1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/g1/concurrentMark.hpp"
  29 #include "gc_implementation/g1/g1AllocRegion.hpp"
  30 #include "gc_implementation/g1/g1HRPrinter.hpp"
  31 #include "gc_implementation/g1/g1RemSet.hpp"
  32 #include "gc_implementation/g1/g1MonitoringSupport.hpp"
  33 #include "gc_implementation/g1/heapRegionSeq.hpp"
  34 #include "gc_implementation/g1/heapRegionSets.hpp"
  35 #include "gc_implementation/shared/hSpaceCounters.hpp"
  36 #include "gc_implementation/shared/parGCAllocBuffer.hpp"
  37 #include "memory/barrierSet.hpp"
  38 #include "memory/memRegion.hpp"
  39 #include "memory/sharedHeap.hpp"
  40 
  41 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  42 // It uses the "Garbage First" heap organization and algorithm, which
  43 // may combine concurrent marking with parallel, incremental compaction of
  44 // heap subsets that will yield large amounts of garbage.
  45 
  46 class HeapRegion;
  47 class HRRSCleanupTask;
  48 class GenerationSpec;
  49 class OopsInHeapRegionClosure;
  50 class G1KlassScanClosure;
  51 class G1ScanHeapEvacClosure;
  52 class ObjectClosure;
  53 class SpaceClosure;
  54 class CompactibleSpaceClosure;
  55 class Space;
  56 class G1CollectorPolicy;
  57 class GenRemSet;
  58 class G1RemSet;
  59 class HeapRegionRemSetIterator;
  60 class ConcurrentMark;
  61 class ConcurrentMarkThread;
  62 class ConcurrentG1Refine;
  63 class GenerationCounters;
  64 
  65 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  66 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  67 
  68 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  69 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  70 
  71 enum GCAllocPurpose {
  72   GCAllocForTenured,
  73   GCAllocForSurvived,
  74   GCAllocPurposeCount
  75 };
  76 
  77 class YoungList : public CHeapObj<mtGC> {
  78 private:
  79   G1CollectedHeap* _g1h;
  80 
  81   HeapRegion* _head;
  82 
  83   HeapRegion* _survivor_head;
  84   HeapRegion* _survivor_tail;
  85 
  86   HeapRegion* _curr;
  87 
  88   uint        _length;
  89   uint        _survivor_length;
  90 
  91   size_t      _last_sampled_rs_lengths;
  92   size_t      _sampled_rs_lengths;
  93 
  94   void         empty_list(HeapRegion* list);
  95 
  96 public:
  97   YoungList(G1CollectedHeap* g1h);
  98 
  99   void         push_region(HeapRegion* hr);
 100   void         add_survivor_region(HeapRegion* hr);
 101 
 102   void         empty_list();
 103   bool         is_empty() { return _length == 0; }
 104   uint         length() { return _length; }
 105   uint         survivor_length() { return _survivor_length; }
 106 
 107   // Currently we do not keep track of the used byte sum for the
 108   // young list and the survivors and it'd be quite a lot of work to
 109   // do so. When we'll eventually replace the young list with
 110   // instances of HeapRegionLinkedList we'll get that for free. So,
 111   // we'll report the more accurate information then.
 112   size_t       eden_used_bytes() {
 113     assert(length() >= survivor_length(), "invariant");
 114     return (size_t) (length() - survivor_length()) * HeapRegion::GrainBytes;
 115   }
 116   size_t       survivor_used_bytes() {
 117     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 118   }
 119 
 120   void rs_length_sampling_init();
 121   bool rs_length_sampling_more();
 122   void rs_length_sampling_next();
 123 
 124   void reset_sampled_info() {
 125     _last_sampled_rs_lengths =   0;
 126   }
 127   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 128 
 129   // for development purposes
 130   void reset_auxilary_lists();
 131   void clear() { _head = NULL; _length = 0; }
 132 
 133   void clear_survivors() {
 134     _survivor_head    = NULL;
 135     _survivor_tail    = NULL;
 136     _survivor_length  = 0;
 137   }
 138 
 139   HeapRegion* first_region() { return _head; }
 140   HeapRegion* first_survivor_region() { return _survivor_head; }
 141   HeapRegion* last_survivor_region() { return _survivor_tail; }
 142 
 143   // debugging
 144   bool          check_list_well_formed();
 145   bool          check_list_empty(bool check_sample = true);
 146   void          print();
 147 };
 148 
 149 class MutatorAllocRegion : public G1AllocRegion {
 150 protected:
 151   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 152   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 153 public:
 154   MutatorAllocRegion()
 155     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
 156 };
 157 
 158 // The G1 STW is alive closure.
 159 // An instance is embedded into the G1CH and used as the
 160 // (optional) _is_alive_non_header closure in the STW
 161 // reference processor. It is also extensively used during
 162 // refence processing during STW evacuation pauses.
 163 class G1STWIsAliveClosure: public BoolObjectClosure {
 164   G1CollectedHeap* _g1;
 165 public:
 166   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 167   void do_object(oop p) { assert(false, "Do not call."); }
 168   bool do_object_b(oop p);
 169 };
 170 
 171 class SurvivorGCAllocRegion : public G1AllocRegion {
 172 protected:
 173   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 174   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 175 public:
 176   SurvivorGCAllocRegion()
 177   : G1AllocRegion("Survivor GC Alloc Region", false /* bot_updates */) { }
 178 };
 179 
 180 class OldGCAllocRegion : public G1AllocRegion {
 181 protected:
 182   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 183   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 184 public:
 185   OldGCAllocRegion()
 186   : G1AllocRegion("Old GC Alloc Region", true /* bot_updates */) { }
 187 };
 188 
 189 class RefineCardTableEntryClosure;
 190 
 191 class G1CollectedHeap : public SharedHeap {
 192   friend class VM_G1CollectForAllocation;
 193   friend class VM_G1CollectFull;
 194   friend class VM_G1IncCollectionPause;
 195   friend class VMStructs;
 196   friend class MutatorAllocRegion;
 197   friend class SurvivorGCAllocRegion;
 198   friend class OldGCAllocRegion;
 199 
 200   // Closures used in implementation.
 201   template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
 202   friend class G1ParCopyClosure;
 203   friend class G1IsAliveClosure;
 204   friend class G1EvacuateFollowersClosure;
 205   friend class G1ParScanThreadState;
 206   friend class G1ParScanClosureSuper;
 207   friend class G1ParEvacuateFollowersClosure;
 208   friend class G1ParTask;
 209   friend class G1FreeGarbageRegionClosure;
 210   friend class RefineCardTableEntryClosure;
 211   friend class G1PrepareCompactClosure;
 212   friend class RegionSorter;
 213   friend class RegionResetter;
 214   friend class CountRCClosure;
 215   friend class EvacPopObjClosure;
 216   friend class G1ParCleanupCTTask;
 217 
 218   // Other related classes.
 219   friend class G1MarkSweep;
 220 
 221 private:
 222   // The one and only G1CollectedHeap, so static functions can find it.
 223   static G1CollectedHeap* _g1h;
 224 
 225   static size_t _humongous_object_threshold_in_words;
 226 
 227   // Storage for the G1 heap.
 228   VirtualSpace _g1_storage;
 229   MemRegion    _g1_reserved;
 230 
 231   // The part of _g1_storage that is currently committed.
 232   MemRegion _g1_committed;
 233 
 234   // The master free list. It will satisfy all new region allocations.
 235   MasterFreeRegionList      _free_list;
 236 
 237   // The secondary free list which contains regions that have been
 238   // freed up during the cleanup process. This will be appended to the
 239   // master free list when appropriate.
 240   SecondaryFreeRegionList   _secondary_free_list;
 241 
 242   // It keeps track of the old regions.
 243   MasterOldRegionSet        _old_set;
 244 
 245   // It keeps track of the humongous regions.
 246   MasterHumongousRegionSet  _humongous_set;
 247 
 248   // The number of regions we could create by expansion.
 249   uint _expansion_regions;
 250 
 251   // The block offset table for the G1 heap.
 252   G1BlockOffsetSharedArray* _bot_shared;
 253 
 254   // Tears down the region sets / lists so that they are empty and the
 255   // regions on the heap do not belong to a region set / list. The
 256   // only exception is the humongous set which we leave unaltered. If
 257   // free_list_only is true, it will only tear down the master free
 258   // list. It is called before a Full GC (free_list_only == false) or
 259   // before heap shrinking (free_list_only == true).
 260   void tear_down_region_sets(bool free_list_only);
 261 
 262   // Rebuilds the region sets / lists so that they are repopulated to
 263   // reflect the contents of the heap. The only exception is the
 264   // humongous set which was not torn down in the first place. If
 265   // free_list_only is true, it will only rebuild the master free
 266   // list. It is called after a Full GC (free_list_only == false) or
 267   // after heap shrinking (free_list_only == true).
 268   void rebuild_region_sets(bool free_list_only);
 269 
 270   // The sequence of all heap regions in the heap.
 271   HeapRegionSeq _hrs;
 272 
 273   // Alloc region used to satisfy mutator allocation requests.
 274   MutatorAllocRegion _mutator_alloc_region;
 275 
 276   // Alloc region used to satisfy allocation requests by the GC for
 277   // survivor objects.
 278   SurvivorGCAllocRegion _survivor_gc_alloc_region;
 279 
 280   // PLAB sizing policy for survivors.
 281   PLABStats _survivor_plab_stats;
 282 
 283   // Alloc region used to satisfy allocation requests by the GC for
 284   // old objects.
 285   OldGCAllocRegion _old_gc_alloc_region;
 286 
 287   // PLAB sizing policy for tenured objects.
 288   PLABStats _old_plab_stats;
 289 
 290   PLABStats* stats_for_purpose(GCAllocPurpose purpose) {
 291     PLABStats* stats = NULL;
 292 
 293     switch (purpose) {
 294     case GCAllocForSurvived:
 295       stats = &_survivor_plab_stats;
 296       break;
 297     case GCAllocForTenured:
 298       stats = &_old_plab_stats;
 299       break;
 300     default:
 301       assert(false, "unrecognized GCAllocPurpose");
 302     }
 303 
 304     return stats;
 305   }
 306 
 307   // The last old region we allocated to during the last GC.
 308   // Typically, it is not full so we should re-use it during the next GC.
 309   HeapRegion* _retained_old_gc_alloc_region;
 310 
 311   // It specifies whether we should attempt to expand the heap after a
 312   // region allocation failure. If heap expansion fails we set this to
 313   // false so that we don't re-attempt the heap expansion (it's likely
 314   // that subsequent expansion attempts will also fail if one fails).
 315   // Currently, it is only consulted during GC and it's reset at the
 316   // start of each GC.
 317   bool _expand_heap_after_alloc_failure;
 318 
 319   // It resets the mutator alloc region before new allocations can take place.
 320   void init_mutator_alloc_region();
 321 
 322   // It releases the mutator alloc region.
 323   void release_mutator_alloc_region();
 324 
 325   // It initializes the GC alloc regions at the start of a GC.
 326   void init_gc_alloc_regions();
 327 
 328   // It releases the GC alloc regions at the end of a GC.
 329   void release_gc_alloc_regions(uint no_of_gc_workers);
 330 
 331   // It does any cleanup that needs to be done on the GC alloc regions
 332   // before a Full GC.
 333   void abandon_gc_alloc_regions();
 334 
 335   // Helper for monitoring and management support.
 336   G1MonitoringSupport* _g1mm;
 337 
 338   // Determines PLAB size for a particular allocation purpose.
 339   size_t desired_plab_sz(GCAllocPurpose purpose);
 340 
 341   // Outside of GC pauses, the number of bytes used in all regions other
 342   // than the current allocation region.
 343   size_t _summary_bytes_used;
 344 
 345   // This is used for a quick test on whether a reference points into
 346   // the collection set or not. Basically, we have an array, with one
 347   // byte per region, and that byte denotes whether the corresponding
 348   // region is in the collection set or not. The entry corresponding
 349   // the bottom of the heap, i.e., region 0, is pointed to by
 350   // _in_cset_fast_test_base.  The _in_cset_fast_test field has been
 351   // biased so that it actually points to address 0 of the address
 352   // space, to make the test as fast as possible (we can simply shift
 353   // the address to address into it, instead of having to subtract the
 354   // bottom of the heap from the address before shifting it; basically
 355   // it works in the same way the card table works).
 356   bool* _in_cset_fast_test;
 357 
 358   // The allocated array used for the fast test on whether a reference
 359   // points into the collection set or not. This field is also used to
 360   // free the array.
 361   bool* _in_cset_fast_test_base;
 362 
 363   // The length of the _in_cset_fast_test_base array.
 364   uint _in_cset_fast_test_length;
 365 
 366   volatile unsigned _gc_time_stamp;
 367 
 368   size_t* _surviving_young_words;
 369 
 370   G1HRPrinter _hr_printer;
 371 
 372   void setup_surviving_young_words();
 373   void update_surviving_young_words(size_t* surv_young_words);
 374   void cleanup_surviving_young_words();
 375 
 376   // It decides whether an explicit GC should start a concurrent cycle
 377   // instead of doing a STW GC. Currently, a concurrent cycle is
 378   // explicitly started if:
 379   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 380   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 381   // (c) cause == _g1_humongous_allocation
 382   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 383 
 384   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 385   // concurrent cycles) we have started.
 386   volatile unsigned int _old_marking_cycles_started;
 387 
 388   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 389   // concurrent cycles) we have completed.
 390   volatile unsigned int _old_marking_cycles_completed;
 391 
 392   // This is a non-product method that is helpful for testing. It is
 393   // called at the end of a GC and artificially expands the heap by
 394   // allocating a number of dead regions. This way we can induce very
 395   // frequent marking cycles and stress the cleanup / concurrent
 396   // cleanup code more (as all the regions that will be allocated by
 397   // this method will be found dead by the marking cycle).
 398   void allocate_dummy_regions() PRODUCT_RETURN;
 399 
 400   // Clear RSets after a compaction. It also resets the GC time stamps.
 401   void clear_rsets_post_compaction();
 402 
 403   // If the HR printer is active, dump the state of the regions in the
 404   // heap after a compaction.
 405   void print_hrs_post_compaction();
 406 
 407   double verify(bool guard, const char* msg);
 408   void verify_before_gc();
 409   void verify_after_gc();
 410 
 411   void log_gc_header();
 412   void log_gc_footer(double pause_time_sec);
 413 
 414   // These are macros so that, if the assert fires, we get the correct
 415   // line number, file, etc.
 416 
 417 #define heap_locking_asserts_err_msg(_extra_message_)                         \
 418   err_msg("%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",    \
 419           (_extra_message_),                                                  \
 420           BOOL_TO_STR(Heap_lock->owned_by_self()),                            \
 421           BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),               \
 422           BOOL_TO_STR(Thread::current()->is_VM_thread()))
 423 
 424 #define assert_heap_locked()                                                  \
 425   do {                                                                        \
 426     assert(Heap_lock->owned_by_self(),                                        \
 427            heap_locking_asserts_err_msg("should be holding the Heap_lock"));  \
 428   } while (0)
 429 
 430 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 431   do {                                                                        \
 432     assert(Heap_lock->owned_by_self() ||                                      \
 433            (SafepointSynchronize::is_at_safepoint() &&                        \
 434              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 435            heap_locking_asserts_err_msg("should be holding the Heap_lock or " \
 436                                         "should be at a safepoint"));         \
 437   } while (0)
 438 
 439 #define assert_heap_locked_and_not_at_safepoint()                             \
 440   do {                                                                        \
 441     assert(Heap_lock->owned_by_self() &&                                      \
 442                                     !SafepointSynchronize::is_at_safepoint(), \
 443           heap_locking_asserts_err_msg("should be holding the Heap_lock and " \
 444                                        "should not be at a safepoint"));      \
 445   } while (0)
 446 
 447 #define assert_heap_not_locked()                                              \
 448   do {                                                                        \
 449     assert(!Heap_lock->owned_by_self(),                                       \
 450         heap_locking_asserts_err_msg("should not be holding the Heap_lock")); \
 451   } while (0)
 452 
 453 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 454   do {                                                                        \
 455     assert(!Heap_lock->owned_by_self() &&                                     \
 456                                     !SafepointSynchronize::is_at_safepoint(), \
 457       heap_locking_asserts_err_msg("should not be holding the Heap_lock and " \
 458                                    "should not be at a safepoint"));          \
 459   } while (0)
 460 
 461 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 462   do {                                                                        \
 463     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 464               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 465            heap_locking_asserts_err_msg("should be at a safepoint"));         \
 466   } while (0)
 467 
 468 #define assert_not_at_safepoint()                                             \
 469   do {                                                                        \
 470     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 471            heap_locking_asserts_err_msg("should not be at a safepoint"));     \
 472   } while (0)
 473 
 474 protected:
 475 
 476   // The young region list.
 477   YoungList*  _young_list;
 478 
 479   // The current policy object for the collector.
 480   G1CollectorPolicy* _g1_policy;
 481 
 482   // This is the second level of trying to allocate a new region. If
 483   // new_region() didn't find a region on the free_list, this call will
 484   // check whether there's anything available on the
 485   // secondary_free_list and/or wait for more regions to appear on
 486   // that list, if _free_regions_coming is set.
 487   HeapRegion* new_region_try_secondary_free_list();
 488 
 489   // Try to allocate a single non-humongous HeapRegion sufficient for
 490   // an allocation of the given word_size. If do_expand is true,
 491   // attempt to expand the heap if necessary to satisfy the allocation
 492   // request.
 493   HeapRegion* new_region(size_t word_size, bool do_expand);
 494 
 495   // Attempt to satisfy a humongous allocation request of the given
 496   // size by finding a contiguous set of free regions of num_regions
 497   // length and remove them from the master free list. Return the
 498   // index of the first region or G1_NULL_HRS_INDEX if the search
 499   // was unsuccessful.
 500   uint humongous_obj_allocate_find_first(uint num_regions,
 501                                          size_t word_size);
 502 
 503   // Initialize a contiguous set of free regions of length num_regions
 504   // and starting at index first so that they appear as a single
 505   // humongous region.
 506   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 507                                                       uint num_regions,
 508                                                       size_t word_size);
 509 
 510   // Attempt to allocate a humongous object of the given size. Return
 511   // NULL if unsuccessful.
 512   HeapWord* humongous_obj_allocate(size_t word_size);
 513 
 514   // The following two methods, allocate_new_tlab() and
 515   // mem_allocate(), are the two main entry points from the runtime
 516   // into the G1's allocation routines. They have the following
 517   // assumptions:
 518   //
 519   // * They should both be called outside safepoints.
 520   //
 521   // * They should both be called without holding the Heap_lock.
 522   //
 523   // * All allocation requests for new TLABs should go to
 524   //   allocate_new_tlab().
 525   //
 526   // * All non-TLAB allocation requests should go to mem_allocate().
 527   //
 528   // * If either call cannot satisfy the allocation request using the
 529   //   current allocating region, they will try to get a new one. If
 530   //   this fails, they will attempt to do an evacuation pause and
 531   //   retry the allocation.
 532   //
 533   // * If all allocation attempts fail, even after trying to schedule
 534   //   an evacuation pause, allocate_new_tlab() will return NULL,
 535   //   whereas mem_allocate() will attempt a heap expansion and/or
 536   //   schedule a Full GC.
 537   //
 538   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 539   //   should never be called with word_size being humongous. All
 540   //   humongous allocation requests should go to mem_allocate() which
 541   //   will satisfy them with a special path.
 542 
 543   virtual HeapWord* allocate_new_tlab(size_t word_size);
 544 
 545   virtual HeapWord* mem_allocate(size_t word_size,
 546                                  bool*  gc_overhead_limit_was_exceeded);
 547 
 548   // The following three methods take a gc_count_before_ret
 549   // parameter which is used to return the GC count if the method
 550   // returns NULL. Given that we are required to read the GC count
 551   // while holding the Heap_lock, and these paths will take the
 552   // Heap_lock at some point, it's easier to get them to read the GC
 553   // count while holding the Heap_lock before they return NULL instead
 554   // of the caller (namely: mem_allocate()) having to also take the
 555   // Heap_lock just to read the GC count.
 556 
 557   // First-level mutator allocation attempt: try to allocate out of
 558   // the mutator alloc region without taking the Heap_lock. This
 559   // should only be used for non-humongous allocations.
 560   inline HeapWord* attempt_allocation(size_t word_size,
 561                                       unsigned int* gc_count_before_ret);
 562 
 563   // Second-level mutator allocation attempt: take the Heap_lock and
 564   // retry the allocation attempt, potentially scheduling a GC
 565   // pause. This should only be used for non-humongous allocations.
 566   HeapWord* attempt_allocation_slow(size_t word_size,
 567                                     unsigned int* gc_count_before_ret);
 568 
 569   // Takes the Heap_lock and attempts a humongous allocation. It can
 570   // potentially schedule a GC pause.
 571   HeapWord* attempt_allocation_humongous(size_t word_size,
 572                                          unsigned int* gc_count_before_ret);
 573 
 574   // Allocation attempt that should be called during safepoints (e.g.,
 575   // at the end of a successful GC). expect_null_mutator_alloc_region
 576   // specifies whether the mutator alloc region is expected to be NULL
 577   // or not.
 578   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 579                                        bool expect_null_mutator_alloc_region);
 580 
 581   // It dirties the cards that cover the block so that so that the post
 582   // write barrier never queues anything when updating objects on this
 583   // block. It is assumed (and in fact we assert) that the block
 584   // belongs to a young region.
 585   inline void dirty_young_block(HeapWord* start, size_t word_size);
 586 
 587   // Allocate blocks during garbage collection. Will ensure an
 588   // allocation region, either by picking one or expanding the
 589   // heap, and then allocate a block of the given size. The block
 590   // may not be a humongous - it must fit into a single heap region.
 591   HeapWord* par_allocate_during_gc(GCAllocPurpose purpose, size_t word_size);
 592 
 593   // Ensure that no further allocations can happen in "r", bearing in mind
 594   // that parallel threads might be attempting allocations.
 595   void par_allocate_remaining_space(HeapRegion* r);
 596 
 597   // Allocation attempt during GC for a survivor object / PLAB.
 598   inline HeapWord* survivor_attempt_allocation(size_t word_size);
 599 
 600   // Allocation attempt during GC for an old object / PLAB.
 601   inline HeapWord* old_attempt_allocation(size_t word_size);
 602 
 603   // These methods are the "callbacks" from the G1AllocRegion class.
 604 
 605   // For mutator alloc regions.
 606   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 607   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 608                                    size_t allocated_bytes);
 609 
 610   // For GC alloc regions.
 611   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 612                                   GCAllocPurpose ap);
 613   void retire_gc_alloc_region(HeapRegion* alloc_region,
 614                               size_t allocated_bytes, GCAllocPurpose ap);
 615 
 616   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 617   //   inspection request and should collect the entire heap
 618   // - if clear_all_soft_refs is true, all soft references should be
 619   //   cleared during the GC
 620   // - if explicit_gc is false, word_size describes the allocation that
 621   //   the GC should attempt (at least) to satisfy
 622   // - it returns false if it is unable to do the collection due to the
 623   //   GC locker being active, true otherwise
 624   bool do_collection(bool explicit_gc,
 625                      bool clear_all_soft_refs,
 626                      size_t word_size);
 627 
 628   // Callback from VM_G1CollectFull operation.
 629   // Perform a full collection.
 630   virtual void do_full_collection(bool clear_all_soft_refs);
 631 
 632   // Resize the heap if necessary after a full collection.  If this is
 633   // after a collect-for allocation, "word_size" is the allocation size,
 634   // and will be considered part of the used portion of the heap.
 635   void resize_if_necessary_after_full_collection(size_t word_size);
 636 
 637   // Callback from VM_G1CollectForAllocation operation.
 638   // This function does everything necessary/possible to satisfy a
 639   // failed allocation request (including collection, expansion, etc.)
 640   HeapWord* satisfy_failed_allocation(size_t word_size, bool* succeeded);
 641 
 642   // Attempting to expand the heap sufficiently
 643   // to support an allocation of the given "word_size".  If
 644   // successful, perform the allocation and return the address of the
 645   // allocated block, or else "NULL".
 646   HeapWord* expand_and_allocate(size_t word_size);
 647 
 648   // Process any reference objects discovered during
 649   // an incremental evacuation pause.
 650   void process_discovered_references(uint no_of_gc_workers);
 651 
 652   // Enqueue any remaining discovered references
 653   // after processing.
 654   void enqueue_discovered_references(uint no_of_gc_workers);
 655 
 656 public:
 657 
 658   G1MonitoringSupport* g1mm() {
 659     assert(_g1mm != NULL, "should have been initialized");
 660     return _g1mm;
 661   }
 662 
 663   // Expand the garbage-first heap by at least the given size (in bytes!).
 664   // Returns true if the heap was expanded by the requested amount;
 665   // false otherwise.
 666   // (Rounds up to a HeapRegion boundary.)
 667   bool expand(size_t expand_bytes);
 668 
 669   // Do anything common to GC's.
 670   virtual void gc_prologue(bool full);
 671   virtual void gc_epilogue(bool full);
 672 
 673   // We register a region with the fast "in collection set" test. We
 674   // simply set to true the array slot corresponding to this region.
 675   void register_region_with_in_cset_fast_test(HeapRegion* r) {
 676     assert(_in_cset_fast_test_base != NULL, "sanity");
 677     assert(r->in_collection_set(), "invariant");
 678     uint index = r->hrs_index();
 679     assert(index < _in_cset_fast_test_length, "invariant");
 680     assert(!_in_cset_fast_test_base[index], "invariant");
 681     _in_cset_fast_test_base[index] = true;
 682   }
 683 
 684   // This is a fast test on whether a reference points into the
 685   // collection set or not. It does not assume that the reference
 686   // points into the heap; if it doesn't, it will return false.
 687   bool in_cset_fast_test(oop obj) {
 688     assert(_in_cset_fast_test != NULL, "sanity");
 689     if (_g1_committed.contains((HeapWord*) obj)) {
 690       // no need to subtract the bottom of the heap from obj,
 691       // _in_cset_fast_test is biased
 692       uintx index = (uintx) obj >> HeapRegion::LogOfHRGrainBytes;
 693       bool ret = _in_cset_fast_test[index];
 694       // let's make sure the result is consistent with what the slower
 695       // test returns
 696       assert( ret || !obj_in_cs(obj), "sanity");
 697       assert(!ret ||  obj_in_cs(obj), "sanity");
 698       return ret;
 699     } else {
 700       return false;
 701     }
 702   }
 703 
 704   void clear_cset_fast_test() {
 705     assert(_in_cset_fast_test_base != NULL, "sanity");
 706     memset(_in_cset_fast_test_base, false,
 707            (size_t) _in_cset_fast_test_length * sizeof(bool));
 708   }
 709 
 710   // This is called at the start of either a concurrent cycle or a Full
 711   // GC to update the number of old marking cycles started.
 712   void increment_old_marking_cycles_started();
 713 
 714   // This is called at the end of either a concurrent cycle or a Full
 715   // GC to update the number of old marking cycles completed. Those two
 716   // can happen in a nested fashion, i.e., we start a concurrent
 717   // cycle, a Full GC happens half-way through it which ends first,
 718   // and then the cycle notices that a Full GC happened and ends
 719   // too. The concurrent parameter is a boolean to help us do a bit
 720   // tighter consistency checking in the method. If concurrent is
 721   // false, the caller is the inner caller in the nesting (i.e., the
 722   // Full GC). If concurrent is true, the caller is the outer caller
 723   // in this nesting (i.e., the concurrent cycle). Further nesting is
 724   // not currently supported. The end of this call also notifies
 725   // the FullGCCount_lock in case a Java thread is waiting for a full
 726   // GC to happen (e.g., it called System.gc() with
 727   // +ExplicitGCInvokesConcurrent).
 728   void increment_old_marking_cycles_completed(bool concurrent);
 729 
 730   unsigned int old_marking_cycles_completed() {
 731     return _old_marking_cycles_completed;
 732   }
 733 
 734   G1HRPrinter* hr_printer() { return &_hr_printer; }
 735 
 736 protected:
 737 
 738   // Shrink the garbage-first heap by at most the given size (in bytes!).
 739   // (Rounds down to a HeapRegion boundary.)
 740   virtual void shrink(size_t expand_bytes);
 741   void shrink_helper(size_t expand_bytes);
 742 
 743   #if TASKQUEUE_STATS
 744   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 745   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 746   void reset_taskqueue_stats();
 747   #endif // TASKQUEUE_STATS
 748 
 749   // Schedule the VM operation that will do an evacuation pause to
 750   // satisfy an allocation request of word_size. *succeeded will
 751   // return whether the VM operation was successful (it did do an
 752   // evacuation pause) or not (another thread beat us to it or the GC
 753   // locker was active). Given that we should not be holding the
 754   // Heap_lock when we enter this method, we will pass the
 755   // gc_count_before (i.e., total_collections()) as a parameter since
 756   // it has to be read while holding the Heap_lock. Currently, both
 757   // methods that call do_collection_pause() release the Heap_lock
 758   // before the call, so it's easy to read gc_count_before just before.
 759   HeapWord* do_collection_pause(size_t       word_size,
 760                                 unsigned int gc_count_before,
 761                                 bool*        succeeded);
 762 
 763   // The guts of the incremental collection pause, executed by the vm
 764   // thread. It returns false if it is unable to do the collection due
 765   // to the GC locker being active, true otherwise
 766   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 767 
 768   // Actually do the work of evacuating the collection set.
 769   void evacuate_collection_set();
 770 
 771   // The g1 remembered set of the heap.
 772   G1RemSet* _g1_rem_set;
 773   // And it's mod ref barrier set, used to track updates for the above.
 774   ModRefBarrierSet* _mr_bs;
 775 
 776   // A set of cards that cover the objects for which the Rsets should be updated
 777   // concurrently after the collection.
 778   DirtyCardQueueSet _dirty_card_queue_set;
 779 
 780   // The Heap Region Rem Set Iterator.
 781   HeapRegionRemSetIterator** _rem_set_iterator;
 782 
 783   // The closure used to refine a single card.
 784   RefineCardTableEntryClosure* _refine_cte_cl;
 785 
 786   // A function to check the consistency of dirty card logs.
 787   void check_ct_logs_at_safepoint();
 788 
 789   // A DirtyCardQueueSet that is used to hold cards that contain
 790   // references into the current collection set. This is used to
 791   // update the remembered sets of the regions in the collection
 792   // set in the event of an evacuation failure.
 793   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 794 
 795   // After a collection pause, make the regions in the CS into free
 796   // regions.
 797   void free_collection_set(HeapRegion* cs_head);
 798 
 799   // Abandon the current collection set without recording policy
 800   // statistics or updating free lists.
 801   void abandon_collection_set(HeapRegion* cs_head);
 802 
 803   // Applies "scan_non_heap_roots" to roots outside the heap,
 804   // "scan_rs" to roots inside the heap (having done "set_region" to
 805   // indicate the region in which the root resides),
 806   // and does "scan_metadata" If "scan_rs" is
 807   // NULL, then this step is skipped.  The "worker_i"
 808   // param is for use with parallel roots processing, and should be
 809   // the "i" of the calling parallel worker thread's work(i) function.
 810   // In the sequential case this param will be ignored.
 811   void g1_process_strong_roots(bool is_scavenging,
 812                                ScanningOption so,
 813                                OopClosure* scan_non_heap_roots,
 814                                OopsInHeapRegionClosure* scan_rs,
 815                                G1KlassScanClosure* scan_klasses,
 816                                int worker_i);
 817 
 818   // Apply "blk" to all the weak roots of the system.  These include
 819   // JNI weak roots, the code cache, system dictionary, symbol table,
 820   // string table, and referents of reachable weak refs.
 821   void g1_process_weak_roots(OopClosure* root_closure,
 822                              OopClosure* non_root_closure);
 823 
 824   // Frees a non-humongous region by initializing its contents and
 825   // adding it to the free list that's passed as a parameter (this is
 826   // usually a local list which will be appended to the master free
 827   // list later). The used bytes of freed regions are accumulated in
 828   // pre_used. If par is true, the region's RSet will not be freed
 829   // up. The assumption is that this will be done later.
 830   void free_region(HeapRegion* hr,
 831                    size_t* pre_used,
 832                    FreeRegionList* free_list,
 833                    bool par);
 834 
 835   // Frees a humongous region by collapsing it into individual regions
 836   // and calling free_region() for each of them. The freed regions
 837   // will be added to the free list that's passed as a parameter (this
 838   // is usually a local list which will be appended to the master free
 839   // list later). The used bytes of freed regions are accumulated in
 840   // pre_used. If par is true, the region's RSet will not be freed
 841   // up. The assumption is that this will be done later.
 842   void free_humongous_region(HeapRegion* hr,
 843                              size_t* pre_used,
 844                              FreeRegionList* free_list,
 845                              HumongousRegionSet* humongous_proxy_set,
 846                              bool par);
 847 
 848   // Notifies all the necessary spaces that the committed space has
 849   // been updated (either expanded or shrunk). It should be called
 850   // after _g1_storage is updated.
 851   void update_committed_space(HeapWord* old_end, HeapWord* new_end);
 852 
 853   // The concurrent marker (and the thread it runs in.)
 854   ConcurrentMark* _cm;
 855   ConcurrentMarkThread* _cmThread;
 856   bool _mark_in_progress;
 857 
 858   // The concurrent refiner.
 859   ConcurrentG1Refine* _cg1r;
 860 
 861   // The parallel task queues
 862   RefToScanQueueSet *_task_queues;
 863 
 864   // True iff a evacuation has failed in the current collection.
 865   bool _evacuation_failed;
 866 
 867   // Set the attribute indicating whether evacuation has failed in the
 868   // current collection.
 869   void set_evacuation_failed(bool b) { _evacuation_failed = b; }
 870 
 871   // Failed evacuations cause some logical from-space objects to have
 872   // forwarding pointers to themselves.  Reset them.
 873   void remove_self_forwarding_pointers();
 874 
 875   // When one is non-null, so is the other.  Together, they each pair is
 876   // an object with a preserved mark, and its mark value.
 877   GrowableArray<oop>*     _objs_with_preserved_marks;
 878   GrowableArray<markOop>* _preserved_marks_of_objs;
 879 
 880   // Preserve the mark of "obj", if necessary, in preparation for its mark
 881   // word being overwritten with a self-forwarding-pointer.
 882   void preserve_mark_if_necessary(oop obj, markOop m);
 883 
 884   // The stack of evac-failure objects left to be scanned.
 885   GrowableArray<oop>*    _evac_failure_scan_stack;
 886   // The closure to apply to evac-failure objects.
 887 
 888   OopsInHeapRegionClosure* _evac_failure_closure;
 889   // Set the field above.
 890   void
 891   set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_closure) {
 892     _evac_failure_closure = evac_failure_closure;
 893   }
 894 
 895   // Push "obj" on the scan stack.
 896   void push_on_evac_failure_scan_stack(oop obj);
 897   // Process scan stack entries until the stack is empty.
 898   void drain_evac_failure_scan_stack();
 899   // True iff an invocation of "drain_scan_stack" is in progress; to
 900   // prevent unnecessary recursion.
 901   bool _drain_in_progress;
 902 
 903   // Do any necessary initialization for evacuation-failure handling.
 904   // "cl" is the closure that will be used to process evac-failure
 905   // objects.
 906   void init_for_evac_failure(OopsInHeapRegionClosure* cl);
 907   // Do any necessary cleanup for evacuation-failure handling data
 908   // structures.
 909   void finalize_for_evac_failure();
 910 
 911   // An attempt to evacuate "obj" has failed; take necessary steps.
 912   oop handle_evacuation_failure_par(OopsInHeapRegionClosure* cl, oop obj);
 913   void handle_evacuation_failure_common(oop obj, markOop m);
 914 
 915 #ifndef PRODUCT
 916   // Support for forcing evacuation failures. Analogous to
 917   // PromotionFailureALot for the other collectors.
 918 
 919   // Records whether G1EvacuationFailureALot should be in effect
 920   // for the current GC
 921   bool _evacuation_failure_alot_for_current_gc;
 922 
 923   // Used to record the GC number for interval checking when
 924   // determining whether G1EvaucationFailureALot is in effect
 925   // for the current GC.
 926   size_t _evacuation_failure_alot_gc_number;
 927 
 928   // Count of the number of evacuations between failures.
 929   volatile size_t _evacuation_failure_alot_count;
 930 
 931   // Set whether G1EvacuationFailureALot should be in effect
 932   // for the current GC (based upon the type of GC and which
 933   // command line flags are set);
 934   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 935                                                   bool during_initial_mark,
 936                                                   bool during_marking);
 937 
 938   inline void set_evacuation_failure_alot_for_current_gc();
 939 
 940   // Return true if it's time to cause an evacuation failure.
 941   inline bool evacuation_should_fail();
 942 
 943   // Reset the G1EvacuationFailureALot counters.  Should be called at
 944   // the end of an evacuation pause in which an evacuation failure ocurred.
 945   inline void reset_evacuation_should_fail();
 946 #endif // !PRODUCT
 947 
 948   // ("Weak") Reference processing support.
 949   //
 950   // G1 has 2 instances of the referece processor class. One
 951   // (_ref_processor_cm) handles reference object discovery
 952   // and subsequent processing during concurrent marking cycles.
 953   //
 954   // The other (_ref_processor_stw) handles reference object
 955   // discovery and processing during full GCs and incremental
 956   // evacuation pauses.
 957   //
 958   // During an incremental pause, reference discovery will be
 959   // temporarily disabled for _ref_processor_cm and will be
 960   // enabled for _ref_processor_stw. At the end of the evacuation
 961   // pause references discovered by _ref_processor_stw will be
 962   // processed and discovery will be disabled. The previous
 963   // setting for reference object discovery for _ref_processor_cm
 964   // will be re-instated.
 965   //
 966   // At the start of marking:
 967   //  * Discovery by the CM ref processor is verified to be inactive
 968   //    and it's discovered lists are empty.
 969   //  * Discovery by the CM ref processor is then enabled.
 970   //
 971   // At the end of marking:
 972   //  * Any references on the CM ref processor's discovered
 973   //    lists are processed (possibly MT).
 974   //
 975   // At the start of full GC we:
 976   //  * Disable discovery by the CM ref processor and
 977   //    empty CM ref processor's discovered lists
 978   //    (without processing any entries).
 979   //  * Verify that the STW ref processor is inactive and it's
 980   //    discovered lists are empty.
 981   //  * Temporarily set STW ref processor discovery as single threaded.
 982   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 983   //    field.
 984   //  * Finally enable discovery by the STW ref processor.
 985   //
 986   // The STW ref processor is used to record any discovered
 987   // references during the full GC.
 988   //
 989   // At the end of a full GC we:
 990   //  * Enqueue any reference objects discovered by the STW ref processor
 991   //    that have non-live referents. This has the side-effect of
 992   //    making the STW ref processor inactive by disabling discovery.
 993   //  * Verify that the CM ref processor is still inactive
 994   //    and no references have been placed on it's discovered
 995   //    lists (also checked as a precondition during initial marking).
 996 
 997   // The (stw) reference processor...
 998   ReferenceProcessor* _ref_processor_stw;
 999 
1000   // During reference object discovery, the _is_alive_non_header
1001   // closure (if non-null) is applied to the referent object to
1002   // determine whether the referent is live. If so then the
1003   // reference object does not need to be 'discovered' and can
1004   // be treated as a regular oop. This has the benefit of reducing
1005   // the number of 'discovered' reference objects that need to
1006   // be processed.
1007   //
1008   // Instance of the is_alive closure for embedding into the
1009   // STW reference processor as the _is_alive_non_header field.
1010   // Supplying a value for the _is_alive_non_header field is
1011   // optional but doing so prevents unnecessary additions to
1012   // the discovered lists during reference discovery.
1013   G1STWIsAliveClosure _is_alive_closure_stw;
1014 
1015   // The (concurrent marking) reference processor...
1016   ReferenceProcessor* _ref_processor_cm;
1017 
1018   // Instance of the concurrent mark is_alive closure for embedding
1019   // into the Concurrent Marking reference processor as the
1020   // _is_alive_non_header field. Supplying a value for the
1021   // _is_alive_non_header field is optional but doing so prevents
1022   // unnecessary additions to the discovered lists during reference
1023   // discovery.
1024   G1CMIsAliveClosure _is_alive_closure_cm;
1025 
1026   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
1027   HeapRegion** _worker_cset_start_region;
1028 
1029   // Time stamp to validate the regions recorded in the cache
1030   // used by G1CollectedHeap::start_cset_region_for_worker().
1031   // The heap region entry for a given worker is valid iff
1032   // the associated time stamp value matches the current value
1033   // of G1CollectedHeap::_gc_time_stamp.
1034   unsigned int* _worker_cset_start_region_time_stamp;
1035 
1036   enum G1H_process_strong_roots_tasks {
1037     G1H_PS_filter_satb_buffers,
1038     G1H_PS_refProcessor_oops_do,
1039     // Leave this one last.
1040     G1H_PS_NumElements
1041   };
1042 
1043   SubTasksDone* _process_strong_tasks;
1044 
1045   volatile bool _free_regions_coming;
1046 
1047 public:
1048 
1049   SubTasksDone* process_strong_tasks() { return _process_strong_tasks; }
1050 
1051   void set_refine_cte_cl_concurrency(bool concurrent);
1052 
1053   RefToScanQueue *task_queue(int i) const;
1054 
1055   // A set of cards where updates happened during the GC
1056   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
1057 
1058   // A DirtyCardQueueSet that is used to hold cards that contain
1059   // references into the current collection set. This is used to
1060   // update the remembered sets of the regions in the collection
1061   // set in the event of an evacuation failure.
1062   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
1063         { return _into_cset_dirty_card_queue_set; }
1064 
1065   // Create a G1CollectedHeap with the specified policy.
1066   // Must call the initialize method afterwards.
1067   // May not return if something goes wrong.
1068   G1CollectedHeap(G1CollectorPolicy* policy);
1069 
1070   // Initialize the G1CollectedHeap to have the initial and
1071   // maximum sizes and remembered and barrier sets
1072   // specified by the policy object.
1073   jint initialize();
1074 
1075   // Initialize weak reference processing.
1076   virtual void ref_processing_init();
1077 
1078   void set_par_threads(uint t) {
1079     SharedHeap::set_par_threads(t);
1080     // Done in SharedHeap but oddly there are
1081     // two _process_strong_tasks's in a G1CollectedHeap
1082     // so do it here too.
1083     _process_strong_tasks->set_n_threads(t);
1084   }
1085 
1086   // Set _n_par_threads according to a policy TBD.
1087   void set_par_threads();
1088 
1089   void set_n_termination(int t) {
1090     _process_strong_tasks->set_n_threads(t);
1091   }
1092 
1093   virtual CollectedHeap::Name kind() const {
1094     return CollectedHeap::G1CollectedHeap;
1095   }
1096 
1097   // The current policy object for the collector.
1098   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1099 
1100   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) g1_policy(); }
1101 
1102   // Adaptive size policy.  No such thing for g1.
1103   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1104 
1105   // The rem set and barrier set.
1106   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1107   ModRefBarrierSet* mr_bs() const { return _mr_bs; }
1108 
1109   // The rem set iterator.
1110   HeapRegionRemSetIterator* rem_set_iterator(int i) {
1111     return _rem_set_iterator[i];
1112   }
1113 
1114   HeapRegionRemSetIterator* rem_set_iterator() {
1115     return _rem_set_iterator[0];
1116   }
1117 
1118   unsigned get_gc_time_stamp() {
1119     return _gc_time_stamp;
1120   }
1121 
1122   void reset_gc_time_stamp() {
1123     _gc_time_stamp = 0;
1124     OrderAccess::fence();
1125     // Clear the cached CSet starting regions and time stamps.
1126     // Their validity is dependent on the GC timestamp.
1127     clear_cset_start_regions();
1128   }
1129 
1130   void check_gc_time_stamps() PRODUCT_RETURN;
1131 
1132   void increment_gc_time_stamp() {
1133     ++_gc_time_stamp;
1134     OrderAccess::fence();
1135   }
1136 
1137   // Reset the given region's GC timestamp. If it's starts humongous,
1138   // also reset the GC timestamp of its corresponding
1139   // continues humongous regions too.
1140   void reset_gc_time_stamps(HeapRegion* hr);
1141 
1142   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1143                                   DirtyCardQueue* into_cset_dcq,
1144                                   bool concurrent, int worker_i);
1145 
1146   // The shared block offset table array.
1147   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1148 
1149   // Reference Processing accessors
1150 
1151   // The STW reference processor....
1152   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1153 
1154   // The Concurent Marking reference processor...
1155   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1156 
1157   virtual size_t capacity() const;
1158   virtual size_t used() const;
1159   // This should be called when we're not holding the heap lock. The
1160   // result might be a bit inaccurate.
1161   size_t used_unlocked() const;
1162   size_t recalculate_used() const;
1163 
1164   // These virtual functions do the actual allocation.
1165   // Some heaps may offer a contiguous region for shared non-blocking
1166   // allocation, via inlined code (by exporting the address of the top and
1167   // end fields defining the extent of the contiguous allocation region.)
1168   // But G1CollectedHeap doesn't yet support this.
1169 
1170   // Return an estimate of the maximum allocation that could be performed
1171   // without triggering any collection or expansion activity.  In a
1172   // generational collector, for example, this is probably the largest
1173   // allocation that could be supported (without expansion) in the youngest
1174   // generation.  It is "unsafe" because no locks are taken; the result
1175   // should be treated as an approximation, not a guarantee, for use in
1176   // heuristic resizing decisions.
1177   virtual size_t unsafe_max_alloc();
1178 
1179   virtual bool is_maximal_no_gc() const {
1180     return _g1_storage.uncommitted_size() == 0;
1181   }
1182 
1183   // The total number of regions in the heap.
1184   uint n_regions() { return _hrs.length(); }
1185 
1186   // The max number of regions in the heap.
1187   uint max_regions() { return _hrs.max_length(); }
1188 
1189   // The number of regions that are completely free.
1190   uint free_regions() { return _free_list.length(); }
1191 
1192   // The number of regions that are not completely free.
1193   uint used_regions() { return n_regions() - free_regions(); }
1194 
1195   // The number of regions available for "regular" expansion.
1196   uint expansion_regions() { return _expansion_regions; }
1197 
1198   // Factory method for HeapRegion instances. It will return NULL if
1199   // the allocation fails.
1200   HeapRegion* new_heap_region(uint hrs_index, HeapWord* bottom);
1201 
1202   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1203   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1204   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1205   void verify_dirty_young_regions() PRODUCT_RETURN;
1206 
1207   // verify_region_sets() performs verification over the region
1208   // lists. It will be compiled in the product code to be used when
1209   // necessary (i.e., during heap verification).
1210   void verify_region_sets();
1211 
1212   // verify_region_sets_optional() is planted in the code for
1213   // list verification in non-product builds (and it can be enabled in
1214   // product builds by definning HEAP_REGION_SET_FORCE_VERIFY to be 1).
1215 #if HEAP_REGION_SET_FORCE_VERIFY
1216   void verify_region_sets_optional() {
1217     verify_region_sets();
1218   }
1219 #else // HEAP_REGION_SET_FORCE_VERIFY
1220   void verify_region_sets_optional() { }
1221 #endif // HEAP_REGION_SET_FORCE_VERIFY
1222 
1223 #ifdef ASSERT
1224   bool is_on_master_free_list(HeapRegion* hr) {
1225     return hr->containing_set() == &_free_list;
1226   }
1227 
1228   bool is_in_humongous_set(HeapRegion* hr) {
1229     return hr->containing_set() == &_humongous_set;
1230   }
1231 #endif // ASSERT
1232 
1233   // Wrapper for the region list operations that can be called from
1234   // methods outside this class.
1235 
1236   void secondary_free_list_add_as_tail(FreeRegionList* list) {
1237     _secondary_free_list.add_as_tail(list);
1238   }
1239 
1240   void append_secondary_free_list() {
1241     _free_list.add_as_head(&_secondary_free_list);
1242   }
1243 
1244   void append_secondary_free_list_if_not_empty_with_lock() {
1245     // If the secondary free list looks empty there's no reason to
1246     // take the lock and then try to append it.
1247     if (!_secondary_free_list.is_empty()) {
1248       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1249       append_secondary_free_list();
1250     }
1251   }
1252 
1253   void old_set_remove(HeapRegion* hr) {
1254     _old_set.remove(hr);
1255   }
1256 
1257   size_t non_young_capacity_bytes() {
1258     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1259   }
1260 
1261   void set_free_regions_coming();
1262   void reset_free_regions_coming();
1263   bool free_regions_coming() { return _free_regions_coming; }
1264   void wait_while_free_regions_coming();
1265 
1266   // Determine whether the given region is one that we are using as an
1267   // old GC alloc region.
1268   bool is_old_gc_alloc_region(HeapRegion* hr) {
1269     return hr == _retained_old_gc_alloc_region;
1270   }
1271 
1272   // Perform a collection of the heap; intended for use in implementing
1273   // "System.gc".  This probably implies as full a collection as the
1274   // "CollectedHeap" supports.
1275   virtual void collect(GCCause::Cause cause);
1276 
1277   // The same as above but assume that the caller holds the Heap_lock.
1278   void collect_locked(GCCause::Cause cause);
1279 
1280   // True iff a evacuation has failed in the most-recent collection.
1281   bool evacuation_failed() { return _evacuation_failed; }
1282 
1283   // It will free a region if it has allocated objects in it that are
1284   // all dead. It calls either free_region() or
1285   // free_humongous_region() depending on the type of the region that
1286   // is passed to it.
1287   void free_region_if_empty(HeapRegion* hr,
1288                             size_t* pre_used,
1289                             FreeRegionList* free_list,
1290                             OldRegionSet* old_proxy_set,
1291                             HumongousRegionSet* humongous_proxy_set,
1292                             HRRSCleanupTask* hrrs_cleanup_task,
1293                             bool par);
1294 
1295   // It appends the free list to the master free list and updates the
1296   // master humongous list according to the contents of the proxy
1297   // list. It also adjusts the total used bytes according to pre_used
1298   // (if par is true, it will do so by taking the ParGCRareEvent_lock).
1299   void update_sets_after_freeing_regions(size_t pre_used,
1300                                        FreeRegionList* free_list,
1301                                        OldRegionSet* old_proxy_set,
1302                                        HumongousRegionSet* humongous_proxy_set,
1303                                        bool par);
1304 
1305   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1306   virtual bool is_in(const void* p) const;
1307 
1308   // Return "TRUE" iff the given object address is within the collection
1309   // set.
1310   inline bool obj_in_cs(oop obj);
1311 
1312   // Return "TRUE" iff the given object address is in the reserved
1313   // region of g1.
1314   bool is_in_g1_reserved(const void* p) const {
1315     return _g1_reserved.contains(p);
1316   }
1317 
1318   // Returns a MemRegion that corresponds to the space that has been
1319   // reserved for the heap
1320   MemRegion g1_reserved() {
1321     return _g1_reserved;
1322   }
1323 
1324   // Returns a MemRegion that corresponds to the space that has been
1325   // committed in the heap
1326   MemRegion g1_committed() {
1327     return _g1_committed;
1328   }
1329 
1330   virtual bool is_in_closed_subset(const void* p) const;
1331 
1332   // This resets the card table to all zeros.  It is used after
1333   // a collection pause which used the card table to claim cards.
1334   void cleanUpCardTable();
1335 
1336   // Iteration functions.
1337 
1338   // Iterate over all the ref-containing fields of all objects, calling
1339   // "cl.do_oop" on each.
1340   virtual void oop_iterate(ExtendedOopClosure* cl);
1341 
1342   // Same as above, restricted to a memory region.
1343   void oop_iterate(MemRegion mr, ExtendedOopClosure* cl);
1344 
1345   // Iterate over all objects, calling "cl.do_object" on each.
1346   virtual void object_iterate(ObjectClosure* cl);
1347 
1348   virtual void safe_object_iterate(ObjectClosure* cl) {
1349     object_iterate(cl);
1350   }
1351 
1352   // Iterate over all objects allocated since the last collection, calling
1353   // "cl.do_object" on each.  The heap must have been initialized properly
1354   // to support this function, or else this call will fail.
1355   virtual void object_iterate_since_last_GC(ObjectClosure* cl);
1356 
1357   // Iterate over all spaces in use in the heap, in ascending address order.
1358   virtual void space_iterate(SpaceClosure* cl);
1359 
1360   // Iterate over heap regions, in address order, terminating the
1361   // iteration early if the "doHeapRegion" method returns "true".
1362   void heap_region_iterate(HeapRegionClosure* blk) const;
1363 
1364   // Return the region with the given index. It assumes the index is valid.
1365   HeapRegion* region_at(uint index) const { return _hrs.at(index); }
1366 
1367   // Divide the heap region sequence into "chunks" of some size (the number
1368   // of regions divided by the number of parallel threads times some
1369   // overpartition factor, currently 4).  Assumes that this will be called
1370   // in parallel by ParallelGCThreads worker threads with discinct worker
1371   // ids in the range [0..max(ParallelGCThreads-1, 1)], that all parallel
1372   // calls will use the same "claim_value", and that that claim value is
1373   // different from the claim_value of any heap region before the start of
1374   // the iteration.  Applies "blk->doHeapRegion" to each of the regions, by
1375   // attempting to claim the first region in each chunk, and, if
1376   // successful, applying the closure to each region in the chunk (and
1377   // setting the claim value of the second and subsequent regions of the
1378   // chunk.)  For now requires that "doHeapRegion" always returns "false",
1379   // i.e., that a closure never attempt to abort a traversal.
1380   void heap_region_par_iterate_chunked(HeapRegionClosure* blk,
1381                                        uint worker,
1382                                        uint no_of_par_workers,
1383                                        jint claim_value);
1384 
1385   // It resets all the region claim values to the default.
1386   void reset_heap_region_claim_values();
1387 
1388   // Resets the claim values of regions in the current
1389   // collection set to the default.
1390   void reset_cset_heap_region_claim_values();
1391 
1392 #ifdef ASSERT
1393   bool check_heap_region_claim_values(jint claim_value);
1394 
1395   // Same as the routine above but only checks regions in the
1396   // current collection set.
1397   bool check_cset_heap_region_claim_values(jint claim_value);
1398 #endif // ASSERT
1399 
1400   // Clear the cached cset start regions and (more importantly)
1401   // the time stamps. Called when we reset the GC time stamp.
1402   void clear_cset_start_regions();
1403 
1404   // Given the id of a worker, obtain or calculate a suitable
1405   // starting region for iterating over the current collection set.
1406   HeapRegion* start_cset_region_for_worker(int worker_i);
1407 
1408   // This is a convenience method that is used by the
1409   // HeapRegionIterator classes to calculate the starting region for
1410   // each worker so that they do not all start from the same region.
1411   HeapRegion* start_region_for_worker(uint worker_i, uint no_of_par_workers);
1412 
1413   // Iterate over the regions (if any) in the current collection set.
1414   void collection_set_iterate(HeapRegionClosure* blk);
1415 
1416   // As above but starting from region r
1417   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1418 
1419   // Returns the first (lowest address) compactible space in the heap.
1420   virtual CompactibleSpace* first_compactible_space();
1421 
1422   // A CollectedHeap will contain some number of spaces.  This finds the
1423   // space containing a given address, or else returns NULL.
1424   virtual Space* space_containing(const void* addr) const;
1425 
1426   // A G1CollectedHeap will contain some number of heap regions.  This
1427   // finds the region containing a given address, or else returns NULL.
1428   template <class T>
1429   inline HeapRegion* heap_region_containing(const T addr) const;
1430 
1431   // Like the above, but requires "addr" to be in the heap (to avoid a
1432   // null-check), and unlike the above, may return an continuing humongous
1433   // region.
1434   template <class T>
1435   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1436 
1437   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1438   // each address in the (reserved) heap is a member of exactly
1439   // one block.  The defining characteristic of a block is that it is
1440   // possible to find its size, and thus to progress forward to the next
1441   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1442   // represent Java objects, or they might be free blocks in a
1443   // free-list-based heap (or subheap), as long as the two kinds are
1444   // distinguishable and the size of each is determinable.
1445 
1446   // Returns the address of the start of the "block" that contains the
1447   // address "addr".  We say "blocks" instead of "object" since some heaps
1448   // may not pack objects densely; a chunk may either be an object or a
1449   // non-object.
1450   virtual HeapWord* block_start(const void* addr) const;
1451 
1452   // Requires "addr" to be the start of a chunk, and returns its size.
1453   // "addr + size" is required to be the start of a new chunk, or the end
1454   // of the active area of the heap.
1455   virtual size_t block_size(const HeapWord* addr) const;
1456 
1457   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1458   // the block is an object.
1459   virtual bool block_is_obj(const HeapWord* addr) const;
1460 
1461   // Does this heap support heap inspection? (+PrintClassHistogram)
1462   virtual bool supports_heap_inspection() const { return true; }
1463 
1464   // Section on thread-local allocation buffers (TLABs)
1465   // See CollectedHeap for semantics.
1466 
1467   virtual bool supports_tlab_allocation() const;
1468   virtual size_t tlab_capacity(Thread* thr) const;
1469   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
1470 
1471   // Can a compiler initialize a new object without store barriers?
1472   // This permission only extends from the creation of a new object
1473   // via a TLAB up to the first subsequent safepoint. If such permission
1474   // is granted for this heap type, the compiler promises to call
1475   // defer_store_barrier() below on any slow path allocation of
1476   // a new object for which such initializing store barriers will
1477   // have been elided. G1, like CMS, allows this, but should be
1478   // ready to provide a compensating write barrier as necessary
1479   // if that storage came out of a non-young region. The efficiency
1480   // of this implementation depends crucially on being able to
1481   // answer very efficiently in constant time whether a piece of
1482   // storage in the heap comes from a young region or not.
1483   // See ReduceInitialCardMarks.
1484   virtual bool can_elide_tlab_store_barriers() const {
1485     return true;
1486   }
1487 
1488   virtual bool card_mark_must_follow_store() const {
1489     return true;
1490   }
1491 
1492   bool is_in_young(const oop obj) {
1493     HeapRegion* hr = heap_region_containing(obj);
1494     return hr != NULL && hr->is_young();
1495   }
1496 
1497 #ifdef ASSERT
1498   virtual bool is_in_partial_collection(const void* p);
1499 #endif
1500 
1501   virtual bool is_scavengable(const void* addr);
1502 
1503   // We don't need barriers for initializing stores to objects
1504   // in the young gen: for the SATB pre-barrier, there is no
1505   // pre-value that needs to be remembered; for the remembered-set
1506   // update logging post-barrier, we don't maintain remembered set
1507   // information for young gen objects.
1508   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
1509     return is_in_young(new_obj);
1510   }
1511 
1512   // Returns "true" iff the given word_size is "very large".
1513   static bool isHumongous(size_t word_size) {
1514     // Note this has to be strictly greater-than as the TLABs
1515     // are capped at the humongous thresold and we want to
1516     // ensure that we don't try to allocate a TLAB as
1517     // humongous and that we don't allocate a humongous
1518     // object in a TLAB.
1519     return word_size > _humongous_object_threshold_in_words;
1520   }
1521 
1522   // Update mod union table with the set of dirty cards.
1523   void updateModUnion();
1524 
1525   // Set the mod union bits corresponding to the given memRegion.  Note
1526   // that this is always a safe operation, since it doesn't clear any
1527   // bits.
1528   void markModUnionRange(MemRegion mr);
1529 
1530   // Records the fact that a marking phase is no longer in progress.
1531   void set_marking_complete() {
1532     _mark_in_progress = false;
1533   }
1534   void set_marking_started() {
1535     _mark_in_progress = true;
1536   }
1537   bool mark_in_progress() {
1538     return _mark_in_progress;
1539   }
1540 
1541   // Print the maximum heap capacity.
1542   virtual size_t max_capacity() const;
1543 
1544   virtual jlong millis_since_last_gc();
1545 
1546   // Perform any cleanup actions necessary before allowing a verification.
1547   virtual void prepare_for_verify();
1548 
1549   // Perform verification.
1550 
1551   // vo == UsePrevMarking  -> use "prev" marking information,
1552   // vo == UseNextMarking -> use "next" marking information
1553   // vo == UseMarkWord    -> use the mark word in the object header
1554   //
1555   // NOTE: Only the "prev" marking information is guaranteed to be
1556   // consistent most of the time, so most calls to this should use
1557   // vo == UsePrevMarking.
1558   // Currently, there is only one case where this is called with
1559   // vo == UseNextMarking, which is to verify the "next" marking
1560   // information at the end of remark.
1561   // Currently there is only one place where this is called with
1562   // vo == UseMarkWord, which is to verify the marking during a
1563   // full GC.
1564   void verify(bool silent, VerifyOption vo);
1565 
1566   // Override; it uses the "prev" marking information
1567   virtual void verify(bool silent);
1568   virtual void print_on(outputStream* st) const;
1569   virtual void print_extended_on(outputStream* st) const;
1570 
1571   virtual void print_gc_threads_on(outputStream* st) const;
1572   virtual void gc_threads_do(ThreadClosure* tc) const;
1573 
1574   // Override
1575   void print_tracing_info() const;
1576 
1577   // The following two methods are helpful for debugging RSet issues.
1578   void print_cset_rsets() PRODUCT_RETURN;
1579   void print_all_rsets() PRODUCT_RETURN;
1580 
1581   // Convenience function to be used in situations where the heap type can be
1582   // asserted to be this type.
1583   static G1CollectedHeap* heap();
1584 
1585   void set_region_short_lived_locked(HeapRegion* hr);
1586   // add appropriate methods for any other surv rate groups
1587 
1588   YoungList* young_list() { return _young_list; }
1589 
1590   // debugging
1591   bool check_young_list_well_formed() {
1592     return _young_list->check_list_well_formed();
1593   }
1594 
1595   bool check_young_list_empty(bool check_heap,
1596                               bool check_sample = true);
1597 
1598   // *** Stuff related to concurrent marking.  It's not clear to me that so
1599   // many of these need to be public.
1600 
1601   // The functions below are helper functions that a subclass of
1602   // "CollectedHeap" can use in the implementation of its virtual
1603   // functions.
1604   // This performs a concurrent marking of the live objects in a
1605   // bitmap off to the side.
1606   void doConcurrentMark();
1607 
1608   bool isMarkedPrev(oop obj) const;
1609   bool isMarkedNext(oop obj) const;
1610 
1611   // Determine if an object is dead, given the object and also
1612   // the region to which the object belongs. An object is dead
1613   // iff a) it was not allocated since the last mark and b) it
1614   // is not marked.
1615 
1616   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1617     return
1618       !hr->obj_allocated_since_prev_marking(obj) &&
1619       !isMarkedPrev(obj);
1620   }
1621 
1622   // This function returns true when an object has been
1623   // around since the previous marking and hasn't yet
1624   // been marked during this marking.
1625 
1626   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1627     return
1628       !hr->obj_allocated_since_next_marking(obj) &&
1629       !isMarkedNext(obj);
1630   }
1631 
1632   // Determine if an object is dead, given only the object itself.
1633   // This will find the region to which the object belongs and
1634   // then call the region version of the same function.
1635 
1636   // Added if it is NULL it isn't dead.
1637 
1638   bool is_obj_dead(const oop obj) const {
1639     const HeapRegion* hr = heap_region_containing(obj);
1640     if (hr == NULL) {
1641       if (obj == NULL) return false;
1642       else return true;
1643     }
1644     else return is_obj_dead(obj, hr);
1645   }
1646 
1647   bool is_obj_ill(const oop obj) const {
1648     const HeapRegion* hr = heap_region_containing(obj);
1649     if (hr == NULL) {
1650       if (obj == NULL) return false;
1651       else return true;
1652     }
1653     else return is_obj_ill(obj, hr);
1654   }
1655 
1656   // The methods below are here for convenience and dispatch the
1657   // appropriate method depending on value of the given VerifyOption
1658   // parameter. The options for that parameter are:
1659   //
1660   // vo == UsePrevMarking -> use "prev" marking information,
1661   // vo == UseNextMarking -> use "next" marking information,
1662   // vo == UseMarkWord    -> use mark word from object header
1663 
1664   bool is_obj_dead_cond(const oop obj,
1665                         const HeapRegion* hr,
1666                         const VerifyOption vo) const {
1667     switch (vo) {
1668     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
1669     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
1670     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
1671     default:                            ShouldNotReachHere();
1672     }
1673     return false; // keep some compilers happy
1674   }
1675 
1676   bool is_obj_dead_cond(const oop obj,
1677                         const VerifyOption vo) const {
1678     switch (vo) {
1679     case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
1680     case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
1681     case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
1682     default:                            ShouldNotReachHere();
1683     }
1684     return false; // keep some compilers happy
1685   }
1686 
1687   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1688   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1689   bool is_marked(oop obj, VerifyOption vo);
1690   const char* top_at_mark_start_str(VerifyOption vo);
1691 
1692   // The following is just to alert the verification code
1693   // that a full collection has occurred and that the
1694   // remembered sets are no longer up to date.
1695   bool _full_collection;
1696   void set_full_collection() { _full_collection = true;}
1697   void clear_full_collection() {_full_collection = false;}
1698   bool full_collection() {return _full_collection;}
1699 
1700   ConcurrentMark* concurrent_mark() const { return _cm; }
1701   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1702 
1703   // The dirty cards region list is used to record a subset of regions
1704   // whose cards need clearing. The list if populated during the
1705   // remembered set scanning and drained during the card table
1706   // cleanup. Although the methods are reentrant, population/draining
1707   // phases must not overlap. For synchronization purposes the last
1708   // element on the list points to itself.
1709   HeapRegion* _dirty_cards_region_list;
1710   void push_dirty_cards_region(HeapRegion* hr);
1711   HeapRegion* pop_dirty_cards_region();
1712 
1713 public:
1714   void stop_conc_gc_threads();
1715 
1716   size_t pending_card_num();
1717   size_t cards_scanned();
1718 
1719 protected:
1720   size_t _max_heap_capacity;
1721 };
1722 
1723 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
1724 private:
1725   bool        _retired;
1726 
1727 public:
1728   G1ParGCAllocBuffer(size_t gclab_word_size);
1729 
1730   void set_buf(HeapWord* buf) {
1731     ParGCAllocBuffer::set_buf(buf);
1732     _retired = false;
1733   }
1734 
1735   void retire(bool end_of_gc, bool retain) {
1736     if (_retired)
1737       return;
1738     ParGCAllocBuffer::retire(end_of_gc, retain);
1739     _retired = true;
1740   }
1741 };
1742 
1743 class G1ParScanThreadState : public StackObj {
1744 private:
1745   enum GCAllocPriority {
1746     GCAllocPriority1,
1747     GCAllocPriority2,
1748     GCAllocPriorityCount
1749   };
1750 
1751   int buf_idx(int purpose, int priority) {
1752     return purpose*GCAllocPriorityCount + priority;
1753   }
1754 
1755 protected:
1756   G1CollectedHeap* _g1h;
1757   RefToScanQueue*  _refs;
1758   DirtyCardQueue   _dcq;
1759   CardTableModRefBS* _ct_bs;
1760   G1RemSet* _g1_rem;
1761 
1762   G1ParGCAllocBuffer* _alloc_buffers[GCAllocPurposeCount*GCAllocPriorityCount];
1763   ageTable            _age_table;
1764 
1765   size_t           _alloc_buffer_waste;
1766   size_t           _undo_waste;
1767 
1768   OopsInHeapRegionClosure*      _evac_failure_cl;
1769   G1ParScanHeapEvacClosure*     _evac_cl;
1770   G1ParScanPartialArrayClosure* _partial_scan_cl;
1771 
1772   int _hash_seed;
1773   uint _queue_num;
1774 
1775   size_t _term_attempts;
1776 
1777   double _start;
1778   double _start_strong_roots;
1779   double _strong_roots_time;
1780   double _start_term;
1781   double _term_time;
1782 
1783   // Map from young-age-index (0 == not young, 1 is youngest) to
1784   // surviving words. base is what we get back from the malloc call
1785   size_t* _surviving_young_words_base;
1786   // this points into the array, as we use the first few entries for padding
1787   size_t* _surviving_young_words;
1788 
1789 #define PADDING_ELEM_NUM (DEFAULT_CACHE_LINE_SIZE / sizeof(size_t))
1790 
1791   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
1792 
1793   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
1794 
1795   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
1796   CardTableModRefBS* ctbs()                      { return _ct_bs; }
1797 
1798   template <class T> void immediate_rs_update(HeapRegion* from, T* p, int tid) {
1799     if (!from->is_survivor()) {
1800       _g1_rem->par_write_ref(from, p, tid);
1801     }
1802   }
1803 
1804   template <class T> void deferred_rs_update(HeapRegion* from, T* p, int tid) {
1805     // If the new value of the field points to the same region or
1806     // is the to-space, we don't need to include it in the Rset updates.
1807     if (!from->is_in_reserved(oopDesc::load_decode_heap_oop(p)) && !from->is_survivor()) {
1808       size_t card_index = ctbs()->index_for(p);
1809       // If the card hasn't been added to the buffer, do it.
1810       if (ctbs()->mark_card_deferred(card_index)) {
1811         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
1812       }
1813     }
1814   }
1815 
1816 public:
1817   G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num);
1818 
1819   ~G1ParScanThreadState() {
1820     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
1821     for (int ap = 0; ap < GCAllocPurposeCount; ++ap)
1822       for (int pr = 0; pr < GCAllocPriorityCount; ++pr) {
1823         delete alloc_buffer(GCAllocPurpose(ap), GCAllocPriority(pr));
1824       }
1825   }
1826 
1827   RefToScanQueue*   refs()            { return _refs;             }
1828   ageTable*         age_table()       { return &_age_table;       }
1829 
1830   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose, GCAllocPriority priority) {
1831     return _alloc_buffers[buf_idx(purpose, priority)];
1832   }
1833 
1834   size_t alloc_buffer_waste() const              { return _alloc_buffer_waste; }
1835   size_t undo_waste() const                      { return _undo_waste; }
1836 
1837 #ifdef ASSERT
1838   bool verify_ref(narrowOop* ref) const;
1839   bool verify_ref(oop* ref) const;
1840   bool verify_task(StarTask ref) const;
1841 #endif // ASSERT
1842 
1843   template <class T> void push_on_queue(T* ref) {
1844     assert(verify_ref(ref), "sanity");
1845     refs()->push(ref);
1846   }
1847 
1848   template <class T> void update_rs(HeapRegion* from, T* p, int tid) {
1849     if (G1DeferredRSUpdate) {
1850       deferred_rs_update(from, p, tid);
1851     } else {
1852       immediate_rs_update(from, p, tid);
1853     }
1854   }
1855 
1856   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
1857     HeapWord* obj = NULL;
1858     size_t gclab_word_size = _g1h->desired_plab_sz(purpose);
1859     if (word_sz * 100 < gclab_word_size * ParallelGCBufferWastePct) {
1860       G1ParGCAllocBuffer* alloc_buf1 = alloc_buffer(purpose, GCAllocPriority1);
1861       G1ParGCAllocBuffer* alloc_buf2 = alloc_buffer(purpose, GCAllocPriority2);
1862 
1863       add_to_alloc_buffer_waste(alloc_buf1->words_remaining());
1864       alloc_buf1->retire(false /* end_of_gc */, false /* retain */);
1865 
1866       HeapWord* buf = _g1h->par_allocate_during_gc(purpose, gclab_word_size);
1867       if (buf == NULL) return NULL; // Let caller handle allocation failure.
1868       // Otherwise.
1869       alloc_buf1->set_word_size(gclab_word_size);
1870       alloc_buf1->set_buf(buf);
1871 
1872       obj = alloc_buf1->allocate(word_sz);
1873       assert(obj != NULL, "buffer was definitely big enough...");
1874 
1875       // Swap buffers in order to preserve the priority order
1876       _alloc_buffers[buf_idx(purpose, GCAllocPriority1)] = alloc_buf2;
1877       _alloc_buffers[buf_idx(purpose, GCAllocPriority2)] = alloc_buf1;
1878     } else {
1879       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
1880     }
1881     return obj;
1882   }
1883 
1884   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
1885     HeapWord* obj;
1886     for (int pr = 0; pr < GCAllocPriorityCount; ++pr) {
1887       obj = alloc_buffer(purpose, (GCAllocPriority)pr)->allocate(word_sz);
1888       if (obj != NULL) return obj;
1889     }
1890     // Otherwise.
1891     return allocate_slow(purpose, word_sz);
1892   }
1893 
1894   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
1895     for (int pr = 0; pr < GCAllocPriorityCount; ++pr) {
1896       if (alloc_buffer(purpose, (GCAllocPriority)pr)->contains(obj)) {
1897         assert(alloc_buffer(purpose, pr)->contains(obj + word_sz - 1),
1898                "should contain whole object");
1899         alloc_buffer(purpose, (GCAllocPriority)pr)->undo_allocation(obj, word_sz);
1900         return;
1901       }
1902     }
1903 
1904     CollectedHeap::fill_with_object(obj, word_sz);
1905     add_to_undo_waste(word_sz);
1906   }
1907 
1908   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
1909     _evac_failure_cl = evac_failure_cl;
1910   }
1911   OopsInHeapRegionClosure* evac_failure_closure() {
1912     return _evac_failure_cl;
1913   }
1914 
1915   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
1916     _evac_cl = evac_cl;
1917   }
1918 
1919   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
1920     _partial_scan_cl = partial_scan_cl;
1921   }
1922 
1923   int* hash_seed() { return &_hash_seed; }
1924   uint queue_num() { return _queue_num; }
1925 
1926   size_t term_attempts() const  { return _term_attempts; }
1927   void note_term_attempt() { _term_attempts++; }
1928 
1929   void start_strong_roots() {
1930     _start_strong_roots = os::elapsedTime();
1931   }
1932   void end_strong_roots() {
1933     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
1934   }
1935   double strong_roots_time() const { return _strong_roots_time; }
1936 
1937   void start_term_time() {
1938     note_term_attempt();
1939     _start_term = os::elapsedTime();
1940   }
1941   void end_term_time() {
1942     _term_time += (os::elapsedTime() - _start_term);
1943   }
1944   double term_time() const { return _term_time; }
1945 
1946   double elapsed_time() const {
1947     return os::elapsedTime() - _start;
1948   }
1949 
1950   static void
1951     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
1952   void
1953     print_termination_stats(int i, outputStream* const st = gclog_or_tty) const;
1954 
1955   size_t* surviving_young_words() {
1956     // We add on to hide entry 0 which accumulates surviving words for
1957     // age -1 regions (i.e. non-young ones)
1958     return _surviving_young_words;
1959   }
1960 
1961   void retire_alloc_buffers() {
1962     for (int ap = 0; ap < GCAllocPurposeCount; ++ap)
1963       for (int pr = 0; pr < GCAllocPriorityCount; ++pr) {
1964         G1ParGCAllocBuffer* buffer = alloc_buffer((GCAllocPurpose)ap, (GCAllocPriority)pr);
1965         size_t waste = buffer->words_remaining();
1966         add_to_alloc_buffer_waste(waste);
1967         buffer->flush_stats_and_retire(_g1h->stats_for_purpose((GCAllocPurpose)ap),
1968                                        true /* end_of_gc */,
1969                                        false /* retain */);
1970       }
1971   }
1972 
1973   template <class T> void deal_with_reference(T* ref_to_scan) {
1974     if (has_partial_array_mask(ref_to_scan)) {
1975       _partial_scan_cl->do_oop_nv(ref_to_scan);
1976     } else {
1977       // Note: we can use "raw" versions of "region_containing" because
1978       // "obj_to_scan" is definitely in the heap, and is not in a
1979       // humongous region.
1980       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
1981       _evac_cl->set_region(r);
1982       _evac_cl->do_oop_nv(ref_to_scan);
1983     }
1984   }
1985 
1986   void deal_with_reference(StarTask ref) {
1987     assert(verify_task(ref), "sanity");
1988     if (ref.is_narrow()) {
1989       deal_with_reference((narrowOop*)ref);
1990     } else {
1991       deal_with_reference((oop*)ref);
1992     }
1993   }
1994 
1995   void trim_queue();
1996 };
1997 
1998 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1COLLECTEDHEAP_HPP