performed
4575   // (1) src and dest are arrays.
4576   // (2) src and dest arrays must have elements of the same BasicType
4577   // (3) src and dest must not be null.
4578   // (4) src_offset must not be negative.
4579   // (5) dest_offset must not be negative.
4580   // (6) length must not be negative.
4581   // (7) src_offset + length must not exceed length of src.
4582   // (8) dest_offset + length must not exceed length of dest.
4583   // (9) each element of an oop array must be assignable
4584 
4585   // (3) src and dest must not be null.
4586   // always do this here because we need the JVM state for uncommon traps
4587   Node* null_ctl = top();
4588   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4589   assert(null_ctl->is_top(), "no null control here");
4590   dest = null_check(dest, T_ARRAY);
4591 
4592   if (!can_emit_guards) {
4593     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4594     // guards but the arraycopy node could still take advantage of a
4595     // tightly allocated allocation. tightly_coupled_allocation() is
4596     // called again to make sure it takes the null check above into
4597     // account: the null check is mandatory and if it caused an
4598     // uncommon trap to be emitted then the allocation can't be
4599     // considered tightly coupled in this context.
4600     alloc = tightly_coupled_allocation(dest, NULL);
4601   }
4602 
4603   bool validated = false;
4604 
4605   const Type* src_type  = _gvn.type(src);
4606   const Type* dest_type = _gvn.type(dest);
4607   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4608   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4609 
4610   // Do we have the type of src?
4611   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4612   // Do we have the type of dest?
4613   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4614   // Is the type for src from speculation?
4615   bool src_spec = false;
4616   // Is the type for dest from speculation?
4617   bool dest_spec = false;
4618 
4619   if ((!has_src || !has_dest) && can_emit_guards) {
4620     // We don't have sufficient type information, let's see if
4621     // speculative types can help. We need to have types for both src
4622     // and dest so that it pays off.
4623 
4624     // Do we already have or could we have type information for src
4625     bool could_have_src = has_src;
4626     // Do we already have or could we have type information for dest
4627     bool could_have_dest = has_dest;
4628 
4629     ciKlass* src_k = NULL;
4630     if (!has_src) {
4631       src_k = src_type->speculative_type_not_null();
4632       if (src_k != NULL && src_k->is_array_klass()) {
4633         could_have_src = true;
4634       }
4635     }
4636 
4637     ciKlass* dest_k = NULL;
4638     if (!has_dest) {
4639       dest_k = dest_type->speculative_type_not_null();
4640       if (dest_k != NULL && dest_k->is_array_klass()) {
4641         could_have_dest = true;
4642       }
4643     }
4644 
4645     if (could_have_src && could_have_dest) {
4646       // This is going to pay off so emit the required guards
4647       if (!has_src) {
4648         src = maybe_cast_profiled_obj(src, src_k, true);
4649         src_type  = _gvn.type(src);
4650         top_src  = src_type->isa_aryptr();
4651         has_src = (top_src != NULL && top_src->klass() != NULL);
4652         src_spec = true;
4653       }
4654       if (!has_dest) {
4655         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4656         dest_type  = _gvn.type(dest);
4657         top_dest  = dest_type->isa_aryptr();
4658         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4659         dest_spec = true;
4660       }
4661     }
4662   }
4663 
4664   if (has_src && has_dest && can_emit_guards) {
4665     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4666     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4667     if (is_reference_type(src_elem))   src_elem  = T_OBJECT;
4668     if (is_reference_type(dest_elem))  dest_elem = T_OBJECT;
4669 
4670     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4671       // If both arrays are object arrays then having the exact types
4672       // for both will remove the need for a subtype check at runtime
4673       // before the call and may make it possible to pick a faster copy
4674       // routine (without a subtype check on every element)
4675       // Do we have the exact type of src?
4676       bool could_have_src = src_spec;
4677       // Do we have the exact type of dest?
4678       bool could_have_dest = dest_spec;
4679       ciKlass* src_k = top_src->klass();
4680       ciKlass* dest_k = top_dest->klass();
4681       if (!src_spec) {
4682         src_k = src_type->speculative_type_not_null();
4683         if (src_k != NULL && src_k->is_array_klass()) {
4684           could_have_src = true;
4685         }
4686       }
4687       if (!dest_spec) {
4688         dest_k = dest_type->speculative_type_not_null();
4689         if (dest_k != NULL && dest_k->is_array_klass()) {
4690           could_have_dest = true;
4691         }
4692       }
4693       if (could_have_src && could_have_dest) {
4694         // If we can have both exact types, emit the missing guards
4695         if (could_have_src && !src_spec) {
4696           src = maybe_cast_profiled_obj(src, src_k, true);
4697         }
4698         if (could_have_dest && !dest_spec) {
4699           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4700         }
4701       }
4702     }
4703   }
4704 
4705   ciMethod* trap_method = method();
4706   int trap_bci = bci();
4707   if (saved_jvms != NULL) {
4708     trap_method = alloc->jvms()->method();
4709     trap_bci = alloc->jvms()->bci();
4710   }
4711 
4712   bool negative_length_guard_generated = false;
4713 
4714   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4715       can_emit_guards &&
4716       !src->is_top() && !dest->is_top()) {
4717     // validate arguments: enables transformation the ArrayCopyNode
4718     validated = true;
4719 
4720     RegionNode* slow_region = new RegionNode(1);
4721     record_for_igvn(slow_region);
4722 
4723     // (1) src and dest are arrays.
4724     generate_non_array_guard(load_object_klass(src), slow_region);
4725     generate_non_array_guard(load_object_klass(dest), slow_region);
4726 
4727     // (2) src and dest arrays must have elements of the same BasicType
4728     // done at macro expansion or at Ideal transformation time
4729 
4730     // (4) src_offset must not be negative.
4731     generate_negative_guard(src_offset, slow_region);
4732 
4733     // (5) dest_offset must not be negative.
4734     generate_negative_guard(dest_offset, slow_region);
4735 
4736     // (7) src_offset + length must not exceed length of src.
4737     generate_limit_guard(src_offset, length,
4738                          load_array_length(src),
4739                          slow_region);
4740 
4741     // (8) dest_offset + length must not exceed length of dest.
4742     generate_limit_guard(dest_offset, length,
4743                          load_array_length(dest),
4744                          slow_region);
4745 
4746     // (6) length must not be negative.
4747     // This is also checked in generate_arraycopy() during macro expansion, but
4748     // we also have to check it here for the case where the ArrayCopyNode will
4749     // be eliminated by Escape Analysis.
4750     if (EliminateAllocations) {
4751       generate_negative_guard(length, slow_region);
4752       negative_length_guard_generated = true;
4753     }
4754 
4755     // (9) each element of an oop array must be assignable
4756     Node* src_klass  = load_object_klass(src);
4757     Node* dest_klass = load_object_klass(dest);
4758     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4759 
4760     if (not_subtype_ctrl != top()) {
4761       PreserveJVMState pjvms(this);
4762       set_control(not_subtype_ctrl);
4763       uncommon_trap(Deoptimization::Reason_intrinsic,
4764                     Deoptimization::Action_make_not_entrant);
4765       assert(stopped(), "Should be stopped");
4766     }
4767     {
4768       PreserveJVMState pjvms(this);
4769       set_control(_gvn.transform(slow_region));
4770       uncommon_trap(Deoptimization::Reason_intrinsic,
4771                     Deoptimization::Action_make_not_entrant);
4772       assert(stopped(), "Should be stopped");
4773     }
4774 
4775     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
4776     const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass());
4777     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
4778   }
4779 
4780   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
4781 
4782   if (stopped()) {
4783     return true;
4784   }
4785 
4786   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
4787                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
4788                                           // so the compiler has a chance to eliminate them: during macro expansion,
4789                                           // we have to set their control (CastPP nodes are eliminated).
4790                                           load_object_klass(src), load_object_klass(dest),
4791                                           load_array_length(src), load_array_length(dest));
4792 
4793   ac->set_arraycopy(validated);
4794 
4795   Node* n = _gvn.transform(ac);
4796   if (n == ac) {
4797     ac->connect_outputs(this);
4798   } else {
4799     assert(validated, "shouldn't transform if all arguments not validated");
4800     set_all_memory(n);
4801   }
4802   clear_upper_avx();
4803 
4804 
4805   return true;
4806 }
4807 
4808 
4809 // Helper function which determines if an arraycopy immediately follows
4810 // an allocation, with no intervening tests or other escapes for the object.
4811 AllocateArrayNode*
4812 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4813                                            RegionNode* slow_region) {
4814   if (stopped())             return NULL;  // no fast path
4815   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4816 
4817   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4818   if (alloc == NULL)  return NULL;
4819 
4820   Node* rawmem = memory(Compile::AliasIdxRaw);
4821   // Is the allocation's memory state untouched?
4822   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4823     // Bail out if there have been raw-memory effects since the allocation.
4824     // (Example:  There might have been a call or safepoint.)
4825     return NULL;
4826   }
4827   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4828   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4829     return NULL;
4830   }
4831 
4832   // There must be no unexpected observers of this allocation.
4833   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4834     Node* obs = ptr->fast_out(i);
4835     if (obs != this->map()) {
4836       return NULL;
4837     }
4838   }
4839 
4840   // This arraycopy must unconditionally follow the allocation of the ptr.
4841   Node* alloc_ctl = ptr->in(0);
4842   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4843 
4844   Node* ctl = control();
4845   while (ctl != alloc_ctl) {
4846     // There may be guards which feed into the slow_region.
4847     // Any other control flow means that we might not get a chance
4848     // to finish initializing the allocated object.
4849     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4850       IfNode* iff = ctl->in(0)->as_If();
4851       Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con);
4852       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4853       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4854         ctl = iff->in(0);       // This test feeds the known slow_region.
4855         continue;
4856       }
4857       // One more try:  Various low-level checks bottom out in
4858       // uncommon traps.  If the debug-info of the trap omits
4859       // any reference to the allocation, as we've already
4860       // observed, then there can be no objection to the trap.
4861       bool found_trap = false;
4862       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4863         Node* obs = not_ctl->fast_out(j);
4864         if (obs->in(0) == not_ctl && obs->is_Call() &&
4865             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
4866           found_trap = true; break;
4867         }
4868       }
4869       if (found_trap) {
4870         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4871         continue;
4872       }
4873     }
4874     return NULL;
4875   }
4876 
4877   // If we get this far, we have an allocation which immediately
4878   // precedes the arraycopy, and we can take over zeroing the new object.
4879   // The arraycopy will finish the initialization, and provide
4880   // a new control state to which we will anchor the destination pointer.
4881 
4882   return alloc;
4883 }
4884 
4885 //-------------inline_encodeISOArray-----------------------------------
4886 // encode char[] to byte[] in ISO_8859_1
4887 bool LibraryCallKit::inline_encodeISOArray() {
4888   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
4889   // no receiver since it is static method
4890   Node *src         = argument(0);
4891   Node *src_offset  = argument(1);
4892   Node *dst         = argument(2);
4893   Node *dst_offset  = argument(3);
4894   Node *length      = argument(4);
4895 
4896   src = must_be_not_null(src, true);
4897   dst = must_be_not_null(dst, true);
4898 
4899   const Type* src_type = src->Value(&_gvn);
4900   const Type* dst_type = dst->Value(&_gvn);
4901   const TypeAryPtr* top_src = src_type->isa_aryptr();
4902   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
4903   if (top_src  == NULL || top_src->klass()  == NULL ||
4904       top_dest == NULL || top_dest->klass() == NULL) {
4905     // failed array check
4906     return false;
4907   }
4908 
4909   // Figure out the size and type of the elements we will be copying.
4910   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4911   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4912   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
4913     return false;
4914   }
4915 
4916   Node* src_start = array_element_address(src, src_offset, T_CHAR);
4917   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
4918   // 'src_start' points to src array + scaled offset
4919   // 'dst_start' points to dst array + scaled offset
4920 
4921   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
4922   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
4923   enc = _gvn.transform(enc);
4924   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
4925   set_memory(res_mem, mtype);
4926   set_result(enc);
4927   clear_upper_avx();
4928 
4929   return true;
4930 }
4931 
4932 //-------------inline_multiplyToLen-----------------------------------
4933 bool LibraryCallKit::inline_multiplyToLen() {
4934   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
4935 
4936   address stubAddr = StubRoutines::multiplyToLen();
4937   if (stubAddr == NULL) {
4938     return false; // Intrinsic's stub is not implemented on this platform
4939   }
4940   const char* stubName = "multiplyToLen";
4941 
4942   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
4943 
4944   // no receiver because it is a static method
4945   Node* x    = argument(0);
4946   Node* xlen = argument(1);
4947   Node* y    = argument(2);
4948   Node* ylen = argument(3);
4949   Node* z    = argument(4);
4950 
4951   x = must_be_not_null(x, true);
4952   y = must_be_not_null(y, true);
4953 
4954   const Type* x_type = x->Value(&_gvn);
4955   const Type* y_type = y->Value(&_gvn);
4956   const TypeAryPtr* top_x = x_type->isa_aryptr();
4957   const TypeAryPtr* top_y = y_type->isa_aryptr();
4958   if (top_x  == NULL || top_x->klass()  == NULL ||
4959       top_y == NULL || top_y->klass() == NULL) {
4960     // failed array check
4961     return false;
4962   }
4963 
4964   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4965   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4966   if (x_elem != T_INT || y_elem != T_INT) {
4967     return false;
4968   }
4969 
4970   // Set the original stack and the reexecute bit for the interpreter to reexecute
4971   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
4972   // on the return from z array allocation in runtime.
4973   { PreserveReexecuteState preexecs(this);
4974     jvms()->set_should_reexecute(true);
4975 
4976     Node* x_start = array_element_address(x, intcon(0), x_elem);
4977     Node* y_start = array_element_address(y, intcon(0), y_elem);
4978     // 'x_start' points to x array + scaled xlen
4979     // 'y_start' points to y array + scaled ylen
4980 
4981     // Allocate the result array
4982     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
4983     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
4984     Node* klass_node = makecon(TypeKlassPtr::make(klass));
4985 
4986     IdealKit ideal(this);
4987 
4988 #define __ ideal.
4989      Node* one = __ ConI(1);
4990      Node* zero = __ ConI(0);
4991      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
4992      __ set(need_alloc, zero);
4993      __ set(z_alloc, z);
4994      __ if_then(z, BoolTest::eq, null()); {
4995        __ increment (need_alloc, one);
4996      } __ else_(); {
4997        // Update graphKit memory and control from IdealKit.
4998        sync_kit(ideal);
4999        Node *cast = new CastPPNode(z, TypePtr::NOTNULL);
5000        cast->init_req(0, control());
5001        _gvn.set_type(cast, cast->bottom_type());
5002        C->record_for_igvn(cast);
5003 
5004        Node* zlen_arg = load_array_length(cast);
5005        // Update IdealKit memory and control from graphKit.
5006        __ sync_kit(this);
5007        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5008          __ increment (need_alloc, one);
5009        } __ end_if();
5010      } __ end_if();
5011 
5012      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5013        // Update graphKit memory and control from IdealKit.
5014        sync_kit(ideal);
5015        Node * narr = new_array(klass_node, zlen, 1);
5016        // Update IdealKit memory and control from graphKit.
5017        __ sync_kit(this);
5018        __ set(z_alloc, narr);
5019      } __ end_if();
5020 
5021      sync_kit(ideal);
5022      z = __ value(z_alloc);
5023      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5024      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5025      // Final sync IdealKit and GraphKit.
5026      final_sync(ideal);
5027 #undef __
5028 
5029     Node* z_start = array_element_address(z, intcon(0), T_INT);
5030 
5031     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5032                                    OptoRuntime::multiplyToLen_Type(),
5033                                    stubAddr, stubName, TypePtr::BOTTOM,
5034                                    x_start, xlen, y_start, ylen, z_start, zlen);
5035   } // original reexecute is set back here
5036 
5037   C->set_has_split_ifs(true); // Has chance for split-if optimization
5038   set_result(z);
5039   return true;
5040 }
5041 
5042 //-------------inline_squareToLen------------------------------------
5043 bool LibraryCallKit::inline_squareToLen() {
5044   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5045 
5046   address stubAddr = StubRoutines::squareToLen();
5047   if (stubAddr == NULL) {
5048     return false; // Intrinsic's stub is not implemented on this platform
5049   }
5050   const char* stubName = "squareToLen";
5051 
5052   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5053 
5054   Node* x    = argument(0);
5055   Node* len  = argument(1);
5056   Node* z    = argument(2);
5057   Node* zlen = argument(3);
5058 
5059   x = must_be_not_null(x, true);
5060   z = must_be_not_null(z, true);
5061 
5062   const Type* x_type = x->Value(&_gvn);
5063   const Type* z_type = z->Value(&_gvn);
5064   const TypeAryPtr* top_x = x_type->isa_aryptr();
5065   const TypeAryPtr* top_z = z_type->isa_aryptr();
5066   if (top_x  == NULL || top_x->klass()  == NULL ||
5067       top_z  == NULL || top_z->klass()  == NULL) {
5068     // failed array check
5069     return false;
5070   }
5071 
5072   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5073   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5074   if (x_elem != T_INT || z_elem != T_INT) {
5075     return false;
5076   }
5077 
5078 
5079   Node* x_start = array_element_address(x, intcon(0), x_elem);
5080   Node* z_start = array_element_address(z, intcon(0), z_elem);
5081 
5082   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5083                                   OptoRuntime::squareToLen_Type(),
5084                                   stubAddr, stubName, TypePtr::BOTTOM,
5085                                   x_start, len, z_start, zlen);
5086 
5087   set_result(z);
5088   return true;
5089 }
5090 
5091 //-------------inline_mulAdd------------------------------------------
5092 bool LibraryCallKit::inline_mulAdd() {
5093   assert(UseMulAddIntrinsic, "not implemented on this platform");
5094 
5095   address stubAddr = StubRoutines::mulAdd();
5096   if (stubAddr == NULL) {
5097     return false; // Intrinsic's stub is not implemented on this platform
5098   }
5099   const char* stubName = "mulAdd";
5100 
5101   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5102 
5103   Node* out      = argument(0);
5104   Node* in       = argument(1);
5105   Node* offset   = argument(2);
5106   Node* len      = argument(3);
5107   Node* k        = argument(4);
5108 
5109   out = must_be_not_null(out, true);
5110 
5111   const Type* out_type = out->Value(&_gvn);
5112   const Type* in_type = in->Value(&_gvn);
5113   const TypeAryPtr* top_out = out_type->isa_aryptr();
5114   const TypeAryPtr* top_in = in_type->isa_aryptr();
5115   if (top_out  == NULL || top_out->klass()  == NULL ||
5116       top_in == NULL || top_in->klass() == NULL) {
5117     // failed array check
5118     return false;
5119   }
5120 
5121   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5122   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5123   if (out_elem != T_INT || in_elem != T_INT) {
5124     return false;
5125   }
5126 
5127   Node* outlen = load_array_length(out);
5128   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5129   Node* out_start = array_element_address(out, intcon(0), out_elem);
5130   Node* in_start = array_element_address(in, intcon(0), in_elem);
5131 
5132   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5133                                   OptoRuntime::mulAdd_Type(),
5134                                   stubAddr, stubName, TypePtr::BOTTOM,
5135                                   out_start,in_start, new_offset, len, k);
5136   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5137   set_result(result);
5138   return true;
5139 }
5140 
5141 //-------------inline_montgomeryMultiply-----------------------------------
5142 bool LibraryCallKit::inline_montgomeryMultiply() {
5143   address stubAddr = StubRoutines::montgomeryMultiply();
5144   if (stubAddr == NULL) {
5145     return false; // Intrinsic's stub is not implemented on this platform
5146   }
5147 
5148   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5149   const char* stubName = "montgomery_multiply";
5150 
5151   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5152 
5153   Node* a    = argument(0);
5154   Node* b    = argument(1);
5155   Node* n    = argument(2);
5156   Node* len  = argument(3);
5157   Node* inv  = argument(4);
5158   Node* m    = argument(6);
5159 
5160   const Type* a_type = a->Value(&_gvn);
5161   const TypeAryPtr* top_a = a_type->isa_aryptr();
5162   const Type* b_type = b->Value(&_gvn);
5163   const TypeAryPtr* top_b = b_type->isa_aryptr();
5164   const Type* n_type = a->Value(&_gvn);
5165   const TypeAryPtr* top_n = n_type->isa_aryptr();
5166   const Type* m_type = a->Value(&_gvn);
5167   const TypeAryPtr* top_m = m_type->isa_aryptr();
5168   if (top_a  == NULL || top_a->klass()  == NULL ||
5169       top_b == NULL || top_b->klass()  == NULL ||
5170       top_n == NULL || top_n->klass()  == NULL ||
5171       top_m == NULL || top_m->klass()  == NULL) {
5172     // failed array check
5173     return false;
5174   }
5175 
5176   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5177   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5178   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5179   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5180   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5181     return false;
5182   }
5183 
5184   // Make the call
5185   {
5186     Node* a_start = array_element_address(a, intcon(0), a_elem);
5187     Node* b_start = array_element_address(b, intcon(0), b_elem);
5188     Node* n_start = array_element_address(n, intcon(0), n_elem);
5189     Node* m_start = array_element_address(m, intcon(0), m_elem);
5190 
5191     Node* call = make_runtime_call(RC_LEAF,
5192                                    OptoRuntime::montgomeryMultiply_Type(),
5193                                    stubAddr, stubName, TypePtr::BOTTOM,
5194                                    a_start, b_start, n_start, len, inv, top(),
5195                                    m_start);
5196     set_result(m);
5197   }
5198 
5199   return true;
5200 }
5201 
5202 bool LibraryCallKit::inline_montgomerySquare() {
5203   address stubAddr = StubRoutines::montgomerySquare();
5204   if (stubAddr == NULL) {
5205     return false; // Intrinsic's stub is not implemented on this platform
5206   }
5207 
5208   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5209   const char* stubName = "montgomery_square";
5210 
5211   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5212 
5213   Node* a    = argument(0);
5214   Node* n    = argument(1);
5215   Node* len  = argument(2);
5216   Node* inv  = argument(3);
5217   Node* m    = argument(5);
5218 
5219   const Type* a_type = a->Value(&_gvn);
5220   const TypeAryPtr* top_a = a_type->isa_aryptr();
5221   const Type* n_type = a->Value(&_gvn);
5222   const TypeAryPtr* top_n = n_type->isa_aryptr();
5223   const Type* m_type = a->Value(&_gvn);
5224   const TypeAryPtr* top_m = m_type->isa_aryptr();
5225   if (top_a  == NULL || top_a->klass()  == NULL ||
5226       top_n == NULL || top_n->klass()  == NULL ||
5227       top_m == NULL || top_m->klass()  == NULL) {
5228     // failed array check
5229     return false;
5230   }
5231 
5232   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5233   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5234   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5235   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5236     return false;
5237   }
5238 
5239   // Make the call
5240   {
5241     Node* a_start = array_element_address(a, intcon(0), a_elem);
5242     Node* n_start = array_element_address(n, intcon(0), n_elem);
5243     Node* m_start = array_element_address(m, intcon(0), m_elem);
5244 
5245     Node* call = make_runtime_call(RC_LEAF,
5246                                    OptoRuntime::montgomerySquare_Type(),
5247                                    stubAddr, stubName, TypePtr::BOTTOM,
5248                                    a_start, n_start, len, inv, top(),
5249                                    m_start);
5250     set_result(m);
5251   }
5252 
5253   return true;
5254 }
5255 
5256 //-------------inline_vectorizedMismatch------------------------------
5257 bool LibraryCallKit::inline_vectorizedMismatch() {
5258   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5259 
5260   address stubAddr = StubRoutines::vectorizedMismatch();
5261   if (stubAddr == NULL) {
5262     return false; // Intrinsic's stub is not implemented on this platform
5263   }
5264   const char* stubName = "vectorizedMismatch";
5265   int size_l = callee()->signature()->size();
5266   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5267 
5268   Node* obja = argument(0);
5269   Node* aoffset = argument(1);
5270   Node* objb = argument(3);
5271   Node* boffset = argument(4);
5272   Node* length = argument(6);
5273   Node* scale = argument(7);
5274 
5275   const Type* a_type = obja->Value(&_gvn);
5276   const Type* b_type = objb->Value(&_gvn);
5277   const TypeAryPtr* top_a = a_type->isa_aryptr();
5278   const TypeAryPtr* top_b = b_type->isa_aryptr();
5279   if (top_a == NULL || top_a->klass() == NULL ||
5280     top_b == NULL || top_b->klass() == NULL) {
5281     // failed array check
5282     return false;
5283   }
5284 
5285   Node* call;
5286   jvms()->set_should_reexecute(true);
5287 
5288   Node* obja_adr = make_unsafe_address(obja, aoffset, ACCESS_READ);
5289   Node* objb_adr = make_unsafe_address(objb, boffset, ACCESS_READ);
5290 
5291   call = make_runtime_call(RC_LEAF,
5292     OptoRuntime::vectorizedMismatch_Type(),
5293     stubAddr, stubName, TypePtr::BOTTOM,
5294     obja_adr, objb_adr, length, scale);
5295 
5296   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5297   set_result(result);
5298   return true;
5299 }
5300 
5301 /**
5302  * Calculate CRC32 for byte.
5303  * int java.util.zip.CRC32.update(int crc, int b)
5304  */
5305 bool LibraryCallKit::inline_updateCRC32() {
5306   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5307   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5308   // no receiver since it is static method
5309   Node* crc  = argument(0); // type: int
5310   Node* b    = argument(1); // type: int
5311 
5312   /*
5313    *    int c = ~ crc;
5314    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5315    *    b = b ^ (c >>> 8);
5316    *    crc = ~b;
5317    */
5318 
5319   Node* M1 = intcon(-1);
5320   crc = _gvn.transform(new XorINode(crc, M1));
5321   Node* result = _gvn.transform(new XorINode(crc, b));
5322   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5323 
5324   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5325   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5326   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5327   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5328 
5329   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5330   result = _gvn.transform(new XorINode(crc, result));
5331   result = _gvn.transform(new XorINode(result, M1));
5332   set_result(result);
5333   return true;
5334 }
5335 
5336 /**
5337  * Calculate CRC32 for byte[] array.
5338  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5339  */
5340 bool LibraryCallKit::inline_updateBytesCRC32() {
5341   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5342   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5343   // no receiver since it is static method
5344   Node* crc     = argument(0); // type: int
5345   Node* src     = argument(1); // type: oop
5346   Node* offset  = argument(2); // type: int
5347   Node* length  = argument(3); // type: int
5348 
5349   const Type* src_type = src->Value(&_gvn);
5350   const TypeAryPtr* top_src = src_type->isa_aryptr();
5351   if (top_src  == NULL || top_src->klass()  == NULL) {
5352     // failed array check
5353     return false;
5354   }
5355 
5356   // Figure out the size and type of the elements we will be copying.
5357   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5358   if (src_elem != T_BYTE) {
5359     return false;
5360   }
5361 
5362   // 'src_start' points to src array + scaled offset
5363   src = must_be_not_null(src, true);
5364   Node* src_start = array_element_address(src, offset, src_elem);
5365 
5366   // We assume that range check is done by caller.
5367   // TODO: generate range check (offset+length < src.length) in debug VM.
5368 
5369   // Call the stub.
5370   address stubAddr = StubRoutines::updateBytesCRC32();
5371   const char *stubName = "updateBytesCRC32";
5372 
5373   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5374                                  stubAddr, stubName, TypePtr::BOTTOM,
5375                                  crc, src_start, length);
5376   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5377   set_result(result);
5378   return true;
5379 }
5380 
5381 /**
5382  * Calculate CRC32 for ByteBuffer.
5383  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5384  */
5385 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5386   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5387   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5388   // no receiver since it is static method
5389   Node* crc     = argument(0); // type: int
5390   Node* src     = argument(1); // type: long
5391   Node* offset  = argument(3); // type: int
5392   Node* length  = argument(4); // type: int
5393 
5394   src = ConvL2X(src);  // adjust Java long to machine word
5395   Node* base = _gvn.transform(new CastX2PNode(src));
5396   offset = ConvI2X(offset);
5397 
5398   // 'src_start' points to src array + scaled offset
5399   Node* src_start = basic_plus_adr(top(), base, offset);
5400 
5401   // Call the stub.
5402   address stubAddr = StubRoutines::updateBytesCRC32();
5403   const char *stubName = "updateBytesCRC32";
5404 
5405   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5406                                  stubAddr, stubName, TypePtr::BOTTOM,
5407                                  crc, src_start, length);
5408   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5409   set_result(result);
5410   return true;
5411 }
5412 
5413 //------------------------------get_table_from_crc32c_class-----------------------
5414 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5415   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5416   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5417 
5418   return table;
5419 }
5420 
5421 //------------------------------inline_updateBytesCRC32C-----------------------
5422 //
5423 // Calculate CRC32C for byte[] array.
5424 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5425 //
5426 bool LibraryCallKit::inline_updateBytesCRC32C() {
5427   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5428   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5429   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5430   // no receiver since it is a static method
5431   Node* crc     = argument(0); // type: int
5432   Node* src     = argument(1); // type: oop
5433   Node* offset  = argument(2); // type: int
5434   Node* end     = argument(3); // type: int
5435 
5436   Node* length = _gvn.transform(new SubINode(end, offset));
5437 
5438   const Type* src_type = src->Value(&_gvn);
5439   const TypeAryPtr* top_src = src_type->isa_aryptr();
5440   if (top_src  == NULL || top_src->klass()  == NULL) {
5441     // failed array check
5442     return false;
5443   }
5444 
5445   // Figure out the size and type of the elements we will be copying.
5446   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5447   if (src_elem != T_BYTE) {
5448     return false;
5449   }
5450 
5451   // 'src_start' points to src array + scaled offset
5452   src = must_be_not_null(src, true);
5453   Node* src_start = array_element_address(src, offset, src_elem);
5454 
5455   // static final int[] byteTable in class CRC32C
5456   Node* table = get_table_from_crc32c_class(callee()->holder());
5457   table = must_be_not_null(table, true);
5458   Node* table_start = array_element_address(table, intcon(0), T_INT);
5459 
5460   // We assume that range check is done by caller.
5461   // TODO: generate range check (offset+length < src.length) in debug VM.
5462 
5463   // Call the stub.
5464   address stubAddr = StubRoutines::updateBytesCRC32C();
5465   const char *stubName = "updateBytesCRC32C";
5466 
5467   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5468                                  stubAddr, stubName, TypePtr::BOTTOM,
5469                                  crc, src_start, length, table_start);
5470   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5471   set_result(result);
5472   return true;
5473 }
5474 
5475 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5476 //
5477 // Calculate CRC32C for DirectByteBuffer.
5478 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5479 //
5480 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5481   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5482   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5483   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5484   // no receiver since it is a static method
5485   Node* crc     = argument(0); // type: int
5486   Node* src     = argument(1); // type: long
5487   Node* offset  = argument(3); // type: int
5488   Node* end     = argument(4); // type: int
5489 
5490   Node* length = _gvn.transform(new SubINode(end, offset));
5491 
5492   src = ConvL2X(src);  // adjust Java long to machine word
5493   Node* base = _gvn.transform(new CastX2PNode(src));
5494   offset = ConvI2X(offset);
5495 
5496   // 'src_start' points to src array + scaled offset
5497   Node* src_start = basic_plus_adr(top(), base, offset);
5498 
5499   // static final int[] byteTable in class CRC32C
5500   Node* table = get_table_from_crc32c_class(callee()->holder());
5501   table = must_be_not_null(table, true);
5502   Node* table_start = array_element_address(table, intcon(0), T_INT);
5503 
5504   // Call the stub.
5505   address stubAddr = StubRoutines::updateBytesCRC32C();
5506   const char *stubName = "updateBytesCRC32C";
5507 
5508   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5509                                  stubAddr, stubName, TypePtr::BOTTOM,
5510                                  crc, src_start, length, table_start);
5511   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5512   set_result(result);
5513   return true;
5514 }
5515 
5516 //------------------------------inline_updateBytesAdler32----------------------
5517 //
5518 // Calculate Adler32 checksum for byte[] array.
5519 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5520 //
5521 bool LibraryCallKit::inline_updateBytesAdler32() {
5522   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5523   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5524   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5525   // no receiver since it is static method
5526   Node* crc     = argument(0); // type: int
5527   Node* src     = argument(1); // type: oop
5528   Node* offset  = argument(2); // type: int
5529   Node* length  = argument(3); // type: int
5530 
5531   const Type* src_type = src->Value(&_gvn);
5532   const TypeAryPtr* top_src = src_type->isa_aryptr();
5533   if (top_src  == NULL || top_src->klass()  == NULL) {
5534     // failed array check
5535     return false;
5536   }
5537 
5538   // Figure out the size and type of the elements we will be copying.
5539   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5540   if (src_elem != T_BYTE) {
5541     return false;
5542   }
5543 
5544   // 'src_start' points to src array + scaled offset
5545   Node* src_start = array_element_address(src, offset, src_elem);
5546 
5547   // We assume that range check is done by caller.
5548   // TODO: generate range check (offset+length < src.length) in debug VM.
5549 
5550   // Call the stub.
5551   address stubAddr = StubRoutines::updateBytesAdler32();
5552   const char *stubName = "updateBytesAdler32";
5553 
5554   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5555                                  stubAddr, stubName, TypePtr::BOTTOM,
5556                                  crc, src_start, length);
5557   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5558   set_result(result);
5559   return true;
5560 }
5561 
5562 //------------------------------inline_updateByteBufferAdler32---------------
5563 //
5564 // Calculate Adler32 checksum for DirectByteBuffer.
5565 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5566 //
5567 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5568   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5569   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5570   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5571   // no receiver since it is static method
5572   Node* crc     = argument(0); // type: int
5573   Node* src     = argument(1); // type: long
5574   Node* offset  = argument(3); // type: int
5575   Node* length  = argument(4); // type: int
5576 
5577   src = ConvL2X(src);  // adjust Java long to machine word
5578   Node* base = _gvn.transform(new CastX2PNode(src));
5579   offset = ConvI2X(offset);
5580 
5581   // 'src_start' points to src array + scaled offset
5582   Node* src_start = basic_plus_adr(top(), base, offset);
5583 
5584   // Call the stub.
5585   address stubAddr = StubRoutines::updateBytesAdler32();
5586   const char *stubName = "updateBytesAdler32";
5587 
5588   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5589                                  stubAddr, stubName, TypePtr::BOTTOM,
5590                                  crc, src_start, length);
5591 
5592   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5593   set_result(result);
5594   return true;
5595 }
5596 
5597 //----------------------------inline_reference_get----------------------------
5598 // public T java.lang.ref.Reference.get();
5599 bool LibraryCallKit::inline_reference_get() {
5600   const int referent_offset = java_lang_ref_Reference::referent_offset;
5601   guarantee(referent_offset > 0, "should have already been set");
5602 
5603   // Get the argument:
5604   Node* reference_obj = null_check_receiver();
5605   if (stopped()) return true;
5606 
5607   const TypeInstPtr* tinst = _gvn.type(reference_obj)->isa_instptr();
5608   assert(tinst != NULL, "obj is null");
5609   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5610   ciInstanceKlass* referenceKlass = tinst->klass()->as_instance_klass();
5611   ciField* field = referenceKlass->get_field_by_name(ciSymbol::make("referent"),
5612                                                      ciSymbol::make("Ljava/lang/Object;"),
5613                                                      false);
5614   assert (field != NULL, "undefined field");
5615 
5616   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5617   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5618 
5619   ciInstanceKlass* klass = env()->Object_klass();
5620   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5621 
5622   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
5623   Node* result = access_load_at(reference_obj, adr, adr_type, object_type, T_OBJECT, decorators);
5624   // Add memory barrier to prevent commoning reads from this field
5625   // across safepoint since GC can change its value.
5626   insert_mem_bar(Op_MemBarCPUOrder);
5627 
5628   set_result(result);
5629   return true;
5630 }
5631 
5632 
5633 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5634                                               bool is_exact=true, bool is_static=false,
5635                                               ciInstanceKlass * fromKls=NULL) {
5636   if (fromKls == NULL) {
5637     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5638     assert(tinst != NULL, "obj is null");
5639     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5640     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5641     fromKls = tinst->klass()->as_instance_klass();
5642   } else {
5643     assert(is_static, "only for static field access");
5644   }
5645   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5646                                               ciSymbol::make(fieldTypeString),
5647                                               is_static);
5648 
5649   assert (field != NULL, "undefined field");
5650   if (field == NULL) return (Node *) NULL;
5651 
5652   if (is_static) {
5653     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5654     fromObj = makecon(tip);
5655   }
5656 
5657   // Next code  copied from Parse::do_get_xxx():
5658 
5659   // Compute address and memory type.
5660   int offset  = field->offset_in_bytes();
5661   bool is_vol = field->is_volatile();
5662   ciType* field_klass = field->type();
5663   assert(field_klass->is_loaded(), "should be loaded");
5664   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5665   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5666   BasicType bt = field->layout_type();
5667 
5668   // Build the resultant type of the load
5669   const Type *type;
5670   if (bt == T_OBJECT) {
5671     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5672   } else {
5673     type = Type::get_const_basic_type(bt);
5674   }
5675 
5676   DecoratorSet decorators = IN_HEAP;
5677 
5678   if (is_vol) {
5679     decorators |= MO_SEQ_CST;
5680   }
5681 
5682   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
5683 }
5684 
5685 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5686                                                  bool is_exact = true, bool is_static = false,
5687                                                  ciInstanceKlass * fromKls = NULL) {
5688   if (fromKls == NULL) {
5689     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5690     assert(tinst != NULL, "obj is null");
5691     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5692     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5693     fromKls = tinst->klass()->as_instance_klass();
5694   }
5695   else {
5696     assert(is_static, "only for static field access");
5697   }
5698   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5699     ciSymbol::make(fieldTypeString),
5700     is_static);
5701 
5702   assert(field != NULL, "undefined field");
5703   assert(!field->is_volatile(), "not defined for volatile fields");
5704 
5705   if (is_static) {
5706     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5707     fromObj = makecon(tip);
5708   }
5709 
5710   // Next code  copied from Parse::do_get_xxx():
5711 
5712   // Compute address and memory type.
5713   int offset = field->offset_in_bytes();
5714   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5715 
5716   return adr;
5717 }
5718 
5719 //------------------------------inline_aescrypt_Block-----------------------
5720 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5721   address stubAddr = NULL;
5722   const char *stubName;
5723   assert(UseAES, "need AES instruction support");
5724 
5725   switch(id) {
5726   case vmIntrinsics::_aescrypt_encryptBlock:
5727     stubAddr = StubRoutines::aescrypt_encryptBlock();
5728     stubName = "aescrypt_encryptBlock";
5729     break;
5730   case vmIntrinsics::_aescrypt_decryptBlock:
5731     stubAddr = StubRoutines::aescrypt_decryptBlock();
5732     stubName = "aescrypt_decryptBlock";
5733     break;
5734   default:
5735     break;
5736   }
5737   if (stubAddr == NULL) return false;
5738 
5739   Node* aescrypt_object = argument(0);
5740   Node* src             = argument(1);
5741   Node* src_offset      = argument(2);
5742   Node* dest            = argument(3);
5743   Node* dest_offset     = argument(4);
5744 
5745   src = must_be_not_null(src, true);
5746   dest = must_be_not_null(dest, true);
5747 
5748   // (1) src and dest are arrays.
5749   const Type* src_type = src->Value(&_gvn);
5750   const Type* dest_type = dest->Value(&_gvn);
5751   const TypeAryPtr* top_src = src_type->isa_aryptr();
5752   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5753   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5754 
5755   // for the quick and dirty code we will skip all the checks.
5756   // we are just trying to get the call to be generated.
5757   Node* src_start  = src;
5758   Node* dest_start = dest;
5759   if (src_offset != NULL || dest_offset != NULL) {
5760     assert(src_offset != NULL && dest_offset != NULL, "");
5761     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5762     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5763   }
5764 
5765   // now need to get the start of its expanded key array
5766   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5767   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5768   if (k_start == NULL) return false;
5769 
5770   if (Matcher::pass_original_key_for_aes()) {
5771     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5772     // compatibility issues between Java key expansion and SPARC crypto instructions
5773     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5774     if (original_k_start == NULL) return false;
5775 
5776     // Call the stub.
5777     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5778                       stubAddr, stubName, TypePtr::BOTTOM,
5779                       src_start, dest_start, k_start, original_k_start);
5780   } else {
5781     // Call the stub.
5782     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5783                       stubAddr, stubName, TypePtr::BOTTOM,
5784                       src_start, dest_start, k_start);
5785   }
5786 
5787   return true;
5788 }
5789 
5790 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5791 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5792   address stubAddr = NULL;
5793   const char *stubName = NULL;
5794 
5795   assert(UseAES, "need AES instruction support");
5796 
5797   switch(id) {
5798   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5799     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5800     stubName = "cipherBlockChaining_encryptAESCrypt";
5801     break;
5802   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5803     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5804     stubName = "cipherBlockChaining_decryptAESCrypt";
5805     break;
5806   default:
5807     break;
5808   }
5809   if (stubAddr == NULL) return false;
5810 
5811   Node* cipherBlockChaining_object = argument(0);
5812   Node* src                        = argument(1);
5813   Node* src_offset                 = argument(2);
5814   Node* len                        = argument(3);
5815   Node* dest                       = argument(4);
5816   Node* dest_offset                = argument(5);
5817 
5818   src = must_be_not_null(src, false);
5819   dest = must_be_not_null(dest, false);
5820 
5821   // (1) src and dest are arrays.
5822   const Type* src_type = src->Value(&_gvn);
5823   const Type* dest_type = dest->Value(&_gvn);
5824   const TypeAryPtr* top_src = src_type->isa_aryptr();
5825   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5826   assert (top_src  != NULL && top_src->klass()  != NULL
5827           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5828 
5829   // checks are the responsibility of the caller
5830   Node* src_start  = src;
5831   Node* dest_start = dest;
5832   if (src_offset != NULL || dest_offset != NULL) {
5833     assert(src_offset != NULL && dest_offset != NULL, "");
5834     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5835     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5836   }
5837 
5838   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5839   // (because of the predicated logic executed earlier).
5840   // so we cast it here safely.
5841   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5842 
5843   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5844   if (embeddedCipherObj == NULL) return false;
5845 
5846   // cast it to what we know it will be at runtime
5847   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5848   assert(tinst != NULL, "CBC obj is null");
5849   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5850   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5851   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5852 
5853   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5854   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5855   const TypeOopPtr* xtype = aklass->as_instance_type();
5856   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5857   aescrypt_object = _gvn.transform(aescrypt_object);
5858 
5859   // we need to get the start of the aescrypt_object's expanded key array
5860   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5861   if (k_start == NULL) return false;
5862 
5863   // similarly, get the start address of the r vector
5864   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5865   if (objRvec == NULL) return false;
5866   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5867 
5868   Node* cbcCrypt;
5869   if (Matcher::pass_original_key_for_aes()) {
5870     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5871     // compatibility issues between Java key expansion and SPARC crypto instructions
5872     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5873     if (original_k_start == NULL) return false;
5874 
5875     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5876     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5877                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5878                                  stubAddr, stubName, TypePtr::BOTTOM,
5879                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5880   } else {
5881     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5882     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5883                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5884                                  stubAddr, stubName, TypePtr::BOTTOM,
5885                                  src_start, dest_start, k_start, r_start, len);
5886   }
5887 
5888   // return cipher length (int)
5889   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5890   set_result(retvalue);
5891   return true;
5892 }
5893 
5894 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
5895 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
5896   address stubAddr = NULL;
5897   const char *stubName = NULL;
5898 
5899   assert(UseAES, "need AES instruction support");
5900 
5901   switch (id) {
5902   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
5903     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
5904     stubName = "electronicCodeBook_encryptAESCrypt";
5905     break;
5906   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
5907     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
5908     stubName = "electronicCodeBook_decryptAESCrypt";
5909     break;
5910   default:
5911     break;
5912   }
5913 
5914   if (stubAddr == NULL) return false;
5915 
5916   Node* electronicCodeBook_object = argument(0);
5917   Node* src                       = argument(1);
5918   Node* src_offset                = argument(2);
5919   Node* len                       = argument(3);
5920   Node* dest                      = argument(4);
5921   Node* dest_offset               = argument(5);
5922 
5923   // (1) src and dest are arrays.
5924   const Type* src_type = src->Value(&_gvn);
5925   const Type* dest_type = dest->Value(&_gvn);
5926   const TypeAryPtr* top_src = src_type->isa_aryptr();
5927   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5928   assert(top_src != NULL && top_src->klass() != NULL
5929          &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5930 
5931   // checks are the responsibility of the caller
5932   Node* src_start = src;
5933   Node* dest_start = dest;
5934   if (src_offset != NULL || dest_offset != NULL) {
5935     assert(src_offset != NULL && dest_offset != NULL, "");
5936     src_start = array_element_address(src, src_offset, T_BYTE);
5937     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5938   }
5939 
5940   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5941   // (because of the predicated logic executed earlier).
5942   // so we cast it here safely.
5943   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5944 
5945   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5946   if (embeddedCipherObj == NULL) return false;
5947 
5948   // cast it to what we know it will be at runtime
5949   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
5950   assert(tinst != NULL, "ECB obj is null");
5951   assert(tinst->klass()->is_loaded(), "ECB obj is not loaded");
5952   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5953   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5954 
5955   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5956   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5957   const TypeOopPtr* xtype = aklass->as_instance_type();
5958   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5959   aescrypt_object = _gvn.transform(aescrypt_object);
5960 
5961   // we need to get the start of the aescrypt_object's expanded key array
5962   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5963   if (k_start == NULL) return false;
5964 
5965   Node* ecbCrypt;
5966   if (Matcher::pass_original_key_for_aes()) {
5967     // no SPARC version for AES/ECB intrinsics now.
5968     return false;
5969   }
5970   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5971   ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
5972                                OptoRuntime::electronicCodeBook_aescrypt_Type(),
5973                                stubAddr, stubName, TypePtr::BOTTOM,
5974                                src_start, dest_start, k_start, len);
5975 
5976   // return cipher length (int)
5977   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
5978   set_result(retvalue);
5979   return true;
5980 }
5981 
5982 //------------------------------inline_counterMode_AESCrypt-----------------------
5983 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
5984   assert(UseAES, "need AES instruction support");
5985   if (!UseAESCTRIntrinsics) return false;
5986 
5987   address stubAddr = NULL;
5988   const char *stubName = NULL;
5989   if (id == vmIntrinsics::_counterMode_AESCrypt) {
5990     stubAddr = StubRoutines::counterMode_AESCrypt();
5991     stubName = "counterMode_AESCrypt";
5992   }
5993   if (stubAddr == NULL) return false;
5994 
5995   Node* counterMode_object = argument(0);
5996   Node* src = argument(1);
5997   Node* src_offset = argument(2);
5998   Node* len = argument(3);
5999   Node* dest = argument(4);
6000   Node* dest_offset = argument(5);
6001 
6002   // (1) src and dest are arrays.
6003   const Type* src_type = src->Value(&_gvn);
6004   const Type* dest_type = dest->Value(&_gvn);
6005   const TypeAryPtr* top_src = src_type->isa_aryptr();
6006   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6007   assert(top_src != NULL && top_src->klass() != NULL &&
6008          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6009 
6010   // checks are the responsibility of the caller
6011   Node* src_start = src;
6012   Node* dest_start = dest;
6013   if (src_offset != NULL || dest_offset != NULL) {
6014     assert(src_offset != NULL && dest_offset != NULL, "");
6015     src_start = array_element_address(src, src_offset, T_BYTE);
6016     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6017   }
6018 
6019   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6020   // (because of the predicated logic executed earlier).
6021   // so we cast it here safely.
6022   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6023   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6024   if (embeddedCipherObj == NULL) return false;
6025   // cast it to what we know it will be at runtime
6026   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6027   assert(tinst != NULL, "CTR obj is null");
6028   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6029   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6030   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6031   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6032   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6033   const TypeOopPtr* xtype = aklass->as_instance_type();
6034   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6035   aescrypt_object = _gvn.transform(aescrypt_object);
6036   // we need to get the start of the aescrypt_object's expanded key array
6037   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6038   if (k_start == NULL) return false;
6039   // similarly, get the start address of the r vector
6040   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6041   if (obj_counter == NULL) return false;
6042   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6043 
6044   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6045   if (saved_encCounter == NULL) return false;
6046   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6047   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6048 
6049   Node* ctrCrypt;
6050   if (Matcher::pass_original_key_for_aes()) {
6051     // no SPARC version for AES/CTR intrinsics now.
6052     return false;
6053   }
6054   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6055   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6056                                OptoRuntime::counterMode_aescrypt_Type(),
6057                                stubAddr, stubName, TypePtr::BOTTOM,
6058                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6059 
6060   // return cipher length (int)
6061   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6062   set_result(retvalue);
6063   return true;
6064 }
6065 
6066 //------------------------------get_key_start_from_aescrypt_object-----------------------
6067 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6068 #if defined(PPC64) || defined(S390)
6069   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6070   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6071   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6072   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6073   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6074   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6075   if (objSessionK == NULL) {
6076     return (Node *) NULL;
6077   }
6078   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6079 #else
6080   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6081 #endif // PPC64
6082   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6083   if (objAESCryptKey == NULL) return (Node *) NULL;
6084 
6085   // now have the array, need to get the start address of the K array
6086   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6087   return k_start;
6088 }
6089 
6090 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6091 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6092   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6093   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6094   if (objAESCryptKey == NULL) return (Node *) NULL;
6095 
6096   // now have the array, need to get the start address of the lastKey array
6097   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6098   return original_k_start;
6099 }
6100 
6101 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6102 // Return node representing slow path of predicate check.
6103 // the pseudo code we want to emulate with this predicate is:
6104 // for encryption:
6105 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6106 // for decryption:
6107 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6108 //    note cipher==plain is more conservative than the original java code but that's OK
6109 //
6110 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6111   // The receiver was checked for NULL already.
6112   Node* objCBC = argument(0);
6113 
6114   Node* src = argument(1);
6115   Node* dest = argument(4);
6116 
6117   // Load embeddedCipher field of CipherBlockChaining object.
6118   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6119 
6120   // get AESCrypt klass for instanceOf check
6121   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6122   // will have same classloader as CipherBlockChaining object
6123   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6124   assert(tinst != NULL, "CBCobj is null");
6125   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6126 
6127   // we want to do an instanceof comparison against the AESCrypt class
6128   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6129   if (!klass_AESCrypt->is_loaded()) {
6130     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6131     Node* ctrl = control();
6132     set_control(top()); // no regular fast path
6133     return ctrl;
6134   }
6135 
6136   src = must_be_not_null(src, true);
6137   dest = must_be_not_null(dest, true);
6138 
6139   // Resolve oops to stable for CmpP below.
6140   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6141 
6142   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6143   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6144   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6145 
6146   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6147 
6148   // for encryption, we are done
6149   if (!decrypting)
6150     return instof_false;  // even if it is NULL
6151 
6152   // for decryption, we need to add a further check to avoid
6153   // taking the intrinsic path when cipher and plain are the same
6154   // see the original java code for why.
6155   RegionNode* region = new RegionNode(3);
6156   region->init_req(1, instof_false);
6157 
6158   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6159   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6160   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6161   region->init_req(2, src_dest_conjoint);
6162 
6163   record_for_igvn(region);
6164   return _gvn.transform(region);
6165 }
6166 
6167 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
6168 // Return node representing slow path of predicate check.
6169 // the pseudo code we want to emulate with this predicate is:
6170 // for encryption:
6171 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6172 // for decryption:
6173 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6174 //    note cipher==plain is more conservative than the original java code but that's OK
6175 //
6176 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
6177   // The receiver was checked for NULL already.
6178   Node* objECB = argument(0);
6179 
6180   // Load embeddedCipher field of ElectronicCodeBook object.
6181   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6182 
6183   // get AESCrypt klass for instanceOf check
6184   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6185   // will have same classloader as ElectronicCodeBook object
6186   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
6187   assert(tinst != NULL, "ECBobj is null");
6188   assert(tinst->klass()->is_loaded(), "ECBobj is not loaded");
6189 
6190   // we want to do an instanceof comparison against the AESCrypt class
6191   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6192   if (!klass_AESCrypt->is_loaded()) {
6193     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6194     Node* ctrl = control();
6195     set_control(top()); // no regular fast path
6196     return ctrl;
6197   }
6198   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6199 
6200   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6201   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6202   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6203 
6204   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6205 
6206   // for encryption, we are done
6207   if (!decrypting)
6208     return instof_false;  // even if it is NULL
6209 
6210   // for decryption, we need to add a further check to avoid
6211   // taking the intrinsic path when cipher and plain are the same
6212   // see the original java code for why.
6213   RegionNode* region = new RegionNode(3);
6214   region->init_req(1, instof_false);
6215   Node* src = argument(1);
6216   Node* dest = argument(4);
6217   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6218   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6219   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6220   region->init_req(2, src_dest_conjoint);
6221 
6222   record_for_igvn(region);
6223   return _gvn.transform(region);
6224 }
6225 
6226 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6227 // Return node representing slow path of predicate check.
6228 // the pseudo code we want to emulate with this predicate is:
6229 // for encryption:
6230 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6231 // for decryption:
6232 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6233 //    note cipher==plain is more conservative than the original java code but that's OK
6234 //
6235 
6236 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6237   // The receiver was checked for NULL already.
6238   Node* objCTR = argument(0);
6239 
6240   // Load embeddedCipher field of CipherBlockChaining object.
6241   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6242 
6243   // get AESCrypt klass for instanceOf check
6244   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6245   // will have same classloader as CipherBlockChaining object
6246   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6247   assert(tinst != NULL, "CTRobj is null");
6248   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6249 
6250   // we want to do an instanceof comparison against the AESCrypt class
6251   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6252   if (!klass_AESCrypt->is_loaded()) {
6253     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6254     Node* ctrl = control();
6255     set_control(top()); // no regular fast path
6256     return ctrl;
6257   }
6258 
6259   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6260   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6261   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6262   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6263   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6264 
6265   return instof_false; // even if it is NULL
6266 }
6267 
6268 //------------------------------inline_ghash_processBlocks
6269 bool LibraryCallKit::inline_ghash_processBlocks() {
6270   address stubAddr;
6271   const char *stubName;
6272   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6273 
6274   stubAddr = StubRoutines::ghash_processBlocks();
6275   stubName = "ghash_processBlocks";
6276 
6277   Node* data           = argument(0);
6278   Node* offset         = argument(1);
6279   Node* len            = argument(2);
6280   Node* state          = argument(3);
6281   Node* subkeyH        = argument(4);
6282 
6283   state = must_be_not_null(state, true);
6284   subkeyH = must_be_not_null(subkeyH, true);
6285   data = must_be_not_null(data, true);
6286 
6287   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6288   assert(state_start, "state is NULL");
6289   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6290   assert(subkeyH_start, "subkeyH is NULL");
6291   Node* data_start  = array_element_address(data, offset, T_BYTE);
6292   assert(data_start, "data is NULL");
6293 
6294   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6295                                   OptoRuntime::ghash_processBlocks_Type(),
6296                                   stubAddr, stubName, TypePtr::BOTTOM,
6297                                   state_start, subkeyH_start, data_start, len);
6298   return true;
6299 }
6300 
6301 bool LibraryCallKit::inline_base64_encodeBlock() {
6302   address stubAddr;
6303   const char *stubName;
6304   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
6305   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
6306   stubAddr = StubRoutines::base64_encodeBlock();
6307   stubName = "encodeBlock";
6308 
6309   if (!stubAddr) return false;
6310   Node* base64obj = argument(0);
6311   Node* src = argument(1);
6312   Node* offset = argument(2);
6313   Node* len = argument(3);
6314   Node* dest = argument(4);
6315   Node* dp = argument(5);
6316   Node* isURL = argument(6);
6317 
6318   src = must_be_not_null(src, true);
6319   dest = must_be_not_null(dest, true);
6320 
6321   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
6322   assert(src_start, "source array is NULL");
6323   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
6324   assert(dest_start, "destination array is NULL");
6325 
6326   Node* base64 = make_runtime_call(RC_LEAF,
6327                                    OptoRuntime::base64_encodeBlock_Type(),
6328                                    stubAddr, stubName, TypePtr::BOTTOM,
6329                                    src_start, offset, len, dest_start, dp, isURL);
6330   return true;
6331 }
6332 
6333 //------------------------------inline_sha_implCompress-----------------------
6334 //
6335 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6336 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6337 //
6338 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6339 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6340 //
6341 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6342 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6343 //
6344 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6345   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6346 
6347   Node* sha_obj = argument(0);
6348   Node* src     = argument(1); // type oop
6349   Node* ofs     = argument(2); // type int
6350 
6351   const Type* src_type = src->Value(&_gvn);
6352   const TypeAryPtr* top_src = src_type->isa_aryptr();
6353   if (top_src  == NULL || top_src->klass()  == NULL) {
6354     // failed array check
6355     return false;
6356   }
6357   // Figure out the size and type of the elements we will be copying.
6358   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6359   if (src_elem != T_BYTE) {
6360     return false;
6361   }
6362   // 'src_start' points to src array + offset
6363   src = must_be_not_null(src, true);
6364   Node* src_start = array_element_address(src, ofs, src_elem);
6365   Node* state = NULL;
6366   address stubAddr;
6367   const char *stubName;
6368 
6369   switch(id) {
6370   case vmIntrinsics::_sha_implCompress:
6371     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6372     state = get_state_from_sha_object(sha_obj);
6373     stubAddr = StubRoutines::sha1_implCompress();
6374     stubName = "sha1_implCompress";
6375     break;
6376   case vmIntrinsics::_sha2_implCompress:
6377     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6378     state = get_state_from_sha_object(sha_obj);
6379     stubAddr = StubRoutines::sha256_implCompress();
6380     stubName = "sha256_implCompress";
6381     break;
6382   case vmIntrinsics::_sha5_implCompress:
6383     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6384     state = get_state_from_sha5_object(sha_obj);
6385     stubAddr = StubRoutines::sha512_implCompress();
6386     stubName = "sha512_implCompress";
6387     break;
6388   default:
6389     fatal_unexpected_iid(id);
6390     return false;
6391   }
6392   if (state == NULL) return false;
6393 
6394   assert(stubAddr != NULL, "Stub is generated");
6395   if (stubAddr == NULL) return false;
6396 
6397   // Call the stub.
6398   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6399                                  stubAddr, stubName, TypePtr::BOTTOM,
6400                                  src_start, state);
6401 
6402   return true;
6403 }
6404 
6405 //------------------------------inline_digestBase_implCompressMB-----------------------
6406 //
6407 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6408 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6409 //
6410 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6411   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6412          "need SHA1/SHA256/SHA512 instruction support");
6413   assert((uint)predicate < 3, "sanity");
6414   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6415 
6416   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6417   Node* src            = argument(1); // byte[] array
6418   Node* ofs            = argument(2); // type int
6419   Node* limit          = argument(3); // type int
6420 
6421   const Type* src_type = src->Value(&_gvn);
6422   const TypeAryPtr* top_src = src_type->isa_aryptr();
6423   if (top_src  == NULL || top_src->klass()  == NULL) {
6424     // failed array check
6425     return false;
6426   }
6427   // Figure out the size and type of the elements we will be copying.
6428   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6429   if (src_elem != T_BYTE) {
6430     return false;
6431   }
6432   // 'src_start' points to src array + offset
6433   src = must_be_not_null(src, false);
6434   Node* src_start = array_element_address(src, ofs, src_elem);
6435 
6436   const char* klass_SHA_name = NULL;
6437   const char* stub_name = NULL;
6438   address     stub_addr = NULL;
6439   bool        long_state = false;
6440 
6441   switch (predicate) {
6442   case 0:
6443     if (UseSHA1Intrinsics) {
6444       klass_SHA_name = "sun/security/provider/SHA";
6445       stub_name = "sha1_implCompressMB";
6446       stub_addr = StubRoutines::sha1_implCompressMB();
6447     }
6448     break;
6449   case 1:
6450     if (UseSHA256Intrinsics) {
6451       klass_SHA_name = "sun/security/provider/SHA2";
6452       stub_name = "sha256_implCompressMB";
6453       stub_addr = StubRoutines::sha256_implCompressMB();
6454     }
6455     break;
6456   case 2:
6457     if (UseSHA512Intrinsics) {
6458       klass_SHA_name = "sun/security/provider/SHA5";
6459       stub_name = "sha512_implCompressMB";
6460       stub_addr = StubRoutines::sha512_implCompressMB();
6461       long_state = true;
6462     }
6463     break;
6464   default:
6465     fatal("unknown SHA intrinsic predicate: %d", predicate);
6466   }
6467   if (klass_SHA_name != NULL) {
6468     assert(stub_addr != NULL, "Stub is generated");
6469     if (stub_addr == NULL) return false;
6470 
6471     // get DigestBase klass to lookup for SHA klass
6472     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6473     assert(tinst != NULL, "digestBase_obj is not instance???");
6474     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6475 
6476     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6477     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6478     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6479     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6480   }
6481   return false;
6482 }
6483 //------------------------------inline_sha_implCompressMB-----------------------
6484 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6485                                                bool long_state, address stubAddr, const char *stubName,
6486                                                Node* src_start, Node* ofs, Node* limit) {
6487   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6488   const TypeOopPtr* xtype = aklass->as_instance_type();
6489   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6490   sha_obj = _gvn.transform(sha_obj);
6491 
6492   Node* state;
6493   if (long_state) {
6494     state = get_state_from_sha5_object(sha_obj);
6495   } else {
6496     state = get_state_from_sha_object(sha_obj);
6497   }
6498   if (state == NULL) return false;
6499 
6500   // Call the stub.
6501   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6502                                  OptoRuntime::digestBase_implCompressMB_Type(),
6503                                  stubAddr, stubName, TypePtr::BOTTOM,
6504                                  src_start, state, ofs, limit);
6505   // return ofs (int)
6506   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6507   set_result(result);
6508 
6509   return true;
6510 }
6511 
6512 //------------------------------get_state_from_sha_object-----------------------
6513 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6514   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6515   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6516   if (sha_state == NULL) return (Node *) NULL;
6517 
6518   // now have the array, need to get the start address of the state array
6519   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6520   return state;
6521 }
6522 
6523 //------------------------------get_state_from_sha5_object-----------------------
6524 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6525   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6526   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6527   if (sha_state == NULL) return (Node *) NULL;
6528 
6529   // now have the array, need to get the start address of the state array
6530   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6531   return state;
6532 }
6533 
6534 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6535 // Return node representing slow path of predicate check.
6536 // the pseudo code we want to emulate with this predicate is:
6537 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6538 //
6539 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6540   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6541          "need SHA1/SHA256/SHA512 instruction support");
6542   assert((uint)predicate < 3, "sanity");
6543 
6544   // The receiver was checked for NULL already.
6545   Node* digestBaseObj = argument(0);
6546 
6547   // get DigestBase klass for instanceOf check
6548   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6549   assert(tinst != NULL, "digestBaseObj is null");
6550   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6551 
6552   const char* klass_SHA_name = NULL;
6553   switch (predicate) {
6554   case 0:
6555     if (UseSHA1Intrinsics) {
6556       // we want to do an instanceof comparison against the SHA class
6557       klass_SHA_name = "sun/security/provider/SHA";
6558     }
6559     break;
6560   case 1:
6561     if (UseSHA256Intrinsics) {
6562       // we want to do an instanceof comparison against the SHA2 class
6563       klass_SHA_name = "sun/security/provider/SHA2";
6564     }
6565     break;
6566   case 2:
6567     if (UseSHA512Intrinsics) {
6568       // we want to do an instanceof comparison against the SHA5 class
6569       klass_SHA_name = "sun/security/provider/SHA5";
6570     }
6571     break;
6572   default:
6573     fatal("unknown SHA intrinsic predicate: %d", predicate);
6574   }
6575 
6576   ciKlass* klass_SHA = NULL;
6577   if (klass_SHA_name != NULL) {
6578     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6579   }
6580   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6581     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6582     Node* ctrl = control();
6583     set_control(top()); // no intrinsic path
6584     return ctrl;
6585   }
6586   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6587 
6588   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6589   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6590   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6591   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6592 
6593   return instof_false;  // even if it is NULL
6594 }
6595 
6596 //-------------inline_fma-----------------------------------
6597 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
6598   Node *a = NULL;
6599   Node *b = NULL;
6600   Node *c = NULL;
6601   Node* result = NULL;
6602   switch (id) {
6603   case vmIntrinsics::_fmaD:
6604     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
6605     // no receiver since it is static method
6606     a = round_double_node(argument(0));
6607     b = round_double_node(argument(2));
6608     c = round_double_node(argument(4));
6609     result = _gvn.transform(new FmaDNode(control(), a, b, c));
6610     break;
6611   case vmIntrinsics::_fmaF:
6612     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
6613     a = argument(0);
6614     b = argument(1);
6615     c = argument(2);
6616     result = _gvn.transform(new FmaFNode(control(), a, b, c));
6617     break;
6618   default:
6619     fatal_unexpected_iid(id);  break;
6620   }
6621   set_result(result);
6622   return true;
6623 }
6624 
6625 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
6626   // argument(0) is receiver
6627   Node* codePoint = argument(1);
6628   Node* n = NULL;
6629 
6630   switch (id) {
6631     case vmIntrinsics::_isDigit :
6632       n = new DigitNode(control(), codePoint);
6633       break;
6634     case vmIntrinsics::_isLowerCase :
6635       n = new LowerCaseNode(control(), codePoint);
6636       break;
6637     case vmIntrinsics::_isUpperCase :
6638       n = new UpperCaseNode(control(), codePoint);
6639       break;
6640     case vmIntrinsics::_isWhitespace :
6641       n = new WhitespaceNode(control(), codePoint);
6642       break;
6643     default:
6644       fatal_unexpected_iid(id);
6645   }
6646 
6647   set_result(_gvn.transform(n));
6648   return true;
6649 }
6650 
6651 //------------------------------inline_fp_min_max------------------------------
6652 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) {
6653 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416.
6654 
6655   // The intrinsic should be used only when the API branches aren't predictable,
6656   // the last one performing the most important comparison. The following heuristic
6657   // uses the branch statistics to eventually bail out if necessary.
6658 
6659   ciMethodData *md = callee()->method_data();
6660 
6661   if ( md != NULL && md->is_mature() && md->invocation_count() > 0 ) {
6662     ciCallProfile cp = caller()->call_profile_at_bci(bci());
6663 
6664     if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) {
6665       // Bail out if the call-site didn't contribute enough to the statistics.
6666       return false;
6667     }
6668 
6669     uint taken = 0, not_taken = 0;
6670 
6671     for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) {
6672       if (p->is_BranchData()) {
6673         taken = ((ciBranchData*)p)->taken();
6674         not_taken = ((ciBranchData*)p)->not_taken();
6675       }
6676     }
6677 
6678     double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count());
6679     balance = balance < 0 ? -balance : balance;
6680     if ( balance > 0.2 ) {
6681       // Bail out if the most important branch is predictable enough.
6682       return false;
6683     }
6684   }
6685 */
6686 
6687   Node *a = NULL;
6688   Node *b = NULL;
6689   Node *n = NULL;
6690   switch (id) {
6691   case vmIntrinsics::_maxF:
6692   case vmIntrinsics::_minF:
6693     assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
6694     a = argument(0);
6695     b = argument(1);
6696     break;
6697   case vmIntrinsics::_maxD:
6698   case vmIntrinsics::_minD:
6699     assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
6700     a = round_double_node(argument(0));
6701     b = round_double_node(argument(2));
6702     break;
6703   default:
6704     fatal_unexpected_iid(id);
6705     break;
6706   }
6707   switch (id) {
6708   case vmIntrinsics::_maxF:  n = new MaxFNode(a, b);  break;
6709   case vmIntrinsics::_minF:  n = new MinFNode(a, b);  break;
6710   case vmIntrinsics::_maxD:  n = new MaxDNode(a, b);  break;
6711   case vmIntrinsics::_minD:  n = new MinDNode(a, b);  break;
6712   default:  fatal_unexpected_iid(id);  break;
6713   }
6714   set_result(_gvn.transform(n));
6715   return true;
6716 }
6717 
6718 bool LibraryCallKit::inline_profileBoolean() {
6719   Node* counts = argument(1);
6720   const TypeAryPtr* ary = NULL;
6721   ciArray* aobj = NULL;
6722   if (counts->is_Con()
6723       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6724       && (aobj = ary->const_oop()->as_array()) != NULL
6725       && (aobj->length() == 2)) {
6726     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6727     jint false_cnt = aobj->element_value(0).as_int();
6728     jint  true_cnt = aobj->element_value(1).as_int();
6729 
6730     if (C->log() != NULL) {
6731       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6732                      false_cnt, true_cnt);
6733     }
6734 
6735     if (false_cnt + true_cnt == 0) {
6736       // According to profile, never executed.
6737       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6738                           Deoptimization::Action_reinterpret);
6739       return true;
6740     }
6741 
6742     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6743     // is a number of each value occurrences.
6744     Node* result = argument(0);
6745     if (false_cnt == 0 || true_cnt == 0) {
6746       // According to profile, one value has been never seen.
6747       int expected_val = (false_cnt == 0) ? 1 : 0;
6748 
6749       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6750       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6751 
6752       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6753       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6754       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6755 
6756       { // Slow path: uncommon trap for never seen value and then reexecute
6757         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6758         // the value has been seen at least once.
6759         PreserveJVMState pjvms(this);
6760         PreserveReexecuteState preexecs(this);
6761         jvms()->set_should_reexecute(true);
6762 
6763         set_control(slow_path);
6764         set_i_o(i_o());
6765 
6766         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6767                             Deoptimization::Action_reinterpret);
6768       }
6769       // The guard for never seen value enables sharpening of the result and
6770       // returning a constant. It allows to eliminate branches on the same value
6771       // later on.
6772       set_control(fast_path);
6773       result = intcon(expected_val);
6774     }
6775     // Stop profiling.
6776     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6777     // By replacing method body with profile data (represented as ProfileBooleanNode
6778     // on IR level) we effectively disable profiling.
6779     // It enables full speed execution once optimized code is generated.
6780     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6781     C->record_for_igvn(profile);
6782     set_result(profile);
6783     return true;
6784   } else {
6785     // Continue profiling.
6786     // Profile data isn't available at the moment. So, execute method's bytecode version.
6787     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6788     // is compiled and counters aren't available since corresponding MethodHandle
6789     // isn't a compile-time constant.
6790     return false;
6791   }
6792 }
6793 
6794 bool LibraryCallKit::inline_isCompileConstant() {
6795   Node* n = argument(0);
6796   set_result(n->is_Con() ? intcon(1) : intcon(0));
6797   return true;
6798 }