1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableBarrierSet.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/os.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "utilities/macros.hpp"
  39 
  40 #ifdef PRODUCT
  41 #define BLOCK_COMMENT(str) /* nothing */
  42 #define STOP(error) stop(error)
  43 #else
  44 #define BLOCK_COMMENT(str) block_comment(str)
  45 #define STOP(error) block_comment(error); stop(error)
  46 #endif
  47 
  48 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  49 // Implementation of AddressLiteral
  50 
  51 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  52 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  53   // -----------------Table 4.5 -------------------- //
  54   16, 32, 64,  // EVEX_FV(0)
  55   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  56   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  57   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  58   8,  16, 32,  // EVEX_HV(0)
  59   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  60   // -----------------Table 4.6 -------------------- //
  61   16, 32, 64,  // EVEX_FVM(0)
  62   1,  1,  1,   // EVEX_T1S(0)
  63   2,  2,  2,   // EVEX_T1S(1)
  64   4,  4,  4,   // EVEX_T1S(2)
  65   8,  8,  8,   // EVEX_T1S(3)
  66   4,  4,  4,   // EVEX_T1F(0)
  67   8,  8,  8,   // EVEX_T1F(1)
  68   8,  8,  8,   // EVEX_T2(0)
  69   0,  16, 16,  // EVEX_T2(1)
  70   0,  16, 16,  // EVEX_T4(0)
  71   0,  0,  32,  // EVEX_T4(1)
  72   0,  0,  32,  // EVEX_T8(0)
  73   8,  16, 32,  // EVEX_HVM(0)
  74   4,  8,  16,  // EVEX_QVM(0)
  75   2,  4,  8,   // EVEX_OVM(0)
  76   16, 16, 16,  // EVEX_M128(0)
  77   8,  32, 64,  // EVEX_DUP(0)
  78   0,  0,  0    // EVEX_NTUP
  79 };
  80 
  81 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  82   _is_lval = false;
  83   _target = target;
  84   switch (rtype) {
  85   case relocInfo::oop_type:
  86   case relocInfo::metadata_type:
  87     // Oops are a special case. Normally they would be their own section
  88     // but in cases like icBuffer they are literals in the code stream that
  89     // we don't have a section for. We use none so that we get a literal address
  90     // which is always patchable.
  91     break;
  92   case relocInfo::external_word_type:
  93     _rspec = external_word_Relocation::spec(target);
  94     break;
  95   case relocInfo::internal_word_type:
  96     _rspec = internal_word_Relocation::spec(target);
  97     break;
  98   case relocInfo::opt_virtual_call_type:
  99     _rspec = opt_virtual_call_Relocation::spec();
 100     break;
 101   case relocInfo::static_call_type:
 102     _rspec = static_call_Relocation::spec();
 103     break;
 104   case relocInfo::runtime_call_type:
 105     _rspec = runtime_call_Relocation::spec();
 106     break;
 107   case relocInfo::poll_type:
 108   case relocInfo::poll_return_type:
 109     _rspec = Relocation::spec_simple(rtype);
 110     break;
 111   case relocInfo::none:
 112     break;
 113   default:
 114     ShouldNotReachHere();
 115     break;
 116   }
 117 }
 118 
 119 // Implementation of Address
 120 
 121 #ifdef _LP64
 122 
 123 Address Address::make_array(ArrayAddress adr) {
 124   // Not implementable on 64bit machines
 125   // Should have been handled higher up the call chain.
 126   ShouldNotReachHere();
 127   return Address();
 128 }
 129 
 130 // exceedingly dangerous constructor
 131 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 132   _base  = noreg;
 133   _index = noreg;
 134   _scale = no_scale;
 135   _disp  = disp;
 136   _xmmindex = xnoreg;
 137   _isxmmindex = false;
 138   switch (rtype) {
 139     case relocInfo::external_word_type:
 140       _rspec = external_word_Relocation::spec(loc);
 141       break;
 142     case relocInfo::internal_word_type:
 143       _rspec = internal_word_Relocation::spec(loc);
 144       break;
 145     case relocInfo::runtime_call_type:
 146       // HMM
 147       _rspec = runtime_call_Relocation::spec();
 148       break;
 149     case relocInfo::poll_type:
 150     case relocInfo::poll_return_type:
 151       _rspec = Relocation::spec_simple(rtype);
 152       break;
 153     case relocInfo::none:
 154       break;
 155     default:
 156       ShouldNotReachHere();
 157   }
 158 }
 159 #else // LP64
 160 
 161 Address Address::make_array(ArrayAddress adr) {
 162   AddressLiteral base = adr.base();
 163   Address index = adr.index();
 164   assert(index._disp == 0, "must not have disp"); // maybe it can?
 165   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 166   array._rspec = base._rspec;
 167   return array;
 168 }
 169 
 170 // exceedingly dangerous constructor
 171 Address::Address(address loc, RelocationHolder spec) {
 172   _base  = noreg;
 173   _index = noreg;
 174   _scale = no_scale;
 175   _disp  = (intptr_t) loc;
 176   _rspec = spec;
 177   _xmmindex = xnoreg;
 178   _isxmmindex = false;
 179 }
 180 
 181 #endif // _LP64
 182 
 183 
 184 
 185 // Convert the raw encoding form into the form expected by the constructor for
 186 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 187 // that to noreg for the Address constructor.
 188 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 189   RelocationHolder rspec;
 190   if (disp_reloc != relocInfo::none) {
 191     rspec = Relocation::spec_simple(disp_reloc);
 192   }
 193   bool valid_index = index != rsp->encoding();
 194   if (valid_index) {
 195     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 196     madr._rspec = rspec;
 197     return madr;
 198   } else {
 199     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 200     madr._rspec = rspec;
 201     return madr;
 202   }
 203 }
 204 
 205 // Implementation of Assembler
 206 
 207 int AbstractAssembler::code_fill_byte() {
 208   return (u_char)'\xF4'; // hlt
 209 }
 210 
 211 // make this go away someday
 212 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 213   if (rtype == relocInfo::none)
 214     emit_int32(data);
 215   else
 216     emit_data(data, Relocation::spec_simple(rtype), format);
 217 }
 218 
 219 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 220   assert(imm_operand == 0, "default format must be immediate in this file");
 221   assert(inst_mark() != NULL, "must be inside InstructionMark");
 222   if (rspec.type() !=  relocInfo::none) {
 223     #ifdef ASSERT
 224       check_relocation(rspec, format);
 225     #endif
 226     // Do not use AbstractAssembler::relocate, which is not intended for
 227     // embedded words.  Instead, relocate to the enclosing instruction.
 228 
 229     // hack. call32 is too wide for mask so use disp32
 230     if (format == call32_operand)
 231       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 232     else
 233       code_section()->relocate(inst_mark(), rspec, format);
 234   }
 235   emit_int32(data);
 236 }
 237 
 238 static int encode(Register r) {
 239   int enc = r->encoding();
 240   if (enc >= 8) {
 241     enc -= 8;
 242   }
 243   return enc;
 244 }
 245 
 246 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 247   assert(dst->has_byte_register(), "must have byte register");
 248   assert(isByte(op1) && isByte(op2), "wrong opcode");
 249   assert(isByte(imm8), "not a byte");
 250   assert((op1 & 0x01) == 0, "should be 8bit operation");
 251   emit_int8(op1);
 252   emit_int8(op2 | encode(dst));
 253   emit_int8(imm8);
 254 }
 255 
 256 
 257 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 258   assert(isByte(op1) && isByte(op2), "wrong opcode");
 259   assert((op1 & 0x01) == 1, "should be 32bit operation");
 260   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 261   if (is8bit(imm32)) {
 262     emit_int8(op1 | 0x02); // set sign bit
 263     emit_int8(op2 | encode(dst));
 264     emit_int8(imm32 & 0xFF);
 265   } else {
 266     emit_int8(op1);
 267     emit_int8(op2 | encode(dst));
 268     emit_int32(imm32);
 269   }
 270 }
 271 
 272 // Force generation of a 4 byte immediate value even if it fits into 8bit
 273 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 274   assert(isByte(op1) && isByte(op2), "wrong opcode");
 275   assert((op1 & 0x01) == 1, "should be 32bit operation");
 276   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 277   emit_int8(op1);
 278   emit_int8(op2 | encode(dst));
 279   emit_int32(imm32);
 280 }
 281 
 282 // immediate-to-memory forms
 283 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 284   assert((op1 & 0x01) == 1, "should be 32bit operation");
 285   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 286   if (is8bit(imm32)) {
 287     emit_int8(op1 | 0x02); // set sign bit
 288     emit_operand(rm, adr, 1);
 289     emit_int8(imm32 & 0xFF);
 290   } else {
 291     emit_int8(op1);
 292     emit_operand(rm, adr, 4);
 293     emit_int32(imm32);
 294   }
 295 }
 296 
 297 
 298 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 299   assert(isByte(op1) && isByte(op2), "wrong opcode");
 300   emit_int8(op1);
 301   emit_int8(op2 | encode(dst) << 3 | encode(src));
 302 }
 303 
 304 
 305 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 306                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 307   int mod_idx = 0;
 308   // We will test if the displacement fits the compressed format and if so
 309   // apply the compression to the displacment iff the result is8bit.
 310   if (VM_Version::supports_evex() && is_evex_inst) {
 311     switch (cur_tuple_type) {
 312     case EVEX_FV:
 313       if ((cur_encoding & VEX_W) == VEX_W) {
 314         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 315       } else {
 316         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       }
 318       break;
 319 
 320     case EVEX_HV:
 321       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 322       break;
 323 
 324     case EVEX_FVM:
 325       break;
 326 
 327     case EVEX_T1S:
 328       switch (in_size_in_bits) {
 329       case EVEX_8bit:
 330         break;
 331 
 332       case EVEX_16bit:
 333         mod_idx = 1;
 334         break;
 335 
 336       case EVEX_32bit:
 337         mod_idx = 2;
 338         break;
 339 
 340       case EVEX_64bit:
 341         mod_idx = 3;
 342         break;
 343       }
 344       break;
 345 
 346     case EVEX_T1F:
 347     case EVEX_T2:
 348     case EVEX_T4:
 349       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 350       break;
 351 
 352     case EVEX_T8:
 353       break;
 354 
 355     case EVEX_HVM:
 356       break;
 357 
 358     case EVEX_QVM:
 359       break;
 360 
 361     case EVEX_OVM:
 362       break;
 363 
 364     case EVEX_M128:
 365       break;
 366 
 367     case EVEX_DUP:
 368       break;
 369 
 370     default:
 371       assert(0, "no valid evex tuple_table entry");
 372       break;
 373     }
 374 
 375     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 376       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 377       if ((disp % disp_factor) == 0) {
 378         int new_disp = disp / disp_factor;
 379         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 380           disp = new_disp;
 381         }
 382       } else {
 383         return false;
 384       }
 385     }
 386   }
 387   return (-0x80 <= disp && disp < 0x80);
 388 }
 389 
 390 
 391 bool Assembler::emit_compressed_disp_byte(int &disp) {
 392   int mod_idx = 0;
 393   // We will test if the displacement fits the compressed format and if so
 394   // apply the compression to the displacment iff the result is8bit.
 395   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 396     int evex_encoding = _attributes->get_evex_encoding();
 397     int tuple_type = _attributes->get_tuple_type();
 398     switch (tuple_type) {
 399     case EVEX_FV:
 400       if ((evex_encoding & VEX_W) == VEX_W) {
 401         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 402       } else {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       }
 405       break;
 406 
 407     case EVEX_HV:
 408       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 409       break;
 410 
 411     case EVEX_FVM:
 412       break;
 413 
 414     case EVEX_T1S:
 415       switch (_attributes->get_input_size()) {
 416       case EVEX_8bit:
 417         break;
 418 
 419       case EVEX_16bit:
 420         mod_idx = 1;
 421         break;
 422 
 423       case EVEX_32bit:
 424         mod_idx = 2;
 425         break;
 426 
 427       case EVEX_64bit:
 428         mod_idx = 3;
 429         break;
 430       }
 431       break;
 432 
 433     case EVEX_T1F:
 434     case EVEX_T2:
 435     case EVEX_T4:
 436       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 437       break;
 438 
 439     case EVEX_T8:
 440       break;
 441 
 442     case EVEX_HVM:
 443       break;
 444 
 445     case EVEX_QVM:
 446       break;
 447 
 448     case EVEX_OVM:
 449       break;
 450 
 451     case EVEX_M128:
 452       break;
 453 
 454     case EVEX_DUP:
 455       break;
 456 
 457     default:
 458       assert(0, "no valid evex tuple_table entry");
 459       break;
 460     }
 461 
 462     int vector_len = _attributes->get_vector_len();
 463     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 464       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 465       if ((disp % disp_factor) == 0) {
 466         int new_disp = disp / disp_factor;
 467         if (is8bit(new_disp)) {
 468           disp = new_disp;
 469         }
 470       } else {
 471         return false;
 472       }
 473     }
 474   }
 475   return is8bit(disp);
 476 }
 477 
 478 
 479 void Assembler::emit_operand(Register reg, Register base, Register index,
 480                              Address::ScaleFactor scale, int disp,
 481                              RelocationHolder const& rspec,
 482                              int rip_relative_correction) {
 483   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 484 
 485   // Encode the registers as needed in the fields they are used in
 486 
 487   int regenc = encode(reg) << 3;
 488   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 489   int baseenc = base->is_valid() ? encode(base) : 0;
 490 
 491   if (base->is_valid()) {
 492     if (index->is_valid()) {
 493       assert(scale != Address::no_scale, "inconsistent address");
 494       // [base + index*scale + disp]
 495       if (disp == 0 && rtype == relocInfo::none  &&
 496           base != rbp LP64_ONLY(&& base != r13)) {
 497         // [base + index*scale]
 498         // [00 reg 100][ss index base]
 499         assert(index != rsp, "illegal addressing mode");
 500         emit_int8(0x04 | regenc);
 501         emit_int8(scale << 6 | indexenc | baseenc);
 502       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 503         // [base + index*scale + imm8]
 504         // [01 reg 100][ss index base] imm8
 505         assert(index != rsp, "illegal addressing mode");
 506         emit_int8(0x44 | regenc);
 507         emit_int8(scale << 6 | indexenc | baseenc);
 508         emit_int8(disp & 0xFF);
 509       } else {
 510         // [base + index*scale + disp32]
 511         // [10 reg 100][ss index base] disp32
 512         assert(index != rsp, "illegal addressing mode");
 513         emit_int8(0x84 | regenc);
 514         emit_int8(scale << 6 | indexenc | baseenc);
 515         emit_data(disp, rspec, disp32_operand);
 516       }
 517     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 518       // [rsp + disp]
 519       if (disp == 0 && rtype == relocInfo::none) {
 520         // [rsp]
 521         // [00 reg 100][00 100 100]
 522         emit_int8(0x04 | regenc);
 523         emit_int8(0x24);
 524       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 525         // [rsp + imm8]
 526         // [01 reg 100][00 100 100] disp8
 527         emit_int8(0x44 | regenc);
 528         emit_int8(0x24);
 529         emit_int8(disp & 0xFF);
 530       } else {
 531         // [rsp + imm32]
 532         // [10 reg 100][00 100 100] disp32
 533         emit_int8(0x84 | regenc);
 534         emit_int8(0x24);
 535         emit_data(disp, rspec, disp32_operand);
 536       }
 537     } else {
 538       // [base + disp]
 539       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 540       if (disp == 0 && rtype == relocInfo::none &&
 541           base != rbp LP64_ONLY(&& base != r13)) {
 542         // [base]
 543         // [00 reg base]
 544         emit_int8(0x00 | regenc | baseenc);
 545       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 546         // [base + disp8]
 547         // [01 reg base] disp8
 548         emit_int8(0x40 | regenc | baseenc);
 549         emit_int8(disp & 0xFF);
 550       } else {
 551         // [base + disp32]
 552         // [10 reg base] disp32
 553         emit_int8(0x80 | regenc | baseenc);
 554         emit_data(disp, rspec, disp32_operand);
 555       }
 556     }
 557   } else {
 558     if (index->is_valid()) {
 559       assert(scale != Address::no_scale, "inconsistent address");
 560       // [index*scale + disp]
 561       // [00 reg 100][ss index 101] disp32
 562       assert(index != rsp, "illegal addressing mode");
 563       emit_int8(0x04 | regenc);
 564       emit_int8(scale << 6 | indexenc | 0x05);
 565       emit_data(disp, rspec, disp32_operand);
 566     } else if (rtype != relocInfo::none ) {
 567       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 568       // [00 000 101] disp32
 569 
 570       emit_int8(0x05 | regenc);
 571       // Note that the RIP-rel. correction applies to the generated
 572       // disp field, but _not_ to the target address in the rspec.
 573 
 574       // disp was created by converting the target address minus the pc
 575       // at the start of the instruction. That needs more correction here.
 576       // intptr_t disp = target - next_ip;
 577       assert(inst_mark() != NULL, "must be inside InstructionMark");
 578       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 579       int64_t adjusted = disp;
 580       // Do rip-rel adjustment for 64bit
 581       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 582       assert(is_simm32(adjusted),
 583              "must be 32bit offset (RIP relative address)");
 584       emit_data((int32_t) adjusted, rspec, disp32_operand);
 585 
 586     } else {
 587       // 32bit never did this, did everything as the rip-rel/disp code above
 588       // [disp] ABSOLUTE
 589       // [00 reg 100][00 100 101] disp32
 590       emit_int8(0x04 | regenc);
 591       emit_int8(0x25);
 592       emit_data(disp, rspec, disp32_operand);
 593     }
 594   }
 595 }
 596 
 597 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 598                              Address::ScaleFactor scale, int disp,
 599                              RelocationHolder const& rspec) {
 600   if (UseAVX > 2) {
 601     int xreg_enc = reg->encoding();
 602     if (xreg_enc > 15) {
 603       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 604       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 605       return;
 606     }
 607   }
 608   emit_operand((Register)reg, base, index, scale, disp, rspec);
 609 }
 610 
 611 void Assembler::emit_operand(XMMRegister reg, Register base, XMMRegister index,
 612                              Address::ScaleFactor scale, int disp,
 613                              RelocationHolder const& rspec) {
 614   if (UseAVX > 2) {
 615     int xreg_enc = reg->encoding();
 616     int xmmindex_enc = index->encoding();
 617     XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 618     XMMRegister new_index = as_XMMRegister(xmmindex_enc & 0xf);
 619     emit_operand((Register)new_reg, base, (Register)new_index, scale, disp, rspec);
 620   } else {
 621     emit_operand((Register)reg, base, (Register)index, scale, disp, rspec);
 622   }
 623 }
 624 
 625 
 626 // Secret local extension to Assembler::WhichOperand:
 627 #define end_pc_operand (_WhichOperand_limit)
 628 
 629 address Assembler::locate_operand(address inst, WhichOperand which) {
 630   // Decode the given instruction, and return the address of
 631   // an embedded 32-bit operand word.
 632 
 633   // If "which" is disp32_operand, selects the displacement portion
 634   // of an effective address specifier.
 635   // If "which" is imm64_operand, selects the trailing immediate constant.
 636   // If "which" is call32_operand, selects the displacement of a call or jump.
 637   // Caller is responsible for ensuring that there is such an operand,
 638   // and that it is 32/64 bits wide.
 639 
 640   // If "which" is end_pc_operand, find the end of the instruction.
 641 
 642   address ip = inst;
 643   bool is_64bit = false;
 644 
 645   debug_only(bool has_disp32 = false);
 646   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 647 
 648   again_after_prefix:
 649   switch (0xFF & *ip++) {
 650 
 651   // These convenience macros generate groups of "case" labels for the switch.
 652 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 653 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 654              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 655 #define REP16(x) REP8((x)+0): \
 656               case REP8((x)+8)
 657 
 658   case CS_segment:
 659   case SS_segment:
 660   case DS_segment:
 661   case ES_segment:
 662   case FS_segment:
 663   case GS_segment:
 664     // Seems dubious
 665     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 666     assert(ip == inst+1, "only one prefix allowed");
 667     goto again_after_prefix;
 668 
 669   case 0x67:
 670   case REX:
 671   case REX_B:
 672   case REX_X:
 673   case REX_XB:
 674   case REX_R:
 675   case REX_RB:
 676   case REX_RX:
 677   case REX_RXB:
 678     NOT_LP64(assert(false, "64bit prefixes"));
 679     goto again_after_prefix;
 680 
 681   case REX_W:
 682   case REX_WB:
 683   case REX_WX:
 684   case REX_WXB:
 685   case REX_WR:
 686   case REX_WRB:
 687   case REX_WRX:
 688   case REX_WRXB:
 689     NOT_LP64(assert(false, "64bit prefixes"));
 690     is_64bit = true;
 691     goto again_after_prefix;
 692 
 693   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 694   case 0x88: // movb a, r
 695   case 0x89: // movl a, r
 696   case 0x8A: // movb r, a
 697   case 0x8B: // movl r, a
 698   case 0x8F: // popl a
 699     debug_only(has_disp32 = true);
 700     break;
 701 
 702   case 0x68: // pushq #32
 703     if (which == end_pc_operand) {
 704       return ip + 4;
 705     }
 706     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 707     return ip;                  // not produced by emit_operand
 708 
 709   case 0x66: // movw ... (size prefix)
 710     again_after_size_prefix2:
 711     switch (0xFF & *ip++) {
 712     case REX:
 713     case REX_B:
 714     case REX_X:
 715     case REX_XB:
 716     case REX_R:
 717     case REX_RB:
 718     case REX_RX:
 719     case REX_RXB:
 720     case REX_W:
 721     case REX_WB:
 722     case REX_WX:
 723     case REX_WXB:
 724     case REX_WR:
 725     case REX_WRB:
 726     case REX_WRX:
 727     case REX_WRXB:
 728       NOT_LP64(assert(false, "64bit prefix found"));
 729       goto again_after_size_prefix2;
 730     case 0x8B: // movw r, a
 731     case 0x89: // movw a, r
 732       debug_only(has_disp32 = true);
 733       break;
 734     case 0xC7: // movw a, #16
 735       debug_only(has_disp32 = true);
 736       tail_size = 2;  // the imm16
 737       break;
 738     case 0x0F: // several SSE/SSE2 variants
 739       ip--;    // reparse the 0x0F
 740       goto again_after_prefix;
 741     default:
 742       ShouldNotReachHere();
 743     }
 744     break;
 745 
 746   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 747     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 748     // these asserts are somewhat nonsensical
 749 #ifndef _LP64
 750     assert(which == imm_operand || which == disp32_operand,
 751            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 752 #else
 753     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 754            which == narrow_oop_operand && !is_64bit,
 755            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 756 #endif // _LP64
 757     return ip;
 758 
 759   case 0x69: // imul r, a, #32
 760   case 0xC7: // movl a, #32(oop?)
 761     tail_size = 4;
 762     debug_only(has_disp32 = true); // has both kinds of operands!
 763     break;
 764 
 765   case 0x0F: // movx..., etc.
 766     switch (0xFF & *ip++) {
 767     case 0x3A: // pcmpestri
 768       tail_size = 1;
 769     case 0x38: // ptest, pmovzxbw
 770       ip++; // skip opcode
 771       debug_only(has_disp32 = true); // has both kinds of operands!
 772       break;
 773 
 774     case 0x70: // pshufd r, r/a, #8
 775       debug_only(has_disp32 = true); // has both kinds of operands!
 776     case 0x73: // psrldq r, #8
 777       tail_size = 1;
 778       break;
 779 
 780     case 0x12: // movlps
 781     case 0x28: // movaps
 782     case 0x2E: // ucomiss
 783     case 0x2F: // comiss
 784     case 0x54: // andps
 785     case 0x55: // andnps
 786     case 0x56: // orps
 787     case 0x57: // xorps
 788     case 0x58: // addpd
 789     case 0x59: // mulpd
 790     case 0x6E: // movd
 791     case 0x7E: // movd
 792     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 793     case 0xFE: // paddd
 794       debug_only(has_disp32 = true);
 795       break;
 796 
 797     case 0xAD: // shrd r, a, %cl
 798     case 0xAF: // imul r, a
 799     case 0xBE: // movsbl r, a (movsxb)
 800     case 0xBF: // movswl r, a (movsxw)
 801     case 0xB6: // movzbl r, a (movzxb)
 802     case 0xB7: // movzwl r, a (movzxw)
 803     case REP16(0x40): // cmovl cc, r, a
 804     case 0xB0: // cmpxchgb
 805     case 0xB1: // cmpxchg
 806     case 0xC1: // xaddl
 807     case 0xC7: // cmpxchg8
 808     case REP16(0x90): // setcc a
 809       debug_only(has_disp32 = true);
 810       // fall out of the switch to decode the address
 811       break;
 812 
 813     case 0xC4: // pinsrw r, a, #8
 814       debug_only(has_disp32 = true);
 815     case 0xC5: // pextrw r, r, #8
 816       tail_size = 1;  // the imm8
 817       break;
 818 
 819     case 0xAC: // shrd r, a, #8
 820       debug_only(has_disp32 = true);
 821       tail_size = 1;  // the imm8
 822       break;
 823 
 824     case REP16(0x80): // jcc rdisp32
 825       if (which == end_pc_operand)  return ip + 4;
 826       assert(which == call32_operand, "jcc has no disp32 or imm");
 827       return ip;
 828     default:
 829       ShouldNotReachHere();
 830     }
 831     break;
 832 
 833   case 0x81: // addl a, #32; addl r, #32
 834     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 835     // on 32bit in the case of cmpl, the imm might be an oop
 836     tail_size = 4;
 837     debug_only(has_disp32 = true); // has both kinds of operands!
 838     break;
 839 
 840   case 0x83: // addl a, #8; addl r, #8
 841     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 842     debug_only(has_disp32 = true); // has both kinds of operands!
 843     tail_size = 1;
 844     break;
 845 
 846   case 0x9B:
 847     switch (0xFF & *ip++) {
 848     case 0xD9: // fnstcw a
 849       debug_only(has_disp32 = true);
 850       break;
 851     default:
 852       ShouldNotReachHere();
 853     }
 854     break;
 855 
 856   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 857   case REP4(0x10): // adc...
 858   case REP4(0x20): // and...
 859   case REP4(0x30): // xor...
 860   case REP4(0x08): // or...
 861   case REP4(0x18): // sbb...
 862   case REP4(0x28): // sub...
 863   case 0xF7: // mull a
 864   case 0x8D: // lea r, a
 865   case 0x87: // xchg r, a
 866   case REP4(0x38): // cmp...
 867   case 0x85: // test r, a
 868     debug_only(has_disp32 = true); // has both kinds of operands!
 869     break;
 870 
 871   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 872   case 0xC6: // movb a, #8
 873   case 0x80: // cmpb a, #8
 874   case 0x6B: // imul r, a, #8
 875     debug_only(has_disp32 = true); // has both kinds of operands!
 876     tail_size = 1; // the imm8
 877     break;
 878 
 879   case 0xC4: // VEX_3bytes
 880   case 0xC5: // VEX_2bytes
 881     assert((UseAVX > 0), "shouldn't have VEX prefix");
 882     assert(ip == inst+1, "no prefixes allowed");
 883     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 884     // but they have prefix 0x0F and processed when 0x0F processed above.
 885     //
 886     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 887     // instructions (these instructions are not supported in 64-bit mode).
 888     // To distinguish them bits [7:6] are set in the VEX second byte since
 889     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 890     // those VEX bits REX and vvvv bits are inverted.
 891     //
 892     // Fortunately C2 doesn't generate these instructions so we don't need
 893     // to check for them in product version.
 894 
 895     // Check second byte
 896     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 897 
 898     int vex_opcode;
 899     // First byte
 900     if ((0xFF & *inst) == VEX_3bytes) {
 901       vex_opcode = VEX_OPCODE_MASK & *ip;
 902       ip++; // third byte
 903       is_64bit = ((VEX_W & *ip) == VEX_W);
 904     } else {
 905       vex_opcode = VEX_OPCODE_0F;
 906     }
 907     ip++; // opcode
 908     // To find the end of instruction (which == end_pc_operand).
 909     switch (vex_opcode) {
 910       case VEX_OPCODE_0F:
 911         switch (0xFF & *ip) {
 912         case 0x70: // pshufd r, r/a, #8
 913         case 0x71: // ps[rl|ra|ll]w r, #8
 914         case 0x72: // ps[rl|ra|ll]d r, #8
 915         case 0x73: // ps[rl|ra|ll]q r, #8
 916         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 917         case 0xC4: // pinsrw r, r, r/a, #8
 918         case 0xC5: // pextrw r/a, r, #8
 919         case 0xC6: // shufp[s|d] r, r, r/a, #8
 920           tail_size = 1;  // the imm8
 921           break;
 922         }
 923         break;
 924       case VEX_OPCODE_0F_3A:
 925         tail_size = 1;
 926         break;
 927     }
 928     ip++; // skip opcode
 929     debug_only(has_disp32 = true); // has both kinds of operands!
 930     break;
 931 
 932   case 0x62: // EVEX_4bytes
 933     assert(VM_Version::supports_evex(), "shouldn't have EVEX prefix");
 934     assert(ip == inst+1, "no prefixes allowed");
 935     // no EVEX collisions, all instructions that have 0x62 opcodes
 936     // have EVEX versions and are subopcodes of 0x66
 937     ip++; // skip P0 and exmaine W in P1
 938     is_64bit = ((VEX_W & *ip) == VEX_W);
 939     ip++; // move to P2
 940     ip++; // skip P2, move to opcode
 941     // To find the end of instruction (which == end_pc_operand).
 942     switch (0xFF & *ip) {
 943     case 0x22: // pinsrd r, r/a, #8
 944     case 0x61: // pcmpestri r, r/a, #8
 945     case 0x70: // pshufd r, r/a, #8
 946     case 0x73: // psrldq r, #8
 947       tail_size = 1;  // the imm8
 948       break;
 949     default:
 950       break;
 951     }
 952     ip++; // skip opcode
 953     debug_only(has_disp32 = true); // has both kinds of operands!
 954     break;
 955 
 956   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 957   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 958   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 959   case 0xDD: // fld_d a; fst_d a; fstp_d a
 960   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 961   case 0xDF: // fild_d a; fistp_d a
 962   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 963   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 964   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 965     debug_only(has_disp32 = true);
 966     break;
 967 
 968   case 0xE8: // call rdisp32
 969   case 0xE9: // jmp  rdisp32
 970     if (which == end_pc_operand)  return ip + 4;
 971     assert(which == call32_operand, "call has no disp32 or imm");
 972     return ip;
 973 
 974   case 0xF0:                    // Lock
 975     goto again_after_prefix;
 976 
 977   case 0xF3:                    // For SSE
 978   case 0xF2:                    // For SSE2
 979     switch (0xFF & *ip++) {
 980     case REX:
 981     case REX_B:
 982     case REX_X:
 983     case REX_XB:
 984     case REX_R:
 985     case REX_RB:
 986     case REX_RX:
 987     case REX_RXB:
 988     case REX_W:
 989     case REX_WB:
 990     case REX_WX:
 991     case REX_WXB:
 992     case REX_WR:
 993     case REX_WRB:
 994     case REX_WRX:
 995     case REX_WRXB:
 996       NOT_LP64(assert(false, "found 64bit prefix"));
 997       ip++;
 998     default:
 999       ip++;
1000     }
1001     debug_only(has_disp32 = true); // has both kinds of operands!
1002     break;
1003 
1004   default:
1005     ShouldNotReachHere();
1006 
1007 #undef REP8
1008 #undef REP16
1009   }
1010 
1011   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
1012 #ifdef _LP64
1013   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1014 #else
1015   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1016   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1017 #endif // LP64
1018   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1019 
1020   // parse the output of emit_operand
1021   int op2 = 0xFF & *ip++;
1022   int base = op2 & 0x07;
1023   int op3 = -1;
1024   const int b100 = 4;
1025   const int b101 = 5;
1026   if (base == b100 && (op2 >> 6) != 3) {
1027     op3 = 0xFF & *ip++;
1028     base = op3 & 0x07;   // refetch the base
1029   }
1030   // now ip points at the disp (if any)
1031 
1032   switch (op2 >> 6) {
1033   case 0:
1034     // [00 reg  100][ss index base]
1035     // [00 reg  100][00   100  esp]
1036     // [00 reg base]
1037     // [00 reg  100][ss index  101][disp32]
1038     // [00 reg  101]               [disp32]
1039 
1040     if (base == b101) {
1041       if (which == disp32_operand)
1042         return ip;              // caller wants the disp32
1043       ip += 4;                  // skip the disp32
1044     }
1045     break;
1046 
1047   case 1:
1048     // [01 reg  100][ss index base][disp8]
1049     // [01 reg  100][00   100  esp][disp8]
1050     // [01 reg base]               [disp8]
1051     ip += 1;                    // skip the disp8
1052     break;
1053 
1054   case 2:
1055     // [10 reg  100][ss index base][disp32]
1056     // [10 reg  100][00   100  esp][disp32]
1057     // [10 reg base]               [disp32]
1058     if (which == disp32_operand)
1059       return ip;                // caller wants the disp32
1060     ip += 4;                    // skip the disp32
1061     break;
1062 
1063   case 3:
1064     // [11 reg base]  (not a memory addressing mode)
1065     break;
1066   }
1067 
1068   if (which == end_pc_operand) {
1069     return ip + tail_size;
1070   }
1071 
1072 #ifdef _LP64
1073   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1074 #else
1075   assert(which == imm_operand, "instruction has only an imm field");
1076 #endif // LP64
1077   return ip;
1078 }
1079 
1080 address Assembler::locate_next_instruction(address inst) {
1081   // Secretly share code with locate_operand:
1082   return locate_operand(inst, end_pc_operand);
1083 }
1084 
1085 
1086 #ifdef ASSERT
1087 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1088   address inst = inst_mark();
1089   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1090   address opnd;
1091 
1092   Relocation* r = rspec.reloc();
1093   if (r->type() == relocInfo::none) {
1094     return;
1095   } else if (r->is_call() || format == call32_operand) {
1096     // assert(format == imm32_operand, "cannot specify a nonzero format");
1097     opnd = locate_operand(inst, call32_operand);
1098   } else if (r->is_data()) {
1099     assert(format == imm_operand || format == disp32_operand
1100            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1101     opnd = locate_operand(inst, (WhichOperand)format);
1102   } else {
1103     assert(format == imm_operand, "cannot specify a format");
1104     return;
1105   }
1106   assert(opnd == pc(), "must put operand where relocs can find it");
1107 }
1108 #endif // ASSERT
1109 
1110 void Assembler::emit_operand32(Register reg, Address adr) {
1111   assert(reg->encoding() < 8, "no extended registers");
1112   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1113   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1114                adr._rspec);
1115 }
1116 
1117 void Assembler::emit_operand(Register reg, Address adr,
1118                              int rip_relative_correction) {
1119   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1120                adr._rspec,
1121                rip_relative_correction);
1122 }
1123 
1124 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1125     if (adr.isxmmindex()) {
1126        emit_operand(reg, adr._base, adr._xmmindex, adr._scale, adr._disp, adr._rspec);
1127     } else {
1128        emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1129        adr._rspec);
1130     }
1131 }
1132 
1133 // MMX operations
1134 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1135   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1136   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1137 }
1138 
1139 // work around gcc (3.2.1-7a) bug
1140 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1141   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1142   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1143 }
1144 
1145 
1146 void Assembler::emit_farith(int b1, int b2, int i) {
1147   assert(isByte(b1) && isByte(b2), "wrong opcode");
1148   assert(0 <= i &&  i < 8, "illegal stack offset");
1149   emit_int8(b1);
1150   emit_int8(b2 + i);
1151 }
1152 
1153 
1154 // Now the Assembler instructions (identical for 32/64 bits)
1155 
1156 void Assembler::adcl(Address dst, int32_t imm32) {
1157   InstructionMark im(this);
1158   prefix(dst);
1159   emit_arith_operand(0x81, rdx, dst, imm32);
1160 }
1161 
1162 void Assembler::adcl(Address dst, Register src) {
1163   InstructionMark im(this);
1164   prefix(dst, src);
1165   emit_int8(0x11);
1166   emit_operand(src, dst);
1167 }
1168 
1169 void Assembler::adcl(Register dst, int32_t imm32) {
1170   prefix(dst);
1171   emit_arith(0x81, 0xD0, dst, imm32);
1172 }
1173 
1174 void Assembler::adcl(Register dst, Address src) {
1175   InstructionMark im(this);
1176   prefix(src, dst);
1177   emit_int8(0x13);
1178   emit_operand(dst, src);
1179 }
1180 
1181 void Assembler::adcl(Register dst, Register src) {
1182   (void) prefix_and_encode(dst->encoding(), src->encoding());
1183   emit_arith(0x13, 0xC0, dst, src);
1184 }
1185 
1186 void Assembler::addl(Address dst, int32_t imm32) {
1187   InstructionMark im(this);
1188   prefix(dst);
1189   emit_arith_operand(0x81, rax, dst, imm32);
1190 }
1191 
1192 void Assembler::addb(Address dst, int imm8) {
1193   InstructionMark im(this);
1194   prefix(dst);
1195   emit_int8((unsigned char)0x80);
1196   emit_operand(rax, dst, 1);
1197   emit_int8(imm8);
1198 }
1199 
1200 void Assembler::addw(Address dst, int imm16) {
1201   InstructionMark im(this);
1202   emit_int8(0x66);
1203   prefix(dst);
1204   emit_int8((unsigned char)0x81);
1205   emit_operand(rax, dst, 2);
1206   emit_int16(imm16);
1207 }
1208 
1209 void Assembler::addl(Address dst, Register src) {
1210   InstructionMark im(this);
1211   prefix(dst, src);
1212   emit_int8(0x01);
1213   emit_operand(src, dst);
1214 }
1215 
1216 void Assembler::addl(Register dst, int32_t imm32) {
1217   prefix(dst);
1218   emit_arith(0x81, 0xC0, dst, imm32);
1219 }
1220 
1221 void Assembler::addl(Register dst, Address src) {
1222   InstructionMark im(this);
1223   prefix(src, dst);
1224   emit_int8(0x03);
1225   emit_operand(dst, src);
1226 }
1227 
1228 void Assembler::addl(Register dst, Register src) {
1229   (void) prefix_and_encode(dst->encoding(), src->encoding());
1230   emit_arith(0x03, 0xC0, dst, src);
1231 }
1232 
1233 void Assembler::addr_nop_4() {
1234   assert(UseAddressNop, "no CPU support");
1235   // 4 bytes: NOP DWORD PTR [EAX+0]
1236   emit_int8(0x0F);
1237   emit_int8(0x1F);
1238   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1239   emit_int8(0);    // 8-bits offset (1 byte)
1240 }
1241 
1242 void Assembler::addr_nop_5() {
1243   assert(UseAddressNop, "no CPU support");
1244   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1245   emit_int8(0x0F);
1246   emit_int8(0x1F);
1247   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1248   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1249   emit_int8(0);    // 8-bits offset (1 byte)
1250 }
1251 
1252 void Assembler::addr_nop_7() {
1253   assert(UseAddressNop, "no CPU support");
1254   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1255   emit_int8(0x0F);
1256   emit_int8(0x1F);
1257   emit_int8((unsigned char)0x80);
1258                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1259   emit_int32(0);   // 32-bits offset (4 bytes)
1260 }
1261 
1262 void Assembler::addr_nop_8() {
1263   assert(UseAddressNop, "no CPU support");
1264   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1265   emit_int8(0x0F);
1266   emit_int8(0x1F);
1267   emit_int8((unsigned char)0x84);
1268                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1269   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1270   emit_int32(0);   // 32-bits offset (4 bytes)
1271 }
1272 
1273 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1274   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1275   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1276   attributes.set_rex_vex_w_reverted();
1277   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1278   emit_int8(0x58);
1279   emit_int8((unsigned char)(0xC0 | encode));
1280 }
1281 
1282 void Assembler::addsd(XMMRegister dst, Address src) {
1283   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1284   InstructionMark im(this);
1285   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1286   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1287   attributes.set_rex_vex_w_reverted();
1288   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1289   emit_int8(0x58);
1290   emit_operand(dst, src);
1291 }
1292 
1293 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1294   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1295   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1296   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1297   emit_int8(0x58);
1298   emit_int8((unsigned char)(0xC0 | encode));
1299 }
1300 
1301 void Assembler::addss(XMMRegister dst, Address src) {
1302   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1303   InstructionMark im(this);
1304   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1305   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1306   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1307   emit_int8(0x58);
1308   emit_operand(dst, src);
1309 }
1310 
1311 void Assembler::aesdec(XMMRegister dst, Address src) {
1312   assert(VM_Version::supports_aes(), "");
1313   InstructionMark im(this);
1314   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1315   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1316   emit_int8((unsigned char)0xDE);
1317   emit_operand(dst, src);
1318 }
1319 
1320 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1321   assert(VM_Version::supports_aes(), "");
1322   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1323   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1324   emit_int8((unsigned char)0xDE);
1325   emit_int8(0xC0 | encode);
1326 }
1327 
1328 void Assembler::vaesdec(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1329   assert(VM_Version::supports_vaes(), "");
1330   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1331   attributes.set_is_evex_instruction();
1332   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1333   emit_int8((unsigned char)0xDE);
1334   emit_int8((unsigned char)(0xC0 | encode));
1335 }
1336 
1337 
1338 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1339   assert(VM_Version::supports_aes(), "");
1340   InstructionMark im(this);
1341   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1342   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1343   emit_int8((unsigned char)0xDF);
1344   emit_operand(dst, src);
1345 }
1346 
1347 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1348   assert(VM_Version::supports_aes(), "");
1349   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1350   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1351   emit_int8((unsigned char)0xDF);
1352   emit_int8((unsigned char)(0xC0 | encode));
1353 }
1354 
1355 void Assembler::vaesdeclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1356   assert(VM_Version::supports_vaes(), "");
1357   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1358   attributes.set_is_evex_instruction();
1359   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1360   emit_int8((unsigned char)0xDF);
1361   emit_int8((unsigned char)(0xC0 | encode));
1362 }
1363 
1364 void Assembler::aesenc(XMMRegister dst, Address src) {
1365   assert(VM_Version::supports_aes(), "");
1366   InstructionMark im(this);
1367   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1368   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1369   emit_int8((unsigned char)0xDC);
1370   emit_operand(dst, src);
1371 }
1372 
1373 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1374   assert(VM_Version::supports_aes(), "");
1375   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1376   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1377   emit_int8((unsigned char)0xDC);
1378   emit_int8(0xC0 | encode);
1379 }
1380 
1381 void Assembler::aesenclast(XMMRegister dst, Address src) {
1382   assert(VM_Version::supports_aes(), "");
1383   InstructionMark im(this);
1384   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1385   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1386   emit_int8((unsigned char)0xDD);
1387   emit_operand(dst, src);
1388 }
1389 
1390 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1391   assert(VM_Version::supports_aes(), "");
1392   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1393   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1394   emit_int8((unsigned char)0xDD);
1395   emit_int8((unsigned char)(0xC0 | encode));
1396 }
1397 
1398 void Assembler::andl(Address dst, int32_t imm32) {
1399   InstructionMark im(this);
1400   prefix(dst);
1401   emit_int8((unsigned char)0x81);
1402   emit_operand(rsp, dst, 4);
1403   emit_int32(imm32);
1404 }
1405 
1406 void Assembler::andl(Register dst, int32_t imm32) {
1407   prefix(dst);
1408   emit_arith(0x81, 0xE0, dst, imm32);
1409 }
1410 
1411 void Assembler::andl(Register dst, Address src) {
1412   InstructionMark im(this);
1413   prefix(src, dst);
1414   emit_int8(0x23);
1415   emit_operand(dst, src);
1416 }
1417 
1418 void Assembler::andl(Register dst, Register src) {
1419   (void) prefix_and_encode(dst->encoding(), src->encoding());
1420   emit_arith(0x23, 0xC0, dst, src);
1421 }
1422 
1423 void Assembler::andnl(Register dst, Register src1, Register src2) {
1424   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1425   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1426   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1427   emit_int8((unsigned char)0xF2);
1428   emit_int8((unsigned char)(0xC0 | encode));
1429 }
1430 
1431 void Assembler::andnl(Register dst, Register src1, Address src2) {
1432   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1433   InstructionMark im(this);
1434   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1435   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1436   emit_int8((unsigned char)0xF2);
1437   emit_operand(dst, src2);
1438 }
1439 
1440 void Assembler::bsfl(Register dst, Register src) {
1441   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1442   emit_int8(0x0F);
1443   emit_int8((unsigned char)0xBC);
1444   emit_int8((unsigned char)(0xC0 | encode));
1445 }
1446 
1447 void Assembler::bsrl(Register dst, Register src) {
1448   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1449   emit_int8(0x0F);
1450   emit_int8((unsigned char)0xBD);
1451   emit_int8((unsigned char)(0xC0 | encode));
1452 }
1453 
1454 void Assembler::bswapl(Register reg) { // bswap
1455   int encode = prefix_and_encode(reg->encoding());
1456   emit_int8(0x0F);
1457   emit_int8((unsigned char)(0xC8 | encode));
1458 }
1459 
1460 void Assembler::blsil(Register dst, Register src) {
1461   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1462   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1463   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1464   emit_int8((unsigned char)0xF3);
1465   emit_int8((unsigned char)(0xC0 | encode));
1466 }
1467 
1468 void Assembler::blsil(Register dst, Address src) {
1469   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1470   InstructionMark im(this);
1471   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1472   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1473   emit_int8((unsigned char)0xF3);
1474   emit_operand(rbx, src);
1475 }
1476 
1477 void Assembler::blsmskl(Register dst, Register src) {
1478   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1479   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1480   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1481   emit_int8((unsigned char)0xF3);
1482   emit_int8((unsigned char)(0xC0 | encode));
1483 }
1484 
1485 void Assembler::blsmskl(Register dst, Address src) {
1486   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1487   InstructionMark im(this);
1488   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1489   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1490   emit_int8((unsigned char)0xF3);
1491   emit_operand(rdx, src);
1492 }
1493 
1494 void Assembler::blsrl(Register dst, Register src) {
1495   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1496   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1497   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1498   emit_int8((unsigned char)0xF3);
1499   emit_int8((unsigned char)(0xC0 | encode));
1500 }
1501 
1502 void Assembler::blsrl(Register dst, Address src) {
1503   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1504   InstructionMark im(this);
1505   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1506   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1507   emit_int8((unsigned char)0xF3);
1508   emit_operand(rcx, src);
1509 }
1510 
1511 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1512   // suspect disp32 is always good
1513   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1514 
1515   if (L.is_bound()) {
1516     const int long_size = 5;
1517     int offs = (int)( target(L) - pc() );
1518     assert(offs <= 0, "assembler error");
1519     InstructionMark im(this);
1520     // 1110 1000 #32-bit disp
1521     emit_int8((unsigned char)0xE8);
1522     emit_data(offs - long_size, rtype, operand);
1523   } else {
1524     InstructionMark im(this);
1525     // 1110 1000 #32-bit disp
1526     L.add_patch_at(code(), locator());
1527 
1528     emit_int8((unsigned char)0xE8);
1529     emit_data(int(0), rtype, operand);
1530   }
1531 }
1532 
1533 void Assembler::call(Register dst) {
1534   int encode = prefix_and_encode(dst->encoding());
1535   emit_int8((unsigned char)0xFF);
1536   emit_int8((unsigned char)(0xD0 | encode));
1537 }
1538 
1539 
1540 void Assembler::call(Address adr) {
1541   InstructionMark im(this);
1542   prefix(adr);
1543   emit_int8((unsigned char)0xFF);
1544   emit_operand(rdx, adr);
1545 }
1546 
1547 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1548   InstructionMark im(this);
1549   emit_int8((unsigned char)0xE8);
1550   intptr_t disp = entry - (pc() + sizeof(int32_t));
1551   // Entry is NULL in case of a scratch emit.
1552   assert(entry == NULL || is_simm32(disp), "disp=" INTPTR_FORMAT " must be 32bit offset (call2)", disp);
1553   // Technically, should use call32_operand, but this format is
1554   // implied by the fact that we're emitting a call instruction.
1555 
1556   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1557   emit_data((int) disp, rspec, operand);
1558 }
1559 
1560 void Assembler::cdql() {
1561   emit_int8((unsigned char)0x99);
1562 }
1563 
1564 void Assembler::cld() {
1565   emit_int8((unsigned char)0xFC);
1566 }
1567 
1568 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1569   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1570   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1571   emit_int8(0x0F);
1572   emit_int8(0x40 | cc);
1573   emit_int8((unsigned char)(0xC0 | encode));
1574 }
1575 
1576 
1577 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1578   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1579   prefix(src, dst);
1580   emit_int8(0x0F);
1581   emit_int8(0x40 | cc);
1582   emit_operand(dst, src);
1583 }
1584 
1585 void Assembler::cmpb(Address dst, int imm8) {
1586   InstructionMark im(this);
1587   prefix(dst);
1588   emit_int8((unsigned char)0x80);
1589   emit_operand(rdi, dst, 1);
1590   emit_int8(imm8);
1591 }
1592 
1593 void Assembler::cmpl(Address dst, int32_t imm32) {
1594   InstructionMark im(this);
1595   prefix(dst);
1596   emit_int8((unsigned char)0x81);
1597   emit_operand(rdi, dst, 4);
1598   emit_int32(imm32);
1599 }
1600 
1601 void Assembler::cmpl(Register dst, int32_t imm32) {
1602   prefix(dst);
1603   emit_arith(0x81, 0xF8, dst, imm32);
1604 }
1605 
1606 void Assembler::cmpl(Register dst, Register src) {
1607   (void) prefix_and_encode(dst->encoding(), src->encoding());
1608   emit_arith(0x3B, 0xC0, dst, src);
1609 }
1610 
1611 void Assembler::cmpl(Register dst, Address  src) {
1612   InstructionMark im(this);
1613   prefix(src, dst);
1614   emit_int8((unsigned char)0x3B);
1615   emit_operand(dst, src);
1616 }
1617 
1618 void Assembler::cmpw(Address dst, int imm16) {
1619   InstructionMark im(this);
1620   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1621   emit_int8(0x66);
1622   emit_int8((unsigned char)0x81);
1623   emit_operand(rdi, dst, 2);
1624   emit_int16(imm16);
1625 }
1626 
1627 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1628 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1629 // The ZF is set if the compared values were equal, and cleared otherwise.
1630 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1631   InstructionMark im(this);
1632   prefix(adr, reg);
1633   emit_int8(0x0F);
1634   emit_int8((unsigned char)0xB1);
1635   emit_operand(reg, adr);
1636 }
1637 
1638 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1639 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1640 // The ZF is set if the compared values were equal, and cleared otherwise.
1641 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1642   InstructionMark im(this);
1643   prefix(adr, reg, true);
1644   emit_int8(0x0F);
1645   emit_int8((unsigned char)0xB0);
1646   emit_operand(reg, adr);
1647 }
1648 
1649 void Assembler::comisd(XMMRegister dst, Address src) {
1650   // NOTE: dbx seems to decode this as comiss even though the
1651   // 0x66 is there. Strangly ucomisd comes out correct
1652   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1653   InstructionMark im(this);
1654   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1655   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1656   attributes.set_rex_vex_w_reverted();
1657   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1658   emit_int8(0x2F);
1659   emit_operand(dst, src);
1660 }
1661 
1662 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1663   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1664   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1665   attributes.set_rex_vex_w_reverted();
1666   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1667   emit_int8(0x2F);
1668   emit_int8((unsigned char)(0xC0 | encode));
1669 }
1670 
1671 void Assembler::comiss(XMMRegister dst, Address src) {
1672   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1673   InstructionMark im(this);
1674   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1675   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1676   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1677   emit_int8(0x2F);
1678   emit_operand(dst, src);
1679 }
1680 
1681 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1682   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1683   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1684   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1685   emit_int8(0x2F);
1686   emit_int8((unsigned char)(0xC0 | encode));
1687 }
1688 
1689 void Assembler::cpuid() {
1690   emit_int8(0x0F);
1691   emit_int8((unsigned char)0xA2);
1692 }
1693 
1694 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1695 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1696 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1697 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1698 //
1699 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1700 //
1701 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1702 //
1703 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1704 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1705   assert(VM_Version::supports_sse4_2(), "");
1706   int8_t w = 0x01;
1707   Prefix p = Prefix_EMPTY;
1708 
1709   emit_int8((int8_t)0xF2);
1710   switch (sizeInBytes) {
1711   case 1:
1712     w = 0;
1713     break;
1714   case 2:
1715   case 4:
1716     break;
1717   LP64_ONLY(case 8:)
1718     // This instruction is not valid in 32 bits
1719     // Note:
1720     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1721     //
1722     // Page B - 72   Vol. 2C says
1723     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1724     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1725     //                                                                            F0!!!
1726     // while 3 - 208 Vol. 2A
1727     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1728     //
1729     // the 0 on a last bit is reserved for a different flavor of this instruction :
1730     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1731     p = REX_W;
1732     break;
1733   default:
1734     assert(0, "Unsupported value for a sizeInBytes argument");
1735     break;
1736   }
1737   LP64_ONLY(prefix(crc, v, p);)
1738   emit_int8((int8_t)0x0F);
1739   emit_int8(0x38);
1740   emit_int8((int8_t)(0xF0 | w));
1741   emit_int8(0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1742 }
1743 
1744 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1745   assert(VM_Version::supports_sse4_2(), "");
1746   InstructionMark im(this);
1747   int8_t w = 0x01;
1748   Prefix p = Prefix_EMPTY;
1749 
1750   emit_int8((int8_t)0xF2);
1751   switch (sizeInBytes) {
1752   case 1:
1753     w = 0;
1754     break;
1755   case 2:
1756   case 4:
1757     break;
1758   LP64_ONLY(case 8:)
1759     // This instruction is not valid in 32 bits
1760     p = REX_W;
1761     break;
1762   default:
1763     assert(0, "Unsupported value for a sizeInBytes argument");
1764     break;
1765   }
1766   LP64_ONLY(prefix(crc, adr, p);)
1767   emit_int8((int8_t)0x0F);
1768   emit_int8(0x38);
1769   emit_int8((int8_t)(0xF0 | w));
1770   emit_operand(crc, adr);
1771 }
1772 
1773 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1774   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1775   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1776   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1777   emit_int8((unsigned char)0xE6);
1778   emit_int8((unsigned char)(0xC0 | encode));
1779 }
1780 
1781 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1782   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1783   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1784   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1785   emit_int8(0x5B);
1786   emit_int8((unsigned char)(0xC0 | encode));
1787 }
1788 
1789 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1790   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1791   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1792   attributes.set_rex_vex_w_reverted();
1793   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1794   emit_int8(0x5A);
1795   emit_int8((unsigned char)(0xC0 | encode));
1796 }
1797 
1798 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1799   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1800   InstructionMark im(this);
1801   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1802   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1803   attributes.set_rex_vex_w_reverted();
1804   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1805   emit_int8(0x5A);
1806   emit_operand(dst, src);
1807 }
1808 
1809 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1810   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1811   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1812   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1813   emit_int8(0x2A);
1814   emit_int8((unsigned char)(0xC0 | encode));
1815 }
1816 
1817 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1818   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1819   InstructionMark im(this);
1820   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1821   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1822   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1823   emit_int8(0x2A);
1824   emit_operand(dst, src);
1825 }
1826 
1827 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1828   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1829   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1830   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1831   emit_int8(0x2A);
1832   emit_int8((unsigned char)(0xC0 | encode));
1833 }
1834 
1835 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1836   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1837   InstructionMark im(this);
1838   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1839   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1840   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1841   emit_int8(0x2A);
1842   emit_operand(dst, src);
1843 }
1844 
1845 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1846   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1847   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1848   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1849   emit_int8(0x2A);
1850   emit_int8((unsigned char)(0xC0 | encode));
1851 }
1852 
1853 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1854   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1855   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1856   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1857   emit_int8(0x5A);
1858   emit_int8((unsigned char)(0xC0 | encode));
1859 }
1860 
1861 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1862   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1863   InstructionMark im(this);
1864   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1865   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1866   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1867   emit_int8(0x5A);
1868   emit_operand(dst, src);
1869 }
1870 
1871 
1872 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1873   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1874   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1875   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1876   emit_int8(0x2C);
1877   emit_int8((unsigned char)(0xC0 | encode));
1878 }
1879 
1880 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1881   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1882   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1883   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1884   emit_int8(0x2C);
1885   emit_int8((unsigned char)(0xC0 | encode));
1886 }
1887 
1888 void Assembler::cvttpd2dq(XMMRegister dst, XMMRegister src) {
1889   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1890   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
1891   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1892   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1893   emit_int8((unsigned char)0xE6);
1894   emit_int8((unsigned char)(0xC0 | encode));
1895 }
1896 
1897 void Assembler::decl(Address dst) {
1898   // Don't use it directly. Use MacroAssembler::decrement() instead.
1899   InstructionMark im(this);
1900   prefix(dst);
1901   emit_int8((unsigned char)0xFF);
1902   emit_operand(rcx, dst);
1903 }
1904 
1905 void Assembler::divsd(XMMRegister dst, Address src) {
1906   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1907   InstructionMark im(this);
1908   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1909   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1910   attributes.set_rex_vex_w_reverted();
1911   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1912   emit_int8(0x5E);
1913   emit_operand(dst, src);
1914 }
1915 
1916 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1917   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1918   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1919   attributes.set_rex_vex_w_reverted();
1920   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1921   emit_int8(0x5E);
1922   emit_int8((unsigned char)(0xC0 | encode));
1923 }
1924 
1925 void Assembler::divss(XMMRegister dst, Address src) {
1926   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1927   InstructionMark im(this);
1928   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1929   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1930   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1931   emit_int8(0x5E);
1932   emit_operand(dst, src);
1933 }
1934 
1935 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1936   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1937   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1938   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1939   emit_int8(0x5E);
1940   emit_int8((unsigned char)(0xC0 | encode));
1941 }
1942 
1943 void Assembler::emms() {
1944   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1945   emit_int8(0x0F);
1946   emit_int8(0x77);
1947 }
1948 
1949 void Assembler::hlt() {
1950   emit_int8((unsigned char)0xF4);
1951 }
1952 
1953 void Assembler::idivl(Register src) {
1954   int encode = prefix_and_encode(src->encoding());
1955   emit_int8((unsigned char)0xF7);
1956   emit_int8((unsigned char)(0xF8 | encode));
1957 }
1958 
1959 void Assembler::divl(Register src) { // Unsigned
1960   int encode = prefix_and_encode(src->encoding());
1961   emit_int8((unsigned char)0xF7);
1962   emit_int8((unsigned char)(0xF0 | encode));
1963 }
1964 
1965 void Assembler::imull(Register src) {
1966   int encode = prefix_and_encode(src->encoding());
1967   emit_int8((unsigned char)0xF7);
1968   emit_int8((unsigned char)(0xE8 | encode));
1969 }
1970 
1971 void Assembler::imull(Register dst, Register src) {
1972   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1973   emit_int8(0x0F);
1974   emit_int8((unsigned char)0xAF);
1975   emit_int8((unsigned char)(0xC0 | encode));
1976 }
1977 
1978 
1979 void Assembler::imull(Register dst, Register src, int value) {
1980   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1981   if (is8bit(value)) {
1982     emit_int8(0x6B);
1983     emit_int8((unsigned char)(0xC0 | encode));
1984     emit_int8(value & 0xFF);
1985   } else {
1986     emit_int8(0x69);
1987     emit_int8((unsigned char)(0xC0 | encode));
1988     emit_int32(value);
1989   }
1990 }
1991 
1992 void Assembler::imull(Register dst, Address src) {
1993   InstructionMark im(this);
1994   prefix(src, dst);
1995   emit_int8(0x0F);
1996   emit_int8((unsigned char) 0xAF);
1997   emit_operand(dst, src);
1998 }
1999 
2000 
2001 void Assembler::incl(Address dst) {
2002   // Don't use it directly. Use MacroAssembler::increment() instead.
2003   InstructionMark im(this);
2004   prefix(dst);
2005   emit_int8((unsigned char)0xFF);
2006   emit_operand(rax, dst);
2007 }
2008 
2009 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
2010   InstructionMark im(this);
2011   assert((0 <= cc) && (cc < 16), "illegal cc");
2012   if (L.is_bound()) {
2013     address dst = target(L);
2014     assert(dst != NULL, "jcc most probably wrong");
2015 
2016     const int short_size = 2;
2017     const int long_size = 6;
2018     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
2019     if (maybe_short && is8bit(offs - short_size)) {
2020       // 0111 tttn #8-bit disp
2021       emit_int8(0x70 | cc);
2022       emit_int8((offs - short_size) & 0xFF);
2023     } else {
2024       // 0000 1111 1000 tttn #32-bit disp
2025       assert(is_simm32(offs - long_size),
2026              "must be 32bit offset (call4)");
2027       emit_int8(0x0F);
2028       emit_int8((unsigned char)(0x80 | cc));
2029       emit_int32(offs - long_size);
2030     }
2031   } else {
2032     // Note: could eliminate cond. jumps to this jump if condition
2033     //       is the same however, seems to be rather unlikely case.
2034     // Note: use jccb() if label to be bound is very close to get
2035     //       an 8-bit displacement
2036     L.add_patch_at(code(), locator());
2037     emit_int8(0x0F);
2038     emit_int8((unsigned char)(0x80 | cc));
2039     emit_int32(0);
2040   }
2041 }
2042 
2043 void Assembler::jccb_0(Condition cc, Label& L, const char* file, int line) {
2044   if (L.is_bound()) {
2045     const int short_size = 2;
2046     address entry = target(L);
2047 #ifdef ASSERT
2048     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2049     intptr_t delta = short_branch_delta();
2050     if (delta != 0) {
2051       dist += (dist < 0 ? (-delta) :delta);
2052     }
2053     assert(is8bit(dist), "Dispacement too large for a short jmp at %s:%d", file, line);
2054 #endif
2055     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
2056     // 0111 tttn #8-bit disp
2057     emit_int8(0x70 | cc);
2058     emit_int8((offs - short_size) & 0xFF);
2059   } else {
2060     InstructionMark im(this);
2061     L.add_patch_at(code(), locator(), file, line);
2062     emit_int8(0x70 | cc);
2063     emit_int8(0);
2064   }
2065 }
2066 
2067 void Assembler::jmp(Address adr) {
2068   InstructionMark im(this);
2069   prefix(adr);
2070   emit_int8((unsigned char)0xFF);
2071   emit_operand(rsp, adr);
2072 }
2073 
2074 void Assembler::jmp(Label& L, bool maybe_short) {
2075   if (L.is_bound()) {
2076     address entry = target(L);
2077     assert(entry != NULL, "jmp most probably wrong");
2078     InstructionMark im(this);
2079     const int short_size = 2;
2080     const int long_size = 5;
2081     intptr_t offs = entry - pc();
2082     if (maybe_short && is8bit(offs - short_size)) {
2083       emit_int8((unsigned char)0xEB);
2084       emit_int8((offs - short_size) & 0xFF);
2085     } else {
2086       emit_int8((unsigned char)0xE9);
2087       emit_int32(offs - long_size);
2088     }
2089   } else {
2090     // By default, forward jumps are always 32-bit displacements, since
2091     // we can't yet know where the label will be bound.  If you're sure that
2092     // the forward jump will not run beyond 256 bytes, use jmpb to
2093     // force an 8-bit displacement.
2094     InstructionMark im(this);
2095     L.add_patch_at(code(), locator());
2096     emit_int8((unsigned char)0xE9);
2097     emit_int32(0);
2098   }
2099 }
2100 
2101 void Assembler::jmp(Register entry) {
2102   int encode = prefix_and_encode(entry->encoding());
2103   emit_int8((unsigned char)0xFF);
2104   emit_int8((unsigned char)(0xE0 | encode));
2105 }
2106 
2107 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2108   InstructionMark im(this);
2109   emit_int8((unsigned char)0xE9);
2110   assert(dest != NULL, "must have a target");
2111   intptr_t disp = dest - (pc() + sizeof(int32_t));
2112   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2113   emit_data(disp, rspec.reloc(), call32_operand);
2114 }
2115 
2116 void Assembler::jmpb_0(Label& L, const char* file, int line) {
2117   if (L.is_bound()) {
2118     const int short_size = 2;
2119     address entry = target(L);
2120     assert(entry != NULL, "jmp most probably wrong");
2121 #ifdef ASSERT
2122     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2123     intptr_t delta = short_branch_delta();
2124     if (delta != 0) {
2125       dist += (dist < 0 ? (-delta) :delta);
2126     }
2127     assert(is8bit(dist), "Dispacement too large for a short jmp at %s:%d", file, line);
2128 #endif
2129     intptr_t offs = entry - pc();
2130     emit_int8((unsigned char)0xEB);
2131     emit_int8((offs - short_size) & 0xFF);
2132   } else {
2133     InstructionMark im(this);
2134     L.add_patch_at(code(), locator(), file, line);
2135     emit_int8((unsigned char)0xEB);
2136     emit_int8(0);
2137   }
2138 }
2139 
2140 void Assembler::ldmxcsr( Address src) {
2141   if (UseAVX > 0 ) {
2142     InstructionMark im(this);
2143     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2144     vex_prefix(src, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2145     emit_int8((unsigned char)0xAE);
2146     emit_operand(as_Register(2), src);
2147   } else {
2148     NOT_LP64(assert(VM_Version::supports_sse(), ""));
2149     InstructionMark im(this);
2150     prefix(src);
2151     emit_int8(0x0F);
2152     emit_int8((unsigned char)0xAE);
2153     emit_operand(as_Register(2), src);
2154   }
2155 }
2156 
2157 void Assembler::leal(Register dst, Address src) {
2158   InstructionMark im(this);
2159 #ifdef _LP64
2160   emit_int8(0x67); // addr32
2161   prefix(src, dst);
2162 #endif // LP64
2163   emit_int8((unsigned char)0x8D);
2164   emit_operand(dst, src);
2165 }
2166 
2167 void Assembler::lfence() {
2168   emit_int8(0x0F);
2169   emit_int8((unsigned char)0xAE);
2170   emit_int8((unsigned char)0xE8);
2171 }
2172 
2173 void Assembler::lock() {
2174   emit_int8((unsigned char)0xF0);
2175 }
2176 
2177 void Assembler::lzcntl(Register dst, Register src) {
2178   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2179   emit_int8((unsigned char)0xF3);
2180   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2181   emit_int8(0x0F);
2182   emit_int8((unsigned char)0xBD);
2183   emit_int8((unsigned char)(0xC0 | encode));
2184 }
2185 
2186 // Emit mfence instruction
2187 void Assembler::mfence() {
2188   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2189   emit_int8(0x0F);
2190   emit_int8((unsigned char)0xAE);
2191   emit_int8((unsigned char)0xF0);
2192 }
2193 
2194 void Assembler::mov(Register dst, Register src) {
2195   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2196 }
2197 
2198 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2199   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2200   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2201   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2202   attributes.set_rex_vex_w_reverted();
2203   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2204   emit_int8(0x28);
2205   emit_int8((unsigned char)(0xC0 | encode));
2206 }
2207 
2208 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2209   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2210   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2211   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2212   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2213   emit_int8(0x28);
2214   emit_int8((unsigned char)(0xC0 | encode));
2215 }
2216 
2217 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2218   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2219   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2220   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2221   emit_int8(0x16);
2222   emit_int8((unsigned char)(0xC0 | encode));
2223 }
2224 
2225 void Assembler::movb(Register dst, Address src) {
2226   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2227   InstructionMark im(this);
2228   prefix(src, dst, true);
2229   emit_int8((unsigned char)0x8A);
2230   emit_operand(dst, src);
2231 }
2232 
2233 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2234   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2235   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2236   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2237   attributes.set_rex_vex_w_reverted();
2238   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2239   emit_int8(0x12);
2240   emit_int8(0xC0 | encode);
2241 }
2242 
2243 void Assembler::kmovbl(KRegister dst, Register src) {
2244   assert(VM_Version::supports_avx512dq(), "");
2245   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2246   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2247   emit_int8((unsigned char)0x92);
2248   emit_int8((unsigned char)(0xC0 | encode));
2249 }
2250 
2251 void Assembler::kmovbl(Register dst, KRegister src) {
2252   assert(VM_Version::supports_avx512dq(), "");
2253   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2254   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2255   emit_int8((unsigned char)0x93);
2256   emit_int8((unsigned char)(0xC0 | encode));
2257 }
2258 
2259 void Assembler::kmovwl(KRegister dst, Register src) {
2260   assert(VM_Version::supports_evex(), "");
2261   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2262   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2263   emit_int8((unsigned char)0x92);
2264   emit_int8((unsigned char)(0xC0 | encode));
2265 }
2266 
2267 void Assembler::kmovwl(Register dst, KRegister src) {
2268   assert(VM_Version::supports_evex(), "");
2269   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2270   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2271   emit_int8((unsigned char)0x93);
2272   emit_int8((unsigned char)(0xC0 | encode));
2273 }
2274 
2275 void Assembler::kmovwl(KRegister dst, Address src) {
2276   assert(VM_Version::supports_evex(), "");
2277   InstructionMark im(this);
2278   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2279   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2280   emit_int8((unsigned char)0x90);
2281   emit_operand((Register)dst, src);
2282 }
2283 
2284 void Assembler::kmovdl(KRegister dst, Register src) {
2285   assert(VM_Version::supports_avx512bw(), "");
2286   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2287   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2288   emit_int8((unsigned char)0x92);
2289   emit_int8((unsigned char)(0xC0 | encode));
2290 }
2291 
2292 void Assembler::kmovdl(Register dst, KRegister src) {
2293   assert(VM_Version::supports_avx512bw(), "");
2294   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2295   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2296   emit_int8((unsigned char)0x93);
2297   emit_int8((unsigned char)(0xC0 | encode));
2298 }
2299 
2300 void Assembler::kmovql(KRegister dst, KRegister src) {
2301   assert(VM_Version::supports_avx512bw(), "");
2302   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2303   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2304   emit_int8((unsigned char)0x90);
2305   emit_int8((unsigned char)(0xC0 | encode));
2306 }
2307 
2308 void Assembler::kmovql(KRegister dst, Address src) {
2309   assert(VM_Version::supports_avx512bw(), "");
2310   InstructionMark im(this);
2311   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2312   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2313   emit_int8((unsigned char)0x90);
2314   emit_operand((Register)dst, src);
2315 }
2316 
2317 void Assembler::kmovql(Address dst, KRegister src) {
2318   assert(VM_Version::supports_avx512bw(), "");
2319   InstructionMark im(this);
2320   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2321   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2322   emit_int8((unsigned char)0x90);
2323   emit_operand((Register)src, dst);
2324 }
2325 
2326 void Assembler::kmovql(KRegister dst, Register src) {
2327   assert(VM_Version::supports_avx512bw(), "");
2328   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2329   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2330   emit_int8((unsigned char)0x92);
2331   emit_int8((unsigned char)(0xC0 | encode));
2332 }
2333 
2334 void Assembler::kmovql(Register dst, KRegister src) {
2335   assert(VM_Version::supports_avx512bw(), "");
2336   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2337   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2338   emit_int8((unsigned char)0x93);
2339   emit_int8((unsigned char)(0xC0 | encode));
2340 }
2341 
2342 void Assembler::knotwl(KRegister dst, KRegister src) {
2343   assert(VM_Version::supports_evex(), "");
2344   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2345   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2346   emit_int8((unsigned char)0x44);
2347   emit_int8((unsigned char)(0xC0 | encode));
2348 }
2349 
2350 // This instruction produces ZF or CF flags
2351 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2352   assert(VM_Version::supports_avx512dq(), "");
2353   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2354   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2355   emit_int8((unsigned char)0x98);
2356   emit_int8((unsigned char)(0xC0 | encode));
2357 }
2358 
2359 // This instruction produces ZF or CF flags
2360 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2361   assert(VM_Version::supports_evex(), "");
2362   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2363   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2364   emit_int8((unsigned char)0x98);
2365   emit_int8((unsigned char)(0xC0 | encode));
2366 }
2367 
2368 // This instruction produces ZF or CF flags
2369 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2370   assert(VM_Version::supports_avx512bw(), "");
2371   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2372   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2373   emit_int8((unsigned char)0x98);
2374   emit_int8((unsigned char)(0xC0 | encode));
2375 }
2376 
2377 // This instruction produces ZF or CF flags
2378 void Assembler::kortestql(KRegister src1, KRegister src2) {
2379   assert(VM_Version::supports_avx512bw(), "");
2380   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2381   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2382   emit_int8((unsigned char)0x98);
2383   emit_int8((unsigned char)(0xC0 | encode));
2384 }
2385 
2386 // This instruction produces ZF or CF flags
2387 void Assembler::ktestql(KRegister src1, KRegister src2) {
2388   assert(VM_Version::supports_avx512bw(), "");
2389   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2390   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2391   emit_int8((unsigned char)0x99);
2392   emit_int8((unsigned char)(0xC0 | encode));
2393 }
2394 
2395 void Assembler::ktestq(KRegister src1, KRegister src2) {
2396   assert(VM_Version::supports_avx512bw(), "");
2397   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2398   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2399   emit_int8((unsigned char)0x99);
2400   emit_int8((unsigned char)(0xC0 | encode));
2401 }
2402 
2403 void Assembler::ktestd(KRegister src1, KRegister src2) {
2404   assert(VM_Version::supports_avx512bw(), "");
2405   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2406   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2407   emit_int8((unsigned char)0x99);
2408   emit_int8((unsigned char)(0xC0 | encode));
2409 }
2410 
2411 void Assembler::movb(Address dst, int imm8) {
2412   InstructionMark im(this);
2413    prefix(dst);
2414   emit_int8((unsigned char)0xC6);
2415   emit_operand(rax, dst, 1);
2416   emit_int8(imm8);
2417 }
2418 
2419 
2420 void Assembler::movb(Address dst, Register src) {
2421   assert(src->has_byte_register(), "must have byte register");
2422   InstructionMark im(this);
2423   prefix(dst, src, true);
2424   emit_int8((unsigned char)0x88);
2425   emit_operand(src, dst);
2426 }
2427 
2428 void Assembler::movdl(XMMRegister dst, Register src) {
2429   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2430   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2431   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2432   emit_int8(0x6E);
2433   emit_int8((unsigned char)(0xC0 | encode));
2434 }
2435 
2436 void Assembler::movdl(Register dst, XMMRegister src) {
2437   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2438   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2439   // swap src/dst to get correct prefix
2440   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2441   emit_int8(0x7E);
2442   emit_int8((unsigned char)(0xC0 | encode));
2443 }
2444 
2445 void Assembler::movdl(XMMRegister dst, Address src) {
2446   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2447   InstructionMark im(this);
2448   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2449   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2450   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2451   emit_int8(0x6E);
2452   emit_operand(dst, src);
2453 }
2454 
2455 void Assembler::movdl(Address dst, XMMRegister src) {
2456   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2457   InstructionMark im(this);
2458   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2459   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2460   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2461   emit_int8(0x7E);
2462   emit_operand(src, dst);
2463 }
2464 
2465 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2466   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2467   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2468   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2469   emit_int8(0x6F);
2470   emit_int8((unsigned char)(0xC0 | encode));
2471 }
2472 
2473 void Assembler::movdqa(XMMRegister dst, Address src) {
2474   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2475   InstructionMark im(this);
2476   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2477   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2478   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2479   emit_int8(0x6F);
2480   emit_operand(dst, src);
2481 }
2482 
2483 void Assembler::movdqu(XMMRegister dst, Address src) {
2484   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2485   InstructionMark im(this);
2486   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2487   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2488   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2489   emit_int8(0x6F);
2490   emit_operand(dst, src);
2491 }
2492 
2493 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2494   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2495   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2496   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2497   emit_int8(0x6F);
2498   emit_int8((unsigned char)(0xC0 | encode));
2499 }
2500 
2501 void Assembler::movdqu(Address dst, XMMRegister src) {
2502   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2503   InstructionMark im(this);
2504   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2505   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2506   attributes.reset_is_clear_context();
2507   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2508   emit_int8(0x7F);
2509   emit_operand(src, dst);
2510 }
2511 
2512 // Move Unaligned 256bit Vector
2513 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2514   assert(UseAVX > 0, "");
2515   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2516   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2517   emit_int8(0x6F);
2518   emit_int8((unsigned char)(0xC0 | encode));
2519 }
2520 
2521 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2522   assert(UseAVX > 0, "");
2523   InstructionMark im(this);
2524   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2525   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2526   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2527   emit_int8(0x6F);
2528   emit_operand(dst, src);
2529 }
2530 
2531 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2532   assert(UseAVX > 0, "");
2533   InstructionMark im(this);
2534   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2535   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2536   attributes.reset_is_clear_context();
2537   // swap src<->dst for encoding
2538   assert(src != xnoreg, "sanity");
2539   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2540   emit_int8(0x7F);
2541   emit_operand(src, dst);
2542 }
2543 
2544 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2545 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2546   assert(VM_Version::supports_evex(), "");
2547   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2548   attributes.set_is_evex_instruction();
2549   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2550   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2551   emit_int8(0x6F);
2552   emit_int8((unsigned char)(0xC0 | encode));
2553 }
2554 
2555 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2556   assert(VM_Version::supports_evex(), "");
2557   InstructionMark im(this);
2558   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2559   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2560   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2561   attributes.set_is_evex_instruction();
2562   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2563   emit_int8(0x6F);
2564   emit_operand(dst, src);
2565 }
2566 
2567 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2568   assert(VM_Version::supports_evex(), "");
2569   assert(src != xnoreg, "sanity");
2570   InstructionMark im(this);
2571   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2572   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2573   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2574   attributes.set_is_evex_instruction();
2575   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2576   emit_int8(0x7F);
2577   emit_operand(src, dst);
2578 }
2579 
2580 void Assembler::evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2581   assert(VM_Version::supports_avx512vlbw(), "");
2582   InstructionMark im(this);
2583   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2584   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2585   attributes.set_embedded_opmask_register_specifier(mask);
2586   attributes.set_is_evex_instruction();
2587   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2588   emit_int8(0x6F);
2589   emit_operand(dst, src);
2590 }
2591 
2592 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2593   assert(VM_Version::supports_evex(), "");
2594   InstructionMark im(this);
2595   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2596   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2597   attributes.set_is_evex_instruction();
2598   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2599   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2600   emit_int8(0x6F);
2601   emit_operand(dst, src);
2602 }
2603 
2604 void Assembler::evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2605   assert(VM_Version::supports_avx512vlbw(), "");
2606   InstructionMark im(this);
2607   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2608   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2609   attributes.set_embedded_opmask_register_specifier(mask);
2610   attributes.set_is_evex_instruction();
2611   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2612   emit_int8(0x6F);
2613   emit_operand(dst, src);
2614 }
2615 
2616 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2617   assert(VM_Version::supports_evex(), "");
2618   assert(src != xnoreg, "sanity");
2619   InstructionMark im(this);
2620   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2621   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2622   attributes.set_is_evex_instruction();
2623   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2624   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2625   emit_int8(0x7F);
2626   emit_operand(src, dst);
2627 }
2628 
2629 void Assembler::evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len) {
2630   assert(VM_Version::supports_avx512vlbw(), "");
2631   assert(src != xnoreg, "sanity");
2632   InstructionMark im(this);
2633   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2634   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2635   attributes.reset_is_clear_context();
2636   attributes.set_embedded_opmask_register_specifier(mask);
2637   attributes.set_is_evex_instruction();
2638   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2639   emit_int8(0x7F);
2640   emit_operand(src, dst);
2641 }
2642 
2643 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2644   assert(VM_Version::supports_evex(), "");
2645   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2646   attributes.set_is_evex_instruction();
2647   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2648   emit_int8(0x6F);
2649   emit_int8((unsigned char)(0xC0 | encode));
2650 }
2651 
2652 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2653   assert(VM_Version::supports_evex(), "");
2654   InstructionMark im(this);
2655   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true , /* uses_vl */ true);
2656   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2657   attributes.set_is_evex_instruction();
2658   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2659   emit_int8(0x6F);
2660   emit_operand(dst, src);
2661 }
2662 
2663 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2664   assert(VM_Version::supports_evex(), "");
2665   assert(src != xnoreg, "sanity");
2666   InstructionMark im(this);
2667   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2668   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2669   attributes.reset_is_clear_context();
2670   attributes.set_is_evex_instruction();
2671   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2672   emit_int8(0x7F);
2673   emit_operand(src, dst);
2674 }
2675 
2676 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2677   assert(VM_Version::supports_evex(), "");
2678   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2679   attributes.set_is_evex_instruction();
2680   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2681   emit_int8(0x6F);
2682   emit_int8((unsigned char)(0xC0 | encode));
2683 }
2684 
2685 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2686   assert(VM_Version::supports_evex(), "");
2687   InstructionMark im(this);
2688   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2689   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2690   attributes.set_is_evex_instruction();
2691   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2692   emit_int8(0x6F);
2693   emit_operand(dst, src);
2694 }
2695 
2696 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2697   assert(VM_Version::supports_evex(), "");
2698   assert(src != xnoreg, "sanity");
2699   InstructionMark im(this);
2700   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2701   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2702   attributes.reset_is_clear_context();
2703   attributes.set_is_evex_instruction();
2704   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2705   emit_int8(0x7F);
2706   emit_operand(src, dst);
2707 }
2708 
2709 // Uses zero extension on 64bit
2710 
2711 void Assembler::movl(Register dst, int32_t imm32) {
2712   int encode = prefix_and_encode(dst->encoding());
2713   emit_int8((unsigned char)(0xB8 | encode));
2714   emit_int32(imm32);
2715 }
2716 
2717 void Assembler::movl(Register dst, Register src) {
2718   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2719   emit_int8((unsigned char)0x8B);
2720   emit_int8((unsigned char)(0xC0 | encode));
2721 }
2722 
2723 void Assembler::movl(Register dst, Address src) {
2724   InstructionMark im(this);
2725   prefix(src, dst);
2726   emit_int8((unsigned char)0x8B);
2727   emit_operand(dst, src);
2728 }
2729 
2730 void Assembler::movl(Address dst, int32_t imm32) {
2731   InstructionMark im(this);
2732   prefix(dst);
2733   emit_int8((unsigned char)0xC7);
2734   emit_operand(rax, dst, 4);
2735   emit_int32(imm32);
2736 }
2737 
2738 void Assembler::movl(Address dst, Register src) {
2739   InstructionMark im(this);
2740   prefix(dst, src);
2741   emit_int8((unsigned char)0x89);
2742   emit_operand(src, dst);
2743 }
2744 
2745 // New cpus require to use movsd and movss to avoid partial register stall
2746 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2747 // The selection is done in MacroAssembler::movdbl() and movflt().
2748 void Assembler::movlpd(XMMRegister dst, Address src) {
2749   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2750   InstructionMark im(this);
2751   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2752   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2753   attributes.set_rex_vex_w_reverted();
2754   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2755   emit_int8(0x12);
2756   emit_operand(dst, src);
2757 }
2758 
2759 void Assembler::movq( MMXRegister dst, Address src ) {
2760   assert( VM_Version::supports_mmx(), "" );
2761   emit_int8(0x0F);
2762   emit_int8(0x6F);
2763   emit_operand(dst, src);
2764 }
2765 
2766 void Assembler::movq( Address dst, MMXRegister src ) {
2767   assert( VM_Version::supports_mmx(), "" );
2768   emit_int8(0x0F);
2769   emit_int8(0x7F);
2770   // workaround gcc (3.2.1-7a) bug
2771   // In that version of gcc with only an emit_operand(MMX, Address)
2772   // gcc will tail jump and try and reverse the parameters completely
2773   // obliterating dst in the process. By having a version available
2774   // that doesn't need to swap the args at the tail jump the bug is
2775   // avoided.
2776   emit_operand(dst, src);
2777 }
2778 
2779 void Assembler::movq(XMMRegister dst, Address src) {
2780   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2781   InstructionMark im(this);
2782   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2783   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2784   attributes.set_rex_vex_w_reverted();
2785   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2786   emit_int8(0x7E);
2787   emit_operand(dst, src);
2788 }
2789 
2790 void Assembler::movq(Address dst, XMMRegister src) {
2791   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2792   InstructionMark im(this);
2793   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2794   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2795   attributes.set_rex_vex_w_reverted();
2796   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2797   emit_int8((unsigned char)0xD6);
2798   emit_operand(src, dst);
2799 }
2800 
2801 void Assembler::movsbl(Register dst, Address src) { // movsxb
2802   InstructionMark im(this);
2803   prefix(src, dst);
2804   emit_int8(0x0F);
2805   emit_int8((unsigned char)0xBE);
2806   emit_operand(dst, src);
2807 }
2808 
2809 void Assembler::movsbl(Register dst, Register src) { // movsxb
2810   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2811   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2812   emit_int8(0x0F);
2813   emit_int8((unsigned char)0xBE);
2814   emit_int8((unsigned char)(0xC0 | encode));
2815 }
2816 
2817 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2818   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2819   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2820   attributes.set_rex_vex_w_reverted();
2821   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2822   emit_int8(0x10);
2823   emit_int8((unsigned char)(0xC0 | encode));
2824 }
2825 
2826 void Assembler::movsd(XMMRegister dst, Address src) {
2827   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2828   InstructionMark im(this);
2829   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2830   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2831   attributes.set_rex_vex_w_reverted();
2832   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2833   emit_int8(0x10);
2834   emit_operand(dst, src);
2835 }
2836 
2837 void Assembler::movsd(Address dst, XMMRegister src) {
2838   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2839   InstructionMark im(this);
2840   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2841   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2842   attributes.reset_is_clear_context();
2843   attributes.set_rex_vex_w_reverted();
2844   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2845   emit_int8(0x11);
2846   emit_operand(src, dst);
2847 }
2848 
2849 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2850   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2851   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2852   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2853   emit_int8(0x10);
2854   emit_int8((unsigned char)(0xC0 | encode));
2855 }
2856 
2857 void Assembler::movss(XMMRegister dst, Address src) {
2858   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2859   InstructionMark im(this);
2860   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2861   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2862   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2863   emit_int8(0x10);
2864   emit_operand(dst, src);
2865 }
2866 
2867 void Assembler::movss(Address dst, XMMRegister src) {
2868   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2869   InstructionMark im(this);
2870   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2871   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2872   attributes.reset_is_clear_context();
2873   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2874   emit_int8(0x11);
2875   emit_operand(src, dst);
2876 }
2877 
2878 void Assembler::movswl(Register dst, Address src) { // movsxw
2879   InstructionMark im(this);
2880   prefix(src, dst);
2881   emit_int8(0x0F);
2882   emit_int8((unsigned char)0xBF);
2883   emit_operand(dst, src);
2884 }
2885 
2886 void Assembler::movswl(Register dst, Register src) { // movsxw
2887   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2888   emit_int8(0x0F);
2889   emit_int8((unsigned char)0xBF);
2890   emit_int8((unsigned char)(0xC0 | encode));
2891 }
2892 
2893 void Assembler::movw(Address dst, int imm16) {
2894   InstructionMark im(this);
2895 
2896   emit_int8(0x66); // switch to 16-bit mode
2897   prefix(dst);
2898   emit_int8((unsigned char)0xC7);
2899   emit_operand(rax, dst, 2);
2900   emit_int16(imm16);
2901 }
2902 
2903 void Assembler::movw(Register dst, Address src) {
2904   InstructionMark im(this);
2905   emit_int8(0x66);
2906   prefix(src, dst);
2907   emit_int8((unsigned char)0x8B);
2908   emit_operand(dst, src);
2909 }
2910 
2911 void Assembler::movw(Address dst, Register src) {
2912   InstructionMark im(this);
2913   emit_int8(0x66);
2914   prefix(dst, src);
2915   emit_int8((unsigned char)0x89);
2916   emit_operand(src, dst);
2917 }
2918 
2919 void Assembler::movzbl(Register dst, Address src) { // movzxb
2920   InstructionMark im(this);
2921   prefix(src, dst);
2922   emit_int8(0x0F);
2923   emit_int8((unsigned char)0xB6);
2924   emit_operand(dst, src);
2925 }
2926 
2927 void Assembler::movzbl(Register dst, Register src) { // movzxb
2928   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2929   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2930   emit_int8(0x0F);
2931   emit_int8((unsigned char)0xB6);
2932   emit_int8(0xC0 | encode);
2933 }
2934 
2935 void Assembler::movzwl(Register dst, Address src) { // movzxw
2936   InstructionMark im(this);
2937   prefix(src, dst);
2938   emit_int8(0x0F);
2939   emit_int8((unsigned char)0xB7);
2940   emit_operand(dst, src);
2941 }
2942 
2943 void Assembler::movzwl(Register dst, Register src) { // movzxw
2944   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2945   emit_int8(0x0F);
2946   emit_int8((unsigned char)0xB7);
2947   emit_int8(0xC0 | encode);
2948 }
2949 
2950 void Assembler::mull(Address src) {
2951   InstructionMark im(this);
2952   prefix(src);
2953   emit_int8((unsigned char)0xF7);
2954   emit_operand(rsp, src);
2955 }
2956 
2957 void Assembler::mull(Register src) {
2958   int encode = prefix_and_encode(src->encoding());
2959   emit_int8((unsigned char)0xF7);
2960   emit_int8((unsigned char)(0xE0 | encode));
2961 }
2962 
2963 void Assembler::mulsd(XMMRegister dst, Address src) {
2964   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2965   InstructionMark im(this);
2966   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2967   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2968   attributes.set_rex_vex_w_reverted();
2969   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2970   emit_int8(0x59);
2971   emit_operand(dst, src);
2972 }
2973 
2974 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2975   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2976   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2977   attributes.set_rex_vex_w_reverted();
2978   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2979   emit_int8(0x59);
2980   emit_int8((unsigned char)(0xC0 | encode));
2981 }
2982 
2983 void Assembler::mulss(XMMRegister dst, Address src) {
2984   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2985   InstructionMark im(this);
2986   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2987   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2988   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2989   emit_int8(0x59);
2990   emit_operand(dst, src);
2991 }
2992 
2993 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2994   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2995   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2996   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2997   emit_int8(0x59);
2998   emit_int8((unsigned char)(0xC0 | encode));
2999 }
3000 
3001 void Assembler::negl(Register dst) {
3002   int encode = prefix_and_encode(dst->encoding());
3003   emit_int8((unsigned char)0xF7);
3004   emit_int8((unsigned char)(0xD8 | encode));
3005 }
3006 
3007 void Assembler::nop(int i) {
3008 #ifdef ASSERT
3009   assert(i > 0, " ");
3010   // The fancy nops aren't currently recognized by debuggers making it a
3011   // pain to disassemble code while debugging. If asserts are on clearly
3012   // speed is not an issue so simply use the single byte traditional nop
3013   // to do alignment.
3014 
3015   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
3016   return;
3017 
3018 #endif // ASSERT
3019 
3020   if (UseAddressNop && VM_Version::is_intel()) {
3021     //
3022     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
3023     //  1: 0x90
3024     //  2: 0x66 0x90
3025     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3026     //  4: 0x0F 0x1F 0x40 0x00
3027     //  5: 0x0F 0x1F 0x44 0x00 0x00
3028     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3029     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3030     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3031     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3032     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3033     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3034 
3035     // The rest coding is Intel specific - don't use consecutive address nops
3036 
3037     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3038     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3039     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3040     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3041 
3042     while(i >= 15) {
3043       // For Intel don't generate consecutive addess nops (mix with regular nops)
3044       i -= 15;
3045       emit_int8(0x66);   // size prefix
3046       emit_int8(0x66);   // size prefix
3047       emit_int8(0x66);   // size prefix
3048       addr_nop_8();
3049       emit_int8(0x66);   // size prefix
3050       emit_int8(0x66);   // size prefix
3051       emit_int8(0x66);   // size prefix
3052       emit_int8((unsigned char)0x90);
3053                          // nop
3054     }
3055     switch (i) {
3056       case 14:
3057         emit_int8(0x66); // size prefix
3058       case 13:
3059         emit_int8(0x66); // size prefix
3060       case 12:
3061         addr_nop_8();
3062         emit_int8(0x66); // size prefix
3063         emit_int8(0x66); // size prefix
3064         emit_int8(0x66); // size prefix
3065         emit_int8((unsigned char)0x90);
3066                          // nop
3067         break;
3068       case 11:
3069         emit_int8(0x66); // size prefix
3070       case 10:
3071         emit_int8(0x66); // size prefix
3072       case 9:
3073         emit_int8(0x66); // size prefix
3074       case 8:
3075         addr_nop_8();
3076         break;
3077       case 7:
3078         addr_nop_7();
3079         break;
3080       case 6:
3081         emit_int8(0x66); // size prefix
3082       case 5:
3083         addr_nop_5();
3084         break;
3085       case 4:
3086         addr_nop_4();
3087         break;
3088       case 3:
3089         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3090         emit_int8(0x66); // size prefix
3091       case 2:
3092         emit_int8(0x66); // size prefix
3093       case 1:
3094         emit_int8((unsigned char)0x90);
3095                          // nop
3096         break;
3097       default:
3098         assert(i == 0, " ");
3099     }
3100     return;
3101   }
3102   if (UseAddressNop && VM_Version::is_amd()) {
3103     //
3104     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
3105     //  1: 0x90
3106     //  2: 0x66 0x90
3107     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3108     //  4: 0x0F 0x1F 0x40 0x00
3109     //  5: 0x0F 0x1F 0x44 0x00 0x00
3110     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3111     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3112     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3113     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3114     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3115     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3116 
3117     // The rest coding is AMD specific - use consecutive address nops
3118 
3119     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3120     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3121     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3122     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3123     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3124     //     Size prefixes (0x66) are added for larger sizes
3125 
3126     while(i >= 22) {
3127       i -= 11;
3128       emit_int8(0x66); // size prefix
3129       emit_int8(0x66); // size prefix
3130       emit_int8(0x66); // size prefix
3131       addr_nop_8();
3132     }
3133     // Generate first nop for size between 21-12
3134     switch (i) {
3135       case 21:
3136         i -= 1;
3137         emit_int8(0x66); // size prefix
3138       case 20:
3139       case 19:
3140         i -= 1;
3141         emit_int8(0x66); // size prefix
3142       case 18:
3143       case 17:
3144         i -= 1;
3145         emit_int8(0x66); // size prefix
3146       case 16:
3147       case 15:
3148         i -= 8;
3149         addr_nop_8();
3150         break;
3151       case 14:
3152       case 13:
3153         i -= 7;
3154         addr_nop_7();
3155         break;
3156       case 12:
3157         i -= 6;
3158         emit_int8(0x66); // size prefix
3159         addr_nop_5();
3160         break;
3161       default:
3162         assert(i < 12, " ");
3163     }
3164 
3165     // Generate second nop for size between 11-1
3166     switch (i) {
3167       case 11:
3168         emit_int8(0x66); // size prefix
3169       case 10:
3170         emit_int8(0x66); // size prefix
3171       case 9:
3172         emit_int8(0x66); // size prefix
3173       case 8:
3174         addr_nop_8();
3175         break;
3176       case 7:
3177         addr_nop_7();
3178         break;
3179       case 6:
3180         emit_int8(0x66); // size prefix
3181       case 5:
3182         addr_nop_5();
3183         break;
3184       case 4:
3185         addr_nop_4();
3186         break;
3187       case 3:
3188         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3189         emit_int8(0x66); // size prefix
3190       case 2:
3191         emit_int8(0x66); // size prefix
3192       case 1:
3193         emit_int8((unsigned char)0x90);
3194                          // nop
3195         break;
3196       default:
3197         assert(i == 0, " ");
3198     }
3199     return;
3200   }
3201 
3202   if (UseAddressNop && VM_Version::is_zx()) {
3203     //
3204     // Using multi-bytes nops "0x0F 0x1F [address]" for ZX
3205     //  1: 0x90
3206     //  2: 0x66 0x90
3207     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3208     //  4: 0x0F 0x1F 0x40 0x00
3209     //  5: 0x0F 0x1F 0x44 0x00 0x00
3210     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3211     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3212     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3213     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3214     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3215     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3216 
3217     // The rest coding is ZX specific - don't use consecutive address nops
3218 
3219     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3220     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3221     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3222     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3223 
3224     while (i >= 15) {
3225       // For ZX don't generate consecutive addess nops (mix with regular nops)
3226       i -= 15;
3227       emit_int8(0x66);   // size prefix
3228       emit_int8(0x66);   // size prefix
3229       emit_int8(0x66);   // size prefix
3230       addr_nop_8();
3231       emit_int8(0x66);   // size prefix
3232       emit_int8(0x66);   // size prefix
3233       emit_int8(0x66);   // size prefix
3234       emit_int8((unsigned char)0x90);
3235                          // nop
3236     }
3237     switch (i) {
3238       case 14:
3239         emit_int8(0x66); // size prefix
3240       case 13:
3241         emit_int8(0x66); // size prefix
3242       case 12:
3243         addr_nop_8();
3244         emit_int8(0x66); // size prefix
3245         emit_int8(0x66); // size prefix
3246         emit_int8(0x66); // size prefix
3247         emit_int8((unsigned char)0x90);
3248                          // nop
3249         break;
3250       case 11:
3251         emit_int8(0x66); // size prefix
3252       case 10:
3253         emit_int8(0x66); // size prefix
3254       case 9:
3255         emit_int8(0x66); // size prefix
3256       case 8:
3257         addr_nop_8();
3258         break;
3259       case 7:
3260         addr_nop_7();
3261         break;
3262       case 6:
3263         emit_int8(0x66); // size prefix
3264       case 5:
3265         addr_nop_5();
3266         break;
3267       case 4:
3268         addr_nop_4();
3269         break;
3270       case 3:
3271         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3272         emit_int8(0x66); // size prefix
3273       case 2:
3274         emit_int8(0x66); // size prefix
3275       case 1:
3276         emit_int8((unsigned char)0x90);
3277                          // nop
3278         break;
3279       default:
3280         assert(i == 0, " ");
3281     }
3282     return;
3283   }
3284 
3285   // Using nops with size prefixes "0x66 0x90".
3286   // From AMD Optimization Guide:
3287   //  1: 0x90
3288   //  2: 0x66 0x90
3289   //  3: 0x66 0x66 0x90
3290   //  4: 0x66 0x66 0x66 0x90
3291   //  5: 0x66 0x66 0x90 0x66 0x90
3292   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3293   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3294   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3295   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3296   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3297   //
3298   while(i > 12) {
3299     i -= 4;
3300     emit_int8(0x66); // size prefix
3301     emit_int8(0x66);
3302     emit_int8(0x66);
3303     emit_int8((unsigned char)0x90);
3304                      // nop
3305   }
3306   // 1 - 12 nops
3307   if(i > 8) {
3308     if(i > 9) {
3309       i -= 1;
3310       emit_int8(0x66);
3311     }
3312     i -= 3;
3313     emit_int8(0x66);
3314     emit_int8(0x66);
3315     emit_int8((unsigned char)0x90);
3316   }
3317   // 1 - 8 nops
3318   if(i > 4) {
3319     if(i > 6) {
3320       i -= 1;
3321       emit_int8(0x66);
3322     }
3323     i -= 3;
3324     emit_int8(0x66);
3325     emit_int8(0x66);
3326     emit_int8((unsigned char)0x90);
3327   }
3328   switch (i) {
3329     case 4:
3330       emit_int8(0x66);
3331     case 3:
3332       emit_int8(0x66);
3333     case 2:
3334       emit_int8(0x66);
3335     case 1:
3336       emit_int8((unsigned char)0x90);
3337       break;
3338     default:
3339       assert(i == 0, " ");
3340   }
3341 }
3342 
3343 void Assembler::notl(Register dst) {
3344   int encode = prefix_and_encode(dst->encoding());
3345   emit_int8((unsigned char)0xF7);
3346   emit_int8((unsigned char)(0xD0 | encode));
3347 }
3348 
3349 void Assembler::orl(Address dst, int32_t imm32) {
3350   InstructionMark im(this);
3351   prefix(dst);
3352   emit_arith_operand(0x81, rcx, dst, imm32);
3353 }
3354 
3355 void Assembler::orl(Register dst, int32_t imm32) {
3356   prefix(dst);
3357   emit_arith(0x81, 0xC8, dst, imm32);
3358 }
3359 
3360 void Assembler::orl(Register dst, Address src) {
3361   InstructionMark im(this);
3362   prefix(src, dst);
3363   emit_int8(0x0B);
3364   emit_operand(dst, src);
3365 }
3366 
3367 void Assembler::orl(Register dst, Register src) {
3368   (void) prefix_and_encode(dst->encoding(), src->encoding());
3369   emit_arith(0x0B, 0xC0, dst, src);
3370 }
3371 
3372 void Assembler::orl(Address dst, Register src) {
3373   InstructionMark im(this);
3374   prefix(dst, src);
3375   emit_int8(0x09);
3376   emit_operand(src, dst);
3377 }
3378 
3379 void Assembler::orb(Address dst, int imm8) {
3380   InstructionMark im(this);
3381   prefix(dst);
3382   emit_int8((unsigned char)0x80);
3383   emit_operand(rcx, dst, 1);
3384   emit_int8(imm8);
3385 }
3386 
3387 void Assembler::packuswb(XMMRegister dst, Address src) {
3388   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3389   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3390   InstructionMark im(this);
3391   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3392   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3393   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3394   emit_int8(0x67);
3395   emit_operand(dst, src);
3396 }
3397 
3398 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3399   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3400   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3401   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3402   emit_int8(0x67);
3403   emit_int8((unsigned char)(0xC0 | encode));
3404 }
3405 
3406 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3407   assert(UseAVX > 0, "some form of AVX must be enabled");
3408   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3409   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3410   emit_int8(0x67);
3411   emit_int8((unsigned char)(0xC0 | encode));
3412 }
3413 
3414 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3415   assert(VM_Version::supports_avx2(), "");
3416   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3417   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3418   emit_int8(0x00);
3419   emit_int8(0xC0 | encode);
3420   emit_int8(imm8);
3421 }
3422 
3423 void Assembler::vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8) {
3424   assert(VM_Version::supports_avx2(), "");
3425   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3426   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3427   emit_int8(0x46);
3428   emit_int8(0xC0 | encode);
3429   emit_int8(imm8);
3430 }
3431 
3432 void Assembler::vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8) {
3433   assert(VM_Version::supports_avx(), "");
3434   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3435   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3436   emit_int8(0x06);
3437   emit_int8(0xC0 | encode);
3438   emit_int8(imm8);
3439 }
3440 
3441 void Assembler::evpermi2q(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3442   assert(VM_Version::supports_evex(), "");
3443   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3444   attributes.set_is_evex_instruction();
3445   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3446   emit_int8(0x76);
3447   emit_int8((unsigned char)(0xC0 | encode));
3448 }
3449 
3450 
3451 void Assembler::pause() {
3452   emit_int8((unsigned char)0xF3);
3453   emit_int8((unsigned char)0x90);
3454 }
3455 
3456 void Assembler::ud2() {
3457   emit_int8(0x0F);
3458   emit_int8(0x0B);
3459 }
3460 
3461 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3462   assert(VM_Version::supports_sse4_2(), "");
3463   InstructionMark im(this);
3464   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3465   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3466   emit_int8(0x61);
3467   emit_operand(dst, src);
3468   emit_int8(imm8);
3469 }
3470 
3471 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3472   assert(VM_Version::supports_sse4_2(), "");
3473   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3474   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3475   emit_int8(0x61);
3476   emit_int8((unsigned char)(0xC0 | encode));
3477   emit_int8(imm8);
3478 }
3479 
3480 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3481 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3482   assert(VM_Version::supports_sse2(), "");
3483   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3484   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3485   emit_int8(0x74);
3486   emit_int8((unsigned char)(0xC0 | encode));
3487 }
3488 
3489 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3490 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3491   assert(VM_Version::supports_avx(), "");
3492   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3493   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3494   emit_int8(0x74);
3495   emit_int8((unsigned char)(0xC0 | encode));
3496 }
3497 
3498 // In this context, kdst is written the mask used to process the equal components
3499 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3500   assert(VM_Version::supports_avx512bw(), "");
3501   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3502   attributes.set_is_evex_instruction();
3503   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3504   emit_int8(0x74);
3505   emit_int8((unsigned char)(0xC0 | encode));
3506 }
3507 
3508 void Assembler::evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3509   assert(VM_Version::supports_avx512vlbw(), "");
3510   InstructionMark im(this);
3511   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3512   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3513   attributes.set_is_evex_instruction();
3514   int dst_enc = kdst->encoding();
3515   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3516   emit_int8(0x64);
3517   emit_operand(as_Register(dst_enc), src);
3518 }
3519 
3520 void Assembler::evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3521   assert(VM_Version::supports_avx512vlbw(), "");
3522   InstructionMark im(this);
3523   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3524   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3525   attributes.reset_is_clear_context();
3526   attributes.set_embedded_opmask_register_specifier(mask);
3527   attributes.set_is_evex_instruction();
3528   int dst_enc = kdst->encoding();
3529   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3530   emit_int8(0x64);
3531   emit_operand(as_Register(dst_enc), src);
3532 }
3533 
3534 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3535   assert(VM_Version::supports_avx512vlbw(), "");
3536   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3537   attributes.set_is_evex_instruction();
3538   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3539   emit_int8(0x3E);
3540   emit_int8((unsigned char)(0xC0 | encode));
3541   emit_int8(vcc);
3542 }
3543 
3544 void Assembler::evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3545   assert(VM_Version::supports_avx512vlbw(), "");
3546   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3547   attributes.reset_is_clear_context();
3548   attributes.set_embedded_opmask_register_specifier(mask);
3549   attributes.set_is_evex_instruction();
3550   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3551   emit_int8(0x3E);
3552   emit_int8((unsigned char)(0xC0 | encode));
3553   emit_int8(vcc);
3554 }
3555 
3556 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len) {
3557   assert(VM_Version::supports_avx512vlbw(), "");
3558   InstructionMark im(this);
3559   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3560   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3561   attributes.set_is_evex_instruction();
3562   int dst_enc = kdst->encoding();
3563   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3564   emit_int8(0x3E);
3565   emit_operand(as_Register(dst_enc), src);
3566   emit_int8(vcc);
3567 }
3568 
3569 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3570   assert(VM_Version::supports_avx512bw(), "");
3571   InstructionMark im(this);
3572   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3573   attributes.set_is_evex_instruction();
3574   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3575   int dst_enc = kdst->encoding();
3576   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3577   emit_int8(0x74);
3578   emit_operand(as_Register(dst_enc), src);
3579 }
3580 
3581 void Assembler::evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3582   assert(VM_Version::supports_avx512vlbw(), "");
3583   InstructionMark im(this);
3584   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_reg_mask */ false, /* uses_vl */ true);
3585   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3586   attributes.reset_is_clear_context();
3587   attributes.set_embedded_opmask_register_specifier(mask);
3588   attributes.set_is_evex_instruction();
3589   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3590   emit_int8(0x74);
3591   emit_operand(as_Register(kdst->encoding()), src);
3592 }
3593 
3594 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3595 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3596   assert(VM_Version::supports_sse2(), "");
3597   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3598   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3599   emit_int8(0x75);
3600   emit_int8((unsigned char)(0xC0 | encode));
3601 }
3602 
3603 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3604 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3605   assert(VM_Version::supports_avx(), "");
3606   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3607   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3608   emit_int8(0x75);
3609   emit_int8((unsigned char)(0xC0 | encode));
3610 }
3611 
3612 // In this context, kdst is written the mask used to process the equal components
3613 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3614   assert(VM_Version::supports_avx512bw(), "");
3615   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3616   attributes.set_is_evex_instruction();
3617   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3618   emit_int8(0x75);
3619   emit_int8((unsigned char)(0xC0 | encode));
3620 }
3621 
3622 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3623   assert(VM_Version::supports_avx512bw(), "");
3624   InstructionMark im(this);
3625   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3626   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3627   attributes.set_is_evex_instruction();
3628   int dst_enc = kdst->encoding();
3629   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3630   emit_int8(0x75);
3631   emit_operand(as_Register(dst_enc), src);
3632 }
3633 
3634 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3635 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3636   assert(VM_Version::supports_sse2(), "");
3637   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3638   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3639   emit_int8(0x76);
3640   emit_int8((unsigned char)(0xC0 | encode));
3641 }
3642 
3643 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3644 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3645   assert(VM_Version::supports_avx(), "");
3646   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3647   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3648   emit_int8(0x76);
3649   emit_int8((unsigned char)(0xC0 | encode));
3650 }
3651 
3652 // In this context, kdst is written the mask used to process the equal components
3653 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3654   assert(VM_Version::supports_evex(), "");
3655   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3656   attributes.set_is_evex_instruction();
3657   attributes.reset_is_clear_context();
3658   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3659   emit_int8(0x76);
3660   emit_int8((unsigned char)(0xC0 | encode));
3661 }
3662 
3663 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3664   assert(VM_Version::supports_evex(), "");
3665   InstructionMark im(this);
3666   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3667   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3668   attributes.reset_is_clear_context();
3669   attributes.set_is_evex_instruction();
3670   int dst_enc = kdst->encoding();
3671   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3672   emit_int8(0x76);
3673   emit_operand(as_Register(dst_enc), src);
3674 }
3675 
3676 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3677 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3678   assert(VM_Version::supports_sse4_1(), "");
3679   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3680   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3681   emit_int8(0x29);
3682   emit_int8((unsigned char)(0xC0 | encode));
3683 }
3684 
3685 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3686 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3687   assert(VM_Version::supports_avx(), "");
3688   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3689   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3690   emit_int8(0x29);
3691   emit_int8((unsigned char)(0xC0 | encode));
3692 }
3693 
3694 // In this context, kdst is written the mask used to process the equal components
3695 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3696   assert(VM_Version::supports_evex(), "");
3697   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3698   attributes.reset_is_clear_context();
3699   attributes.set_is_evex_instruction();
3700   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3701   emit_int8(0x29);
3702   emit_int8((unsigned char)(0xC0 | encode));
3703 }
3704 
3705 // In this context, kdst is written the mask used to process the equal components
3706 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3707   assert(VM_Version::supports_evex(), "");
3708   InstructionMark im(this);
3709   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3710   attributes.reset_is_clear_context();
3711   attributes.set_is_evex_instruction();
3712   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3713   int dst_enc = kdst->encoding();
3714   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3715   emit_int8(0x29);
3716   emit_operand(as_Register(dst_enc), src);
3717 }
3718 
3719 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3720   assert(VM_Version::supports_sse2(), "");
3721   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3722   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3723   emit_int8((unsigned char)0xD7);
3724   emit_int8((unsigned char)(0xC0 | encode));
3725 }
3726 
3727 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3728   assert(VM_Version::supports_avx2(), "");
3729   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3730   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3731   emit_int8((unsigned char)0xD7);
3732   emit_int8((unsigned char)(0xC0 | encode));
3733 }
3734 
3735 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3736   assert(VM_Version::supports_sse4_1(), "");
3737   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3738   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3739   emit_int8(0x16);
3740   emit_int8((unsigned char)(0xC0 | encode));
3741   emit_int8(imm8);
3742 }
3743 
3744 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3745   assert(VM_Version::supports_sse4_1(), "");
3746   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3747   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3748   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3749   emit_int8(0x16);
3750   emit_operand(src, dst);
3751   emit_int8(imm8);
3752 }
3753 
3754 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3755   assert(VM_Version::supports_sse4_1(), "");
3756   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3757   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3758   emit_int8(0x16);
3759   emit_int8((unsigned char)(0xC0 | encode));
3760   emit_int8(imm8);
3761 }
3762 
3763 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3764   assert(VM_Version::supports_sse4_1(), "");
3765   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3766   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3767   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3768   emit_int8(0x16);
3769   emit_operand(src, dst);
3770   emit_int8(imm8);
3771 }
3772 
3773 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3774   assert(VM_Version::supports_sse2(), "");
3775   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3776   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3777   emit_int8((unsigned char)0xC5);
3778   emit_int8((unsigned char)(0xC0 | encode));
3779   emit_int8(imm8);
3780 }
3781 
3782 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3783   assert(VM_Version::supports_sse4_1(), "");
3784   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3785   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3786   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3787   emit_int8((unsigned char)0x15);
3788   emit_operand(src, dst);
3789   emit_int8(imm8);
3790 }
3791 
3792 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3793   assert(VM_Version::supports_sse4_1(), "");
3794   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3795   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3796   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3797   emit_int8(0x14);
3798   emit_operand(src, dst);
3799   emit_int8(imm8);
3800 }
3801 
3802 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3803   assert(VM_Version::supports_sse4_1(), "");
3804   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3805   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3806   emit_int8(0x22);
3807   emit_int8((unsigned char)(0xC0 | encode));
3808   emit_int8(imm8);
3809 }
3810 
3811 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3812   assert(VM_Version::supports_sse4_1(), "");
3813   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3814   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3815   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3816   emit_int8(0x22);
3817   emit_operand(dst,src);
3818   emit_int8(imm8);
3819 }
3820 
3821 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3822   assert(VM_Version::supports_sse4_1(), "");
3823   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3824   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3825   emit_int8(0x22);
3826   emit_int8((unsigned char)(0xC0 | encode));
3827   emit_int8(imm8);
3828 }
3829 
3830 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3831   assert(VM_Version::supports_sse4_1(), "");
3832   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3833   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3834   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3835   emit_int8(0x22);
3836   emit_operand(dst, src);
3837   emit_int8(imm8);
3838 }
3839 
3840 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3841   assert(VM_Version::supports_sse2(), "");
3842   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3843   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3844   emit_int8((unsigned char)0xC4);
3845   emit_int8((unsigned char)(0xC0 | encode));
3846   emit_int8(imm8);
3847 }
3848 
3849 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3850   assert(VM_Version::supports_sse2(), "");
3851   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3852   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3853   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3854   emit_int8((unsigned char)0xC4);
3855   emit_operand(dst, src);
3856   emit_int8(imm8);
3857 }
3858 
3859 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3860   assert(VM_Version::supports_sse4_1(), "");
3861   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3862   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3863   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3864   emit_int8(0x20);
3865   emit_operand(dst, src);
3866   emit_int8(imm8);
3867 }
3868 
3869 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3870   assert(VM_Version::supports_sse4_1(), "");
3871   InstructionMark im(this);
3872   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3873   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3874   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3875   emit_int8(0x30);
3876   emit_operand(dst, src);
3877 }
3878 
3879 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3880   assert(VM_Version::supports_sse4_1(), "");
3881   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3882   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3883   emit_int8(0x30);
3884   emit_int8((unsigned char)(0xC0 | encode));
3885 }
3886 
3887 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3888   assert(VM_Version::supports_avx(), "");
3889   InstructionMark im(this);
3890   assert(dst != xnoreg, "sanity");
3891   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3892   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3893   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3894   emit_int8(0x30);
3895   emit_operand(dst, src);
3896 }
3897 
3898 void Assembler::vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) {
3899   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3900   vector_len == AVX_256bit? VM_Version::supports_avx2() :
3901   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
3902   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3903   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3904   emit_int8(0x30);
3905   emit_int8((unsigned char) (0xC0 | encode));
3906 }
3907 
3908 
3909 void Assembler::evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
3910   assert(VM_Version::supports_avx512vlbw(), "");
3911   assert(dst != xnoreg, "sanity");
3912   InstructionMark im(this);
3913   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3914   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3915   attributes.set_embedded_opmask_register_specifier(mask);
3916   attributes.set_is_evex_instruction();
3917   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3918   emit_int8(0x30);
3919   emit_operand(dst, src);
3920 }
3921 void Assembler::evpmovwb(Address dst, XMMRegister src, int vector_len) {
3922   assert(VM_Version::supports_avx512vlbw(), "");
3923   assert(src != xnoreg, "sanity");
3924   InstructionMark im(this);
3925   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3926   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3927   attributes.set_is_evex_instruction();
3928   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3929   emit_int8(0x30);
3930   emit_operand(src, dst);
3931 }
3932 
3933 void Assembler::evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len) {
3934   assert(VM_Version::supports_avx512vlbw(), "");
3935   assert(src != xnoreg, "sanity");
3936   InstructionMark im(this);
3937   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3938   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3939   attributes.reset_is_clear_context();
3940   attributes.set_embedded_opmask_register_specifier(mask);
3941   attributes.set_is_evex_instruction();
3942   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3943   emit_int8(0x30);
3944   emit_operand(src, dst);
3945 }
3946 
3947 void Assembler::evpmovdb(Address dst, XMMRegister src, int vector_len) {
3948   assert(VM_Version::supports_evex(), "");
3949   assert(src != xnoreg, "sanity");
3950   InstructionMark im(this);
3951   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3952   attributes.set_address_attributes(/* tuple_type */ EVEX_QVM, /* input_size_in_bits */ EVEX_NObit);
3953   attributes.set_is_evex_instruction();
3954   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3955   emit_int8(0x31);
3956   emit_operand(src, dst);
3957 }
3958 
3959 void Assembler::vpmovzxwd(XMMRegister dst, XMMRegister src, int vector_len) {
3960   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3961   vector_len == AVX_256bit? VM_Version::supports_avx2() :
3962   vector_len == AVX_512bit? VM_Version::supports_evex() : 0, " ");
3963   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3964   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3965   emit_int8(0x33);
3966   emit_int8((unsigned char)(0xC0 | encode));
3967 }
3968 
3969 // generic
3970 void Assembler::pop(Register dst) {
3971   int encode = prefix_and_encode(dst->encoding());
3972   emit_int8(0x58 | encode);
3973 }
3974 
3975 void Assembler::popcntl(Register dst, Address src) {
3976   assert(VM_Version::supports_popcnt(), "must support");
3977   InstructionMark im(this);
3978   emit_int8((unsigned char)0xF3);
3979   prefix(src, dst);
3980   emit_int8(0x0F);
3981   emit_int8((unsigned char)0xB8);
3982   emit_operand(dst, src);
3983 }
3984 
3985 void Assembler::popcntl(Register dst, Register src) {
3986   assert(VM_Version::supports_popcnt(), "must support");
3987   emit_int8((unsigned char)0xF3);
3988   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3989   emit_int8(0x0F);
3990   emit_int8((unsigned char)0xB8);
3991   emit_int8((unsigned char)(0xC0 | encode));
3992 }
3993 
3994 void Assembler::vpopcntd(XMMRegister dst, XMMRegister src, int vector_len) {
3995   assert(VM_Version::supports_vpopcntdq(), "must support vpopcntdq feature");
3996   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3997   attributes.set_is_evex_instruction();
3998   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3999   emit_int8(0x55);
4000   emit_int8((unsigned char)(0xC0 | encode));
4001 }
4002 
4003 void Assembler::popf() {
4004   emit_int8((unsigned char)0x9D);
4005 }
4006 
4007 #ifndef _LP64 // no 32bit push/pop on amd64
4008 void Assembler::popl(Address dst) {
4009   // NOTE: this will adjust stack by 8byte on 64bits
4010   InstructionMark im(this);
4011   prefix(dst);
4012   emit_int8((unsigned char)0x8F);
4013   emit_operand(rax, dst);
4014 }
4015 #endif
4016 
4017 void Assembler::prefetch_prefix(Address src) {
4018   prefix(src);
4019   emit_int8(0x0F);
4020 }
4021 
4022 void Assembler::prefetchnta(Address src) {
4023   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4024   InstructionMark im(this);
4025   prefetch_prefix(src);
4026   emit_int8(0x18);
4027   emit_operand(rax, src); // 0, src
4028 }
4029 
4030 void Assembler::prefetchr(Address src) {
4031   assert(VM_Version::supports_3dnow_prefetch(), "must support");
4032   InstructionMark im(this);
4033   prefetch_prefix(src);
4034   emit_int8(0x0D);
4035   emit_operand(rax, src); // 0, src
4036 }
4037 
4038 void Assembler::prefetcht0(Address src) {
4039   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4040   InstructionMark im(this);
4041   prefetch_prefix(src);
4042   emit_int8(0x18);
4043   emit_operand(rcx, src); // 1, src
4044 }
4045 
4046 void Assembler::prefetcht1(Address src) {
4047   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4048   InstructionMark im(this);
4049   prefetch_prefix(src);
4050   emit_int8(0x18);
4051   emit_operand(rdx, src); // 2, src
4052 }
4053 
4054 void Assembler::prefetcht2(Address src) {
4055   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
4056   InstructionMark im(this);
4057   prefetch_prefix(src);
4058   emit_int8(0x18);
4059   emit_operand(rbx, src); // 3, src
4060 }
4061 
4062 void Assembler::prefetchw(Address src) {
4063   assert(VM_Version::supports_3dnow_prefetch(), "must support");
4064   InstructionMark im(this);
4065   prefetch_prefix(src);
4066   emit_int8(0x0D);
4067   emit_operand(rcx, src); // 1, src
4068 }
4069 
4070 void Assembler::prefix(Prefix p) {
4071   emit_int8(p);
4072 }
4073 
4074 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
4075   assert(VM_Version::supports_ssse3(), "");
4076   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4077   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4078   emit_int8(0x00);
4079   emit_int8((unsigned char)(0xC0 | encode));
4080 }
4081 
4082 void Assembler::vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4083   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4084          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4085          0, "");
4086   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4087   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4088   emit_int8(0x00);
4089   emit_int8((unsigned char)(0xC0 | encode));
4090 }
4091 
4092 void Assembler::pshufb(XMMRegister dst, Address src) {
4093   assert(VM_Version::supports_ssse3(), "");
4094   InstructionMark im(this);
4095   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4096   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4097   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4098   emit_int8(0x00);
4099   emit_operand(dst, src);
4100 }
4101 
4102 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
4103   assert(isByte(mode), "invalid value");
4104   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4105   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
4106   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4107   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4108   emit_int8(0x70);
4109   emit_int8((unsigned char)(0xC0 | encode));
4110   emit_int8(mode & 0xFF);
4111 }
4112 
4113 void Assembler::vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len) {
4114   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4115          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4116          0, "");
4117   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4118   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4119   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4120   emit_int8(0x70);
4121   emit_int8((unsigned char)(0xC0 | encode));
4122   emit_int8(mode & 0xFF);
4123 }
4124 
4125 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
4126   assert(isByte(mode), "invalid value");
4127   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4128   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4129   InstructionMark im(this);
4130   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4131   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4132   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4133   emit_int8(0x70);
4134   emit_operand(dst, src);
4135   emit_int8(mode & 0xFF);
4136 }
4137 
4138 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4139   assert(isByte(mode), "invalid value");
4140   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4141   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4142   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4143   emit_int8(0x70);
4144   emit_int8((unsigned char)(0xC0 | encode));
4145   emit_int8(mode & 0xFF);
4146 }
4147 
4148 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
4149   assert(isByte(mode), "invalid value");
4150   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4151   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4152   InstructionMark im(this);
4153   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4154   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4155   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4156   emit_int8(0x70);
4157   emit_operand(dst, src);
4158   emit_int8(mode & 0xFF);
4159 }
4160 void Assembler::evshufi64x2(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4161   assert(VM_Version::supports_evex(), "requires EVEX support");
4162   assert(vector_len == Assembler::AVX_256bit || vector_len == Assembler::AVX_512bit, "");
4163   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4164   attributes.set_is_evex_instruction();
4165   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4166   emit_int8(0x43);
4167   emit_int8((unsigned char)(0xC0 | encode));
4168   emit_int8(imm8 & 0xFF);
4169 }
4170 
4171 void Assembler::psrldq(XMMRegister dst, int shift) {
4172   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4173   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4174   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4175   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4176   emit_int8(0x73);
4177   emit_int8((unsigned char)(0xC0 | encode));
4178   emit_int8(shift);
4179 }
4180 
4181 void Assembler::vpsrldq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4182   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4183          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4184          vector_len == AVX_512bit ? VM_Version::supports_avx512bw() : 0, "");
4185   InstructionAttr attributes(vector_len, /*vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4186   int encode = vex_prefix_and_encode(xmm3->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4187   emit_int8(0x73);
4188   emit_int8((unsigned char)(0xC0 | encode));
4189   emit_int8(shift & 0xFF);
4190 }
4191 
4192 void Assembler::pslldq(XMMRegister dst, int shift) {
4193   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4194   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4195   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4196   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
4197   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4198   emit_int8(0x73);
4199   emit_int8((unsigned char)(0xC0 | encode));
4200   emit_int8(shift);
4201 }
4202 
4203 void Assembler::vpslldq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4204   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4205          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4206          vector_len == AVX_512bit ? VM_Version::supports_avx512bw() : 0, "");
4207   InstructionAttr attributes(vector_len, /*vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4208   int encode = vex_prefix_and_encode(xmm7->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4209   emit_int8(0x73);
4210   emit_int8((unsigned char)(0xC0 | encode));
4211   emit_int8(shift & 0xFF);
4212 }
4213 
4214 void Assembler::ptest(XMMRegister dst, Address src) {
4215   assert(VM_Version::supports_sse4_1(), "");
4216   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4217   InstructionMark im(this);
4218   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4219   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4220   emit_int8(0x17);
4221   emit_operand(dst, src);
4222 }
4223 
4224 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
4225   assert(VM_Version::supports_sse4_1() || VM_Version::supports_avx(), "");
4226   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4227   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4228   emit_int8(0x17);
4229   emit_int8((unsigned char)(0xC0 | encode));
4230 }
4231 
4232 void Assembler::vptest(XMMRegister dst, Address src) {
4233   assert(VM_Version::supports_avx(), "");
4234   InstructionMark im(this);
4235   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4236   assert(dst != xnoreg, "sanity");
4237   // swap src<->dst for encoding
4238   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4239   emit_int8(0x17);
4240   emit_operand(dst, src);
4241 }
4242 
4243 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
4244   assert(VM_Version::supports_avx(), "");
4245   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4246   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4247   emit_int8(0x17);
4248   emit_int8((unsigned char)(0xC0 | encode));
4249 }
4250 
4251 void Assembler::punpcklbw(XMMRegister dst, Address src) {
4252   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4253   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4254   InstructionMark im(this);
4255   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ true, /* uses_vl */ true);
4256   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4257   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4258   emit_int8(0x60);
4259   emit_operand(dst, src);
4260 }
4261 
4262 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4263   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4264   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ true, /* uses_vl */ true);
4265   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4266   emit_int8(0x60);
4267   emit_int8((unsigned char)(0xC0 | encode));
4268 }
4269 
4270 void Assembler::punpckldq(XMMRegister dst, Address src) {
4271   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4272   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4273   InstructionMark im(this);
4274   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4275   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4276   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4277   emit_int8(0x62);
4278   emit_operand(dst, src);
4279 }
4280 
4281 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
4282   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4283   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4284   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4285   emit_int8(0x62);
4286   emit_int8((unsigned char)(0xC0 | encode));
4287 }
4288 
4289 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
4290   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4291   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4292   attributes.set_rex_vex_w_reverted();
4293   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4294   emit_int8(0x6C);
4295   emit_int8((unsigned char)(0xC0 | encode));
4296 }
4297 
4298 void Assembler::push(int32_t imm32) {
4299   // in 64bits we push 64bits onto the stack but only
4300   // take a 32bit immediate
4301   emit_int8(0x68);
4302   emit_int32(imm32);
4303 }
4304 
4305 void Assembler::push(Register src) {
4306   int encode = prefix_and_encode(src->encoding());
4307 
4308   emit_int8(0x50 | encode);
4309 }
4310 
4311 void Assembler::pushf() {
4312   emit_int8((unsigned char)0x9C);
4313 }
4314 
4315 #ifndef _LP64 // no 32bit push/pop on amd64
4316 void Assembler::pushl(Address src) {
4317   // Note this will push 64bit on 64bit
4318   InstructionMark im(this);
4319   prefix(src);
4320   emit_int8((unsigned char)0xFF);
4321   emit_operand(rsi, src);
4322 }
4323 #endif
4324 
4325 void Assembler::rcll(Register dst, int imm8) {
4326   assert(isShiftCount(imm8), "illegal shift count");
4327   int encode = prefix_and_encode(dst->encoding());
4328   if (imm8 == 1) {
4329     emit_int8((unsigned char)0xD1);
4330     emit_int8((unsigned char)(0xD0 | encode));
4331   } else {
4332     emit_int8((unsigned char)0xC1);
4333     emit_int8((unsigned char)0xD0 | encode);
4334     emit_int8(imm8);
4335   }
4336 }
4337 
4338 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
4339   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4340   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4341   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4342   emit_int8(0x53);
4343   emit_int8((unsigned char)(0xC0 | encode));
4344 }
4345 
4346 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
4347   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4348   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4349   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4350   emit_int8(0x53);
4351   emit_int8((unsigned char)(0xC0 | encode));
4352 }
4353 
4354 void Assembler::rdtsc() {
4355   emit_int8((unsigned char)0x0F);
4356   emit_int8((unsigned char)0x31);
4357 }
4358 
4359 // copies data from [esi] to [edi] using rcx pointer sized words
4360 // generic
4361 void Assembler::rep_mov() {
4362   emit_int8((unsigned char)0xF3);
4363   // MOVSQ
4364   LP64_ONLY(prefix(REX_W));
4365   emit_int8((unsigned char)0xA5);
4366 }
4367 
4368 // sets rcx bytes with rax, value at [edi]
4369 void Assembler::rep_stosb() {
4370   emit_int8((unsigned char)0xF3); // REP
4371   LP64_ONLY(prefix(REX_W));
4372   emit_int8((unsigned char)0xAA); // STOSB
4373 }
4374 
4375 // sets rcx pointer sized words with rax, value at [edi]
4376 // generic
4377 void Assembler::rep_stos() {
4378   emit_int8((unsigned char)0xF3); // REP
4379   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
4380   emit_int8((unsigned char)0xAB);
4381 }
4382 
4383 // scans rcx pointer sized words at [edi] for occurance of rax,
4384 // generic
4385 void Assembler::repne_scan() { // repne_scan
4386   emit_int8((unsigned char)0xF2);
4387   // SCASQ
4388   LP64_ONLY(prefix(REX_W));
4389   emit_int8((unsigned char)0xAF);
4390 }
4391 
4392 #ifdef _LP64
4393 // scans rcx 4 byte words at [edi] for occurance of rax,
4394 // generic
4395 void Assembler::repne_scanl() { // repne_scan
4396   emit_int8((unsigned char)0xF2);
4397   // SCASL
4398   emit_int8((unsigned char)0xAF);
4399 }
4400 #endif
4401 
4402 void Assembler::ret(int imm16) {
4403   if (imm16 == 0) {
4404     emit_int8((unsigned char)0xC3);
4405   } else {
4406     emit_int8((unsigned char)0xC2);
4407     emit_int16(imm16);
4408   }
4409 }
4410 
4411 void Assembler::sahf() {
4412 #ifdef _LP64
4413   // Not supported in 64bit mode
4414   ShouldNotReachHere();
4415 #endif
4416   emit_int8((unsigned char)0x9E);
4417 }
4418 
4419 void Assembler::sarl(Register dst, int imm8) {
4420   int encode = prefix_and_encode(dst->encoding());
4421   assert(isShiftCount(imm8), "illegal shift count");
4422   if (imm8 == 1) {
4423     emit_int8((unsigned char)0xD1);
4424     emit_int8((unsigned char)(0xF8 | encode));
4425   } else {
4426     emit_int8((unsigned char)0xC1);
4427     emit_int8((unsigned char)(0xF8 | encode));
4428     emit_int8(imm8);
4429   }
4430 }
4431 
4432 void Assembler::sarl(Register dst) {
4433   int encode = prefix_and_encode(dst->encoding());
4434   emit_int8((unsigned char)0xD3);
4435   emit_int8((unsigned char)(0xF8 | encode));
4436 }
4437 
4438 void Assembler::sbbl(Address dst, int32_t imm32) {
4439   InstructionMark im(this);
4440   prefix(dst);
4441   emit_arith_operand(0x81, rbx, dst, imm32);
4442 }
4443 
4444 void Assembler::sbbl(Register dst, int32_t imm32) {
4445   prefix(dst);
4446   emit_arith(0x81, 0xD8, dst, imm32);
4447 }
4448 
4449 
4450 void Assembler::sbbl(Register dst, Address src) {
4451   InstructionMark im(this);
4452   prefix(src, dst);
4453   emit_int8(0x1B);
4454   emit_operand(dst, src);
4455 }
4456 
4457 void Assembler::sbbl(Register dst, Register src) {
4458   (void) prefix_and_encode(dst->encoding(), src->encoding());
4459   emit_arith(0x1B, 0xC0, dst, src);
4460 }
4461 
4462 void Assembler::setb(Condition cc, Register dst) {
4463   assert(0 <= cc && cc < 16, "illegal cc");
4464   int encode = prefix_and_encode(dst->encoding(), true);
4465   emit_int8(0x0F);
4466   emit_int8((unsigned char)0x90 | cc);
4467   emit_int8((unsigned char)(0xC0 | encode));
4468 }
4469 
4470 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
4471   assert(VM_Version::supports_ssse3(), "");
4472   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4473   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4474   emit_int8((unsigned char)0x0F);
4475   emit_int8((unsigned char)(0xC0 | encode));
4476   emit_int8(imm8);
4477 }
4478 
4479 void Assembler::vpalignr(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4480   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4481          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4482          0, "");
4483   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4484   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4485   emit_int8((unsigned char)0x0F);
4486   emit_int8((unsigned char)(0xC0 | encode));
4487   emit_int8(imm8);
4488 }
4489 
4490 void Assembler::evalignq(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
4491   assert(VM_Version::supports_evex(), "");
4492   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4493   attributes.set_is_evex_instruction();
4494   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4495   emit_int8(0x3);
4496   emit_int8((unsigned char)(0xC0 | encode));
4497   emit_int8(imm8);
4498 }
4499 
4500 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
4501   assert(VM_Version::supports_sse4_1(), "");
4502   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4503   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4504   emit_int8((unsigned char)0x0E);
4505   emit_int8((unsigned char)(0xC0 | encode));
4506   emit_int8(imm8);
4507 }
4508 
4509 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
4510   assert(VM_Version::supports_sha(), "");
4511   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_3A, /* rex_w */ false);
4512   emit_int8((unsigned char)0xCC);
4513   emit_int8((unsigned char)(0xC0 | encode));
4514   emit_int8((unsigned char)imm8);
4515 }
4516 
4517 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
4518   assert(VM_Version::supports_sha(), "");
4519   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4520   emit_int8((unsigned char)0xC8);
4521   emit_int8((unsigned char)(0xC0 | encode));
4522 }
4523 
4524 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
4525   assert(VM_Version::supports_sha(), "");
4526   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4527   emit_int8((unsigned char)0xC9);
4528   emit_int8((unsigned char)(0xC0 | encode));
4529 }
4530 
4531 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4532   assert(VM_Version::supports_sha(), "");
4533   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4534   emit_int8((unsigned char)0xCA);
4535   emit_int8((unsigned char)(0xC0 | encode));
4536 }
4537 
4538 // xmm0 is implicit additional source to this instruction.
4539 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4540   assert(VM_Version::supports_sha(), "");
4541   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4542   emit_int8((unsigned char)0xCB);
4543   emit_int8((unsigned char)(0xC0 | encode));
4544 }
4545 
4546 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4547   assert(VM_Version::supports_sha(), "");
4548   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4549   emit_int8((unsigned char)0xCC);
4550   emit_int8((unsigned char)(0xC0 | encode));
4551 }
4552 
4553 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4554   assert(VM_Version::supports_sha(), "");
4555   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4556   emit_int8((unsigned char)0xCD);
4557   emit_int8((unsigned char)(0xC0 | encode));
4558 }
4559 
4560 
4561 void Assembler::shll(Register dst, int imm8) {
4562   assert(isShiftCount(imm8), "illegal shift count");
4563   int encode = prefix_and_encode(dst->encoding());
4564   if (imm8 == 1 ) {
4565     emit_int8((unsigned char)0xD1);
4566     emit_int8((unsigned char)(0xE0 | encode));
4567   } else {
4568     emit_int8((unsigned char)0xC1);
4569     emit_int8((unsigned char)(0xE0 | encode));
4570     emit_int8(imm8);
4571   }
4572 }
4573 
4574 void Assembler::shll(Register dst) {
4575   int encode = prefix_and_encode(dst->encoding());
4576   emit_int8((unsigned char)0xD3);
4577   emit_int8((unsigned char)(0xE0 | encode));
4578 }
4579 
4580 void Assembler::shrl(Register dst, int imm8) {
4581   assert(isShiftCount(imm8), "illegal shift count");
4582   int encode = prefix_and_encode(dst->encoding());
4583   emit_int8((unsigned char)0xC1);
4584   emit_int8((unsigned char)(0xE8 | encode));
4585   emit_int8(imm8);
4586 }
4587 
4588 void Assembler::shrl(Register dst) {
4589   int encode = prefix_and_encode(dst->encoding());
4590   emit_int8((unsigned char)0xD3);
4591   emit_int8((unsigned char)(0xE8 | encode));
4592 }
4593 
4594 // copies a single word from [esi] to [edi]
4595 void Assembler::smovl() {
4596   emit_int8((unsigned char)0xA5);
4597 }
4598 
4599 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4600   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4601   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4602   attributes.set_rex_vex_w_reverted();
4603   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4604   emit_int8(0x51);
4605   emit_int8((unsigned char)(0xC0 | encode));
4606 }
4607 
4608 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4609   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4610   InstructionMark im(this);
4611   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4612   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4613   attributes.set_rex_vex_w_reverted();
4614   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4615   emit_int8(0x51);
4616   emit_operand(dst, src);
4617 }
4618 
4619 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4620   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4621   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4622   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4623   emit_int8(0x51);
4624   emit_int8((unsigned char)(0xC0 | encode));
4625 }
4626 
4627 void Assembler::std() {
4628   emit_int8((unsigned char)0xFD);
4629 }
4630 
4631 void Assembler::sqrtss(XMMRegister dst, Address src) {
4632   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4633   InstructionMark im(this);
4634   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4635   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4636   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4637   emit_int8(0x51);
4638   emit_operand(dst, src);
4639 }
4640 
4641 void Assembler::stmxcsr( Address dst) {
4642   if (UseAVX > 0 ) {
4643     assert(VM_Version::supports_avx(), "");
4644     InstructionMark im(this);
4645     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4646     vex_prefix(dst, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4647     emit_int8((unsigned char)0xAE);
4648     emit_operand(as_Register(3), dst);
4649   } else {
4650     NOT_LP64(assert(VM_Version::supports_sse(), ""));
4651     InstructionMark im(this);
4652     prefix(dst);
4653     emit_int8(0x0F);
4654     emit_int8((unsigned char)0xAE);
4655     emit_operand(as_Register(3), dst);
4656   }
4657 }
4658 
4659 void Assembler::subl(Address dst, int32_t imm32) {
4660   InstructionMark im(this);
4661   prefix(dst);
4662   emit_arith_operand(0x81, rbp, dst, imm32);
4663 }
4664 
4665 void Assembler::subl(Address dst, Register src) {
4666   InstructionMark im(this);
4667   prefix(dst, src);
4668   emit_int8(0x29);
4669   emit_operand(src, dst);
4670 }
4671 
4672 void Assembler::subl(Register dst, int32_t imm32) {
4673   prefix(dst);
4674   emit_arith(0x81, 0xE8, dst, imm32);
4675 }
4676 
4677 // Force generation of a 4 byte immediate value even if it fits into 8bit
4678 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4679   prefix(dst);
4680   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4681 }
4682 
4683 void Assembler::subl(Register dst, Address src) {
4684   InstructionMark im(this);
4685   prefix(src, dst);
4686   emit_int8(0x2B);
4687   emit_operand(dst, src);
4688 }
4689 
4690 void Assembler::subl(Register dst, Register src) {
4691   (void) prefix_and_encode(dst->encoding(), src->encoding());
4692   emit_arith(0x2B, 0xC0, dst, src);
4693 }
4694 
4695 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4696   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4697   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4698   attributes.set_rex_vex_w_reverted();
4699   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4700   emit_int8(0x5C);
4701   emit_int8((unsigned char)(0xC0 | encode));
4702 }
4703 
4704 void Assembler::subsd(XMMRegister dst, Address src) {
4705   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4706   InstructionMark im(this);
4707   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4708   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4709   attributes.set_rex_vex_w_reverted();
4710   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4711   emit_int8(0x5C);
4712   emit_operand(dst, src);
4713 }
4714 
4715 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4716   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4717   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true , /* uses_vl */ false);
4718   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4719   emit_int8(0x5C);
4720   emit_int8((unsigned char)(0xC0 | encode));
4721 }
4722 
4723 void Assembler::subss(XMMRegister dst, Address src) {
4724   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4725   InstructionMark im(this);
4726   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4727   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4728   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4729   emit_int8(0x5C);
4730   emit_operand(dst, src);
4731 }
4732 
4733 void Assembler::testb(Register dst, int imm8) {
4734   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4735   (void) prefix_and_encode(dst->encoding(), true);
4736   emit_arith_b(0xF6, 0xC0, dst, imm8);
4737 }
4738 
4739 void Assembler::testb(Address dst, int imm8) {
4740   InstructionMark im(this);
4741   prefix(dst);
4742   emit_int8((unsigned char)0xF6);
4743   emit_operand(rax, dst, 1);
4744   emit_int8(imm8);
4745 }
4746 
4747 void Assembler::testl(Register dst, int32_t imm32) {
4748   // not using emit_arith because test
4749   // doesn't support sign-extension of
4750   // 8bit operands
4751   int encode = dst->encoding();
4752   if (encode == 0) {
4753     emit_int8((unsigned char)0xA9);
4754   } else {
4755     encode = prefix_and_encode(encode);
4756     emit_int8((unsigned char)0xF7);
4757     emit_int8((unsigned char)(0xC0 | encode));
4758   }
4759   emit_int32(imm32);
4760 }
4761 
4762 void Assembler::testl(Register dst, Register src) {
4763   (void) prefix_and_encode(dst->encoding(), src->encoding());
4764   emit_arith(0x85, 0xC0, dst, src);
4765 }
4766 
4767 void Assembler::testl(Register dst, Address src) {
4768   InstructionMark im(this);
4769   prefix(src, dst);
4770   emit_int8((unsigned char)0x85);
4771   emit_operand(dst, src);
4772 }
4773 
4774 void Assembler::tzcntl(Register dst, Register src) {
4775   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4776   emit_int8((unsigned char)0xF3);
4777   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4778   emit_int8(0x0F);
4779   emit_int8((unsigned char)0xBC);
4780   emit_int8((unsigned char)0xC0 | encode);
4781 }
4782 
4783 void Assembler::tzcntq(Register dst, Register src) {
4784   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4785   emit_int8((unsigned char)0xF3);
4786   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4787   emit_int8(0x0F);
4788   emit_int8((unsigned char)0xBC);
4789   emit_int8((unsigned char)(0xC0 | encode));
4790 }
4791 
4792 void Assembler::ucomisd(XMMRegister dst, Address src) {
4793   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4794   InstructionMark im(this);
4795   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4796   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4797   attributes.set_rex_vex_w_reverted();
4798   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4799   emit_int8(0x2E);
4800   emit_operand(dst, src);
4801 }
4802 
4803 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4804   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4805   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4806   attributes.set_rex_vex_w_reverted();
4807   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4808   emit_int8(0x2E);
4809   emit_int8((unsigned char)(0xC0 | encode));
4810 }
4811 
4812 void Assembler::ucomiss(XMMRegister dst, Address src) {
4813   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4814   InstructionMark im(this);
4815   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4816   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4817   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4818   emit_int8(0x2E);
4819   emit_operand(dst, src);
4820 }
4821 
4822 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4823   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4824   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4825   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4826   emit_int8(0x2E);
4827   emit_int8((unsigned char)(0xC0 | encode));
4828 }
4829 
4830 void Assembler::xabort(int8_t imm8) {
4831   emit_int8((unsigned char)0xC6);
4832   emit_int8((unsigned char)0xF8);
4833   emit_int8((unsigned char)(imm8 & 0xFF));
4834 }
4835 
4836 void Assembler::xaddb(Address dst, Register src) {
4837   InstructionMark im(this);
4838   prefix(dst, src, true);
4839   emit_int8(0x0F);
4840   emit_int8((unsigned char)0xC0);
4841   emit_operand(src, dst);
4842 }
4843 
4844 void Assembler::xaddw(Address dst, Register src) {
4845   InstructionMark im(this);
4846   emit_int8(0x66);
4847   prefix(dst, src);
4848   emit_int8(0x0F);
4849   emit_int8((unsigned char)0xC1);
4850   emit_operand(src, dst);
4851 }
4852 
4853 void Assembler::xaddl(Address dst, Register src) {
4854   InstructionMark im(this);
4855   prefix(dst, src);
4856   emit_int8(0x0F);
4857   emit_int8((unsigned char)0xC1);
4858   emit_operand(src, dst);
4859 }
4860 
4861 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4862   InstructionMark im(this);
4863   relocate(rtype);
4864   if (abort.is_bound()) {
4865     address entry = target(abort);
4866     assert(entry != NULL, "abort entry NULL");
4867     intptr_t offset = entry - pc();
4868     emit_int8((unsigned char)0xC7);
4869     emit_int8((unsigned char)0xF8);
4870     emit_int32(offset - 6); // 2 opcode + 4 address
4871   } else {
4872     abort.add_patch_at(code(), locator());
4873     emit_int8((unsigned char)0xC7);
4874     emit_int8((unsigned char)0xF8);
4875     emit_int32(0);
4876   }
4877 }
4878 
4879 void Assembler::xchgb(Register dst, Address src) { // xchg
4880   InstructionMark im(this);
4881   prefix(src, dst, true);
4882   emit_int8((unsigned char)0x86);
4883   emit_operand(dst, src);
4884 }
4885 
4886 void Assembler::xchgw(Register dst, Address src) { // xchg
4887   InstructionMark im(this);
4888   emit_int8(0x66);
4889   prefix(src, dst);
4890   emit_int8((unsigned char)0x87);
4891   emit_operand(dst, src);
4892 }
4893 
4894 void Assembler::xchgl(Register dst, Address src) { // xchg
4895   InstructionMark im(this);
4896   prefix(src, dst);
4897   emit_int8((unsigned char)0x87);
4898   emit_operand(dst, src);
4899 }
4900 
4901 void Assembler::xchgl(Register dst, Register src) {
4902   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4903   emit_int8((unsigned char)0x87);
4904   emit_int8((unsigned char)(0xC0 | encode));
4905 }
4906 
4907 void Assembler::xend() {
4908   emit_int8((unsigned char)0x0F);
4909   emit_int8((unsigned char)0x01);
4910   emit_int8((unsigned char)0xD5);
4911 }
4912 
4913 void Assembler::xgetbv() {
4914   emit_int8(0x0F);
4915   emit_int8(0x01);
4916   emit_int8((unsigned char)0xD0);
4917 }
4918 
4919 void Assembler::xorl(Register dst, int32_t imm32) {
4920   prefix(dst);
4921   emit_arith(0x81, 0xF0, dst, imm32);
4922 }
4923 
4924 void Assembler::xorl(Register dst, Address src) {
4925   InstructionMark im(this);
4926   prefix(src, dst);
4927   emit_int8(0x33);
4928   emit_operand(dst, src);
4929 }
4930 
4931 void Assembler::xorl(Register dst, Register src) {
4932   (void) prefix_and_encode(dst->encoding(), src->encoding());
4933   emit_arith(0x33, 0xC0, dst, src);
4934 }
4935 
4936 void Assembler::xorb(Register dst, Address src) {
4937   InstructionMark im(this);
4938   prefix(src, dst);
4939   emit_int8(0x32);
4940   emit_operand(dst, src);
4941 }
4942 
4943 // AVX 3-operands scalar float-point arithmetic instructions
4944 
4945 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4946   assert(VM_Version::supports_avx(), "");
4947   InstructionMark im(this);
4948   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4949   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4950   attributes.set_rex_vex_w_reverted();
4951   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4952   emit_int8(0x58);
4953   emit_operand(dst, src);
4954 }
4955 
4956 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4957   assert(VM_Version::supports_avx(), "");
4958   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4959   attributes.set_rex_vex_w_reverted();
4960   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4961   emit_int8(0x58);
4962   emit_int8((unsigned char)(0xC0 | encode));
4963 }
4964 
4965 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4966   assert(VM_Version::supports_avx(), "");
4967   InstructionMark im(this);
4968   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4969   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4970   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4971   emit_int8(0x58);
4972   emit_operand(dst, src);
4973 }
4974 
4975 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4976   assert(VM_Version::supports_avx(), "");
4977   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4978   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4979   emit_int8(0x58);
4980   emit_int8((unsigned char)(0xC0 | encode));
4981 }
4982 
4983 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4984   assert(VM_Version::supports_avx(), "");
4985   InstructionMark im(this);
4986   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4987   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4988   attributes.set_rex_vex_w_reverted();
4989   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4990   emit_int8(0x5E);
4991   emit_operand(dst, src);
4992 }
4993 
4994 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4995   assert(VM_Version::supports_avx(), "");
4996   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4997   attributes.set_rex_vex_w_reverted();
4998   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4999   emit_int8(0x5E);
5000   emit_int8((unsigned char)(0xC0 | encode));
5001 }
5002 
5003 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
5004   assert(VM_Version::supports_avx(), "");
5005   InstructionMark im(this);
5006   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5007   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5008   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5009   emit_int8(0x5E);
5010   emit_operand(dst, src);
5011 }
5012 
5013 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5014   assert(VM_Version::supports_avx(), "");
5015   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5016   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5017   emit_int8(0x5E);
5018   emit_int8((unsigned char)(0xC0 | encode));
5019 }
5020 
5021 void Assembler::vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
5022   assert(VM_Version::supports_fma(), "");
5023   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5024   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5025   emit_int8((unsigned char)0xB9);
5026   emit_int8((unsigned char)(0xC0 | encode));
5027 }
5028 
5029 void Assembler::vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
5030   assert(VM_Version::supports_fma(), "");
5031   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5032   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5033   emit_int8((unsigned char)0xB9);
5034   emit_int8((unsigned char)(0xC0 | encode));
5035 }
5036 
5037 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
5038   assert(VM_Version::supports_avx(), "");
5039   InstructionMark im(this);
5040   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5041   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5042   attributes.set_rex_vex_w_reverted();
5043   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5044   emit_int8(0x59);
5045   emit_operand(dst, src);
5046 }
5047 
5048 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5049   assert(VM_Version::supports_avx(), "");
5050   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5051   attributes.set_rex_vex_w_reverted();
5052   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5053   emit_int8(0x59);
5054   emit_int8((unsigned char)(0xC0 | encode));
5055 }
5056 
5057 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
5058   assert(VM_Version::supports_avx(), "");
5059   InstructionMark im(this);
5060   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5061   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5062   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5063   emit_int8(0x59);
5064   emit_operand(dst, src);
5065 }
5066 
5067 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5068   assert(VM_Version::supports_avx(), "");
5069   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5070   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5071   emit_int8(0x59);
5072   emit_int8((unsigned char)(0xC0 | encode));
5073 }
5074 
5075 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
5076   assert(VM_Version::supports_avx(), "");
5077   InstructionMark im(this);
5078   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5079   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
5080   attributes.set_rex_vex_w_reverted();
5081   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5082   emit_int8(0x5C);
5083   emit_operand(dst, src);
5084 }
5085 
5086 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5087   assert(VM_Version::supports_avx(), "");
5088   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5089   attributes.set_rex_vex_w_reverted();
5090   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
5091   emit_int8(0x5C);
5092   emit_int8((unsigned char)(0xC0 | encode));
5093 }
5094 
5095 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
5096   assert(VM_Version::supports_avx(), "");
5097   InstructionMark im(this);
5098   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5099   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
5100   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5101   emit_int8(0x5C);
5102   emit_operand(dst, src);
5103 }
5104 
5105 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
5106   assert(VM_Version::supports_avx(), "");
5107   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
5108   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
5109   emit_int8(0x5C);
5110   emit_int8((unsigned char)(0xC0 | encode));
5111 }
5112 
5113 //====================VECTOR ARITHMETIC=====================================
5114 
5115 // Float-point vector arithmetic
5116 
5117 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
5118   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5119   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5120   attributes.set_rex_vex_w_reverted();
5121   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5122   emit_int8(0x58);
5123   emit_int8((unsigned char)(0xC0 | encode));
5124 }
5125 
5126 void Assembler::addpd(XMMRegister dst, Address src) {
5127   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5128   InstructionMark im(this);
5129   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5130   attributes.set_rex_vex_w_reverted();
5131   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5132   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5133   emit_int8(0x58);
5134   emit_operand(dst, src);
5135 }
5136 
5137 
5138 void Assembler::addps(XMMRegister dst, XMMRegister src) {
5139   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5140   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5141   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5142   emit_int8(0x58);
5143   emit_int8((unsigned char)(0xC0 | encode));
5144 }
5145 
5146 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5147   assert(VM_Version::supports_avx(), "");
5148   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5149   attributes.set_rex_vex_w_reverted();
5150   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5151   emit_int8(0x58);
5152   emit_int8((unsigned char)(0xC0 | encode));
5153 }
5154 
5155 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5156   assert(VM_Version::supports_avx(), "");
5157   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5158   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5159   emit_int8(0x58);
5160   emit_int8((unsigned char)(0xC0 | encode));
5161 }
5162 
5163 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5164   assert(VM_Version::supports_avx(), "");
5165   InstructionMark im(this);
5166   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5167   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5168   attributes.set_rex_vex_w_reverted();
5169   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5170   emit_int8(0x58);
5171   emit_operand(dst, src);
5172 }
5173 
5174 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5175   assert(VM_Version::supports_avx(), "");
5176   InstructionMark im(this);
5177   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5178   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5179   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5180   emit_int8(0x58);
5181   emit_operand(dst, src);
5182 }
5183 
5184 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
5185   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5186   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5187   attributes.set_rex_vex_w_reverted();
5188   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5189   emit_int8(0x5C);
5190   emit_int8((unsigned char)(0xC0 | encode));
5191 }
5192 
5193 void Assembler::subps(XMMRegister dst, XMMRegister src) {
5194   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5195   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5196   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5197   emit_int8(0x5C);
5198   emit_int8((unsigned char)(0xC0 | encode));
5199 }
5200 
5201 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5202   assert(VM_Version::supports_avx(), "");
5203   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5204   attributes.set_rex_vex_w_reverted();
5205   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5206   emit_int8(0x5C);
5207   emit_int8((unsigned char)(0xC0 | encode));
5208 }
5209 
5210 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5211   assert(VM_Version::supports_avx(), "");
5212   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5213   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5214   emit_int8(0x5C);
5215   emit_int8((unsigned char)(0xC0 | encode));
5216 }
5217 
5218 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5219   assert(VM_Version::supports_avx(), "");
5220   InstructionMark im(this);
5221   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5222   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5223   attributes.set_rex_vex_w_reverted();
5224   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5225   emit_int8(0x5C);
5226   emit_operand(dst, src);
5227 }
5228 
5229 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5230   assert(VM_Version::supports_avx(), "");
5231   InstructionMark im(this);
5232   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5233   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5234   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5235   emit_int8(0x5C);
5236   emit_operand(dst, src);
5237 }
5238 
5239 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
5240   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5241   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5242   attributes.set_rex_vex_w_reverted();
5243   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5244   emit_int8(0x59);
5245   emit_int8((unsigned char)(0xC0 | encode));
5246 }
5247 
5248 void Assembler::mulpd(XMMRegister dst, Address src) {
5249   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5250   InstructionMark im(this);
5251   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5252   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5253   attributes.set_rex_vex_w_reverted();
5254   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5255   emit_int8(0x59);
5256   emit_operand(dst, src);
5257 }
5258 
5259 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
5260   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5261   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5262   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5263   emit_int8(0x59);
5264   emit_int8((unsigned char)(0xC0 | encode));
5265 }
5266 
5267 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5268   assert(VM_Version::supports_avx(), "");
5269   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5270   attributes.set_rex_vex_w_reverted();
5271   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5272   emit_int8(0x59);
5273   emit_int8((unsigned char)(0xC0 | encode));
5274 }
5275 
5276 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5277   assert(VM_Version::supports_avx(), "");
5278   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5279   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5280   emit_int8(0x59);
5281   emit_int8((unsigned char)(0xC0 | encode));
5282 }
5283 
5284 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5285   assert(VM_Version::supports_avx(), "");
5286   InstructionMark im(this);
5287   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5288   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5289   attributes.set_rex_vex_w_reverted();
5290   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5291   emit_int8(0x59);
5292   emit_operand(dst, src);
5293 }
5294 
5295 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5296   assert(VM_Version::supports_avx(), "");
5297   InstructionMark im(this);
5298   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5299   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5300   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5301   emit_int8(0x59);
5302   emit_operand(dst, src);
5303 }
5304 
5305 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5306   assert(VM_Version::supports_fma(), "");
5307   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5308   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5309   emit_int8((unsigned char)0xB8);
5310   emit_int8((unsigned char)(0xC0 | encode));
5311 }
5312 
5313 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5314   assert(VM_Version::supports_fma(), "");
5315   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5316   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5317   emit_int8((unsigned char)0xB8);
5318   emit_int8((unsigned char)(0xC0 | encode));
5319 }
5320 
5321 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5322   assert(VM_Version::supports_fma(), "");
5323   InstructionMark im(this);
5324   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5325   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5326   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5327   emit_int8((unsigned char)0xB8);
5328   emit_operand(dst, src2);
5329 }
5330 
5331 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5332   assert(VM_Version::supports_fma(), "");
5333   InstructionMark im(this);
5334   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5335   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5336   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5337   emit_int8((unsigned char)0xB8);
5338   emit_operand(dst, src2);
5339 }
5340 
5341 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
5342   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5343   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5344   attributes.set_rex_vex_w_reverted();
5345   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5346   emit_int8(0x5E);
5347   emit_int8((unsigned char)(0xC0 | encode));
5348 }
5349 
5350 void Assembler::divps(XMMRegister dst, XMMRegister src) {
5351   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5352   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5353   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5354   emit_int8(0x5E);
5355   emit_int8((unsigned char)(0xC0 | encode));
5356 }
5357 
5358 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5359   assert(VM_Version::supports_avx(), "");
5360   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5361   attributes.set_rex_vex_w_reverted();
5362   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5363   emit_int8(0x5E);
5364   emit_int8((unsigned char)(0xC0 | encode));
5365 }
5366 
5367 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5368   assert(VM_Version::supports_avx(), "");
5369   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5370   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5371   emit_int8(0x5E);
5372   emit_int8((unsigned char)(0xC0 | encode));
5373 }
5374 
5375 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5376   assert(VM_Version::supports_avx(), "");
5377   InstructionMark im(this);
5378   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5379   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5380   attributes.set_rex_vex_w_reverted();
5381   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5382   emit_int8(0x5E);
5383   emit_operand(dst, src);
5384 }
5385 
5386 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5387   assert(VM_Version::supports_avx(), "");
5388   InstructionMark im(this);
5389   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5390   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5391   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5392   emit_int8(0x5E);
5393   emit_operand(dst, src);
5394 }
5395 
5396 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
5397   assert(VM_Version::supports_avx(), "");
5398   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5399   attributes.set_rex_vex_w_reverted();
5400   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5401   emit_int8(0x51);
5402   emit_int8((unsigned char)(0xC0 | encode));
5403 }
5404 
5405 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
5406   assert(VM_Version::supports_avx(), "");
5407   InstructionMark im(this);
5408   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5409   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5410   attributes.set_rex_vex_w_reverted();
5411   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5412   emit_int8(0x51);
5413   emit_operand(dst, src);
5414 }
5415 
5416 void Assembler::vsqrtps(XMMRegister dst, XMMRegister src, int vector_len) {
5417   assert(VM_Version::supports_avx(), "");
5418   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5419   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5420   emit_int8(0x51);
5421   emit_int8((unsigned char)(0xC0 | encode));
5422 }
5423 
5424 void Assembler::vsqrtps(XMMRegister dst, Address src, int vector_len) {
5425   assert(VM_Version::supports_avx(), "");
5426   InstructionMark im(this);
5427   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5428   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5429   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5430   emit_int8(0x51);
5431   emit_operand(dst, src);
5432 }
5433 
5434 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
5435   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5436   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5437   attributes.set_rex_vex_w_reverted();
5438   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5439   emit_int8(0x54);
5440   emit_int8((unsigned char)(0xC0 | encode));
5441 }
5442 
5443 void Assembler::andps(XMMRegister dst, XMMRegister src) {
5444   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5445   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5446   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5447   emit_int8(0x54);
5448   emit_int8((unsigned char)(0xC0 | encode));
5449 }
5450 
5451 void Assembler::andps(XMMRegister dst, Address src) {
5452   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5453   InstructionMark im(this);
5454   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5455   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5456   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5457   emit_int8(0x54);
5458   emit_operand(dst, src);
5459 }
5460 
5461 void Assembler::andpd(XMMRegister dst, Address src) {
5462   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5463   InstructionMark im(this);
5464   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5465   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5466   attributes.set_rex_vex_w_reverted();
5467   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5468   emit_int8(0x54);
5469   emit_operand(dst, src);
5470 }
5471 
5472 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5473   assert(VM_Version::supports_avx(), "");
5474   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5475   attributes.set_rex_vex_w_reverted();
5476   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5477   emit_int8(0x54);
5478   emit_int8((unsigned char)(0xC0 | encode));
5479 }
5480 
5481 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5482   assert(VM_Version::supports_avx(), "");
5483   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5484   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5485   emit_int8(0x54);
5486   emit_int8((unsigned char)(0xC0 | encode));
5487 }
5488 
5489 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5490   assert(VM_Version::supports_avx(), "");
5491   InstructionMark im(this);
5492   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5493   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5494   attributes.set_rex_vex_w_reverted();
5495   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5496   emit_int8(0x54);
5497   emit_operand(dst, src);
5498 }
5499 
5500 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5501   assert(VM_Version::supports_avx(), "");
5502   InstructionMark im(this);
5503   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5504   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5505   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5506   emit_int8(0x54);
5507   emit_operand(dst, src);
5508 }
5509 
5510 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
5511   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5512   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5513   attributes.set_rex_vex_w_reverted();
5514   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5515   emit_int8(0x15);
5516   emit_int8((unsigned char)(0xC0 | encode));
5517 }
5518 
5519 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
5520   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5521   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5522   attributes.set_rex_vex_w_reverted();
5523   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5524   emit_int8(0x14);
5525   emit_int8((unsigned char)(0xC0 | encode));
5526 }
5527 
5528 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
5529   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5530   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5531   attributes.set_rex_vex_w_reverted();
5532   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5533   emit_int8(0x57);
5534   emit_int8((unsigned char)(0xC0 | encode));
5535 }
5536 
5537 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
5538   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5539   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5540   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5541   emit_int8(0x57);
5542   emit_int8((unsigned char)(0xC0 | encode));
5543 }
5544 
5545 void Assembler::xorpd(XMMRegister dst, Address src) {
5546   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5547   InstructionMark im(this);
5548   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5549   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5550   attributes.set_rex_vex_w_reverted();
5551   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5552   emit_int8(0x57);
5553   emit_operand(dst, src);
5554 }
5555 
5556 void Assembler::xorps(XMMRegister dst, Address src) {
5557   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5558   InstructionMark im(this);
5559   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5560   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5561   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5562   emit_int8(0x57);
5563   emit_operand(dst, src);
5564 }
5565 
5566 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5567   assert(VM_Version::supports_avx(), "");
5568   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5569   attributes.set_rex_vex_w_reverted();
5570   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5571   emit_int8(0x57);
5572   emit_int8((unsigned char)(0xC0 | encode));
5573 }
5574 
5575 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5576   assert(VM_Version::supports_avx(), "");
5577   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5578   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5579   emit_int8(0x57);
5580   emit_int8((unsigned char)(0xC0 | encode));
5581 }
5582 
5583 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5584   assert(VM_Version::supports_avx(), "");
5585   InstructionMark im(this);
5586   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5587   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5588   attributes.set_rex_vex_w_reverted();
5589   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5590   emit_int8(0x57);
5591   emit_operand(dst, src);
5592 }
5593 
5594 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5595   assert(VM_Version::supports_avx(), "");
5596   InstructionMark im(this);
5597   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5598   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5599   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5600   emit_int8(0x57);
5601   emit_operand(dst, src);
5602 }
5603 
5604 // Integer vector arithmetic
5605 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5606   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5607          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5608   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5609   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5610   emit_int8(0x01);
5611   emit_int8((unsigned char)(0xC0 | encode));
5612 }
5613 
5614 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5615   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5616          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5617   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5618   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5619   emit_int8(0x02);
5620   emit_int8((unsigned char)(0xC0 | encode));
5621 }
5622 
5623 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
5624   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5625   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5626   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5627   emit_int8((unsigned char)0xFC);
5628   emit_int8((unsigned char)(0xC0 | encode));
5629 }
5630 
5631 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
5632   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5633   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5634   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5635   emit_int8((unsigned char)0xFD);
5636   emit_int8((unsigned char)(0xC0 | encode));
5637 }
5638 
5639 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
5640   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5641   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5642   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5643   emit_int8((unsigned char)0xFE);
5644   emit_int8((unsigned char)(0xC0 | encode));
5645 }
5646 
5647 void Assembler::paddd(XMMRegister dst, Address src) {
5648   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5649   InstructionMark im(this);
5650   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5651   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5652   emit_int8((unsigned char)0xFE);
5653   emit_operand(dst, src);
5654 }
5655 
5656 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
5657   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5658   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5659   attributes.set_rex_vex_w_reverted();
5660   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5661   emit_int8((unsigned char)0xD4);
5662   emit_int8((unsigned char)(0xC0 | encode));
5663 }
5664 
5665 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
5666   assert(VM_Version::supports_sse3(), "");
5667   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5668   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5669   emit_int8(0x01);
5670   emit_int8((unsigned char)(0xC0 | encode));
5671 }
5672 
5673 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5674   assert(VM_Version::supports_sse3(), "");
5675   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5676   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5677   emit_int8(0x02);
5678   emit_int8((unsigned char)(0xC0 | encode));
5679 }
5680 
5681 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5682   assert(UseAVX > 0, "requires some form of AVX");
5683   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5684   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5685   emit_int8((unsigned char)0xFC);
5686   emit_int8((unsigned char)(0xC0 | encode));
5687 }
5688 
5689 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5690   assert(UseAVX > 0, "requires some form of AVX");
5691   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5692   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5693   emit_int8((unsigned char)0xFD);
5694   emit_int8((unsigned char)(0xC0 | encode));
5695 }
5696 
5697 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5698   assert(UseAVX > 0, "requires some form of AVX");
5699   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5700   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5701   emit_int8((unsigned char)0xFE);
5702   emit_int8((unsigned char)(0xC0 | encode));
5703 }
5704 
5705 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5706   assert(UseAVX > 0, "requires some form of AVX");
5707   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5708   attributes.set_rex_vex_w_reverted();
5709   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5710   emit_int8((unsigned char)0xD4);
5711   emit_int8((unsigned char)(0xC0 | encode));
5712 }
5713 
5714 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5715   assert(UseAVX > 0, "requires some form of AVX");
5716   InstructionMark im(this);
5717   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5718   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5719   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5720   emit_int8((unsigned char)0xFC);
5721   emit_operand(dst, src);
5722 }
5723 
5724 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5725   assert(UseAVX > 0, "requires some form of AVX");
5726   InstructionMark im(this);
5727   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5728   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5729   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5730   emit_int8((unsigned char)0xFD);
5731   emit_operand(dst, src);
5732 }
5733 
5734 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5735   assert(UseAVX > 0, "requires some form of AVX");
5736   InstructionMark im(this);
5737   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5738   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5739   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5740   emit_int8((unsigned char)0xFE);
5741   emit_operand(dst, src);
5742 }
5743 
5744 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5745   assert(UseAVX > 0, "requires some form of AVX");
5746   InstructionMark im(this);
5747   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5748   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5749   attributes.set_rex_vex_w_reverted();
5750   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5751   emit_int8((unsigned char)0xD4);
5752   emit_operand(dst, src);
5753 }
5754 
5755 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5756   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5757   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5758   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5759   emit_int8((unsigned char)0xF8);
5760   emit_int8((unsigned char)(0xC0 | encode));
5761 }
5762 
5763 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5764   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5765   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5766   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5767   emit_int8((unsigned char)0xF9);
5768   emit_int8((unsigned char)(0xC0 | encode));
5769 }
5770 
5771 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5772   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5773   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5774   emit_int8((unsigned char)0xFA);
5775   emit_int8((unsigned char)(0xC0 | encode));
5776 }
5777 
5778 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5779   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5780   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5781   attributes.set_rex_vex_w_reverted();
5782   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5783   emit_int8((unsigned char)0xFB);
5784   emit_int8((unsigned char)(0xC0 | encode));
5785 }
5786 
5787 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5788   assert(UseAVX > 0, "requires some form of AVX");
5789   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5790   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5791   emit_int8((unsigned char)0xF8);
5792   emit_int8((unsigned char)(0xC0 | encode));
5793 }
5794 
5795 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5796   assert(UseAVX > 0, "requires some form of AVX");
5797   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5798   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5799   emit_int8((unsigned char)0xF9);
5800   emit_int8((unsigned char)(0xC0 | encode));
5801 }
5802 
5803 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5804   assert(UseAVX > 0, "requires some form of AVX");
5805   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5806   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5807   emit_int8((unsigned char)0xFA);
5808   emit_int8((unsigned char)(0xC0 | encode));
5809 }
5810 
5811 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5812   assert(UseAVX > 0, "requires some form of AVX");
5813   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5814   attributes.set_rex_vex_w_reverted();
5815   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5816   emit_int8((unsigned char)0xFB);
5817   emit_int8((unsigned char)(0xC0 | encode));
5818 }
5819 
5820 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5821   assert(UseAVX > 0, "requires some form of AVX");
5822   InstructionMark im(this);
5823   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5824   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5825   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5826   emit_int8((unsigned char)0xF8);
5827   emit_operand(dst, src);
5828 }
5829 
5830 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5831   assert(UseAVX > 0, "requires some form of AVX");
5832   InstructionMark im(this);
5833   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5834   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5835   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5836   emit_int8((unsigned char)0xF9);
5837   emit_operand(dst, src);
5838 }
5839 
5840 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5841   assert(UseAVX > 0, "requires some form of AVX");
5842   InstructionMark im(this);
5843   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5844   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5845   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5846   emit_int8((unsigned char)0xFA);
5847   emit_operand(dst, src);
5848 }
5849 
5850 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5851   assert(UseAVX > 0, "requires some form of AVX");
5852   InstructionMark im(this);
5853   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5854   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5855   attributes.set_rex_vex_w_reverted();
5856   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5857   emit_int8((unsigned char)0xFB);
5858   emit_operand(dst, src);
5859 }
5860 
5861 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5862   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5863   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5864   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5865   emit_int8((unsigned char)0xD5);
5866   emit_int8((unsigned char)(0xC0 | encode));
5867 }
5868 
5869 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5870   assert(VM_Version::supports_sse4_1(), "");
5871   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5872   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5873   emit_int8(0x40);
5874   emit_int8((unsigned char)(0xC0 | encode));
5875 }
5876 
5877 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5878   assert(UseAVX > 0, "requires some form of AVX");
5879   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5880   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5881   emit_int8((unsigned char)0xD5);
5882   emit_int8((unsigned char)(0xC0 | encode));
5883 }
5884 
5885 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5886   assert(UseAVX > 0, "requires some form of AVX");
5887   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5888   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5889   emit_int8(0x40);
5890   emit_int8((unsigned char)(0xC0 | encode));
5891 }
5892 
5893 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5894   assert(UseAVX > 2, "requires some form of EVEX");
5895   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5896   attributes.set_is_evex_instruction();
5897   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5898   emit_int8(0x40);
5899   emit_int8((unsigned char)(0xC0 | encode));
5900 }
5901 
5902 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5903   assert(UseAVX > 0, "requires some form of AVX");
5904   InstructionMark im(this);
5905   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5906   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5907   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5908   emit_int8((unsigned char)0xD5);
5909   emit_operand(dst, src);
5910 }
5911 
5912 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5913   assert(UseAVX > 0, "requires some form of AVX");
5914   InstructionMark im(this);
5915   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5916   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5917   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5918   emit_int8(0x40);
5919   emit_operand(dst, src);
5920 }
5921 
5922 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5923   assert(UseAVX > 2, "requires some form of EVEX");
5924   InstructionMark im(this);
5925   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5926   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5927   attributes.set_is_evex_instruction();
5928   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5929   emit_int8(0x40);
5930   emit_operand(dst, src);
5931 }
5932 
5933 // Shift packed integers left by specified number of bits.
5934 void Assembler::psllw(XMMRegister dst, int shift) {
5935   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5936   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5937   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5938   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5939   emit_int8(0x71);
5940   emit_int8((unsigned char)(0xC0 | encode));
5941   emit_int8(shift & 0xFF);
5942 }
5943 
5944 void Assembler::pslld(XMMRegister dst, int shift) {
5945   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5946   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5947   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5948   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5949   emit_int8(0x72);
5950   emit_int8((unsigned char)(0xC0 | encode));
5951   emit_int8(shift & 0xFF);
5952 }
5953 
5954 void Assembler::psllq(XMMRegister dst, int shift) {
5955   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5956   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5957   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5958   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5959   emit_int8(0x73);
5960   emit_int8((unsigned char)(0xC0 | encode));
5961   emit_int8(shift & 0xFF);
5962 }
5963 
5964 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5965   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5966   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5967   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5968   emit_int8((unsigned char)0xF1);
5969   emit_int8((unsigned char)(0xC0 | encode));
5970 }
5971 
5972 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5973   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5974   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5975   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5976   emit_int8((unsigned char)0xF2);
5977   emit_int8((unsigned char)(0xC0 | encode));
5978 }
5979 
5980 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5981   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5982   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5983   attributes.set_rex_vex_w_reverted();
5984   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5985   emit_int8((unsigned char)0xF3);
5986   emit_int8((unsigned char)(0xC0 | encode));
5987 }
5988 
5989 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5990   assert(UseAVX > 0, "requires some form of AVX");
5991   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5992   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5993   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5994   emit_int8(0x71);
5995   emit_int8((unsigned char)(0xC0 | encode));
5996   emit_int8(shift & 0xFF);
5997 }
5998 
5999 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6000   assert(UseAVX > 0, "requires some form of AVX");
6001   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6002   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6003   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
6004   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6005   emit_int8(0x72);
6006   emit_int8((unsigned char)(0xC0 | encode));
6007   emit_int8(shift & 0xFF);
6008 }
6009 
6010 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6011   assert(UseAVX > 0, "requires some form of AVX");
6012   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6013   attributes.set_rex_vex_w_reverted();
6014   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
6015   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6016   emit_int8(0x73);
6017   emit_int8((unsigned char)(0xC0 | encode));
6018   emit_int8(shift & 0xFF);
6019 }
6020 
6021 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6022   assert(UseAVX > 0, "requires some form of AVX");
6023   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6024   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6025   emit_int8((unsigned char)0xF1);
6026   emit_int8((unsigned char)(0xC0 | encode));
6027 }
6028 
6029 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6030   assert(UseAVX > 0, "requires some form of AVX");
6031   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6032   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6033   emit_int8((unsigned char)0xF2);
6034   emit_int8((unsigned char)(0xC0 | encode));
6035 }
6036 
6037 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6038   assert(UseAVX > 0, "requires some form of AVX");
6039   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6040   attributes.set_rex_vex_w_reverted();
6041   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6042   emit_int8((unsigned char)0xF3);
6043   emit_int8((unsigned char)(0xC0 | encode));
6044 }
6045 
6046 // Shift packed integers logically right by specified number of bits.
6047 void Assembler::psrlw(XMMRegister dst, int shift) {
6048   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6049   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6050   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
6051   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6052   emit_int8(0x71);
6053   emit_int8((unsigned char)(0xC0 | encode));
6054   emit_int8(shift & 0xFF);
6055 }
6056 
6057 void Assembler::psrld(XMMRegister dst, int shift) {
6058   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6059   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6060   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
6061   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6062   emit_int8(0x72);
6063   emit_int8((unsigned char)(0xC0 | encode));
6064   emit_int8(shift & 0xFF);
6065 }
6066 
6067 void Assembler::psrlq(XMMRegister dst, int shift) {
6068   // Do not confuse it with psrldq SSE2 instruction which
6069   // shifts 128 bit value in xmm register by number of bytes.
6070   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6071   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6072   attributes.set_rex_vex_w_reverted();
6073   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
6074   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6075   emit_int8(0x73);
6076   emit_int8((unsigned char)(0xC0 | encode));
6077   emit_int8(shift & 0xFF);
6078 }
6079 
6080 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
6081   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6082   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6083   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6084   emit_int8((unsigned char)0xD1);
6085   emit_int8((unsigned char)(0xC0 | encode));
6086 }
6087 
6088 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
6089   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6090   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6091   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6092   emit_int8((unsigned char)0xD2);
6093   emit_int8((unsigned char)(0xC0 | encode));
6094 }
6095 
6096 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
6097   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6098   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6099   attributes.set_rex_vex_w_reverted();
6100   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6101   emit_int8((unsigned char)0xD3);
6102   emit_int8((unsigned char)(0xC0 | encode));
6103 }
6104 
6105 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6106   assert(UseAVX > 0, "requires some form of AVX");
6107   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6108   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
6109   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6110   emit_int8(0x71);
6111   emit_int8((unsigned char)(0xC0 | encode));
6112   emit_int8(shift & 0xFF);
6113 }
6114 
6115 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6116   assert(UseAVX > 0, "requires some form of AVX");
6117   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6118   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
6119   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6120   emit_int8(0x72);
6121   emit_int8((unsigned char)(0xC0 | encode));
6122   emit_int8(shift & 0xFF);
6123 }
6124 
6125 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6126   assert(UseAVX > 0, "requires some form of AVX");
6127   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6128   attributes.set_rex_vex_w_reverted();
6129   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
6130   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6131   emit_int8(0x73);
6132   emit_int8((unsigned char)(0xC0 | encode));
6133   emit_int8(shift & 0xFF);
6134 }
6135 
6136 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6137   assert(UseAVX > 0, "requires some form of AVX");
6138   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6139   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6140   emit_int8((unsigned char)0xD1);
6141   emit_int8((unsigned char)(0xC0 | encode));
6142 }
6143 
6144 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6145   assert(UseAVX > 0, "requires some form of AVX");
6146   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6147   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6148   emit_int8((unsigned char)0xD2);
6149   emit_int8((unsigned char)(0xC0 | encode));
6150 }
6151 
6152 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6153   assert(UseAVX > 0, "requires some form of AVX");
6154   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6155   attributes.set_rex_vex_w_reverted();
6156   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6157   emit_int8((unsigned char)0xD3);
6158   emit_int8((unsigned char)(0xC0 | encode));
6159 }
6160 
6161 void Assembler::evpsrlvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6162   assert(VM_Version::supports_avx512bw(), "");
6163   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6164   attributes.set_is_evex_instruction();
6165   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6166   emit_int8(0x10);
6167   emit_int8((unsigned char)(0xC0 | encode));
6168 }
6169 
6170 void Assembler::evpsllvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6171   assert(VM_Version::supports_avx512bw(), "");
6172   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6173   attributes.set_is_evex_instruction();
6174   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6175   emit_int8(0x12);
6176   emit_int8((unsigned char)(0xC0 | encode));
6177 }
6178 
6179 // Shift packed integers arithmetically right by specified number of bits.
6180 void Assembler::psraw(XMMRegister dst, int shift) {
6181   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6182   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6183   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6184   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6185   emit_int8(0x71);
6186   emit_int8((unsigned char)(0xC0 | encode));
6187   emit_int8(shift & 0xFF);
6188 }
6189 
6190 void Assembler::psrad(XMMRegister dst, int shift) {
6191   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6192   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6193   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
6194   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6195   emit_int8(0x72);
6196   emit_int8((unsigned char)(0xC0 | encode));
6197   emit_int8(shift & 0xFF);
6198 }
6199 
6200 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
6201   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6202   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6203   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6204   emit_int8((unsigned char)0xE1);
6205   emit_int8((unsigned char)(0xC0 | encode));
6206 }
6207 
6208 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
6209   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6210   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6211   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6212   emit_int8((unsigned char)0xE2);
6213   emit_int8((unsigned char)(0xC0 | encode));
6214 }
6215 
6216 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6217   assert(UseAVX > 0, "requires some form of AVX");
6218   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6219   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6220   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6221   emit_int8(0x71);
6222   emit_int8((unsigned char)(0xC0 | encode));
6223   emit_int8(shift & 0xFF);
6224 }
6225 
6226 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6227   assert(UseAVX > 0, "requires some form of AVX");
6228   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6229   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6230   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6231   emit_int8(0x72);
6232   emit_int8((unsigned char)(0xC0 | encode));
6233   emit_int8(shift & 0xFF);
6234 }
6235 
6236 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6237   assert(UseAVX > 0, "requires some form of AVX");
6238   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6239   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6240   emit_int8((unsigned char)0xE1);
6241   emit_int8((unsigned char)(0xC0 | encode));
6242 }
6243 
6244 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6245   assert(UseAVX > 0, "requires some form of AVX");
6246   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6247   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6248   emit_int8((unsigned char)0xE2);
6249   emit_int8((unsigned char)(0xC0 | encode));
6250 }
6251 
6252 
6253 // logical operations packed integers
6254 void Assembler::pand(XMMRegister dst, XMMRegister src) {
6255   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6256   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6257   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6258   emit_int8((unsigned char)0xDB);
6259   emit_int8((unsigned char)(0xC0 | encode));
6260 }
6261 
6262 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6263   assert(UseAVX > 0, "requires some form of AVX");
6264   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6265   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6266   emit_int8((unsigned char)0xDB);
6267   emit_int8((unsigned char)(0xC0 | encode));
6268 }
6269 
6270 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6271   assert(UseAVX > 0, "requires some form of AVX");
6272   InstructionMark im(this);
6273   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6274   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6275   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6276   emit_int8((unsigned char)0xDB);
6277   emit_operand(dst, src);
6278 }
6279 
6280 void Assembler::vpandq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6281   assert(VM_Version::supports_evex(), "");
6282   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6283   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6284   emit_int8((unsigned char)0xDB);
6285   emit_int8((unsigned char)(0xC0 | encode));
6286 }
6287 
6288 
6289 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
6290   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6291   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6292   attributes.set_rex_vex_w_reverted();
6293   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6294   emit_int8((unsigned char)0xDF);
6295   emit_int8((unsigned char)(0xC0 | encode));
6296 }
6297 
6298 void Assembler::vpandn(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6299   assert(UseAVX > 0, "requires some form of AVX");
6300   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6301   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6302   emit_int8((unsigned char)0xDF);
6303   emit_int8((unsigned char)(0xC0 | encode));
6304 }
6305 
6306 
6307 void Assembler::por(XMMRegister dst, XMMRegister src) {
6308   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6309   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6310   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6311   emit_int8((unsigned char)0xEB);
6312   emit_int8((unsigned char)(0xC0 | encode));
6313 }
6314 
6315 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6316   assert(UseAVX > 0, "requires some form of AVX");
6317   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6318   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6319   emit_int8((unsigned char)0xEB);
6320   emit_int8((unsigned char)(0xC0 | encode));
6321 }
6322 
6323 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6324   assert(UseAVX > 0, "requires some form of AVX");
6325   InstructionMark im(this);
6326   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6327   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6328   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6329   emit_int8((unsigned char)0xEB);
6330   emit_operand(dst, src);
6331 }
6332 
6333 void Assembler::vporq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6334   assert(VM_Version::supports_evex(), "");
6335   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6336   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6337   emit_int8((unsigned char)0xEB);
6338   emit_int8((unsigned char)(0xC0 | encode));
6339 }
6340 
6341 
6342 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
6343   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6344   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6345   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6346   emit_int8((unsigned char)0xEF);
6347   emit_int8((unsigned char)(0xC0 | encode));
6348 }
6349 
6350 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6351   assert(UseAVX > 0, "requires some form of AVX");
6352   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6353   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6354   emit_int8((unsigned char)0xEF);
6355   emit_int8((unsigned char)(0xC0 | encode));
6356 }
6357 
6358 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6359   assert(UseAVX > 0, "requires some form of AVX");
6360   InstructionMark im(this);
6361   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6362   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6363   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6364   emit_int8((unsigned char)0xEF);
6365   emit_operand(dst, src);
6366 }
6367 
6368 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6369   assert(VM_Version::supports_evex(), "requires EVEX support");
6370   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6371   attributes.set_is_evex_instruction();
6372   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6373   emit_int8((unsigned char)0xEF);
6374   emit_int8((unsigned char)(0xC0 | encode));
6375 }
6376 
6377 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6378   assert(VM_Version::supports_evex(), "requires EVEX support");
6379   assert(dst != xnoreg, "sanity");
6380   InstructionMark im(this);
6381   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6382   attributes.set_is_evex_instruction();
6383   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6384   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6385   emit_int8((unsigned char)0xEF);
6386   emit_operand(dst, src);
6387 }
6388 
6389 
6390 // vinserti forms
6391 
6392 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6393   assert(VM_Version::supports_avx2(), "");
6394   assert(imm8 <= 0x01, "imm8: %u", imm8);
6395   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6396   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6397   emit_int8(0x38);
6398   emit_int8((unsigned char)(0xC0 | encode));
6399   // 0x00 - insert into lower 128 bits
6400   // 0x01 - insert into upper 128 bits
6401   emit_int8(imm8 & 0x01);
6402 }
6403 
6404 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6405   assert(VM_Version::supports_avx2(), "");
6406   assert(dst != xnoreg, "sanity");
6407   assert(imm8 <= 0x01, "imm8: %u", imm8);
6408   InstructionMark im(this);
6409   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6410   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6411   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6412   emit_int8(0x38);
6413   emit_operand(dst, src);
6414   // 0x00 - insert into lower 128 bits
6415   // 0x01 - insert into upper 128 bits
6416   emit_int8(imm8 & 0x01);
6417 }
6418 
6419 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6420   assert(VM_Version::supports_evex(), "");
6421   assert(imm8 <= 0x03, "imm8: %u", imm8);
6422   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6423   attributes.set_is_evex_instruction();
6424   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6425   emit_int8(0x38);
6426   emit_int8((unsigned char)(0xC0 | encode));
6427   // 0x00 - insert into q0 128 bits (0..127)
6428   // 0x01 - insert into q1 128 bits (128..255)
6429   // 0x02 - insert into q2 128 bits (256..383)
6430   // 0x03 - insert into q3 128 bits (384..511)
6431   emit_int8(imm8 & 0x03);
6432 }
6433 
6434 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6435   assert(VM_Version::supports_avx(), "");
6436   assert(dst != xnoreg, "sanity");
6437   assert(imm8 <= 0x03, "imm8: %u", imm8);
6438   InstructionMark im(this);
6439   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6440   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6441   attributes.set_is_evex_instruction();
6442   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6443   emit_int8(0x18);
6444   emit_operand(dst, src);
6445   // 0x00 - insert into q0 128 bits (0..127)
6446   // 0x01 - insert into q1 128 bits (128..255)
6447   // 0x02 - insert into q2 128 bits (256..383)
6448   // 0x03 - insert into q3 128 bits (384..511)
6449   emit_int8(imm8 & 0x03);
6450 }
6451 
6452 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6453   assert(VM_Version::supports_evex(), "");
6454   assert(imm8 <= 0x01, "imm8: %u", imm8);
6455   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6456   attributes.set_is_evex_instruction();
6457   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6458   emit_int8(0x3A);
6459   emit_int8((unsigned char)(0xC0 | encode));
6460   // 0x00 - insert into lower 256 bits
6461   // 0x01 - insert into upper 256 bits
6462   emit_int8(imm8 & 0x01);
6463 }
6464 
6465 
6466 // vinsertf forms
6467 
6468 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6469   assert(VM_Version::supports_avx(), "");
6470   assert(imm8 <= 0x01, "imm8: %u", imm8);
6471   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6472   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6473   emit_int8(0x18);
6474   emit_int8((unsigned char)(0xC0 | encode));
6475   // 0x00 - insert into lower 128 bits
6476   // 0x01 - insert into upper 128 bits
6477   emit_int8(imm8 & 0x01);
6478 }
6479 
6480 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6481   assert(VM_Version::supports_avx(), "");
6482   assert(dst != xnoreg, "sanity");
6483   assert(imm8 <= 0x01, "imm8: %u", imm8);
6484   InstructionMark im(this);
6485   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6486   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6487   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6488   emit_int8(0x18);
6489   emit_operand(dst, src);
6490   // 0x00 - insert into lower 128 bits
6491   // 0x01 - insert into upper 128 bits
6492   emit_int8(imm8 & 0x01);
6493 }
6494 
6495 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6496   assert(VM_Version::supports_avx2(), "");
6497   assert(imm8 <= 0x03, "imm8: %u", imm8);
6498   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6499   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6500   emit_int8(0x18);
6501   emit_int8((unsigned char)(0xC0 | encode));
6502   // 0x00 - insert into q0 128 bits (0..127)
6503   // 0x01 - insert into q1 128 bits (128..255)
6504   // 0x02 - insert into q0 128 bits (256..383)
6505   // 0x03 - insert into q1 128 bits (384..512)
6506   emit_int8(imm8 & 0x03);
6507 }
6508 
6509 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6510   assert(VM_Version::supports_avx(), "");
6511   assert(dst != xnoreg, "sanity");
6512   assert(imm8 <= 0x03, "imm8: %u", imm8);
6513   InstructionMark im(this);
6514   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6515   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6516   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6517   emit_int8(0x18);
6518   emit_operand(dst, src);
6519   // 0x00 - insert into q0 128 bits (0..127)
6520   // 0x01 - insert into q1 128 bits (128..255)
6521   // 0x02 - insert into q0 128 bits (256..383)
6522   // 0x03 - insert into q1 128 bits (384..512)
6523   emit_int8(imm8 & 0x03);
6524 }
6525 
6526 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6527   assert(VM_Version::supports_evex(), "");
6528   assert(imm8 <= 0x01, "imm8: %u", imm8);
6529   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6530   attributes.set_is_evex_instruction();
6531   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6532   emit_int8(0x1A);
6533   emit_int8((unsigned char)(0xC0 | encode));
6534   // 0x00 - insert into lower 256 bits
6535   // 0x01 - insert into upper 256 bits
6536   emit_int8(imm8 & 0x01);
6537 }
6538 
6539 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6540   assert(VM_Version::supports_evex(), "");
6541   assert(dst != xnoreg, "sanity");
6542   assert(imm8 <= 0x01, "imm8: %u", imm8);
6543   InstructionMark im(this);
6544   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6545   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6546   attributes.set_is_evex_instruction();
6547   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6548   emit_int8(0x1A);
6549   emit_operand(dst, src);
6550   // 0x00 - insert into lower 256 bits
6551   // 0x01 - insert into upper 256 bits
6552   emit_int8(imm8 & 0x01);
6553 }
6554 
6555 
6556 // vextracti forms
6557 
6558 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6559   assert(VM_Version::supports_avx2(), "");
6560   assert(imm8 <= 0x01, "imm8: %u", imm8);
6561   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6562   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6563   emit_int8(0x39);
6564   emit_int8((unsigned char)(0xC0 | encode));
6565   // 0x00 - extract from lower 128 bits
6566   // 0x01 - extract from upper 128 bits
6567   emit_int8(imm8 & 0x01);
6568 }
6569 
6570 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
6571   assert(VM_Version::supports_avx2(), "");
6572   assert(src != xnoreg, "sanity");
6573   assert(imm8 <= 0x01, "imm8: %u", imm8);
6574   InstructionMark im(this);
6575   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6576   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6577   attributes.reset_is_clear_context();
6578   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6579   emit_int8(0x39);
6580   emit_operand(src, dst);
6581   // 0x00 - extract from lower 128 bits
6582   // 0x01 - extract from upper 128 bits
6583   emit_int8(imm8 & 0x01);
6584 }
6585 
6586 void Assembler::vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6587   assert(VM_Version::supports_evex(), "");
6588   assert(imm8 <= 0x03, "imm8: %u", imm8);
6589   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6590   attributes.set_is_evex_instruction();
6591   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6592   emit_int8(0x39);
6593   emit_int8((unsigned char)(0xC0 | encode));
6594   // 0x00 - extract from bits 127:0
6595   // 0x01 - extract from bits 255:128
6596   // 0x02 - extract from bits 383:256
6597   // 0x03 - extract from bits 511:384
6598   emit_int8(imm8 & 0x03);
6599 }
6600 
6601 void Assembler::vextracti32x4(Address dst, XMMRegister src, uint8_t imm8) {
6602   assert(VM_Version::supports_evex(), "");
6603   assert(src != xnoreg, "sanity");
6604   assert(imm8 <= 0x03, "imm8: %u", imm8);
6605   InstructionMark im(this);
6606   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6607   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6608   attributes.reset_is_clear_context();
6609   attributes.set_is_evex_instruction();
6610   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6611   emit_int8(0x39);
6612   emit_operand(src, dst);
6613   // 0x00 - extract from bits 127:0
6614   // 0x01 - extract from bits 255:128
6615   // 0x02 - extract from bits 383:256
6616   // 0x03 - extract from bits 511:384
6617   emit_int8(imm8 & 0x03);
6618 }
6619 
6620 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6621   assert(VM_Version::supports_avx512dq(), "");
6622   assert(imm8 <= 0x03, "imm8: %u", imm8);
6623   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6624   attributes.set_is_evex_instruction();
6625   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6626   emit_int8(0x39);
6627   emit_int8((unsigned char)(0xC0 | encode));
6628   // 0x00 - extract from bits 127:0
6629   // 0x01 - extract from bits 255:128
6630   // 0x02 - extract from bits 383:256
6631   // 0x03 - extract from bits 511:384
6632   emit_int8(imm8 & 0x03);
6633 }
6634 
6635 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6636   assert(VM_Version::supports_evex(), "");
6637   assert(imm8 <= 0x01, "imm8: %u", imm8);
6638   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6639   attributes.set_is_evex_instruction();
6640   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6641   emit_int8(0x3B);
6642   emit_int8((unsigned char)(0xC0 | encode));
6643   // 0x00 - extract from lower 256 bits
6644   // 0x01 - extract from upper 256 bits
6645   emit_int8(imm8 & 0x01);
6646 }
6647 
6648 void Assembler::vextracti64x4(Address dst, XMMRegister src, uint8_t imm8) {
6649   assert(VM_Version::supports_evex(), "");
6650   assert(src != xnoreg, "sanity");
6651   assert(imm8 <= 0x01, "imm8: %u", imm8);
6652   InstructionMark im(this);
6653   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6654   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6655   attributes.reset_is_clear_context();
6656   attributes.set_is_evex_instruction();
6657   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6658   emit_int8(0x38);
6659   emit_operand(src, dst);
6660   // 0x00 - extract from lower 256 bits
6661   // 0x01 - extract from upper 256 bits
6662   emit_int8(imm8 & 0x01);
6663 }
6664 // vextractf forms
6665 
6666 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6667   assert(VM_Version::supports_avx(), "");
6668   assert(imm8 <= 0x01, "imm8: %u", imm8);
6669   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6670   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6671   emit_int8(0x19);
6672   emit_int8((unsigned char)(0xC0 | encode));
6673   // 0x00 - extract from lower 128 bits
6674   // 0x01 - extract from upper 128 bits
6675   emit_int8(imm8 & 0x01);
6676 }
6677 
6678 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
6679   assert(VM_Version::supports_avx(), "");
6680   assert(src != xnoreg, "sanity");
6681   assert(imm8 <= 0x01, "imm8: %u", imm8);
6682   InstructionMark im(this);
6683   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6684   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6685   attributes.reset_is_clear_context();
6686   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6687   emit_int8(0x19);
6688   emit_operand(src, dst);
6689   // 0x00 - extract from lower 128 bits
6690   // 0x01 - extract from upper 128 bits
6691   emit_int8(imm8 & 0x01);
6692 }
6693 
6694 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6695   assert(VM_Version::supports_evex(), "");
6696   assert(imm8 <= 0x03, "imm8: %u", imm8);
6697   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6698   attributes.set_is_evex_instruction();
6699   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6700   emit_int8(0x19);
6701   emit_int8((unsigned char)(0xC0 | encode));
6702   // 0x00 - extract from bits 127:0
6703   // 0x01 - extract from bits 255:128
6704   // 0x02 - extract from bits 383:256
6705   // 0x03 - extract from bits 511:384
6706   emit_int8(imm8 & 0x03);
6707 }
6708 
6709 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
6710   assert(VM_Version::supports_evex(), "");
6711   assert(src != xnoreg, "sanity");
6712   assert(imm8 <= 0x03, "imm8: %u", imm8);
6713   InstructionMark im(this);
6714   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6715   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6716   attributes.reset_is_clear_context();
6717   attributes.set_is_evex_instruction();
6718   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6719   emit_int8(0x19);
6720   emit_operand(src, dst);
6721   // 0x00 - extract from bits 127:0
6722   // 0x01 - extract from bits 255:128
6723   // 0x02 - extract from bits 383:256
6724   // 0x03 - extract from bits 511:384
6725   emit_int8(imm8 & 0x03);
6726 }
6727 
6728 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6729   assert(VM_Version::supports_avx512dq(), "");
6730   assert(imm8 <= 0x03, "imm8: %u", imm8);
6731   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6732   attributes.set_is_evex_instruction();
6733   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6734   emit_int8(0x19);
6735   emit_int8((unsigned char)(0xC0 | encode));
6736   // 0x00 - extract from bits 127:0
6737   // 0x01 - extract from bits 255:128
6738   // 0x02 - extract from bits 383:256
6739   // 0x03 - extract from bits 511:384
6740   emit_int8(imm8 & 0x03);
6741 }
6742 
6743 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6744   assert(VM_Version::supports_evex(), "");
6745   assert(imm8 <= 0x01, "imm8: %u", imm8);
6746   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6747   attributes.set_is_evex_instruction();
6748   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6749   emit_int8(0x1B);
6750   emit_int8((unsigned char)(0xC0 | encode));
6751   // 0x00 - extract from lower 256 bits
6752   // 0x01 - extract from upper 256 bits
6753   emit_int8(imm8 & 0x01);
6754 }
6755 
6756 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
6757   assert(VM_Version::supports_evex(), "");
6758   assert(src != xnoreg, "sanity");
6759   assert(imm8 <= 0x01, "imm8: %u", imm8);
6760   InstructionMark im(this);
6761   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6762   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
6763   attributes.reset_is_clear_context();
6764   attributes.set_is_evex_instruction();
6765   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6766   emit_int8(0x1B);
6767   emit_operand(src, dst);
6768   // 0x00 - extract from lower 256 bits
6769   // 0x01 - extract from upper 256 bits
6770   emit_int8(imm8 & 0x01);
6771 }
6772 
6773 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6774 void Assembler::vpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6775   assert(VM_Version::supports_avx2(), "");
6776   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6777   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6778   emit_int8(0x78);
6779   emit_int8((unsigned char)(0xC0 | encode));
6780 }
6781 
6782 void Assembler::vpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6783   assert(VM_Version::supports_avx2(), "");
6784   assert(dst != xnoreg, "sanity");
6785   InstructionMark im(this);
6786   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6787   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6788   // swap src<->dst for encoding
6789   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6790   emit_int8(0x78);
6791   emit_operand(dst, src);
6792 }
6793 
6794 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6795 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6796   assert(VM_Version::supports_avx2(), "");
6797   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6798   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6799   emit_int8(0x79);
6800   emit_int8((unsigned char)(0xC0 | encode));
6801 }
6802 
6803 void Assembler::vpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6804   assert(VM_Version::supports_avx2(), "");
6805   assert(dst != xnoreg, "sanity");
6806   InstructionMark im(this);
6807   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6808   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6809   // swap src<->dst for encoding
6810   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6811   emit_int8(0x79);
6812   emit_operand(dst, src);
6813 }
6814 
6815 // xmm/mem sourced byte/word/dword/qword replicate
6816 
6817 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6818 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6819   assert(UseAVX >= 2, "");
6820   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6821   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6822   emit_int8(0x58);
6823   emit_int8((unsigned char)(0xC0 | encode));
6824 }
6825 
6826 void Assembler::vpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6827   assert(VM_Version::supports_avx2(), "");
6828   assert(dst != xnoreg, "sanity");
6829   InstructionMark im(this);
6830   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6831   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6832   // swap src<->dst for encoding
6833   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6834   emit_int8(0x58);
6835   emit_operand(dst, src);
6836 }
6837 
6838 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6839 void Assembler::vpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6840   assert(VM_Version::supports_avx2(), "");
6841   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6842   attributes.set_rex_vex_w_reverted();
6843   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6844   emit_int8(0x59);
6845   emit_int8((unsigned char)(0xC0 | encode));
6846 }
6847 
6848 void Assembler::vpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6849   assert(VM_Version::supports_avx2(), "");
6850   assert(dst != xnoreg, "sanity");
6851   InstructionMark im(this);
6852   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6853   attributes.set_rex_vex_w_reverted();
6854   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6855   // swap src<->dst for encoding
6856   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6857   emit_int8(0x59);
6858   emit_operand(dst, src);
6859 }
6860 void Assembler::evbroadcasti64x2(XMMRegister dst, XMMRegister src, int vector_len) {
6861   assert(vector_len != Assembler::AVX_128bit, "");
6862   assert(VM_Version::supports_avx512dq(), "");
6863   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6864   attributes.set_rex_vex_w_reverted();
6865   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6866   emit_int8(0x5A);
6867   emit_int8((unsigned char)(0xC0 | encode));
6868 }
6869 
6870 void Assembler::evbroadcasti64x2(XMMRegister dst, Address src, int vector_len) {
6871   assert(vector_len != Assembler::AVX_128bit, "");
6872   assert(VM_Version::supports_avx512dq(), "");
6873   assert(dst != xnoreg, "sanity");
6874   InstructionMark im(this);
6875   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6876   attributes.set_rex_vex_w_reverted();
6877   attributes.set_address_attributes(/* tuple_type */ EVEX_T2, /* input_size_in_bits */ EVEX_64bit);
6878   // swap src<->dst for encoding
6879   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6880   emit_int8(0x5A);
6881   emit_operand(dst, src);
6882 }
6883 
6884 // scalar single/double precision replicate
6885 
6886 // duplicate single precision data from src into programmed locations in dest : requires AVX512VL
6887 void Assembler::vpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6888   assert(VM_Version::supports_avx(), "");
6889   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6890   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6891   emit_int8(0x18);
6892   emit_int8((unsigned char)(0xC0 | encode));
6893 }
6894 
6895 void Assembler::vpbroadcastss(XMMRegister dst, Address src, int vector_len) {
6896   assert(VM_Version::supports_avx(), "");
6897   assert(dst != xnoreg, "sanity");
6898   InstructionMark im(this);
6899   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6900   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6901   // swap src<->dst for encoding
6902   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6903   emit_int8(0x18);
6904   emit_operand(dst, src);
6905 }
6906 
6907 // duplicate double precision data from src into programmed locations in dest : requires AVX512VL
6908 void Assembler::vpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6909   assert(VM_Version::supports_avx(), "");
6910   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6911   attributes.set_rex_vex_w_reverted();
6912   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6913   emit_int8(0x19);
6914   emit_int8((unsigned char)(0xC0 | encode));
6915 }
6916 
6917 void Assembler::vpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6918   assert(VM_Version::supports_avx(), "");
6919   assert(dst != xnoreg, "sanity");
6920   InstructionMark im(this);
6921   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6922   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6923   attributes.set_rex_vex_w_reverted();
6924   // swap src<->dst for encoding
6925   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6926   emit_int8(0x19);
6927   emit_operand(dst, src);
6928 }
6929 
6930 
6931 // gpr source broadcast forms
6932 
6933 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6934 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6935   assert(VM_Version::supports_avx512bw(), "");
6936   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6937   attributes.set_is_evex_instruction();
6938   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6939   emit_int8(0x7A);
6940   emit_int8((unsigned char)(0xC0 | encode));
6941 }
6942 
6943 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6944 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6945   assert(VM_Version::supports_avx512bw(), "");
6946   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6947   attributes.set_is_evex_instruction();
6948   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6949   emit_int8(0x7B);
6950   emit_int8((unsigned char)(0xC0 | encode));
6951 }
6952 
6953 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6954 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6955   assert(VM_Version::supports_evex(), "");
6956   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6957   attributes.set_is_evex_instruction();
6958   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6959   emit_int8(0x7C);
6960   emit_int8((unsigned char)(0xC0 | encode));
6961 }
6962 
6963 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6964 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6965   assert(VM_Version::supports_evex(), "");
6966   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6967   attributes.set_is_evex_instruction();
6968   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6969   emit_int8(0x7C);
6970   emit_int8((unsigned char)(0xC0 | encode));
6971 }
6972 
6973 void Assembler::evpgatherdd(XMMRegister dst, KRegister mask, Address src, int vector_len) {
6974   assert(VM_Version::supports_evex(), "");
6975   assert(dst != xnoreg, "sanity");
6976   InstructionMark im(this);
6977   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6978   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6979   attributes.reset_is_clear_context();
6980   attributes.set_embedded_opmask_register_specifier(mask);
6981   attributes.set_is_evex_instruction();
6982   // swap src<->dst for encoding
6983   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6984   emit_int8((unsigned char)0x90);
6985   emit_operand(dst, src);
6986 }
6987 
6988 // Carry-Less Multiplication Quadword
6989 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
6990   assert(VM_Version::supports_clmul(), "");
6991   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
6992   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6993   emit_int8(0x44);
6994   emit_int8((unsigned char)(0xC0 | encode));
6995   emit_int8((unsigned char)mask);
6996 }
6997 
6998 // Carry-Less Multiplication Quadword
6999 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
7000   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
7001   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7002   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7003   emit_int8(0x44);
7004   emit_int8((unsigned char)(0xC0 | encode));
7005   emit_int8((unsigned char)mask);
7006 }
7007 
7008 void Assembler::evpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask, int vector_len) {
7009   assert(VM_Version::supports_vpclmulqdq(), "Requires vector carryless multiplication support");
7010   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
7011   attributes.set_is_evex_instruction();
7012   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7013   emit_int8(0x44);
7014   emit_int8((unsigned char)(0xC0 | encode));
7015   emit_int8((unsigned char)mask);
7016 }
7017 
7018 void Assembler::vzeroupper() {
7019   if (VM_Version::supports_vzeroupper()) {
7020     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
7021     (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
7022     emit_int8(0x77);
7023   }
7024 }
7025 
7026 #ifndef _LP64
7027 // 32bit only pieces of the assembler
7028 
7029 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
7030   // NO PREFIX AS NEVER 64BIT
7031   InstructionMark im(this);
7032   emit_int8((unsigned char)0x81);
7033   emit_int8((unsigned char)(0xF8 | src1->encoding()));
7034   emit_data(imm32, rspec, 0);
7035 }
7036 
7037 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
7038   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
7039   InstructionMark im(this);
7040   emit_int8((unsigned char)0x81);
7041   emit_operand(rdi, src1);
7042   emit_data(imm32, rspec, 0);
7043 }
7044 
7045 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
7046 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
7047 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
7048 void Assembler::cmpxchg8(Address adr) {
7049   InstructionMark im(this);
7050   emit_int8(0x0F);
7051   emit_int8((unsigned char)0xC7);
7052   emit_operand(rcx, adr);
7053 }
7054 
7055 void Assembler::decl(Register dst) {
7056   // Don't use it directly. Use MacroAssembler::decrementl() instead.
7057  emit_int8(0x48 | dst->encoding());
7058 }
7059 
7060 #endif // _LP64
7061 
7062 // 64bit typically doesn't use the x87 but needs to for the trig funcs
7063 
7064 void Assembler::fabs() {
7065   emit_int8((unsigned char)0xD9);
7066   emit_int8((unsigned char)0xE1);
7067 }
7068 
7069 void Assembler::fadd(int i) {
7070   emit_farith(0xD8, 0xC0, i);
7071 }
7072 
7073 void Assembler::fadd_d(Address src) {
7074   InstructionMark im(this);
7075   emit_int8((unsigned char)0xDC);
7076   emit_operand32(rax, src);
7077 }
7078 
7079 void Assembler::fadd_s(Address src) {
7080   InstructionMark im(this);
7081   emit_int8((unsigned char)0xD8);
7082   emit_operand32(rax, src);
7083 }
7084 
7085 void Assembler::fadda(int i) {
7086   emit_farith(0xDC, 0xC0, i);
7087 }
7088 
7089 void Assembler::faddp(int i) {
7090   emit_farith(0xDE, 0xC0, i);
7091 }
7092 
7093 void Assembler::fchs() {
7094   emit_int8((unsigned char)0xD9);
7095   emit_int8((unsigned char)0xE0);
7096 }
7097 
7098 void Assembler::fcom(int i) {
7099   emit_farith(0xD8, 0xD0, i);
7100 }
7101 
7102 void Assembler::fcomp(int i) {
7103   emit_farith(0xD8, 0xD8, i);
7104 }
7105 
7106 void Assembler::fcomp_d(Address src) {
7107   InstructionMark im(this);
7108   emit_int8((unsigned char)0xDC);
7109   emit_operand32(rbx, src);
7110 }
7111 
7112 void Assembler::fcomp_s(Address src) {
7113   InstructionMark im(this);
7114   emit_int8((unsigned char)0xD8);
7115   emit_operand32(rbx, src);
7116 }
7117 
7118 void Assembler::fcompp() {
7119   emit_int8((unsigned char)0xDE);
7120   emit_int8((unsigned char)0xD9);
7121 }
7122 
7123 void Assembler::fcos() {
7124   emit_int8((unsigned char)0xD9);
7125   emit_int8((unsigned char)0xFF);
7126 }
7127 
7128 void Assembler::fdecstp() {
7129   emit_int8((unsigned char)0xD9);
7130   emit_int8((unsigned char)0xF6);
7131 }
7132 
7133 void Assembler::fdiv(int i) {
7134   emit_farith(0xD8, 0xF0, i);
7135 }
7136 
7137 void Assembler::fdiv_d(Address src) {
7138   InstructionMark im(this);
7139   emit_int8((unsigned char)0xDC);
7140   emit_operand32(rsi, src);
7141 }
7142 
7143 void Assembler::fdiv_s(Address src) {
7144   InstructionMark im(this);
7145   emit_int8((unsigned char)0xD8);
7146   emit_operand32(rsi, src);
7147 }
7148 
7149 void Assembler::fdiva(int i) {
7150   emit_farith(0xDC, 0xF8, i);
7151 }
7152 
7153 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
7154 //       is erroneous for some of the floating-point instructions below.
7155 
7156 void Assembler::fdivp(int i) {
7157   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
7158 }
7159 
7160 void Assembler::fdivr(int i) {
7161   emit_farith(0xD8, 0xF8, i);
7162 }
7163 
7164 void Assembler::fdivr_d(Address src) {
7165   InstructionMark im(this);
7166   emit_int8((unsigned char)0xDC);
7167   emit_operand32(rdi, src);
7168 }
7169 
7170 void Assembler::fdivr_s(Address src) {
7171   InstructionMark im(this);
7172   emit_int8((unsigned char)0xD8);
7173   emit_operand32(rdi, src);
7174 }
7175 
7176 void Assembler::fdivra(int i) {
7177   emit_farith(0xDC, 0xF0, i);
7178 }
7179 
7180 void Assembler::fdivrp(int i) {
7181   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
7182 }
7183 
7184 void Assembler::ffree(int i) {
7185   emit_farith(0xDD, 0xC0, i);
7186 }
7187 
7188 void Assembler::fild_d(Address adr) {
7189   InstructionMark im(this);
7190   emit_int8((unsigned char)0xDF);
7191   emit_operand32(rbp, adr);
7192 }
7193 
7194 void Assembler::fild_s(Address adr) {
7195   InstructionMark im(this);
7196   emit_int8((unsigned char)0xDB);
7197   emit_operand32(rax, adr);
7198 }
7199 
7200 void Assembler::fincstp() {
7201   emit_int8((unsigned char)0xD9);
7202   emit_int8((unsigned char)0xF7);
7203 }
7204 
7205 void Assembler::finit() {
7206   emit_int8((unsigned char)0x9B);
7207   emit_int8((unsigned char)0xDB);
7208   emit_int8((unsigned char)0xE3);
7209 }
7210 
7211 void Assembler::fist_s(Address adr) {
7212   InstructionMark im(this);
7213   emit_int8((unsigned char)0xDB);
7214   emit_operand32(rdx, adr);
7215 }
7216 
7217 void Assembler::fistp_d(Address adr) {
7218   InstructionMark im(this);
7219   emit_int8((unsigned char)0xDF);
7220   emit_operand32(rdi, adr);
7221 }
7222 
7223 void Assembler::fistp_s(Address adr) {
7224   InstructionMark im(this);
7225   emit_int8((unsigned char)0xDB);
7226   emit_operand32(rbx, adr);
7227 }
7228 
7229 void Assembler::fld1() {
7230   emit_int8((unsigned char)0xD9);
7231   emit_int8((unsigned char)0xE8);
7232 }
7233 
7234 void Assembler::fld_d(Address adr) {
7235   InstructionMark im(this);
7236   emit_int8((unsigned char)0xDD);
7237   emit_operand32(rax, adr);
7238 }
7239 
7240 void Assembler::fld_s(Address adr) {
7241   InstructionMark im(this);
7242   emit_int8((unsigned char)0xD9);
7243   emit_operand32(rax, adr);
7244 }
7245 
7246 
7247 void Assembler::fld_s(int index) {
7248   emit_farith(0xD9, 0xC0, index);
7249 }
7250 
7251 void Assembler::fld_x(Address adr) {
7252   InstructionMark im(this);
7253   emit_int8((unsigned char)0xDB);
7254   emit_operand32(rbp, adr);
7255 }
7256 
7257 void Assembler::fldcw(Address src) {
7258   InstructionMark im(this);
7259   emit_int8((unsigned char)0xD9);
7260   emit_operand32(rbp, src);
7261 }
7262 
7263 void Assembler::fldenv(Address src) {
7264   InstructionMark im(this);
7265   emit_int8((unsigned char)0xD9);
7266   emit_operand32(rsp, src);
7267 }
7268 
7269 void Assembler::fldlg2() {
7270   emit_int8((unsigned char)0xD9);
7271   emit_int8((unsigned char)0xEC);
7272 }
7273 
7274 void Assembler::fldln2() {
7275   emit_int8((unsigned char)0xD9);
7276   emit_int8((unsigned char)0xED);
7277 }
7278 
7279 void Assembler::fldz() {
7280   emit_int8((unsigned char)0xD9);
7281   emit_int8((unsigned char)0xEE);
7282 }
7283 
7284 void Assembler::flog() {
7285   fldln2();
7286   fxch();
7287   fyl2x();
7288 }
7289 
7290 void Assembler::flog10() {
7291   fldlg2();
7292   fxch();
7293   fyl2x();
7294 }
7295 
7296 void Assembler::fmul(int i) {
7297   emit_farith(0xD8, 0xC8, i);
7298 }
7299 
7300 void Assembler::fmul_d(Address src) {
7301   InstructionMark im(this);
7302   emit_int8((unsigned char)0xDC);
7303   emit_operand32(rcx, src);
7304 }
7305 
7306 void Assembler::fmul_s(Address src) {
7307   InstructionMark im(this);
7308   emit_int8((unsigned char)0xD8);
7309   emit_operand32(rcx, src);
7310 }
7311 
7312 void Assembler::fmula(int i) {
7313   emit_farith(0xDC, 0xC8, i);
7314 }
7315 
7316 void Assembler::fmulp(int i) {
7317   emit_farith(0xDE, 0xC8, i);
7318 }
7319 
7320 void Assembler::fnsave(Address dst) {
7321   InstructionMark im(this);
7322   emit_int8((unsigned char)0xDD);
7323   emit_operand32(rsi, dst);
7324 }
7325 
7326 void Assembler::fnstcw(Address src) {
7327   InstructionMark im(this);
7328   emit_int8((unsigned char)0x9B);
7329   emit_int8((unsigned char)0xD9);
7330   emit_operand32(rdi, src);
7331 }
7332 
7333 void Assembler::fnstsw_ax() {
7334   emit_int8((unsigned char)0xDF);
7335   emit_int8((unsigned char)0xE0);
7336 }
7337 
7338 void Assembler::fprem() {
7339   emit_int8((unsigned char)0xD9);
7340   emit_int8((unsigned char)0xF8);
7341 }
7342 
7343 void Assembler::fprem1() {
7344   emit_int8((unsigned char)0xD9);
7345   emit_int8((unsigned char)0xF5);
7346 }
7347 
7348 void Assembler::frstor(Address src) {
7349   InstructionMark im(this);
7350   emit_int8((unsigned char)0xDD);
7351   emit_operand32(rsp, src);
7352 }
7353 
7354 void Assembler::fsin() {
7355   emit_int8((unsigned char)0xD9);
7356   emit_int8((unsigned char)0xFE);
7357 }
7358 
7359 void Assembler::fsqrt() {
7360   emit_int8((unsigned char)0xD9);
7361   emit_int8((unsigned char)0xFA);
7362 }
7363 
7364 void Assembler::fst_d(Address adr) {
7365   InstructionMark im(this);
7366   emit_int8((unsigned char)0xDD);
7367   emit_operand32(rdx, adr);
7368 }
7369 
7370 void Assembler::fst_s(Address adr) {
7371   InstructionMark im(this);
7372   emit_int8((unsigned char)0xD9);
7373   emit_operand32(rdx, adr);
7374 }
7375 
7376 void Assembler::fstp_d(Address adr) {
7377   InstructionMark im(this);
7378   emit_int8((unsigned char)0xDD);
7379   emit_operand32(rbx, adr);
7380 }
7381 
7382 void Assembler::fstp_d(int index) {
7383   emit_farith(0xDD, 0xD8, index);
7384 }
7385 
7386 void Assembler::fstp_s(Address adr) {
7387   InstructionMark im(this);
7388   emit_int8((unsigned char)0xD9);
7389   emit_operand32(rbx, adr);
7390 }
7391 
7392 void Assembler::fstp_x(Address adr) {
7393   InstructionMark im(this);
7394   emit_int8((unsigned char)0xDB);
7395   emit_operand32(rdi, adr);
7396 }
7397 
7398 void Assembler::fsub(int i) {
7399   emit_farith(0xD8, 0xE0, i);
7400 }
7401 
7402 void Assembler::fsub_d(Address src) {
7403   InstructionMark im(this);
7404   emit_int8((unsigned char)0xDC);
7405   emit_operand32(rsp, src);
7406 }
7407 
7408 void Assembler::fsub_s(Address src) {
7409   InstructionMark im(this);
7410   emit_int8((unsigned char)0xD8);
7411   emit_operand32(rsp, src);
7412 }
7413 
7414 void Assembler::fsuba(int i) {
7415   emit_farith(0xDC, 0xE8, i);
7416 }
7417 
7418 void Assembler::fsubp(int i) {
7419   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
7420 }
7421 
7422 void Assembler::fsubr(int i) {
7423   emit_farith(0xD8, 0xE8, i);
7424 }
7425 
7426 void Assembler::fsubr_d(Address src) {
7427   InstructionMark im(this);
7428   emit_int8((unsigned char)0xDC);
7429   emit_operand32(rbp, src);
7430 }
7431 
7432 void Assembler::fsubr_s(Address src) {
7433   InstructionMark im(this);
7434   emit_int8((unsigned char)0xD8);
7435   emit_operand32(rbp, src);
7436 }
7437 
7438 void Assembler::fsubra(int i) {
7439   emit_farith(0xDC, 0xE0, i);
7440 }
7441 
7442 void Assembler::fsubrp(int i) {
7443   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
7444 }
7445 
7446 void Assembler::ftan() {
7447   emit_int8((unsigned char)0xD9);
7448   emit_int8((unsigned char)0xF2);
7449   emit_int8((unsigned char)0xDD);
7450   emit_int8((unsigned char)0xD8);
7451 }
7452 
7453 void Assembler::ftst() {
7454   emit_int8((unsigned char)0xD9);
7455   emit_int8((unsigned char)0xE4);
7456 }
7457 
7458 void Assembler::fucomi(int i) {
7459   // make sure the instruction is supported (introduced for P6, together with cmov)
7460   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7461   emit_farith(0xDB, 0xE8, i);
7462 }
7463 
7464 void Assembler::fucomip(int i) {
7465   // make sure the instruction is supported (introduced for P6, together with cmov)
7466   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7467   emit_farith(0xDF, 0xE8, i);
7468 }
7469 
7470 void Assembler::fwait() {
7471   emit_int8((unsigned char)0x9B);
7472 }
7473 
7474 void Assembler::fxch(int i) {
7475   emit_farith(0xD9, 0xC8, i);
7476 }
7477 
7478 void Assembler::fyl2x() {
7479   emit_int8((unsigned char)0xD9);
7480   emit_int8((unsigned char)0xF1);
7481 }
7482 
7483 void Assembler::frndint() {
7484   emit_int8((unsigned char)0xD9);
7485   emit_int8((unsigned char)0xFC);
7486 }
7487 
7488 void Assembler::f2xm1() {
7489   emit_int8((unsigned char)0xD9);
7490   emit_int8((unsigned char)0xF0);
7491 }
7492 
7493 void Assembler::fldl2e() {
7494   emit_int8((unsigned char)0xD9);
7495   emit_int8((unsigned char)0xEA);
7496 }
7497 
7498 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
7499 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
7500 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
7501 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
7502 
7503 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
7504 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7505   if (pre > 0) {
7506     emit_int8(simd_pre[pre]);
7507   }
7508   if (rex_w) {
7509     prefixq(adr, xreg);
7510   } else {
7511     prefix(adr, xreg);
7512   }
7513   if (opc > 0) {
7514     emit_int8(0x0F);
7515     int opc2 = simd_opc[opc];
7516     if (opc2 > 0) {
7517       emit_int8(opc2);
7518     }
7519   }
7520 }
7521 
7522 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7523   if (pre > 0) {
7524     emit_int8(simd_pre[pre]);
7525   }
7526   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
7527   if (opc > 0) {
7528     emit_int8(0x0F);
7529     int opc2 = simd_opc[opc];
7530     if (opc2 > 0) {
7531       emit_int8(opc2);
7532     }
7533   }
7534   return encode;
7535 }
7536 
7537 
7538 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
7539   int vector_len = _attributes->get_vector_len();
7540   bool vex_w = _attributes->is_rex_vex_w();
7541   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
7542     prefix(VEX_3bytes);
7543 
7544     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
7545     byte1 = (~byte1) & 0xE0;
7546     byte1 |= opc;
7547     emit_int8(byte1);
7548 
7549     int byte2 = ((~nds_enc) & 0xf) << 3;
7550     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
7551     emit_int8(byte2);
7552   } else {
7553     prefix(VEX_2bytes);
7554 
7555     int byte1 = vex_r ? VEX_R : 0;
7556     byte1 = (~byte1) & 0x80;
7557     byte1 |= ((~nds_enc) & 0xf) << 3;
7558     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
7559     emit_int8(byte1);
7560   }
7561 }
7562 
7563 // This is a 4 byte encoding
7564 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
7565   // EVEX 0x62 prefix
7566   prefix(EVEX_4bytes);
7567   bool vex_w = _attributes->is_rex_vex_w();
7568   int evex_encoding = (vex_w ? VEX_W : 0);
7569   // EVEX.b is not currently used for broadcast of single element or data rounding modes
7570   _attributes->set_evex_encoding(evex_encoding);
7571 
7572   // P0: byte 2, initialized to RXBR`00mm
7573   // instead of not'd
7574   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
7575   byte2 = (~byte2) & 0xF0;
7576   // confine opc opcode extensions in mm bits to lower two bits
7577   // of form {0F, 0F_38, 0F_3A}
7578   byte2 |= opc;
7579   emit_int8(byte2);
7580 
7581   // P1: byte 3 as Wvvvv1pp
7582   int byte3 = ((~nds_enc) & 0xf) << 3;
7583   // p[10] is always 1
7584   byte3 |= EVEX_F;
7585   byte3 |= (vex_w & 1) << 7;
7586   // confine pre opcode extensions in pp bits to lower two bits
7587   // of form {66, F3, F2}
7588   byte3 |= pre;
7589   emit_int8(byte3);
7590 
7591   // P2: byte 4 as zL'Lbv'aaa
7592   // kregs are implemented in the low 3 bits as aaa
7593   int byte4 = (_attributes->is_no_reg_mask()) ?
7594               0 :
7595               _attributes->get_embedded_opmask_register_specifier();
7596   // EVEX.v` for extending EVEX.vvvv or VIDX
7597   byte4 |= (evex_v ? 0: EVEX_V);
7598   // third EXEC.b for broadcast actions
7599   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
7600   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
7601   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
7602   // last is EVEX.z for zero/merge actions
7603   if (_attributes->is_no_reg_mask() == false) {
7604     byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
7605   }
7606   emit_int8(byte4);
7607 }
7608 
7609 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7610   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
7611   bool vex_b = adr.base_needs_rex();
7612   bool vex_x;
7613   if (adr.isxmmindex()) {
7614     vex_x = adr.xmmindex_needs_rex();
7615   } else {
7616     vex_x = adr.index_needs_rex();
7617   }
7618   set_attributes(attributes);
7619   attributes->set_current_assembler(this);
7620 
7621   // For EVEX instruction (which is not marked as pure EVEX instruction) check and see if this instruction
7622   // is allowed in legacy mode and has resources which will fit in it.
7623   // Pure EVEX instructions will have is_evex_instruction set in their definition.
7624   if (!attributes->is_legacy_mode()) {
7625     if (UseAVX > 2 && !attributes->is_evex_instruction() && !_is_managed) {
7626       if ((attributes->get_vector_len() != AVX_512bit) && (nds_enc < 16) && (xreg_enc < 16)) {
7627           attributes->set_is_legacy_mode();
7628       }
7629     }
7630   }
7631 
7632   if (UseAVX > 2) {
7633     assert(((!attributes->uses_vl()) ||
7634             (attributes->get_vector_len() == AVX_512bit) ||
7635             (!_legacy_mode_vl) ||
7636             (attributes->is_legacy_mode())),"XMM register should be 0-15");
7637     assert(((nds_enc < 16 && xreg_enc < 16) || (!attributes->is_legacy_mode())),"XMM register should be 0-15");
7638   }
7639 
7640   _is_managed = false;
7641   if (UseAVX > 2 && !attributes->is_legacy_mode())
7642   {
7643     bool evex_r = (xreg_enc >= 16);
7644     bool evex_v;
7645     // EVEX.V' is set to true when VSIB is used as we may need to use higher order XMM registers (16-31)
7646     if (adr.isxmmindex())  {
7647       evex_v = ((adr._xmmindex->encoding() > 15) ? true : false);
7648     } else {
7649       evex_v = (nds_enc >= 16);
7650     }
7651     attributes->set_is_evex_instruction();
7652     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7653   } else {
7654     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7655       attributes->set_rex_vex_w(false);
7656     }
7657     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7658   }
7659 }
7660 
7661 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7662   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
7663   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
7664   bool vex_x = false;
7665   set_attributes(attributes);
7666   attributes->set_current_assembler(this);
7667 
7668   // For EVEX instruction (which is not marked as pure EVEX instruction) check and see if this instruction
7669   // is allowed in legacy mode and has resources which will fit in it.
7670   // Pure EVEX instructions will have is_evex_instruction set in their definition.
7671   if (!attributes->is_legacy_mode()) {
7672     if (UseAVX > 2 && !attributes->is_evex_instruction() && !_is_managed) {
7673       if ((!attributes->uses_vl() || (attributes->get_vector_len() != AVX_512bit)) &&
7674           (dst_enc < 16) && (nds_enc < 16) && (src_enc < 16)) {
7675           attributes->set_is_legacy_mode();
7676       }
7677     }
7678   }
7679 
7680   if (UseAVX > 2) {
7681     // All the scalar fp instructions (with uses_vl as false) can have legacy_mode as false
7682     // Instruction with uses_vl true are vector instructions
7683     // All the vector instructions with AVX_512bit length can have legacy_mode as false
7684     // All the vector instructions with < AVX_512bit length can have legacy_mode as false if AVX512vl() is supported
7685     // Rest all should have legacy_mode set as true
7686     assert(((!attributes->uses_vl()) ||
7687             (attributes->get_vector_len() == AVX_512bit) ||
7688             (!_legacy_mode_vl) ||
7689             (attributes->is_legacy_mode())),"XMM register should be 0-15");
7690     // Instruction with legacy_mode true should have dst, nds and src < 15
7691     assert(((dst_enc < 16 && nds_enc < 16 && src_enc < 16) || (!attributes->is_legacy_mode())),"XMM register should be 0-15");
7692   }
7693 
7694   _is_managed = false;
7695   if (UseAVX > 2 && !attributes->is_legacy_mode())
7696   {
7697     bool evex_r = (dst_enc >= 16);
7698     bool evex_v = (nds_enc >= 16);
7699     // can use vex_x as bank extender on rm encoding
7700     vex_x = (src_enc >= 16);
7701     attributes->set_is_evex_instruction();
7702     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7703   } else {
7704     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7705       attributes->set_rex_vex_w(false);
7706     }
7707     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7708   }
7709 
7710   // return modrm byte components for operands
7711   return (((dst_enc & 7) << 3) | (src_enc & 7));
7712 }
7713 
7714 
7715 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
7716                             VexOpcode opc, InstructionAttr *attributes) {
7717   if (UseAVX > 0) {
7718     int xreg_enc = xreg->encoding();
7719     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7720     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
7721   } else {
7722     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
7723     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
7724   }
7725 }
7726 
7727 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
7728                                       VexOpcode opc, InstructionAttr *attributes) {
7729   int dst_enc = dst->encoding();
7730   int src_enc = src->encoding();
7731   if (UseAVX > 0) {
7732     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7733     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
7734   } else {
7735     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
7736     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
7737   }
7738 }
7739 
7740 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7741   assert(VM_Version::supports_avx(), "");
7742   assert(!VM_Version::supports_evex(), "");
7743   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7744   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7745   emit_int8((unsigned char)0xC2);
7746   emit_int8((unsigned char)(0xC0 | encode));
7747   emit_int8((unsigned char)(0xF & cop));
7748 }
7749 
7750 void Assembler::blendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7751   assert(VM_Version::supports_avx(), "");
7752   assert(!VM_Version::supports_evex(), "");
7753   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7754   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7755   emit_int8((unsigned char)0x4B);
7756   emit_int8((unsigned char)(0xC0 | encode));
7757   int src2_enc = src2->encoding();
7758   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
7759 }
7760 
7761 void Assembler::cmpps(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7762   assert(VM_Version::supports_avx(), "");
7763   assert(!VM_Version::supports_evex(), "");
7764   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7765   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
7766   emit_int8((unsigned char)0xC2);
7767   emit_int8((unsigned char)(0xC0 | encode));
7768   emit_int8((unsigned char)(0xF & cop));
7769 }
7770 
7771 void Assembler::blendvps(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7772   assert(VM_Version::supports_avx(), "");
7773   assert(!VM_Version::supports_evex(), "");
7774   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7775   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7776   emit_int8((unsigned char)0x4A);
7777   emit_int8((unsigned char)(0xC0 | encode));
7778   int src2_enc = src2->encoding();
7779   emit_int8((unsigned char)(0xF0 & src2_enc<<4));
7780 }
7781 
7782 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
7783   assert(VM_Version::supports_avx2(), "");
7784   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7785   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7786   emit_int8((unsigned char)0x02);
7787   emit_int8((unsigned char)(0xC0 | encode));
7788   emit_int8((unsigned char)imm8);
7789 }
7790 
7791 void Assembler::shlxl(Register dst, Register src1, Register src2) {
7792   assert(VM_Version::supports_bmi2(), "");
7793   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7794   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7795   emit_int8((unsigned char)0xF7);
7796   emit_int8((unsigned char)(0xC0 | encode));
7797 }
7798 
7799 void Assembler::shlxq(Register dst, Register src1, Register src2) {
7800   assert(VM_Version::supports_bmi2(), "");
7801   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7802   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7803   emit_int8((unsigned char)0xF7);
7804   emit_int8((unsigned char)(0xC0 | encode));
7805 }
7806 
7807 #ifndef _LP64
7808 
7809 void Assembler::incl(Register dst) {
7810   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7811   emit_int8(0x40 | dst->encoding());
7812 }
7813 
7814 void Assembler::lea(Register dst, Address src) {
7815   leal(dst, src);
7816 }
7817 
7818 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
7819   InstructionMark im(this);
7820   emit_int8((unsigned char)0xC7);
7821   emit_operand(rax, dst);
7822   emit_data((int)imm32, rspec, 0);
7823 }
7824 
7825 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7826   InstructionMark im(this);
7827   int encode = prefix_and_encode(dst->encoding());
7828   emit_int8((unsigned char)(0xB8 | encode));
7829   emit_data((int)imm32, rspec, 0);
7830 }
7831 
7832 void Assembler::popa() { // 32bit
7833   emit_int8(0x61);
7834 }
7835 
7836 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
7837   InstructionMark im(this);
7838   emit_int8(0x68);
7839   emit_data(imm32, rspec, 0);
7840 }
7841 
7842 void Assembler::pusha() { // 32bit
7843   emit_int8(0x60);
7844 }
7845 
7846 void Assembler::set_byte_if_not_zero(Register dst) {
7847   emit_int8(0x0F);
7848   emit_int8((unsigned char)0x95);
7849   emit_int8((unsigned char)(0xE0 | dst->encoding()));
7850 }
7851 
7852 void Assembler::shldl(Register dst, Register src) {
7853   emit_int8(0x0F);
7854   emit_int8((unsigned char)0xA5);
7855   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7856 }
7857 
7858 // 0F A4 / r ib
7859 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
7860   emit_int8(0x0F);
7861   emit_int8((unsigned char)0xA4);
7862   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7863   emit_int8(imm8);
7864 }
7865 
7866 void Assembler::shrdl(Register dst, Register src) {
7867   emit_int8(0x0F);
7868   emit_int8((unsigned char)0xAD);
7869   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
7870 }
7871 
7872 #else // LP64
7873 
7874 void Assembler::set_byte_if_not_zero(Register dst) {
7875   int enc = prefix_and_encode(dst->encoding(), true);
7876   emit_int8(0x0F);
7877   emit_int8((unsigned char)0x95);
7878   emit_int8((unsigned char)(0xE0 | enc));
7879 }
7880 
7881 // 64bit only pieces of the assembler
7882 // This should only be used by 64bit instructions that can use rip-relative
7883 // it cannot be used by instructions that want an immediate value.
7884 
7885 bool Assembler::reachable(AddressLiteral adr) {
7886   int64_t disp;
7887   // None will force a 64bit literal to the code stream. Likely a placeholder
7888   // for something that will be patched later and we need to certain it will
7889   // always be reachable.
7890   if (adr.reloc() == relocInfo::none) {
7891     return false;
7892   }
7893   if (adr.reloc() == relocInfo::internal_word_type) {
7894     // This should be rip relative and easily reachable.
7895     return true;
7896   }
7897   if (adr.reloc() == relocInfo::virtual_call_type ||
7898       adr.reloc() == relocInfo::opt_virtual_call_type ||
7899       adr.reloc() == relocInfo::static_call_type ||
7900       adr.reloc() == relocInfo::static_stub_type ) {
7901     // This should be rip relative within the code cache and easily
7902     // reachable until we get huge code caches. (At which point
7903     // ic code is going to have issues).
7904     return true;
7905   }
7906   if (adr.reloc() != relocInfo::external_word_type &&
7907       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
7908       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
7909       adr.reloc() != relocInfo::runtime_call_type ) {
7910     return false;
7911   }
7912 
7913   // Stress the correction code
7914   if (ForceUnreachable) {
7915     // Must be runtimecall reloc, see if it is in the codecache
7916     // Flipping stuff in the codecache to be unreachable causes issues
7917     // with things like inline caches where the additional instructions
7918     // are not handled.
7919     if (CodeCache::find_blob(adr._target) == NULL) {
7920       return false;
7921     }
7922   }
7923   // For external_word_type/runtime_call_type if it is reachable from where we
7924   // are now (possibly a temp buffer) and where we might end up
7925   // anywhere in the codeCache then we are always reachable.
7926   // This would have to change if we ever save/restore shared code
7927   // to be more pessimistic.
7928   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7929   if (!is_simm32(disp)) return false;
7930   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7931   if (!is_simm32(disp)) return false;
7932 
7933   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7934 
7935   // Because rip relative is a disp + address_of_next_instruction and we
7936   // don't know the value of address_of_next_instruction we apply a fudge factor
7937   // to make sure we will be ok no matter the size of the instruction we get placed into.
7938   // We don't have to fudge the checks above here because they are already worst case.
7939 
7940   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
7941   // + 4 because better safe than sorry.
7942   const int fudge = 12 + 4;
7943   if (disp < 0) {
7944     disp -= fudge;
7945   } else {
7946     disp += fudge;
7947   }
7948   return is_simm32(disp);
7949 }
7950 
7951 // Check if the polling page is not reachable from the code cache using rip-relative
7952 // addressing.
7953 bool Assembler::is_polling_page_far() {
7954   intptr_t addr = (intptr_t)os::get_polling_page();
7955   return ForceUnreachable ||
7956          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
7957          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
7958 }
7959 
7960 void Assembler::emit_data64(jlong data,
7961                             relocInfo::relocType rtype,
7962                             int format) {
7963   if (rtype == relocInfo::none) {
7964     emit_int64(data);
7965   } else {
7966     emit_data64(data, Relocation::spec_simple(rtype), format);
7967   }
7968 }
7969 
7970 void Assembler::emit_data64(jlong data,
7971                             RelocationHolder const& rspec,
7972                             int format) {
7973   assert(imm_operand == 0, "default format must be immediate in this file");
7974   assert(imm_operand == format, "must be immediate");
7975   assert(inst_mark() != NULL, "must be inside InstructionMark");
7976   // Do not use AbstractAssembler::relocate, which is not intended for
7977   // embedded words.  Instead, relocate to the enclosing instruction.
7978   code_section()->relocate(inst_mark(), rspec, format);
7979 #ifdef ASSERT
7980   check_relocation(rspec, format);
7981 #endif
7982   emit_int64(data);
7983 }
7984 
7985 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
7986   if (reg_enc >= 8) {
7987     prefix(REX_B);
7988     reg_enc -= 8;
7989   } else if (byteinst && reg_enc >= 4) {
7990     prefix(REX);
7991   }
7992   return reg_enc;
7993 }
7994 
7995 int Assembler::prefixq_and_encode(int reg_enc) {
7996   if (reg_enc < 8) {
7997     prefix(REX_W);
7998   } else {
7999     prefix(REX_WB);
8000     reg_enc -= 8;
8001   }
8002   return reg_enc;
8003 }
8004 
8005 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
8006   if (dst_enc < 8) {
8007     if (src_enc >= 8) {
8008       prefix(REX_B);
8009       src_enc -= 8;
8010     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
8011       prefix(REX);
8012     }
8013   } else {
8014     if (src_enc < 8) {
8015       prefix(REX_R);
8016     } else {
8017       prefix(REX_RB);
8018       src_enc -= 8;
8019     }
8020     dst_enc -= 8;
8021   }
8022   return dst_enc << 3 | src_enc;
8023 }
8024 
8025 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
8026   if (dst_enc < 8) {
8027     if (src_enc < 8) {
8028       prefix(REX_W);
8029     } else {
8030       prefix(REX_WB);
8031       src_enc -= 8;
8032     }
8033   } else {
8034     if (src_enc < 8) {
8035       prefix(REX_WR);
8036     } else {
8037       prefix(REX_WRB);
8038       src_enc -= 8;
8039     }
8040     dst_enc -= 8;
8041   }
8042   return dst_enc << 3 | src_enc;
8043 }
8044 
8045 void Assembler::prefix(Register reg) {
8046   if (reg->encoding() >= 8) {
8047     prefix(REX_B);
8048   }
8049 }
8050 
8051 void Assembler::prefix(Register dst, Register src, Prefix p) {
8052   if (src->encoding() >= 8) {
8053     p = (Prefix)(p | REX_B);
8054   }
8055   if (dst->encoding() >= 8) {
8056     p = (Prefix)( p | REX_R);
8057   }
8058   if (p != Prefix_EMPTY) {
8059     // do not generate an empty prefix
8060     prefix(p);
8061   }
8062 }
8063 
8064 void Assembler::prefix(Register dst, Address adr, Prefix p) {
8065   if (adr.base_needs_rex()) {
8066     if (adr.index_needs_rex()) {
8067       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
8068     } else {
8069       prefix(REX_B);
8070     }
8071   } else {
8072     if (adr.index_needs_rex()) {
8073       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
8074     }
8075   }
8076   if (dst->encoding() >= 8) {
8077     p = (Prefix)(p | REX_R);
8078   }
8079   if (p != Prefix_EMPTY) {
8080     // do not generate an empty prefix
8081     prefix(p);
8082   }
8083 }
8084 
8085 void Assembler::prefix(Address adr) {
8086   if (adr.base_needs_rex()) {
8087     if (adr.index_needs_rex()) {
8088       prefix(REX_XB);
8089     } else {
8090       prefix(REX_B);
8091     }
8092   } else {
8093     if (adr.index_needs_rex()) {
8094       prefix(REX_X);
8095     }
8096   }
8097 }
8098 
8099 void Assembler::prefixq(Address adr) {
8100   if (adr.base_needs_rex()) {
8101     if (adr.index_needs_rex()) {
8102       prefix(REX_WXB);
8103     } else {
8104       prefix(REX_WB);
8105     }
8106   } else {
8107     if (adr.index_needs_rex()) {
8108       prefix(REX_WX);
8109     } else {
8110       prefix(REX_W);
8111     }
8112   }
8113 }
8114 
8115 
8116 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
8117   if (reg->encoding() < 8) {
8118     if (adr.base_needs_rex()) {
8119       if (adr.index_needs_rex()) {
8120         prefix(REX_XB);
8121       } else {
8122         prefix(REX_B);
8123       }
8124     } else {
8125       if (adr.index_needs_rex()) {
8126         prefix(REX_X);
8127       } else if (byteinst && reg->encoding() >= 4 ) {
8128         prefix(REX);
8129       }
8130     }
8131   } else {
8132     if (adr.base_needs_rex()) {
8133       if (adr.index_needs_rex()) {
8134         prefix(REX_RXB);
8135       } else {
8136         prefix(REX_RB);
8137       }
8138     } else {
8139       if (adr.index_needs_rex()) {
8140         prefix(REX_RX);
8141       } else {
8142         prefix(REX_R);
8143       }
8144     }
8145   }
8146 }
8147 
8148 void Assembler::prefixq(Address adr, Register src) {
8149   if (src->encoding() < 8) {
8150     if (adr.base_needs_rex()) {
8151       if (adr.index_needs_rex()) {
8152         prefix(REX_WXB);
8153       } else {
8154         prefix(REX_WB);
8155       }
8156     } else {
8157       if (adr.index_needs_rex()) {
8158         prefix(REX_WX);
8159       } else {
8160         prefix(REX_W);
8161       }
8162     }
8163   } else {
8164     if (adr.base_needs_rex()) {
8165       if (adr.index_needs_rex()) {
8166         prefix(REX_WRXB);
8167       } else {
8168         prefix(REX_WRB);
8169       }
8170     } else {
8171       if (adr.index_needs_rex()) {
8172         prefix(REX_WRX);
8173       } else {
8174         prefix(REX_WR);
8175       }
8176     }
8177   }
8178 }
8179 
8180 void Assembler::prefix(Address adr, XMMRegister reg) {
8181   if (reg->encoding() < 8) {
8182     if (adr.base_needs_rex()) {
8183       if (adr.index_needs_rex()) {
8184         prefix(REX_XB);
8185       } else {
8186         prefix(REX_B);
8187       }
8188     } else {
8189       if (adr.index_needs_rex()) {
8190         prefix(REX_X);
8191       }
8192     }
8193   } else {
8194     if (adr.base_needs_rex()) {
8195       if (adr.index_needs_rex()) {
8196         prefix(REX_RXB);
8197       } else {
8198         prefix(REX_RB);
8199       }
8200     } else {
8201       if (adr.index_needs_rex()) {
8202         prefix(REX_RX);
8203       } else {
8204         prefix(REX_R);
8205       }
8206     }
8207   }
8208 }
8209 
8210 void Assembler::prefixq(Address adr, XMMRegister src) {
8211   if (src->encoding() < 8) {
8212     if (adr.base_needs_rex()) {
8213       if (adr.index_needs_rex()) {
8214         prefix(REX_WXB);
8215       } else {
8216         prefix(REX_WB);
8217       }
8218     } else {
8219       if (adr.index_needs_rex()) {
8220         prefix(REX_WX);
8221       } else {
8222         prefix(REX_W);
8223       }
8224     }
8225   } else {
8226     if (adr.base_needs_rex()) {
8227       if (adr.index_needs_rex()) {
8228         prefix(REX_WRXB);
8229       } else {
8230         prefix(REX_WRB);
8231       }
8232     } else {
8233       if (adr.index_needs_rex()) {
8234         prefix(REX_WRX);
8235       } else {
8236         prefix(REX_WR);
8237       }
8238     }
8239   }
8240 }
8241 
8242 void Assembler::adcq(Register dst, int32_t imm32) {
8243   (void) prefixq_and_encode(dst->encoding());
8244   emit_arith(0x81, 0xD0, dst, imm32);
8245 }
8246 
8247 void Assembler::adcq(Register dst, Address src) {
8248   InstructionMark im(this);
8249   prefixq(src, dst);
8250   emit_int8(0x13);
8251   emit_operand(dst, src);
8252 }
8253 
8254 void Assembler::adcq(Register dst, Register src) {
8255   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8256   emit_arith(0x13, 0xC0, dst, src);
8257 }
8258 
8259 void Assembler::addq(Address dst, int32_t imm32) {
8260   InstructionMark im(this);
8261   prefixq(dst);
8262   emit_arith_operand(0x81, rax, dst,imm32);
8263 }
8264 
8265 void Assembler::addq(Address dst, Register src) {
8266   InstructionMark im(this);
8267   prefixq(dst, src);
8268   emit_int8(0x01);
8269   emit_operand(src, dst);
8270 }
8271 
8272 void Assembler::addq(Register dst, int32_t imm32) {
8273   (void) prefixq_and_encode(dst->encoding());
8274   emit_arith(0x81, 0xC0, dst, imm32);
8275 }
8276 
8277 void Assembler::addq(Register dst, Address src) {
8278   InstructionMark im(this);
8279   prefixq(src, dst);
8280   emit_int8(0x03);
8281   emit_operand(dst, src);
8282 }
8283 
8284 void Assembler::addq(Register dst, Register src) {
8285   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8286   emit_arith(0x03, 0xC0, dst, src);
8287 }
8288 
8289 void Assembler::adcxq(Register dst, Register src) {
8290   //assert(VM_Version::supports_adx(), "adx instructions not supported");
8291   emit_int8((unsigned char)0x66);
8292   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8293   emit_int8(0x0F);
8294   emit_int8(0x38);
8295   emit_int8((unsigned char)0xF6);
8296   emit_int8((unsigned char)(0xC0 | encode));
8297 }
8298 
8299 void Assembler::adoxq(Register dst, Register src) {
8300   //assert(VM_Version::supports_adx(), "adx instructions not supported");
8301   emit_int8((unsigned char)0xF3);
8302   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8303   emit_int8(0x0F);
8304   emit_int8(0x38);
8305   emit_int8((unsigned char)0xF6);
8306   emit_int8((unsigned char)(0xC0 | encode));
8307 }
8308 
8309 void Assembler::andq(Address dst, int32_t imm32) {
8310   InstructionMark im(this);
8311   prefixq(dst);
8312   emit_int8((unsigned char)0x81);
8313   emit_operand(rsp, dst, 4);
8314   emit_int32(imm32);
8315 }
8316 
8317 void Assembler::andq(Register dst, int32_t imm32) {
8318   (void) prefixq_and_encode(dst->encoding());
8319   emit_arith(0x81, 0xE0, dst, imm32);
8320 }
8321 
8322 void Assembler::andq(Register dst, Address src) {
8323   InstructionMark im(this);
8324   prefixq(src, dst);
8325   emit_int8(0x23);
8326   emit_operand(dst, src);
8327 }
8328 
8329 void Assembler::andq(Register dst, Register src) {
8330   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8331   emit_arith(0x23, 0xC0, dst, src);
8332 }
8333 
8334 void Assembler::andnq(Register dst, Register src1, Register src2) {
8335   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8336   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8337   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8338   emit_int8((unsigned char)0xF2);
8339   emit_int8((unsigned char)(0xC0 | encode));
8340 }
8341 
8342 void Assembler::andnq(Register dst, Register src1, Address src2) {
8343   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8344   InstructionMark im(this);
8345   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8346   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8347   emit_int8((unsigned char)0xF2);
8348   emit_operand(dst, src2);
8349 }
8350 
8351 void Assembler::bsfq(Register dst, Register src) {
8352   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8353   emit_int8(0x0F);
8354   emit_int8((unsigned char)0xBC);
8355   emit_int8((unsigned char)(0xC0 | encode));
8356 }
8357 
8358 void Assembler::bsrq(Register dst, Register src) {
8359   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8360   emit_int8(0x0F);
8361   emit_int8((unsigned char)0xBD);
8362   emit_int8((unsigned char)(0xC0 | encode));
8363 }
8364 
8365 void Assembler::bswapq(Register reg) {
8366   int encode = prefixq_and_encode(reg->encoding());
8367   emit_int8(0x0F);
8368   emit_int8((unsigned char)(0xC8 | encode));
8369 }
8370 
8371 void Assembler::blsiq(Register dst, Register src) {
8372   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8373   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8374   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8375   emit_int8((unsigned char)0xF3);
8376   emit_int8((unsigned char)(0xC0 | encode));
8377 }
8378 
8379 void Assembler::blsiq(Register dst, Address src) {
8380   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8381   InstructionMark im(this);
8382   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8383   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8384   emit_int8((unsigned char)0xF3);
8385   emit_operand(rbx, src);
8386 }
8387 
8388 void Assembler::blsmskq(Register dst, Register src) {
8389   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8390   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8391   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8392   emit_int8((unsigned char)0xF3);
8393   emit_int8((unsigned char)(0xC0 | encode));
8394 }
8395 
8396 void Assembler::blsmskq(Register dst, Address src) {
8397   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8398   InstructionMark im(this);
8399   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8400   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8401   emit_int8((unsigned char)0xF3);
8402   emit_operand(rdx, src);
8403 }
8404 
8405 void Assembler::blsrq(Register dst, Register src) {
8406   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8407   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8408   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8409   emit_int8((unsigned char)0xF3);
8410   emit_int8((unsigned char)(0xC0 | encode));
8411 }
8412 
8413 void Assembler::blsrq(Register dst, Address src) {
8414   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8415   InstructionMark im(this);
8416   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8417   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8418   emit_int8((unsigned char)0xF3);
8419   emit_operand(rcx, src);
8420 }
8421 
8422 void Assembler::cdqq() {
8423   prefix(REX_W);
8424   emit_int8((unsigned char)0x99);
8425 }
8426 
8427 void Assembler::clflush(Address adr) {
8428   prefix(adr);
8429   emit_int8(0x0F);
8430   emit_int8((unsigned char)0xAE);
8431   emit_operand(rdi, adr);
8432 }
8433 
8434 void Assembler::cmovq(Condition cc, Register dst, Register src) {
8435   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8436   emit_int8(0x0F);
8437   emit_int8(0x40 | cc);
8438   emit_int8((unsigned char)(0xC0 | encode));
8439 }
8440 
8441 void Assembler::cmovq(Condition cc, Register dst, Address src) {
8442   InstructionMark im(this);
8443   prefixq(src, dst);
8444   emit_int8(0x0F);
8445   emit_int8(0x40 | cc);
8446   emit_operand(dst, src);
8447 }
8448 
8449 void Assembler::cmpq(Address dst, int32_t imm32) {
8450   InstructionMark im(this);
8451   prefixq(dst);
8452   emit_int8((unsigned char)0x81);
8453   emit_operand(rdi, dst, 4);
8454   emit_int32(imm32);
8455 }
8456 
8457 void Assembler::cmpq(Register dst, int32_t imm32) {
8458   (void) prefixq_and_encode(dst->encoding());
8459   emit_arith(0x81, 0xF8, dst, imm32);
8460 }
8461 
8462 void Assembler::cmpq(Address dst, Register src) {
8463   InstructionMark im(this);
8464   prefixq(dst, src);
8465   emit_int8(0x3B);
8466   emit_operand(src, dst);
8467 }
8468 
8469 void Assembler::cmpq(Register dst, Register src) {
8470   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8471   emit_arith(0x3B, 0xC0, dst, src);
8472 }
8473 
8474 void Assembler::cmpq(Register dst, Address  src) {
8475   InstructionMark im(this);
8476   prefixq(src, dst);
8477   emit_int8(0x3B);
8478   emit_operand(dst, src);
8479 }
8480 
8481 void Assembler::cmpxchgq(Register reg, Address adr) {
8482   InstructionMark im(this);
8483   prefixq(adr, reg);
8484   emit_int8(0x0F);
8485   emit_int8((unsigned char)0xB1);
8486   emit_operand(reg, adr);
8487 }
8488 
8489 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
8490   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8491   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8492   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8493   emit_int8(0x2A);
8494   emit_int8((unsigned char)(0xC0 | encode));
8495 }
8496 
8497 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
8498   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8499   InstructionMark im(this);
8500   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8501   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8502   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8503   emit_int8(0x2A);
8504   emit_operand(dst, src);
8505 }
8506 
8507 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
8508   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8509   InstructionMark im(this);
8510   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8511   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8512   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8513   emit_int8(0x2A);
8514   emit_operand(dst, src);
8515 }
8516 
8517 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
8518   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8519   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8520   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8521   emit_int8(0x2C);
8522   emit_int8((unsigned char)(0xC0 | encode));
8523 }
8524 
8525 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
8526   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8527   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8528   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8529   emit_int8(0x2C);
8530   emit_int8((unsigned char)(0xC0 | encode));
8531 }
8532 
8533 void Assembler::decl(Register dst) {
8534   // Don't use it directly. Use MacroAssembler::decrementl() instead.
8535   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
8536   int encode = prefix_and_encode(dst->encoding());
8537   emit_int8((unsigned char)0xFF);
8538   emit_int8((unsigned char)(0xC8 | encode));
8539 }
8540 
8541 void Assembler::decq(Register dst) {
8542   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8543   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8544   int encode = prefixq_and_encode(dst->encoding());
8545   emit_int8((unsigned char)0xFF);
8546   emit_int8(0xC8 | encode);
8547 }
8548 
8549 void Assembler::decq(Address dst) {
8550   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8551   InstructionMark im(this);
8552   prefixq(dst);
8553   emit_int8((unsigned char)0xFF);
8554   emit_operand(rcx, dst);
8555 }
8556 
8557 void Assembler::fxrstor(Address src) {
8558   prefixq(src);
8559   emit_int8(0x0F);
8560   emit_int8((unsigned char)0xAE);
8561   emit_operand(as_Register(1), src);
8562 }
8563 
8564 void Assembler::xrstor(Address src) {
8565   prefixq(src);
8566   emit_int8(0x0F);
8567   emit_int8((unsigned char)0xAE);
8568   emit_operand(as_Register(5), src);
8569 }
8570 
8571 void Assembler::fxsave(Address dst) {
8572   prefixq(dst);
8573   emit_int8(0x0F);
8574   emit_int8((unsigned char)0xAE);
8575   emit_operand(as_Register(0), dst);
8576 }
8577 
8578 void Assembler::xsave(Address dst) {
8579   prefixq(dst);
8580   emit_int8(0x0F);
8581   emit_int8((unsigned char)0xAE);
8582   emit_operand(as_Register(4), dst);
8583 }
8584 
8585 void Assembler::idivq(Register src) {
8586   int encode = prefixq_and_encode(src->encoding());
8587   emit_int8((unsigned char)0xF7);
8588   emit_int8((unsigned char)(0xF8 | encode));
8589 }
8590 
8591 void Assembler::imulq(Register dst, Register src) {
8592   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8593   emit_int8(0x0F);
8594   emit_int8((unsigned char)0xAF);
8595   emit_int8((unsigned char)(0xC0 | encode));
8596 }
8597 
8598 void Assembler::imulq(Register dst, Register src, int value) {
8599   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8600   if (is8bit(value)) {
8601     emit_int8(0x6B);
8602     emit_int8((unsigned char)(0xC0 | encode));
8603     emit_int8(value & 0xFF);
8604   } else {
8605     emit_int8(0x69);
8606     emit_int8((unsigned char)(0xC0 | encode));
8607     emit_int32(value);
8608   }
8609 }
8610 
8611 void Assembler::imulq(Register dst, Address src) {
8612   InstructionMark im(this);
8613   prefixq(src, dst);
8614   emit_int8(0x0F);
8615   emit_int8((unsigned char) 0xAF);
8616   emit_operand(dst, src);
8617 }
8618 
8619 void Assembler::incl(Register dst) {
8620   // Don't use it directly. Use MacroAssembler::incrementl() instead.
8621   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8622   int encode = prefix_and_encode(dst->encoding());
8623   emit_int8((unsigned char)0xFF);
8624   emit_int8((unsigned char)(0xC0 | encode));
8625 }
8626 
8627 void Assembler::incq(Register dst) {
8628   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8629   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8630   int encode = prefixq_and_encode(dst->encoding());
8631   emit_int8((unsigned char)0xFF);
8632   emit_int8((unsigned char)(0xC0 | encode));
8633 }
8634 
8635 void Assembler::incq(Address dst) {
8636   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8637   InstructionMark im(this);
8638   prefixq(dst);
8639   emit_int8((unsigned char)0xFF);
8640   emit_operand(rax, dst);
8641 }
8642 
8643 void Assembler::lea(Register dst, Address src) {
8644   leaq(dst, src);
8645 }
8646 
8647 void Assembler::leaq(Register dst, Address src) {
8648   InstructionMark im(this);
8649   prefixq(src, dst);
8650   emit_int8((unsigned char)0x8D);
8651   emit_operand(dst, src);
8652 }
8653 
8654 void Assembler::mov64(Register dst, int64_t imm64) {
8655   InstructionMark im(this);
8656   int encode = prefixq_and_encode(dst->encoding());
8657   emit_int8((unsigned char)(0xB8 | encode));
8658   emit_int64(imm64);
8659 }
8660 
8661 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
8662   InstructionMark im(this);
8663   int encode = prefixq_and_encode(dst->encoding());
8664   emit_int8(0xB8 | encode);
8665   emit_data64(imm64, rspec);
8666 }
8667 
8668 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
8669   InstructionMark im(this);
8670   int encode = prefix_and_encode(dst->encoding());
8671   emit_int8((unsigned char)(0xB8 | encode));
8672   emit_data((int)imm32, rspec, narrow_oop_operand);
8673 }
8674 
8675 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
8676   InstructionMark im(this);
8677   prefix(dst);
8678   emit_int8((unsigned char)0xC7);
8679   emit_operand(rax, dst, 4);
8680   emit_data((int)imm32, rspec, narrow_oop_operand);
8681 }
8682 
8683 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
8684   InstructionMark im(this);
8685   int encode = prefix_and_encode(src1->encoding());
8686   emit_int8((unsigned char)0x81);
8687   emit_int8((unsigned char)(0xF8 | encode));
8688   emit_data((int)imm32, rspec, narrow_oop_operand);
8689 }
8690 
8691 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
8692   InstructionMark im(this);
8693   prefix(src1);
8694   emit_int8((unsigned char)0x81);
8695   emit_operand(rax, src1, 4);
8696   emit_data((int)imm32, rspec, narrow_oop_operand);
8697 }
8698 
8699 void Assembler::lzcntq(Register dst, Register src) {
8700   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
8701   emit_int8((unsigned char)0xF3);
8702   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8703   emit_int8(0x0F);
8704   emit_int8((unsigned char)0xBD);
8705   emit_int8((unsigned char)(0xC0 | encode));
8706 }
8707 
8708 void Assembler::movdq(XMMRegister dst, Register src) {
8709   // table D-1 says MMX/SSE2
8710   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8711   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8712   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8713   emit_int8(0x6E);
8714   emit_int8((unsigned char)(0xC0 | encode));
8715 }
8716 
8717 void Assembler::movdq(Register dst, XMMRegister src) {
8718   // table D-1 says MMX/SSE2
8719   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8720   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8721   // swap src/dst to get correct prefix
8722   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8723   emit_int8(0x7E);
8724   emit_int8((unsigned char)(0xC0 | encode));
8725 }
8726 
8727 void Assembler::movq(Register dst, Register src) {
8728   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8729   emit_int8((unsigned char)0x8B);
8730   emit_int8((unsigned char)(0xC0 | encode));
8731 }
8732 
8733 void Assembler::movq(Register dst, Address src) {
8734   InstructionMark im(this);
8735   prefixq(src, dst);
8736   emit_int8((unsigned char)0x8B);
8737   emit_operand(dst, src);
8738 }
8739 
8740 void Assembler::movq(Address dst, Register src) {
8741   InstructionMark im(this);
8742   prefixq(dst, src);
8743   emit_int8((unsigned char)0x89);
8744   emit_operand(src, dst);
8745 }
8746 
8747 void Assembler::movsbq(Register dst, Address src) {
8748   InstructionMark im(this);
8749   prefixq(src, dst);
8750   emit_int8(0x0F);
8751   emit_int8((unsigned char)0xBE);
8752   emit_operand(dst, src);
8753 }
8754 
8755 void Assembler::movsbq(Register dst, Register src) {
8756   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8757   emit_int8(0x0F);
8758   emit_int8((unsigned char)0xBE);
8759   emit_int8((unsigned char)(0xC0 | encode));
8760 }
8761 
8762 void Assembler::movslq(Register dst, int32_t imm32) {
8763   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
8764   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
8765   // as a result we shouldn't use until tested at runtime...
8766   ShouldNotReachHere();
8767   InstructionMark im(this);
8768   int encode = prefixq_and_encode(dst->encoding());
8769   emit_int8((unsigned char)(0xC7 | encode));
8770   emit_int32(imm32);
8771 }
8772 
8773 void Assembler::movslq(Address dst, int32_t imm32) {
8774   assert(is_simm32(imm32), "lost bits");
8775   InstructionMark im(this);
8776   prefixq(dst);
8777   emit_int8((unsigned char)0xC7);
8778   emit_operand(rax, dst, 4);
8779   emit_int32(imm32);
8780 }
8781 
8782 void Assembler::movslq(Register dst, Address src) {
8783   InstructionMark im(this);
8784   prefixq(src, dst);
8785   emit_int8(0x63);
8786   emit_operand(dst, src);
8787 }
8788 
8789 void Assembler::movslq(Register dst, Register src) {
8790   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8791   emit_int8(0x63);
8792   emit_int8((unsigned char)(0xC0 | encode));
8793 }
8794 
8795 void Assembler::movswq(Register dst, Address src) {
8796   InstructionMark im(this);
8797   prefixq(src, dst);
8798   emit_int8(0x0F);
8799   emit_int8((unsigned char)0xBF);
8800   emit_operand(dst, src);
8801 }
8802 
8803 void Assembler::movswq(Register dst, Register src) {
8804   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8805   emit_int8((unsigned char)0x0F);
8806   emit_int8((unsigned char)0xBF);
8807   emit_int8((unsigned char)(0xC0 | encode));
8808 }
8809 
8810 void Assembler::movzbq(Register dst, Address src) {
8811   InstructionMark im(this);
8812   prefixq(src, dst);
8813   emit_int8((unsigned char)0x0F);
8814   emit_int8((unsigned char)0xB6);
8815   emit_operand(dst, src);
8816 }
8817 
8818 void Assembler::movzbq(Register dst, Register src) {
8819   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8820   emit_int8(0x0F);
8821   emit_int8((unsigned char)0xB6);
8822   emit_int8(0xC0 | encode);
8823 }
8824 
8825 void Assembler::movzwq(Register dst, Address src) {
8826   InstructionMark im(this);
8827   prefixq(src, dst);
8828   emit_int8((unsigned char)0x0F);
8829   emit_int8((unsigned char)0xB7);
8830   emit_operand(dst, src);
8831 }
8832 
8833 void Assembler::movzwq(Register dst, Register src) {
8834   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8835   emit_int8((unsigned char)0x0F);
8836   emit_int8((unsigned char)0xB7);
8837   emit_int8((unsigned char)(0xC0 | encode));
8838 }
8839 
8840 void Assembler::mulq(Address src) {
8841   InstructionMark im(this);
8842   prefixq(src);
8843   emit_int8((unsigned char)0xF7);
8844   emit_operand(rsp, src);
8845 }
8846 
8847 void Assembler::mulq(Register src) {
8848   int encode = prefixq_and_encode(src->encoding());
8849   emit_int8((unsigned char)0xF7);
8850   emit_int8((unsigned char)(0xE0 | encode));
8851 }
8852 
8853 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
8854   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8855   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8856   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
8857   emit_int8((unsigned char)0xF6);
8858   emit_int8((unsigned char)(0xC0 | encode));
8859 }
8860 
8861 void Assembler::negq(Register dst) {
8862   int encode = prefixq_and_encode(dst->encoding());
8863   emit_int8((unsigned char)0xF7);
8864   emit_int8((unsigned char)(0xD8 | encode));
8865 }
8866 
8867 void Assembler::notq(Register dst) {
8868   int encode = prefixq_and_encode(dst->encoding());
8869   emit_int8((unsigned char)0xF7);
8870   emit_int8((unsigned char)(0xD0 | encode));
8871 }
8872 
8873 void Assembler::orq(Address dst, int32_t imm32) {
8874   InstructionMark im(this);
8875   prefixq(dst);
8876   emit_int8((unsigned char)0x81);
8877   emit_operand(rcx, dst, 4);
8878   emit_int32(imm32);
8879 }
8880 
8881 void Assembler::orq(Register dst, int32_t imm32) {
8882   (void) prefixq_and_encode(dst->encoding());
8883   emit_arith(0x81, 0xC8, dst, imm32);
8884 }
8885 
8886 void Assembler::orq(Register dst, Address src) {
8887   InstructionMark im(this);
8888   prefixq(src, dst);
8889   emit_int8(0x0B);
8890   emit_operand(dst, src);
8891 }
8892 
8893 void Assembler::orq(Register dst, Register src) {
8894   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8895   emit_arith(0x0B, 0xC0, dst, src);
8896 }
8897 
8898 void Assembler::popa() { // 64bit
8899   movq(r15, Address(rsp, 0));
8900   movq(r14, Address(rsp, wordSize));
8901   movq(r13, Address(rsp, 2 * wordSize));
8902   movq(r12, Address(rsp, 3 * wordSize));
8903   movq(r11, Address(rsp, 4 * wordSize));
8904   movq(r10, Address(rsp, 5 * wordSize));
8905   movq(r9,  Address(rsp, 6 * wordSize));
8906   movq(r8,  Address(rsp, 7 * wordSize));
8907   movq(rdi, Address(rsp, 8 * wordSize));
8908   movq(rsi, Address(rsp, 9 * wordSize));
8909   movq(rbp, Address(rsp, 10 * wordSize));
8910   // skip rsp
8911   movq(rbx, Address(rsp, 12 * wordSize));
8912   movq(rdx, Address(rsp, 13 * wordSize));
8913   movq(rcx, Address(rsp, 14 * wordSize));
8914   movq(rax, Address(rsp, 15 * wordSize));
8915 
8916   addq(rsp, 16 * wordSize);
8917 }
8918 
8919 void Assembler::popcntq(Register dst, Address src) {
8920   assert(VM_Version::supports_popcnt(), "must support");
8921   InstructionMark im(this);
8922   emit_int8((unsigned char)0xF3);
8923   prefixq(src, dst);
8924   emit_int8((unsigned char)0x0F);
8925   emit_int8((unsigned char)0xB8);
8926   emit_operand(dst, src);
8927 }
8928 
8929 void Assembler::popcntq(Register dst, Register src) {
8930   assert(VM_Version::supports_popcnt(), "must support");
8931   emit_int8((unsigned char)0xF3);
8932   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8933   emit_int8((unsigned char)0x0F);
8934   emit_int8((unsigned char)0xB8);
8935   emit_int8((unsigned char)(0xC0 | encode));
8936 }
8937 
8938 void Assembler::popq(Address dst) {
8939   InstructionMark im(this);
8940   prefixq(dst);
8941   emit_int8((unsigned char)0x8F);
8942   emit_operand(rax, dst);
8943 }
8944 
8945 void Assembler::pusha() { // 64bit
8946   // we have to store original rsp.  ABI says that 128 bytes
8947   // below rsp are local scratch.
8948   movq(Address(rsp, -5 * wordSize), rsp);
8949 
8950   subq(rsp, 16 * wordSize);
8951 
8952   movq(Address(rsp, 15 * wordSize), rax);
8953   movq(Address(rsp, 14 * wordSize), rcx);
8954   movq(Address(rsp, 13 * wordSize), rdx);
8955   movq(Address(rsp, 12 * wordSize), rbx);
8956   // skip rsp
8957   movq(Address(rsp, 10 * wordSize), rbp);
8958   movq(Address(rsp, 9 * wordSize), rsi);
8959   movq(Address(rsp, 8 * wordSize), rdi);
8960   movq(Address(rsp, 7 * wordSize), r8);
8961   movq(Address(rsp, 6 * wordSize), r9);
8962   movq(Address(rsp, 5 * wordSize), r10);
8963   movq(Address(rsp, 4 * wordSize), r11);
8964   movq(Address(rsp, 3 * wordSize), r12);
8965   movq(Address(rsp, 2 * wordSize), r13);
8966   movq(Address(rsp, wordSize), r14);
8967   movq(Address(rsp, 0), r15);
8968 }
8969 
8970 void Assembler::pushq(Address src) {
8971   InstructionMark im(this);
8972   prefixq(src);
8973   emit_int8((unsigned char)0xFF);
8974   emit_operand(rsi, src);
8975 }
8976 
8977 void Assembler::rclq(Register dst, int imm8) {
8978   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8979   int encode = prefixq_and_encode(dst->encoding());
8980   if (imm8 == 1) {
8981     emit_int8((unsigned char)0xD1);
8982     emit_int8((unsigned char)(0xD0 | encode));
8983   } else {
8984     emit_int8((unsigned char)0xC1);
8985     emit_int8((unsigned char)(0xD0 | encode));
8986     emit_int8(imm8);
8987   }
8988 }
8989 
8990 void Assembler::rcrq(Register dst, int imm8) {
8991   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8992   int encode = prefixq_and_encode(dst->encoding());
8993   if (imm8 == 1) {
8994     emit_int8((unsigned char)0xD1);
8995     emit_int8((unsigned char)(0xD8 | encode));
8996   } else {
8997     emit_int8((unsigned char)0xC1);
8998     emit_int8((unsigned char)(0xD8 | encode));
8999     emit_int8(imm8);
9000   }
9001 }
9002 
9003 void Assembler::rorq(Register dst, int imm8) {
9004   assert(isShiftCount(imm8 >> 1), "illegal shift count");
9005   int encode = prefixq_and_encode(dst->encoding());
9006   if (imm8 == 1) {
9007     emit_int8((unsigned char)0xD1);
9008     emit_int8((unsigned char)(0xC8 | encode));
9009   } else {
9010     emit_int8((unsigned char)0xC1);
9011     emit_int8((unsigned char)(0xc8 | encode));
9012     emit_int8(imm8);
9013   }
9014 }
9015 
9016 void Assembler::rorxq(Register dst, Register src, int imm8) {
9017   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
9018   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9019   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
9020   emit_int8((unsigned char)0xF0);
9021   emit_int8((unsigned char)(0xC0 | encode));
9022   emit_int8(imm8);
9023 }
9024 
9025 void Assembler::rorxd(Register dst, Register src, int imm8) {
9026   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
9027   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
9028   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
9029   emit_int8((unsigned char)0xF0);
9030   emit_int8((unsigned char)(0xC0 | encode));
9031   emit_int8(imm8);
9032 }
9033 
9034 void Assembler::sarq(Register dst, int imm8) {
9035   assert(isShiftCount(imm8 >> 1), "illegal shift count");
9036   int encode = prefixq_and_encode(dst->encoding());
9037   if (imm8 == 1) {
9038     emit_int8((unsigned char)0xD1);
9039     emit_int8((unsigned char)(0xF8 | encode));
9040   } else {
9041     emit_int8((unsigned char)0xC1);
9042     emit_int8((unsigned char)(0xF8 | encode));
9043     emit_int8(imm8);
9044   }
9045 }
9046 
9047 void Assembler::sarq(Register dst) {
9048   int encode = prefixq_and_encode(dst->encoding());
9049   emit_int8((unsigned char)0xD3);
9050   emit_int8((unsigned char)(0xF8 | encode));
9051 }
9052 
9053 void Assembler::sbbq(Address dst, int32_t imm32) {
9054   InstructionMark im(this);
9055   prefixq(dst);
9056   emit_arith_operand(0x81, rbx, dst, imm32);
9057 }
9058 
9059 void Assembler::sbbq(Register dst, int32_t imm32) {
9060   (void) prefixq_and_encode(dst->encoding());
9061   emit_arith(0x81, 0xD8, dst, imm32);
9062 }
9063 
9064 void Assembler::sbbq(Register dst, Address src) {
9065   InstructionMark im(this);
9066   prefixq(src, dst);
9067   emit_int8(0x1B);
9068   emit_operand(dst, src);
9069 }
9070 
9071 void Assembler::sbbq(Register dst, Register src) {
9072   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9073   emit_arith(0x1B, 0xC0, dst, src);
9074 }
9075 
9076 void Assembler::shlq(Register dst, int imm8) {
9077   assert(isShiftCount(imm8 >> 1), "illegal shift count");
9078   int encode = prefixq_and_encode(dst->encoding());
9079   if (imm8 == 1) {
9080     emit_int8((unsigned char)0xD1);
9081     emit_int8((unsigned char)(0xE0 | encode));
9082   } else {
9083     emit_int8((unsigned char)0xC1);
9084     emit_int8((unsigned char)(0xE0 | encode));
9085     emit_int8(imm8);
9086   }
9087 }
9088 
9089 void Assembler::shlq(Register dst) {
9090   int encode = prefixq_and_encode(dst->encoding());
9091   emit_int8((unsigned char)0xD3);
9092   emit_int8((unsigned char)(0xE0 | encode));
9093 }
9094 
9095 void Assembler::shrq(Register dst, int imm8) {
9096   assert(isShiftCount(imm8 >> 1), "illegal shift count");
9097   int encode = prefixq_and_encode(dst->encoding());
9098   emit_int8((unsigned char)0xC1);
9099   emit_int8((unsigned char)(0xE8 | encode));
9100   emit_int8(imm8);
9101 }
9102 
9103 void Assembler::shrq(Register dst) {
9104   int encode = prefixq_and_encode(dst->encoding());
9105   emit_int8((unsigned char)0xD3);
9106   emit_int8(0xE8 | encode);
9107 }
9108 
9109 void Assembler::subq(Address dst, int32_t imm32) {
9110   InstructionMark im(this);
9111   prefixq(dst);
9112   emit_arith_operand(0x81, rbp, dst, imm32);
9113 }
9114 
9115 void Assembler::subq(Address dst, Register src) {
9116   InstructionMark im(this);
9117   prefixq(dst, src);
9118   emit_int8(0x29);
9119   emit_operand(src, dst);
9120 }
9121 
9122 void Assembler::subq(Register dst, int32_t imm32) {
9123   (void) prefixq_and_encode(dst->encoding());
9124   emit_arith(0x81, 0xE8, dst, imm32);
9125 }
9126 
9127 // Force generation of a 4 byte immediate value even if it fits into 8bit
9128 void Assembler::subq_imm32(Register dst, int32_t imm32) {
9129   (void) prefixq_and_encode(dst->encoding());
9130   emit_arith_imm32(0x81, 0xE8, dst, imm32);
9131 }
9132 
9133 void Assembler::subq(Register dst, Address src) {
9134   InstructionMark im(this);
9135   prefixq(src, dst);
9136   emit_int8(0x2B);
9137   emit_operand(dst, src);
9138 }
9139 
9140 void Assembler::subq(Register dst, Register src) {
9141   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9142   emit_arith(0x2B, 0xC0, dst, src);
9143 }
9144 
9145 void Assembler::testq(Register dst, int32_t imm32) {
9146   // not using emit_arith because test
9147   // doesn't support sign-extension of
9148   // 8bit operands
9149   int encode = dst->encoding();
9150   if (encode == 0) {
9151     prefix(REX_W);
9152     emit_int8((unsigned char)0xA9);
9153   } else {
9154     encode = prefixq_and_encode(encode);
9155     emit_int8((unsigned char)0xF7);
9156     emit_int8((unsigned char)(0xC0 | encode));
9157   }
9158   emit_int32(imm32);
9159 }
9160 
9161 void Assembler::testq(Register dst, Register src) {
9162   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9163   emit_arith(0x85, 0xC0, dst, src);
9164 }
9165 
9166 void Assembler::testq(Register dst, Address src) {
9167   InstructionMark im(this);
9168   prefixq(src, dst);
9169   emit_int8((unsigned char)0x85);
9170   emit_operand(dst, src);
9171 }
9172 
9173 void Assembler::xaddq(Address dst, Register src) {
9174   InstructionMark im(this);
9175   prefixq(dst, src);
9176   emit_int8(0x0F);
9177   emit_int8((unsigned char)0xC1);
9178   emit_operand(src, dst);
9179 }
9180 
9181 void Assembler::xchgq(Register dst, Address src) {
9182   InstructionMark im(this);
9183   prefixq(src, dst);
9184   emit_int8((unsigned char)0x87);
9185   emit_operand(dst, src);
9186 }
9187 
9188 void Assembler::xchgq(Register dst, Register src) {
9189   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
9190   emit_int8((unsigned char)0x87);
9191   emit_int8((unsigned char)(0xc0 | encode));
9192 }
9193 
9194 void Assembler::xorq(Register dst, Register src) {
9195   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9196   emit_arith(0x33, 0xC0, dst, src);
9197 }
9198 
9199 void Assembler::xorq(Register dst, Address src) {
9200   InstructionMark im(this);
9201   prefixq(src, dst);
9202   emit_int8(0x33);
9203   emit_operand(dst, src);
9204 }
9205 
9206 #endif // !LP64